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Abstract 
 

A process model of human memory dynamics is proposed as 
an implementation of Kittur, Green, & Bjork’s (2004) 
mathematical model.  Both models are based on an ideal in-
formation processing approach, in which an item’s 
accessibility is based on the predicted future need of that item.  
The proposed model is an adaptation of the multiple-trace ar-
chitecture of Hintzman’s MINERVA2 model (Hintzman 1984; 
1986; 1988).  We present simulations of complex spacing and 
practice dynamics encompassing the mechanics of Bjork and 
Bjork’s (1992) New Theory of Disuse, which accounts for di-
verse phenomena such as massed vs. spaced practice and 
spontaneous recovery.  In addition, we show how the model 
explains and simulates time-dependent serial position effects 
(such as the shift from recency to primacy with delay and 
time-invariant recency effects).  The model’s potential as a 
tool for exploring the relationship between the content of 
items in memory and more general memory dynamics is also 
discussed. 

 
Memory as a System for Predicting Need 

Kittur, Green, & Bjork (2004) described a mathematical 
model of memory dynamics inspired by Bayesian statistics.  
The model is driven by the assumption that memory ap-
proximates an ideal information processor, keeping memory 
items accessible to the degree that they are likely to be 
needed in the future (see Anderson, 1989 for further ration-
ale on this approach).  The predicted future need for an item 
is computed by the model based on the pattern of past re-
trievals for that item and the time since it was last retrieved.  
This is best illustrated by analogy. 

Imagine that Book A has been checked out of a library 
once a month for the past year.  Book B, on the other hand, 
has been checked out every week for the last month but 
never prior to that.  If the librarian was forced to choose 
which of the two books should be kept readily available, the 
best choice would change over time.  Initially, the librarian 
would probably keep Book B more readily retrievable as it 
has been needed frequently in the recent past (possibly, an 
instructor has assigned reading from this book for a class 
project); however, after a month has passed with neither 
book being required, the librarian would likely decide that 
Book A should be more accessible, given its history of be-
ing required at regular, if infrequent, intervals. 

The Kittur, Green, & Bjork (2004) model functions in a 
similar way.  It calculates the probability that an item will 
be needed given three key pieces of information: the aver-
age interval between past retrievals; the number of times the 
item was retrieved in the past; and the time since it was last 

retrieved.  The use of these elements allows for a distinction 
between item accessibility and item storage, a key insight of 
the New Theory of Disuse (NTD) (Bjork & Bjork, 1992).  
The model was inspired by and provides a potential algo-
rithmic basis for the NTD and the complex memory dynam-
ics it explains. 
 

The New Theory of Disuse 
The NTD accounts for a variety of effects in the human 

memory literature.  The NTD includes the following as-
sumptions about memory (see Bjork & Bjork, 1992): 

1) Memory items are associated with two distinct 
“strengths”: a storage strength (SS) and a retrieval strength 
(RS).  SS indicates how well-learned an item is (that is, the 
accumulated history of an item is reflected in its SS).  RS, 
on the other hand, indicates how readily accessible an item 
is for retrieval.  RS alone determines the probability that an 
item will be successfully recalled from memory.  SS does 
not directly influence memory performance, but has impor-
tant implications for memory dynamics over time1. 

2) SS does not decrease.  SS grows during study or re-
trieval events as a decelerating function of the current SS.  
That is, all else being equal, items with low SS benefit from 
study or retrieval events more than items with high SS.  The 
total storage strength across all items in memory is therefore 
unbounded.  Changes in SS are dependent on both RS and 
SS.  An item gains SS as a decelerating function of its cur-
rent SS, and as a decelerating function of its current RS. 

3) RS increases and decreases.  As with SS, an item gains 
RS as a result of study or retrieval events.  When the item is 
not being studied or retrieved, such as when other items are 
being attended, RS decreases. As a result, gains in RS for 
one item necessarily result in a loss of RS for the other (un-
studied) items in memory, though these are not necessarily 
changes of the same magnitude.  Changes in RS are depend-
ent on both RS and SS: Gain in RS due to a retrieval or 
study event is a decelerating function of current RS, and an 
increasing function of current SS.  Conversely, RS loss in is 
faster the larger the current RS is, and slower with larger SS. 

4) Generally, retrieval events are more potent than study 
events.  Increments in both SS and RS are larger when an 
item is retrieved versus when it is studied. 

                                                 
1 The two-strength theory espoused by NTD and implemented in 
MNEM is an important difference between it and other related 
need-based models, such as Anderson’s ACT-R (1989).  We are 
currently exploring testable differences between the models. 
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The postulation of two separate strengths whose magni-
tudes influence each other is at the core of NTD’s account 
of retrieval and memory dynamics. 

