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The derivative of a waveguide acoustic field with respect
to a three-dimensional sound speed perturbationa)

Aaron Thodeb)

Marine Physical Laboratory, Scripps Institution of Oceanography, San Diego, California 92093-0205

~Received 11 July 2003; accepted for publication 15 March 2004!

Semianalytic expressions are derived for the first-order derivative of a pressure field in a laterally
homogeneous waveguide, with respect to an arbitrary three-dimensional refractive index
perturbation in either the water column or ocean bottom. These expressions for the ‘‘environmental
derivative,’’ derived using an adjoint method, require a three-dimensional spatial correlation
between two Green’s functions, weighted by an environmental parameter basis function, with the
Green’s functions expressed in terms of normal modes. When a particular set of orthogonal spatial
basis functions is chosen, the three-dimensional spatial integral can be converted into a set of
one-dimensional integrations over depth and azimuth. The use of the orthogonal basis permits
environmental derivatives to be computed for an arbitrary sound-speed perturbation. To illustrate the
formulas, a simple sensitivity study is presented that explores under what circumstances
three-dimensional plane-wave and cylindrical perturbations produce non-negligible horizontal
refraction effects, for a fixed source/receiver geometry. Other potential applications of these
formulas include benchmarking three-dimensional propagation codes, and computing Cramer–Rao
bounds for three-dimensional environmental parameter estimates, including internal wave
components. ©2004 Acoustical Society of America.@DOI: 10.1121/1.1736651#

PACS numbers: 43.30.Pc; 43.30.Bp@WLS# Pages: 2824–2833
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I. INTRODUCTION

The full-field inversion of ocean acoustic data for wate
column sound speed and bottom geoacoustic propertie
quires adequate understanding of the sensitivity of a mod
acoustic field to various kinds of environmental perturb
tions. If the field is relatively insensitive to a particular p
rameter, then attempts to invert the parameter will yield
timates with large variances and biases for a given signa
additive-noise ratio~SANR!. One quantitative measure o
this sensitivity is the derivative of an acoustic field with r
spect to an environmental parameter, or ‘‘environmen
pressure derivative.’’ More rigorous measures of the m
mum possible variance and bias of a parameter estim
including the Cramer–Rao lower bound~CRLB!1,2 and re-
lated higher-order tensor terms,3–5 still require environmenta
pressure derivatives. Whenever actual acoustic data
available to be compared with a model output, environme
pressure derivatives can also be used to compute the gra
of the local error surface.

Environmental pressure derivatives are typically e
mated using a finite-difference numerical scheme involv
small environmental perturbations, which can lead to sta
ity and convergence problems. An alternate approach
has been often employed in the control theor6

geophysics,7–11 and physical oceanography,12 literature is the
‘‘adjoint’’ or ‘‘costate’’ Green’s function technique. Severa
independent derivations of this method9–11 have shown that
by solving two forward problems in the same propagat
environment, the environmental pressure derivative with

a!Portions of this work have been presented at the Oceans 2003 Confe
in San Diego, CA.

b!Electronic mail: thode@mpl.ucsd.edu
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spect to an environmental perturbation can be derived
spatially correlating the two solutions over all spac
weighted by the environmental perturbation. The result
formulas are very similar to those used in diffractio
tomography.13,14

The application of these expressions to acoustic pro
gation in a waveguide has been fairly recent.15 Adjoint para-
bolic equation~PE! models have been used to estimate
environmental pressure derivatives of two-dimensional
fractive index perturbations in a vertical plane connecting
acoustic source and receiver.16,17 More recently, a normal-
mode formulation of the acoustic pressure field was co
bined with adjoint techniques to derive analytical expre
sions for first- through third-order environmental pressu
derivatives of laterally homogeneous~depth-dependent only!
sound speed and density perturbations in a laterally homo
neous waveguide.18

In Sec. II the adjoint normal-mode formulation intro
duced in Ref. 18 is extended to incorporate environmen
pressure derivatives with respect to an arbitrary thr
dimensional perturbation in a laterally homogeneous wa
guide, a situation that would normally require finite
difference computations of a three-dimensional coup
mode or parabolic equation code. The contribution of
paper is to illustrate how, for the restricted geometry of
acoustic waveguide, the three-dimensional spatial integra
required by the adjoint method can be analytically simplifi
into a bounded two-dimensional integral, which can
evaluated numerically with relatively coarse grid sizes. T
simplification is attained by using a normal-mode formu
tion for the Green’s function, related in spirit to recent wo
on a Born scatterer in a waveguide.15

To illustrate one application of these formulas, Sec.

nce
15(6)/2824/10/$20.00 © 2004 Acoustical Society of America
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. A
presents a simple sensitivity study of horizontal refract
effects produced by plane-wave and compact cylindrical p
turbations. A body of literature extending over two decad
has examined the issue of horizontal refraction throu
eddies19–22and other features23–25in detail; the motivation of
Sec. III is not to extend these studies, but to illustrate h
the formulas derived here can quickly identify situatio
where horizontal refraction might be a non-negligible iss
given a particular source/receiver geometry. The first
ample presented here uses horizontally propagating p
waves as a simple model for internal waves, while the s
ond example uses compact vertical cylindrical perturbati
as a model for small eddies or gyres.

