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Abstract

Symmetric Constrained Optimal Control: Theory, Algorithms, and Applications

by

Claus Robert Danielson

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

This dissertation develops the theory of symmetry for constrained linear systems. We use
symmetry to design model predictive controllers for constrained linear systems with reduced
complexity.

The dissertation is divided into three parts. In the first part we review the relevant
results from model predictive control and group theory. In particular we present algorithms
and data structures from computational group theory used to efficiently search groups.

In the second part we develop the theory of symmetry for constrained linear systems
and model predictive control problems. Symmetries of constrained linear systems are linear
transformations that preserve the dynamics and constraints. A symmetry of a model predic-
tive control problem is a symmetry of the underlying constrained system that also preserves
the cost. We use a group theoretic formalism to derive properties of symmetric constrained
linear systems and symmetric model predictive control problems. We prove conditions under
which the model predictive controller is symmetric and present a procedure for efficiently
computing the symmetries of constrained linear systems and model predictive control prob-
lems. Our method transforms the problem of finding generators for the symmetry group
into a graph automorphism problem. These symmetries are used to design model predictive
control algorithms with reduced complexity.

We also present two novel explicit model predictive control designs. Both reduce memory
requirements by discarding symmetrically redundant pieces of the control-law. The control-
law in the eliminated pieces can be reconstructed online using symmetry. We show that
storing the symmetries of the problem requires less memory than storing the controller
pieces.

In the third part of this dissertation we apply our symmetry theory to the battery bal-
ancing problem. We use symmetry to reduce the memory requirements for explicit model
predictive controllers for seven battery-balancing hardware designs proposed in the litera-
ture. This application demonstrates that our symmetric controller designs can significantly
reduce the memory requirements of explicit model predictive control. In particular for four
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out of seven of the designs in our numerical study, the number of pieces in the symmetric
controller did not increase as the battery pack-size was increased.
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Chapter 1

Introduction

“The chief forms of beauty are order and symmetry and definiteness,
which the mathematical sciences demonstrate in a special degree.

-Aristotle”
This dissertation develops the theory of symmetry for constrained linear systems. We

use symmetry to design model predictive controllers with reduced complexity for constrained
linear systems.

1.1 Motivation

Piecewise affine controllers are commonly used to control constrained linear systems. These
controllers use different feedback and feedforward gains in different regions of the state-space.
For instance, the controller may have more aggressive gains near the boundary of the state
constraints and less aggressive gains near the equilibrium.

One method for generating a piecewise affine control-law is explicit model predictive
control. Model predictive control is a popular technique for controlling constrained systems.
In model predictive control, the control input is obtained by solving a constrained finite-
time optimal control problem. If the constrained finite-time optimal control problem is
solved online then the controller is called implicit. In explicit model predictive control the
constrained finite-time optimal control problem is solved offline and stored as a look-up table.
For linear systems subject to polytopic constraints with linear or quadratic cost functions,
the explicit model predictive controller is a piecewise affine state-feedback control-law. This
controller divides the state-space into polytopic regions, each of which has a different feedback
and feedforward gain.
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Explicit model predictive control provides a systematic method for constructing a piece-
wise affine control-law for a constrained linear system. Through proper design of the con-
strained finite-time optimal control problem, we can guarantee that this piecewise affine
controller is stabilizing and satisfies the constraints on the system states and inputs. The
disadvantage of using explicit model predictive control is that the piecewise affine control-law
can have an excessive number of pieces. The number of controller pieces can grow exponen-
tially with the number of constraints on the system. Often an embedded micro-controller
will have insufficient memory to store the full explicit controller. Extensive research has
been conducted on reducing the memory required for explicit model predictive controllers
either by compressing the controller [1, 56, 78] or generating a sub-optimal explicit controller
[84, 52, 58]

In this dissertation we use a property of the system, called symmetry, to compress the ex-
plicit model predictive controller without loss of performance. For a piecewise affine control-
law symmetries are state-space and input-space transformations that relate controller pieces.
Using symmetry we can discard some of the pieces of our controller. These discarded pieces
can be reconstructed online using symmetry. Thus we can reduce the complexity of our
controller and save memory without sacrificing performance. The amount of reduction in
complexity depends on the number of symmetries possessed by the system. For systems with
large symmetry groups the techniques presented in this dissertation can significantly reduce
the complexity of the piecewise affine control-law produced using explicit model predictive
control.

