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A Methodology to Compute the Critical Current
Limit in Nb3Sn Magnets

G. Vallone, E. Anderssen, B. Bordini, P. Ferracin, J.F. Troitino, S. Prestemon

Abstract—Numerous experiments have shown that the loads
applied to Nb3Sn strands and cables can reduce their critical
current. Experiments, performed on uniaxially loaded strands,
allowed to define clear laws to describe the evolution of the
critical surface as a function of the applied current, field,
temperature and strain. It is, however, still unclear how these
laws can be applied to superconducting magnets. The present
paper proposes a methodology to estimate the critical current
and temperature margin reduction on superconducting magnets
due to stress on the superconducting material. The methodology
is tested on the MQXF magnets, a quadrupole developed for
the High Luminosity LHC project, and successfully validated
by comparing computed strain with data from strain gauge
measurements. Results suggested that, because of the stresses
arising in winding during assembly, cool-down and powering,
the current limit of the magnet is lower than the expected short
sample limit, and that the most critical region does not coincide
with the peak field location.

Index Terms—Nb3Sn, Rutherford Cables, Transversal Pres-
sure, Critical Current, Scaling Law, Superconducting Magnet,
Quadrupole

I. INTRODUCTION

SUPERCONDUCTING magnets are characterized by a
critical current, defined as the maximum current that the

magnet can reach without crossing the critical surface at
any point in the superconducting coils. Nb3Sn magnets are
generally operated either at 4.2 K or in superfluid helium at
1.9 K. Their limit current is usually obtained starting from
measurements of the critical current on strands extracted from
the cables used in the coils of the same magnet. These strands
are generally referred to as short-samples, and the related
current limit is the so-called short sample limit. To ensure that
the samples performances are representative of the coil ones,
they undergo heat treatment with the corresponding magnet
coils. The samples critical surface can be parametrized, for
example with the approach described in [1]. This allows to
extract the critical field as a function of the current at the
operating temperature [2].

It was shown in the past by numerous experiments that the
Nb3Sn superconducting critical surface is a function of not
only of the temperature, magnetic field and current density,
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but also of the applied strain state [3]–[10]. In particular, the
applied strain can cause a reversible critical current reduction,
that disappears when the strain is removed, and an irreversible
critical current reduction (degradation), due to the mechanical
failure of the superconducting elements [8], [11].

In the operative conditions, superconducting coils can be
subject to tridimensional strain states, caused by the e.m.
forces and by the prestress, applied in order to limit mo-
tions during powering. These forces can generate significant
strain/stresses in the conductor [12]. As a consequence, the
conductor critical surface can move, reducing the available
margin or quenching prematurely the magnet. In other words,
the actual limit current for the magnet might be different from
the one computed from the short sample measurements. In
order to avoid this, it is crucial to define a clear limit criteria
for correctly designing these magnets, especially in view of the
continuously growing magnet fields and e.m. forces required
by particle accelerators [13].

Nowadays, most magnets are designed considering an em-
pirical criteria defined on the basis of the experience from
previously tested magnets, which states that, in order to avoid
or minimize conductor degradation, the equivalent stress inside
the coil has to be lower than 150-200MPa [12]. As the direct
measurement of the strain with strain gauges on the coil is
considered unreliable [14], this stress is generally extracted
from validated FE models. These numerical models generally
represent the coil as a block of an equivalent uniform material,
assumed orthotropic in 2D models and isotropic in 3D models,
because of difficulties in defining the correct reference system
in the latter case. More refined approaches were used in some
cases, as for example modeling the single cables [15], or
separating the cable from the insulation [16]. Recently, a coil
model at the strand level, with geometry extracted from a coil
cross section picture, has been proposed in [17]. A cable and
coil modeling strategy at the strand level was proposed in [18],
and used to predict the mechanical stiffness of the coil and
its dependence on the mechanical properties of the various
components. These more complex representations, however,
cannot be easily linked to the empiric criteria mentioned
above.

On the other hand, it is relatively easy to test longitudinally
stretched Nb3Sn strands. This allowed to define clear laws
in the reversible region [9]. A number of works tried to
express the critical current evolution as a function of the
three-dimensional strain state, as for example in [19]–[21].
In [22], a model was proposed to estimate the 3D strain state
inside a conductor under tensile stress. In [9], an exponential
scaling law was proposed. This law was applied to match
the critical current as measured on superconducting strands
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under transversal pressure in [23]. This result, and the intrinsic
tridimensionality of the exponential scaling law, suggested that
this approach may be apt at reproducing the current reduction
in strands under a tridimensional strain state, as is the case
for the ones in superconducting coils. In [24], we showed
how the law can be applied to match the critical current
reduction on Rutherford cable stacks. Experimental results
and the procedure are reported in [25], [26]. New tests were
performed, showing similar performances on Rutherford Cable
based on 1mm RRP wires [27]. Similar experiments were
performed on two different set-ups, one in Twente [5] and
one at NHMFL [28].