II. THEORY

A. General adjoint expression for environmental
derivative

Density perturbations are not discussed in this particu
paper, but their incorporation should follow similar lines
development as below. However, the spatial gradient of
Green’s function would be required as well as the Gree
function itself.18

A Green’s functiong( r̄ , r̄ s ,v) describes an acousti
field of frequencyv generated at locationr̄ s that propagates
through an unknown environment to locationr̄ . The explicit
dependence ofg on frequency is now dropped. The sour
and receiver positions are expressed in terms of cylindr
coordinates, with the receiversr i lying on the origin, and the
source placed along thex axis, so thatfs50 ~Fig. 1!. The
propagation of the field is governed by the density-depend
inhomogeneous Helmholtz equation

r~ r̄ !¹•S 1

r~ r̄ !
¹g~ r̄ , r̄ s! D1kref

2 h~ r̄ !g~ r̄ , r̄ s!52d~ r̄ 2 r̄ s!.

~1!

FIG. 1. Geometry used to illustrate adjoint formulas.~a! A 48-element ver-
tical array, with 2-m spacing and first element at 1-m depth, is positione
a 100-m isovelocity waveguide with bottom speed of 1645 m/s, bot
speed gradient of 1 m/s per m, density 1.3 g/cc, and attenuation of
dB/wavelength. A rock half-space lies 100 m below the sediment/wate
terface, with compressional speed of 2090 m/s. The acoustic source i
sitioned at 3-km horizontal range at 50-m depth. The bottom densit
uniform in both the sediment and half-space.~b! View of geometry looking
down onto the ocean. The receiver is placed at the coordinate origin
example of a horizontal plane wave with wave numberkpw and propagation
azimuthfp is shown.
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
n
r-
s
h

,
-
ne
c-
s

r

e
’s

al

nt

Here, kref is a spatially invariant reference medium wa
number, andh( r̄ ,v)[k(r )2/kref

2 5cref
2 /c(r )2 is the spatially

dependent refractive index squared that, along with the s
tially dependent densityr( r̄ ), defines the propagation env
ronment. The linear operatorL0 provides a shorthand way o
writing this differential equation.

This refractive-index term can be written as the sum o
laterally homogeneous~but potentially depth-dependen!
‘‘background’’ square refractive indexh0 , and a perturbative
expansion based on aninfinitesimalnondimensional sound
speed perturbation magnitude«

h~ r̄ ![h0~z!1«h«~ r̄ !1¯, ~2!

where «[dc/cref , with dc being a compressional sound
speed magnitude in~m/s!. The quantityh«[]h/]«u«50 is an
order-one term in the perturbative expansion, and repres
the derivative of a three-dimensional square index of refr
tion distribution with respect to the sound-speed perturba
magnitude, and will be subsequently referred to as the ‘
fractive index derivative.’’ If the functional dependence
the square-refractive index is such that higher-order der
tives are both physically relevant and non-negligible, Eq.~2!
can be expanded to higher-order terms.

The Green’s functiong( r̄ , r̄ s) of the perturbed environ-
ment can be expressed as a similar expansion

g~ r̄ , r̄ s![g0~ r̄ , r̄ s!1«g«1¯. ~3!

Here, g«[]g/]«u«50 is the derivative of the Green’s
function with respect to the environmental parameter mag
tude, and is assumed to be of order one in this series solu
as well. Having expressed the new Green’s function as
expansion of the nondimensional«, a solution can now be
found for the Green’s function derivativeg« . The final de-
rivative formula can then be expressed in terms of the
mensional differentialdc.

A rigorous derivation of howg« can be linearly related
to h« is reviewed elsewhere,7,9,11,18however, a brief heuristic
argument can be derived from the Born approximation14,15

g~ r̄ i , r̄ s!'g0~ r̄ i , r̄ s!1kref
2 r~ r̄ i !

3E E E
V

F $«h«~ r̄ !%
g0~ r̄ , r̄ i !

r~ r̄ !
g0~ r̄ , r̄ s!Gd3r .

~4!

By rearranging this expression, dividing by«, and taking the
limit as «→0, the approximate equality of Eq.~4! converges
to anexactsolution, which, when multiplied by a appropria
source strength and converted to dimensional units, beco
the acoustic adjoint equation for the derivative of acous
pressure with respect to compressional speed magnitude

]p~ r̄ i , r̄ s!

