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Abstract 
Here we used deep neural network + hidden Markov model 
(DNN+HMM) to provide a computational account for the rela-
tionship among holistic processing (HP), face scanning pattern 
and face recognition performance. The model accounted for the 
positive associations between HP and eyes-focused face scan-
ning pattern/face recognition performance observed in the lit-
erature regardless of the version of the composite task used to 
measure HP. Interestingly, we observed a quadratic relation-
ship between HP and face scanning pattern, where models be-
ing highly eyes-focused or highly nose-focused had lower HP. 
By inspecting fixation locations and associated attention win-
dow size in the model and XAI methods, we found that the 
eyes- and nose-focused models both developed local and holis-
tic internal representations during training, and their difference 
was in the temporal dynamics of how these representations 
were used. Our findings demonstrated how computational 
modeling could unravel the mechanisms underlying cognition 
not readily observable in human data.  

Keywords: holistic processing; face scanning pattern; face 
recognition; computational modeling 

Introduction 
The ability to recognize faces is of vital importance in daily 
life. Previous studies have reported that holistic processing 
(HP), the phenomenon that people perceive a face as an in-
separable whole rather than separate components (Rossion, 
2013), marks perceptual expertise of faces (Richler & 
Gauthier, 2014). In addition, eye-focused face scanning be-
havior was found to be advantageous to face recognition per-
formance (Hsiao et al., 2022a). However, the relationship 
among HP, face scanning pattern and face recognition perfor-
mance remains inconclusive. Here we aimed to provide a 
computational account on the relationship among HP, face 
scanning pattern and face recognition performance. 

 Previous research has measured HP using different task 
paradigms (e.g., composite face, part-whole, and inverted 
face paradigms) and designs (e.g., standard and partial de-
signs of composite face paradigm). For example, using the 
composite face paradigm, two identical top-halves of a face 
can be perceived as different when they are combined with 
two different bottom halves (Hole, 1994). HP measured using 
this paradigm thus reflects the extent to which people can ne-
glect an irrelevant part of a face (Young et al., 1987). Alt-
hough HP is shown to increase with years of experience with 

 
# These authors contributed equally to this study, and they are considered as co-first authors. 

faces during development, whether it is associated with face 
recognition performance remains inconclusive (Rossion et al., 
2013), since different task designs of the paradigm have led 
to inconsistent findings. For example, using the complete de-
sign where the congruency effect was used to measure HP, 
higher HP was associated with better face recognition perfor-
mance (DeGutis et al., 2013). However, this correlation was 
not always observed using the standard design where the 
alignment effect was used to measure HP (Rezlescu et al., 
2017). This inconsistency may result from different aspects 
of HP being measured: It has been argued that the standard 
design measures perceptual integration (Rossion, 2013), 
whereas the complete design measures failure of selective at-
tention (Richler et al., 2008). However, it remains unclear 
whether these measures indeed reflect different mechanisms 
and inconclusive whether HP measured using this paradigm 
is associated with face recognition performance. 

Face scanning pattern plays a vital role in face recognition. 
Since eyes are the most diagnostic features for recognizing a 
face (e.g., Gosselin & Schyns, 2001), individuals who attend 
more to the eyes during face recognition have better face 
recognition performance. This phenomenon has been ob-
served in studies either using predefined ROI (e.g., Davis et 
al., 2017) or data-driven approaches in eye movement data 
analysis (e.g., Chan et al., 2018). This eyes-focused face 
scanning pattern was shown to be associated with the use of 
high spatial frequency (SF) information (local attention) dur-
ing face identification (Miellet et al., 2011). Indeed, local at-
tention priming using Navon stimuli led to more eyes-fo-
cused face scanning pattern and enhanced performance in 
face recognition as compared with global priming (Cheng et 
al., 2018). In contrast, global attention priming enhanced HP 
of faces using the complete composite paradigm (Gao et al., 
2011). These results suggested that a more eyes-focused face 
scanning pattern is associated with the engagement of local 
attention, which should in turn lead to reduced HP. Consistent 
with this speculation, a recent study observed that a more 
eyes-focused face scanning pattern was associated with lower 
HP using the part-whole paradigm (Hsiao et al., 2021a).  

