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The derivative of a waveguide acoustic field with respect
to a three-dimensional sound speed perturbation®

Aaron Thode
Marine Physical Laboratory, Scripps Institution of Oceanography, San Diego, California 92093-0205

(Received 11 July 2003; accepted for publication 15 March 2004

Semianalytic expressions are derived for the first-order derivative of a pressure field in a laterally
homogeneous waveguide, with respect to an arbitrary three-dimensional refractive index
perturbation in either the water column or ocean bottom. These expressions for the “environmental
derivative,” derived using an adjoint method, require a three-dimensional spatial correlation
between two Green'’s functions, weighted by an environmental parameter basis function, with the
Green'’s functions expressed in terms of normal modes. When a particular set of orthogonal spatial
basis functions is chosen, the three-dimensional spatial integral can be converted into a set of
one-dimensional integrations over depth and azimuth. The use of the orthogonal basis permits
environmental derivatives to be computed for an arbitrary sound-speed perturbation. To illustrate the
formulas, a simple sensitivity study is presented that explores under what circumstances
three-dimensional plane-wave and cylindrical perturbations produce non-negligible horizontal
refraction effects, for a fixed source/receiver geometry. Other potential applications of these
formulas include benchmarking three-dimensional propagation codes, and computing Cramer—Rao
bounds for three-dimensional environmental parameter estimates, including internal wave
components. ©2004 Acoustical Society of Americ4aDOI: 10.1121/1.1736651

PACS numbers: 43.30.Pc; 43.30.BiyLS] Pages: 2824-2833

I. INTRODUCTION spect to an environmental perturbation can be derived by
spatially correlating the two solutions over all space,

The full-field inversion of ocean acoustic data for water—Wei hted by the environmental perturbation. The resultin
column sound speed and bottom geoacoustic properties r?— 9 y - P " . ng
rmulas are very similar to those used in diffraction

quires adequate understanding of the sensitivity of a mOddet&(;mography‘?'“

acoustic field to various kinds of environmental perturba- N . .
The application of these expressions to acoustic propa-

tions. If the field is relatively insensitive to a particular pa- . " " ide has b fair] Eoadioi
rameter, then attempts to invert the parameter will yield esg"’mOn In a waveguide has been fairly rec joint para-

timates with large variances and biases for a given signal-tot-)OI'(_: equation(PE) models h.ave. been used t(_) esUmate the
additive-noise ratiflSANR). One quantitative measure of environmental pressure derivatives of two-dimensional re-
this sensitivity is the derivative of an acoustic field with re- fractive index perturbations in a vertical plane connecting an

. . 7
spect to an environmental parameter, or “environmentafcoustic source and receivér. More recently, a normal-
pressure derivative.” More rigorous measures of the minj-mode formulation of the acoustic pressure field was com-

mum possible variance and bias of a parameter estimat@,i“ed with adjoint techniques to derive analytical expres-
including the Cramer—Rao lower bout@RLB)>? and re-  SIONS for first- through third-order environmental pressure
lated higher-order tensor teris still require environmental  derivatives of laterally homogeneo(tepth-dependent only
pressure derivatives. Whenever actual acoustic data afound speed and density perturbations in a laterally homoge-
available to be compared with a model output, environmental€ous waveguidé: o o
pressure derivatives can also be used to compute the gradient !n Sec. Il the adjoint normal-mode formulation intro-
of the local error surface. duced in Ref. 18 is extended to incorporate environmental
Environmental pressure derivatives are typically esti-Pressure derivatives with respect to an arbitrary three-
mated using a finite-difference numerical scheme involvingdimensional perturbation in a laterally homogeneous wave-
small environmental perturbations, which can lead to stabilguide, a situation that would normally require finite-
ity and convergence problems. An alternate approach thatifference computations of a three-dimensional coupled
has been often employed in the control thebry, mode or parabolic equation code. The contribution of the
geophysics 't and physical oceanograpfliterature is the ~ paper is to illustrate how, for the restricted geometry of an
“adjoint” or “costate” Green’s function technique. Several acoustic waveguide, the three-dimensional spatial integration
independent derivations of this metiiotf have shown that required by the adjoint method can be analytically simplified
by solving two forward problems in the same propagationinto a bounded two-dimensional integral, which can be
environment, the environmental pressure derivative with reevaluated numerically with relatively coarse grid sizes. The
simplification is attained by using a normal-mode formula-
dportions of this work have been presented at the Oceans 2003 Conferenggn for the Green's f_unctlon, rela.ted in spirit to recent work
in San Diego, CA. on a Born scatterer in a waveguitfe.
PElectronic mail: thode@mpl.ucsd.edu To illustrate one application of these formulas, Sec. llI
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a)