 
The MNEM Model 

Many models of human memory employ a strategy that 
assumes each item stored in memory is represented by a 
single memory trace.  For example, the studied item “horse” 
would be instantiated as a single mental symbol, and further 
exposure to “horse” would serve to strengthen or heighten 
the activation (or gain—i.e. sensitivity to excitation) of that 
symbol.  However, such models struggle with the problem 
that no two exposures to an item are identical: the spatial, 
temporal, or subjective context of encoding is variable.  
Additionally, changes in attention or effort may occur dur-
ing different exposures to an item and attributes of a stimu-
lus that are important at one point may be more or less im-
portant at some point in the future.  Multiple trace models of 
memory are better suited to deal with variable encoding, in 
that they do not assume that all encodings of an item are 
linked to a single representation.  Such models also do not 
assume a mechanism for reconciling variable encodings 
with unitary representation. 

MNEM (Memory Need Expectation Model), like MI-
NERVA2 and other multiple trace models, works on the 
assumption that every instance of encoding lays down a new 
memory trace in the long-term store.  If a single stimulus is 
encoded on multiple occasions (studied and re-studied), then 
MNEM creates and stores separate traces for each encoding 
event.  Because of random information loss during encoding 
events (see below), recording new traces for every instance 
produces variability in the Long Term Memory (LTM) rep-
resentations of a repeated item.  This variability occurs in 
addition to any variability introduced by context, environ-
ment or attention, which may also be introduced to the 
model. 
 
Representation 

The representations upon which MNEM operates are 
simple, and are adapted from Hintzman’s (1984) MI-
NERVA2 model.  Each trace in MNEM is an ordered vector 
of size n, with each element taking on the values of   -1, 0, 
or +1.  The elements can be thought of as corresponding to 
specific feature dimensions (e.g. “redness”, “roundness”, 
“chair-ness”, etc.), with values indicating the absence of a 
specific feature (-1), the presence of the feature (+1), or a 
lack of information about the feature (0).  The format is 
open to other interpretations, of course. 

Consideration of the history of a memory item depends on 
the ability to examine past encodings of that item. It is 
unlikely, however, that any two memory traces are actually 
identical.  That is, identifying instances of trace T is simple 
when literal copies of T are stored in several LTM locations, 
but it is more likely that LTM traces containing the same 
information are encoded with different contexts, or with 
different features emphasized.  Instead of a single strength-
ened trace T, or many literal copies of T, we may store sev-

eral traces similar to T: T’, T”, etc.  As such, it is necessary 
to resolve some ambiguity about which traces in LTM 
should be counted as instances of a single item. 

MNEM uses a specific similarity metric to evaluate the 
similarity of two memory traces.  Borrowing again from the 
MINERVA2 model, the similarity of an LTM trace T to 
some probe trace P is calculated as follows: 
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where n is the number of elements in the trace and NR indi-
cates the number of relevant features in the pair of traces.   
Relevant features are defined as features for which at least 
one of the two traces contains a non-zero value; in other 
words, if neither trace contains any information about the 
presence or absence of a feature, then the feature is not 
counted as relevant.  This similarity function approximates a 
dot product calculated on the feature sets of the two traces, 
T and P. 

This representational format is admittedly simplistic, 
though one advantage of this simplicity is that it requires 
few assumptions.  In fact, the MNEM model requires only 
two key properties of its representations: they must be ame-
nable to some systematic similarity metric, and they must be 
combinable in a systematic way.2

Any representational format that meets these requirements 
is compatible with the MNEM model.  This flexibility 
makes it amenable to incorporation into diverse cognitive 
architectures, where other components of the system might 
necessarily place more serious constraints on the representa-
tional format. (As an example, as ordered one-dimensional 
vectors may be too limiting for representing relational struc-
tures, an alternative and appropriate format could be used 
provided it satisfies the above requirements).  That human 
memory traces satisfy these constraints is a common (if 
sometimes implicit) assumption among cognitive scientists.  
The ability to judge the degree to which two stimuli are 
similar is fundamental to human cognition.  Schema abstrac-
tion, generalization, and conceptual blending are 
psychological phenomena that may involve the combination 
of two or more stimuli to form a composite or abstraction. 
 