However, inconsistent with this speculation, Zhong et al. 
(2024) have recently found that individuals who adopted a 
more eye-focused face scanning pattern showed stronger HP 
(as measured using the complete composite paradigm) than 
those being nose-focused. Indeed, as both eyes-focused face 
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scanning pattern and HP have been shown to be beneficial to 
face recognition performance, a more eyes-focused pattern 
may be associated with stronger HP. Thus, the relationship be-
tween HP and face scanning pattern remains unclear.  

Accordingly, here we aimed to address these research gaps 
through computational modeling. Specifically, we aimed to 
provide computational explanations for (1) the relationships 
among HP, face scanning pattern and face recognition perfor-
mance, and (2) whether the results differed when HP was 
measured using the standard vs. the complete composite para-
digms. In the literature, neural network models have been 
commonly used to simulate human face recognition and ac-
count for face processing effects including HP (Omigbodun & 
Cottrell, 2013; Hsiao & Galmar, 2016). Nevertheless, earlier 
models did not typically take human eye movements and the 
associated attention windows into account. To better under-
stand the relationship between eye movement pattern and per-
ceptual representation development during learning to recog-
nize faces, Hsiao et al. (2022) proposed deep neural network 
+ hidden Markov model (DNN+HMM), where the DNN 
learns the optimal perceptual representations under the guid-
ance of an attention mechanism summarized in an HMM, and 
the HMM learns the optimal face scanning pattern through the 
feedback from the DNN. This model was able to account for 
the relationship between face scanning pattern and face recog-
nition performance in human data: the eyes-focused pattern 
predicted better face recognition in adults (Hsiao et al., 2021a), 
whereas higher eye movement consistency predicted better 
face recognition in children (Hsiao et al., 2022). Thus, 
DNN+HMM has good cognitive plausibility in modeling face 
scanning pattern learning in face recognition. Here we adopted 
DNN+HMM to examine the relationship among HP, face 
scanning pattern, and face recognition performance. We ex-
pected that the model would be able to account for the associ-
ation between HP and face scanning pattern or face recogni-
tion performance observed in the literature regardless of 
whether the standard or the complete composite design was 
used to measure HP. In addition, through examining the dif-
ferences in fixation location, associated attention window size, 
and internal representation between models with different face 
scanning patterns, we expected the modeling to provide com-
putational explanations on scenarios where HP may be posi-
tively or negatively correlated with face scanning pattern.  

Method 

DNN+HMM Model Structure and Training 
We adopted the 80 well-trained DNN+HMM models for face 
recognition with the same configuration and model weights 
as Hsiao et al. (2022). The DNN+HMM models (Figure 1) 
first generated three fixation locations and their correspond-
ing SF scale based on its HMM’s initial probabilities, transi-
tion matrix, and emission density (assumed to follow a 
Gaussian distribution). The SF scale was designed to simu-
late different attention window sizes. To extract features at 
these three scales, we generated a set of multi-scale images, 
in the size of 64×64, 32×32, 16×16, corresponding to high SF 

features (smallest attention window), middle SF features, and 
low SF features (largest attention window), respectively. For 
each fixation, a mask was generated using a Gaussian emis-
sion at the fixation location and applied to the corresponding 
multi-scale input image. The masked images were fed into 
convolutional sub-networks to extract image features at each 
SF scale. Each sub-network consisted of two convolutional 
blocks with 8 and 16 output channels respectively, using 3×3 
convolution kernels and ReLU activation function. The im-
age features were aggregated across fixations using element-
wise maximum, thereby simulating visual short-term 
memory. A multi-layer perceptron then used current visual 
memory to predict the face categories, which consisted of two 
fully connected layers: a 40-neuron hidden layer (with ReLU 
activations) and a 100-neuron output layer with a SoftMax 
activation function to produce class probabilities. The param-
eters shared across fixations. The prediction was supervised 
using categorical cross entropy loss, and the total loss was the 
weighted sums over fixations. After training, the 
DNN+HMM acquired face scanning patterns and perceptual 
representations that were favorable for face recognition tasks.  