C,=1645 mls, attenuation 0.25 dBI/,
gradient 1 (mis)im

Cr0c=2090 mis

Here, ks IS a spatially invariant reference medium wave
number, andy(r,w)=k(r)?/k%=ci/c(r)? is the spatially
dependent refractive index squared that, along with the spa-
tially dependent densitg(r), defines the propagation envi-
ronment. The linear operatar, provides a shorthand way of
writing this differential equation.

This refractive-index term can be written as the sum of a
laterally homogeneougbut potentially depth-dependent

YR |7—75’ _ “background” square refractive indeyx,, and a perturbative
k_’_"'/lf’““»] ¥, expansion based on anfinitesimalnondimensional sound-
i i speed perturbation magnitude
"""" e tetutniututuintatiate bl s===mecc=--» X
=0 ’ n(N)=no(2) +en,(r)+:--, )

FIG. 1. Geometry used to illustrate adjoint formulé®.A 48-element ver-  where e=4Clcef, With Sc being a compressional sound-
tical array, with 2-m spacing and first element at 1-m depth, is positioned i ; ; ; = ;
a 100-m isovelocity waveguide with bottom speed of 1645 m/s, bottomrbpeed magthd.e Hm/s). The qugnutyns (7:7]/(98|€:0 IS an
speed gradient of 1 m/s per m, density 1.3 g/cc, and attenuation of 0_29rder—o_ne t_erm in the pertwbat“./e eXpanS'On3 and represents
dB/wavelength. A rock half-space lies 100 m below the sediment/water inthe derivative of a three-dimensional square index of refrac-
terface, with compressional speed of 2090 m/s. The acoustic source is pgron distribution with respect to the sound-speed perturbation
sitioned at 3-km horizontal range at 50-m depth. The bottom density i : ; .
uniform in both the sediment and half-spaga. View of geometry looking Smagmtude, and W,'” b,e S?bsequently .referred to as the “re
down onto the ocean. The receiver is placed at the coordinate origin. Adractive index de”_Va“_Ve- |f_the functlona_l dependence _Of
example of a horizontal plane wave with wave numkgy and propagation ~ the square-refractive index is such that higher-order deriva-
azimuth ¢, is shown. tives are both physically relevant and non-negligible, .
can be expanded to higher-order terms.
presents a simple sensitivity study of horizontal refraction  The Green’s functiomy(r,rs) of the perturbed environ-
effects produced by plane-wave and compact cylindrical perment can be expressed as a similar expansion
turbations. A body of literature extending over two decades
has examined the issue of horizontal refraction through
eddied®-?2and other featuréd >°in detail; the motivation of

Sec. Ill is not to extend these studies, but to illustrate hOV\funC

the formulas derived here can quickly identify situations . S . .

. . . S tude, and is assumed to be of order one in this series solution
where horizontal refraction might be a non-negligible Issue, . all Having expressed the new Green’s function as an
given a particular source/receivgr geometry. The .first ex'expansion of the nondimensional a solution can now be
ample presented here uses horizontally propagating plaq%und for the Green’s function derivativgg, . The final de-
waves as a simple model for internal waves, while the sec- )

: L . Tivative formula can then be expressed in terms of the di-
ond example uses compact vertical cylindrical perturbations

as a model for small eddies or gyres mensional differentiabe.
gyres. A rigorous derivation of howg, can be linearly related

to 7, is reviewed elsewhere’*8however, a brief heuristic

g(r,rg)=go(r,re) +eg,+---. (€))

Here, g,=dglde|,, is the derivative of the Green's
tion with respect to the environmental parameter magni-

Il. THEORY argument can be derived from the Born approximaftdn
A. General adjoint expression for environmental — —— 5, —
derivative g(ri,re)=~do(ri.re) +kiemp(ri

Density perturbations are not discussed in this particular XJ f f
paper, but their incorporation should follow similar lines of
development as below. However, the spatial gradient of the v
Green’s function would be required as well as the Green’s (4)
function itself'®

A Green’s functiong(r,ry,w) describes an acoustic By rearranging this expression, dividing byand taking the
field of frequencyw generated at location, that propagates limit as e—0, the approximate equality of E¢4) converges
through an unknown environment to locationThe explicit  to anexactsolution, which, when multiplied by a appropriate
dependence of on frequency is now dropped. The source source strength and converted to dimensional units, becomes
and receiver positions are expressed in terms of cylindricahe acoustic adjoint equation for the derivative of acoustic
coordinates, with the receiverslying on the origin, and the pressure with respect to compressional speed magnitude
source placed along theaxis, so thatp,=0 (Fig. 1). The N
propagation of the field is governed by the density-dependent  9P(Ti,fs) _

—go(rry)
{8ﬂa(f)}Wgo(r,rs) dr.