Architecture 

Like MINERVA2, MNEM has two components: a work-
ing memory (WM) and a LTM.  WM consists of a buffer 
that holds a single trace.  All inputs to and outputs from 
LTM are buffered by WM.  Traces that are in WM may be 
encoded into LTM, and information retrieved from LTM is 
brought into WM.3

                                                 
2 The second requirement is not important for simulating retrieval 
dynamics, but will be critical in future work when the model is 
used to generate content from a set of memory traces. 
3 The authors have not attempted to model WM except in the sense 
that it is a buffer between the world and LTM.  In MNEM, multi-
ple traces are not maintained simultaneously, and no attention is 
required for WM trace maintenance.  WM traces may be overwrit-
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LTM is simply a collection of memory traces that have 
been encoded from WM.  The current model imposes no 
(theoretical) limit on the capacity of (the number of traces in) 
LTM.  Each LTM trace is associated with an index.  The 
indices are assigned in the order with traces are encoded 
into LTM, so that traces encoded earlier have lower indices.  
The authors consider this equivalent to incorporating spatio-
temporal tags on memory traces.  Extensions of MNEM 
may attempt to use a subtler form of spatio-temporal tag-
ging.4
 
Operations 
Encoding  The encoding operation of the model is rela-
tively simple, and amounts to little more than copying a 
WM trace into LTM.  As discussed, MNEM assumes that 
variability exists in encoding process (i.e. information is 
randomly lost during encoding). 

The accuracy of encoding depends on a learning rate pa-
rameter (L) which indicates the independent probability that 
any trace feature will be properly encoded (where 0 < L ≤ 1).  
For example, when L = 0.7, seven out of ten features in a 
trace are accurately copied into the LTM trace (on average).  
The features that are not properly encoded result in gaps in 
LTM information (zeros are written into the LTM trace 
where 1 or -1 existed in the WM trace).  During the encod-
ing process, information is only lost, not distorted: a 1 in the 
WM trace is never erroneously encoded as a -1 in the LTM 
trace, nor vice versa.  This encoding procedure is taken di-
rectly from MINERVA2. 

Every encoding event yields a new LTM trace, regardless 
of whether the content of the new trace is redundant with 
existing LTM traces.  The similarity of traces is not consid-
ered during the encoding process. 
 
Retrieval  Calculating RS for an item is also relatively 
straightforward.  The main complication arises from deter-
mining which LTM traces should be considered in the RS 
calculation when variability exists among different encod-
ings of an item.  To address this problem, MNEM “marks” 
the traces in LTM whose similarity to the probe item ex-
ceeds a set criterion.  (This criterion similarity, Cs, is a pa-
rameter of the model).  For example, if Cs is set to 0.75, then 
only traces for which S(P,T) ≥ 0.75 will be marked for in-

                                                                                  
ten, but this is the only way that information is “lost” from 
MNEM’s WM. 
4 The authors are currently exploring the incorporation of a context 
vector into encoded representations, or giving individual traces an 
activation value which would be initialized to some maximum at 
encoding, and would decay over time.  In the latter strategy, the 
activation value would represent a trace’s “age” for purposes of 
calculating RS.  The RS calculation would consider the difference 
between the activations of two traces.  This approach remains un-
tested, but seems promising in that the decay function would likely 
be non-linear, decelerating as it approaches zero.  This being the 
case, two traces equally displaced in absolute time would become 
less discriminable with age. 

clusion in the RS calculation.  Once LTM traces are marked, 
the mean retention interval between them is calculated: 
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where P is the item for which RS is being calculated, Mi is 
the ith marked LTM trace, and Nm is the total number of 
marked LTM traces.5  The index() operator simply indicates 
that the model is using the LTM index for a trace and not 
the trace itself. 

This mean interval  is multiplied by the number, or “base 
rate”, of similar instances in LTM.  The base rate (BR(P)) is 
equal to the number of marked traces in LTM: 

mNPBR =)( .                (3) 

The product of the mean retrieval interval and the base 
rate6 is divided by the size of the current retrieval interval, 
which is the number of time steps that have elapsed since 
the last marked item was encoded: 

)()()( maxMindexPindexPCI −= ,      (4) 

where index(Mmax) indicates the index of the timestep during 
which a marked trace was most recently encoded.  Also, 
index(P), the time index for the encoding of the current item, 
is simply set to the index of the current timestep (which is 
equal to the number of traces in LTM plus one: Nltm + 1). 