]c
5S S

S0
DS0kref

2 r~ r̄ i !

3E E E
V

Fhc~ r̄ !
g~ r̄ , r̄ i !

r~ r̄ !
g~ r̄ , r̄ s!Gd3r . ~5!

in

25
-
o-
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Here,S05rv2V0 , with V0 being a volume injection suffi-
cient to generate a pressure level of 1 Pa at 1 m range~120
dB re: 1 mPa @ 1 msource level!. This choice ofV0 sets
S051 Pa-m, whileS is the actual source level of the pressu
field in Pa-m. From Eq.~5! onwards the environmental pre
sure derivative will be written with respect to sound-spe
magnitude in dimensional units of m/s, and the zero s
script for the unperturbed Green’s function is dropped, w
the understanding that the term ‘‘Green’s function’’ in subs
quent discussion will always refer to theunperturbed
Green’s function.

Two comments must be made concerning the valid
and practicality of Eq.~5!. First, even though it was derive
via the Born approximation, Eq.~5! is an exactexpression
for the environmental derivative, as more complete deri
tions demonstrate. However, if afinite perturbation change
the sound-speed magnitude by an amountdc, Eq. ~5! can
only provide anapproximateestimate of the perturbed pre
sure field, in the form of p( r̄ i , r̄ s)'p0( r̄ i , r̄ s)
1dc(@]p( r̄ i , r̄ s)#/]c), and only if dc is extremely small.
Thus, Eq.~5! would be of limited use for full-field inversion
procedures, without further information about higher-ord
derivatives ofp like pcc[]2p/]c2u«50 , which can be shown
to correspond to higher-order terms in the Bo
approximation.7

Second, while the adjoint expression in Eq.~5! does not
require a finite differencing scheme, it does so at the cos
requiring a spatial integration of the Green’s function
which must be performed numerically under general geo
etries, e.g., Ref 8. Without further simplification the evalu
tion of Eq. ~5! faces the same issues with computatio
speed and convergence as finite-difference approaches
key result of this paper is that the particular geometry o
laterally homogeneous waveguide permits this integration
be reduced analytically to a numerically stable tw
dimensional intergal over azimuth and depth. Furthermor
will be shown how an appropriate choice of refractive ind
basis functions permits one to compute a large numbe
environmental derivatives with only a single set of compu
tions.

B. Orthogonal decomposition of refractive index
perturbation

A standard technique in linear inversion theory is
model perturbations as a linear sum of basis functions,26 i.e.,
hc( r̄ )5(paphp( r̄ ).

In a similar spirit, in cylindrical coordinates the refra
tive index derivative can be expressed as a sum of a se
orthogonal basis functions, exploiting an orthogonality re
tionship between Bessel functions of the first kindJn

hc~ r̄ ,z!5 (
q51

Q

hq~z! (
n52`

`

e2 inf

3E
0

`

a~kp ,n,q!Jn~kpr !kp dkp , ~6a!

with
2826 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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a~kp ,n,q![apqn5
1

2p E
0

2p

einfdf

3E
0

`

dzE
0

`

hc~ r̄ ,z!hq~z!Jn~kpr !r dr .

~6b!

Here,Jn is a Bessel function of the first kind of ordern. The
functionshq are a set ofQ orthonormal vertical basis func
tions, such as sine and cosine waves, empirical orthog
functions~EOFs! derived directly from data, acoustic norm
modes, or even internal wave modal functions.27

Equation~6! suggests that if a set of ‘‘fundamental’’ ba
sis functions

hpqn~ r̄ ,z!5hq~z!e2 infJn~kpur u!, ~7!

is inserted into Eq.~5! for h«( r̄ ) and evaluated, the resu
would provide a general solution for the environmental pr
sure derivative

]g~ r̄ i , r̄ s!

]c
5 (

q51

Q

(
n52`

` E
0

`

apnq

]g~ r̄ i , r̄ s!

]cpqn
kp dkp

~8!
]g~ r̄ i , r̄ s!

]cpqn
[S S

S0
DS0kref

2 r~ r̄ i !E E E
V

Fhq~z!e2 infJn~kpr !

3
g~ r̄ , r̄ i !

r~ r̄ !
g~ r̄ , r̄ s!Gd3r .

For the special case of the horizontally propagat
complex plane wave illustrated in Fig. 1~b!, with horizontal
wave numberkpw and propagation directionfp with respect
to thex axis, the basis function decomposition has the fo

e2 i k̄pw• r̄5e2 ikpwr cos~f2fp!