S\ ., —
Sokrefp(ri)

inhomogeneous Helmholtz equation Jc Sy
I T —g(rr)
P(f)V'<ﬁVg(f1rs))+kref77(f)g(f,fs)——5(r—fs)- " Xf JJ[%(V)WQ(HS) dr. (5
\Y
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Here, Sy=pw?V,, with V, being a volume injection suffi- 1 (27

cient to generate a pressure level of 1 P4 a1 range(120 a(kp%CI)Eaqu:Ef e'"¢de

dBre: 1 uPa @ 1 msource level This choice ofV, sets 0

So=1 Pa-m, whileSis the actual source level of the pressure = °

field in Pa-m. From Eq(5) onwards the environmental pres- x jo dZJO 7¢(1,2) 179(2)J,(Kpr )r dr.

sure derivative will be written with respect to sound-speed

magnitude in dimensional units of m/s, and the zero sub- (6b)
script for the unperturbed Green’s function is dropped, withHere,J, is a Bessel function of the first kind of order The

the understanding that the term “Green’s function” in subse-funcuons 74 are a set o orthonormal vertical basis func-
quent discussion will always refer to thenperturbed tions, such as sine and cosine waves, empirical orthogonal

Green’s function. functions(EOF9 derived directly from data, acoustic normal
Two comments must be made concerning the validitymodes, or even internal wave modal functiéhs.
and practicality of Eq(5). First, even though it was derived Equation(6) suggests that if a set of “fundamental” ba-

via the Born approximation, Ed5) is anexactexpression sjs functions
for the environmental derivative, as more complete deriva- — Civg
tions demonstrate. However, iffmite perturbation changes Tpaul1,2)=7mq(2)e" "3, (k|r]), ()

the sound-speed magnitude by an amodat Eq. (5) can s inserted into Eq(5) for 7,(r) and evaluated, the result
only provide anapproximateestimate of the perturbed pres- would provide a general solution for the environmental pres-
sure fleﬁ_ in the form of p(r;,ro=~po(ri.re sure derivative

+oc([dp(ri,rg)]/dc), and only if 5c is extremely small. — -

Thus, Eq.(5) would be of limited use for full-field inversion 99(Ti s) Z °°a 9rirs)

procedures, without further information about higher-order ¢ o Praacyg, PP
derivatives ofp like p..= 9°p/dc?|,_o, Which can be shown

()

to correspond to higher-order terms in the Born‘)79(r"r E(E) Sokrzefp(r_i)f f f nq(Z)e_i”¢JV(kpr)
approximatior. 9Cpqu So
Second, while the adjoint expression in E§). does not v
require a finite differencing scheme, it does so at the cost of g(r )
requiring a spatial integration of the Green’s functions, p( 3 g(r,rg) |d3r.

which must be performed numerically under general geom-
etries, e.g., Ref 8. Without further simplification the evalua- For the special case of the horizontally propagating
tion of Eg. (5) faces the same issues with computationalcomplex plane wave illustrated in Fig(k), with horizontal
speed and convergence as finite-difference approaches. Tiave numbekp,, and propagation directios, with respect
key result of this paper is that the particular geometry of ao thex axis, the basis function decomposition has the form
laterally homogeneous waveguide permits this integration to - .

) ) e_'kpw": e—lkpwr Cos(¢—¢p)
be reduced analytically to a numerically stable two-
dimensional intergal over azimuth and depth. Furthermore, it
will _be shown how an appropriate choice of refractive index = Z B(—1) cogv(p—p) ]I, (Kowl ), (9)
basis functions permits one to compute a large number of v=0

environmental derivatives with only a single set of computa~yhere g, =2, except for,= 1. Thus, from Eq(6b)
tions.

o O(kp—ky) (=
gy (—1) e ) f 74(2)dz (10
Kp 0
B. Orthogonal decomposition of refractive index and Eq.(8) becomes
perturbation
r?g r, ,