The models were trained on a subset of the LFW-a dataset 
(Wolf et al., 2011), comprising aligned faces. The 100 most 
frequent individuals were selected to form a dataset of 3,651 
images, 90% of which were randomly selected as training set 
and the rest as validation set. Each model was trained for 500 
epochs to ensure that the model is well-converged, and dif-
ferent weight initializations yielded different models. 

Design  
The HP effect was examined at three levels, following previ-
ous studies (Hsiao & Galmar, 2016; Omigbodun & Cottrell, 
2013): the early perceptual representation from the last con-
volutional (LastConv) layer, the intermediate representation 
from the fully-connected (FC) layer, and the face identity rep-
resentation from the output layer, which was typically meas-
ured in a human behavioral task of HP. For each concerned 
layer of models, a paired sample t-test between aligned and 
misaligned conditions for the standard design and a 2 (con-
gruency: congruent vs incongruent) × 2 (alignment: aligned 
vs misaligned) ANOVA for the complete design was con-
ducted for HP task accuracy to examine whether models ex-
hibited HP. In addition, for each layer, we did the curve esti-
mation to examine the relationship between HP and face 
scanning pattern/face recognition performance.  

Face Recognition Task  
Face recognition task was used to assess face recognition 
ability of the DNN+HMM models. The stimuli included the 
366 face images (the validation set of LFW-a dataset). Mod-
els judged the identity of the face images, which were learnt 
during training. We measured the performance of models as 
the accuracy of predictions for the validation set. 
Data Analysis for Models’ Fixation Behavior 
A variational hierarchical expectation maximization algo-
rithm (Coviello et al., 2014) was applied to cluster the indi-
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vidual HMMs of the 80 models and generate two representa-
tive fixation patterns (HMMs). Following previous studies 
(Hsiao et al., 2021b; Zheng & Hsiao, 2023; Zheng et al., 
2022), models’ fixation pattern was quantified using A-B 
scale, which was calculated as (𝑳𝑨	–	𝑳𝑩)

(|𝑳𝑨|)	|𝑳𝑩|)
, where LA and LB 

represent log-likelihoods of a model’s HMM being generated 
by the representative HMMs A and B respectively. A higher 
A-B scale indicated higher similarity to Pattern A. 
Model Visualization using Explainable AI 
We used eXplainable AI (XAI) method GradCAM (Selvaraju 
et al., 2017), one of the most commonly used visualization 
techniques in XAI, to visualize which of the model's internal 
representations (features) or image regions contributed the 
most to the face identification. GradCAM produces a saliency 
map from the feature map by weighting the feature channels 
by their average gradient, which measures the influence of 
the feature on the output prediction. Specifically, we used 
GradCam to visualize: (1) for each SF scale, the features used 
for the output prediction at the LastConv layer, averaged over 
the individual models in a fixation pattern group; and (2) fea-
tures used by each active neuron in the FC layer, which ex-
plain the types of internal representations used in the model. 