1.2 Literature Review

Symmetry has been used extensively in numerous fields to analyze and simplify complex
problems. Symmetry is a standard analysis tool in physics [3] and chemistry [21]. In recent
years, symmetry has been applied to optimization. In optimization theory symmetries are
transformations of the decision space that do not change the cost or feasible region. See sur-
veys [62, 35] for details. In [12] the authors showed that the optimal solution to a symmetric
linear program lies in a lower-dimensional subspace called the fixed-space of the group. This
result was extended to semi-definite programs and integer programs in [68] and [13] respec-
tively. In [42] symmetric semi-definite programming was used to simplify the sum-of-squares
decomposition of polynomials. In [4] symmetric semi-definite programming was applied to
the optimal design of truss structures.

In this dissertation we use the concept of fundamental domains [38] to simplify the
design of explicit model predictive controllers. In [40] the author used fundamental domains
to simplify the linear programming relaxation of integer linear programs. In [54] the authors
applied the related concept of orbitopes to the packing and partitioning integer programs.

Symmetry has also been used to analyze and simplify control design [79]. In control
theory symmetries are transformations of the state-space, input-space, and output-space that
map the state-space matrices to themselves. Many systems tend to exhibit large symmetry
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groups. For instance apartment and office buildings have many rooms laid out in regular
patterns [55]. Complex machines are built from similar components arranged into specific
patterns [82]. Multi-agent systems tend to be composed of identical agents or a small number
of different types of agents [44].

For unconstrained symmetric linear systems, symmetry can be used to block-diagonalize
the state space equations. Using group representation theory [75, 38] a basis for the state-
space, input-space, and output-space can be found that decomposes the system into smaller
decoupled subsystems. This basis is called the symmetry adapted basis. In [37, 47] it was
shown that properties of the system such as controllability and stability can be determined
by checking the smaller decoupled subsystems. In [25] symmetry adapted basis was used to
simplify the design of H2 and H∞ controllers. Using symmetry adapted basis, the authors
designed H2 and H∞ controllers for each of the decoupled subsystems. The H2 norm of the
full system is the sum of the H2 norms of the decoupled subsystems. And the H∞ norm of
the full system is the max of the H∞ norm of the decoupled subsystems. In [15] symmetry
was used to simplify the process of finding the transition probabilities of Markov-Chains that
produce the fastest convergence. The authors used symmetry adapted basis to decompose
the fastest-mixing Markov chain problem into smaller semi-definite programs.

In [5] the authors exploit spatial invariance for controlling distributed systems. The
authors show how to decompose an infinite dimensional semi-definite program into an infi-
nite family of finite problems by using spatial Fourier transforms. In [73] the authors use
these semi-definite programming formulations to design distributed controllers for spatial
distributed systems. The interconnection pattern of the subsystems is the Cayley graph
of an Abelian group. The authors use this group structure to simplify their semi-definite
programs. In the subsequent paper [26] the authors extend their results to interconnections
that are Cayley graphs of non-Abelian groups.

Unfortunately these approaches are not applicable for constrained systems. All previous
methods use symmetry to find invariant subspaces that decompose the system into smaller
subsystem. Each of these decoupled subsystems can be controlled independently. This sim-
plifies the control design since these subsystems are much smaller than the original system.
However, when applied to constrained systems, these transformations do not decompose
the state and input constraints. Therefore the constraints recouple the subsystem. This
negates the advantage of being able to design the controllers for the decouple subsystems
independently.

In this dissertation we adopt a novel approach for exploiting symmetry to simplify control
design for symmetric constrained linear systems. We use symmetry to relate the pieces of
the piecewise controller. Thus we can eliminate redundant controller pieces and simplify the
controller. This concept has not appeared in the literature since previous work has focused
on linear controllers which have only a single piece.
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1.3 Contributions and Structure

This dissertation is divided into three parts. The first part is a review of the relevant results
from model predictive control and group theory. In particular, we present algorithms and
data-structures from computational group theory used to efficiently search groups.