E f 7q(2)0z

A standard technique in linear inversion theory is to
model perturbations as a linear sum of basis functfns,,
7e(r) =Zpapnp(r). gg(r )

In a similar spirit, in cylindrical coordinates the refrac- X Z (—i)evbp— " (11)
tive index derivative can be expressed as a sum of a set of veTE v

orthogonal basis functions, exploiting an orthogonality rela-  a|| the examples shown in this paper use a single verti-

(? Cplane -wave

IC(kpya

tionship between Bessel functions of the first kihd cal basis function, s@ is restricted to 1.
n(12)=2, no(z) 2 e C. Adjoint solution for basis function in a constant-
q= == depth waveguide

o Solving the adjoint Eq(8) requires two Green’s func-
X fo a(kp,v,0)J,(Kpr)kp dkp (68 tions, one describing propagation from the sourgdo an
arbitrary pointr, and one describing propagation from the
with receiverr; to the same point [see Fig. 1b)].
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U¢(z")Uq4(z")dZ', (15

In the geophysics community the Green’s functions are = 74(2')
typically computed numerically over a set of grid points, andZqtg= krefJ p(—zf)
the subsequent spatial correlation is achieved by numerical 0
integration over the grid. Because of computational costs the

numerical integration is often restricted to a 2D plane incor-R (ro)

porating the source and receifef However, for the case of pvights

a laterally homogeneous waveguide the Green'’s function can (1) s 1
be expressed as a sum of normal mode§z), which per- H. (Kigrs) fo rJu(kpr)Ju(kegr)Ho ' (Kpsr)dr
mits some analytical simplification. To begin, the Green's = " .
function between a locationand receiver location centered +JV(krgrs)J rJ, (ko H P (kg HE (kg1 )dr
at the origin is s
(16)
g(r.ry) p(z. doz) 2 Vi@UiH (kD (12
and the Green’s function between the sourcesand loca- Note thaF while Eq(1_5) is symmetric with respect tbandg,.
tion r is Eq. (16) is not The first term of Eq(16) represents contri-

butions to the spatial correlation from regions whérg
<|rg, while the second term represents contributions from

(1)
g(r.ro= 7 (z R 2, Ug(2)Ug(z9 HG (kegT 5= TT) spatial regions whergr|>|r4; i.e., a “backscattering” re

gime.
[ , This integral is highly oscillatory, and the large-
4P(Zs) 2 E BUg(2)Ug(z5)COSV (6= bs) argument asymptotic expressions for the Bessel functions
o . cannot be used, because they are only valid whenleyer
JV,(krgr)Hv, (kegrs), [r[<|rg| >p. However, Eq(16) can be simplified in a manner analo-
— — ) (13 ous to previous work modeling ocean ambient noise in
Jv’(krgrs)HS,J;)(krgr)i |I’|>|I’S| g P 9

range-dependent environmentsFirst, note that the triple
whereH(Y is the sth-order outgoing Hankel function of the product within the integrand can be reduced to a two-term
first kind. In the second line of Eql13), Graf’s addition integrand using a Bessel addition theorem
theorem for Bessel functions has been uSe@ombining
Eqgs.(7), (12), and(13) into Eqg.(8) and performing the azi-
muthal integration yields nonzero terms only whe&r- = v.

The final result expresses the environmental pressure de-
rivative as a sum of one-dimensional depth integrals

o

X z vafg(rs)e_imﬁsy
yp=—0x

1 (=
J,(Kor)B,(Kgr) = ;fo d@Bg(Krpgr )COSV P, (173

ap(ri,ry)

— 2 Z41gU(2)Ug(25) kZog= K&+ k5 — 2k, gk, COS, (17b)
pqv

8p(zs) T,

(14  WhereB, is eitherJ, or H(Y . The range integral can then be
solved

krpgrsHBl)(krfrs)‘]l(krpgrs) —Kiil's H(l)(krfrs)JO(krpgrs) —2ilm

2 7
K2y~ K

I's
f r'Jo(krpgr)Hg)l)(krfrs)dr:
0

(18

Kepgl sHE (Ker ) HP (Kepgl o) = KegF sH M (Kesr O HEY (K pgl's)

2 2
krpg krf

f rHE)l)(krpgr)HE)l)(krfrs)dr: -
I's
The constant @ 7 arises from evaluating the limit at=0, using the small argument approximations Iﬂflr” andJ,. Since
kp is always real an#t,, andk,; will have imaginary components due to bottom attenuation, the upper limit of the integral will
always vanish, and the denominator(@8) will always be nonzero.