Composite Face Task  
Composite Face Task (Gauthier & Bukach, 2007) was used 
to assess HP of DNN+HMM models. The models were tested 
to see if representations of the attended upper halves of two 
faces were the same or different (Chung et al., 2018). We first 
randomly selected 100 face images from 100 different celeb-
rities in the validation set of LFW-a dataset. We then gener-
ated 500 different pairs of face images by randomly drawing 
from all possible combinations of the face images. For each 
original image pair, we created four manipulated image pairs 
based on congruency by response (same vs different) condi-
tions (Figure 2) for each alignment condition. In the congru-
ent trials, the top halves and bottom halves of the two faces 
elicit the same response. In the incongruent trials, the two 
halves lead to different responses. Each image of the image 

pairs was center cropped to the resolution of 225×225, 
resized and generated multi-scale face images as the input of 
the models. To simulate attention to the upper half of the face, 
following previous studies (Hsiao & Galmar, 2016), the pixel 
value of the lower half of all images was attenuated by mul-
tiplying a factor of 0.5. To simulate misaligned trials, we 
masked the lower half of the face by multiplying the pixel 
value with a factor 0 (i.e., no attention).  

 

 
 

Figure 2. Face stimuli of the composite face task. Note 
that the stimuli were presented in pairs.  

 
We calculated the HP effect at the three stages from the last 

fixation (after aggregating across previous fixations). For the 
LastConv and FC layers, we followed the approach from 
Hsiao and Galmar (2016). In each task trial, the output repre-
sentations of each stimulus were flattened into a one-dimen-
sional vector, and the correlation between the two vectors 
was calculated as a measure of similarity. The model's re-
sponse was regarded as "same" if the correlation of a stimulus 
pair was above a threshold, and as "different" if it was below 
the threshold. The threshold was set as the midpoint between 
the averaged correlation value of the "same" stimulus pairs 
and that of the "different" pairs. For the output layer, we com-
pared the output identities of the two input faces (Omigbodun 
& Cottrell, 2013). If the output identities of the two images 
in a trial were the same, the response was regarded as “same”, 
otherwise the response was “different”. For the standard de-
sign, HP (i.e., alignment effect only) was calculated as (MI - 
AI), where MI and AI denoted accuracy of misaligned and 
aligned incongruent conditions. For the complete design, HP 

Figure 1. The DNN+HMM for face recognition. The bold-italic highlighted text shows the layers where we extracted repre-
sentation features in the DNN+HMM model: LastConv, FC40, and Output layers. Note that the extraction was only con-

ducted in the time step of the last fixation, for its aggregation of the representation from all fixations. 
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(i.e., interaction between congruency and alignment) was cal-
culated as ((AC - AI) - (MC - MI)), where AC, AI, MC and MI 
denoted d' of the four alignments by congruency conditions.1  

Results 

Face Scanning Pattern during Face Recognition 
Here we discovered two representative face scanning patterns 
(see also Chuk et al., 2014; Hsiao et al., 2022; Figure 3): eyes-
focused and nose-focused patterns. After the first fixation at 
the face center/red ROI (100%) with low SF scale (large at-
tention window size), models adopting the eyes-focused pat-
tern typically started to fixate on the two eyes, including 
green (52%) and blue (22%) ROIs, with middle SF scale (me-
dium window size). In contrast, models with the nose-fo-
cused pattern started at the face center (red ROI: 53%) with 
low SF scale or the general eye region (blue ROI: 47%) with 
middle SF scale. They mainly looked at the same region af-
terwards and sometimes shifted to green ROI covering the 
nose and mouth region. The two representative patterns dif-
fered significantly from each other: data from models using 
the eyes-focused pattern were more likely to be generated 
from the eyes-focused than nose-focused HMM, t(36) = 
15.82, p < .001; vice versa for the nose-focused pattern, t(42) 
= 7.25, p < .001. Here the A-B scale was referred to as the 
Eyes-Nose scale (EN scale). The EN scale was positively cor-
related with face recognition accuracy, r(78) = .40, p < .001, 
suggesting that more eyes-focused models performed better. 
 

  
 

Figure 3. The (A) eyes-focused and (B) nose-focused pat-
terns from 80 models. Ellipses show ROIs as 2-D Gaussian 
emissions. The crosses at the center of ROIs show the asso-

ciated attention window size. The table shows transition 
probabilities among the ROIs. Priors show the probabilities 
that a fixation sequence starts from the ellipse. The image in 

the middle shows the corresponding heatmap.  

