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a b s t r a c t 

Diffusion imaging studies have observed age-related degradation of white matter that contributes to cog- 

nitive deficits separately in younger-old (ages 65–89) and oldest-old (ages 90 + ) adults. But it remains 

unclear whether these age effects are magnified in advanced age groups, which may reflect disease- 

related pathology. Here, we tested whether age-related differences in white matter microstructure fol- 

lowed linear or nonlinear patterns across the entire older adult lifespan (65–98 years), these patterns 

were influenced by oldest-old adults at increased risk of dementia (cognitive impairment no dementia, 

CIND), and they explained age effects on episodic memory. Results revealed nonlinear microstructure de- 

clines across fiber classes (medial temporal, callosal, association, projection and/or thalamic) that were 

largest for medial temporal fibers. These patterns remained after excluding oldest-old participants with 

CIND, indicating that aging of white matter microstructure cannot solely be explained by pathology asso- 

ciated with early cognitive impairment. Moreover, finding that the effect of age on episodic memory was 

mediated by medial temporal fiber microstructure suggests it is essential for facilitating memory-related 

neural signals across the older adult lifespan. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

White matter plays a crucial role in the transmission and

coordination of neural impulses between gray matter regions

( Salat, 2011 ). Significant and widespread white matter deteriora-

tion observed in normal aging results from demyelination, axonal

shrinkage, decreased fiber density, and gliosis ( Bartzokis, 2004 ;

Bowley et al., 2010 ; Peters, 2019 , 2002 ; Peters et al., 2010 ). In-

creases in the magnitude and extent of this white matter dam-

age in advanced age ( > 90 years old) is thought to reflect patho-

logic processes associated with a higher prevalence of dementia

and white matter disease in this age group ( Corrada et al., 2010 ,

2008 ; Kawas et al., 2015 ; Wardlaw et al., 2015 ; Yang et al., 2013 ).

However, few studies have assessed white matter aging across the

older adult lifespan and whether these age effects are driven by
∗ Corresponding author at: Department of Psychology, University of California, 

Riverside, 900 University Avenue, Riverside, CA 92521-0426 USA; Tel: (951) 827- 

2546, Fax: (951) 827-5222. 

E-mail address: jklip001@ucr.edu (J.L. Merenstein). 

0197-4580/$ – see front matter © 2021 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.neurobiolaging.2021.06.021 
individuals with or at risk for dementia through the tenth decade

of life. 

The microstructural composition of white matter can be as-

sessed in vivo using diffusion tensor imaging (DTI), which mea-

sures the jitter (diffusion) of water molecules ( Beaulieu, 2002 ;

Jones, 2008 ; Mori and Zhang, 2006 ). In healthy white matter, mi-

crostructures such as axonal membranes and myelin restrict the

diffusion of water, which causes the primary diffusion direction to

occur along the length of these structures rather than perpendicu-

lar to them. DTI measures these diffusion properties to provide es-

timates of the degree of restricted diffusion (fractional anisotropy;

FA) and the average rate of diffusion parallel (axial diffusivity; AD)

or perpendicular (radial diffusivity; RD) to the primary diffusion

direction ( Beaulieu, 2002 ; Jones, 2008 ; Jones et al., 2013 ; Mori and

Zhang, 2006 ). 

https://doi.org/10.1016/j.neurobiolaging.2021.06.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neurobiolaging.2021.06.021&domain=pdf
mailto:jklip001@ucr.edu
https://doi.org/10.1016/j.neurobiolaging.2021.06.021


J.L. Merenstein, M.M. Corrada, C.H. Kawas et al. / Neurobiology of Aging 106 (2021) 282–291 283 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DTI studies in healthy younger-old adults without dementia

(i.e., ages 60–89) report a relatively consistent pattern of linear

age-related decreases in FA and increases in both AD and RD, with

the magnitude of these effects varying by fiber class. That is, the

largest age-related differences are seen in the fornix ( de Groot

et al., 2016 ; Kochunov et al., 2007 ; Lövdé et al., 2013 ), a medial

temporal region that connects the hippocampus to cortical regions,

and the genu of the corpus callosum ( Barrick et al., 2010 ; Lövdé

et al., 2013 ), a callosal region that connects frontal cortex in the

left and right hemispheres. Large age effects are also observed

within association fibers that connect cortical gray matter regions

within the same hemisphere (e.g., external capsule)( Cox et al.,

2016 ; Lövdé et al., 2013 ). However, projection and thalamic fibers

that connect cortical gray matter regions to the spinal cord (e.g.,

corona radiata) and thalamus (e.g., thalamic radiations), respec-

tively, show minimal age effects ( Cox et al., 2016 ; de Groot et al.,

2016 ; Lövdé et al., 2013 ). These regional variations have also been

observed in DTI aging studies across the lifespan ( Bendlin et al.,

2010 ; Cox et al., 2016 ; Giorgio et al., 2010 ; Hsu et al., 2010 ;

Hugenschmidt et al., 2008 ; Isaac Tseng et al., 2020 ; Kennedy and

Raz, 2009 ; Kochunov et al., 2012 ; Lebel et al., 2012 ; Malykhin et al.,

2011 ; Michielse et al., 2010 ; Mooij et al., 2018 ; Stadlbauer et al.,

20 08a , 20 08b ; Westlye et al., 2010 ; Xie et al., 2016 ). 

Of note, very few DTI studies of healthy older adults with-

out dementia have included a sizeable number of individuals be-

yond 90 years of age (c.f., Beck et al., 2021 ; de Groot et al., 2016 ),

where the high prevalence of dementia-related cognitive impair-

ment and white matter disease may magnify the effect of aging

on microstructure ( Yang et al., 2013 ). We focused on nonagenari-

ans in a previous study ( n = 94; Bennett et al., 2017 ), finding the

largest age-related microstructure differences (decreased FA, in-

creased diffusivity) in medial temporal (fornix) and callosal (sple-

nium) regions, comparable to what is seen in younger-old adults,

except that it was the splenium and not genu of the corpus cal-

losum that was affected within the oldest-old. Importantly, these

age-microstructure relationships did not differ between cognitively

normal oldest-old adults and those diagnosed with cognitive im-

pairment no dementia (CIND). However, because this earlier study

did not include a younger-old comparison group, it remains un-

known whether age is linearly related to white matter microstruc-

ture across the full extent of the older adult lifespan or whether

there are nonlinear age effects on microstructure that may reflect

disproportionate increases in normal age or disease-related pathol-

ogy in advanced age. 