5 (
n50

`

bn~2 i !n cos@n~f2fp!#Jn~kpwr !, ~9!

wherebn52, except forb051. Thus, from Eq.~6b!

apqn5~2 i !neinfp
d~kpw2kp!

kp
E

0

`

hq~z!dz, ~10!

and Eq.~8! becomes

]g~ r̄ i , r̄ s!

]cplane-wave
5 (

q51

Q E
0

`

hq~z!dz

3 (
n52`

`

~2 i !neinfp
]g~ r̄ i , r̄ s!

]c~kpw!qn
. ~11!

All the examples shown in this paper use a single ve
cal basis function, soQ is restricted to 1.

C. Adjoint solution for basis function in a constant-
depth waveguide

Solving the adjoint Eq.~8! requires two Green’s func
tions, one describing propagation from the sourcer s to an
arbitrary pointr, and one describing propagation from th
receiverr i to the same pointr @see Fig. 1~b!#.
Aaron Thode: Three-dimensional adjoint normal modes
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In the geophysics community the Green’s functions
typically computed numerically over a set of grid points, a
the subsequent spatial correlation is achieved by nume
integration over the grid. Because of computational costs
numerical integration is often restricted to a 2D plane inc
porating the source and receiver.8,28 However, for the case o
a laterally homogeneous waveguide the Green’s function
be expressed as a sum of normal modesUn(z), which per-
mits some analytical simplification. To begin, the Gree
function between a locationr and receiver location centere
at the origin is

g~ r̄ , r̄ i !5
i

4r~zi !
(

f
U f~z!U f~zi !H0

~1!~kr f u r̄ u!, ~12!

and the Green’s function between the source atr s and loca-
tion r is

g~ r̄ , r̄ s!5
i

4r~zs!
(

g
Ug~z!Ug~zs!H0

~1!~krgu r̄ s2 r̄ u!

5
i

4r~zs!
(

g
(

n850

`

bn8Ug~z!Ug~zs!cosn8~f2fs!

3H Jn8~krgr̄ !Hn8
~1!

~krgr̄ s!, ur u,ur su

Jn8~krgr̄ s!Hn8
~1!

~krgr̄ !, ur u.ur su
, ~13!

whereHn
(1) is thenth-order outgoing Hankel function of th

first kind. In the second line of Eq.~13!, Graf’s addition
theorem for Bessel functions has been used.29 Combining
Eqs.~7!, ~12!, and~13! into Eq. ~8! and performing the azi-
muthal integration yields nonzero terms only whenn856n.

The final result expresses the environmental pressure
rivative as a sum of one-dimensional depth integrals

]p~ r̄ i , r̄ s!

]apqn
5S S

S0
D F 2S0p

8r~zs!
(
f ,g

Zq f gU f~zi !Ug~zs!

3 (
n52`

`

Rpn f g~r s!e
2 infsG , ~14!
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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Zq f g[kref
2 E

0

` hq~z8!

r0~z8!
U f~z8!Ug~z8!dz8, ~15!

Rpn f g~r s!

5H Hn
~1!~krgr s!E

0

r s
rJn~kpr !Jn~krgr !H0

~1!~kr f r !dr

1Jn~krgr s!E
r s

`

rJn~kpr !Hn
~1!~krgr !H0

~1!~kr f r !dr
.

~16!

Note that while Eq.~15! is symmetric with respect tof andg,
Eq. ~16! is not. The first term of Eq.~16! represents contri-
butions to the spatial correlation from regions whereur u
,ur su, while the second term represents contributions fr
spatial regions whereur u.ur su; i.e., a ‘‘backscattering’’ re-
gime.

This integral is highly oscillatory, and the large
argument asymptotic expressions for the Bessel functi
cannot be used, because they are only valid wheneverkrgr
@n. However, Eq.~16! can be simplified in a manner analo
gous to previous work modeling ocean ambient noise
range-dependent environments.30 First, note that the triple
product within the integrand can be reduced to a two-te
integrand using a Bessel addition theorem

Jn~kpr !Bn~krgr !5
1

p E
0

p

dfB0~krpgr !cosnf, ~17a!

krpg
2 5krg

2 1kp
222krgkp cosf, ~17b!

whereBn is eitherJn or Hn
(1) . The range integral can then b

solved
l will

oarse
E
0

r s
rJ0~krpgr !H0

~1!~kr f r s!dr5
krpgr sH0

~1!~kr f r s!J1~krpgr s!2kr f r sH1
~1!~kr f r s!J0~krpgr s!22i /p

krpg
2 2kr f

2
,

~18!

E
r s

`

rH 0
~1!~krpgr !H0

~1!~kr f r s!dr52
krpgr sH0

~1!~kr f r s!H1
~1!~krpgr s!2kr f r sH1

~1!~kr f r s!H0
~1!~krpgr s!

krpg
2 2kr f

2
.