In this paper we extend the same methodology, applied in
[24] to a stack of cables, to a full coil of a superconducting
magnet, with the goal of estimating the reduction of magnet
critical current due to strain in the superconductor, in the
reversible region. As a benchmark, the approach was used to
build a 2D FE magneto-mechanical model of a superconduct-
ing quadrupole and to obtain the impact of mechanical loads
on its critical current limit and temperature margin.

The paper is organized as follows: in Section II, we describe
the methodology listing the necessary steps and the fundamen-
tal equations; in Section III, we introduce the MQXF magnet
and a FE model built using the presented methodology; in
Section IV, the model is validated on top of the available
measurements; in Section V, we present the strain and stresses
as computed on the superconducting strands; in Section VI,
we compute the critical current, the critical field and the
temperature margin; in Section VII we study how the critical
current reduction obtained with this methodology compares
to the stresses as computed on a simplified FE model with
smeared coil properties.

II. METHODOLOGY DESCRIPTION

The current limit of superconducting magnets for particle
accelerators is usually estimated finding the current at which
the peak field on the coil crosses the critical surface, measured
with an strand extracted from the magnet cable, and mounted
on a barrel. Therefore this approach, traditionally adopted so
far, neglects the impact on the critical surface of the strain
applied on the strands. Also, it is worth noticing that in a
magnet this strain changes continuously as a function of the
current, because of the variation of the applied e.m. forces.
Here we propose to take into account this effect to refine the
limit accuracy. In order to do this, one needs: an estimate of
the magnetic field on a strand; an approach to estimate the
strain applied on the superconducting region of the strands,
as a function of the applied current; and a method to update
from these strains the critical surface. One has to perform this
computations on each strand, in fact, because of the influence
of the strain on the critical surface, the critical point can now
be in any region of the superconducting coils, and not always
at the peak field location.

The methodology proposed here is made of a sequence of
steps:

1) Create an electromagnetic and a mechanical model with
a separate representation of the superconducting regions

Fig. 1. Representative FE geometry and mesh used to model a single cable
at the strand level [24].

TABLE I
MATERIAL PROPERTIES

Parameter Unit Value
Copper Elastic Modulus (R.T.) GPa 110
Copper Elastic Modulus (4.3 K) GPa 120
Copper Yield Strength MPa 40
Copper Tangent Modulus GPa 5
Nb3Sn Region Elastic Modulus (R.T.) GPa 100
Nb3Sn Region Elastic Modulus (4.3 K) GPa 70
Epoxy Resin Elastic Modulus GPa 5
Impregnated Insulation Elastic Modulus (R.T.) GPa 13
Impregnated Insulation Elastic Modulus (4.3 K) GPa 20
Copper Thermal Contraction mm/m 3.3
Epoxy Thermal Contraction mm/m 11.9
Impregnated Insulation Thermal Contraction mm/m 7.49
Nb3Sn Thermal Contraction (αNb3Sn ) mm/m 1.8
Nb3Sn Region Thermal Contraction (αg) mm/m 2.5

2) Compute the current/field transfer function for all the
superconducting regions

3) Extract the strain on every superconducting region as a
function of the powering current

4) Compute the critical current for each strand using the
exponential scaling law

5) Find the minimum powering current for which the
critical current is crossed at any strand.

The knowledge of the strain function as a function of the
applied current can then be used also to extract the updated
critical field and temperature margin. The most critical steps
in the procedure are the coil modelling strategy (point 1),
the computation of the strain function (point 3), and the
computation of the critical current for each strand (point 4).
These steps are also general and can be applied to any magnet
whose windings are made of Rutherford cables.

A. Coil Modeling Strategy

Each Rutherford cable composing the coil can be modelled,
as suggested in [24], by representing each strand as three
concentric octagons: the central part of the copper matrix,
then a Nb3Sn region, comprising the non-copper material and
a portion of the copper matrix, and finally the outer ring
of the copper matrix. The bare cable is wrapped in G10
insulation and the voids are filled with epoxy. The geometry
of the cable is shown in Figure 1. The various components
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are considered bonded because of the impregnation process
and share the nodes across their contours. The outer copper
octagon thickness t0 is assumed to be equal to half of the bare
cable thickness tc. If wc is the reacted cable width, and Ns the
number of strands, the width of the octagons has to be equal to
2wc/Ns. Indicating with Ac is the cable cross-sectional area,
with ds the strand diameter, with βt the cable twist angle, the
width of the epoxy gaps 2e0 can be computed as [24]:

eo =

√
towo −Acηf/Ns

2
(1)

where ηf is the filling factor, defined as [29]:

ηf =
Nsπ(ds/2)

2

Ac cosβt
(2)

The inner octagons are scaled from the outer ones, keeping
the same thickness/width ratio. We can then define two scaling
parameters: α for the Nb3Sn octagon and γ for the inner
copper region. The thickness and width of the Nb3Sn octagon
are equal to αto and αwo; the ones of the inner copper region
are instead γto and γwo. The scaling parameters can easily be
estimated by measuring the areas of the different regions on
a microscope image of the considered strand.

The material properties used are listed in Table I. The
following equation was used to estimate αg , the contraction
of the Nb3Sn region:

αg = ρNb3Sn αNb3Sn + ρCuαCu (3)

where the ρ symbol is used for the volume fraction, α for the
thermal contraction and the subscripts Nb3Sn and Cu indicate
respectively the superconducting and non-superconducting
material inside the superconducting region.

Each cable has then to be positioned within the coil:
this is trivial for block configurations but requires a set of
assumptions for a cosθ magnet. The approach used hereafter
is described in Appendix A. Hereafter, we refer to the models
created with this approach as FE strand model, while the
traditional representations using smeared properties within the
coil will be indicated as FE block model.

B. Strain Function Computation
The main parameter governing the critical current reduction

in the reversible region is the strain function s(ε), defined as:

s(ε) ≡ Bc2(0, ε)

Bc2(0, 0)
(4)

where ε is the strain tensor and Bc2(T, ε) is used to indicate
the upper critical field as a function of strain and temperature.

The impact of the strain function on the pinning force can
be expressed as [9]:

Fp = Jc(B, T, ε)×B = Cg(s(ε))h(t)bp(1− b)q (5)

where b is the reduced field and t the reduced temperature,
defined as a function of the critical temperature Tc(ε) and
critical field Bc2 as follows [9]:

Tc(ε) = Tc(0)s(ε)
1
w t = T/Tc(ε) (6)

Bc2(T, ε) = Bc2(0, 0)s(ε)(1− tν) b = B/Bc2(T, ε) (7)

The parameter w is the cross link parameter, empirically found
to be equal to 3. ν is the upper critical field parameter, equal
to 1.5 on a wide range of strain. This value is close to the
one calculated with the Werthamer theory. The parameters p
and q are the pinning force shape parameters, which depend
on the pinning mechanism and here are assumed to be equal
to 0.5 and 2. The function g(ε) is equal to s(ε)es , where es
is a parameter generally assumed to be 1.0 or 1.1.

To compute the strain function we use the exponential
scaling law [9]:

s(ε) =
e−C1

J2+3
J2+1J2 + e

−C1
I21+3

I21+1
I21

2
(8)

where C1 is a constant depending on the particular strand
used, and can be derived from critical current measurements
performed on uniaxially loaded strands; I1 is the first invariant
of the strain tensor and J2 is the second invariant of its
deviatoric part, that can be expressed as a function of the
principal strains ε1, ε2 and ε3:

I1 = (ε1 + ε2 + ε3) (9)

J2 =
1

6

[
(ε1 − ε2)

2 + (ε2 − ε3)
2 + (ε3 − ε1)

2
]

(10)

In Eq. 9, the strain components are extracted from the total
strain tensor ε, considered to be the sum of the mechanical
strain tensor εM and the residual strain εT , due to the differ-
ential thermal contraction of the copper and Nb3Sn during the
cool-down from reaction temperature. It was shown in [9] that
the longitudinal component of εT is a constant (εl0), function
of the strand design, and that the transversal components εt0
can be expressed as [9]:

εt0 = −νεl0 +K (11)

where ν is the Poisson ratio and K a fitting parameter equal
to 0.1.

The Rutherford cable modeling strategy proposed allows to
extract the strain state in the superconducting region of the
cable. In [24], the same authors showed that the methodol-
ogy could match the critical current reduction as measured
on Rutherford cable stacks [26]. To achieve this correlation
with the experimental data, it was necessary to amplify the
transversal strain components of εM in the Nb3Sn area with
a factor αf :

εt = αfεt (12)

where εt is the transversal strain, and εt the amplified transver-
sal strain. The parameter αf was calibrated on the available
experimental data [26] and found equal to 2.