XAI Saliency Maps for LastConv and FC Layers  
The XAI saliency maps showed that at the LastConv layer, 
models from both eyes-focused and nose-focused groups in-
volved local attention on middle SF scale around the eye re-
gion and global attention on low SF scale (Figure 4A). At the 

 
1 We also calculated unnormalized HP measure, (AC-AI), and the results were consistent with those using the normalized measure. 

FC layer, different active neurons focused on different fea-
tures with different attention window sizes. More specifi-
cally, in both eyes-focused and nose-focused models, some 
active nodes focused on the specific features (e.g., eyes and 
mouth) with local attention, while some other nodes attended 
the whole face with global attention (Figure 4B).  
 

 
 

Figure 4. (A) XAI saliency maps for the LastConv layer av-
eraged across trials and models for eyes-focused and nose-
focused groups under high, middle, and low SF scales. (B) 
The active nodes with the highest three weightings of the 

FC layer from 2 models in eyes- and nose-focused groups. 

Holistic Processing at the LastConv Layer 
Standard Design of Holistic Processing 
At the LastConv layer, models had better accuracy for the 
misaligned than aligned trials, t(79) = 6.55, p < .001, d = .73, 
suggesting that they exhibited HP. HP was not correlated 
with face recognition accuracy or EN scale, ps > .05. There 
was no quadratic relationship between HP and EN scale, R2 
= 0.04, F(2, 77) = 1.65, p = .200 (Figure 5A).  
Complete Design of Holistic Processing 
There was a main effect of alignment, F(1, 79) = 336.08, p 
< .001, η2p = .81, a main effect of congruency, F(1, 79) = 
445.16, p < .001, η2p = .85, and an interaction between them, 
F(1, 79) = 449.82, p < .001, η2p = .85: models performed bet-
ter in the congruent than incongruent trials only in the aligned 
condition, t(79) = 21.25, p < .001, but not in the misaligned 
condition, p = .987, suggesting that the models exhibited HP. 
HP was not correlated with face recognition accuracy or EN 
scale, ps > .05. Interestingly, a quadratic relationship between 
HP and EN scale, R2 = 0.13, F(2, 77) = 5.59, p = .005, β1 = -
0.99, β2 = -4.09 (Figure 5D) was found. This result indicated 
that models adopting a highly eyes-focused or a highly nose-
focused pattern tended to have lower HP, while those using a 
mixture of the two patterns tended to have higher HP. 

Holistic Processing at the FC Layer 
Standard Design of Holistic Processing 
Models had better accuracy for the misaligned than aligned 
trials, t(79) = 15.36, p < .001, d = 1.72, suggesting that they 
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exhibited HP at FC layer. HP showed a linear, r(78) = .35, p 
< .001, as well as a quadratic relationship with EN scale, R2 
= 0.22, F(2, 77) = 10.69, p < .001, β1 = -0.002, β2 = -0.079 
(Figure 5B). However, HP was not associated with face 
recognition accuracy, r(78) = .02, p = .865.  
Complete Design of Holistic Processing 
There was a main effect of alignment, F(1, 79) = 429.61, p 
< .001, η2p = .85, a significant main effect of congruency, F(1, 
79) = 819.00, p < .001, η2p = .91, and an interaction between 
them, F(1, 79) = 873.39, p < .001, η2p = .92: models had better 
performance in the congruent than incongruent trials only in 
the aligned condition, t(79) = 29.39, p < .001, but not in the 
misaligned condition, p = .972. This indicated that the models 
exhibited HP. HP had both a linear, ps < .001, and a quadratic 
relationship with EN scale, R2 = 0.33, F(2, 77) = 19.34, p 
< .001, β1 = -0.07, β2 = -2.86 (Figure 5E), but was not corre-
lated with recognition accuracy, p > .05. 

