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Due to the relative prevalence and centrality of the proteome, it is unsurprising that a great 

number of environmental stressors exert pressure on the cell via impacting proteome function. Whether 

it be in a global sense, as in temperature or pH destabilizing large fractions of the proteome, or in a 

more local sense, as in the targeting of one or a handful of proteins by an inhibitory compound, it is not 

possible to understand physicochemical pressures on the cellular system without considering properties 

of the proteome. This thesis aims to enable the analysis and simulation of such physicochemical 

constraints upon the cellular system through integration of systems biology with protein structural data 

and computational methods. This is the approach of the emerging field of structural systems biology. 

This work demonstrates examples of interrogating physicochemical stress imposed upon metabolic 

systems by exposure to exogenous chemicals and non-optimal temperatures. An extensive data resource 

was developed to capture biologically-relevant protein structural states to be integrated with the 
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genome-scale metabolic model of the bacterium Escherichia coli. The primary results include 1) 

prediction of causal drug off-targets to explain a lethal but poorly understood drug side effect in 

humans, 2) establishing metabolic activities as growth-rate limiting under heat shock conditions and 

discovering specific bottlenecks such stress creates in the metabolic system of E. coli, and 3) analysis of 

antibacterial mechanisms of both well- and poorly-understood compounds and drug design via protein 

targeting. Thus, through the integration of structural and systems biology, new insights are provided 

about the impact of physicochemical stress on complex biological systems. 
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Chapter 1: Drug off-target effects predicted using structural analysis 
in the context of a metabolic network model. 

Abstract 
Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-

targets based on their ligand binding sites. Concurrent developments in systems biology allow for 

prediction of the functional effects of system perturbations using large-scale network models. 

Integration of these two capabilities provides a framework for evaluating metabolic drug response 

phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of 

the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A 

metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets 

were predicted that have previously been observed to impact renal function in gene-deficient patients 

and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug 

treatment were also predicted that correspond to both characterized and unknown renal metabolic 

disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder 

phenotype except under drug treatment. This study represents a novel integration of structural and 

systems biology and a first step towards computational systems medicine. The methodology introduced 

herein has important implications for drug development and personalized medicine. 
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Introduction 
 Despite the advantages gained from drug therapy in medicine, drug development has 

historically presented an expensive and frequently perplexing challenge for researchers. Identifying 

useful drug targets for treating disease and matching them to chemical compounds that can elicit the 

desired effect through drug-target interaction has been the paradigm for the drug development process 

in the era of molecular medicine. However, this approach has yielded many failed drug treatments and 

an incomplete understanding of the consequences of treatments for human health, even with drugs that 

have made it to market and been prescribed for decades. Two major contributing factors that confound 

individual molecular target-based drug discovery are drug off-target binding and the lack of systems-

level understanding of drug response1. Adopting a new, systems-based approach to drug development is 

therefore a desirable goal in the era of systems medicine. 

The growing wealth of omics data offers a valuable opportunity for novel approaches in 

systems medicine but also presents significant challenges for data integration2. Increasingly 

sophisticated computational approaches are being developed to analyze and manipulate omics data in 

order to gain a greater understanding of complex biological systems. An algorithm for identifying and 

comparing ligand binding sites on protein structures3 was recently employed to predict drug off-target 

binding sites across the proteome4. Such a tool offers unique capabilities for drug development by 

providing a comprehensive survey of uncharacterized drug targets that may participate directly in drug 

response, which is likely to be important as polypharmacology interactions suggest that drug 

promiscuity is a predominant property of existing drugs4, 5. 

Biological systems exhibit redundant pathways and synergistic effects conferring a robustness 

of phenotype when confronted with external stimuli. As a result, multi-target drugs are generally more 

clinically efficacious than single-target drugs. These facts highlight the critical importance of studying 

polypharmacology in a systems level context6. The increasing use of genome-scale metabolic network 

models for a variety of applications7, 8 has established this research platform as a promising means for 

studying the emergent properties of complex systems. The published applications of metabolic models 

for drug development have thus far focused on identifying drug targets for antibacterial treatment in 
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such pathogens as M. tuberculosis9, 10, S. aureus10, 11, H. pylori, and E. coli10. However, the human 

metabolic network reconstruction (Recon 1)12 and developed context-specific metabolic modeling 

algorithms13, 14 permit human-centered in silico drug studies. Integrating these structural bioinformatics 

and human system modeling techniques for application in drug development represents a first 

computational step into the era of systems medicine. As an example of this integrative approach, the 

results of protein off-target prediction for the drug torcetrapib4, a cholesteryl ester transfer protein 

(CETP) inhibitor, were evaluated in the context of a model of renal metabolism. 

CETP inhibitors are intended to treat patients at risk for atherosclerosis and other 

cardiovascular diseases by raising high-density lipoprotein cholesterol (HDL-C) and lowering low-

density lipoprotein cholesterol (LDL-C)15. Torcetrapib was withdrawn from phase III clinical trials after 

a substantial investment of labor and capital due to its observed side effect of fatal hypertension in some 

patients16. It has since been of great interest to elucidate the cause of this side effect in order to avert 

such failures in the future and to better define the potential of CETP inhibitors for treatment17. 

Subsequent studies have provided evidence in favor of the hypothesis that the cause of this side effect 

was not due directly to the mechanism of HDL-C and LDL-C regulation via CETP inhibition18. Instead, 

it has been suggested that the hypertensive side effect may result from uncharacterized drug off-target 

effects17. Two other CETP inhibitors are now under clinical trial, anacetrapib18 and JTT-70519. Thus far, 

studies have not indicated the same risk of hypertension associated with the latter two drugs; however, 

these studies have been limited to relatively small patient groups lacking in diversity and over relatively 

short-term treatment. Even if these alternative CETP inhibitors do not carry the same adverse side 

effects, it is still of value to future drug development to determine the exact mechanism of torcetrapib’s 

adverse action. It has been suggested that off-target effects of torcetrapib lead to increased activity of 

the renin-angiotensin-aldosterone-system (RAAS) and thereby hypertension4, 20, but a recent review of 

the published CETP inhibitor clinical studies21 concludes that the effect on blood pressure is most likely 

independent of the increase in aldosterone. Currently the exact cause of the hypertensive side effect of 

torcetrapib remains to be unambiguously identified. 
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The predicted torcetrapib off-targets include many metabolic enzymes and metabolite transport 

proteins. Although there are several mechanisms involved in regulating blood pressure that may be 

responsible for the hypertensive side effect, one possible mode is the renal regulation of blood pressure 

via metabolite reabsorption and secretion. The kidneys are the primary organs that filter the blood and 

therefore are strong contributors to maintaining a normotensive state even independent of RAAS 

function. Thus a model of renal metabolism was developed as the system context in which to analyze 

torcetrapib off-targets and predict drug response phenotypes. The two best-supported causal off-targets 

predicted in this study are prostaglandin I2 synthase (PTGIS), due to decreased capacity for renal 

prostaglandin I2 (PGI2) secretion, and acyl-CoA oxidase 1 (ACOX1), due to decreased capacity for 

renal citrate and amino acid reabsorption. Four other predicted off-targets are also predicted to impact 

amino acid, glucose, citrate, or bicarbonate reabsorption. As well, the model predicts no effect on renal 

reabsorption or secretion for a number of other predicted off-target metabolic proteins. 

The goal of this study is not only to provide new insight into the torcetrapib problem but also 

to reveal the theoretical implications that this computational systems medicine platform has for drug 

development and personalized medicine. Characterizing the influence that genetic variation has in 

determining drug response phenotypes has been recognized as a crucial goal for the future of drug 

development22. To this end, the renal model was also used to analyze metabolic disorders resulting from 

genetic deficiencies and to identify those deficiencies that may pose additional risks for drug treatment 

in select individuals. 

Although many of the predictions generated by this approach are supported by clinical and 

other experimental evidence that describe the impact of loss of function for predicted causal off-targets 

and genetic deficiencies, the full set of exact metabolic mechanisms of drug action predicted by our 

model remain to be completely validated. While this is seen as a limitation of this study, it also offers a 

number of opportunities to experimentally evaluate promising hypotheses that, if validated, will lead to 

significant advancements in developing CETP inhibitors for treatment and novel insight into certain 

renal disorders. 
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Results 

Renal Metabolic Model 
The approach for context-specific organ modeling proposed in this study (see Methods and 

Figure 1.1) yielded a renal metabolic model capturing functions of the kidney for reabsorption and 

secretion (Table 1.1). Many components of the renal objective function are factors known to be relevant 

determinants of blood pressure. However, there is currently incomplete knowledge about the exact role 

that some of these components play in blood pressure regulation. Calcium reabsorption, for example, 

leads to vasoconstriction in kidney glomeruli through the action of L-type and N-type calcium ion 

channels23 suggesting a resulting increase in blood pressure if this mechanism applies across all 

vascular tissues. Calcium reabsorption also leads to an inhibition of renal sodium reabsorption in the 

proximal tubule24 suggesting a blood pressure lowering effect consistent with the observation that 

increased dietary calcium also lowers blood pressure25. This highlights the complexity of the effect 

certain renal reasborptions have on blood pressure. Nevertheless, the many components accounted for 

in the renal objective function enabled explicit predictions about how system perturbations such as drug 

treatment and genetic deficiencies affect the kidney’s ability to regulate the small molecule content of 

the blood. 
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Figure 1.1. Context-specific organ metabolic modeling. Preliminary constraints were imposed upon 
metabolite exchange fluxes of the full metabolic network based on coordinated experimental detection 
of transportable metabolites both in the organ tissue and the biofluids processed by the organ. 
Metabolites detected in both biofluid and organ were assumed freely exchangeable in the model, and 
the remainder of the metabolite exchanges were tentatively constrained to zero. Organ physiology 
literature was reviewed to compile an objective function consisting of the metabolic functions of the 
organ. Each function was tested for compatibility with the preliminary model. Metabolite exchange, 
transport, and demand reactions required to achieve some functions were added to the network, and 
exchange fluxes for objective metabolites were directionally constrained in accordance with the 
literature. Functions not compatible with the model were removed from the overall objective function. 
The objective function was then integrated with gene expression data obtained from an organ tissue 
sample to derive a net, context-specific metabolic organ model representing the metabolic exchange 
between the organ and the rest of the body and the metabolic reactions that take place within the organ 
to achieve this exchange. 
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Table 1.1. Renal objective function. 

Exchange Class Metabolite Abbreviation Relation to Blood Pressure
Prostaglandin I2 PGI2 vasodilation
Prostaglandin D2 PGD2 vasodilation
Calcitriol - lowers blood pressure, Ca2+ reabsorption

urea Urea - water/ion counter current system regulating osmolality
cyclic amp Cyclic AMP cAMP important for vaso-dilation/constriction

urate Urate - uknown, but secreted
tryptamine Tryptamine - uknown, but secreted

water Water H2O determinant of blood pressure, ion absorption
Phosphate - determinant of blood pressure
Sodium Na+ determinant of blood pressure
Calcium Ca2+ determinant of blood pressure
Chloride Cl- determinant of blood pressure
Protium H+ determinant of blood pressure
Potassium K+ determinant of blood pressure
Bicarbonate HCO3- determinant of blood pressure
Acetate - unknown, but reabsorbed
Citrate - effects sodium reabsorption
Oxalate - effects sodium reabsorption

glucose D-Glucose - effects sodium reabsorption
L-Alanine Ala associated reduction of hypertension/vasodilation
L-Arginine Arg associated reduction of hypertension/vasodilation
L-Asparagine Asn associated reduction of hypertension/vasodilation
L-Aspartate Asp associated reduction of hypertension/vasodilation
L-Cysteine Cys associated reduction of hypertension/vasodilation
L-Glutamine Gln associated reduction of hypertension/vasodilation
L-Glutamate Glu associated reduction of hypertension/vasodilation
Glycine Gly associated reduction of hypertension/vasodilation
L-Histidine His associated reduction of hypertension/vasodilation
L-Isoleucine Ile associated reduction of hypertension/vasodilation
L-Leucine Leu associated reduction of hypertension/vasodilation
L-Lysine Lys associated reduction of hypertension/vasodilation
L-Methionine Met associated reduction of hypertension/vasodilation
L-Phenylalanine Phe associated reduction of hypertension/vasodilation
L-Proline Pro associated reduction of hypertension/vasodilation
L-Serine Ser associated reduction of hypertension/vasodilation
L-Threonine Thr associated reduction of hypertension/vasodilation
L-Tryptophan Trp associated reduction of hypertension/vasodilation
L-Tyrosine Tyr associated reduction of hypertension/vasodilation
L-Valine Val associated reduction of hypertension/vasodilation
L-Carnosine - unknown, but reabsorbed
Glutathione GSH unknown, but reabsorbed

secretion

hormones

absorption

ions/electrolytes

carboxylates

amino acids

oligopeptides
 

The kidney model included 336 explicitly predicted active metabolic genes (see Table S1 in 26) 

that met criteria for activity as summarized in Figure 1.2. The majority, 243 genes, satisfied the gene 

expression significance threshold (see Methods), although the activity of 58 genes was predicted despite 

expression values below the threshold. These genes were activated by the GIMME algorithm13 to 

optimally achieve the renal objectives while remaining minimally inconsistent with gene expression 

data and may represent post-transcriptionally upregulated genes. The other 35 genes were predicted to 

be active without penalty since no corresponding probesets existed on the microarray upon which the 

transcriptomic data was obtained. Since many of these genes participated in optimal pathways for 
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achieving renal objectives, it is projected that experimental measurement would confirm their 

expression if performed. 

 

Figure 1.2. Summary of gene activity predictions in the full kidney model. The pie chart at bottom 
represents the Recon1 gene activity predictions resulting from deriving the kidney model. Genes 
predicted inactive are those genes with no associated active reaction fluxes in the kidney model. Genes 
for which no activity prediction was made are those associated with active reaction fluxes in the kidney 
model but either are not represented in the gene expression data or were not determined as the gene 
whose expression level is most limiting for any associated reaction through evaluation of GPR Boolean 
rules with respect to gene expression data. The slice at top represents genes predicted active in the 
kidney model. 

The active reactions in the model reflect both the possible pathways by which the kidney can 

achieve the specified renal objectives as well as other functions supported by the gene expression data. 

The model included 1587 active reactions (see Table S2 in 26), excluding model-based reactions such as 

objective functions, exchanges, and demands. Of these active reactions, 333 comprised a single 

connected sub-model accounting for all pathways which could possibly support the specified renal 

objectives. We refer to this sub-model as the reduced kidney model (see Table S1 and Table S2 in 26 for 

the contents of the reduced model and Dataset S1 in 26 for the actual model in SBML format). It should 
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be noted that because the reduced model included all reactions that can carry flux in support of the renal 

objectives, it had the exact same effective flux state solution space as the full renal model. The reduced 

kidney model reactions spanned a broad range of metabolic subsystems (Figure 1.3). The largest 

subsystem consisted of plasma membrane-spanning transport reactions, which is expected given that 

this model captured renal filtration and secretion functions. The second largest subsystem represented 

intracellular transport, signifying the importance of interaction among sub-cellular compartments in 

renal function including the cytosol, endoplasimic reticulum, Golgi apparatus, and mitochondria. A 

significant proportion of the other active subsystems in the reduced kidney model were involved 

directly in the metabolism of components of the renal objective function including carbohydrate, amino 

acid, vitamin, lipid, carboxylate, and glutathione metabolism as well as the urea cycle. These permitted 

the indirect reabsorption of metabolites as well as the required synthetic pathways for renal secretions. 

 

Figure 1.3. Reduced kidney model subsystem distribution. The distribution of metabolic reactions 
predicted to be active in the reduced kidney model with respect to broad metabolic subsystem 
categories is shown. The distribution excludes objective function, exchange, and demand reactions used 
to perform simulations in the model. 
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Causal Drug Off-Targets 
The integrative framework adopted for predicting causal drug targets associated with response 

phenotypes employed both structural bioinformatics tools as well as modeling techniques of systems 

biology (see Methods and Figure 1.4). The workflow begins with screening of the entire human 

structural proteome, with each subsequent step in the process narrowing the list of proteins ultimately 

into a set of targets for which a response phenotype was predicted upon functional inhibition. The first 

step of this process identified putative off-target drug binding sites using a ligand-binding site structural 

alignment algorithm (see Methods). The 41 predicted metabolic protein off-targets were the focus of 

this study (see Table 1.2), 28 of which had predicted drug binding sites overlapping with their 

functional sites. Simulated inhibition of these targets in the reduced kidney model (see Methods) 

predicted response phenotypes for 6 of the off-target proteins with respect to renal function (Figure 1.5). 

The results of all analysis steps for these 6 off-targets are summarized in Table 1.3. The expression of 

all of these targets was determined to be the most limiting for their associated metabolic reactions 

included in the reduced kidney model (see Methods), providing additional evidence supporting that 

inhibition of these targets would be expected to have at least some deleterious impact on those 

reactions. 
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Figure 1.4. Identifying causal genes for drug response phenotypes and metabolic disorders. First, 
the human proteome was screened to identify off-target drug-binding sites. The resulting list of putative 
off-targets was filtered to focus on just metabolic proteins. Then, for each predicted metabolic off-
target, the endogenous functional sites were compared to the predicted drug-binding site to identify 
overlap. Off-target proteins for which overlapping binding sites were identified were considered to be 
competitively inhibitable by the drug at the overlapping endogenous functional sites. The functional 
consequences of such inhibitions were then tested in an appropriate context-specific metabolic model. 
All possible individual gene knockouts were also simulated to predict genetic disorders that lead to 
functional deficiencies either alone or in combination with drug treatment. Those off-targets whose 
inhibition impacted model function represent causal off-targets predicted to be associated with the drug 
response phenotype, and the gene knockouts that impacted model function represent genetic risk factors 
for metabolic disorders, which may lead to amplification of the drug response phenotype. 
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Table 1.2. Metabolic protein drug target predictions. 