To address this gap, the current study recruited 108 individuals

across the older adult lifespan (65–98 years), including nonagenar-

ians from The 90 + Study ( Kawas and Corrada, 2006 ), who under-

went diffusion imaging and completed an episodic memory task.

Our first aim tested whether the effect of age on white matter

microstructure was better explained by linear or nonlinear mod-

els. We hypothesized that more extensive white matter damage in

advanced age would be seen as nonlinear effects of age on white

matter microstructure, with the largest age-related differences in

medial temporal and callosal fiber classes. Our second aim tested

whether these relationships were affected by oldest-old adults di-

agnosed with CIND. We hypothesized that the age-microstructure

relationships would not differ after excluding oldest-old adults di-

agnosed with CIND, consistent with our previous work in nonage-

narians ( Bennett et al., 2017 ), suggesting that these microstructure

measures are capturing normal aging processes rather than pathol-

ogy associated with early cognitive impairment. Our third aim was

to assess the functional relevance of white matter aging, focus-

ing on relationships between medial temporal microstructure and

episodic memory given our interest in early cognitive impairment

( Bastin and Salmon, 2014 ; Jahn, 2013 ). 
2. Method 

2.1. Participants 

We recruited a total of 110 older adults (65–98 years, 64 fe-

male). Seventy-nine younger-old adults (65–92 years, 46 female)

from the Riverside community voluntarily responded to online and

print advertisements. Thirty-one oldest-old adults (90–98 years, 18

female) were a subset selected from current participants in The

90 + Study, a longitudinal study of aging and dementia in the

oldest-old (see Kawas and Corrada, 2006 for additional details),

who had not previously received a diagnosis of dementia. All par-

ticipants were screened for conditions that would prevent them

from being able to enter the magnetic resonance imaging (MRI)

scanner (e.g., having ferrous metal implants). Younger-old partic-

ipants were further screened for self-reporting major neurologic

(e.g., mild cognitive impairment, dementia, stroke), mental health

(e.g., depression, schizophrenia), or medical (e.g., diabetes, emphy-

sema) conditions. Oldest-old participants underwent a thorough

neurologic, physical, and neuropsychological evaluation by trained

examiners. One younger-old adult with whole-brain microstructure

measures > 4 standard deviations from the mean of their age group

and 1 oldest-old adult with a cortical mass that covered large por-

tions of parietal white matter were excluded from all analyses. De-

mographic and neuropsychological data for the final sample of 108

participants can be found in Table 1 . 

This study was conducted in compliance with the Institutional

Review Boards for the University of California, Riverside and Irvine.

Each participant provided informed consent and was compensated

for their participation. 

2.2. Cognitive status 

For the oldest-old only, diagnoses of cognitively normal

( n = 20) and cognitive impairment no dementia (CIND; n = 9)

were made by a trained clinician based on cognitive or func-

tional losses that were not of sufficient severity to meet the Di-

agnostic and Statistical Manual of Mental Disorders, fourth edi-

tion criteria for dementia ( American Psychiatric Association, 1994 ;

Graham et al., 1997 ). The clinical evaluation was missing for

1 oldest-old participant who was included in the CIND group

because they scored 25 on the Mini Mental State Examination

(MMSE; Folstein et al., 1975 ). These data are presented in Table 1 . 

General cognitive status was assessed in the younger-

old sample using the Montreal Cognitive Assessment (MoCA;

Nasreddine et al., 2005 ), although no participant was excluded

based on these scores because of our interest in early cognitive

impairment. 

2.3. Episodic memory task 

Episodic memory was assessed using the Rey Auditory Verbal

Learning Task (RAVLT; Rey, 1941 ). Participants listened to and re-

called a list of 15 words (List A) across 5 separate trials followed

by a second list of 15 words (List B) for a single trial. Delayed re-

call was measured as the number of words correctly recalled from

List A after 30 minutes. Finally, participants listened to a list of

words containing all items from Lists A and B ( n = 30) and words

that are phonetically or semantically similar ( n = 20) and were

asked to indicate whether a word was previously presented on List

A. Recognition memory performance was measured as the differ-

ence between the number of words correctly (Hits) and incorrectly

(False Alarms) classified as being present on List A. Recognition

data was not obtained from 1 younger-old participant due to time

constraints. 
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Table 1 

Demographic and neuropsychological data. 

Mean ± SD Whole sample Younger-old Oldest-old t/ χ 2 ( p ) 

N 108 78 30 na 

Age, years 79.1 ± 10.3 73.7 ± 6.3 93.2 ± 1.9 16.7 ( < 0.001) 

N female (%) 63 (58.3%) 45 (57.7%) 18 (60%) 0.05 (0.83) 

N CIND (%) - - 10 (33%) na 

N Hispanic (%) 7 (6%) 6 (8%) 1 (3%) 0.68 (0.41) 

Education, years 15.4 ± 3.0 15.5 ± 3.0 15.2 ± 3.1 0.64 (0.52) 

MoCA - 26.4 ± 2.4 - na 

MMSE - - 25.7 ± 2.9 na 

RAVLT Delayed Recall 7.1 ± 3.4 7.7 ± 3.3 5.5 ± 3.4 3.1 (0.002) 

RAVLT Recognition 8.1 ± 6.4 10.0 ± 4.2 3.0 ± 8.0 5.9 ( < 0.001) 

Notes: Demographic and neuropsychological test data are presented as mean ± standard deviation 

(SD), separately for younger- and oldest-old adults. Significant group differences at p < 0.05 are 

indicated by bolded t or χ2 (% female, N Hispanic) statistics. MoCA, montreal cognitive assessment, 

MMSE, mini-mental state exam, RAVLT, rey auditory verbal learning task, CIND, cognitive impair- 

ment no dementia, na, not applicable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Structural image acquisition 

Structural imaging data were acquired using a 3T Siemens

Prisma MRI scanner fitted with a 32-channel head coil at the Uni-

versity of California, Riverside (younger-old sample) or the Univer-

sity of California, Irvine (oldest-old sample). 