In the second part we develop the theory of symmetry for constrained linear systems and
model predictive control problems. In Chapter 4 we define symmetry for constrained linear
systems, piecewise affine on polytope controllers, and model predictive control problems. We
discuss how these symmetry groups are related. We prove that symmetric model predictive
control problems produce symmetric model predictive controllers. In particular we show that
for linear model predictive control problems with linear or quadratic cost the symmetries
permute the pieces of the piecewise affine on polytopes control-law. This result is used in
Chapter 7 to reduce the memory requirements for explicit model predictive controllers. The
main results of Chapter 4 have been previously published by the author in [27, 28, 29, 24].

In Chapter 5 we present a method for finding the symmetries of a constrained linear
system. We call the problem of finding the symmetry group symmetry identification. We
show how to transform this problem into a graph automorphism problem. We then extend
this result to find the symmetries of linear model predictive control problems with linear and
quadratic cost functions. The main results of Chapter 5 have been previously published by
the author in [28, 29].

In Chapter 6 we define the concept of a fundamental domain. Intuitively, a fundamental
domain is a type of subset that contains all the ‘information’ of the original set without the
‘redundancy’ due to symmetry. We provide a polynomial time algorithm for constructing a
minimal polytopic fundamental domain of a set with respect to a group of symmetries. Next
we present an algorithm for quickly mapping a point outside of the fundamental domain into
the fundamental domain. This algorithm is necessary to implement the fundamental domain
controller defined in Chapter 7. We prove our algorithms have polynomial complexity.

Finally in Chapter 7 we propose two explicit model predictive control designs, called
the orbit controller and fundamental domain controller, that exploit symmetry to reduce
controller complexity and save memory. The orbit controller uses symmetry to organize the
controller pieces into equivalence classes called orbits. The orbit controller stores one repre-
sentative controller piece from each orbit. The other controller pieces can be reconstructed
online using symmetry. We analyze the computational and memory complexity of the orbit
controller. We show that the orbit controller will never require more memory than the stan-
dard explicit controller. We show that the orbit controller offers significant memory savings
when the number of group generators is small compared to the group size.

The fundamental domain controller solves the model predictive control problem on a
subset of the state-space called a fundamental domain. A fundamental domain is a subset
that contains at least one representative from each point orbit of a set. Since the fundamental
domain is a subset of the state-space it intersects fewer critical regions of the controller.
Therefore the fundamental domain controller has fewer pieces than the full explicit controller
and requires less memory. We analyze the computational complexity of the fundamental
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domain controller. The main results of Chapter 7 have been previously published by the
author in [27, 28, 29].

In the final part we apply our theory of symmetric model predictive control to the battery
balancing problem. In Chapter 8 we define the battery balancing problem. We propose a
control algorithm for solving the battery balancing problem and show that our controller is
persistently feasible and asymptotically stable. We describe seven battery balancing hard-
ware designs proposed in the literature. Finally we present simulation results for our control
design. The main results of Chapter 8 have been previously published by the author in
[30, 31, 70].

In Chapter 9 we use our symmetry theory to reduce the memory of explicit model pre-
dictive controllers for the battery balancing problem. We apply our symmetry theory to
the seven battery balancing hardware designs presented in the previous section. Through a
numerical study we demonstrate that the orbit controller and fundamental domain controller
can significantly reduce the memory needed to store the explicit controller. We explain the
intuition of how symmetry reduces the controller memory complexity in these examples.



6

Part I

Model Predictive Control and
Symmetry
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Chapter 2

Model Predictive Control

In this chapter we present the relevant material from model predictive control that will
be used in this dissertation. We provide definitions and results for sets and polytopes,
constrained systems, and model predictive controllers.

2.1 Sets and Polytopes

In this section, we present several topics from set theory. We define polytopes, p-collections,
Minkowski functions, piecewise affine on polytope and p-collection functions, and set-valued
functions. We present the relevant results from these topics used in this dissertation. The
definitions and results in this section are taken from [14, 85, 45, 11, 39, 16].

An affine combination of a finite set of points x1, . . . , xk ∈ Rn is a point λ1x1+· · ·+λkxk ∈
Rn where λ1+· · ·+λk = 1. For a set K ⊆ Rn its affine hull is the set of all affine combinations
of points in K

aff(K) =
{∑k

i=1λixi : xi ∈ K,
∑k

i=1λi = 1, for some k
}
. (2.1)

The affine hull aff(K) is the translation of a linear subspace. The dimension of the affine
hull is the dimension of that subspace.