Official
Symbol PDB ID

Gene 
ID

SMAP
Prediction

Functional
Site
Overlap

Reduced
Model
Reactions
Limited by
Expression

Impacts
Renal
Function in
Simulation

Stronger
Drug
Binding
Affinity

PTGIS 2IAG 5740 x x x x x
ACOX1 1IS2a 51 x x x x x
AK3L1 2BBW 205 x x x x
HAO2 1LTDa 51179 x x x x
MT-COI 1V54a 4512 x x x x
UQCRC1 1PP9a 7384 x x x x
SLC4A1 1HYN 6521 x x
HSD17B10 1U7T 3028 x x x
CRAT 1XMCa 1384 x x x
GLTP 1TFJa 51228b x x x
PDE10A 2OUN 10846 x x x
PFKFB1 1K6M 5207 x x x
TTPA 1OIP 7274b x x
UGP2 2I5Ka 7360 x
PDE1C 1LXS 5137 x
PCTP 1LN1 58488b x x x
CYP2C9 1R9O 1559 x x x
HMOX2 2Q32 3163 x x x
IDO1 2D0T 3620 x x x
STARD3 1EM2 10948 x x x
PYCR1 2IZZ 5831 x x x
CYP19A1 3EQM 1588 x x x
HAL 1B8Fa 3034 x x x
PFAS 1T3Ta 5198 x x x
PPOX 2IVDa 5498 x x x
TDO2 2NOXa 6999 x x x
INMT 1VLMa 11185 x x x
DLAT 3B8K 1737 x x x
DHODH 2FPT 1723 x x
HAO1 1LCOa 54363 x x
HSD17B1 1I5R 3292 x x
AANAT 1KUXa 15 x
STS 1P49 412 x
CYP21A2 2GEG 1589 x
HNMT 1JQE 3176 x
HSD17B4 1IKT 3295 x
CHP 2E30 11261 x
COASY 2F6Ra 80347 x
SLC2A7 1YG7 155184 x
SLC2A5 1YG1 6518 x
CSAD 2JIS 51380 x
a Non-human protein structures w ere mapped to human genes via BLAST against the human 
proteome and choosing the top hit only if  it had E-value < 1E-50.

b Incomplete or incorrect gene-protein-reaction associations (GPRs) w ere associated w ith the 
correct gene IDs based on comparative BLAST results and gene functional annotation.  
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Figure 1.5. CETP inhibitor renal response phenotypes. Elements of the color matrix represent the 
percent of the maximum normal, untreated renal objective flux achievable by the CETP-inhibitor-
treated normal kidney model. The x-axis corresponds to individual renal objective functions, and the y-
axis corresponds to the predicted drug off-targets. Metabolite abbreviations are defined in Table 1.1. 
Only the subset of renal objective functions for which a drug response phenotype was predicted is 
displayed. 

Table 1.3. Drug side effect causal off-targets. 

Official 
Symbol PDB ID

Gene 
ID

SMAP 
Prediction

Functional 
Site 
Overlap

Reduced 
Model 
Reactions 
Limited by 
Expression

Impacts 
Renal 
Function 
in 
Simulation

Stronger 
Drug 
Binding 
Affinity

Cryptic 
Genetic 
Risk 
Factors

PTGIS 2IAG 5740 × × × × ×
ACOX1 1IS2a 51 × × × × ×
AK3L1 2BBW 205 × × × ×

HAO2 1LTDa 51179 × × × ×

SLC3A1;
SLC7A9;
SLC7A10;

ABCC1

MT-COI 1V54a 4512 × × × × CYP27B1;
ABCC1

UQCRC1 1PP9a 7384 × × × × CYP27B1;
ABCC1

aNon-human protein structures w ere mapped to human genes via bi-directional BLAST against the 
human proteome and choosing the top hit only if  it had E-value < 10-50.  
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The renal response phenotypes for inhibition of two of the predicted drug off-targets were 

supported by existing scientific literature. Simulated PTGIS inhibition completely precluded PGI2 

secretion. Based on the relation of renal PGI2 secretion to blood pressure (see Table 1.1), this inhibition 

would be expected to have a hypertensive effect. Experimental studies confirmed that PTGIS is 

associated with essential hypertension in humans27 and that transgenic rats highly expressing human 

PTGIS exhibited decreased mean pulmonary arterial pressure despite treatment with monocrotaline to 

induce hypertension28. Inhibition of hydroxyacid oxidase 2 (HAO2) in the reduced kidney model led to 

reduced glutamate, glycine, and serine reabsorption suggesting a possible role for HAO2 in the 

hypertensive side effect following CETP inhibitor treatment based on the association of amino acid 

reabsorption with vasodilation and hypertension (see Table 1.1). HAO2 is highly expressed in human 

kidney29 and was identified as a candidate quantitative trait locus for blood pressure in rat kidney in a 

study comparing normal to hypertensive rats30. 

Two predicted causal CETP inhibitor off-targets, PTGIS and ACOX1, exhibited notable 

binding affinity differences when comparing docking results for their endogenous substrates to those for 

the three CETP inhibitors (Figure 1.6). The mean predicted binding affinity of PTGIS for its 

endogenous substrate prostaglandin H2 was weaker than for all three CETP inhibitors (Figure 1.6A). 

Anacetrapib was predicted to have the strongest mean binding affinity of all four tested molecules for 

PTGIS and JTT-705 the weakest of the three drugs. The predicted mean binding affinity of ACOX1 for 

its endogenous substrate palmitoyl-CoA was weaker than for torcetrapib and anacetrapib but stronger 

than the affinity of the protein for JTT-705 (Figure 1.6B). These results supported potential competitive 

inhibition of PTGIS and ACOX1 by torcetrapib and anacetrapib, but the predictions suggested a lesser 

effect of JTT-705 on ACOX1. 
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Figure 1.6. Differential causal off-target ligand and drug binding affinities. (A) Binding affinities 
of the prostaglandin I2 (prostacyclin) synthase protein for CETP inhibitors and prostaglandin H2, the 
endogenous substrate. (B) Binding affinities of the acyl-Coenzyme A oxidase 1, palmitoyl protein for 
CETP inhibitors and palmitoyl-CoA, the endogenous substrate. Each bar shows the mean binding 
energy predicted from docking trials. The standard error is indicated for each bar along with the number 
of predicted binding poses. 

Renal Disorders and Drug Treatment 
Similar to the use of the model to test inhibitory effects on drug targets, the model was also 

used to predict genetic deficiencies that lead to renal disorders and drug off-targets that act 
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synergistically with genetic deficiencies. Simulated gene knockouts predicted to impact renal objective 

functions are displayed in Figures S1 and S2 and Table S4 in 26. The 118 deficient genes predicted to 

cause disorders impacted a variety of renal secretions and absorptions to varying degrees. Thirteen of 

these deficiencies predicted total loss of at least one renal function (see Figure S2 in 26). 

Some renal disorders were only predicted in the gene-deficient models in combination with 

drug treatment, not in the untreated gene-deficient models or in the normal drug-treated model, and are 

referred to in this study as cryptic genetic risk factors. Five such gene deficiencies were predicted (see 

Table S4 in 26). A deficiency in CYP27B1, which impacted vitamin D secretion alone, also exhibited 

defects in proline reabsorption when combined with drug treatment in simulation. Defects in three 

amino acid transport proteins (SLC7A10, SLC3A1, and SLC7A9) were predicted to decrease renal 

glycine reabsorption in combination with drug treatment along with the disorders predicted in the 

absence of drug treatment. The model deficient in the ATP-binding cassette sub-family C member 1 

gene (ABCC1) was predicted to exhibit a cryptic deficiency in renal phosphate reabsorption under drug 

treatment. These predictions are of special importance because they suggest that these renal phenotypes 

would only surface in gene-deficient individuals under certain conditions, such as when treated with 

CETP inhibitors. 

Model Evaluation and Validation 
Multiple evaluations were performed to analyze and validate the content of the reduced kidney 

model. The reduced kidney model effectively predicted activity of significantly expressed metabolic 

genes. The ability of our modeling approach to correctly and robustly predict activity of highly 

expressing genes was evaluated by a five-fold cross validation (see Methods). Our approach showed 

significant recall of the 20% most highly expressed metabolic genes, p-value = 4.57×10-22. This 

observation is especially notable since the reduced kidney model was not a global model of kidney 

metabolism, and the result suggests the relative importance of the renal functions captured by our model 

within the context of total kidney gene activity. 

We compared the metabolic gene activity predictions from the reduced kidney model to the set 

of significantly expressed genes as well as to a proteomic dataset derived from normal, healthy human 
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kidney glomerulus tissue31 (Figure 1.7A). A total of 164 genes active in the reduced kidney model, 72% 

of the predicted activities, were supported by either significantly expressed mRNA levels, high-

confidence protein detection, or both (see Table S1 in 26 for a detailed list). The remaining 64 gene 

activities accounted for in the model include 23 genes with no corresponding microarray probesets, and 

therefore not experimentally measured mRNA, and 41 genes that were determined to express more 

marginally below the established significance threshold. Despite a strong overlap between the 

transcriptomic and proteomic datasets, there were also large proportions of both which are unique. This 

disagreement may be due to tissue samples being taken from different kidney sub-tissues in each 

experiment, absent probesets on the microarray, or the propensity of mass spectrometry proteomic 

experiments to produce false negatives. All of the counted activities in Figure 1.7A were included in the 

full human metabolic network, signifying that the reduced kidney model was not a global kidney model 

and that there is potential for expansion to account for more metabolic functions than those of concern 

in this study. 
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Figure 1.7. Comparative reduced kidney model evaluation. (A) Overlap of gene activity predictions 
with genes expressing above the significance threshold. Regions of the diagram are approximately 
proportional to their associated set sizes. The magenta circle represents the set of genes predicted active 
in the reduced kidney model. The cyan circle represents the set of Recon1-associated genes with 
expression levels above the significance threshold in the kidney tissue data. The yellow circle represents 
the set of genes encoding proteins that were detected in normal human kidney glomerulus tissue. (B) 
Renal metabolic objectives supported by predicted reaction flux states. The orange circle represents 
renal metabolic objectives supported both by the kidney model developed in this study and a kidney 
model derived from the reaction activity predictions of Shlomi et al. The red circle represents renal 
metabolic objectives supported only by the kidney model from this study. Metabolite abbreviations are 
defined in Table 1.1. 
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The literature-curated renal functions achievable by the kidney model were also compared to 

those achievable by a model derived from the predictions of Shlomi et al (Figure 1.7B). While the 

kidney model developed in this study was compatible with all 41 curated renal functions, the 

predictions of Shlomi et al were only compatible with 25 functions. This difference in functionality was 

due to false negative inactivity predictions made by Shlomi et al such as inactive urea transport, 

prostaglandin synthesis, and ATP synthesis. These results underscore the need to manually curate 

automatically generated metabolic network reconstructions and the advantage of integrating objective 

functions with context-specific modeling. 

Next, the model was functionally validated by comparing the gene deficiencies predicted to 

cause renal disorder to disease phenotypes in the OMIM database collected from clinical studies. 

Twenty known gene deficiencies leading to specific disease phenotypes were accurately predicted using 

the model (see Table S4 in 26). Loss of function mutations in the gene encoding 25-hydroxyvitamin D3-

1-alpha hydroxylase (CYP27B1) have been linked to vitamin D-dependent rickets type I in both human 

patients32 and pigs33 consistent with the predicted inability of the gene-deficient model to secrete 

calcitriol. Hypouricosuria, low urinary excretion of urate, is a symptom of xanthinuria that is caused by 

xanthine dehydrogenase (XDH) deficiency34, which is consistent with the deficient model’s inability to 

excrete urate. Similarly, hypouricemia, low blood serum urate, is a consequence of nucleoside 

phosphorylase (NP) deficiency35 also predicted in the model. Deficiency of aromatic L-amino acid 

decarboxylase (DDC) leads to increased urinary excretion of 5-hydroxytryptophan36, which is 

consistent with the decreased ability to reabsorb tryptophan and secrete tryptamine predicted through 

simulation. Mutations in the mitochondrial cytochrome c oxidase gene (COX6B1) lead to de Toni-

Fanconi-Debre renal syndrome, whose symptoms include a deficiency in the renal reabsorption of 

glucose, amino acids, and bicarbonate37, 38, all of which were predicted in the model. Deficiencies in 

seven NADH dehydrogenase genes all lead to hypoglycemia, confirmed in simulation, and a decreased 

ability to oxidize citrate and glutamate39, reactions important for indirect renal reabsorption of citrate 

and glutamate in the model. Proline dehydrogenase (PRODH) deficiency causes an inability to oxidize 

proline in kidney and other tissues leading to hyperprolinemia that includes increased urinary excretion 
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of proline as a symptom40-42, which is also consistent with the predicted decrease in renal proline 

reabsorption. Deficiencies in two genes that take part in the ubiquinol-cytochrome c reductase complex 

III (UQCRQ and UQCRB) lead to proximal tubulopathy, including an inability to reabsorb amino 

acids43; the gene-deficient model exhibited reduced renal reabsorption of alanine, glutamate, and 

proline. Fumarate hydratase (FH) deficiency leads to defects in glutamate oxidation in kidney and other 

tissues44, 45, which is also consistent with the decreased indirect renal reabsorption of glutamate 

predicted by the model. Renal glucosuria, recapitulated in the model, results from deficiency in a 

sodium-glucose transporter (SLC5A2)46. Dicarboxylicamino aciduria47 exhibits impaired renal 

glutamate and aspartate reabsorption and hypoglycemia resulting from a deficient glutamate transporter 

(SLC1A1), all symptoms predicted by the model. Severe dehydration is one symptom resulting from 

another deficient transporter (SLC5A1)48, confirmed through decreased reabsorption of water in the 

model. These results qualitatively describe the ability of our modeling approach to predict perturbed 

phenotypic states. 

To more rigorously quantify the predictive ability of our model simulation approach, we 

performed area under receiver operating characteristic (AROC) analysis based on not only the 

abovementioned clinical validations of our gene-deficient phenotype predictions but based on the entire 

set of such known clinical phenotypes that could potentially have been investigated using our model 

(see Figure 1.8 and Methods). The sharp declines in rates with increasingly stringent classifier ratio 

thresholds (see Figure 1.8) reflect the likely low coverage of actual disorder phenotypes by existing 

clinical studies. Nevertheless, our approach performed very well based on this analysis, with an AROC 

of 0.7565. Permutation trials resulted in a mean AROC of 0.5112, in close agreement with the expected 

theoretical randomly achievable AROC of 0.5. Our approach achieved a significantly greater AROC 

than could be expected by chance, p-value = 8.71×10-70. Given the relatively low number of actual 

clinical negatives available (see Table S5 in 26), we also assessed the significance of our prediction 

results based purely on the true positive rates determined through the AROC analysis. The mean true 

positive rate of our results in this analysis was 0.2859, significantly greater than the 0.0215 mean true 

positive rate obtained randomly, p-value = 3.29×10-127. These analysis results illustrate that our 
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approach for predicting perturbation phenotypes exhibits both favorable sensitivity and specificity 

based on actual clinical data and should hold not only for predicting genetic deficiency phenotypes but 

also enzyme inhibition by drugs, which exhibits a similarly deleterious phenotypic effect. 

 

Figure 1.8. ROC curves for gene-deficient phenotype prediction. The blue line represents the 
analysis of the predictions of the model simulations presented in this study. The red lines represent the 
analysis of 100 different permutation trials. The dashed black line is the line y=x. 

Parameter Sensitivity Analysis 
In order to assess the effects of some of the critical assumptions made in the model 

development and simulation procedures, we performed sensitivity analysis with respect to the predicted 

renal disorder phenotypes. 

First, we compared the predictive capability of our reduced kidney model to that of the 

original, unconstrained human Recon1 metabolic network. The same approach to simulating renal 
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disorder states was employed using both models (see Methods). We simulated all single gene knock 

outs in both models and assessed the renal disorder phenotypes with respect to each individual 

component of the renal objective function based on the ratio of maximum objective flux in the 

perturbed state to maximum objective flux in the unperturbed state. Comparing the results achieved by 

each model (Figure 1.9), it is apparent that although there are a few cases where both models predict an 

equal degree of renal disorder given the same genetic perturbation, the vast majority of disorder 

phenotypes are more apparent in the reduced kidney model than in Recon1 alone. In fact, 427 out of the 

608 (71%) disorder phenotypes predicted by the reduced kidney model showed no degree of disorder 

relative to the unperturbed state in Recon1, including 36 of the most severe phenotypes for which a total 

loss of renal function was predicted by the reduced kidney model. These observations display the 

predictive ability gained through integration of the gene expression data via the GIMME algorithm, 

incorporating metabolomics data to set exchange constraints, and the addition of six key membrane 

transport reactions during the limited function-enabling manual curation of the model. These reactions 

involve the transport of prostaglandins I2 and H2, calcitriol, and carnosine. It should be noted that the 7 

disorders for which Recon1 predicted a more severe phenotype than the kidney model result directly 

from the addition of these transporters in that these transporters have enabled additional pathways in the 

kidney model that are absent in Recon1. All but one of the predictions concerning CETP inhibitors 

showed a clearer phenotype in the kidney model as well; this off-target is PTGIS for which both models 

predict a complete loss of function when fully inhibited. Finally, 28 out of the 33 clinically validated 

phenotypes are predicted more noticeably by the kidney model, 17 of these showing no disorder 

phenotype in Recon1. Overall, this comparison establishes the relative contribution of context-specific 

modeling in studying disorder and drug response phenotypes. 
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Figure 1.9. Predictive ability gained by modeling. The dotted black line is the line y=x for ease of 
visual comparison. Red marks represent predictions resulting from inhibition of a predicted CETP 
inhibitor off-target. Blue marks represent predictions resulting from non-drug-target gene inhibition. 
Pluses represent predictions validated in the OMIM database. There are 608 marks in total plotted and 
exact and partial overlap of some marks precludes complete visual resolution. 

Second, we investigated the sensitivity of our drug off-target response phenotype predictions 

to the variability of two important parameters used in our simulations, the system boundary flux 

constraint, set as equal fractions of the upper bound on renal objective fluxes (see Methods), and the 

degree of enzymatic activity inhibition assumed to result from drug treatment. 

The system boundary flux constraint was imposed upon demand and exchange reactions other 

than those optimized during a given simulation. By default we set this constraint assuming that all 

allowed boundary fluxes can carry an equal fraction of the potential maximum renal objective flux. This 

assumption was made to allow all pathways that could possibly contribute to the objective to be used 

simultaneously in the optimal flux state, providing the most flexible state while maintaining maximum 
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sensitivity of our model to additional system perturbations such as gene deficiencies or drug effects. 

This approach was unbiased in that it did not favor any possible pathway over another in achieving a set 

objective without imposing additional constraints, which may not always reflect biological reality but 

was the most conservative assumption in the absence of additional experimental data required to more 

precisely set these flux constraints. In our sensitivity analysis, we varied this parameter between 0 and 

1000 flux units, the absolute lower and upper magnitudes possible in our model, and repeated the 

simulations of drug off-target effects. The result of this analysis (Figure 1.10) was captured in the 

normalized sensitivity coefficient computed for each simulation (see Methods). The coefficient can vary 

between negative and positive unity and displays the deviation from a base result, the primary 

predictions we have presented in this study. The base result is indicated by a black star in Figure 1.10, 

and the parameter value in this case equals 13.5 flux units. 
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Figure 1.10. System boundary flux constraint sensitivity. Only those drug targets and renal functions 
are shown for which a deficient phenotype was predicted. The x-axis is in units of flux. The black star 
represents the base case which is presented as our primary result. 
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It is clear from Figure 1.10 that PTGIS inhibition resulted in the same renal disorder phenotype 

regardless of the value of the system boundary flux constraint parameter. This was because there was 

only one pathway in the model by which prostaglandin I2 could be secreted. Most other disorder 

phenotype predictions begin to diverge from the base result around a parameter value of 200 flux units, 

a fairly permissive value, which shows that the predictions were fairly robust to variability of this 

parameter. The closer to 1000 flux units this parameter was set, the more completely alternative 

pathways could compensate for a loss of function in the simulations. If alternative pathways existed to 

achieve a renal function, it was guaranteed that the ability to predict a disorder phenotype with respect 

to that function would be completely lost at the maximum possible parameter value of 1000. 