A single high-resolution T1-weighted image (magnetization-

prepared rapid gradient-echo sequence, MPRAGE) was acquired

with the following parameters: Echo time (TE)/repetition time

(TR) = 2.72/2400 ms, field of view (FOV) = 256 × 256 × 208 mm,

matrix size of 320 × 320 × 260, voxel size = 0.8 mm 

3 , a General-

ized Autocalibrating Partially Parallel Acquisitions (GRAPPA) accel-

eration factor of 2, 208 axial slices, scan time = 6:28. 

Whole brain diffusion-weighted MRI data were acquired with

a diffusion-weighted single-shot spin-echo, echo planar imaging

(EPI) sequence with the following parameters: TE/TR = 102/3500

ms, FOV = 212 × 182 mm 

2 , matrix size of 128 × 110, voxel

size = 1.7 mm 

3 , multiband factor = 4, 64 slices with no gap, scan

time = 16:12. Bipolar diffusion-weighting gradients were applied

in 64 directions with b values of 1500 s/mm 

2 and 3000 s/mm 

2

with 3 b = 0 images. The multiband factor used here was based

on the Human Connectome Project (HCP) protocol ( Glasser et al.,

2016 ; Harms et al., 2018 ), with any potential reductions in the sig-

nal to noise ratio offset by increasing the voxel size. 

2.5. Diffusion imaging data 

2.5.1. Preprocessing 

For each participant, diffusion data were preprocessed using

AFNI (Analysis of Functional NeuroImages; Cox, 1996 ) to remove

non–brain tissue and generate a whole-brain mask and FSL (FM-

RIB’s Software Library, www.fmrib.ox.ac.uk/fsl ) to correct for head

movement and eddy-current induced distortions. FSL’s DTIFIT was

then used to estimate a single diffusion tensor for each voxel, us-

ing data from both b values, with the whole-brain mask limiting

tensor fitting to brain tissue. The output included voxel-wise im-

ages for FA, AD ( λ1), and RD ( λ2 + λ3/2). 

Diffusion data from the full sample (78 younger-old, 30 oldest-

old) is reported here without correction for EPI distortions. In a

subset of primarily younger-old participants (78 younger-old, 8

oldest-old), a second diffusion sequence was acquired with phase-

encoding directions of opposite polarity, which allowed for EPI dis-

tortion correction (FSL’s TOPUP). To assess the impact of this pre-

processing step, microstructure measures (FA, AD, and RD) were

separately extracted from both the non–EPI-corrected and EPI-

corrected data within a white matter mask (the mean FA skele-

ton) for this subset of participants. We then computed a traditional
Pearson R value between these datasets, separately for each diffu-

sion metric. Importantly, we observed strong correlations between

the non–EPI-corrected and EPI-corrected data for each metric (R ≥
0.88, p ≤ 0.0 0 01), providing confidence that the results reported

here would be comparable to those found with EPI-corrected data.

2.5.2. Region segmentation 

We used Tract Based Spatial Statistics (TBSS; Smith et al., 2006 )

to identify the locally maximal FA values within white matter com-

mon to all participants (mean FA skeleton). Each individual’s FA

map was first nonlinearly aligned to the FMRIB58_FA template in

Montreal Neurological Institute 152 standard space. The mean of

all aligned FA volumes was then used to create an average white

matter skeleton specific to this sample, using a threshold of 0.2 to

exclude voxels that contained minimal white matter. The aligned

and thresholded FA images from each participant were projected

onto the mean FA skeleton. The mean skeleton was then multiplied

by a binarized standard white matter atlas to limit analyses to re-

gions contained within the JHU ICBM-DTI-81 white matter labels

atlas in FSL ( Mori et al., 2008 ). Finally, the TBSS non–FA pipeline

was used to register each participant’s AD and RD images to the

mean FA skeleton in FMRIB58_FA 1mm 

3 space. 

This approach resulted in 15 skeletonized standard regions of

interest (excluding brainstem and cerebellar regions) from the fol-

lowing fiber classes: Medial temporal (fornix body, fornix cres, hip-

pocampal cingulum, uncinate fasciculus), corpus callosum (genu,

body, splenium), association (superior cingulum, external capsule,

inferior sagittal stratum, superior longitudinal and fronto-occipital

fasciculi) and projection and/or thalamic (corona radiata, internal

capsule, posterior thalamic radiations). These classes were based

on anatomic standards ( Wakana et al., 2004 ; Wycoco et al., 2013 ). 

2.5.3. Microstructure measures 

Measures of white matter microstructure were extracted from

standard regions of interest for each participant by binarizing each

skeletonized standard region and multiplying it by the correspond-

ing microstructure map (FA, AD, RD). Mean microstructure val-

ues were converted to z -scores for each region and then aver-

aged across regions within the same fiber class (medial temporal,

callosal, association, projection and/or thalamic) for each partici-

pant. Analyses of individual regions are provided in Supplemental

Table 1. 

2.5.4. Controlling for hyperintense white matter 

To assess the potential effect of white matter hyperintensities,

we replicated all analyses using microstructure measures that were

limited to normal appearing white matter within the white matter

http://www.fmrib.ox.ac.uk/fsl
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Table 2 

Linear and nonlinear model comparisons of age effects on all white 

matter. 