The constant 2i /p arises from evaluating the limit atr 50, using the small argument approximations forH1
(1) andJ0 . Since

kp is always real andkrg andkr f will have imaginary components due to bottom attenuation, the upper limit of the integra
always vanish, and the denominator of~18! will always be nonzero.

Combining Eqs.~16!–~18! creates a numerically stable bounded integral that can be solved with a relatively c
integration step

Rpn f g~r s!5
r s

p E
0

p cos@nf#df

krpg
2 2kr f

2 H krpgH0
~1!~kr f r s!@Hn

~1!~krgr s!J1~krpgr s!2H1
~1!~krpgr s!Jn~krgr s!#

2kr f H1
~1!~kr f r s!@Hn

~1!~krgr s!J0~krpgr s!2H0
~1!~krpgr s!Jn~krgr s!#

22iH n
~1!~krgr s!/p

J . ~19!
2827Aaron Thode: Three-dimensional adjoint normal modes
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For the special casekp50 ~range-independent perturbation!,
all azimuthal terms vanish except forn50, and Rpn f g re-
duces to a form similar to that obtained in Ref. 18

R00f g~r s!55 2
2i

p

H0
~1!~kr f r s!2H0

~1!~krgr s!

kr f
2 2krg

2
f Þg

ir sH1
~1!~kr f r s!

pkr f

f 5g

.

~20!

Equation ~19! requires a numerical integration overf for
each basis function desired. Practically it was found that
integrand need only be evaluated at around 1000 pts
achieve the needed precision. While the form of Eq.~19!
may be intuitively unenlightening, substituting the larg
argument asymptotic expansions for the Bessel functions
dicates that the integral should produce large values wh
ever kp5kr f 6krg , an observation that is verified in th
following section.

Note thatRpn f g is unequal toRpng f ; i.e., switching the
source and receiver does not produce the same environ
tal derivative, i.e., reciprocity does not hold. The reason
this asymmetry is that the perturbation origin of Eqs.~12!
and ~13! has been changed. Thus, swapping source and
ceiver creates a situation where the basis functions are
tered at the source, and not the receiver, as in the orig
problem.

III. NUMERICAL EXAMPLES

A. Modeled waveguide environment

Here, Eqs.~14!, ~15!, and ~19! are demonstrated in
sensitivity study using a simple waveguide environment.
omnidirectional 20-Hz source is placed in a isoveloc
waveguide 100 m deep, with a bottom speed of 1645 m
and standard values for a linear bottom gradient, density,
attenuation~Fig. 1, caption!. A bottom half-space with a
compressional speed of 2090 m/s begins 100 m below
water/sediment interface. At 20 Hz this waveguide suppo
six propagating modes. The source/receiver separation in
following examples has been set to either 1 or 3 km, with
source always placed at 50-m depth, and 48 receivers alig
in a vertical array with 2-m spacing.

B. Properties of range integral Rp nfg

The expression in Eq.~19! does not lend itself to physi
cal insight, so Fig. 2 plots the integral as a function of p
turbation wave numberkp andn, using values ofkr f andkrg

computed from the environment presented above. In the
subplotkr f 5krg , and in the bottom subplot they are diffe
ent. While the numerical computation of Eq.~19! is straight-
forward, some numerical instability issues arise for large
ders of n. While an asymptotic expansion of Eq.~19! for
high-ordern demonstrates that the integral must converge
zero asn grows large, the numerical evaluation becom
unstable and diverges from zero whenevern.kr f ur su. There-
fore, in all computations presented hereRpn f g is set to zero
whenevern satisfies the above inequality.
2828 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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The most obvious feature of both Figs. 2~a! and ~b! is
that Rpn f g only has significant values wheneverkr f 2krg

,kp,kr f 1krg . Sincekr f ;kref , the medium wave number
one can conclude that the propagating acoustic field is o
sensitive to perturbation spatial wavelengths that are la
than half of the medium acoustic wavelength, a result w
known from diffraction tomography,14,31 a procedure that
also makes extensive use of the Born approximation. For
case of an azimuthally symmetric perturbation compon
~n50!, one sees that wheneverkp is equal to the sum or
difference of a set of horizontal wave numbers,Rpn f g attains
a peak, indicating that a propagating acoustic field is es
cially sensitive to perturbation components with a spa
wave number that matches the sum or differences of pair
modal wave numbers. Azimuthally dependent perturbat
components~n.0! also display similar peaks, but they occ
at slightly different perturbation wave numbers, as can
seen for the case ofn520 in Fig. 2. The peak associated wi
the difference between modal wave numbers migrates tokp

slightly greater thankr f 2krg , while the peak associated wit
the sum of modal wave numbers shifts to a value sligh
lower thankr f 1krg .