We similarly analyzed the sensitivity of our predictions to changes in the degree of enzyme 

inhibition assumed to follow from drug treatment (Figure 1.11). For the primary results presented in this 

study, we assumed complete inhibition of activity by the drug, corresponding to a fraction of maximum 

enzymatic reaction flux equal to 0 in Figure 1.11. Similar to the default setting of our system boundary 

flux constraint, this default of complete inhibition was chosen in order to maximize the sensitivity of 

our model in detecting disorder phenotypes. Most of the phenotypes were still detectable to varying 

degrees with as much as 25% of the maximum activity of drug targets. The predicted phenotypes 

associated with PTGIS, ACOX1, and AK3L1 were especially robust to variation in degree of inhibition, 

still exhibiting a phenotype near 50% of maximum activity. Decreased glucose and bicarbonate 

reabsorption under drug-induced MT-COI and UQCRC1 inhibition exhibited the most sensitivity to 

variability in this parameter, although none of the predicted phenotypes required complete inhibition of 

the drug target in order to be detected. 
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Figure 1.11. Degree of drug-induced inhibition sensitivity. Only those drug targets and renal 
functions are shown for which a deficient phenotype was predicted. The x-axis values correspond to the 
fraction of maximal enzymatic flux achievable in the untreated simulation, which represents the 
constraint placed on associated reactions for each simulation. The black star represents the base case 
which is presented as our primary result. 
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Discussion 
A novel approach for making functional predictions of drug response phenotypes has been 

introduced that integrates techniques of both structural bioinformatics and systems biology. Although 

the current study focused on a specific metabolic system, the general methodology excluding 

techniques particular to metabolic modeling are extensible to other systems such as signaling or 

transcriptional regulation. Non-metabolic protein drug off-targets are predictable using the same 

structural analysis tools, and many such off-targets have indeed been predicted as well for CETP 

inhibitors4. 

The context-specific organ metabolic modeling strategy employed in this study represents an 

improvement upon previous efforts in this realm. Model development algorithms such as GIMME13 or 

that developed by Shlomi et al, when integrated with multiple omics datasets, can lead to more 

biologically realistic models. It is also of critical importance to include context-specific metabolic 

objective functions in the model development process in order to yield a fully functional and predictive 

model, as is evident from the functional comparisons of models performed in this study. 

As an early effort at modeling such a context-specific metabolic system it is important to 

discuss the limitations of our model. Although the functional validations presented here are compelling, 

currently available clinical data only permits the assessment of a subset of the predictions possible in 

the model. Also, the functional portion of the model, the reduced kidney model, does not and is not 

intended to represent a global model of kidney metabolism but only the specific renal functions studied 

in this work. As such, our model does not fully resolve of complexity of the human kidney. The human 

kidney fulfills a number of functions not studied here and is a spatially distributed system across 

multiple distinct tissue types. Here we have summarily replaced the various kidney sub-tissues with a 

single, net system model. Because we integrated expression data with curated renal functions that 

operate across multiple kidney tissues, it is likely that our model approximates a superset of the 

metabolic pathways supporting these functions. Although we have made several simplifying 

assumptions in the model development process, even the current level of model validation suggests that 
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the gene and reaction content of the model is fairly accurate and that simulations in this model indeed 

hold predictive capability. 

The simulation approach taken, optimization of a linear objective function, does not fully 

capture the full physiological role of the kidney. The goal of these simulations was to determine drug-

target effects that may limit the capacity of the kidney to move towards a homeostatic nominal state 

from a state of high blood pressure, thereby decreasing the capacity of the kidney to lower blood 

pressure. This strategy is appropriate for the goals of the current study but would not be appropriate to 

simulate all physiological states of interest in the kidney. On a related note, the choice to define a 

disorder state based on the ratio of perturbed to unperturbed maximum achievable renal objective flux 

demonstrates a difference in the capacity of the renal function and not necessarily a precise flux state. 

Therefore this strategy too is not appropriate for modeling all physiological states. 

The predictions made for CETP inhibitors in this study serve as illustrative examples of many 

important implications that this approach has for drug development and personalized medicine. 

Predicted causal off-targets for renal metabolic disorders related to blood pressure may be responsible 

in part or full for the clinically observed hypertensive side effect of torcetrapib. The evidence resulting 

from this study suggests that PTGIS and ACOX1 are both potential causal torcetrapib off-targets, the 

inhibition of which may explain the side effect of hypertension. In addition, AK3L1, HAO2, MT-COI, 

and UQCRC1 may also play a role in this side effect as we have predicted, although our docking trials 

did not suggest that they are bound as strongly by torcetrapib. The specific predicted deficiencies in 

renal function associated with the drug off-targets can serve as biomarkers to be measured in patients 

participating in clinical trials. A positive correlation of these biomarkers with side effects would lend 

support to the predictions of this study and confirm these biomarkers as risk indicators in future patient 

treatment. It is important to note that although these predictions comprise the basis for a renal filtration 

and secretion-based hypothesis explaining the hypertensive side effect of torcetrapib, these results do 

not refute the hypothesis based on a RAAS-mediated mechanism. These two hypotheses are not 

mutually exclusive and could potentially contribute alternatively or synergistically to the clinically 
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observed side effects. This possibility illustrates the major tenet for systems biology: studying a single 

protein or even a single pathway is not necessarily sufficient to explain complex biological phenomena. 

Aside from the confirmation that some of our predicted off-targets are known to be involved in 

renal disorders, we do not currently present direct experimental verification that torcetrapib binds and 

inhibits the predicted targets and that this inhibition leads to the predicted response phenotypes. 

Although this would be the obvious next step, a retrospective validation is currently hampered by the 

availability of the drug and the nature of the phenotypes both predicted and known. Ideally, relevant 

physiological studies would be carried out during actual clinical trials, when a method such as ours 

would be most useful, in preclinical and clinical phases of drug development. 

The extended structural analysis of causal drug off-targets to identify differential binding 

affinities for endogenous substrates and drug molecules suggests possible differences in drug response 

phenotypes across the CETP inhibitors tested. The results suggest that anacetrapib may potentially lead 

to a similar response phenotype to that of torcetrapib, while JTT-705 may not carry the same adverse 

effect, at least with respect to the off-targets detailed in this study. This particular type of analysis may 

aid in differentiating between likely response phenotypes expected for chemically and functionally 

similar drugs. Results of the computational pipeline for interaction prediction between proteins and 

CETP inhibitors employed in this study, SMAP and docking, have yet to be confirmed experimentally. 

Although we are currently unable to provide direct experimental evidence for the off-target interaction 

predictions for this class of drugs, multiple recent studies have shown experimental support for the 

general efficacy of this approach for interaction prediction49, 50. 

The predicted renal metabolic disorders with a genetic basis suggest classes of individuals in 

which treatment with CETP inhibitors may pose a higher risk for adverse side effects. These predictions 

suggest a likely relationship between participants in torcetrapib clinical trials exhibiting symptoms of 

these disorders and the observed adverse side effects. The concept of cryptic genetic risk factors for 

drug treatment introduced in this study suggests a novel approach to personalized medicine. Should 

polymorphisms within these genes be clinically linked to side effects of drug treatment, the result would 

comprise a basis for genetic screening to assess the risk of drug treatment for future patients. Given that 
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these cryptic risk factors are not expected to elicit the predicted abnormal phenotypes in the absence of 

drug treatment, identification of causal polymorphisms through association studies could only occur 

during clinical phase when a sufficient number of patients could be observed to gain the statistical 

power needed to draw significant correlations. 

As illustrated above, this approach for in silico drug testing could become an indispensible tool 

during the pre-clinical and clinical phases of new drug development for studying the nature of adverse 

side effects. In addition, this platform holds obvious potential for analyzing drug efficacy in general and 

identification of potential beneficent drug side effects that may be useful for drug repositioning and 

could also be easily adapted for studying combinatorial drug treatment. For a failed drug like 

torcetrapib, results from this approach could reinitiate the drug development process, providing new 

insight to help target patients who could benefit from the treatment without the risk of serious adverse 

side effects. 

Methods 

Prediction of CETP Inhibitor Drug Off-Targets 
The binding site for CETP inhibitors on the CETP structure and the predicted off-target 

binding sites for this class of drug across the proteome were assumed to be as previously predicted 

using the SMAP program4, which implements the Sequence Order Independent Profile-Profile 

Alignment (SOIPPA) algorithm to identify significant structural similarity to a given ligand-binding 

site3. The results contained proteins from all organisms represented in the PDB, not just human 

structures. 

Mapping Off-Target Proteins to the Metabolic Network 
In order to integrate the result of drug off-target predictions with the metabolic network, it was 

necessary to first map all PDB structures (http://www.pdb.org) corresponding to human metabolic 

proteins included in Recon1, downloaded from the BiGG database, to their respective gene identifiers 

as represented in Recon1. The BiGG database requires registration and a password, which can be 

requested by visiting (http://bigg.ucsd.edu/bigg/home.pl). The UniProt ID mapping tool 
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(http://www.uniprot.org/) was used to map PDB structures corresponding to human proteins to gene 

identifiers linked to metabolic reactions in Recon1 accounting for all predicted human metabolic protein 

drug off-targets. All non-human predicted metabolic protein drug off-targets were mapped to their 

human orthologs using the Basic Local Alignment Search Tool (BLAST)51 to perform a bi-directional 

BLAST with a mutual best hit criterion. BLAST was also used to resolve inconsistencies in functional 

annotation between Recon1 gene-protein-reaction associations (GPRs) and gene annotations from the 

Entrez Gene database (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene) with respect to predicted 

drug targets, leading to the reannotation of three Recon 1 GPRs. The overall result of this mapping was 

that 97 metabolic reactions in Recon1 were linked to 41 predicted CETP inhibitor off-targets. 

Enzyme Inhibition Analysis 
The metabolic enzymes predicted as CETP inhibitor off-targets using SMAP were evaluated to 

determine potential enzymatic inhibition by the drug. The predicted drug-binding sites of the putative 

off-targets were compared to endogenous ligand-binding sites from existing PDB protein-ligand 

complex structures (http://www.pdb.org) and catalytic sites from the Catalytic Site Atlas 

(http://www.ebi.ac.uk/thornton-srv/databases/CSA/). Ligand-binding sites were defined as amino acid 

residues lying within 4.5 Å from atoms of the ligand. Drug-binding sites were defined as residues 

aligned with the cholesteryl ester binding sites on the CETP structure using SMAP. Overlap between 

endogenous ligand-binding sites and drug-binding sites was defined by a sharing of any amino acid 

residues between the sites. The function of predicted drug targets present in Recon1 with at least a 

partial such overlap was considered to be competitively inhibitable by the drug. 

Protein-Ligand Docking 
Enzyme substrates were identified from Recon1 reaction formulas. Certain molecules (H+, 

H2O, O2, phosphate, ferricytochrome C, and ferrocytochrome C) were excluded from docking trials due 

to size or structural challenges prohibiting a useful docking result for the purposes of binding affinity 

predictions. All protein structures used in this study were downloaded from the PDB 

(http://www.pdb.org). Three-dimensional structures for endogenous enzyme substrates were 
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downloaded directly from the PDB if available. If the PDB ligand structure did not exist or was non-

functional for docking, the structure was searched for in PubChem (http://pubchem.ncbi.nlm.nih.gov/). 

The subsequently downloaded SDF file was converted to PDB format using the ChemAxon web applet 

available at the PDB website (http://www.rcsb.org/pdb/ligand/chemAdvSearch.do). If the three-

dimensional ligand structure could not be found in PubChem, the two-dimensional structure was 

derived from the canonical SMILES52 representation of the compound available in PubChem and then 

converted to a three-dimensional structure in PDB format using the Clean3D Fine Build tool available 

through the Marvin web applet (http://www.chemaxon.com/marvin/sketch/index.jsp). The three-

dimensional structures for glycolipids were derived from their KEGG glycan structures 

(http://www.genome.jp/kegg/glycan/) using SWEET-II 

(http://www.glycosciences.de/spec/sweet2/doc/index.php). 

Protein structures were pre-processed for docking using AutoDockTools (ADT) version 1.5.253 

by adding polar hydrogen atoms, removing all non-protein molecules from the PDB structure including 

water, detergents, and ligands, adding Kollman charges to the protein and converting it to PDBQT 

format. Ligand structures were also prepared using ADT, using the default method for preparing ligands 

for docking that adds hydrogens and charges. The default rotatable bonds were accepted as well, and 

the structure was converted to PDBQT format. The search space for docking was determined visually 

by centering the Grid Box in ADT central to the experimentally determined binding site of the ligand 

and expanding the dimensions of the cubic search space to just completely encompass the site. 

Docking was performed using AutoDock Vina54 with default parameter settings other than the 

search space specification described above, and the mean predicted binding affinity from the set of 

predicted binding poses was accepted as the true binding affinity for each docking run. The predicted 

binding affinities for endogenous substrates were compared to the affinity of the same site for the CETP 

inhibitor drugs in order to make predictions about differential responses with respect to each of the 

drugs. 
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Renal Objective Function 
As the preliminary step in modeling human renal function, the scientific literature was 

reviewed to compile a list of specific metabolic functions of the kidney, with a focus on functions 

implicated as determinants of blood pressure. This list includes a number of renal reabsorptions and 

secretions. Each function in this list was tested for compatibility with Recon1, downloaded from the 

BiGG database (http://bigg.ucsd.edu/bigg/home.pl), by performing flux balance analysis (FBA) on the 

fully unconstrained network optimizing for the given function. Those functions compatible with Recon1 

were those that could achieve a positive flux and are summarized in Table 1.1. These metabolic 

functions were combined with a basic ATP maintenance function to form a single model reaction that 

represents the kidney’s ability to filter the metabolic content of blood with preference for lowering 

blood pressure. This model reaction was used as the objective function in developing the metabolic 

kidney model and is referred to as the renal objective function in this study. All stoichiometric 

coefficients in this reaction were set equal to one, which is a safe assumption for the model 

development step as this only significantly impacts the magnitude of fluxes through pathways that 

support each individual renal objective and not generally whether or not certain fluxes will be active in 

the resulting model. For the full renal objective function reaction to be seen as useful in performing 

simulations, more careful balancing of these coefficients based on experimental evidence would be 

required. As such, the full renal objective function was not used in any subsequent simulations with the 

model, instead being substituted as an objective by the reactions representing individual reabsorptions 

or secretions. 

Metabolite exchange and transport reactions needed to achieve some of the renal functions 

were also added to the network. It was observed that Recon1 as a base model could not achieve flux 

through certain key renal metabolite reabsorptions: sodium, calcium, chloride, potassium, and oxalate. 

These deficiencies were corrected for by simply adding demand fluxes for these metabolites in the 

cytosol model compartment. Demand fluxes were also added for the remaining kidney reabsorptions 

and secretions as well to enable an array of simulations involving individual components of the renal 

objective function to be tested. In the case of reabsorption, this allows for direct reabsorption of 



35 
 

 
 

metabolites in addition to indirect reabsorption in which the absorbed metabolite is first metabolized 

into other compounds and then reabsorbed into the blood, as is the primary mechanism of reabsorption 

for some metabolites, such as reduced glutathione (GSH)55. 

Kidney Metabolite Exchange Flux Constraints 
A preliminary model was created by imposing kidney-specific exchange flux constraints 

representing the metabolic exchanges the kidney carries out with the blood and urine. The preliminary 

model was initialized by loading Recon1 into the COBRA Toolbox56 and, by default, unbounding all 

reaction fluxes by setting them to the default maximum magnitude of 1000 flux units. Next, the renal 

objective function was added to the network as a single reaction. Exchange fluxes for kidney secretion 

objectives were constrained to preclude uptake of those metabolites to achieve the renal objective, 

forcing the model to synthesize those metabolites in order to secrete them. The resulting preliminary 

model included 407 exchange fluxes, only 49 of which were explicitly unconstrained based on 

literature-curated kidney functions and the most basic of metabolic precursor requirements. The basic 

metabolic exchanges assumed to take place include ions and other inorganic compounds. 

The Human Metabolomics Database (HMDB) (http://www.hmdb.ca/) was queried to derive 

further evidence in support of allowable exchange fluxes for the kidney. All 407 exchange metabolites 

in the preliminary model were searched in HMDB for experimental detection in specific biofluids and 

tissues. Those metabolites detected both in the blood and kidney tissue were assumed to be freely 

exchangeable in the kidney model, leading to 78 more explicitly unconstrained exchanges beyond what 

was derived from basic and curated kidney-specific metabolic functions. This assumption is based on 

the kidney’s physiological role of filtering the blood and the observation that if both the blood and 

kidney contain a metabolite, it must either be exchanged between the two or synthesized separately in 

both. In the former case, this data provides evidence of that exchange. In the latter case, although the 

model might allow a biologically unrealistic exchange, because the metabolite exists in both blood and 

kidney, the impact on simulations using the resulting model should be merely quantitative in terms of 

the maximum renal objective fluxes achievable by the unperturbed model. The integration of gene 

expression data in the model development process described below should reduce the propensity for 
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biologically unsound metabolic pathway activation that could follow from precursors introduced by any 

biologically unsound exchanges. Those metabolites detected both in the urine and kidney were assumed 

to be possible excretions, and exchange constraints were set accordingly. Excretions determined 

utilizing the urine metabolomics data mostly showed redundancy in determining exchange constraints 

with exchanges determined using blood data or literature curation with the exception of 4 additional 

metabolites. The remaining 276 exchange fluxes for which no evidence was found to support were 

tentatively constrained to 0 flux units. 