A convex combination of a finite set of points x1, . . . , xk ∈ Rn is a point λ1x1+· · ·+λkxk ∈
Rn where λ1 + · · ·+ λk = 1 and λi ≥ 0 for i = 1, . . . , k. For a set K ⊆ Rn its convex hull is
the set of all convex combinations of points in K

conv(K) =
{∑k

i=1λixi : xi ∈ K, λi ≥ 0,
∑k

i=1λi = 1, for some k
}
. (2.2)

A cone spanned by a finite set of points K = {x1, . . . , xk} is the set

cone(K) =
{∑k

i=1λixi : xi ∈ K, λi ≥ 0
}
. (2.3)
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A closed half-space is the set

H(h, k) =
{
x ∈ Rn : hTx ≤ k

}
. (2.4)

The Minkowski sum of two sets X ⊆ Rn and Y ⊆ Rn is defined as

X ⊕ Y =
{
x+ y : x ∈ X , y ∈ Y

}
. (2.5)

An H-polytope X ⊆ Rn is the intersection of a finite number of closed half-spaces

X =
{
x ∈ Rn : hTi x ≤ ki, i = 1, . . . , c

}
=
{
x ∈ Rn : Hx ≤ K

}
(2.6)

where H ∈ Rc×n is a matrix with rows hTi and K ∈ Rc is a vector with elements ki for
i = 1, . . . , c. A half-space H(hi, ki) is non-redundant if removing it from the definition of
the polytope X does not change the set. For a non-redundant half-space H(hi, ki) the set
H(hi, ki) ∩ X is called a facet of X .

If the polytope X contains the origin 0 ∈ Rn in its interior then the half-space vectors
can be normalized such that

X =
{
x ∈ Rn : hTi x ≤ 1, i = 1, . . . , c

}
=
{
x ∈ Rn : Hx ≤ 1

}
(2.7)

where 1 ∈ Rn is the vector of ones.
If the polytope X is bounded then its half-space vectors hi for i = 1, . . . , c contain an

affinely independent subset. In this case the matrix HTH is positive definite. Therefore we
can define the transformation T = (HTH)−1/2 of the space Rn containing X such that the
polytope X is given by

X =
{
x ∈ Rn : H̄x ≤ 1

}
(2.8)

where H̄ = HT and H̄T H̄ = I. This basis is called the regular basis for the polytope X .
We will use this basis to simplify our analysis of polytope symmetries.

Example 1. Consider the triangle X shown in Figure 2.1a where

X =

x ∈ R2 :

−1 0
0 −1
1 1

x ≤
1

1
1

 . (2.9)

Under the change of basis T = (HTH)−1/2 this triangle gets mapped to the triangle X̄ shown
in Figure 2.1b. The triangle X̄ is an equilateral triangle and therefore more “symmetric”
than the triangle shown in Figure 2.1a. This basis will simplify our analysis in later chapters
when we define symmetry for polytopes. Specifically we will show that under this basis our
symmetries are orthogonal matrices.
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(a) (b)

Figure 2.1: Example of regular basis. (a) Unregularized triangle X . (b) Regularized triangle
X̄ .

A V-polytope X ⊆ Rn is the Minkowski sum of the convex hull of a finite set of points
V = {v1, . . . , vk} ⊂ Rn and the cone of a finite set of vectors Y = {y1, . . . , yk′} ⊂ Rn

X = conv(V)⊕ cone(Y). (2.10)

The following theorem relates H and V polytopes.

Theorem 1 (Farkas-Minkowski-Weyl). All V-polytopes are H-polytopes and all H-polytopes
are V-polytopes.

The set of points V are called the extreme points of X . The set of vectors Y are called
the extreme-rays of X . An extreme-point v ∈ V is non-redundant if removing it from V does
not change the set X = conv(V). A non-redundant extreme-point is called a vertex.

If the polytope X is bounded then it is the convex hull of a finite number of points
X = conv(V). The dimension dim(X ) of a polytope X is the dimension of its affine hull. The
polytope X ⊆ Rn is called full-dimensional if dim(X ) = n and lower-dimensional otherwise.
If a bounded polytope X is full-dimensional its vertices form an affinely independent set.