Combining Eqs.(16)—(18) creates a numerically stable bounded integral that can be solved with a relatively coarse

integration step

krngO (krfr )[H (krgrs)J ( rpgrs) H (krpg s)Jv(krgrs)]

cog vplde
Routg(r s)—w f 4 ke HEP (ke r ) TH Y (el ) Jo(Krpgl ) —HEY (Kepgl ) 3,(Keg o)1 (19
© KooKt | i kyroim
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For the special cade,=0 (range-independent perturbatjpn a)

2 T T T - V=0

all azimuthal terms vanish except for=0, and R4 re- 10 —- v=20
.. . . >r contribution, v=0

duces to a form similar to that obtained in Ref. 18 ' contribution, v=20

Ly 1 10

2i Hg)(krfrs)_Hg)(krgrs) fig
2 2 o
Roora(Ts) = ™ krf_krg f10°L 1 s
oofgll's ) : e T E A _ e
IrSHl (krer) f: :{! ‘l |lvn,"“ A:Il"u‘”. ,A‘J Te el et . A’\n"‘wl“ .
e g w0 i S Lt T T T T it} "‘U"rl""“
R :
(20 a
Equation (19) requires a numerical integration over for 102 : : : :
. . . . . 0.05 0.1 0.15 0.2 0.26

each basis function desired. Practically it was found that the kp (m™)

integrand need only be evaluated at around 1000 pts tc
achieve the needed precision. While the form of ELp)
may be intuitively unenlightening, substituting the large-
argument asymptotic expansions for the Bessel functions in-
dicates that the integral should produce large values when
ever k,=k;t*K,4, an observation that is verified in the
following section.

Note thatR,,4 is unequal toR,, 4 ;

\\ Wt
'“'“‘"'l,

i.e., switching the

My B L
e fn' AR
ks V'u HL‘ w ~ -

source and receiver does not produce the same environmer Lo SR

|I“ﬂ|

. . ; . . L Syl “_5"\! l|,||| ulln,
tal derivative, i.e., reciprocity does not hold. The reason for 10 .” I \.P
this asymmetry is that the perturbation origin of E¢k2) : '
an_d (13) has been_ cha_nged. Thus, swap_ping source and re 107 .08 o1 o5 02 0.25
ceiver creates a situation where the basis functions are cen kp (m™)

tered at the source, and not the receiver, as in the original
problem FIG. 2. Plot opr,,fg as a function of perturbation wavelengtp and azi-

muthal indexy, using modal wave numbers computed from the environment
described in Fig. 1, and for a source/receiver separation of 1 km. Solid line:
v=0 (azimuthally symmetric cagedashed linep=20. Dotted line: contri-
bution of second term of Eq15) for »=0, wherer >rg. Dash-dot line:
contribution of second term when=20. (8 k;=k;y=0.0806; (b) ki
=0.0806,k,;=0.069 392.

IIl. NUMERICAL EXAMPLES
A. Modeled waveguide environment

Here, Eqgs.(14), (15), and (19) are demonstrated in a
sensitivity study using a simple waveguide environment. An
omnidirectional 20-Hz source is placed in a isovelocity The most obvious feature of both FiggaRand (b) is
waveguide 100 m deep, with a bottom speed of 1645 m/ghat R,y only has significant values whenevky; —kq
and standard values for a linear bottom gradient, density, ang k,<K; + k4. Sincek;;~K¢, the medium wave number,
attenuation(Fig. 1, caption. A bottom half-space with a one can conclude that the propagating acoustic field is only
compressional speed of 2090 m/s begins 100 m below thgensitive to perturbation spatial wavelengths that are larger
water/sediment interface. At 20 Hz this waveguide supportshan half of the medium acoustic wavelength, a result well-
six propagating modes. The source/receiver separation in theown from diffraction tomograph¥#3! a procedure that
following examples has been set to either 1 or 3 km, with thealso makes extensive use of the Born approximation. For the
source always placed at 50-m depth, and 48 receivers alignedise of an azimuthally symmetric perturbation component
in a vertical array with 2-m spacing. (v=0), one sees that whenevgy is equal to the sum or
difference of a set of horizontal wave numbeRs, 4 attains
a peak, indicating that a propagating acoustic field is espe-
cially sensitive to perturbation components with a spatial