In summary, RS can be characterized thus: 
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That is, the accessibility of an item P, is equal to the product 
of the average retention interval between instances like P in 
LTM and the number of such instances, divided by the in-
terval that has elapsed since the last instance of P occurred.7

In order to compare forgetting curves, it is necessary to 
normalize RS(P).  This is accomplished by finding the ratio 
of logarithm of RS(P) to the maximum value that RS(P) 
obtains for an item (immediate recall).8  (Because the log 
may be negative, we add one to both numerator and de-
nominator for convenience).  In all simulations, this ratio is 
reported as RS.  That is: 

)1)(log(
)1)(log()(

max +
+

=
PRS
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.       (6) 

                                                 
5 When only a single trace in LTM is marked, the average retention 
interval is defaulted to a value of 1. 
6 This product is the closest analog to SS in MNEM: 

)(*)()( PBRPRIPSS = .  Note that unlike RS, SS is strictly increas-
ing with additional study, and is not subject to decay.  SS influ-
ences changes in RS, most importantly by retarding the loss of RS 
over time (see Figure 3). 
7 This definition of RS is at the core of the Kittur, Green, and Bjork 
(2004) model, which exhibits the same memory dynamics in a 
single-trace architecture. 
8 See Pavlik & Anderson (2003) for rationale on scaling forgetting 
using the maximum (current) activation of a trace. 

496



The result of normalization is that immediate recall yields a 
reported RS of 1, and any delay in recall produces an RS 
between 0 and 1.  This allows for comparison of forgetting 
curves in terms of probability of recall. 
 
Trace Composition  The formation of composite traces 
from a set of LTM traces is also important in this model.  
We have specified how one may calculate the RS of a spe-
cific item in LTM, but retrieving useful information from 
the LTM store is another matter entirely.  MINERVA2 in-
cludes a mechanism that uses similarity to weight traces in 
LTM, and forms a composite “echo” by averaging these 
weighted traces.  MNEM employs a similar strategy, but 
instead of all traces in LTM, only those that exceed the 
similarity criterion are weighted and averaged.  While this is 
an important aspect of the model, and may allow simulation 
of important memory phenomena (e.g. encoding specificity, 
context effects, etc.) the details of this operation are not di-
rectly relevant to the retrieval dynamics discussed here, and 
we will leave them for another time. 
 

Simulation Results 
The NTD was conceived to “post-dict” a number of 

memory effects.  In the previous discussion of that theory, 
behavioral correlates of RS and SS were noted.  MNEM 
implements the same relationships between RS and SS and 
its performance is similar to that of humans on a variety of 
memory tasks. 
 

 
 

Figure 1: Forgetting curves for items studied three times 
each, with inter-item intervals of 3, 6, 12, 24, or 48 

timesteps. 
 
Forgetting Over Time 

MNEM displays forgetting curves that closely resemble 
those of human subjects.  Behavioral data suggest that the 
probability of recalling a once-studied item declines as a 
function of the retention interval.  More specifically, access 
to an item declines as a function of intervening experience 
(Thorndike, 1914; McGeoch, 1932; Bjork & Bjork, 1992). 

NTD postulates that probability of recall is linked to RS 
only, but that changes in RS are mediated by SS.  The par-
ticular rate of forgetting for an item is influenced by the 
frequency of exposure to an item (Melton, 1967; Krueger, 
1929), as well as the interval between exposures (Peterson, 
Hillner, & Saltzman, 1962; Whitten & Bjork, 1977).  
MNEM captures the general shape of forgetting curves, and 
simulates frequency and spacing effects observed in human 
data. 

In simulation, a single item A is studied according to vari-
ous schedules.  At various delays, the RS of A is calculated, 
which indicates the probability that it would be recalled at 
that interval since last study.  To simulate the passage of 
time without study or retrieval events, a randomly generated 
memory trace is encoded into LTM on each timestep.9  Note 
that in simulation, the calculation of RS does not affect the 
state of LTM. 

The simulated practice schedules vary in the number of 
exposures of A, as well as in the spacing of exposures.  For-
getting curves generated by MNEM for items studied with 
equal frequency, but different inter-item intervals are shown 
in Figure 1.  Figure 2 shows forgetting curves for items 
studied at equal intervals, but with different frequencies. 

 

 
 

Figure 2:  Forgetting curves for items studied with equal 
spacing (3 timesteps between exposures) and frequencies of 

1, 5, 10, 20, or 40 exposures. 
 

Spacing and frequency effects are important aspects of 
human memory in that they give rise to more complicated 
phenomena.  For example, in some circumstances an old 
habit may be replaced with a new behavior, only to re-
emerge at a later time, a phenomenon known as spontaneous 
recovery (Estes, 1955; Koppenaal, 1963). 