Whole sample (linear/nonlinear) 

Fiber class FA AD RD 

Medial temporal 

R 2 0.38/0.39 0.04/0.03 0.47/0.48 

AICc -89.58/- 94.88 -48.67 /-49.96 -104.9/ -107.7 

χ 2 ( p ) 8.05 (0.005) 0.90 (0.34) 5.45 (0.02) 

Association 

R 2 0.19/0.20 0.38/0.37 0.34/0.35 

AICc -44.95/ -47.50 -88.26 /-89.48 -61.66/ -62.99 

χ 2 ( p ) 5.11 (0.02) 1.01 (0.32) 3.77 (0.05) 

Callosal 

R 2 0.14/0.15 0.22/0.22 0.25/0.25 

AICc -26.28/ -28.50 -56.59 /-57.04 -38.73/ -40.25 

χ 2 ( p ) 4.28 (0.04) 1.82 (0.18) 3.96 (0.05) 

Projection/thalamic 

R 2 0.17/0.18 0.37/0.36 0.31/0.31 

AICc -28.90/ -29.24 -78.90 /-77.63 -44.55/ -44.86 

χ 2 ( p ) 5.40 (0.02) 0.94 (0.33) 2.01 (0.16) 

Notes: Analyses testing the effect of age on white matter mi- 

crostructure, controlling for sex and education, are presented sepa- 

rately for each diffusion metric (fractional anisotropy, FA; axial dif- 

fusivity, AD; radial diffusivity, RD) and fiber class. Coefficients of 

determination (R 2 ) are presented from regression analyses between 

age (linear) or age squared (nonlinear). Significant effects Bonfer- 

roni corrected at p < 0.013 are bolded. Akaike Information Criterion 

(AICc) values and χ 2 ( p ) values from likelihood ratio tests are re- 

ported for regression models of age (linear) or age and age and age 

squared (nonlinear). Significantly better fits (significant χ 2 , smaller 

AICc) for the nonlinear relative to the linear model are bolded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

skeleton. A white matter mask that excludes hyperintense tissue

was generated on each participant’s MPRAGE image via FSL’s FAST

( Zhang et al., 2001 ), which classifies white matter hyperintensi-

ties as either grey matter or cerebrospinal fluid due to their low-

intensity values ( Melazzini et al., 2021 ). We then thresholded each

participant’s white matter mask (partial volume estimate > 0.5),

aligned it to diffusion space using a linear boundary-based regis-

tration with 12 ° of freedom, and multiplied it by the voxel-wise

images for each diffusion metric. These microstructure maps were

input into the TBSS non–FA pipeline to register each participant’s

diffusion images to the mean FA skeleton in FMRIB58_FA 1mm 

3 

space. Normal appearing white matter microstructure measures

were then extracted from the standard regions of interest for each

participant and averaged across regions within the same fiber class

as discussed above. 

2.6. Statistical analyses 

Analyses were conducted using a combination of SPSS Version

26, Prism Version 9, and R-Studio Version 1.1.442. All analyses con-

trolled for sex and education. 

To assess age-related differences in white matter microstruc-

ture, linear regressions were conducted between chronological age

and white matter microstructure, separately for each fiber class

(medial temporal, callosal, association, projection and/or thalamic)

and diffusion metric (FA, AD, RD). Significant effects (coefficients of

determination, R 

2 ) survived Bonferroni correction for comparisons

across 4 fiber classes, p -values ( p s) < 0.013. 

To test whether a nonlinear model better explained the rela-

tionship between chronological age and white matter microstruc-

ture, linear regressions were conducted between chronological age

squared and white matter microstructure, separately for each fiber

class and diffusion metric. We then compared model fit between

linear (age) and nonlinear (age and age squared) models, with

better fit indicated by smaller corrected Akaike Information Cri-

terion (AICc) and significant likelihood ratio tests ( Akaike, 1974 ;

Spiess and Neumeyer, 2010 ; Wagenmakers and Farrell, 2004 ). To

assess the regional specificity of these age effects, we also used

likelihood ratio tests to compare model fit between regions and

microstructure measures best fit by a linear or nonlinear model.

To assess the impact of pathology associated with early cognitive

impairment or white matter hyperintensities, we then repeated the

linear versus nonlinear regression analyses and model comparisons

after excluding oldest-old adults with CIND or using microstructure

measures from normal appearing white matter (i.e., excluding hy-

perintense white matter). 

Finally, we sought to assess the functional relevance of age-

related differences in white matter microstructure by testing

whether medial temporal microstructure mediated the effect of

age on episodic memory performance. First, separate linear re-

gressions related chronological age or age squared to each mem-

ory measure (recognition, delayed recall) to medial temporal mi-

crostructure, separately for each diffusion metric (Bonferroni cor-

rected for comparisons across 3 microstructure measures, p <

0.017). As above, model fit was assess using AICc values and like-

lihood ratio tests. Next, for each medial temporal diffusion met-

ric that exhibited significant relationships to memory performance,

separate mediation analyses conducted using the PROCESS macro

for SPSS ( Hayes and Rockwood, 2017 ) assessed the indirect effect of

age (linear relationships) or age squared (nonlinear relationships)

on memory performance via white matter microstructure using a

95% confidence interval (CI) based on bootstrapping with 50 0 0 re-

placements. CIs that did not include zero were considered to be

statistically significant. These analyses were then repeated to the

explore the potential mediating effect of other fiber classes. 
3. Results 

3.1. Linear effects of age on white matter microstructure 

First, we conducted linear regressions to assess the effect of

chronological age on white matter microstructure (Bonferroni cor-

rected, p < 0.013), separately for each fiber class and diffusion

metric. Results revealed that older age was linearly associated with

decreased FA and increased AD and RD in each fiber class, R 

2 >

0.14, p s ≤ 0.001, except for AD in the medial temporal fiber class,

p = 0.048 ( Table 2 and Fig. 1 ; see Supplemental Table 1 for in-

dividual regions). Importantly, this pattern of results remained un-

changed when the linear regressions were repeated after excluding

oldest-old adults with CIND ( Table 3 ) and when using microstruc-

ture measures from normal appearing white matter ( Table 4 ). 