The expression in Eq19) does not lend itself to physi- wave number that matches the sum or differences of pairs of
cal insight, so Fig. 2 plots the integral as a function of per-modal wave numbers. Azimuthally dependent perturbation
turbation wave numbek, andv, using values ok ; andkq componentgr>0) also display similar peaks, but they occur
computed from the environment presented above. In the topt slightly different perturbation wave numbers, as can be
subplotk,;=k4, and in the bottom subplot they are differ- seen for the case of=20 in Fig. 2. The peak associated with

B. Properties of range integral R,

ent. While the numerical computation of H49) is straight-

forward, some numerical instability issues arise for large orslightly greater thak,; —

ders of v. While an asymptotic expansion of E{L9) for

the difference between modal wave numbers migratefp a
kg, While the peak associated with
the sum of modal wave numbers shifts to a value slightly

high-orderv demonstrates that the integral must converge tdower thank, + K .

zero asv grows large, the numerical evaluation becomes

unstable and diverges from zero whenewerk|r|. There-
fore, in all computations presented hé®g, 4 is set to zero
wheneverv satisfies the above inequality.

2828 J. Acoust. Soc. Am., Vol. 115, No. 6, June 2004

As the range separatian between source and receiver
increases, these peaks become larger and narrower, indicat-
ing that at large ranges and for azisymmetric perturbations,
the acoustic field becomes sensitive only to perturbation
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C. Effect of a horizontal plane-wave perturbation
on pressure derivative

As suggested by E@11), it should be straightforward to
compute the environmental pressure derivative with respect
to horizontally propagating plane wave. As illustrated in Fig.
1(b), one simply evaluates Eq¢l4)—(15) and (19) for k,
=kpw and ¢s= ¢, for all values ofv up to vy, =kir's. The

o : ‘ results can then be combined via Edjl).
=1900 ¢ 0 o 4000 In this section a set of horizontally propagating three-
dimensional plane waves has been computed, each one with
the same values along the vertical cross section connecting
the source and receiver shown in Figa)l for a source—
range separation of 3 km. Two examples of these perturba-
tions are plotted in Fig. 3, looking down onto the ocean
surface from above. Two types of depth dependence are
modeled: one where the perturbation has a constant value in
the water column, and is zero in the ocean bottom, and one
where the perturbation has a constant value in the ocean
bottom, but is zero in the ocean column. In other words, the
0 1000 2000 3000 4000 horizontal cross sections visible in Fig. 3 would have the
x (m) same appearance if cut across a different depth, provided that
depth is in the same mediutwater or ocean bottom
These perturbations are cosine waves wih=90°.
FIG. 3. Examples of plane-wave perturbations that yield the same twoTherefore, the perturbation values in the vertical plane be-
dimensionzl rang_e—de%t]h pelr]t_tjrba_tioln in thi veﬂr1tical plgn_e betweenI acti_usttween the source and receiver are always unity, a situation
e e e SIle ke e e 1) soeel*that was checked via numerical synthesis of the perturba-
1.28-km wavelength perturbation oriented along yrexis (¢,=90°); (b) ~ tIONS. This particular perturbation set thus provides a simple
426-m wavelength perturbation oriented along yheis. opportunity to explore the circumstances under which pertur-
bation components from outside the vertical plane connect-
wavelengths quantized &;+ k4, a result obtained inde- ing the source and receiver cannot be neglected. In other
pendently by another analysilt is also interesting to sepa- words, at what perturbation wavelength scale do horizontal
rate the integral contributions into the first and second termsefraction effects become non-negligible?
visible in Eq. (16). Wheneverv=0 contributions from re- Figure 4 illustrates the magnitude and phase of the en-
gions wherer>r, (“backscatter regionj cannot be ne- vironmental pressure derivative across the vertical receiving
glected, but forr>0 this upper range integral contributions array as a function of the plane-wave perturbation number
become relatively small—i.e., 10% of the amplitude at thek,,,, for the case where the perturbation exists only in the
peak in the figure shown. water column. A perturbation wave number of 0 indicates a

y (m)

y (m)

-0.8 -0.6 -0.4 -0.2 L] 0.2 0.4 0.6 0.8 1

W

a) b) phase (rad) relative to top hydrophone

90|
80
FIG. 4. Effect of plane-wave water-column perturba-

70 tions on environmental pressure derivative for a 20-Hz
- - field with source level of 120 dBe: 1 uPa @ 1 m,
E E 60 derived from source and receiver geometries shown in
'*E_ '55_ Figs. 1 and 3. All perturbations would appear identical
3 3§50 in a 2D range—depth slice between source and receiver
§ § array. (@) Magnitude in dB of pressure derivative as a
g 0 g 40 function of receiving element depth and perturbation

wave number, relative to the maximum environmental
pressure derivative of 1.%210° 7 Pa(m/s) attained by
the azimuthally symmetri¢“range-independent)’ re-
sult at thex-axis origin. The right limit of thex axis
corresponds to a 62-m wavelengttn) Phase of the
environmental derivative, relative to the top receiving
hydrophone, as a function of perturbation wave number.