                                                 
9 It is worthwhile to note that the noise introduced to the LTM 
system is relatively unconstrained.  In fact, the same method that 
generates the “studied” trace for these simulations is used to gener-
ate the “noise” traces that are interpolated between the study event 
and the sampling of RS. 
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NTD and the MNEM model account yield spontaneous 
recovery as a natural consequence of different forgetting 
rates.  Simulation data in Figure 3 show spontaneous recov-
ery.  Item A represents an old response that has been learned 
over a long period of time.  Item B is a new response in-
tended to replace A.  As B is acquired, A’s RS decays 
substantially.  However, we observe that A gains an advan-
tage after a certain delay.  If B is not practiced, the larger SS 
of item A yields a shallower forgetting curve. The decay of 
RS is slower for trace A than for trace B and the curves cross 
over.  The older habit will remain more accessible thereafter. 
 
Primacy & Recency 

Primacy and recency are well-known memory phenomena.  
When a list is studied, items that appeared early in the study 
list are more recallable than items near the middle of the list.  
Primacy effects have been attributed to covert rehearsal be-
tween study presentations (Glenberg et al., 1980).  Effec-
tively, subjects create extra study opportunities in the gaps 
between item exposures. 

 

 
 
Figure 3: Spontaneous recovery of response A occurs after 
learning response B.  This is due to a larger increase in re-
sponse A’s SS at reminding, owing to a lower RS at that 

time. 
 

Similarly, items presented near the end of the list are also 
recalled better than mid-list items.  Recency results from the 
relatively short retention interval between study and test.  
Prior work has demonstrated that there is a shift from re-
cency to primacy over increasing retention intervals (Craik, 
1970; Knoedler, Hellwig, & Neath, 1999).  The MNEM 
model shows similar behavior. 

In simulation, a list of 20 items is studied, with five 
timesteps between study events.  Between trials, the simu-
lated subject is assumed to perform covert rehearsal on 
some of the items presented so far, in order, for the duration 
of the interval.  This strategy lasts for a limited number of 
presentations (three, in this simulation), at which point the 
simulated subject is assumed to become overwhelmed by 

the number of items and therefore abandons the covert re-
hearsal strategy.  Beyond this point, inter-trial intervals are 
filled with random traces, as in previous simulations.10

At the end of the study phase, the RS for each of the 20 
items is calculated at five different retrieval intervals.  The 
serial position curves that result are shown in Figure 4.  
Three features are notable: the prominence of recency ef-
fects in immediate recall; the presence of primacy in all se-
rial position curves; the shift of recency to primacy as the 
dominant pattern in the data as the retention interval grows. 

 

 
 
Figure 4: Serial position curves at delays of 0, 30, 90, 150, 
and 210 timesteps.  Note the rapid decay of recency effects 

relative to the slower decay of primacy. 
 

The recency effects observed in simulation share a subtle 
property with human behavioral data: time-invariance.  
Some data from humans suggest that the magnitudes of re-
cency effects follow a ratio rule (Glenberg et al, 1980; 1983; 
Bjork & Whitten, 1974).  This phenomenon was described 
mathematically by Bjork & Whitten (1974).  Specifically, 
recency effects scale with the log of the ratio of mean pres-
entation interval divided by the current retention interval: 

)
)(
)(log(

PCI
PRIrecency ∝         (7) 

This behaviorally-derived ratio rule is inherent in the 
MNEM model (see Kittur, Green & Bjork, 2004).  Figure 5 
shows serial position curves for various ratios of mean re-
tentional interval to current retention interval. 

 
Conclusions and Future Directions 

The model described here shows memory dynamics that 
are consistent with human behavioral data.  Forgetting 
curves, spacing and frequency effects, and serial position 
curves are generated in simulation by following the assump-

                                                 
10 Glenberg, et al., (1980) observed that primacy effects were 
eliminated when participants were prevented from performing 
cumulative rehearsal on early list items. 
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tions of NTD, and allowing items to accumulate independ-
ent SS and RS. 

The relative simplicity of this model (and its more general 
mathematical formulation in Kittur, Green, & Bjork, 2004), 
makes it a useful tool for exploring subtle issues in memory 
and generating concrete experimental predictions.  There is 
potential to extend our understanding of retrieval dynamics 
to a greater diversity of memory phenomena by manipulat-
ing the content of the memory traces used in simulation.  
For example, MNEM provides a natural platform for explor-
ing the influence of inter-item associations on memory dy-
namics.  In addition, MNEM may prove to be informative 
on issues surrounding schema abstraction, categorization, 
and other arenas where knowledge content is an issue.  Con-
text, encoding specificity, and variability effects may also 
be amenable to analysis with this model in the future. 

 

 
 
Figure 5:  The magnitude of recency effects in MNEM scale 
with the ratio of mean retention interval to current retention 

interval.  Serial position curves are shown for spacing to 
retention interval ratios of 1, 0.5, and 0.25. 
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