Holistic Processing at the Output Layer 
Standard Design of Holistic Processing 
Models had better accuracy for the misaligned than aligned 
trials, t(79) = 115.18, p < .001, d = 12.88, suggesting that 
models exhibited HP at output layer. HP had both a linear, 
r(78) = .47, p < .001, and a quadratic relationship with EN 
scale, R2 = 0.46, F(2,77) = 33.12, p < .001, β1 = -0.05, β2 = -
0.86 (Figure 5C). In addition, HP was positively correlated 
with face recognition accuracy, r(78) = .26, p = .021.  
Complete Design of Holistic Processing 
There was a main effect of alignment, F(1, 79) = 1037.26, p 
< .001, η2p = .93, a significant main effect of congruency, F(1, 
79) = 7775.75, p < .001, η2p = .99, and a interaction between 
them, F(1, 79) = 9242.47, p < .001, η2p = .99: models per-
formed better in the congruent than incongruent trials in the 
aligned condition, t(79) = 93.91, p < .001, but not in the mis-
aligned condition, p = .993. This indicated that the models 
showed HP. HP had both a linear, r(78) = .40, p < .001, and 
a quadratic relationship with EN scale, R2 = 0.32, F(2,77) = 
18.39, p < .001, β1 = -0.12, β2 = -2.36 (Figure 5F). HP was 

positively face recognition accuracy, r(78) = .25, p = .028.  

Discussion 
Here we examined the relationship among holistic processing 
(HP), face scanning pattern, and face recognition perfor-
mance through computational modeling. The results were 
summarized in Table 1. We found that models showed an HP 
effect at all processing stages/layers regardless of whether HP 
was measured using either the standard or the complete de-
sign. The models also showed a positive correlation, as well 
as a quadratic relationship, between HP and eyes-focused 
face scanning pattern using the HP measures from the inter-
mediate representation at the FC layer and the face identity 
representation at the output layer. Specifically, models that 
showed highly eyes-focused or highly nose-focused patterns 
tended to have lower HP, while those whose face scanning 
patterns were a mixture of the two patterns tended to have 
higher HP. Finally, HP as measured from the face identifica-
tion stage was positively correlated with face recognition per-
formance. In general, the results were consistent regardless 
of whether the standard design or the complete design was 
adopted to measure HP.  

Our results showed that greater HP was associated with 
better face recognition performance when HP was measured 
using the face identity representation at the output layer. This 
finding was generally consistent with the previous studies us-
ing the complete design (Richler et al., 2011), though this as-
sociation was not always observed using the standard design 
(Rezlescu et al., 2017). This inconsistency may result from a 
lower testing power of the standard design (Richler & 
Gauthier, 2014). After enabling a greater testing power with 
a larger number of trials (500 trials per condition) in the cur-
rent study, the positive relationship between HP and face 
recognition performance was consistently found using both 
designs. Note that at the output layer, HP was measured ac-
cording to whether the model identified the two input faces 
(with the bottom halves attenuated) as the same face identity. 
Since face recognition performance was also measured from 

Figure 5. The linear and quadratic relationship between HP and EN scale in each concerned layer. 
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the output layer, this may explain why the correlation with 
face recognition performance was only observed when we 
measured HP at the output layer. This result suggests that the 
positive association between HP and face recognition perfor-
mance observed in human data may originate from the face 
identification processes of the composite face task and face 
recognition task.  

However, HP may not always predict better recognition 
performance. Previous studies reported that people with face 
drawing experience showed lower HP than novices but did 
not differ in face recognition performance from novices 
(Zhou et al., 2012). This suggested that being more or less 
holistic due to better perceptual expertise may not be associ-
ated with face recognition performance. Consistent with 
these findings, here we found that HP was not associated with 
face recognition performance if it was measured using the 
representations at the early perceptual and intermediate 
stages. Thus, whether HP is associated with face recognition 
performance may depend on whether participants’ responses 
in the composite face task rely more on the matching of face 
identities or lower-level features. 