C. Critical Current Computation

The critical current on the strand can be computed as
follows:

Iµ(θ) =
1

As

∫
A

Ic(s(ε(x, y)), B(x, y), T (x, y)dA (13)

where As is the strand superconducting area, Ic the crit-
ical current, (x, y) the coordinates of a generic point in
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Fig. 2. MQXF cross-section (top), and longitudinal view of the short models
(bottom). The strain gauges were installed on the shell and the winding poles,
as shown by the circular markers. The vertical line in the bottom view provides
their longitudinal position.

Fig. 3. MQXF FE strand model geometry. The cable geometry is magnified
to show the actual geometry of the strands and cables. The keystone angle is
not included in the actual cable geometry but only in the insulation.

the superconducting region. This approach assumes a perfect
current redistribution within the strand, and is applied here
for its relative simplicity. Using these assumptions, the critical
current computation can match with very good accuracy the
available experimental data on Rutherford cable stacks [24],
[26].

III. MQXF STRAND MODEL

The Nb3Sn quadrupole MQXF is part of the High-
Luminosity upgrade [30], and will be installed in the LHC
triplets. The magnet aims to an ultimate gradient of 143.2T/m
in a 150mm aperture, at an ultimate current of 17.89 kA [2].

TABLE II
CABLE PARAMETERS

Parameter Unit Value
Strand / RRP 108/127
Strand diameter mm 0.85
Number of strands in cable / 40
Copper to non-copper / 1.2
Cable Bare Width mm 18.15
Mid Thickness mm 1.525
Keystone Angle degrees 0.40
G10 Insulation Thickness mm 0.145

The MQXF design allows to apply a controlled azimuthal
prestress at room temperature by means of the bladder and
key technology [31]. The longitudinal prestress is instead
provided by longitudinal rods, pretensioned by means of an
hydraulic piston and locked in this deformed state with bolts.
The differential thermal contraction of the various components
increases both the azimuthal and longitudinal prestress during
the magnet cooldown at cryogenic temperature. A more de-
tailed description of the magnet mechanics can be found in
[32]–[36].

Many 1.5 m long models (short models) and full length
magnets were tested. Four of them reached the target current
of 17.89 kA. The others were limited by what was considered
to be mechanical or electrical defects [37]–[39]. The short
sample limit of all these magnets varied between 21 kA and
21.5 kA.

For all the short models, the mechanical performance of
the structure was monitored during assembly, cooldown and
powering by means of electrical strain gauges, installed on
the aluminum shells and on the winding poles [33]. The
strain gauge locations are shown in Figure 2: four gauge
locations were used on the shell, and every coil had gauge
installed on the winding pole. On all these locations two
gauges were installed: one, measuring the azimuthal strain, and
one, measuring the longitudinal strain. This allows, knowing
the material elastic modulus, to extract the local azimuthal and
longitudinal stresses.

Different prestress levels were applied to various mag-
nets. For the azimuthal prestress, two different levels can be
considered: the MQXFS1 level, with an azimuthal winding
pole stress at cold of 80MPa; and the MQXFS4 level at
106MPa. These two models are used in the following sections
as reference for the mechanical performances of the magnet.
They both reached a maximum current higher than the target
of 17.89 kA. MQXFS1 was limited at 94% of the short sample
limit. For the short model MQXFS4, the magnet training was
not completed. As a consequence, it was not possible to verify
if the actual short sample limit could be reached or not. In both
magnets (and also on all the other models tested so far), the
coil detached from the winding pole during powering.

A. Geometry and Mesh

The FE models were coded in ANSYS APDL. The ge-
ometry was defined assuming that the cables are distributed
evenly inside each conductor block. The keystone angle is
neglected in the cable geometry, and the contribution is instead
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Fig. 4. Magnetic field computed with the strand model. The model results
are in close agreement from the ones computed in other softwares, e.g. Roxie
[2].

introduced by varying the local insulation thickness. The
centroid of each cable is assumed to stay at the mid-radius of
the block. The mathematical formulation of the cable position
is provided in Appendix A. The cable and strand parameters
are provided in Table II. The resulting geometry and mesh are
showed in Fig. 3.

All the coil components (strands, epoxy, insulation) shared
the nodes across the boundaries, simulating a glued condition.
The coil blocks are then glued to the wedges. As the coils are
impregnated, the glued assumption is reasonable. In principle,
the impregnation also bonds the coils to the winding poles.
However, this bonding is known to often fail during the life
cycle of the magnets. In general, damage can be seen on
tested coils around the interface between the coils and the
winding poles. Measurements and models show that, when
a low preload is applied to the magnet, this interface break
progressively until a complete separation is created between
the coil and the pole [34].