Let X be a polytope and P = {pi, . . . , pr} ⊂ X be a finite set of points. The Voronoi cell
FP(pi) is defined as the set of points x ∈ X at least as close to pi as any other point in P

FP(pi) =
{
x ∈ X : ‖x− pi‖ ≤ ‖x− p‖,∀p ∈ P

}
. (2.11)

When distance is measured using the standard Euclidean norm the Voronoi cell FP(pi) is a
polytope. The Voronoi diagram of P is the collection of Voronoi cells FP(pi) for each point
pi ∈ P

FP(P) =
{
FP(p1), . . . ,FP(pr)

}
. (2.12)

Functions and Sets

Let X ⊆ Rn be a set (not necessarily a polytope) and Θ ∈ Rm×n a matrix. The set ΘX is
the image of X through the linear operator Θ

ΘX =
{

Θx : x ∈ X
}
. (2.13)
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Thus the set λX for a scalar λ ∈ R is the image of X through the matrix λI ∈ Rn×n. The
Minkowski function ΦX (x) for a set X is defined as

ΦX (x) = inf
{
λ ∈ R+ : x ∈ λX

}
. (2.14)

The Minkowski function has the following properties

1. If X contains the origin then ΦX (0) = 0.

2. If X is bounded and contains the origin then ΦX (x) is positive definite i.e. ΦX (x) ≥ 0
for all x ∈ Rn and ΦX (x) = 0 if and only if x = 0.

3. For any α > 0 the Minkowski function satisfies ΦX (αx) = αΦX (x).

4. If the set X is balanced (X = −X ) then ΦX (αx) = αΦX (x) for any α ∈ R.

5. If the set X is convex then the Minkowski function satisfies ΦX (x+y) ≤ ΦX (x)+ΦX (y).

6. If the set X is convex, bounded, balanced, and contains the origin then the Minkowski
function ΦX (x) is a norm on Rn.

7. If the set X is a cross-polytope X = conv{±e1, . . . ,±en} where ei ∈ Rn are the
standard basis vectors then the Minkowski function is the 1-norm ΦX (x) = ‖x‖1.

8. If the set X is a hypersphere X = {x ∈ Rn : xTx ≤ 1} then Minkowski function is the
2-norm ΦX (x) = ‖x‖2.

9. If the set X is a hypercube X = {x ∈ Rn : −1 ≤ x ≤ 1} then Minkowski function is
the ∞-norm ΦX (x) = ‖x‖∞.

10. If the set X = {x : Hx ≤ 1} is a polytope then the Minkowski function is the solution
to the linear program

ΦX (x) = minimize
x,λ≥0

λ (2.15a)

subject to Hx ≤ λ1. (2.15b)

A p-collection is the union of a finite number of polytopes. A collection of sets {Xi}pi=1

is a partition of X if it satisfies
⋃N
i=1Xi = X and int(Xi) ∩ int(Xj) = ∅ for all i 6= j. The

partition {Xi}pi=1 is called a polytope partition if its elements Xi are polytopes. The partition
{Xi}pi=1 is called a p-collection partition if its elements Xi are p-collections.

A continuous function f : X → Y is called piecewise affine if there exists a partition
{Xi}pi=1 of X such that

f(x) =


A1x+ b1 for x ∈ X1

...

Apx+ bp for x ∈ Xp

. (2.16)
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where p is the partition {Xi}pi=1 size. The function is called piecewise affine on polytopes if
the partition {Xi}pi=1 is a polytope partition. It is called piecewise affine on p-collections if
the partition {Xi}pi=1 is a p-collection partition. If the affine parameters Ai = Aj and bi = bj
are the same on the p-collection regions Xi and Xj then we can merge Xi ∪Xj these regions
to obtain a new expression for f with a smaller p-collection partition {Xi}pi=1. We call a
p-collection partition {Xi}Ni=1 minimal if there does not exist another p-collection partition
for the function f with fewer pieces p. The minimal p-collection partition is unique.

Proposition 1. Let f : X → Y be a piecewise affine on p-collection function. Then the
minimal p-collection partition {Xi}Ni=1 for f is unique.

Proof. Suppose {Zi}Ni=1 is a different minimal p-collection partition for f . Then for some
region Zi ∈ {Zi}Ni=1 we have Zi 6= Xj for all j = 1, . . . , N . Without loss of generality we
assume that Zi 6⊂ Xj for any j = 1, . . . , N (otherwise switch Zi and Xj in the following
argument). Then there exists at least two set Xj and Xk in the partition {Xi}Ni=1 such that
Zi ∩ Xj and Zi ∩ Xkare full-dimensional since Zi ⊆ X and {Xi}Ni=1 partitions X . However
this implies f(x) = Aix+ bi = Ajx+ bj = Akx+ bk on the affinely independent set of points
contained in Zi ∩ Xj and Zi ∩ Xk. Thus Aj = Ak and bj = bk. Therefore we can merge
regions Xj and Xk to produce a partition with N−1 pieces which contradicts the minimality
of the partition {Xi}Ni=1.