As the range separationr s between source and receive
increases, these peaks become larger and narrower, ind
ing that at large ranges and for azisymmetric perturbatio
the acoustic field becomes sensitive only to perturbat

FIG. 2. Plot ofRpn f g as a function of perturbation wavelengthkp and azi-
muthal indexn, using modal wave numbers computed from the environm
described in Fig. 1, and for a source/receiver separation of 1 km. Solid
n50 ~azimuthally symmetric case!, dashed line,n520. Dotted line: contri-
bution of second term of Eq.~15! for n50, wherer .r s . Dash-dot line:
contribution of second term whenn520. ~a! kr f 5krg50.0806; ~b! kr f

50.0806,krg50.069 392.
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wavelengths quantized atkr f 6krg , a result obtained inde
pendently by another analysis.15 It is also interesting to sepa
rate the integral contributions into the first and second te
visible in Eq. ~16!. Whenevern50 contributions from re-
gions wherer .r s ~‘‘backscatter region’’! cannot be ne-
glected, but forn.0 this upper range integral contribution
become relatively small—i.e., 10% of the amplitude at t
peak in the figure shown.

FIG. 3. Examples of plane-wave perturbations that yield the same
dimensional range–depth perturbation in the vertical plane between aco
source and receiver. The white circle marks the receiving array loca
while the white cross marks the source location at 3-km horizontal range~a!
1.28-km wavelength perturbation oriented along they axis (fp590°); ~b!
426-m wavelength perturbation oriented along they axis.
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C. Effect of a horizontal plane-wave perturbation
on pressure derivative

As suggested by Eq.~11!, it should be straightforward to
compute the environmental pressure derivative with resp
to horizontally propagating plane wave. As illustrated in F
1~b!, one simply evaluates Eqs.~14!–~15! and ~19! for kp

5kpw andfs5fp , for all values ofn up tonmax5krfrs. The
results can then be combined via Eq.~11!.

In this section a set of horizontally propagating thre
dimensional plane waves has been computed, each one
the same values along the vertical cross section connec
the source and receiver shown in Fig. 1~a!, for a source–
range separation of 3 km. Two examples of these pertu
tions are plotted in Fig. 3, looking down onto the oce
surface from above. Two types of depth dependence
modeled: one where the perturbation has a constant valu
the water column, and is zero in the ocean bottom, and
where the perturbation has a constant value in the oc
bottom, but is zero in the ocean column. In other words,
horizontal cross sections visible in Fig. 3 would have t
same appearance if cut across a different depth, provided
depth is in the same medium~water or ocean bottom!.

These perturbations are cosine waves withfp590°.
Therefore, the perturbation values in the vertical plane
tween the source and receiver are always unity, a situa
that was checked via numerical synthesis of the pertur
tions. This particular perturbation set thus provides a sim
opportunity to explore the circumstances under which per
bation components from outside the vertical plane conn
ing the source and receiver cannot be neglected. In o
words, at what perturbation wavelength scale do horizon
refraction effects become non-negligible?

Figure 4 illustrates the magnitude and phase of the
vironmental pressure derivative across the vertical receiv
array as a function of the plane-wave perturbation num
kpw , for the case where the perturbation exists only in
water column. A perturbation wave number of 0 indicate

o-
tic

n,
a-
z

in
al
iver
a
n

tal

g
er.
FIG. 4. Effect of plane-wave water-column perturb
tions on environmental pressure derivative for a 20-H
field with source level of 120 dBre: 1 mPa @ 1 m,
derived from source and receiver geometries shown
Figs. 1 and 3. All perturbations would appear identic
in a 2D range–depth slice between source and rece
array. ~a! Magnitude in dB of pressure derivative as
function of receiving element depth and perturbatio
wave number, relative to the maximum environmen
pressure derivative of 1.1231027 Pa/~m/s) attained by
the azimuthally symmetric~‘‘range-independent’’! re-
sult at thex-axis origin. The right limit of thex axis
corresponds to a 62-m wavelength.~b! Phase of the
environmental derivative, relative to the top receivin
hydrophone, as a function of perturbation wave numb
2829Aaron Thode: Three-dimensional adjoint normal modes
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FIG. 5. Same as Fig. 4, but with the plane-wave pert
bation restricted to the bottom half-space. Environme
tal derivative magnitude is displayed in dB relative
the maximum environmental pressure derivative
6.3131028 Pa/~m/s).
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constant perturbation value over all space~range-
independent perturbation!. For large wavelengths~small per-
turbation wave numbers! the environmental pressure deriv
tive is very similar to the range-independent case,
starting at perturbation wavelengths of about 400 m~5 wave-
lengths of a 20-Hz signal! the phase and magnitude of th
derivative change markedly, with a noticeable trend
smaller magnitudes at higher perturbation wavelengths.
ure 5 illustrates a similar computation, but with the pert
bation restricted to the ocean bottom. A similar result is se
in that the environmental pressure derivative changes m
edly once the perturbation wavelength decreases below
m. An actual plane-wave ocean perturbation, such as th
generated by internal waves,27 would not generate a uniform
perturbation with depth, but is generally restricted to a c
tain portion of the water column. Thus, the horizontal refra
tion effects produced by realistic plane-wave perturbatio
which would be a simple extension of the computatio
shown here, may not be as large.