The contact were defined after the approach described in
[34]. In this work it was shown that the progressive detachment
of the coil from the winding poles can be simulated by
introducing cohesive elements at the interface. However, it was
also shown that for the MQXFS1 magnet this interface was
completely broken after few training quenches. This means
that, if we want to simulate the ideal limit of this magnet,
it is possible to remove the cohesive material definition from
the contacts, and to allow the separation of standard contact
elements from the very start of the simulation. The real
debonding is probably happening between the strands closer
to the pole and the epoxy and insulation bonded to the pole
[34]. Here, for simplicity, the debonding is instead introduced
at the pole/insulation interface. Sliding contacts allow for the
relative displacements of the inner and outer layer.

IV. STRAND MODEL VALIDATION

A. Magnetic results

The e.m. forces and the magnetic field were computed
using the geometry shown in Figure 3. The mesh is the

Fig. 5. Transfer Function of MQXFS1a, the first short model quadrupole
tested. The points show the shell and coil stresses as measured and computed
after loading and cool-down. Remarkable agreement is found between the
cable model and the measurements, with results in line with the ones from
the coil block FE model.

Fig. 6. Mechanical transfer function of MQXFS4.

same as the one used for the mechanical model, with the
addition of air elements in the void spaces between parts. The
nodes at the interfaces between the parts were coupled. The
computed magnetic field on the strands is shown in Fig. 4. At
nominal current, the peak field on the conductor is equal to
11.36T. The difference between this result and the available
measurements is less than 1%. It is worth noticing that the
result is in agreement also with the reference simulation for
the MQXF magnet [2].

B. Mechanical Results - Preload and Cool-Down

The mechanical status of the MQXF magnet are usually
summarized by looking at the transfer function between the
shell azimuthal stress and the pole azimuthal stress, shown in
Fig. 5. In this plot, the three points of each line depict the
status of the magnet before loading, after loading at room
temperature, and after cool-down. Two lines represent the
FE model results, as obtained from the model described in
this paper and a more traditional model representing the coil
as blocks of uniform materials. Another line represents the
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experimental measurements, performed with the strain gauges
installed on the locations shown in Fig. 2. Finally, the green
squares represent the measured variation of the stresses on
the four measuring locations on the shell and on the winding
poles.

The results are shown for the first tested magnet, MQXFS1
[40], in Fig. 5. Another validation is provided at the load
level of the MQXFS4 magnet, as shown in Fig. 6. The strand
model results are very close to the measured values. The result
is particularly impressive if we consider that no calibration
was needed to reach this agreement. It can be seen that the
computed stresses are also very close to the one from the FE
block model. However, this result was obtained in the past via
a calibration that brought the coil elastic modulus to 20GPa
[33].

This agreement between the numerical model and the mea-
surements suggests that the modeling methodology is able
to predict with very good accuracy the stiffness and the
thermal contraction of the winding in both the transversal
and radial direction. The result is another good verification
of the performances of the approach used to model cables.
This model would have in fact allowed to predict the cable
mechanics without the use of fitting parameters. As different
stiffness are produced by different cable designs and insulation
schemes, the approach would allow in future to predict the
mechanical behavior of the magnets without relying on the
results from past models or measurements on cable stacks in
different arrangements.

C. Coil Thermal Contraction

Given the good agreement with the measurements after
cooldown, it is interesting to understand what is the equivalent
integral thermal contraction obtained with this modeling strat-
egy. Present analysis of the MQXF magnet use a thermal con-
traction value estimated with a parametric analysis, described
in [33]. The value found to match the stress level in the magnet
after cool-down was equal to 3.9mm/m in the coil. This is
significantly higher than the one used in the past, 3.3mm/m.
This parameter allowed for a remarkable agreement between
the numerical models and the measurements performed on
many MQXF magnets.

The thermal contraction can be evaluated by modeling an
unloaded and unconstrained 10-stack and cooling it down to
cryogenic temperature. The total contraction obtained with this
methodology is equal to 4.03mm/m, very close to the one
obtained by the optimization.

However, this might not be the best estimate of the actual
thermal contraction in operative conditions. In this case, in
fact, the copper is most likely in a plastic state, and its modulus
is lower. In an experimental set-up, this would mean that,
as some authors observed in the past, ‘the measurement of
the thermal-contraction integral at zero stress is not very
meaningful’ [41], [42]. If we consider instead the copper as
already in a plastic state, the total deformation from the model
is equal to 4.2mm/m.

Fig. 7. Stress as measured on the pole during powering of MQXFS1a and
MQXFS4, and as computed with the FE model. The measurement variation
shows the maximum and minimum measured values across the four quadrants
of the magnets.