This proposition will allow us to prove properties of the function f and partition {Xi}Ni=1

using uniqueness arguments.
Let 2X denote the power set of X . A set valued function f : X → 2Y is a function

from X to the power-set 2Y of Y i.e. f(x) ⊆ Y . A set valued function f : X → 2Y is
upper-semicontinuous at the point x ∈ X if for any open neighborhood V ⊂ Y of f(x) ⊂ V
there exists an open neighborhood U of x ∈ X such that for all z ∈ U we have f(z) ⊆ V .
Semicontinuity is also called hemicontinuity in some texts [39]. The following theorem gives
a condition for checking upper-semicontinuity.

Theorem 2 (Closed Graph Theorem). Let f : X → 2Y be a set-valued function with f(x)
closed for all x ∈ X with closed domain X , and compact range Y. Then the function f is
upper-semicontinuous if and only if its graph

graph(f) =
{

(x, y) ∈ X × Y : y ∈ f(x)
}

(2.17)

is closed in X × Y.

2.2 Constrained Systems

The definitions and results in this section are taken from [14, 11].
In this section we consider two types of discrete-time systems: autonomous systems

x(t+ 1) = fa
(
x(t)

)
(2.18)
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and systems with controlled inputs

x(t+ 1) = f
(
x(t), u(t)

)
. (2.19)

Both types of systems are subject to constraints on the state and input

x(t) ∈ X (2.20a)

u(t) ∈ U . (2.20b)

For the autonomous system (2.18) we define Pre(S) as the set of states x that will reach
the target set S in one time-step

Pre(S) =
{
x ∈ Rn : fa(x) ∈ S

}
. (2.21)

For the controlled system (2.19) we define Pre(S) as the set of states x for which there exists
a feasible control input u ∈ U that will drive the system to the target set S in one time-step

Pre(S) =
{
x ∈ Rn : ∃u ∈ U , such that f(x, u) ∈ S

}
. (2.22)

These sets are also called the backward reachable sets.
For the autonomous system (2.18) we define Reach(S) as the set of states x that the

system could reach in one time-step starting from some state inside the set S

Reach(S) =
{
y ∈ Rn : ∃x ∈ S such that y = fa(x)

}
. (2.23)

For the controlled system (2.19) we define Reach(S) as the set of states x that the system
can reach in one time-step starting from some state inside the set S

Reach(S) =
{
y ∈ Rn : ∃x ∈ S,∃u ∈ U , such that y = f(x, u)

}
. (2.24)

A set O ⊆ X is positive invariant for the autonomous system (2.18) subject to the
constraints (2.20) if x ∈ O implies fa(x) ∈ O. This means that if the state x(t) starts in
the positive invariant set x(0) ∈ O it remains in the positive invariant set x(t) ∈ O for all
time t ∈ N. The set O∞ is the maximal positive invariant for the autonomous system (2.18)
subject to the constraints (2.20) if O∞ is positive invariant and O∞ contains all positive
invariant sets contained in X .

A set C ⊆ X is control invariant for the autonomous system (2.18) subject to the con-
straints (2.20) if x ∈ C implies there exists u ∈ U such that f(x, u) ∈ C. This means that
if the state x(t) is inside the control invariant set x(t) ∈ C there exists a feasible control
input u(t) ∈ U that keeps the state in the control invariant set x(t + 1) ∈ C for all time
t ∈ N. The set C∞ is the maximal control invariant for the controlled system (2.19) subject
to the constraints (2.20) if C∞ is control invariant and C∞ contains all control invariant sets
contained in X .
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2.3 Model Predictive Control

The definitions and results in this section are taken from [14, 72].
Model Predictive Control is described in Algorithm 1. At each sample-time t ∈ N the

control input u(t) is obtained by solving problem (2.25) where x0 = x(t) is the current state of
the system, N is the prediction horizon, q(x, u) is the stage cost, p(x) is the terminal cost, and
XN is the terminal constraint set. Solving (2.25) produces an optimal open-loop control input
sequence u?0, . . . , u

?
N−1 over the horizon N . The first element of this sequence is implemented

u(t) = u?0. The process repeats at time t+ 1 with the updated state x(t+ 1) = f
(
x(t), u(t)

)
.