3.2. Nonlinear effects of age on white matter microstructure 

Next, we conducted linear regressions to assess the effect of

chronological age squared on white matter microstructure, sepa-

rately for each fiber class and diffusion metric. Results revealed

that older age was nonlinearly associated with decreased FA and

increased AD and RD in each fiber class, R 

2 > 0.15, p s ≤ 0.001, ex-

cept for AD in the medial temporal fiber class, p = 0.054 ( Table 2

and Fig. 1 ; see Supplemental Table 1 for individual regions). A

similar pattern of results was observed when the linear regres-

sions were repeated after excluding oldest-old adults with CIND

( Table 3 ) and when using microstructure measures from normal

appearing white matter ( Table 4 ). 

A comparison of the linear and nonlinear models for each

fiber class revealed smaller AICc values for nonlinear models and

significant likelihood ratio tests, χ2 > 3.77, p s < 0.05, for medial

temporal (FA, RD), association (FA, RD), callosal (FA, RD), and

projection and/or thalamic (FA) fiber classes ( Table 2 and Fig. 1 ),

indicating that age-related differences in white matter microstruc-
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Fig. 1. Scatterplots display relationships between age and white matter microstructure (FA, AD, RD) across the sample, separately for each fiber class (medial temporal, 

callosal, association, projection/thalamic). The regression line and coefficients of determination (R 2 ) reflect whether the linear (straight line) or nonlinear (curved line) 

analysis were a better fit (smaller AICc, significant likelihood ratio test). All relationships remained the same after excluding oldest-old adults diagnosed with cognitive 

impairment no dementia (CIND; gray circles, dotted lines), except that projection/thalamic FA/RD were better fit by a nonlinear model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ture from these regions were magnified in advanced age. In

contrast, smaller AICc values for linear models and non–significant

likelihood ratio tests for AD in all fiber classes and for RD in the

projection and/or thalamic fiber class, p s > 0.16, suggests that the

AD metric and RD in this fiber class were better captured by linear

age-related differences in white matter microstructure across the

older adult lifespan. Importantly, this pattern of results remained

unchanged when analyses were repeated after excluding oldest-

old adults with CIND, except that now a nonlinear model better

explained age-related differences for projection and/or thalamic

RD ( Table 3 and Fig. 1 ). Moreover, when using microstructure

measures from normal appearing white matter, the nonlinear

model remained a significantly better fit for medial temporal and

association FA, and callosal RD ( Table 4 ). 

3.3. Regional specificity of age effects on white matter microstructure 

For each region and diffusion metric better fit by a nonlinear or

linear model, we then assessed whether the relationship with age

differed across fiber classes using separate likelihood ratio tests.

For FA, results revealed that a nonlinear model was a significantly

better fit for the medial temporal fiber class relative to all 3 other

fiber classes, χ2 > 47.71, p s < 0.001, for the association and pro-

jection and/or thalamic fiber classes relative to callosal fiber class,

χ2 > 19.03, p s < 0.001, and for the association relative to projec-

tion and/or thalamic fiber class, χ2 = 16.18, p < 0.001. Similarly,

for RD, results revealed that a nonlinear model was a significantly
better fit for the medial temporal fiber class relative to the asso-

ciation and callosal fiber classes, χ2 > 45.51, p s < 0.001, and for

the association relative to the callosal fiber class, χ2 = 22.71, p <

0.001. For AD, results further revealed that the linear model was a

significantly better fit for all other fiber classes relative to medial

temporal fiber class, χ2 > 7.19, p s < 0.001, for the association rel-

ative to callosal and projection and/or thalamic fiber classes, χ2 >

9.98, p s < 0.001, and for the projection and/or thalamic relative to

callosal fiber class, χ2 = 21.82, p < 0.001. 

3.4. Medial temporal microstructure mediates age-memory 

relationships 

Having established a wide-spread effect of age on white matter

microstructure, we then sought to assess its functional relevance

by testing whether it mediated the effect of age on episodic

memory performance, focusing on medial temporal microstruc-

ture. First, separate linear regressions were conducted between

chronological age and each memory measure, controlling for sex

and education. As expected, results revealed that older age was

significantly related to worse recognition, β = -0.43, p < 0.001,

and recall, β = -0.28, p = 0.001, performance ( Fig. 2 ). Smaller AICc

values were observed for the nonlinear relative to linear model for

recognition (linear = 369.6, nonlinear = 367.6) and delayed recall

(linear = 238.5, nonlinear = 237.8), and the nonlinear model was

a significantly better fit for explaining age-related differences in

recognition memory, χ2 = 4.56, p = 0.033. 
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Table 3 

Linear and nonlinear model comparisons on all white matter with- 

out CIND. 

Without CIND (linear/nonlinear) 

Fiber class FA AD RD 

Medial temporal 

R 2 0.31/0.32 0.04/0.04 0.42/0.43 

AICc -79.11/ -83.45 -41.86 /-40.39 -96.96/ -99.43 

χ 2 ( p ) 6.91 (0.009) 0.82 (0.37) 4.72 (0.03) 

Association 

R 2 0.20/0.21 0.34/0.34 0.34/0.35 

AICc -43.09/ -47.85 -81.58 /-82.42 -57.03/ -59.87 

χ 2 ( p ) 7.93 (0.005) 1.32 (0.25) 5.85 (0.02) 

Callosal 

R 2 0.13/0.13 0.20/0.19 0.22/0.25 

AICc -33.08/ -34.78 -55.12/ -55.40 -41.38/ -42.44 

χ 2 ( p ) 4.68 (0.03) 2.89 (0.09) 3.93 (0.05) 

Projection/thalamic 

R 2 0.19/0.20 0.33/0.32 0.31/0.32 

AICc -27.79/ -30.12 -74.19 /-73.73 -40.40/ -41.25 

χ 2 ( p ) 5.44 (0.02) 1.54 (0.21) 3.86 (0.05) 

Notes: Analyses testing the effect of age on white matter mi- 

crostructure, controlling for sex and education, are presented sepa- 

rately for each diffusion metric (fractional anisotropy, FA; axial dif- 

fusivity, AD; radial diffusivity, RD) and fiber class. Coefficients of 

determination (R 2 ) are presented from regression analyses between 

age (linear) or age squared (nonlinear). Significant effects Bonf er- 

roni corrected at p < 0.013 are bolded. Akaike Information Criterion 

(AICc) values and χ 2 ( p ) values from likelihood ratio tests are re- 

ported for regression models of age (linear) or age and age and age 

squared (nonlinear). Significantly better fits (significant χ 2 , smaller 

AICc) for the nonlinear relative to the linear model are bolded. 