[
o
@
o
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002 004 0.06 0.08 002 004 0.06 0.08
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a) b) phase (rad) relative to top hydrophone
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FIG. 5. Same as Fig. 4, but with the plane-wave pertur-
bation restricted to the bottom half-space. Environmen-
tal derivative magnitude is displayed in dB relative to
the maximum environmental pressure derivative of
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p

turbation wave numberghe environmental pressure deriva-
tive is very similar to the range-independent case, but ThUS, once a set of derivatives with respect to a set of
starting at perturbation wavelengths of about 40(6nwave-  basis function perturbations has been computed, it is straight-
|engths of a 20-Hz Signh]the phase and magnitude of the forward to compute environmental derivatives for Cylindrical
derivative change markedly, with a noticeable trend toPerturbations of various diameters at any location.

smaller magnitudes at higher perturbation wavelengths. Fig- ~ T0 illustrate Eq.(21), two cylindrical perturbations with
ure 5 illustrates a similar computation, but with the pertur-respective radii of 150 and 600 m were inserted into the
bation restricted to the ocean bottom. A similar result is seevaveguide environment of Fig. 1, with 1-km horizontal
in that the environmental pressure derivative changes mar#fange between the vertical receiving array and perturbation
edly once the perturbation wavelength decreases below 4ggenter, and with the 50-m-deep acoustic source remaining at
m. An actual plane-wave ocean perturbation, such as thos&km range. To approximate the continuous integral implied
generated by internal wav@swould not generate a uniform by EQg. (8), k, was evaluated at 512 points between 0 and
perturbation with depth, but is generally restricted to a cer0.251 m*, or three times the medium wave number. This
tain portion of the water column. Thus, the horizontal refrac-sampling provided sufficient spacing between the discrete
tion effects produced by realistic plane-wave perturbationsvalues ofk, so that any artifacts generated appear at ranges
which would be a simple extension of the computationsmuch greater than the source ramge A convergence test

shown here, may not be as large. determined that a value of=60 was sufficient to reproduce
the perturbation at these ranges.

D. Effect of a compact cylindrical perturbation The que_stiqn of the sen§itivity of the environment_a :

on pressure derivative pressure derivative to a localized out-of-plane perturbation

A second three-dimensional perturbation that can be
evaluated analytically is a vertical cylinder with a circular
horizontal cross section, which provides a convenient means
for investigating the effect of a localized perturbation on the
modal field. The perturbation might be considered a very
simple model of an edd¥?*2The geometry of the cylin-
drical perturbation is illustrated in Fig. 6, from both a top
view (@) and a perspective vieyb). As with the plane-wave
perturbation, the perturbation can be restricted to the water
column, below the ocean bottom, or both.

By exploiting Graf's addition theorem one can derive
the basis coefficientEq. (6b)] needed to construct a circle
with radiusa displaced from the receiver origin by a distance

I snire @and bY a rOtat.ion a.ngléshift from thex axis[Fig. 6(@)], FIG. 6. Geometry of offset cylindrical perturbatiofs) top view; (b) per-
for the basis functions in Eq7) spective view.
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FIG. 7. Effect of a cylindrical“eddy” ) perturbation in
water column on 20-Hz acoustic field with source level
of 120 dBre: 1 uPa @ 1 m, as a fugtion of perturba-
tion azimuth¢g,. The center of the perturbationy
lies 1 km from the origin(a) a=150-m radius pertur-
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dB re: the maximum magnitude of 1.58