The resulting preliminary model was again tested for the ability to achieve all kidney-specific 

metabolic functions. It was found that this model could not absorb and metabolize GSH, without also 

absorbing oxidized glutathione, the exchange of which was subsequently unconstrained. Also, L-

threonine and L-methionine could not be absorbed and metabolized in this model without exchange of 

2-hydroxybutyrate and 2-methylcitrate, the exchanges of which were similarly unconstrained as a 

corrective measure. The resulting preliminary model could still achieve all the same renal objectives as 

the fully unconstrained model. As a final preliminary constraining measure, all system effluxes were 

bound to equal fractions of the default upper bound on influxes of 1000 flux units; we term this 

parameter the system boundary flux constraint. This was done so that any available direct or indirect 

reabsorption pathways could possibly be used to achieve metabolite reabsorption without biasing the 

model towards use of any particular pathways without further evidence. This represents the state of the 

model just prior to final processing using the GIMME algorithm. The fitting of the allowable fluxes to 

the gene expression data by GIMME ultimately determined the usable reabsorption and secretion 

pathways in accordance with gene expression. 

Gene Expression Microarray Data Processing 
Two gene expression microarray dataset for normal, healthy kidney tissue57 were obtained 

from the GEO database (http://www.ncbi.nlm.nih.gov/geo/), accession GSE803. The two background-

subtracted datasets were first normalized using a global normalization factor equal to the sum of probe 

intensities from the first dataset divided by the sum of probe intensities from the second dataset to 

account for any systematic differences in procedure between the two experiments. The resulting data 
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were then normalized using the Lowess method58 to reduce random noise. The resulting normalized 

datasets were then weighted equally as replicates in determining the final data for integration with the 

human metabolic network by taking the mean of the two normalized datasets. 

The gene-protein-reaction associations (GPRs) in Recon1 use Entrez Gene IDs to annotate 

reactions in the network. To map the data from the AffyHG-U95 chips to Recon1, all genes included in 

Recon1 were mapped to corresponding AffyHG-U95 probesets using Bioconductor59 and the most 

recent chip annotations60. A single expression value was then assigned to each gene in Recon1 based on 

the maximum normalized data value associated with any of the probesets mapped to a given gene. Next, 

a single expression value was assigned to each reaction in Recon1 by evaluating the Boolean rules in 

the GPRs with respect to the normalized expression data. The minimum data point was chosen for 

genes linked by an AND operator in a GPR, and the maximum data point was chosen for genes linked 

by an OR operator in a GPR. 

Finally, a significant expression threshold was established for subsequent use in the GIMME 

algorithm. This was done by fitting the normalized gene expression data to a Gaussian distribution, 

estimating the mean and standard deviation of this distribution, and calculating p-values associated with 

each data point by subtracting the cumulative distribution function from one. The normalized data value 

corresponding to the p-value closest to but not exceeding 0.05 was chosen as the significance threshold; 

this resulted in a threshold of 991.3698 for the normalized expression data. 

Implementation of GIMME to Obtain Metabolic Kidney Model 
To integrate the renal objective function and kidney gene expression data with the preliminary 

model to derive a functional kidney model, the GIMME algorithm13 was implemented. The GIMME 

algorithm takes a metabolic network model, a gene expression dataset, and specified required metabolic 

functions as input and solves a linear programming optimization to yield the network flux activity state 

that maximizes the specified functions while remaining as consistent as possible with the gene 

expression data. The complete renal objective function, the combination of all functions presented in 

Table 1.1, was set as the metabolic objective with a minimum requirement of 90% of the maximum 

possible flux set as a parameter for GIMME in determining the final kidney model. The reaction 
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expression threshold parameter was set as described above. GIMME was run with these parameters and 

the normalized expression data and preliminary model as inputs. The resulting reaction activity 

predictions were used to constrain metabolic reactions yielding the full kidney model. Subsequently, the 

connected sub-graph of this full kidney model, which includes all functioning reactions possible for 

achieving the renal objectives, was isolated and is this portion of the model we focused on for 

validation and simulation. We refer to this sub-model as the reduced kidney model (available in SBML 

format as Dataset S1 in 26). 

Validation of Kidney Model Content 
Gene activity predictions made when deriving the metabolic kidney model were compared to 

the set of expressed genes with normalized expression values above the significance threshold described 

above. Activity predictions were also validated against a comprehensive proteomics dataset from 

normal human kidney glomerulus tissue31 for overlap with network-associated proteins detected with 

high confidence, that is, identified through detection of two or more peptides. 

To evaluate the modeling approach used in this study, a five-fold cross validation was 

performed in which the data corresponding to the most highly expressed 20% of network-associated 

genes were excluded before deriving the kidney model. The ability of each approach to correctly predict 

the activity of these most highly expressed 20% of genes was measured from the overlap of predictions 

with the highly expressed gene set assuming a hypergeometric distribution, and the resulting probability 

was Bonferroni-adjusted. 

Simulating Drug Target Effects and Renal Metabolic Disorders 
All predicted metabolic protein drug off-targets were tested in the kidney model to assess the 

drug response phenotype caused by inhibitory effects in this system. Inhibition of metabolic proteins by 

the drug was modeled by constraining corresponding reactions catalyzed by drug targets to 0 flux units. 

Simulations of the consequences of these drug effects were performed using FBA as implemented in the 

COBRA Toolbox56 in the MATLAB programming environment. Each drug target was evaluated with 

respect to its impact on each individual renal function to determine if target inhibition by the drug leads 
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to a renal deficiency relative to the untreated normal kidney model. This was done by optimizing single 

exchange or demand fluxes at a time, representing reabsorptions and secretions respectively, out of the 

full set listed in Table 1.1. The cumulative effect of all predicted drug targets being simultaneously 

inhibited was also tested against each individual renal function. Renal secretion fluxes were maximized 

in simulation. Renal reabsorption fluxes were set as unbounded and then maximized while the 

remainder of allowable uptakes were constrained to equal fractions of the default maximum magnitude 

of 1000 flux units. The additional constraints were imposed for reabsorption simulations in order to 

allow the resulting network flux state to include concurrently active alternative optimal direct and 

indirect reabsorption pathways rather than having to identify alternative optimal pathways by 

performing multiple simulations. 

Single gene deficiencies were also simulated in the kidney model to assess their effects on 

renal function and their potential as risk factors for treatment with CETP inhibitors. Each of the genes 

annotated to reactions in Recon1 was knocked-out of the kidney model and simulations were run using 

the gene-deficient kidney model both with and without drug treatment to assess effects on each 

individual renal reabsorption and secretion. 

Drug response and metabolic disorder phenotypes were assessed by taking the ratio of 

maximum gene-deficient, untreated renal function flux to maximum normal, untreated renal function 

flux. A ratio of less than unity indicates a deleterious phenotype. Predicted metabolic disorder 

phenotypes were validated against previous clinical studies as represented in the Online Mendelian 

Inheritance in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/omim/). 

Cryptic genetic risk factors for drug treatment were also predicted for which the maximum 

gene-deficient, untreated renal objective flux equals the maximum normal, untreated renal objective 

flux but the ratio of maximum gene-deficient, drug-treated renal objective flux to maximum normal, 

drug-treated renal objective flux is less than unity. 

Parameter Sensitivity Analysis 
Sensitivity of our prediction approach to variability in parameters was performed through 

repeated simulation in which we varied the parameter value across the full range of possible values. We 
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investigated sensitivity with respect to each parameter independently. A normalized sensitivity 

coefficient was calculated as the result of each of these simulations. This coefficient was calculated by 

first taking the percent difference in the predicted outcome relative to a base case, our primary results, 

and then dividing it by the maximum possible percent difference. 

Area under Receiver Operating Characteristic (AROC) Analysis 
Benchmark data was collected from the OMIM database (http://www.ncbi.nlm.nih.gov/omim/) 

by searching for all metabolic disorders related to renal reabsorptions or secretions that are associated 

with deficiencies in genes included in the reduced kidney model. The resulting list of disorders was 

manually curated using literature references to identify precisely which metabolic renal reabsorptions 

and secretions were impacted. These included not only those renal functions captured in Table 1.1, but 

also other renal exchanges. All resulting reabsorptions and secretions that can have corresponding non-

zero fluxes under unperturbed conditions in the reduced kidney model were included in our benchmark 

data set (see Table S5 in 26). Every phenotype in the benchmark data was investigated through our 

model as described for simulating drug target effects and renal metabolic disorders, taking the ratio of 

perturbed to unperturbed flux capacities as a measure of phenotype, where a ratio of one signifies no 

disorder phenotype and a ratio of less than one signifies some degree of disorder. Next, the ratio 

threshold for classifying normal versus disorder phenotype was iteratively set to assess the sensitivity 

and specificity of our approach for predicting true and false positives across the full range from zero to 

one. Note that a threshold of one was used by default for the main results presented in this study. The 

true positive rate was plotted against the false positive rate (see Figure 1.8), the ROC curve, and the 

AROC was computed using the trapezoidal rule for approximating definite integrals. The statistical 

significance of our result was determined by comparison to 100 permutation trials in which all reaction 

flux ratios, perturbed to unperturbed, were randomly shuffled for each simulated gene deficiency and 

AROC-analyzed. The permutation trials exhibited true positive and false negative rates expected for 

random disorder phenotype classification (see Figure 1.8), and thus comprised an appropriate 

assessment of the predictive ability of our model simulation approach relative to chance. One-sample 

left-tailed student t-tests were performed using an alpha value of 0.05 to assess the statistical 
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significance of the AROC and mean true positive rate achieved by our model simulation approach 

relative to the permutation results. 

 

Chapter 1 is a modified version of material in Chang RL, Xie L, Xie L, Bourne PE, Palsson 

BØ. Drug off-target effects predicted using structural analysis in the context of a metabolic network 

model. PLoS Comput Biol. 2010 Sep 23;6(9):e1000938. I was the primary author, while the co-authors 

provided support in the research that served as the basis for this study. 
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Chapter 2: Structural systems biology evaluation of metabolic 
thermotolerance in Escherichia coli 

Abstract 
Systems biology of metabolism has been developed using genome scale network 

reconstruction. Traditionally, protein structural information has not been represented in such 

reconstructions. Experimental and computed protein structures were used to achieve 93% coverage of 

enzymes in the Escherichia coli K-12 MG1655 metabolic network. This expanded reconstruction 

enabled the analysis of protein thermostability in a network context, leading to prediction of protein 

activities that limit network function at super-optimal temperature (i.e. network hot spots) and 

mechanistic interpretations of mutations found in strains adapted to heat. Predicted growth-limiting 

factors for thermotolerance were validated through supplementation experiments, leading to the 

discovery of previously unknown metabolic sensitivities to heat stress and providing new evidence that 

metabolic enzyme thermostability is rate limiting at super-optimal temperature, as represented by 

specific enzymes. This study thus notably expands the content and predictive capability of genome-

scale metabolic networks enabling structural systems biology of metabolism. 

Introduction 
The dependence of cellular thermosensitivity on proteome stability has long been known, first 

highlighted by the presence of many chaperones and proteases among well-characterized heat shock 
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proteins (HSPs)61 and supported by evidence that chemical chaperones improve survival at super-

optimal temperatures62. Both proper folding and structural stability required for function are disrupted at 

sufficiently high temperature. Many individual proteins and their mutant variants have been studied to 

identify structural hot spots63, loci within a protein that are destabilized at sufficiently high temperatures 

leading to thermal denaturation. Replacing such structural hot spots with more stabilizing residues has 

proven a successful strategy to engineering thermostable proteins64. Just as structural hot spots provide 

a molecular basis for understanding individual protein thermostability, identification of the proteins that 

comprise analogous hot spots at the level of the cellular system, referred to as network hot spots in this 

report, is critical to uncovering the molecular mechanisms for cellular thermosensitivity. Thus far, 

strategies for increasing thermotolerance have been limited to indirect measures like introducing 

chemical chaperones, overexpressing known HSPs, pretreatment with more moderate heat, or random 

mutagenesis to evolve desirable stress tolerance65, never directly identifying the actual points of 

thermosensitivity in the system, the network hot spots. 

The emerging discipline of structural systems biology66 has enabled new insights into a variety 

of scientific topics including the structure-function relationship in the metabolism in a 

hyperthermophile67, identifying causal drug off-targets for an adverse side effect26, identification of 

protein-protein interactions68, 69, and determining causal missense mutations for disease susceptibility69, 

70. In this study, a structural systems biology approach was taken to uncover network hot spots in the 

metabolism of the mesophilic bacterium Escherichia coli K-12 MG1655, assessing metabolic 

thermosensitivity as a function of protein thermostabilities as they affect enzyme activity in a genome-

scale model (GEM), providing mechanistic explanations for recently reported mutations in evolved 

thermotolerant strains71, 72 and leading to the discovery of previously unknown metabolic limitations to 

thermotolerance. 

Results 

In order to assess protein thermostability, a genome-scale model integrated with protein 

structures (GEM-PRO) (see Dataset S1 in 73), exemplified for one reaction in Figure 2.1A, was 
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generated defined by the scope of single-peptide chains in the E. coli metabolic network (iJO1366)74. 

The four main objectives of this reconstruction effort were to: 1) best-represent the experimentally-

measured native structure of each wild type (WT) protein, 2) maximally cover amino acid sequence 

length, 3) best-represent the functional conformation or induced fit caused by each protein-substrate 

interaction, and 4) map existing amino-acid-residue-resolution functional annotation to all structures75-

78. Thus, in this GEM-PRO a protein may be represented by no, one, or multiple separate structures. 

Extensive curation of experimentally-measured structures79 and homology modeling to compute 

structures were carried out (Figure 2.2) to achieve 93% coverage of every protein by at least 1 structure 

(Figure 2.1B) and between 24% and 33% coverage of protein-substrate-pair induced fit (Figure 2.1C). 

Notably, the majority of coverage was enabled by established structure modeling techniques67, without 

which such a reconstruction would not currently be possible. 
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Figure 2.1. The E. coli GEM-PRO. (A) The E. coli GEM-PRO provides native WT structures, 
maximal sequence length coverage, protein-substrate induced fit, and functional annotation for proteins 
included in iJO1366. A conceptual illustration is depicted for the GlmU protein catalyzing the 
“G1PACT” reaction. (B) Coverage of each protein by at least one structure is categorized whether 
measured experimentally or computed by homology modeling. If a protein is covered by more than one 
structure, the structure with greatest sequence identity to the reference sequence is represented. The 
color gradient represents the percent sequence identity between the protein and the template structure 
used in homology modeling. (C) Coverage of induced fit counted as protein-substrate pairs is similarly 
categorized. The metabolites H+, H2O, and H2 are excluded from the pair count. Proteins and induced 
fits with no structural representative but definitely known to exist are shown in light gray, and those for 
which knowledge is indefinite are shown in dark gray. 
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Figure 2.2. PSQS scores for protein structures generated through homology modeling. The 
distribution of the sum of local, burial, and contact PSQS scores for modeled protein structures is 
depicted. A negative PSQS score indicates higher quality of a model. The mean of total PSQS scores 
across all structures is -0.16. 

Experimentally-measured critical temperatures80, 81 for E. coli protein activities accounting for 

optimal, half-maximum, and total loss of activity were supplemented with bioinformatic predictions of 

protein melting temperatures82-85 (Figure 2.3 and see Table S1 in 73) using the GEM-PRO. Protein 

activity functions were defined by these critical temperatures to impose temperature-dependent 

constraints on the metabolic model (Figure 2.4), comprising a basis for genome-scale metabolic 

simulation with growth temperature as a parameter affecting protein function for the first time to our 

knowledge. Simulated temperature-dependent growth showed good qualitative agreement with 

experimental growth data using three different nutrient media (Figure 2.5A), especially in the range 

from 32°C to 43°C where growth is above 50% of the maximum. This result provides new evidence 
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that the thermostability of metabolic proteins alone could suffice to explain thermosensitivity within 

this temperature range. 

 

Figure 2.3. Correlation between experimentally-measured and composite predicted Tm values. 
Correlation between experimentally-measured and composite predicted Tm values. Data are shown for 
the 172 proteins in the training set for the composite prediction pipeline. The Pearson correlation 
coefficient is ρ = 0.69 (p-value = 6.55×1024), and the red line represents the best fit line with a slope 
equal to the correlation coefficient. The axes have equal limits and scale. 
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Figure 2.4. Conceptual graph of critical temperatures and the temperature-dependent protein 
activity constraint function for a generic protein. Conceptual graph of critical temperatures and the 
temperature-dependent protein activity constraint function for a generic protein. The gray dotted line 
represents typical ideal protein activity and is shown to illustrate how the piecewise linear functions 
approximate this ideal. The equations for the piecewise linear functions are displayed. Points indicate 
the position of critical temperatures labeled on the x-axis. The priority of constraint function usage 
depends on the availability of critical temperatures and is indicated by the darkness of the red colored 
lines: dark red lines have the highest priority when the most critical temperature information is 
available, medium red lines have second priority for when Tm or Tf are unavailable, and light red lines 
have third priority for when Th or Tc are unavailable. For conditions not depicted, a default activity 
equal to Vmax is assumed. 
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Figure 2.5. Growth rates as a function of temperature. (A) Growth rates as a function of temperature 
are depicted relative to maximum growth rates under each condition. Circles are growth on minimal 
media with glucose simulated in this study, and diamonds are experimentally-measured growth on 
Davis minimal medium (DM) with glucose86, lysogeny broth (LB)72, and brain heart infusion (BHI) 
broth87. The shaded region highlights the temperature range for which the model best predicts relative 
growth rates. (B) Simulated growth rates relative to maximum WT growth rate are shown for the WT 
strain, a strain with the four predicted most growth-limiting network hot spots at 42.2°C completely 
unconstrained, and a strain with all network hot spots at 42.2°C completely unconstrained. Each phase 
of WT growth is labeled with the predicted most temperature-limited protein activities and pathways. 
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The novel modeling framework developed also enabled precise prediction of metabolic 

network hot spots (Figure 2.6 and see Table S2 in 73). The most temperature-limited protein activities 

for each phase of simulated growth are reported in Figure 2.5B, highlighting the trend that cofactor 

synthesis pathways tend to be the most temperature-limited metabolic processes in the model. 

Alleviating the temperature-dependent activity constraints on all network hot spots predicted at 42.2°C 

by optimally shifting their activity functions for growth at that temperature produces a 2-fold increase in 

maximum growth rate, shifts the optimal temperature to 42.2°C, but narrows the range of growth 

temperatures due to the incompatibility of these more thermophilic activity functions at mesophilic 

growth temperatures (Figure 2.5B). Adjustment of activity functions for just the four most-growth-

limiting hot spots has similar but dampened effects on temperature-dependent growth (Figure 2.5B). 

Such activity function changes most directly parallel the engineering of proteins with increased 

thermostability. 
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Figure 2.6. Network hot spots at 42.2°C in iJO1366 subsystems. All predicted network hot spots are 
shown as red reactions. Reaction fluxes that increase upon relief of network hot spots are shown as 
thick blue lines. Only subsystems containing at least one network hot spot are shown. These subsystems 
include central carbon metabolism, inorganic ion transport, and a number of cofactor synthesis 
pathways. 