Fig. 2. Scatterplots show significant linear (straight) or nonlinear (curved) regres- 

sion lines and coefficients of determination (R 2 ) from the regression analyses across 

the entire sample between age and RAVLT recognition (left) and delayed recall 

(right), independent of sex and education. Oldest-old adults diagnosed with cog- 

nitive impairment no dementia (CIND) is displayed as gray circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Linear and nonlinear model comparisons on the white matter- 

masked data. 

Whole sample (linear/nonlinear) 

Fiber class FA AD RD 

Medial temporal 

R 2 0.42/0.43 0.00/0.00 0.28/0.29 

AICc -95.65/ -103.50 -52.65 /-53.53 -100.8 /-102.8 

χ 2 ( p ) 10.84 ( < 0.001) 3.24 (0.07) 0.23 (0.63) 

Association 

R 2 0.22/0.23 0.27/0.27 0.31/0.32 

AICc -51.93/ -55.02 -84.15 /-83.49 -57.18 /-57.91 

χ 2 ( p ) 5.69 (0.02) 1.59 (0.21) 3.15 (0.08) 

Callosal 

R 2 0.20/0.20 0.09/0.09 0.21/0.21 

AICc -65.05 /-64.90 -77.66 /-76.30 -34.53/ -36.31 

χ 2 ( p ) 2.14 (0.14) 0.84 (0.36) 4.26 (0.04) 

Projection/thalamic 

R 2 0.21/0.21 0.26/0.26 0.26/0.27 

AICc -35.02 /-35.71 -69.71 /-69.36 -39.42 /-38.57 

χ 2 ( p ) 3.07 (0.08) 1.91 (0.17) 1.42 (0.23) 

Notes: Analyses testing the effect of age on white matter microstruc- 

ture, controlling for sex and education, are presented separately for 

each diffusion metric (fractional anisotropy, FA; axial diffusivity, AD; 

radial diffusivity, RD) and fiber class. Coefficients of determination 

(R 2 ) are presented from regression analyses between age (linear) or 

age squared (nonlinear). Significant effects Bonferroni corrected at p 

< 0.013 are bolded. Akaike Information Criterion (AICc) values and 

χ 2 ( p ) values from likelihood ratio tests are reported for regression 

models of age (linear) or age and age and age squared (nonlinear). 

Significantly better fits (significant χ 2 , smaller AICc) for the nonlin- 

ear relative to the linear model are bolded. 

Fig. 3. Scatterplots display significant (bolded) relationships between medial tem- 

poral fractional anisotropy (FA; left) or axial diffusivity (AD; right) and memory per- 

formance (recognition, recall), independent of age, sex, and education, as well as 

age squared (medial temporal FA vs. recognition). Separate linear regression lines 

and coefficients of determination (R 2 ) are shown for analyses conducted with (solid 

black line; top statistics) or without (black dotted line; bottom statistics) oldest-old 

adults diagnosed with cognitive impairment no dementia (CIND; gray circles). 

 

 

 

 

 

 

 

 

 

 

Next, linear regressions were conducted between medial tem-

poral microstructure and each memory measure (Bonferroni cor-

rected, p < 0.017). For recognition, results revealed that better per-

formance was significantly related to higher medial temporal FA,

β = 0.36, p < 0.001, and lower RD, β = -0.31, p < 0.001, with a

nonlinear model better explaining the relationship between recog-

nition and medial temporal FA (linear = -55.62, nonlinear = -

58.90, χ2 = 4.27, p = 0.039). For delayed recall, results revealed

that better performance was significantly related to higher medial

temporal FA, β = 0.26, p = 0.008, and AD, β = 0.23, p = 0.017.

Smaller AICc values were observed for the nonlinear relative to lin-

ear model for medial temporal FA (linear = -46.55, nonlinear = -

46.94), but the nonlinear model did not significantly better explain

age-related differences in delayed recall, p = 0.137. 

Finally, for each medial temporal diffusion metric that was

significantly related to memory performance, we tested whether

white matter microstructure mediated the linear (recall) or non-

linear (recognition) effect of age on that memory measure ( Fig. 3

and Table 5 ). Results revealed that only AD in the medial temporal

fiber class significantly mediated the linear relationship between

age and delayed recall. Of note, a similar pattern of results was
observed after excluding oldest-old adults with CIND, except that

medial temporal FA also mediated the nonlinear relationship be-

tween age and recognition memory. Similar results were observed

when analyses using microstructure measures from normal appear-

ing white matter and effects were comparable in the left and right

hemispheres. When these analyses were conducted for the other

fiber classes, there was no significant evidence of mediation for

recall, suggesting these effects are specific to the medial temporal

white matter, but there was an additional mediation effect of pro-

jection and/or thalamic FA on recognition after excluding oldest-

old adults with CIND (data not shown). 
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Table 5 

Mediating effects of medial temporal microstructure on episodic memory. 