D. Mechanical Results - Powering

The model was finally used to simulate the mechanical
behavior during the magnet powering. The computed winding
pole azimuthal stress, at the strain gauge locations, is shown
in Fig. 7 as a function of the squared current, proportional
to the applied e.m. forces. The results are shown for the
MQXFS1 and MQXFS4 magnets, along with the measured
pole stress average and its variation across the four quadrants.
The azimuthal stress, initially negative thanks to the applied
prestress, gradually increases because of the e.m. forces. The
change in slope of the curve is generally considered an
indication of the detachment of the coil from the pole. The
magnet powering is substantially divided in two phases: a first
linear phase, when the coil pole block is still in contact with
the winding pole, and a second phase when it detaches. The
plot in Fig. 7 shows that this detachment is gradual. In other
magnets, as for example TQ [43], the behavior was much more
linear in the two phases.

The slope of the linear phase is similar for the two magnets
and in perfect agreement with the FE model results. The
gradual detachment, and the different behavior between the
two magnets, is also well predicted by the FE model. The
maximum difference between the measured and computed
values is equal to 15MPa.

V. STRESS AND STRAIN IN THE STRANDS

For the following analysis we consider as a reference the
short model MQXFS4 [39], considered the best performing
magnet until now, that showed unloading. As the coil is de-
tached from the pole, the strain conditions during powering in
this magnet should be equivalent to the ones of the other tested
magnets, as for example MQXFS1. However, the amount of
plastic strain cumulated in the copper matrix will vary as a
function of the applied prestress even when the magnet is
unloaded. Therefore, in the Nb3Sn region some elastic strain
can build-up to react the deformation of the copper.
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Fig. 8. Radial (top) and Azimuthal (bot) strain on the Nb3Sn regions of the
strands at short sample current for the MQXFS4 magnet.

The radial and azimuthal strain contours at short sample
current are shown in Fig. 8. The azimuthal strain shows
mostly compression, with a maximum of 3000 µε and a lower
amount of tension on the pole turn of 1000 µε. The radial
strain varies instead from −3000 µε to 4000 µε. The azimuthal
stress in the same condition is instead provided in Fig. 9
(top). The minimum stress is on the inner strand of the last
turn (on the mid plane) and equal to −445MPa. Fig. 9 also
provides the azimuthal stress but averaged on each strand. The
minimum stress is again on the same strand, with an average
of −205MPa.

VI. CRITICAL CURRENT COMPUTATION

A. Strain Function

The average strain function on each strand, at short sample
current, is shown in Fig. 10. The result is not directly appli-
cable to estimate the critical current (Eq. 13 should be used
instead), but provides a meaningful indication of the strain
impact on the various region of the magnet. The lowest value
is equal to 0.8, for a strand located on the mid-plane. The
pole turn shows a slight increase of the strain function from
the unloaded value of 0.93. This is due to the residual strains
created during loading and cool-down. Finally, a decrease of
the strain function is also seen in the second turn of the pole

Fig. 9. Azimuthal stress on the Nb3Sn regions of the strands at short sample
current for the MQXFS4 magnet, non-averaged (top) or averaged (bot) over
each strand.

Fig. 10. Strain function computed at the short sample current for the MQXFS4
magnet and averaged on each strand. T = 1.9 K.

block of the inner layer. In this region, the e.m. forces push the
cable against the corner of the outer layer pole block, creating
a stress amplification region.

In this study, the current reduction due to strains in the
radial and azimuthal direction are considered equal. This is
coherent with the exponential strain function formulation. In
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Fig. 11. Critical current for each strand when considering the strands at short
sample limit (top), and introducing the actual strain function computed by the
FE strand model (bottom). T = 1.9 K.

reality, this assumption is not verified, as there is no data for
strand or cables under radial loads, but only under transversal
and longitudinal loads. Therefore, at the present moment we
are constrained to consider these directions as equivalent.
Eventual future (numerical or experimental) studies might
provide further information that would allow to validate the
model also in this direction. It will then important to rotate
not only the cables but also the strand coordinate system with
a similar approach to the one described in Appendix A.

B. Critical Current

The critical current can be computed from the strain com-
ponents of Fig. 8 and the magnetic field from Fig. 4, using Eq.
13. In practice, no operation is possible for the magnet unless
the critical current is higher than the powering current in all the
strands. An hypothetical limit on each strand was computed
ramping the current and computing the critical field or current
on each strand. If the current and field would meet the critical
surface reduced by the mechanical strains at any point, that
condition was stored and marked as critical current for that
strand. The resulting critical current for each strand is shown
in Fig. 11. The graph also provides the ideal critical current
at the same magnet current, when considering the actual short
sample limit (strain function equal to 0.93). Two locations are

Fig. 12. Load line as computed from the strand model. The pole and mid-
plane lines refer to the strands highlighted in Fig. 11. T = 1.9 K.

highlighted: a strand on the pole turn, and the inner strand
on the mid-plane turn. The former corresponds to the peak
field location, and the latter to the location of the minimum
critical current. The critical current on the pole strand is equal
to the short sample limit of 21.2 kA, the same value found
when neglecting the strains acting on the conductor. This is
partially expected, as the pole turn is completely detached from
the winding pole, with no remaining prestress on it. On the
other hand, it is worth to notice that this means that the effect
of the residual plastic strain in copper regions is negligible.