Recent adaptive laboratory evolution experiments have yielded 119 thermotolerant E. coli 

mutants71, 72. Re-sequencing these mutant genomes revealed many point mutations in coding and non-

coding regions of hundreds of genes, and the original studies sought to assign causality to these 

mutations via frequency of occurrence and gene annotation. Retrospectively investigating the mutations 

occurring in metabolic genes and their regulators88 using our novel modeling framework to generate 

best-validating models of each evolved strain yielded not only classification of potential causal 

mutations for 51 strains (see Table S3 in 73) but also mechanistic explanations for their functionality in 

thermotolerance through compensating for heat-limited growth factors (Figure 2.7). Statistical analysis 

of the range of model capabilities (see Table S3 in 73) established that predicted causal mutant gene 

combinations were significant outliers in conferring thermotolerance at 42.2°C and have extremely low 
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probability of being identified by chance, signifying the predictive accuracy of heat-affected metabolic 

activities. 

 

Figure 2.7. Explanatory mechanisms predicted to confer thermotolerance. Explanatory 
mechanisms predicted to confer thermotolerance are summarized for heat-evolved E. coli strains. The 
total number of heat-evolved strains and mutated genes is given and also noted for the regulatory and 
metabolic subsets of mutated genes. Only regulators acting upon metabolic genes both predicted to lead 
to thermosensitivity and with heat-induced transcription in WT are depicted, except for crp. Only 
metabolic genes predicted to lead to thermosensitivity and either mutated in the set of evolved strains or 
both activated by depicted regulators and with heat-induced transcription in WT are depicted, except for 
gapA. Encircled, bolded genes show heat-induced transcription in WT. The predicted metabolic factors 
limited by heat-dependent decreases in protein activity are indicated at right. 

Mutations decreasing thermosensitivity of metabolic activities could be protein-

thermostabilizing or otherwise increase protein activity, as through increased gene expression. To 

further support that increased expression of predicted causal genes that evolved non-coding mutations 

led to thermotolerance, we gene-expression profiled WT E. coli at 37°C and 42°C (see Table S4 in 73) 
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to identify genes with significantly heat-induced transcriptional activity. Such genes participate in 

native heat-shock response and therefore offer probable mechanisms for adaptive evolution to cope with 

elevated temperature. 

Of the 119 metabolic genes that can limit growth rate at 42.2°C in the model, 67 are targeted 

by 12 mutated transcriptional regulators (see Table S3 in 73), suggesting that the mutations in these 

regulators may lead to increased expression of these metabolic genes, contributing to thermotolerance 

in the heat-evolved strains. Ten of these 67 metabolic genes regulated by rpoD, rpoH, dgsA, and pdhR 

also show significant heat-induced transcription in WT (Figure 2.7 and see Table S4 in 73). Multiple 

strains were isolated with mutations in each of these regulators; most notably, 40 of the 119 

thermotolerant strains contained mutations in rpoD, corresponding to its apparent centrality in heat 

shock response through regulation of 64 genes predicted in the model to limit growth rates at 42.2°C, 

accounting for 9 of the 10 metabolic genes that also exhibit heat-induced transcription (Figure 2.7). 

Furthermore, rpoD, rpoH, and dgsA also show heat-induced transcription in WT, indicating their native 

roles in thermotolerance. 

The known heat-inducible sigma factors rpoD and rpoH are shown to contribute to 

thermotolerance in every best-validating model of evolved strains in which they were mutated. Further 

support that rpoH was likely instrumental in conferring thermotolerance in these strains comes from an 

independent long-term laboratory evolution experiment at 41.5°C showing significant increase in rpoH 

expression in multiple evolved K-12 lines89. A loss-of-function rpoH mutant also showed increased 

thermosensitivity90. 

Interestingly an rpoS loss-of-function mutant showed no increased thermosensitivity over 

WT90, contrary to the hypothesis that the 3 evolved strains with rpoS mutations therein gained 

thermotolerance71. The best-validating models for 2 of these 3 evolved strains failed to uncover any 

growth rate dependence on the 77 metabolic rpoS regulatory targets at elevated temperature, the one 

exception consisting of activity of exactly one rpoS target, folK. 
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The gene gapA is a known regulatory target of rpoD, rpoH, and crp, which were shown 

cumulatively to contribute to thermotolerance in best-validating models of 45 evolved strains. Notably, 

gapA was shown consistently to exhibit the greatest increase in expression out of 35 induced genes 

following long-term evolution at 41.5°C89, although there was no observed heat-induced expression in 

WT. 

The WT heat-induced gene lipA, loss-of-function of which leads to thermosensitivity91, was 

found to contribute significantly to thermotolerance in best-validating models of both evolved strains in 

which its regulator pdhR accumulated mutations. 

The preceding examples highlight that within the scope of mutations that may impact 

metabolism, this prediction method is capable of discerning causal from non-causal mutations. Another 

intriguing observation is that the 7 iJO1366 genes with mutations for which the model predicts a 

mechanistic explanation for thermotolerance (Figure 2.7) showed no heat-induced expression in WT. 

This result suggests that if these mutations indeed confer thermotolerance, they may lead to increased 

gene expression via non-native mechanisms, whether constitutive or regulatory, or lead to increased 

thermostability of protein activity through a non-synonymous coding mutation, as may be the case for 

the A71V mutation in dfp. The rarer occurrence of mutations in these genes compared to mutations in 

regulatory genes participating in native heat shock response mechanisms supports this novel mechanism 

hypothesis, since the probability of evolving a mechanism de novo is lower than adapting a pre-existing 

one. Unfortunately, hypotheses concerning these 7 mutations cannot currently be further evaluated 

because no expression data is available from the heat-evolved mutants71, 72, and the mutation locus for 

dfp is not covered in the GEM-PRO presented in this work or in any available published E. coli 

structures. 

With specific network hot spots identified, they may be directly addressed using several 

strategies: replacement with more thermostable proteins, increasing gene expression to compensate for 

decreased activity as in heat shock response89, 92, or bypassing the network hot spots via 

supplementation. The observed trend that predicted network hot spots limit cofactor synthesis pathways 
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suggested a relatively simple supplementation approach to test these predictions. The metabolites most 

immediately downstream of network hot spots (Figure 2.6) and for which transport mechanisms are 

known to exist in E. coli were chosen as supplements, yielding a set of 9 compounds meant to 

supplement 6 heat-limited growth factors (Table 2.1). Each individual compound and a cocktail 

combining all compounds were tested for heat-dependent supplementation conferring increased 

thermotolerance at 42°C relative to 37°C. The supplement cocktail showed significant increase, about 

13%, in log phase growth rate (Figure 2.8A) and decrease in the time spent in lag phase (Figure 2.8B) at 

42°C but yielded little to no benefit at 37°C. 

Table 2.1. Compounds used to test predicted network hot spots in supplementation experiments. 

Abbrev. Name Conc.

Melting 
Point 
(°C)

Growth Factor 
Supplemented

Uptake 
Mechanism

pnto-R (R)-Pantothenate 2 μM 184 CoA facilitated
btn Biotin 2 μM 233 Biotin facilitated
ribflv Riboflavin 2 μM 280 Riboflavin passive
lipoate Lipoate 2 μM 61 Lipoate facilitated
4abz 4-Aminobenzoate 2 μM 189 Folate facilitated
dhna 1,4-Dihydroxy-2-naphthoate 2 μM 191 Menaquinone unknow n
cit Citrate 2 μM 153 Carbon metabolism facilitated
g6p D-Glucose 6-phosphate 2 μM 204 Carbon metabolism facilitated
glyclt Glycolate 2 μM 75 Carbon metabolism facilitated  
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Figure 2.8. Heat-dependent supplementation increases thermotolerance. (A) Changes in specific 
growth rate upon supplementation relative to a no supplement control are depicted in orange for 37°C 
and red for 42°C. Error bars indicate the standard deviations with n = 3 for each condition. The inset 
graph illustrates how growth rate changes were computed by comparing the maximum slopes of growth 
curves between the control and supplement condition. (B) The change in lag phase time under each 
supplementation condition is plotted in orange for 37°C and red for 42°C. Error bars indicate the 
standard deviations with n = 3 for each condition. The inset graph illustrates how the end of lag phase 
changes were computed by comparing the times of log phase initiation between the control and 
supplement condition. Cocktail: combination of all 9 supplements, pnto-R: pantothenate, btn: biotin, cit: 
citrate, g6p: glucose-6-phosphate. 
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Triplicate experiments at both temperatures for subsets of the cocktail compounds (see Table 

S6 in 73) were prioritized for the 4 compounds resulting in the highest growth rates at 42°C in single 

experiments (Figure 2.9). The individual supplements pantothenate and biotin provided a significant 

although lesser degree of heat-dependent supplementation than the cocktail (Figure 2.8A). Notably, 

pantothenate production in WT at 37°C has been found to be in excess of the required amount for 

growth by as much as 15-fold, leading to excretion93. A pathway with excess activity at 37°C being 

successfully supplemented at 42°C highlights the significance of the prediction that this pathway suffers 

lowered activity due to thermal deactivation of just four proteins, PanB, PanC, PanD, and IlvC. The 

heat dependency of this supplementation precludes the scenario where the supplements simply alleviate 

the burden of synthesizing cofactors from the nutrient carbon source; it indicates that the model-based 

predictions of thermosensitive metabolic activities were accurate and, due to the location of supplement 

entry into the network, supports that the precise proteins predicted to be network hot spots are limiting 

at 42°C. The alternative carbon source supplements citrate and glucose-6-phosphate did not individually 

yield significant benefits to growth rate or log phase initiation, suggesting that central carbon 

metabolism is not rate-limiting under heat shock. However, this also establishes both compounds as 

valid negative controls for heat-dependent supplementation in WT E. coli. 

 

Figure 2.9. Screen of individual supplement conditions at 42°C. The data is sorted from left to right 
in decreasing order of growth rate to show how subsequent triplicate experiments at both 42°C and 
37°C were prioritized. No error bars are displayed because each of these results was derived from a 
single experiment. 
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The relatively greater benefit of the supplement cocktail suggested a combined effect beyond 

what was observed for any of the individual compounds. The combination of pantothenate and biotin 

provides a partial explanation for this combined effect, as illustrated in Figure 2.8. However, the precise 

combination of cocktail components responsible for the full effect remains incompletely determined, 

suggesting that perhaps additions to pantothenate and biotin may compensate for less rate-limiting 

network hot spots in a manner not observable individually. This result supports the existence of at least 

a rough rate-limiting rank order to network hot spots, similar to that predicted using our modeling 

framework. 

Discussion 

In this study, we have provided new evidence establishing that metabolic processes are among 

the most growth-limiting under heat stress, in particular CoA and biotin synthesis and perhaps other 

cofactor pathways as well. The hypothesis that cofactor pathway enzymes are most rate-limiting under 

heat shock has been raised previously94, but no mechanistic evidence for these dependencies has been 

substantiated to date. In this study, we show that these dependencies arise directly from the systemic 

constraints that proteome thermostability imposes upon growth, network hot spots, which can be 

relieved through increased individual protein thermostability, through compensatory transcriptional 

regulatory responses, or through exogenous supplementation of the most limiting processes. 

Understanding and controlling thermotolerance in microbes has important implications in developing 

industrial microbial biocatalysts95, probiotics96, and bacterial vaccines97. The most efficient producers of 

compounds of interest are rarely also naturally thermotolerant, but the absence of a genetic system 

limits the usefulness of native thermophiles in industrial processes. Therefore, strategies for increasing 

thermotolerance of production strains are of great interest. 

Incorporating molecular properties of proteins into a metabolic model through development of 

the GEM-PRO enabled discovery of these thermosensitive processes and comprised a framework 

through which disparate data types were reconciled to explain fundamental properties of heat shock 

response. Because metabolic proteome thermostability is such a major evolutionary pressure, this 
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framework was also able to provide mechanistic explanations to distinguish causal mutations conferring 

microbial thermotolerance, a result illustrating the importance of systems biology in interpreting 

complex mutation data and perhaps even personal genomics data. Our result provides a solid argument 

for the necessity of systems biology in understanding complex stress responses and mechanisms 

through which tolerance to these stresses evolve and could be controlled. Our discoveries of previously 

unknown supplements to heat stress exemplify such control. Furthermore, these discoveries would not 

have been possible using either the protein structure data or the metabolic network in isolation, 

illustrating the potential of the emerging field of structural systems biology.  

Methods 

E. coli GEM-PRO Reconstruction 

Reference amino acid sequences for all 1366 proteins included in iJO1366 were collected from 

the UniProt database78. The entire set of E. coli proteins represented by structures in the PDB79 was 

searched by sequence alignment for all structures corresponding to each protein (sequence identity 

cutoff >95%). For each protein, the set of corresponding structures was manually checked for exact 

correspondence to the reference protein by name to ensure that close homologs were not counted as 

corresponding to the reference protein. Metabolite compounds included in iJO1366 were mapped to 

PDB ligands first via their KEGG entries98, which often contain direct links to the corresponding PDB 

ligand. For those metabolites not yet mapped to a PDB ligand, their canonical SMILES52 were obtained 

from the PubChem database99 and then searched for similar compounds (similarity cutoff >80%) in the 

PDB through the chemical component search. Significant hits for the compound were manually 

inspected for exact correspondence to the query metabolite (Dataset S1); if an exact matching PDB 

ligand was not found but a similar compound was found with exactly one functional group different 

from the query metabolite, then this ligand was mapped to the metabolite as an analog (Dataset S1) to 

be used in discriminating among PDB structures for the below objectives. For each objective below, the 

corresponding PDB structures were manually curated as described, and, when indicated, a structure 
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template was chosen for homology modeling from the entire PDB database. Thus 2784 protein 

structures were generated. 

Objective 1: Native WT Structure 

For each protein, from the corresponding set of PDB structures a single best-representative 

structure was chosen that accounted for, in order of priority, the minimal number of point mutations, 

maximum coverage of the length of the reference amino acid sequence, binding as many of the native 

metabolic substrates as possible (with priority for primary metabolites or chemical analogs of primary 

metabolites), and structural resolution. If the resulting best-representative structure contained one or 

more point mutations deviating from the reference sequence, the protein was slated for homology 

modeling to replace mutated residues with their analogs from the reference sequence. 

Objective 2: Maximum Sequence Coverage 

For each protein, from the corresponding set of PDB structures the single structure with 

maximum coverage of the reference amino acid sequence was identified. If the structure had 100% 

coverage of the reference sequence and 100% sequence identity, it was accepted as the maximum-

coverage structure. Multiple perfect-matching structures were chosen from based on binding of native 

metabolic substrates or analogs and structural resolution. Otherwise, FFAS100 was run on the protein 

(with default parameters) to search for the best homology modeling template based on FFAS score, 

reference sequence coverage, and reference sequence identity as described previously67. If the template 

had greater reference sequence coverage than any available E. coli PDB structure, the protein was slated 

for homology modeling using the template. If the best available E. coli PDB structure had greater 

reference sequence coverage than the template but was not 100% identical to the reference, it was slated 

for homology modeling using the E. coli structure as a template. 

Objective 3: Protein-Substrate Induced Fit 

Protein-substrate pairs were taken from iJO1366 by enumerating all pairwise combinations of 

every protein taking part in a reaction’s gene-protein-reaction association (GPR) and every metabolite 

compound taking part in the associated reaction, discounting H+, H2, and H2O. For each protein-
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substrate pair, the corresponding set of PDB structures for the protein were searched to find those 

containing preferably the exact substrate as a ligand or secondarily a chemical analog of the substrate. If 

multiple such structures existed, priority was given for the structure with higher sequence identity and 

coverage, inclusion of a higher number of metabolic substrate molecules, and structural resolution, in 

that order. If no corresponding protein structure also contained the metabolite compound or a chemical 

analog, FFAS was run on the protein to identify candidate templates for homology modeling. Because 

the structure database used by FFAS is a set of sequence-clustered PDB structures (99% identity 

cutoff), each FFAS hit was mapped back to its structure cluster, and each of these cluster members was 

investigated for presence of the metabolite or a chemical analog included in the structure. The template 

with lowest FFAS score that contained either the exact metabolite compound as a ligand or a chemical 

analog was chosen for homology modeling of the protein. In the event of ties for best candidate 

template, structural resolution was used to choose the best structure. 

Homology Modeling Using ProtMod 

Proteins slated in the above steps for homology modeling were modeled using their chosen 

template using the ProtMod server (http://ffas.burnham.org/protmod-cgi/protModHome.pl) with default 

parameters. The three homology modeling algorithms implemented in ProtMod were SCWRL101, 

Jackal102, and MODELLER103, generating three structures per protein. Every structure was evaluated for 

quality using PSQS104, and the modeled structure with the lowest total PSQS score (Figure 2.2) was 

chosen to represent the protein. File names for chosen representative PDB structures and modeled 

structures are presented in Dataset S1. 

Objective 4: Residue-Resolution Functional Annotation 

 In order to enable use of the GEM-PRO to study molecular functions of proteins, known 

functional sites and other structural features were mapped to the structure files. Protein residue-

resolution annotation was collected for catalytic sites, allosteric regulatory sites, secondary structure, 

and other structural features75-78. The locations of these features within the reconstructed structures was 

determined by aligning the sequences from the annotation sources to the sequences as contained in the 
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PDB format files of the GEM-PRO. Thus, annotated features have start and stop residue positions 

corresponding to the residue numbering contained in the GEM-PRO files, and when available, specific 

amino acids are specified (Dataset S1). 

Modeling Temperature-Dependent Protein Activity Constraints 

The two-state model for enzyme activity as a function of temperature105 was assumed. 

Although this classical model has been criticized as incompletely capturing the relationship between 

protein activity and the transition between native folded and thermally denatured states106, assuming the 

two-state model for this study enables approximation of activity functions using the limited data and 

bioinformatic techniques currently available for temperature-dependent protein activity and 

thermostability. The two-state model essentially treats the process of global denaturation as directly 

causal and co-occurring with loss of protein activity, where activity is directly proportional to the molar 

fraction of native folded protein and all protein molecules are either in the native folded state or in the 

denatured state. The potential error in the two-state model is that partial denaturation of active sites may 

occur at more intermediate temperatures than the temperature at which global denaturation is complete. 

Thus, assuming the two-state model may underestimate the extent of activity loss in the range between 

the optimal temperature and the temperature of complete global denaturation for some proteins. 

Nevertheless, evidence exists that the two-state model may be the most appropriate explanation of this 

relationship in at least some well-characterized proteins107, 108. 