In addition, we found that more eyes-focused models 
showed greater HP when HP was measured at the intermedi-
ate or the late face identification stage. This result is con-
sistent with a recent study where people who adopted a more 
eyes-focused face scanning pattern showed greater HP 
(Zhong et al., 2024). Interestingly, we observed a quadratic 
relationship between HP and face scanning pattern, suggest-
ing that models adopting a mixture of eyes-focused and nose-
focused patterns have greater HP, while those being highly 
eyes-focused or highly nose-focused have lower HP. By in-
specting the representative eyes- and nose-focused patterns 
in Figure 3, both models involved a high probability to look 
at the red ROI centered at the bridge of the nose between the 
two eyes with a large attention window at their first fixation 
(Priors), which could be the source of the association between 
looking at the eye region and HP. However, while the eyes-
focused model always started with a fixation at this red ROI, 
the nose-focused model had a 47% probability to start with a 
fixation at a similar location but with a small attention win-
dow (Blue ROI). This could be related to why nose-focused 
patterns sometimes could be related to decreased HP. Simi-
larly, after the red ROI, the eyes-focused model had high 
probabilities to switch between the two individual eyes with 
a small attention window, which could explain why a very 
eyes-focused pattern may also sometimes be associated with 
reduced HP. DNN+HMM allowed us to model the associa-
tion between fixation locations and attention window sizes, 

which could not be readily observable in human eye move-
ment data. This information helped us better understand the 
relationship between face scanning pattern and HP. Also, this 
relationship was not observed at the early featural processing 
stage of the model (LastConv layer), suggesting that the in-
formation use associated with eye fixations may be better rep-
resented at intermediate and late processing stages.  

The XAI visualization further supported our speculation. 
At the early perceptual stage, models in both eyes- and nose-
focused groups used information at the middle SF scale from 
the eye region and information at the low SF scale from the 
face center. This suggested that the two groups had similar 
information use from similar regions of a face regardless of 
the face scanning pattern differences, consistent with some 
previous studies (Miellet et al., 2013). At the intermediate 
stage, some active nodes in the FC layer encoded only local 
features, while some others encoded information across the 
whole face. This was observed in both groups, suggesting 
again that both groups have developed local and holistic in-
ternal representations during training, and the difference be-
tween the two groups was in the temporal dynamics of how 
these representations were used for face recognition as sum-
marized in their respective HMMs (Figure 3).  

In conclusion, by applying DNN+HMM to modeling face 
recognition, we have provided a computational account for 
the relationship among HP, face scanning pattern, and face 
recognition performance. More specifically, the model ac-
counted for the positive associations between HP and eyes-
focused face scanning pattern/face recognition performance 
observed in the literature regardless of whether the standard 
or the complete composite design was used to measure HP. 
This finding suggested that the inconsistent results obtained 
in the literature from human data may be related to insuffi-
cient testing power. Interestingly, we also observed a quad-
ratic relationship between HP and face scanning pattern, 
where models being highly eyes-focused or highly nose-fo-
cused had lower HP. By inspecting the relationships between 
fixation locations and attention window size in the model and 
the model visualization through XAI methods, we found that 
the eyes- and nose-focused models have both developed local 
and holistic internal representations during training, and their 
difference was in the temporal dynamics of how these repre-
sentations were used as summarized in their respective 
HMMs. Our study thus demonstrated well how computa-
tional modeling could help unravel the information pro-
cessing mechanisms underlying cognition not readily observ-
able in human data.   

Table 1. An overview of results comparisons across different layers and composite task paradigms of the relationship among 
HP, face scanning pattern (EN scale), and face recognition performance. ✓and × denote yes and no respectively. 
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