D. Effect of a compact cylindrical perturbation
on pressure derivative

A second three-dimensional perturbation that can
evaluated analytically is a vertical cylinder with a circul
horizontal cross section, which provides a convenient me
for investigating the effect of a localized perturbation on t
modal field. The perturbation might be considered a v
simple model of an eddy.19,21,32The geometry of the cylin-
drical perturbation is illustrated in Fig. 6, from both a to
view ~a! and a perspective view~b!. As with the plane-wave
perturbation, the perturbation can be restricted to the w
column, below the ocean bottom, or both.

By exploiting Graf’s addition theorem one can deri
the basis coefficients@Eq. ~6b!# needed to construct a circl
with radiusa displaced from the receiver origin by a distan
r shift and by a rotation anglefshift from thex axis @Fig. 6~a!#,
for the basis functions in Eq.~7!
2830 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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apqn5
aJ1~kpa!

kp
Jn~kpr shift!e

2 infshift. ~21!

Thus, once a set of derivatives with respect to a se
basis function perturbations has been computed, it is strai
forward to compute environmental derivatives for cylindric
perturbations of various diameters at any location.

To illustrate Eq.~21!, two cylindrical perturbations with
respective radii of 150 and 600 m were inserted into
waveguide environment of Fig. 1, with 1-km horizont
range between the vertical receiving array and perturba
center, and with the 50-m-deep acoustic source remainin
3-km range. To approximate the continuous integral impl
by Eq. ~8!, kp was evaluated at 512 points between 0 a
0.251 m21, or three times the medium wave number. Th
sampling provided sufficient spacing between the discr
values ofkp so that any artifacts generated appear at ran
much greater than the source ranger s . A convergence tes
determined that a value ofn560 was sufficient to reproduc
the perturbation at these ranges.

The question of the sensitivity of the environmen
pressure derivative to a localized out-of-plane perturbat

FIG. 6. Geometry of offset cylindrical perturbation:~a! top view; ~b! per-
spective view.
Aaron Thode: Three-dimensional adjoint normal modes



el

in

-
-

FIG. 7. Effect of a cylindrical~‘‘eddy’’ ! perturbation in
water column on 20-Hz acoustic field with source lev
of 120 dBre: 1 mPa @ 1 m, as a function of perturba-
tion azimuthfshift . The center of the perturbationr shift

lies 1 km from the origin.~a! a5150-m radius pertur-
bation: environmental pressure derivative magnitude
dB re: the maximum magnitude of 1.58
31028 Pa/~m/s); and~b! relative phase of environmen
tal derivative;~c! a5600-m radius perturbation: envi
ronmental pressure derivative magnitude in dBre: the
maximum magnitude of 7.9431028 Pa/~m/s) and~d!
relative phase.
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can be explored by systematically changing the rotat
anglefshift in Eq. ~21!, thus rotating the perturbation aroun
the origin. Beyond some geometric anglefextent

5sin21(a/rshift) the physical boundaries of the perturbati
will no longer intersect the vertical plane intersecting t
source and receiver array.

Figures 7 and 8 show a plot similar to Figs. 4 and 5,
that the magnitude and relative phases of the environme
pressure derivative of a 20-Hz signal are shown across
vertical receiving array. This time, however, the horizon
axis represents the rotation anglefshift , and the vertical
dashed lines markfextent. The color map scale has bee
normalized and plotted on a log scale, so that the maxim
magnitude of the environmental pressure derivative ac
the receiving array whenfshift50 has been defined as 0 dB
J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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This value will be subsequently referred to as the ‘‘in-pla
maximum.’’