Critical Temperatures 

The temperature at which maximal protein activity (Vmax) occurs is called the optimal 

temperature (To) for a protein. Given the two-state model, the definition of protein melting temperature 

(Tm) is the temperature at which 50% of the molar fraction of protein is in the native folded state as 

opposed to the denatured state and therefore 50% of Vmax activity is present. The melting temperature is 

also sometimes referred to as the transition temperature in the literature. The temperature at which the 

molar fraction of native folded protein falls to 0%, leading to a total loss of activity, we refer to in this 

study as the temperature of complete heat denaturation (Th). Although the nature of protein inactivation 
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is somewhat different at sub-optimal temperatures, for our conceptual framework, we again assume a 

two-state model, with a cold transition temperature we call a freezing temperature (Tf) and a 

temperature of complete cold denaturation (Tc). Together, Tc, Tf, To, Tm, and Th define the critical 

temperatures for protein activity utilized in this study. 

Processing Experimentally-Measured Protein Critical Temperatures 

Protein activity and stability data at various temperatures was collected from the BRENDA 

database80 and melting temperatures from the ProTherm database81. Data for mutant proteins from 

either database was disregarded. Because BRENDA data is assigned using Enzyme Commission (EC) 

numbers instead of specific protein identifiers, as ProTherm does, it was necessary to map the 

BRENDA data from EC numbers to proteins. If an EC number corresponded to exactly one E. coli 

protein in the KEGG database98, the BRENDA data was mapped to that protein; otherwise, the linked 

literature references in BRENDA were reviewed to determine precisely which protein the data 

corresponded to. The data from BRENDA specifically denotes To and Tm but also often includes 

percentages of maximum activity, which could be anywhere between 100% and 0%. Any activity data 

point not precisely labeled as To or Tm was used to estimate the critical temperatures, first by rounding 

to the nearest 50% of activity, then by classifying as To (if rounded to 100%), Tm (if rounded to 50%), 

or Th (if rounded to 0%). In the absence of experimentally-measured To of a protein, a default To of 

37°C was assumed based on the optimal growth temperature of E. coli K-12 unless experimentally-

measured and precisely-labeled Tm values fell below 37°C, in which case To was left null. Estimated Tm 

and Th temperatures were then reclassified, if they were less than To, as Tf and Tc, respectively. This 

procedure often resulted in multiple distinct values for a given critical temperature. Whether precisely 

labeled in the databases or classified based on rounding, the critical temperatures were then processed 

further to arrive at just one value for each by taking the median of all temperatures of the same class for 

a protein. If at this point the order of critical temperatures was not Tc < Tf < To < Tm < Th, adjustments 

were made by taking the minimum of Tc or Tf classified temperatures and maximum of Th or Tm 
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classified temperatures as necessary to create this order. This final step was only necessary for 7 

proteins out of the 376 proteins with at least one experimentally-measured critical temperature. 

Bioinformatic Prediction of Protein Melting Temperatures 

Due to the relatively low coverage of critical temperatures by experimental data, it would not 

currently be possible to assess whole metabolic proteome activity under temperature stress without 

supplementing the experimental data with bioinformatic predictions of thermostability. Existing 

bioinformatics methods focus on predicting the transition temperature for heat denaturation, the melting 

point (Tm). Because this is the most moderate critical temperature in the super-optimal temperature 

range, identification of Tm should suffice to capture activity of most proteins within the moderate heat-

shock range for E. coli. Different structural properties of proteins are evaluated by existing methods to 

predict Tm. Four such methods were implemented in this study that focus on distinct structural 

properties: occurrence of dipeptides significantly enriched in known highly thermostable proteins82, 

thermodynamic contribution of chemical groups to total energetic difference between native and 

unfolded states83, polar and non-polar buried surface area and configurational entropy84, and length of 

primary structure85. 

Ku et al method: The frequency of occurrence of specific dipeptides has been shown to 

correlate strongly with protein melting temperatures82. The scoring matrix for dipeptides published with 

that method was used in this study as described previously82 yielding Tm indices for each protein. These 

indices were previously shown to linearly correlate with melting temperatures such that an index of 0 

corresponds to a melting temperature prediction of 55°C, an index of 1 corresponds to 65°C, and a 

linear scale derived from this correspondence can yield precise Tm predictions for an index < 0 and > 1. 

Oobatake et al method: Formulation of energy functions from first principles based on native 

folded and unfolded structures83 comprise another basis for Tm prediction. In that study, chemical group 

contribution to thermodynamic terms in these functions was determined based on free forms of all 20 

standard amino acids. Given a constant temperature, the only additional input necessary to implement 

this prediction method was the solvent accessible surface area of each chemical group in the native and 
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unfolded conformations of the protein. The structure file for each protein provided the native structure 

and a basis for computing these terms using the Chimera analysis software109 to compute solvent 

accessible surface areas. A simplifying assumption was made to compute solvent accessible surfaces for 

the unfolded protein; when computing the accessible surface of chemical groups on a given amino acid 

residue, the only atoms considered were those contained in the tripeptide defined with the given amino 

acid located in the center. This approach estimates the solvent exposure of atoms on the central residue 

as would result from complete unfolding of the protein. Using this approach to compute energy terms 

for native and unfolded states allowed for explicit calculation of Tm by finding the temperature at which 

the ΔG term converged on 0. For proteins with multiple corresponding structures, the median prediction 

value was taken. 

Dill et al method: More recently, a method for Tm prediction has been developed based on the 

assumption that primary structure length alone is a valid predictor of thermostability85. An energy 

function in that study was formulated through reduction of the classical thermodynamic terms to 

functions of length. Using the published formulation, explicit calculation of Tm resulted from finding 

the temperature at which the ΔG term converged on 0. 

Murphy et al method: Another energy function formulation was developed previously84 based 

on configurational entropy changes of amino acid residues upon unfolding and polar versus non-polar 

buried surface area. The Chimera analysis software109 was used to compute the polar and non-polar 

buried surface areas of protein structures, providing the necessary parameters for implementation of this 

method when combined with the estimated amino acid configurational entropy changes and constants 

published with the original study84. Melting temperatures were predicted from this method by explicit 

calculation of the temperature at which the ΔG term converged on 0. For proteins with multiple 

corresponding structures, the median prediction value was taken. 

Composite method: Given the divergent bases for the four implemented Tm prediction methods 

and the observation that different methods outperformed others at distinct temperature ranges, we chose 

to train a composite prediction pipeline on the 172 proteins for which experimentally-measured Tm 
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values were available and for which all four methods were able to make a prediction. We first computed 

the root-mean-square deviation (RMSD) with respect to the experimental Tm for each predicted Tm. For 

each method, we sorted the data by predicted Tm value and identified the temperature ranges for which 

the total RMSD was smallest for the given method; these roughly correspond to the temperature ranges 

for which the given method is the best Tm predictor. Because the rank order of predicted Tm values 

differed across methods, there were overlaps between the temperature ranges where RMSD was 

smallest with respect to each method. It was found that, at least with respect to the training set, overlaps 

could always be resolved by using a consistent priority list of the four methods in choosing which Tm 

prediction to accept. The priority list in order of decreasing priority was Ku et al, Oobatake et al, Dill et 

al, and Murphy et al. Using this priority list to resolve all overlapping temperature ranges and to make 

predictions outside of the composite temperature ranges of best performance for each method, Tm 

predictions were generated for use in subsequent applications of critical temperatures in this study (see 

Table S1 in 73). The Pearson correlation coefficient of the composite Tm predictions with 

experimentally-measured Tm values is ρ = 0.69 (p-value = 6.55×1024). Figure 2.3 shows the direct 

comparison of experimental and predicted Tm values. Notably, regardless of what priority list of the 

four methods is used, the minimum correlation is ρ = 0.64 for the composite predictions. The 

performance of the composite pipeline was evaluated further by 5-fold cross validation where total 

RMSD was computed with respect to the experimentally-measured Tm data and statistical significance 

was evaluated for each fold based on 1000 trials of randomly choosing a Tm prediction method for each 

of the proteins in the test set. This 5-fold cross validation showed that the composite prediction method 

performed significantly better than expected by chance (average p-value = 0.0032). 

Approximating Protein Activity Vmax by Simulation 

In order for temperature to affect protein activity in a metabolic model, a term Vmax must be 

defined. For the purpose of this study, Vmax accounts for the maximum possible activity of the set of all 

molecules of a particular metabolic protein under a reference nutrient condition in the absence of 

temperature stress. This approach is based on the assumption that all proteins in the cell are operating at 
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approximately Vmax under steady-state with constant nutrient conditions. The Vmax of a given protein is 

assessed through flux variability analysis (FVA)110, determining the maximum magnitude flux possible 

through any reaction associated with that protein under the constraint that the model must achieve ≥ 

90% of the maximum possible biomass flux. This biomass flux cutoff is a tunable parameter for 

affecting the eventual protein activity functions. The lower the cutoff, the higher the potential Vmax 

values will be and the less constraining the temperature parameter will be on individual proteins for 

which Vmax increases. Although a biomass flux cutoff of 90% maximum was ultimately chosen, relative 

temperature-dependent growth rate predictions were robust within the tested range of parameter values 

from 50% to 100%. This analysis provides a Vmax value for each protein in the network. 

Formulating Protein Activity Functions 

Protein activity as a function of temperature was formulated as piecewise linear functions 

sequentially connecting the points defined by Vmax and the critical temperatures (Figure 2.4). The 

formulation of these linear functions depends on the availability of specific critical temperatures. For 

example, if To and Tm are both available, the line segment connecting points (To, Vmax) and (Tm, Vmax/2) 

is chosen for the activity function over this range of temperatures; alternatively, if To and Th are both 

available but Tm is not, the line segment connecting points (To, Vmax) and (Th, 0) is chosen for the 

activity function over that range of temperatures. If Tm is available and Th is not, for temperatures > Tm, 

the activity function is conservatively set equal to Vmax/2. For any temperatures not covered by linear 

functions in Figure 2.4 due to a lack of critical temperature availability, a conservative default level of 

activity equal to Vmax is assumed. 

Constraining the Model Using Protein Activity Functions 

With the temperature-dependent protein activity functions defined, constraining the metabolic 

model to account for temperature is as simple as inputting the desired environmental temperature for 

growth. This temperature is used to compute the magnitude of both upper and lower bound (if the 

reaction is reversible) reaction flux constraints in the model with respect to each protein in the 

corresponding GPR. If this results in multiple constraints for a single reaction, the most limiting protein 
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activity constraint is chosen to constrain the reaction by choosing the maximum protein activity to 

resolve “OR” relationships and the minimum protein activity to resolve “AND” relationships. The most 

limiting protein for each reaction is tracked for subsequent analysis whenever temperature-dependent 

constraints are imposed. With the temperature-dependent constraints imposed upon network reactions, 

standard steady-state constraint based simulation methods can be implemented to analyze network 

fluxes, including flux balance analysis (FBA)111 and a variety of other established methods112. In this 

way, temperature is established as a model parameter simulating the effect of thermal denaturation on 

proteome function. 

Network Hot Spot Prediction 

Basic Model Constraints 

The E. coli metabolic network iJO136674 was loaded into the COBRA toolbox112 from the 

published SBML model using Matlab. Since the time of publication of iJO1366 a thermodynamic 

constraint error was discovered in the published model; as a result, the malate oxidase, “MOX,” 

reaction was set as irreversible. The superoxide dismutase, “SPODM,” reaction was set with an initial 

upper bound of 1000 as well. The objective function was set as the complete wild type biomass reaction 

“Ec_biomass_iJO1366_WT_53p95M.” Default exchange reaction constraints were used, except for a 

glucose uptake lower bound of -8 mmol/gDW/h and an oxygen uptake lower bound of -18.5 

mmol/gDW/h, representing aerobic growth on glucose. These basic constraints were used for all 

reported simulations in this study. Using the temperature-dependent protein activity functions described 

above, the environmental temperature parameter was set as reported in the results of this study. For 

identification of network hot spots, the temperature parameter was set equal to 42.2°C. 

Identifying Hot Spots 

The following steps describe the sequential identification of network hot spots (Figure 2.6 and 

see Table S2 in 73) in the constrained model: 

1. All reactions constrained by temperature-dependent protein activity in the model are identified. 
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2. All correlated reaction sets113, those that are fully-coupled and therefore always carry flux if 

any other reaction in the same set does114, are identified that include at least one of the 

reactions identified in step 1. 

3. Identify the minimum set of proteins responsible for the greatest increase in biomass flux upon 

relieving temperature constraints, the hot spot(s) for this iteration. For each correlated reaction 

set identified in step 2: 

a. Identify if completely relieving the temperature-dependent constraints on these 

reactions leads to an increase in biomass flux. If so, proceed to step 3b. 

b. From the correlated reaction set identified in step 3a, determine the minimum set of 

associated temperature-dependent protein activity constraints that must be relieved to 

achieve any increase in biomass flux. If multiple protein sets with the same minimum 

number of members exist, choose the one leading to the greatest increase in biomass 

flux. 

c. If the number of relieved protein constraints from step 3b is smaller than any 

previously found set of network hot spots in this identification iteration, replace the 

most limiting set of hot spots with the set from step 3b. If the number of reactions 

equals that of the previously found most limiting set of hot spots, replace with the set 

from step 3b only if the increase in biomass flux is greater upon relief of constraints. 

4. If no network hot spots were identified in step 3, terminate operation. Otherwise, record the 

most limiting network hot spot(s) identified in step 3 for this iteration. Update the metabolic 

model by permanently relieving the constraints on these hot spots first by setting To for these 

proteins equal to the environmental temperature parameter value and second by re-deriving the 

temperature-constrained model using this updated set of critical temperatures. Return to step 1 

using the updated model. 
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The method described above may identify a single protein as the most limiting network hot 

spot or multiple proteins together as the most limiting network hot spots in a given iteration. The range 

of number of proteins in these most limiting hot spots was from 1 to 4 in this study. It should also be 

noted that the method formulated above guarantees eventually achieving the maximum theoretical 

biomass flux that would be possible in the complete absence of temperature-dependent constraints on 

the model. For the simulated strains reported in Figure 2.5B, the referenced sets of network hot spots 

were relieved by shifting all critical temperatures for an individual protein by the minimum amount 

required to achieve maximal growth and re-deriving the metabolic model based on that set of critical 

temperatures. 

Generating Best-Validating Models of Evolved Strains 

In order to study the mechanistic causality of mutated genes reported in heat-evolved E. coli 

strains71, 72, a metabolic modeling strategy was devised to find the maximal contribution to 

thermotolerance that the combined mutations of a single strain could achieve and the minimal set of 

these mutations necessary to achieve this thermotolerance. In brief, thermotolerance was defined by the 

simulated growth rate at 42.2°C relative to the wild type model, the effect of mutated genes was 

simulated by relieving temperature-constraints on encoded proteins, and the non-mutant proteins were 

left as constrained for the wild type model. The detailed method follows for generating the best-

validating model for a given evolved strain: 

1. Beginning with the wild type model constrained at the set environmental temperature, all 

correlated reaction sets are identified that include at least one reaction associated with a 

mutated gene or a regulatory target of a mutated regulator in the evolved strain. 

2. All proteins associated with correlated reaction sets identified in step 1 are found. 

3. Relieve the temperature-dependent constraints on all proteins identified in step 2. If the 

maximum achievable biomass flux increases relative to the wild type model, proceed to step 4. 

Otherwise, the metabolic model is incapable of predicting causal mutations for this strain. 
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4. Iteratively reintroduce temperature-dependent protein activity constraints on proteins not 

directly mutated or targeted by mutated regulators in the evolved strain. If reintroducing each 

protein activity constraint does not diminish the increase in biomass flux observed in step 3, 

retain the reintroduced temperature-dependent constraint. Otherwise, maintain the relief of the 

constraint tested in this step. 

5. Iteratively reintroduce temperature-dependent protein activity constraints on proteins that are 

targeted by mutated regulators in the evolved strain. If reintroducing each protein activity 

constraint does not diminish the increase in biomass flux observed in step 3, retain the 

reintroduced temperature-dependent constraint. Otherwise, maintain the relief of the constraint 

tested in this step. 

6. Iteratively reintroduce temperature-dependent protein activity constraints on proteins encoded 

by mutated genes from the evolved strain. If reintroducing each protein activity constraint does 

not diminish the increase in biomass flux observed in step 3, retain the reintroduced 

temperature-dependent constraint. Otherwise, maintain the relief of the constraint tested in this 

step. 

7. If any correlated reaction set from step 1 is no longer represented by at least one protein 

encoded by a mutated gene or target of a mutated regulator through relieved constraints, 

remove all proteins only associated with that reaction set from further analysis and 

permanently reintroduce the corresponding protein activity constraints. This step prevents 

usage of reactions outside of correlated reactions sets directly associated with predicted causal 

mutations in achieving thermotolerance in the model. 

8. Repeat steps 4 – 7 until no change in a single protein activity constraint can be made without 

diminishing the biomass flux from step 3. The protein activities that remain relieved after this 

step comprise the utilized proteins required to achieve the maximal thermotolerant growth rate 

at the environmental temperature. 
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9. Generate the best-validating model by shifting all critical temperatures for each utilized protein 

from step 8 by the difference between the environmental temperature parameter value and the 

To for that protein and re-deriving the metabolic model based on that set of critical 

temperatures. The overlap between utilized proteins in step 8 and the mutated genes or mutated 

regulators in the evolved strain that target the genes encoding these proteins are the predicted 

causal mutations for this strain. 

Of the 119 evolved strains, 51 yielded a best-validating model using the method described 

above (see Table S3 in 73). The number of utilized mutated genes and targets of mutated regulators in a 

best-validating model ranged from 1 to 65. Every best-validating model included relieved activity 

constraints on proteins not implicated in the corresponding evolved strain through mutation or in 

association with mutated regulators, ranging from 3 to 93 such proteins in a single model. All such 

proteins are associated via correlated reaction sets with predicted causal mutations. These proteins may 

be encoded by genes that represent unknown targets of mutated regulators, or they may result from 

inaccurate relative Tm predictions or missing model constraints. Because these proteins participate in 

the same metabolic pathways as predicted causal mutated genes, they do not change the prediction of 

temperature-limited metabolic pathways. The relative impact of including such proteins in the best-

validating models upon the prediction of thermotolerance was evaluated in the analysis described in the 

section below. 

Statistical Analysis of Best-Validating Models 

To assess the significance of causal mutations predicted for evolved strains, a random 

sampling approach was taken to statistically evaluate the best-validating models within the broader flux 

space of metabolic network. This approach also addresses the impact of allowing increased activity of 

proteins not known to be associated with measured mutations in achieving thermotolerance in the best-

validating models. The steps to this approach were as follows: 
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1. Identify the number of genes predicted by the best-validating model to represent causal 

mutations in the evolved strain. This is the sum of mutated genes and targets of mutated 

regulators from the evolved strain that are utilized in the best-validating model. 

2. Randomly select the number of genes identified in step 1 from the full set of 1366 genes 

contained in the iJO1366 network. 