For any MQXF magnet experiencing this loss of prestress,
the critical current at the winding pole strand would be the
same (21.2 kA), while the mid-plane strand would instead see
a limiting current of 23.1 kA. The critical current reduction on
the midplane is therefore equal to 2 kA. A smaller amount of
reduction is instead apparent on the few strands near the corner
of the pole block of the outer layer. This corner is creating
an intensification of the stresses, which result in this current
reduction. It is worth to notice that at this level some amount
of permanent degradation might appear, further reducing the
available critical current on the mid-plane.

C. Critical Field

The critical current as a function of the local magnetic
field is shown in Fig. 12 for the two strands indicated by
arrows in Fig. 11. The plot also provides the load line for
these strands (critical current as function of the magnetic
field), and 3 black lines representing slices of the critical
surface at 1.9K and with a strain function of 0.93, 0.8, and
0.7. The plot shows that the pole strand does not experience
any critical current reduction, and its critical current follows
closely the line corresponding to a strain function of 0.93, the
same value needed to match the behavior of the short samples.
The mid-plane strand sees instead a progressive amount of
critical current reduction as the magnet current is increased.
The mid-plane load line meets the critical surface at a current
of 21.1 kA, and with a strain function equal to 0.8.
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Fig. 13. Temperature margin at 20 kA with no strain applied (top), and with
the strain (bottom). The reduction of the temperature margin is most evident
on the inner radius of the mid-plane turns and at the inner layer pole block
near the outer layer pole block corner.

D. Temperature Margin

Sudden disturbances occurring during the magnet operation
can locally increase the temperature of the conductor. De-
pending on the available margin with respect to the critical
surface, this can bring a conductor region above the critical
temperature, restoring the normal state. This region can then
potentially propagate, quenching the magnet. Three mecha-
nism are generally considered as responsible for these energy
releases: frictional heating due to wire motion; failure in the
epoxy impregnation; microyielding in the conductor [44].

As the applied strain state moves the critical surface, the
available temperature margin can be reduced. For a given
current, field and strain function, the scaling law would allow
to compute the temperature margin as Tm = Tc − To, where
To is the operating temperature, 1.9K, and Tc the critical
temperature at a given current and field in the strand. In Fig.
13 the temperature margin at 20 kA is provided neglecting
(top) considering (bottom) the effect of mechanical strains.
The reduction of the temperature margin is evident in the lower
strain function regions (see also Fig. 10): the inner radius of
the mid-plane and the inner layer pole block second turn, near
the corner of the outer layer pole block. The lower value of the
strain function in this latter region might explain the limiting

Fig. 14. Temperature margin as a function of the powering current on the
pole, mid-plane and on the mid-plane with no applied strain. The reduction
of the temperature margin at ultimate current (Iult = 17.89 kA) is 0.4K.

quenches that were identified as starting from one of the inner
turns of the pole block in the magnet tests.

The temperature margin was also computed as a function
of the powering current. Fig. 14 shows the variation of the
margin on the mid-plane and pole. The plot also provides
the same result when neglecting the mechanical strains on
the mid-plane. As the results on the pole turn are equivalent
when considering and neglecting the mechanical strains, only
one set of results is shown for this location. The reduction
of the temperature margin at ultimate current is 0.4K, and
increases gradually up to the maximum of 2.5K at 21.0 kA.
This means that, as we approach the short sample limit, sudden
disturbances are more likely, or at least as likely, to generate
a quench on the mid-plane region than in the pole turn.

VII. COIL BLOCK COMPARISON

It might be of interest to run a simplified analysis of the
magnet model during the early stages of the design. In this
context, it is still very important to estimate the actual magnet
performances, and in particular the critical current limit. The
results from [12] were suggesting to limit the actual coil stress
to about 200MPa.