Figure 7 shows the effect of a cylindrical perturbatio
placed in the water column only, with the top row showin
the effect of the 150-m radius perturbation, and the bott
row the effect of the 600-m perturbation. The figures sh
that the environmental pressure derivative still exists e
when the perturbations lie completely outside the verti
source–receiver plane (fshift.fextent), but with a magnitude
at least 8 dB less than the in-plane maximum. The sma
the perturbation radius, the larger the relative magnitudes
out-of-plane results tend to be. This observation is consis
with the expectation that the greater curvature of small-ra
perturbations should have relatively larger horizontal refr
tion effects.
t-

-

re
FIG. 8. Effect of cylindrical perturbation in ocean bo
tom on 20-Hz acoustic field, as a function offshift , for
r shift51 km. ~a! a5150-m radius perturbation: envi
ronmental pressure derivative magnitude in dBre: the
maximum magnitude of 6.3131029 Pa/~m/s); and~b!
relative phase of environmental derivative;~c! a
5600-m radius perturbation: environmental pressu
derivative magnitude in dBre: the maximum magni-
tude of 2.2431028 Pa/~m/s) and~d! relative phase.
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Figure 8 shows an identical situation, except with t
cylindrical perturbations existing only beneath the ocean b
tom. As with Fig. 7, derivatives with respect to out-of-pla
perturbations exist, with larger relative magnitudes produ
by perturbations with smaller radii. Furthermore, the out-
plane results can be non-negligible when compared with
in-plane maximum. For example, in subplot~a! a 150-m ra-
dius perturbation produces environmental pressure der
tives that are within 10 dB of the in-plane maximum out
rotation angles of 15 deg, if the receiver depth is 50 m. T
angle is nearly twice the value offextent.

The results of this simple sensitivity study on this pa
ticular deployment configuration indicate that while negle
ing out-of-plane refraction effects may be a safe assump
for certain cylindrical perturbations in the water column,
may not be a valid assumption for small-radii perturbatio
in the ocean bottom.

As the environmental pressure field can be interprete
a field ‘‘scattered’’ from an infinitesimal perturbation via th
Born approximation, some further physical insight into the
results can be obtained by computing how an incident aco
tic plane wave diffracts from an aperture with the same
eral dimensions as the perturbation.33,34 As a normal mode
consists of two plane waves propagating nearly horizonta
the assumption of an incident plane wave in the diffract
analysis is valid. For a perturbation radius of 600 m, a po
2-km range from the perturbation center lies within t
Fresnel diffraction region (r'a1/3Aka/251700 m).14 Treat-
ing the perturbation as a rectangular aperture 1.2 km w
an analysis of the resulting Fresnel diffraction pattern usin
Cornu spiral finds that the boundaries of the geome
shadow are quite sharp. Thus, for the 600-m radius pertu
tion the apparent angular half-width of the diffracted fie
would be very close to the geometric half-width of 36° f
fextent at this range, as was found to be the case.

By contrast, a perturbation radius of 150 m places
2-km range receiver location in the Fraunhofer regionr
.4a2/l51200 m), and diffraction effects are found to b
prominent. Given a total perturbation ‘‘aperture’’ of 300 m
the azimuthal angle at which the diffraction mainlobe atta
its first null is fnull5l/2a514.4° from the mainlobe cente
close to the angular extent of the observed pressure de
tives in Figs. 7~a! and 8~a!, and nearly twice as large as th
geometrical anglefextent. Thus, the predictions of simpl
plane-wave diffraction theory are consistent with the res
from the expressions derived here.

IV. CONCLUSION

A semianalytic set of expressions has been derived
the derivative of an acoustic pressure field in a laterally
mogeneous waveguide, with respect to an arbitrary th
dimensional refractive index perturbation anywhere with
that waveguide, using a normal-mode formulation. The
pressions, which were derived using an adjoint Green’s fu
tion formalism, require two sets of one-dimensional nume
cal integrations over a set of spatial basis functions. O
these integrations have been computed, a wide variet
perturbations can be rapidly synthesized. The extensio
2832 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004
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these expressions to density perturbations, although not
sented here, should follow a similar route, although the s
tial gradient of the Green’s function, and thus the gradien
Eqs.~12! and ~13!, would be required.18

These expressions have been demonstrated in sim
sensitivity studies that illustrate how both plane-wave a
cylindrical perturbations can influence the received press
field, even when the perturbation does not physically int
sect the vertical plane connecting the source and rece
Whether realistic ocean perturbations produce similar out
plane effects has been a question of practi
interest.19,23–25,35,36Many realistic perturbations, especial
those of internal linear waves,27 can be expressed as straigh
forward combinations of the basis functions of Eq.~7!, so
these expressions may be useful in more sophisticated s
tivity studies.

In practical terms the expressions used here could
used to check whether significant horizontal refraction
fects might be expected under various experimental dep
ment geometries, before applying tomographic algorith
that neglect out-of-plane refraction effects. These expr
sions might also serve as benchmarks for three-dimensi
propagation codes, such as a three-dimensional parab
equation code.37,38

These expressions have some theoretical interest as
as they can be used to compute the Cramer–Rao bound
environmental parameters related to three-dimensional st
tures in an ocean waveguide, a rigorous approach for e
mating the sensitivity of an acoustic field to a perturbatio
For example, the minimum variance of internal wave sp
trum estimates extracted from acoustic data could be der
as a function of input sample size and signal-to-noise ra
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