Whole sample Without CIND 

Mediator Indirect effect (LLCI, ULCI) Indirect effect (LLCI, ULCI) 

Delayed recall 

Medial temporal FA -0.024 (-0.064, 0.013) -0.019 (-0.060, 0.016) 

Medial temporal AD 0.018 (0.001, 0.038) 0.018 (0.0009, 0.039) 

Recognition 

Medial temporal FA -0.002 (-0.006, 0.002) -0.004 (-0.008, -0.0001) 

Medial temporal RD 0.0005 (-0.003, 0.006) -0.0009 (-0.004, 0.002) 

Notes: For each memory measure that was independently related to both age and 

medial temporal matter microstructure, indirect effects and their corresponding 

lower-level (LL) and upper-level (UL) confidence intervals (CI) are presented for 

analyses testing whether microstructure mediated the effect of age (delayed recall) 

or age squared (recognition) on that memory measure (controlling for sex and ed- 

ucation), conducted with (left) or without (right) oldest-old adults diagnosed with 

cognitive impairment no dementia (CIND). Significant effects are indicated by con- 

fidence intervals that did not contain zero (bolded). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Effect of age on white matter hyperintensity volume 

For descriptive purposes, we conducted a linear regression to

assess the effect of chronological age on white matter hyperin-

tensity volume, calculated as the difference in the number of

voxels between the original all-FA skeleton and the all-FA skele-

ton limited to normal appearing white matter for each partici-

pant. As expected, results revealed that older age was associated

with higher hyperintensity volume, R 

2 = 0.11, p = 0.004 (younger-

old: 166.95 ± 282.08; oldest-old: 825.00 ± 1847.35, including 2

participants with hyperintense volumes > 4 standard deviations

above the mean). 

4. Discussion 

The current study examined how age affects white matter mi-

crostructure of 4 major fiber classes within an older adult lifespan

sample that included a sizeable number of nonagenarians from The

90 + Study. Results revealed significant nonlinear age-related de-

clines in microstructure (decreased FA, increased RD) of the me-

dial temporal, association, callosal, and projection and/or thalamic

fiber classes. Importantly, these effects of age on microstructure re-

mained significant even after excluding oldest-old adults diagnosed

with CIND and when limiting analyses to microstructure measures

from normal appearing (i.e., excluding white matter hyperintensi-

ties), suggesting that they primarily reflect normal aging processes

rather than pathology associated with early cognitive impairment

or white matter disease. When assessing the functional relevance

of these declines, we found that medial temporal microstructure

mediated the effects of age on episodic memory performance. To-

gether, these findings indicate widespread age-related degradation

of white matter that is exacerbated across the older adult lifespan,

with disruption of neural signals in medial temporal white matter

contributing to age-related memory differences. 

To our knowledge, this is the first study to assess the linear-

ity of white matter microstructure declines in older adults span-

ning the seventh through tenth decades of life. Finding that age

effects on microstructure were better explained by nonlinear, com-

pared to linear, models suggests that age-related degradation of

white matter is accelerated in advanced age. This pattern of re-

sults extends what was previously known about white matter

aging in younger-old adults (between ages 55–90) who primar-

ily exhibit linear age-related declines in white matter microstruc-

ture ( Barrick et al., 2010 ; de Groot et al., 2016 ; Kochunov et al.,

2007 ; Lövdé et al., 2013 ). Although nonlinear effects of age on mi-

crostructure had previously been reported in lifespan studies that

assess individuals ranging from childhood or young adulthood up
to age 90 ( Bendlin et al., 2010 ; Cox et al., 2016 ; Hsu et al., 2008 ;

Kennedy and Raz, 2009 ; Lebel et al., 2012 ; Malykhin et al., 2011 ;

Mooij et al., 2018 ; Westlye et al., 2010 ), white matter aging across

the older adult lifespan is likely driven by different neural sub-

strates. For example, whereas early life stages are characterized

by development of white matter (e.g., increased myelination and

axonal sprouting that continues through midlife; Walhovd et al.,

2014 ; Yeatman et al., 2014 ), older adults, and particularly oldest-

old adults, are vulnerable to neurodegenerative processes. Rela-

tive to younger-old adults, cognitively normal oldest-old adults

have a high prevalence of white matter disease among numer-

ous other subclinical neural pathologies (e.g., neurofibrillary tan-

gles, microinfarcts, amyloidosis)( Jacobs et al., 2018 ; Kawas et al.,

2015 ; Pereira et al., 2019 ), which would contribute to decreases

in white matter microstructure (decreased FA, increased AD and/or

RD). Of note, these pathologic processes may not have been fully

captured by previous white matter aging studies that focused only

on younger-old adults, which may explain the difference between

their observations of linear age effects and the current findings of

nonlinear age effects. 

Importantly, the nonlinear effects of age on white matter mi-

crostructure remained significant after excluding oldest-old adults

diagnosed with CIND, consistent with our prior work within nona-

genarians ( Bennett et al., 2017 ). Because these individuals are at

a heightened risk of developing dementia ( Peltz et al., 2011 ), we

speculated that the presence of dementia-related pathology (e.g.,

amyloid plaques, neurofibrillary tangles; Arfanakis et al., 2020 )

may contribute to larger age effects on white matter in advanced

age. Our finding of similar patterns of results after excluding par-

ticipants with CIND supports the notion that white matter in

oldest-old adults may be more vulnerable to processes associated

with normal aging of white matter (e.g., demyelination, myelin bal-

looning; Peters, 2002 ). 

This interpretation is further supported by nonlinear age ef-

fects in medial temporal FA, association FA, and callosal RD that

remained significant when using microstructure measures that

were limited to normal appearing white matter. Given that oldest-

old participants were only excluded if they met criteria for de-

mentia, it remains possible that other chronic conditions con-

tribute to the observed widespread nonlinear effects of age on

white matter microstructure. For example, age-related cardiovascu-

lar diseases (including hypertension and diabetes) and small ves-

sel disease ( Wardlaw et al., 2015 ) are known to negatively affect

white matter (e.g., gross and microscopic infarcts, arterioloscle-

rosis; Arfanakis et al., 2020 ). However, by excluding participants

with CIND and white matter hyperintensities, our control anal-

yses demonstrate that aging of white matter that is more pro-

nounced toward the end of the older adult lifespan is not solely

due to pathology associated with early cognitive impairment or

white matter hyperintensities. This conclusion is further strength-

ened by our observation that the nonlinear age effects on white

matter microstructure did not vary after excluding after excluding

13 participants who meet the definition for “superager” (i.e., 80 +
years, RAVLT delayed recall ≥ 9; data not shown; ( Harrison et al.,

2012 ; Rogalski et al., 2019 ). 