Here we can instead compare the critical current reduction
obtained with the non-linear strand model to the stresses from
a reference linear elastic homogenized model. Fig. 15 provides
the azimuthal stress as computed in a MQXF FE model made
with the traditional coil block strategy. The stress is equal
to 130MPa at ultimate current, and 175MPa at 21 kA, the
actual limiting current of the magnet for the computations of
Section VI. At ultimate current the strand model was instead
providing an average strand peak stress of 205MPa on the
Nb3Sn region (Fig. 9). While it is not possible to use a
one to one translation from the non-linear strand model to
this linear elastic homogenized model, it is still interesting
to underline that the limit current occurs for a stress of
175MPa, which is close to the 200MPa value detected from
past experiments as limiting [12]. It is however important to
keep in mind that in reality there is no direct equivalence
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Fig. 15. Azimuthal stress, in Pa, as computed with a linear elastic homoge-
nized model at ultimate current (top), and at 21 kA (bottom).

between the strain function and the stress state, especially
when considering the of the strands. For example, because of
Rutherford cables anisotropy and the impact of plastic strains
in the copper regions, this number might change as a function
of the load direction or history. Finally, the slope of the load
line on severely strained strands plays an important role: two
different magnet designs might see a similar maximum stress
but different load lines on the most stressed strands. Trivially,
the impact of high stresses on the magnet performances will
be lower in the low field regions of the windings.

VIII. CONCLUSION

A methodology was developed to study the effect of strains,
in the reversible region, on the critical current of super-
conducting magnets. The methodology is based on the laws
developed on longitudinally loaded superconducting strands,
and a number of experiments that allowed to validate the
intermediate steps.

The core of the methodology there is a coil modeling
strategy that allows to obtain the strains on the Nb3Sn regions
of the strands, and another strategy to use the strain function

to compute the critical current reduction on those regions. The
methodology was validated in the past by comparing numerical
results with stiffness and critical current reduction data taken
on cable stacks.

The relative simplicity and low computational cost of this
approach allows the application also to 2D magnet models.
The coil modeling strategy used allowed to match very well
the measured mechanical behavior of the magnet, with no
calibration. A remarkable agreement was found during all the
phases of the magnet life: room temperature preload, cool-
down and powering. Therefore, it could be an important tool
for future magnet designs, in particular in those situations
where a new cable design is being developed and 10 stacks
measurements are still not available.

The critical current computation showed that, for the MQXF
magnet, the actual critical current limit is on the mid-plane and
not on the pole. Results also showed potential critical regions
in the magnet (e.g. pole corners). The motion of the critical
surface due to the applied strain also reduced the available
temperature margin on the mid-plane and on near the pole.
This might be one of the reasons why the limiting quenches
on all the short models were not on the pole turn but in the
inner turns.

The comparison with coil block FE models allowed to
confirm the empirically evaluated limit values for the stress,
suggesting that to avoid the reversible critical current reduction
is necessary to keep the stress in the coil below 175MPa.
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APPENDIX
CABLE POSITIONING IN THE FE MODEL

Fig. 16 shows an hypotetical cable inside of a coil block.
The position of the cable is defined by the coordinates (xc, yc)
of the cable center Pc and the rotation of the cable αi. The four
edges of the coil block are A, B, C and D. In a cylindrical
coordinate system with origin in O, we can indicate with
(rA, θA) the coordinates of the edge A and similarly the ones
of the other edges.

The inclination of the edge going from A to B, αc0, can be
computed from their horizontal and vertical distance, dxAB
and dyAB , as:

dxAB = (ro cos(θb)− ri cos(θa))/2 (14)
dyAB = (ro sin(θb)− ri sin(θa))/2 (15)

αc0 = arctan(dyAB/dxAB) (16)
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Fig. 16. Sketch of a Rutherford cable positioned inside a coil block.

If the number of cables in the block is Nc, we can compute
the relative angle between cables αC as:

dxCD = (ro cos(θc)− ri cos(θd))/2 (17)
dyCD = (ro sin(θc)− ri sin(θd))/2 (18)
αc = (arctan(ypx/xpx)− αc0)/Nc (19)

The rotation of the i− th cable, counting from the bottom
to the top, αi is then:

αi = αc(i− 1/2) + αc0 (20)

If we assume that the i-th cable center Pi will be at a
radius rc equal to the average of the inner and outer radius
of the block (ri and ro), we can obtain the centroid cartesian
coordinates as:

xc = rc cos(αp(i− 1/2) + αp0) (21)
yc = rc sin(αp(i− 1/2) + αp0) (22)

where αp0 and αp are defined as:

xpx = (ro cos(θb)− ri cos(θa))/2 + ri cos(θa) (23)
ypx = (ro sin(θb)− ri sin(θa))/2 + ri sin(θa) (24)

αp0 = arctan(ypx/xpx) (25)

xpx = (ro cos(θc)− ri cos(θd))/2 + ri cos(θd) (26)
ypx = (ro sin(θc)− ri sin(θd))/2 + ri sin(θd) (27)

αp = (arctan(ypx/xpx)− αp0)/Nc (28)
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