3. Identify all genes participating in the same correlated reaction sets as one or more of the genes 

from step 2. 

4. Starting from the wild type model with temperature-dependent protein activity constraints at 

the set temperature, relieve the temperature-dependent constraints on proteins encoded by 

genes from step 3 by shifting their critical temperatures by the difference between the 

environmental temperature parameter value and To. Then derive a metabolic model based on 

that new set of critical temperatures. 

5. Maximize the biomass flux through the model from step 4 using FBA. 

6. Repeat steps 1 – 5 to randomly sample models and their maximum biomass fluxes 1000 times, 

keeping track of the number of random models that achieved equal or greater biomass fluxes 

than the maximum biomass flux for the best-validating model currently under evaluation. 

7. Compute an empirical p-value for the best-validating model equal to the number of 

equivalently or more thermotolerant models from step 8 divided by 1000. 

The empirical p-values resulting from the method described above represent how significantly 

thermotolerant the best-validating models are relative to chance predictions from the network flux 

space. These p-values are reported in Table S3 in 73. The predicted thermotolerance of 45 of the 51 best-

validating models was never randomly matched or outperformed using the same number of genes and 

all genes associated via correlated reaction sets. The other 6 best-validating models had empirical p-

values ranging from 0.001 ≤ p-value ≤ 0.051. These results indicate that the precise combinations of 
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causal mutations for thermotolerance predicted in the best-validating models are all highly significant 

and could not have been predicted by chance. 

Gene Expression Profiling 

Bacterial Strains, Media, and Growth Conditions 

Escherichia coli K-12 MG1655 was grown in glucose (2 g/L) minimal M9 medium containing 

2 mL/L 1 M MgSO4, 50 mL/L 1 M CaCl2, 12.8 g/L Na2HPO4.7H2O, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 

g/L NH4Cl and 1 mL trace element solution (100X) containing 1 g EDTA, 29 mg ZnSO4.7H2O, 198 mg 

MnCl2.4H2O, 254 mg CoCl2.6H2O, 13.4 mg CuCl2, and 147 mg CaCl2. Glycerol stock of the E. coli 

strain was inoculated into the minimal medium supplemented with glucose and cultured at 37°C with 

constant agitation overnight. The culture was diluted 1:100 into 50 mL of the fresh minimal medium 

and then cultured at 37°C to mid-exponential phase (OD600 ~ 0.6). For heat-shock experiments, cells 

were grown to mid-exponential phase at 37°C and half of the culture was sampled as a control. The 

other half culture was transferred into pre-warmed (50°C) medium to get the media temperature to 42°C 

and then incubated for 10 min. 

Total RNA Isolation 

Three milliliters of cells from mid-exponential phase culture were mixed with 6 mL 

RNAprotect Bacteria Reagent (Qiagen). Samples were mixed immediately by vortexing for 5 seconds, 

incubated for 5 minutes at room temperature, and then centrifuged at 5000×g for 10 minutes. The 

supernatant was decanted and any residual supernatant was removed by inverting the tube once onto a 

paper towel. Total RNA samples were then isolated using RNeasy Plus Mini kit (Qiagen) in accordance 

with the manufacturer’s instruction. Samples were then quantified using a NanoDrop 1000 

spectrophotometer (Thermo Scientific) and quality of the isolated RNA was checked by visualization 

on agarose gels and by measuring the sample’s A260/A280 ratio. 

Transcriptome Analysis 

From the total RNA sample, 20 μg was reverse transcribed with 1,500 U SuperScript II reverse 

transcriptase (Invitrogen), 30 U SUPERase•In (Ambion), 750 ng random primer, 10 mM dNTP mixture 
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containing 4 mM amino-allyl dUTP, 10 mM DTT and 8 μg/mL actinomycin D. QIAquick PCR 

purification columns (Qiagen) were used to purify the amino-allyl labeled cDNAs. To protect amino-

allyl residues, phosphate wash (5 mM KPO4 and 80% ethanol) and elution buffer (4 mM KPO4) were 

used instead of PE and PB buffers, respectively. The amino-allyl-labeled cDNAs were subsequently 

incubated with Cy5 monoreactive dyes (Amersham) to obtain Cy5 labeled cDNAs. The cDNA samples 

were fragmented by 0.3 U RNase-free DNaseI (Epicentre) per μg cDNA, and were then purified and 

hybridized onto the high-density oligonucleotide tiling microarrays. After hybridization and washing 

steps, the arrays were scanned on an Axon GenePix 4000B scanner and features were extracted by 

using NimbleScan software. Normalization of raw expression data and determination of differential 

gene expression between 37°C and 42°C was performed using the ANAIS web tool and the methods 

presented in the associated publication115. Fold changes and FDR-adjusted ANOVA p-values are 

reported in Table S4 in 73. 

Supplementation Experiments 

Bacterial Strains, Media, and Growth Conditions 

Escherichia coli (Migula) Castellani and Chalmers MG1655 (ATCC 700926) was grown in 

glucose (4 g/L) minimal M9 medium containing 1X M9 salts (47.9 mM Na2HPO4, 22.0 mM KH2PO4, 

8.6 mM NaCl, and 18.7 mM NH4Cl), 0.1 mM CaCl2, 2 mM MgSO4, and Trace Elements pH 7.1 (15 

μM FeCl3, 0.16 μM ZnSO4, 0.18 μM CuCl2•2H2O, 0.18 μM MnSO4, 0.19 μM CoCl2, and 4.4 μM 

Na2EDTA). Volumes of 100 mL media were inoculated at 0.01 OD from washed cells of 37°C LB 5-7 

h growth precultures. Supplementation for each condition was at 2 μM using various combinations of 

4abz (4-aminobenzoic acid, CAS 150-13-0), btn (biotin, CAS 58-85-8), cit (citric acid, CAS 77-72-9), 

dhna (1,4-dihydrozy-2-napthoic acid, CAS 31519-22-9), g6p (D-glucose 6-phosphate dipotassium salt 

hydrate, EC 227-837-6), glyclt (glycolic acid, CAS 79-14-1), lipoate ((+/-)-ɑ-lipoic acid, CAS 1077-28-

7), pnto-R (D-pantothenic acid calcium salt, CAS 137-08-9), and ribflv ((-)-riboflavin, CAS 83-88-5). 

See Table 2.1 for additional details regarding these supplement compounds. Cocktail supplementation 

consisted of 4abz, btn, cit, dhna, g6p, glyclt, lipoate, pnto-R, and ribflv. Verification of MG1655 strain 
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was confirmed with forward primer AATGCCTGGAAATGGTTCAC and reverse primer 

AATAGGACGATTTGCGTTGC for 316 bp product. 

Growth Curve Experimental Setup 

Equipment for heat-dependent supplementation experiments consisted of Bellco Multi Stir-9 

set at 650 rpm, as verified using MI Calibration strobe light. Water bath circulation and heating was 

performed at 42.0°C or 37.0°C with Lauda E100 control unit and temperature verification using 

certified Traceable Lollipop thermometer (certification number 4371-4382019). Cultures were grown in 

500 mL Erlenmeyer flasks with 2” stir bars, aluminum foil wrapped around sides, and aluminum foil 

loosely-sealing the caps. Sampling was performed with 2 mL serological pipets. OD600 measurements 

were taken (see Table S6 in 73) with a Thermo Spectronic Biomate 3 with readings up to 0.35 OD600 

before dilution at 1X, 3X, 5X, 11X, and 17X made from 500 μL sample aliquots. 

Growth Parameter Analysis 
In order to compute growth parameters from the raw OD600 data at 37°C and 42°C, the natural 

log-transformed data was analyzed using the DMFit web tool 

(http://modelling.combase.cc/DMFit.aspx). The growth curve model of Baranyi and Roberts116 was 

selected for all experimental data, and maximum growth rates, lag times, and R2 values for the fitted 

model were collected (see Table S6 in 73). Means and standard deviations for these growth parameters 

were then computed. Growth rate changes (Figure 2.8A) and lag time changes (Figure 2.8B) reported in 

this study were computed by taking the ratio of the mean supplementation experiment value to the mean 

no supplement control value and then subtracting one. Standard deviations for these changes (as 

reported in Figure 2.8) were computed based on the set of pairwise comparisons of all supplementation 

to all control replicates within an experiment. 

 

Chapter 2 is a modified version of material in Chang RL, Andrews K, Kim D, Li Z, Godzik A, 

Palsson BØ. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli. In 



77 
 

 
 

preparation. I was the primary author, while the co-authors provided support in the research that served 

as the basis for this study. 
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Chapter 3: Antibacterial mechanisms identified through structural 
systems pharmacology 

Abstract 

The continuously growing discipline of structural systems biology is applied prospectively in 

this study to predict pharmacological outcomes of antibacterial compounds in Escherichia coli K12. 

This work builds upon previously established methods for structural prediction of ligand binding 

pockets on protein molecules and utilizes and expands upon the previously developed genome scale 

model integrated with protein structures (GEM-PRO) for E. coli, structurally accounting for protein 

complexes. Carefully selected case studies are demonstrated to display the potential for this structural 

systems pharmacology framework in discovery and development of antibacterial compounds. 

Introduction 

A previously developed local structure homology-based approach to predicting ligand binding 

pockets3, 4, 117 has been applied efficaciously in multiple contexts to study pharmacological 

phenomena26, 49, 118, 119. The recent development of a structural biology resource with which to study 

physiological stresses upon the proteome of Escherichia coli K12 MG1655 metabolism73 enables a 

diversity of potential applications. Thus, we applied the SMAP methodology and the E. coli metabolic 

genome-scale model integrated with protein structures (GEM-PRO), to analyze and predict antibacterial 

effects of chemical compounds. E. coli K12, although not pathogenic under normal circumstances, is a 
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well-characterized laboratory model for enteropathogenic bacteria that infect humans. Thus methods, 

and perhaps even some specific predictions of antibacterial properties made in this study, are extensible 

to pathogenic E. coli and other bacterial pathogens. In addition to the integrative framework presented 

in this study for structural systems pharmacology, this effort also included significant expansion of the 

previously developed GEM-PRO to account for physiological assemblies of protein complex structures 

with activities accounted for in the E. coli K12 metabolic network iJO136674. Results from this study 

show promising proof of principle for such an analysis framework and raise specific molecular and 

systemic hypothesis about antibacterials that are amenable to experimental testing. 

Results 

Many proteins do not act as monomers in the cell but as part of multimeric protein complexes 

that may include proteins encoded by one or several distinct genes. The previously constructed 

Escherichia coli genome-scale model integrated with protein structures (GEM-PRO)73 considered 

proteins solely as single-peptide chains. As a result, we sought to expand the scope of this GEM-PRO to 

account for protein complexes. The structures of protein complexes are complementary to the existing 

single-peptide chain structures already included in the E. coli GEM-PRO. The objective was to best 

represent the physiological assemblies of metabolic enzyme complexes, that is, the best structural 

representation of the active form of enzyme complexes in vivo. A conceptual representation of this 

expansion with respect to one metabolic reaction is displayed in Figure 3.1A. The overall coverage of 

complexes in this reconstruction was 519 of 1106 known complexes (Figure 3.1B) included in the 

metabolic network iJO1366; 39% of complexes are completely represented by a single structure in the 

expanded GEM-PRO. Another 8% of complexes are partially represented by structures. This effort 

yielded 527 individual protein structure files, 149 of which were redundant with structures contained in 

the previously developed GEM-PRO. As is clear from Figure 3.1B, a slight majority of known 

complexes are not represented at all in the complex expansion to the GEM-PRO. A combination of the 

EcoCyc database76, PDB structure curation79, computational assessment of symmetry operations on the 

asymmetric unit of protein crystals120, and literature review were used to identify the consensus most 
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physiologically accurate assemblies currently possible (approach summarized in Figure 3.2). These 

assemblies were distributed among different classes of oligomeric states: monomers, homomultimers, 

and heteromultimers (Figure 3.1B). The monomers directly overlap with contents previously 

reconstructed73. 

 

Figure 3.1. Complex expansion of E. coli GEM-PRO. (A) This expansion of the E. coli GEM-PRO 
provides structural coverage of protein complexes included in iJO1366. A conceptual illustration is 
depicted for the GlmU protein catalyzing the “G1PACT” reaction. (B) Complete and partial coverage of 
each protein complex by at least one structure is categorized. (C) The oligomeric states of complexes 
included in this expansion are distributed across monomers, homomultimers, and heteromultimers. 
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Figure 3.2. Complex physiological assembly reconstruction pipeline. The step-wise process of 
reconstructing physiological assemblies of protein complexes is summarized. The box at lower left 
notes the number of discrepancies and the outcome of their resolution. 

The expanded E. coli GEM-PRO was then employed prospectively to explore possible 

currently unknown antibacterial properties. In particular, protein targets for orphan antibacterials, 

compounds known to have antibacterial effects but without known molecular targets, were predicted, 

and anti-metabolite compounds were also predicted as novel antibacterials to target promising 

metabolic protein targets without known inhibitors. The structural systems pharmacology approach 

taken here consisted of structure-based screens for protein-ligand targeting using the previously 

developed SMAP method117 and metabolic model simulation to test the potential effects of predicted 

protein-ligand interactions. Some negative and positive controls were also screened, for which there is 

existing data on antibacterial capacity and at least some proven mechanisms of action within 

metabolism. 

The results of these screens are summarized in Table 3.1. In the negative control screen for 

glucose (BGC) SMAP predicted that glucose binds to 7 individual metabolic E. coli proteins and 2 
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protein complexes significantly, 1 of which is a known target (MglB). Limiting the significance criteria 

to SMAP p-value showed that SMAP predicted a second known target (Glk) as well. Some of these 

targets are expected because glucose is a known substrate of these proteins, but the meaning of some of 

these remains unclear and could represent unknown alternative substrates of the proteins, unknown 

allosteric sites, or just false positives. Of the positive antibacterial controls, the top SMAP hit for the 

sulfonamide 4-amino-N-(1,3-thiazol-2-yl)benzenesulfonamide (YTZ) is the known primary target, 

dihydropteroate synthase (FolP). Two other positive controls, fosfomycin (FCN) and trimethoprim 

(TOP), were predicted by SMAP to bind significantly to a number of proteins (Table 3.1), none of 

which were known targets, leaving these predictions as uncertain validations or perhaps possible 

unknown side mechanisms leading to an antibacterial effect, which will be described further below. The 

positive control 2,2'-methanediylbis(3,4,6-trichlorophenol) (H3P) was not predicted to significantly 

bind any proteins; although the known primary target (FabI) was ranked 133rd out of 3303 protein 

structures, this result does constitute a false negative. 
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Table 3.1. Summary of in silico antibacterial screens. 

Screen
Ligand 
ID Target Name

SMAP 
prediction 
(significant)

Antibacterial 
Simulation

Functional 
Site Overlap

Negative control BGC - - - -
Positive control: PEP analogue FCN BtuC x x -
Positive control: sulfonamide YTZ FolP x x -

RibD x x x
IspU x x x
EntA x x x
FabG x x x
KdtA x x -
MurJ x x -
WaaB x x -
MenH x x -
WaaQ x x -
MoeA x x -
TyrA x x -

Positive control: chlorophenol H3P - - - -
IspA x x x
IspB x x x

4AZ - - - -
PheA x x x
AcpP x x x
EntA x x x
AtpB x x x
CyoB x x x

Cytochrome bo 
terminal oxidase x x x

Succinate 
dehydrogenase x x x

MurJ x x -
ProC x x -
ArgA x x -
IspU x x -
NuoB x x -
CyoC x x -
GdhA x x -
Ppk x x -
FadE x x -

TMM - - - -
F6F TrpB x x x
PLT TrpB x x x
7MN TrpB x x x
IDM TrpB x x x
PLS TrpB x x x

Novel target: b2320 - PdxB - x -
Novel target: b3642 - PyrE - x -

Novel target: b1261

Positive control: trimethoprim TOP

Orphan antibacterial

028

2OB

 

The two orphan antibacterials 4-(aminomethyl)benzoic acid (4AZ) and 1,3,5-

benzenetricarboxylic acid (TMM) were not predicted to significantly bind to any metabolic E. coli 
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proteins, providing no evidence to support a metabolic mechanism for these compounds. Since their 

mechanisms are currently not known in E. coli, this result may at least suggest searching elsewhere in 

the cellular system than metabolism for the mechanism. Intriguingly, the two other orphan antibacterials 

screened in this study, (1-hydroxyheptane-1,1-diyl)bis(phosphonic acid) (028) and cholesteryl oleate 

(2OB), were both predicted as significant binders by SMAP to multiple metabolic E. coli proteins 

(Table 3.1), suggesting possible mechanisms for their antibacterial activity. 

Of the three screens aiming to identify anti-metabolite inhibitors of known essential genes in 

E. coli, SMAP predicted 5 candidate inhibitors for the tryptophan synthase β subunit (TrpB). The 

potential inhibitors of TrpB are listed in Table 3.1. SMAP screens for inhibitors of erythronate-4-

phosphate dehydrogenase (PdxB) and orotate phosphoribosyltransferase (PyrE) failed to predict any 

significant candidate inhibitors. 

Several other known metabolic targets of the control compounds were not predicted to be 

significant by SMAP. In our preliminary control screens, it was hypothesized that there may exist 

distinct binding pocket motifs for an individual compound such that using a single protein template to 

search for other targets may not identify all known targets of a compound. Expanding the number of 

search templates for a single compound, as was done for BGC, FCN, and TOP, indeed identified more 

significant targets, supporting this hypothesis. We were interested in seeing the relative accuracy of 

SMAP in predicting true positive protein-ligand interactions; thus we performed statistical analysis of 

the entire set of SMAP results including non-significant calls. Mann Whitney U-tests were run on the 

ranked lists of SMAP predictions with respect to each template protein structure, yielding inconsistently 

statistically significant p-values for some compounds (Figure 3.3). This result too supports that different 

binding motifs may exist for an individual compound, as is most apparent for BGC and TOP, which 

show the widest range of p-values. To highlight the overall efficacy of SMAP in predicting true 

positives, the results from all screens for a particular compound were combined by considering only the 

top rank number for each protein structure, whether a known target or not. It is apparent from Figure 3.3 

that the examples BGC, FCN, TOP, and H3P all show a noticeable bias in favor of SMAP’s predictive 
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accuracy; however, the stringency of significance criteria used may obscure this ability for many 

protein-ligand interactions. Because there is no obvious a priori approach to choosing a single structural 

template for screening a compound that may bind to multiple distinct motifs, our results suggest that 

using as wide array of diverse templates as appropriate should be considered when running SMAP 

screens. This phenomenon may explain some of the false negative SMAP predictions for controls in 

this study. 