Comparisons between fiber classes revealed that the magnitude

of nonlinear age effects were largest for the medial temporal fiber

class and smallest for the callosal fiber class (FA, RD), which was

reflective of the individual regions within each class (see Supple-

mental Table 1). For example, there were larger effects for the

fornix compared to the body and splenium of the corpus callo-

sum (callosal), sagittal stratum (association), and internal capsule

or corona radiata (projection). Studies of younger-old adults have

similarly found that medial temporal microstructure is especially

vulnerable to aging ( Bennett and Stark, 2016 ; Hoagey et al., 2019 ;
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Rieckmann et al., 2016 ; Yang et al., 2016 ), consistent with studies

of medial temporal (hippocampal) gray matter microstructure and

volume ( Langnes et al., 2020 ; Raz et al., 2010 ; Venkatesh et al.,

2020 ). Aging of medial temporal microstructure has been at-

tributed to these regions containing smaller diameter axons and

lower oligodendrocyte-to-axon ratios ( Stebbins and Murphy, 2009 ),

as well as being relatively late to myelinate ( Bartzokis, 2004 ).

Of note, because this result was not driven by oldest-old

adults diagnosed with CIND, who presumably have dementia-

related pathology accumulating in medial temporal white matter

( Braak and Braak, 1997 ), it further supports the notion that vul-

nerability of medial temporal white matter is primarily attributed

to the aforementioned normal aging processes. In contrast, rela-

tively smaller age effects for the callosal fiber class suggest that

these fibers are somewhat preserved across the older adult lifes-

pan. Whereas the genu of the corpus callosum is noted for be-

ing more vulnerable to aging in younger-old adults ( Bennett et al.,

2010 ; Burzynska et al., 2010 ), it is minimally affected in oldest-old

adults ( Bennett et al., 2017 ), and the opposite pattern holds true

for the splenium of the corpus callosum. The interaction of these

age and regional differences likely results in the net minimal effect

of aging on callosal fibers. 

We further found that age indirectly affected memory per-

formance via medial temporal white matter microstructure, even

after excluding oldest-old adults diagnosed with CIND. Indepen-

dent of age, higher medial temporal FA predicted better mem-

ory recognition performance, and higher AD predicted better

recognition and delayed recall performance, with additional ef-

fects observed between recognition and projection and/or thala-

mic FA. These findings replicate and extend previous studies that

found relationships between medial temporal white matter mi-

crostructure (i.e., fornix, uncinate fasciculus, hippocampal cingu-

lum) and episodic memory in younger-old or lifespan samples

( Bennett et al., 2015 ; Bennett and Stark, 2016 ; Foster et al., 2019 ;

Ly et al., 2016 ; Metzler-Baddeley et al., 2019 ) and suggest that

these memory processes are primarily dependent on the medial

temporal lobe ( Yonelinas et al., 2010 ). They also provide compelling

support for the cortical disconnection hypothesis of cognitive ag-

ing ( Bartzokis, 2004 ; Bennett and Madden, 2014 ; O’Sullivan et al.,

2001 ), which proposes that degradation of white matter interferes

with the transmission of neural signals and ultimately contributes

to cognitive dysfunction in older adults. Of note, whereas previ-

ous studies in cognitively normal younger-old adults find that ag-

ing uniquely affects free recall ( Bennett et al., 2015 ; Stark et al.,

2013 ; Toner et al., 2009 ; Yassa et al., 2011 ), our observation of

age-related declines in both recognition and free recall are more

consistent with previous reports in cognitively impaired younger-

old ( Chen and Chang, 2016 ; Clark et al., 2012 ; Stark et al., 2013 ).

This may indicate that impairments in both forms of memory and

their medial temporal substrates are characteristic of normal cog-

nition in advanced age, although this claim would benefit from fu-

ture studies that can further test the specificity of these results by

comparing multiple forms of cognition. 

The present study is strengthened by our large sample with

age ranges spanning the older adult lifespan, examination of dif-

fusion imaging data across the whole brain, and assessment of the

functional relevance of white matter declines in aging to episodic

memory. A potential limitation is that our younger-old and oldest-

old adults were recruited and tested at separate locations, which

presents a potential confound with the age effects of interest. Im-

portantly, however, we used identical MRI scanners and imaging

sequences across sites, which has previously been shown to at-

tenuate inter-site variability ( Venkatraman et al., 2015 ). Although

TBSS performs superior registration of major white matter path-

ways across participants, which is especially important in advanced
aging populations that experience significant atrophy, it can lack

anatomic specificity for regions with multiple fiber populations

(e.g., superior cingulum) or in close proximity to the ventricles

(e.g., fornix)( Bach et al., 2014 ). To avoid overstating the tract-based

specificity of our results, TBSS was primarily used to identify ro-

bust and common white matter pathways that were then subject

to a standard atlas and collapsed across fiber class. Finally, we

did not perform clinical assessments for CIND within the younger-

old cohort, although general cognitive status for these partici-

pants was assessed using the MoCA. Our interpretations will be

strengthened by future studies replicating and extending the cur-

rent effects of age and cognitive impairment on white matter mi-

crostructure across the older adult lifespan, especially those fo-

cusing on older adults with direct measures of known dementia-

related pathology, including amyloid-beta and tau neurofibrillary

tangles ( Janelidze et al., 2020 ; Thijssen et al., 2020 ). 

In closing, this study revealed widespread age-related differ-

ences in white matter microstructure between the seventh and

tenth decades of life that were better fit by a nonlinear relation-

ship, with the largest effects seen in the medial temporal fiber

class, and that were not solely driven by oldest-old adults with

cognitive impairment or by white matter hyperintensities. More-

over, age-related differences in the microstructure of medial tem-

poral fibers mediated the effect of age on both delayed recall

and recognition memory performance. Furthering our understand-

ing of white matter aging and its impact on episodic memory

in this way is timely given global trends of growth in the older

adult population, and in particular of oldest-old adults ( He and

Muenchrath, 2011 ). 
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