-1 % 10”8 Pa{m/s); and(b) relative phase of environmen-
tal derivative;(c) a=600-m radius perturbation: envi-
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= < maximum magnitude of 7.9410 8 Pa(m/s) and(d)
i3 3 i
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can be explored by systematically changing the rotatiorThis value will be subsequently referred to as the “in-plane
angle ¢qire in EQ. (21), thus rotating the perturbation around maximum.”
the origin. Beyond some geometric angl@beyient Figure 7 shows the effect of a cylindrical perturbation
=sin Yalrgyn) the physical boundaries of the perturbation placed in the water column only, with the top row showing
will no longer intersect the vertical plane intersecting thethe effect of the 150-m radius perturbation, and the bottom
source and receiver array. row the effect of the 600-m perturbation. The figures show
Figures 7 and 8 show a plot similar to Figs. 4 and 5, inthat the environmental pressure derivative still exists even
that the magnitude and relative phases of the environmentathen the perturbations lie completely outside the vertical
pressure derivative of a 20-Hz signal are shown across thgource—receiver planeb(yii=> dexiend, DUt With a magnitude
vertical receiving array. This time, however, the horizontalat least 8 dB less than the in-plane maximum. The smaller
axis represents the rotation angde,,, and the vertical the perturbation radius, the larger the relative magnitudes the
dashed lines marlkéqenrr The color map scale has been out-of-plane results tend to be. This observation is consistent
normalized and plotted on a log scale, so that the maximurnwith the expectation that the greater curvature of small-radii

magnitude of the environmental pressure derivative acrosgerturbations should have relatively larger horizontal refrac-
the receiving array whem,x=0 has been defined as 0 dB. tion effects.
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Figure 8 shows an identical situation, except with thethese expressions to density perturbations, although not pre-
cylindrical perturbations existing only beneath the ocean botsented here, should follow a similar route, although the spa-
tom. As with Fig. 7, derivatives with respect to out-of-planetial gradient of the Green'’s function, and thus the gradient of
perturbations exist, with larger relative magnitudes producedtqgs.(12) and(13), would be required®
by perturbations with smaller radii. Furthermore, the out-of-  These expressions have been demonstrated in simple
plane results can be non-negligible when compared with theensitivity studies that illustrate how both plane-wave and
in-plane maximum. For example, in subpla} a 150-m ra-  cylindrical perturbations can influence the received pressure
dius perturbation produces environmental pressure derivdield, even when the perturbation does not physically inter-
tives that are within 10 dB of the in-plane maximum out to sect the vertical plane connecting the source and receiver.
rotation angles of 15 deg, if the receiver depth is 50 m. ThisNhether realistic ocean perturbations produce similar out-of-
angle is nearly twice the value @ qyent- plane effects has been a question of practical

The results of this simple sensitivity study on this par-interestt®?3-25353\any realistic perturbations, especially
ticular deployment configuration indicate that while neglect-those of internal linear waveéé can be expressed as straight-
ing out-of-plane refraction effects may be a safe assumptioforward combinations of the basis functions of Ed), so
for certain cylindrical perturbations in the water column, it these expressions may be useful in more sophisticated sensi-
may not be a valid assumption for small-radii perturbationgivity studies.
in the ocean bottom. In practical terms the expressions used here could be

As the environmental pressure field can be interpreted assed to check whether significant horizontal refraction ef-
a field “scattered” from an infinitesimal perturbation via the fects might be expected under various experimental deploy-
Born approximation, some further physical insight into thesement geometries, before applying tomographic algorithms
results can be obtained by computing how an incident acoughat neglect out-of-plane refraction effects. These expres-
tic plane wave diffracts from an aperture with the same latsions might also serve as benchmarks for three-dimensional
eral dimensions as the perturbatitii* As a normal mode propagation codes, such as a three-dimensional parabolic
consists of two plane waves propagating nearly horizontallyequation codé’3®
the assumption of an incident plane wave in the diffraction =~ These expressions have some theoretical interest as well,
analysis is valid. For a perturbation radius of 600 m, a pointas they can be used to compute the Cramer—Rao bounds for
2-km range from the perturbation center lies within theenvironmental parameters related to three-dimensional struc-
Fresnel diffraction regionr(~a®\ka/2=1700m)* Treat-  tures in an ocean waveguide, a rigorous approach for esti-
ing the perturbation as a rectangular aperture 1.2 km widenating the sensitivity of an acoustic field to a perturbation.
an analysis of the resulting Fresnel diffraction pattern using &or example, the minimum variance of internal wave spec-
Cornu spiral finds that the boundaries of the geometridrum estimates extracted from acoustic data could be derived
shadow are quite sharp. Thus, for the 600-m radius perturbas a function of input sample size and signal-to-noise ratio.
tion the apparent angular half-width of the diffracted field
would be very close to the geometric half-width of 36° for ACKNOWLEDGMENTS
deyient @t this range, as was found to be the case.
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