 

Figure 3.3. SMAP performance in recalling true positives. The lowest rank for each protein structure 
predicted as an SMAP hit is displayed for the set of known protein targets for the five control 
compounds. Blue lines indicate the rank position (out of 3303) of a known target for a given compound. 
n = the number of screens using different protein structure templates performed for each compound. p = 
the p-value resulting from Mann Whitney statistical tests for individual SMAP results with respect to an 
individual template screen. BGC: beta-D-glucose; FCN: fosfomycin; YTZ: 4-amino-N-(1,3-thiazol-2-
yl)benzenesulfonamide ; TOP: trimethoprim; H3P: 2,2'-methanediylbis(3,4,6-trichlorophenol). 
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Next, we turned to the metabolic network portion of the E. coli GEM-PRO, iJO1366 [REF], to 

simulate the outcomes of known and predicted binding events leading to inhibition of protein activity 

and determine whether or not these events may be detrimental to growth. First, we found that inhibition 

of all known targets of all positive controls did lead to no growth or reduced growth rates in the model. 

In combination, the collective inhibition of all known targets for each positive control compound led to 

complete growth inhibition, but remarkably, most of these targets individually also led to complete loss 

of growth if completely inhibited. We also tested if inhibition of the individual protein targets predicted 

by gene-knockout phenotypes to be effective antibacterial targets leads to growth deficits in the model 

and found that all three individual inhibitions lead to no growth in the model. The effects of inhibition 

of SMAP-predicted targets were then evaluated in the model. Each of the individual predicted protein 

targets reported in Table 3.1 exhibited decreased or no growth upon full inhibition in simulation. These 

predictions helped to pare down the list of significant SMAP predictions to focus on those that satisfy 

both lines of evidence for antibacterial effects. With the exception of the FolP-YTZ binding interaction, 

all of the interactions reported in Table 3.1 are previously unknown, which suggests that in the case of 

positive control compounds, we may have uncovered previously unknown antibacterial targets. For the 

orphan antibacterial compounds, we predicted that inhibition of IspA and IspB by 028 leads to 

decreased growth rate and that inhibition of 14 individual proteins and 2 protein complexes by 2OB 

leads to decreased growth rate. 

For the predicted protein-ligand interactions that also showed antibacterial effects in the 

metabolic model, we next utilized the residue-resolution functional annotation presented in the 

previously generated E. coli GEM-PRO to identify whether the SMAP-predicted ligand binding sites 

overlapped with known functional sites, such as catalytic and substrate binding sites. Such interactions 

could be expected to exhibit competitive inhibitory effects. For cases where an SMAP prediction was 

made on the basis of a protein complex structure, we also identified predicted ligand binding sites at the 

interface between subunits, which may lead to disruption or prevention of protein complex formation in 

vivo and therefore have a deleterious impact on enzyme function. Overlap between predicted TOP 

binding sites and native nucleotide and substrate binding sites occurred on RibD, partial overlap with 
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the catalytic site of IspU, and almost complete overlap with the catalytic sites of both EntA and FabG. 

The predicted binding sites for 028 completely overlapped with the catalytic site of IspA and 

overlapped with the substrate binding site and a Mg2+ ion binding site of IspB. In the case of 2OB, 

predicted binding sites showed at least partial overlap with the catalytic sites of PheA, CyoB, EntA, 

AtpB, and AcpP. Predicted 2OB binding sites also had implications with respect to two protein 

complexes not exhibited with respect to the complex subunits in isolation. The predicted 2OB binding 

site on the cytochrome bo terminal oxidase appears at the interaction site between CyoB and CyoC. The 

2OB binding site also overlapped with the heme binding sites of the SdhC and SdhD subunits of the 

succinate dehydrogenase complex as well as the protein-protein interaction region between these 

subunits. These last few predictions speak to the importance of the complex expansion of the GEM-

PRO, without which such molecular predictions involving multiple subunit interfaces would not have 

been possible. 

Discussion 

In this study, we have demonstrated the first structural systems pharmacology antibacterial 

screens for the model bacterium E. coli. This effort was enabled in part through the complex expansion 

of the E. coli GEM-PRO. In the first attempt at this reconstruction, we chose to utilize solely structures 

supported by strong experimental; however, this could be further expanded through modeling of protein 

complex structures as has been attempted by others recently68. Our previous and current efforts at 

reconstructing the E. coli metabolic GEM-PRO have enabled in silico exploration of diverse 

physicochemical stress, but given the relative novelty of this resource, much broader expansions are 

likely to emerge and enable still more diverse avenues of analysis. 

This study illustrates another example of how structural and systems biology combine to an 

effect greater than they are capable of in isolation. For example, some of the SMAP hits of lesser 

quantitative significance showed promise as antibacterial targets in simulation, sometimes accounting 

for known antibacterial targets that otherwise would have been called as false negatives by SMAP 

alone. Conversely, although metabolic model predictions have previously been shown to accurately 
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predict the effects of many targeted gene knockouts74 and have been applied to select individual and 

multiple antibacterial targets11, 121, these metabolic models have not yet been capable of pairing these 

targets with compounds. Not only does the expansion from the GEM to GEM-PRO framework enable 

prediction of candidate compounds, it enables prediction of specific molecular mechanisms (e.g. 

competitive inhibition or complex disruption) that explain how the candidate compounds may affect the 

function of their targets. 

In addition to providing a promising proof of principle that such a structural systems biology 

strategy can be used to understand antibacterial mechanisms, we have made specific predictions of 

novel candidate antibacterial compounds that target a protein currently unutilized for antibacterial 

applications (TrpB) and previously unknown mechanisms of existing antibacterial compounds, both 

those with and without established mechanisms. Future work will aim to experimentally validate some 

of the predictions presented in this study. These experiments would first assess the phenotypic 

predictions of compound treatment through measurement of growth rates in wild type (WT) E. coli. WT 

screens can show whether or not a compound has antibacterial properties. Comparison of WT and gene-

knockout mutant sensitivities to varying concentrations will provide a basis for validating the predicted 

targets as well; a lesser dosage-dependent effect in a gene-knockout strain supports targeting of the 

knocked-out protein by the candidate antibacterial. Milder concentrations of growth-inhibiting 

compounds would serve as a condition under which metabolomics measurements can be made to 

confirm the prediction of targeted metabolic pathways, providing direct evidence of specific response 

phenotypes and an additional line of indirect evidence for antibacterial target validation. Finally, 

molecular predictions of protein-ligand interactions may be directly assessed through ligand-binding 

assays. Seeding the relatively simple experimental workflow described with the structural systems 

pharmacology framework we present here should permit rapid discovery in the area of antibacterials. 
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Methods 

Complex expansion of the E. coli GEM-PRO 

Enzyme complexes included in the metabolic network iJO136674 were reviewed as annotated 

in EcoCyc76. The annotation from EcoCyc includes protein subunit compositions, which served as a 

starting point for this reconstruction. The EcoCyc subunit compositions were evaluated from a 

structural perspective based on biological units of crystal structures in the PDB79 and through 

thermodynamic analysis of possible physiological assemblies using the PDBePISA software120. The 

most thermodynamically feasible PISA assembly for each complex, based on computed ΔG of 

dissociation, was compared to PDB biological units and EcoCyc composition annotation for each 

complex. In many cases, these three sources were in perfect agreement, in which case the PDB 

biological unit was chosen as the structure to represent the physiological assembly of the complex. 

However, many discrepancies were also found among the compositions assigned by these sources, 

including protein membership in complexes but missing stoichiometries in EcoCyc. To reconcile these 

discrepancies, the scientific literature was reviewed to find experimental evidence supporting the 

correct physiological assembly for a complex. These references reported data from a variety of 

experiments including: X-ray crystallography, gel filtration, size-exclusion chromatography, 

ultracentrifugation, functional assays, substrate binding assays, cooperative analysis, and mutant 

studies. A few studies also provided evidence from bioinformatic analysis such as kinetic assembly, 

molecular docking, and inference based on knowledge about orthologous structures. The consensus of 

these experimental results and the three preliminary sources was taken to determine the most likely 

physiological assembly. If the PDB biological unit agreed with the consensus, that structure was taken 

as the physiological assembly structure. If not, then the PISA structure that best agreed with the 

consensus was taken as the physiological assembly. In some cases, no PDB structure or PISA assembly 

completely accounted for the consensus complex assembly. In such cases, multiple structures were 

taken to represent as many sub-parts of the physiological complex assembly as possible. This resulted 

in some overlap with single-peptide chain structures included in the previously developed E. coli GEM-

PRO. 
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Protein-ligand interaction predictions 

Different types of SMAP screens were run to answer three different types of questions: 1) 

positive and negative controls for antibacterials with known effective mechanisms in wild type E. coli 

K12 through known metabolic protein targets; 2) orphan antibacterials known to be effective against E. 

coli K12 but with unknown mechanisms, seeking to answer the question of whether those compounds 

may target metabolic functions; 3) searches for potential novel antibacterials that are competitive 

inhibitors of metabolic proteins known to hinder growth of E. coli K12 if subjected to gene knockout. 

These are all open-ended questions, and candidate compounds and protein targets to be selected for 

these purposes are not immediately obvious. Also because SMAP is a method requiring substantial 

computational resources, the number of screens that could be performed was limited. For these reasons, 

filtering the wealth of candidate compounds and targets to choose candidates for the screens was 

necessary. Therefore, large data sources were filtered to pick most promising candidates to test these 

three types of questions. 

Selecting antibacterial controls for screen 

At the time of this writing, there are 12,785 chemically distinct ligand molecules represented in 

at least one PDB structure. Given that SMAP performs best when starting with a well-defined ligand 

binding site for the search template, we chose only to use experimentally-determined binding sites for 

this type of screen. The collection of all known antibacterials and their known targets was collected 

from KEGG98, EcoCyc76, DrugBank122, and ChEMBL123, and the overlapping set of these and the PDB 

ligands was found. Antibiotic classifications were derived from KEGG, EcoCyc, and DrugBank. All 

PDB ligands were clustered by their chemical similarity using their canonical SMILES52 and the EI-

Clustering software124. The distance matrix output by EI-Clustering was used to form the clusters by 

hierarchical clustering and cutoff of 1.15 was determined such that the classified antibiotics were 

clustered together and not in the same clusters with antibiotics of other classes. Thus functionally and 

chemically distinct groups of antibacterials were identified from which to choose positive controls. 

Positive controls were chosen from these groupings such that they represented a breadth of diversity 

and only if they had at least one known metabolic protein target in E. coli. Glucose was chosen as a 
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negative control since it does not have inhibitory effects on growth, and its cellular binding partner 

proteins mostly are not negatively impacted through its interaction. 

Selecting orphan antibacterials for screen 

The ChEMBL database123 was reviewed to find biological assays in which antibacterial 

activity of compounds was identified in E. coli. Within this set of compounds, we search for those with 

no known binding partners encoded by E. coli in KEGG, EcoCyc, DrugBank, ChEMBL, or the PDB. 

We then prioritized for those compounds that are ligands in PDB structures of only non-bacterial 

proteins. Small compounds consisting only of C, H, N, O, P, and S elements were chosen from this set 

as the orphan antibacterials of interest for this study. 

Selecting antibacterial protein targets for screen 

Previously published essentiality screens of the E. coli K12 single-gene knockout library74 

were analyzed to choose novel antibacterial protein targets to search for anti-metabolites to inhibit. 

Phenotypes that showed a small measure of growth but dramatically hindered (minimum OD600 < 0.26) 

were selected from, prioritizing for high PDB ligand cluster size, low number of native metabolic 

substrates, and extent of structural coverage in the GEM-PRO. 

Prediction of antibacterial mechanism 

In searching for possible metabolic protein targets for known antibacterial compounds, 

template structures were chosen from PDB crystal structures that included the compound bound to a 

protein. These structures were used with SMAP to search for potential binding pockets for these 

antibacterial compounds within both the previously published E. coli GEM-PRO and also the newly-

generated physiological complex assemblies. The entire set of PDB proteins was clustered using a 50% 

sequence identity cutoff. The best resolution structure from each cluster that contained the ligand of 

interest was chosen as an alternative template for SMAP screens. SMAP was run with default numerical 

parameters screening each template in turn across the database of proteins comprising the GEM-PRO 

structures. SMAP hits were considered significant if p-value < 1.0×10-4 and Tanimoto coefficient > 0.5. 

A secondary tier of lesser significance was determined using just the aforementioned p-value criterion. 
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Prediction of anti-metabolite protein inhibitors 

Searching for possible inhibitors of predicted antibacterial metabolic protein targets was 

performed by taking the structure of the protein target of interest from the E. coli GEM-PRO, 

docking125 the primary native metabolic substrate into the known catalytic site (as annotated in the 

GEM-PRO), and using the resulting structure as a template for SMAP screens. SMAP was then used to 

search across all ligand-bound protein structures in the PDB, excluding structures that only bind metal 

ions or metabolites included in iJO1366, to find ligands that bind to structurally similar sites. The query 

database contained 51,608 PDB structures. SMAP was run with default numerical parameters and 

specifying that only ligand binding sites be considered. SMAP hits were considered significant if p-

value < 1.0×10-4 and Tanimoto coefficient > 0.5. A secondary tier of lesser significance was determined 

using just the aforementioned p-value criterion. 

Simulating protein inhibitory effects 

The E. coli metabolic network iJO136674 was loaded into the COBRA toolbox112 from the 

published SBML model using Matlab. Since the time of publication of iJO1366 a thermodynamic 

constraint error was discovered in the published model; as a result, the malate oxidase, “MOX,” 

reaction was set as irreversible. The superoxide dismutase, “SPODM,” reaction was set with an initial 

upper bound of 1000 as well. The objective function was set as the complete wild type biomass reaction 

“Ec_biomass_iJO1366_WT_53p95M.” Default exchange reaction constraints were used, except for a 

glucose uptake lower bound of -8 mmol/gDW/h and an oxygen uptake lower bound of -18.5 

mmol/gDW/h, representing aerobic growth on glucose. These basic constraints were used for all 

reported simulations in this study. 

The combined sets of known targets and predicted targets were first tested for antibacterial 

effects by constraining all associated reactions to 0 flux and then maximizing biomass using flux 

balance analysis (FBA)111. Individual targets were tested in the same manner to determine causal targets 

from the broader sets. Resulting biomass fluxes were compared to a simulated untreated condition 

where just the basic constraints were imposed and biomass was maximized; any decrease in biomass 
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flux relative to the untreated condition was treated as a prediction of antibacterial effect by degree of 

decrease. 

Analysis of impact of protein-ligand binding on molecular function 

The specific amino acid residues comprising the ligand binding sites predicted by SMAP were 

compared to residue-resolution functional annotation contained in the original GEM-PRO73. If precise 

residues overlapped between these sets, we flagged these proteins as having predicted binding sites for 

the given ligand that should be seen as competitively inhibitory since they would bind to the same 

location as substrates required for normal function. Functional features included in this analysis 

consisted of catalytic sites and substrate binding sites. For SMAP query structures that were protein 

complexes containing multiple subunits, if the predicted ligand binding site included residues from 

distinct subunits, we flagged these as possible ligand binding events that could prevent or disrupt 

complex formation and therefore function. 

 
 

Chapter 3 is a modified version of material in Chang RL, Bourne PE, Palsson BØ. 

Antibacterial mechanisms identified through structural systems pharmacology. In preparation. I was the 

primary author, while the co-authors provided support in the research that served as the basis for this 

study. 
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Conclusion: Structural systems biology, present and future 
 

Biological systems are composed of both the “visible” and the “invisible,” the “visible” being 

the molecular components that make up cells, the “invisible” being the governing constraints that drive 

the movement, interaction, and transformation of the molecular components. The traditional structural 

biologist focuses largely on the study of proteins, the main “visible” actors in the cell, and the form-to-

function relationship so intricately specified by the subtleties of structure. Systems biology, still a 

relatively young field in itself, grasps at the “invisible,” often forced to seek explanations for biological 

phenomena through mathematical mimicry. Seemingly distant fields, but perhaps there is a rich land of 

discovery somewhere in-between. It is this notion that inspired the research in this dissertation, to 

explore this relatively untouched frontier. 

Armed with the benefit of molecular detail conferred by protein structures and the theoretical 

scaffolds that are genome-scale models, new ground was broken in the analysis of response to two 

distinct kinds of physicochemical stress, that of exogenous chemicals and that of exposure to super-

optimal temperature. In the course of this work, I moved from studying a human system to studying a 

bacterial system, both using the framework of structural systems biology. A new structural systems 

biology data source was created in the form of the genome-scale model integrated with protein 

structures (GEM-PRO). This resource was designed with the motivation of integrating computational 

tools of both structural bioinformatics and systems biology, and it was demonstrated to be effective in 
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predicting systemic response to physicochemical stresses through the impact that these stresses exert 

differentially upon the collection of distinct proteins that make up the proteome. Furthermore, the 

effectiveness of this merging of fields was distinctly shown to only work with both components; the 

same predictions could not have been made using either set of tools in isolation. 

The applications of such an analysis platform are very far reaching. In the course of this thesis 

alone, we have explored issues of drug side effects in treating human disease, gained new biological 

understanding of the response of a microbe to high temperature environments, and provided a basis for 

predicting antibacterial activity. In part, these applications make up the scheme displayed in Figure 4.1. 

This figure also hints at the utility that a structural systems biology approach may have in understanding 

native mechanisms for regulation, such as post-translational modification of proteins, but these 

applications most likely barely scratch the surface of what can be done with this integrative framework. 

One can easily imagine empowering a protein engineering, or even strain engineering, study by 

adopting such a research perspective or adding new dimensionality to evolutionary studies. 

 
Figure 4.1. Established and prospective applications of structural systems biology. Drug 
development in the form of human-targeted pharmaceuticals (Chapter 1) and antibacterials (Chapter 3) 
was presented in this work. The impact of environment stress upon protein stability was exemplified in 
Chapter 2. Post-translational protein modification (PTM) represents another frontier for structural 
systems biology. 
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Where is this field heading? When I first took interest in systems biology, I said that I dreamt 

of dynamically simulating cellular systems in three-dimensions. We are getting closer with these early 

steps into structural systems biology, but I am not watching molecules diffuse across my screen in an 

accurate representation of the cellular milieu right now. As computing technology continues to become 

more powerful and as new, faster, higher-throughput experimental techniques are developed, one can 

start to more realistically expect that we will be simulating and visualizing the cellular milieu soon 

enough. Meanwhile, we will focus on the more tangible but equally remarkable: interpretation of 

genomic variation leading to human disease and personalized medicine, finding the genetic linchpins 

limiting industrial microbe output, managing invasive pathogens without disturbing the native 

microflora, and a plethora of other open scientific problems I’ve seen hints towards while completing 

this thesis. 

The invisible mirror reflects with greater clarity if it is not blind to the visible stage.
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