Algorithm 1 Model Predictive Control Algorithm

1: Measure (or estimate) the current state x0 = x(t)
2: Solve the constrained finite-time-optimal control problem (2.25) to obtain an optimal

open-loop control sequence u?0, . . . , u
?
N−1.

J?(x) = minimize
u0,...,uN−1

p(xN) +
∑N−1

k=0 q(xk, uk) (2.25a)

subject to xk+1 = f(xk, uk) (2.25b)

xk ∈ X , uk ∈ U (2.25c)

xN ∈ XN (2.25d)

x0 = x(t) (2.25e)

3: Implement u(t) = u?0.

Designing a model predictive controller involves selecting a cost function

p(xN) +
N−1∑
k=0

q(xk, uk) (2.26)

and terminal constraint set XN to produce the desired closed-loop system behavior. Three of
the issues that must be considered when designing a model predictive controller are persistent
feasibility, stability, and real-time implementation. We will briefly discuss these issues in the
next three subsections.

Persistent Feasibility

At each sample-time t ∈ N the model predictive controller solves the optimization problem
(2.25) which depends on the current state x(t). For certain states x(t) the model predictive
control problem (2.25) is infeasible. Indeed even when the model predictive control problem
(2.25) is feasible it may produce a control input u(t) = u?0 that drives the system to a state
x(t+ 1) = f(x(t), u(t)) where (2.25) is infeasible. Therefore we would like to guarantee that
the closed-loop system is persistently feasible.
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Definition 1 (Persistent Feasibility). Let X0 ⊆ X be the set of states x for (2.25) is feasible.
Then the system (2.19) in closed-loop with the model predictive controller in Algorithm 1 is
persistently feasible if f(x(t), u(t)) ∈ X0 for all x(t) ∈ X0 where u(t) = u?0(x(t)) is the model
predictive control input.

This definition says that the model predictive controller is persistently feasible if the
feasible set X0 of (2.25) is a positive invariant set for the system (2.19) subject to the
constraints (2.20) in closed-loop with the model predictive controller u(t) = u?0(x(t)). The
following theorem gives a condition for persistent feasibility.

Theorem 3. If the terminal set XN is control invariant for the system (2.19) subject to the
constraints (2.20) then the system (2.19) in closed-loop with the model predictive controller
in Algorithm 1 is persistently feasible.

Therefore we can guarantee the closed-loop system is persistently feasible by choosing a
control invariant set for the terminal constraint set XN .

Stability

An equilibrium of the discrete-time autonomous system (2.18) is a state xe that is a fixed-
point of the dynamics fa(xe) = xe. An equilibrium xe is stable if for states x(t) that starts
near the equilibrium ‖x(0)−xe‖ < δ the state stays near the equilibrium ‖x(t)−xe‖ < ε. The
equilibrium is asymptotically stable if in addition to being stable the state x(t) converges to
the equilibrium. The formal definition is given below.

Definition 2 (Lyapunov Stability). The equilibrium xe is stable if for every ε > 0 there
exists a δ > 0 such that if ‖x(0)−xe‖ < δ then ‖x(t)−xe‖ < ε for all t ∈ N. The equilibrium
xe is asymptotically stable if it is stable and there exists a neighborhood Ω of xe such that
if x(0) ∈ Ω then limt→∞ x(t) = xe.

We will assume xe = 0 is an equilibrium of the system (2.18). The following theorem is
used to prove the stability of this equilibrium.

Theorem 4. Consider the equilibrium point xe = 0 of the discrete-time autonomous system
(2.18). Let Ω ⊂ Rn be a compact set containing the origin. Let V : Rn → R be a continuous
function such that

1. V (0) = 0 and V (x) > 0 for all x ∈ Ω \ {0}

2. V
(
fa(x)

)
− V (x) ≤ −α(x) for all x ∈ Ω \ {0}.

where α is a continuous positive definite function. Then x = 0 is asymptotically stable on Ω.
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The function V (x) in Theorem 4 is called a Lyapunov function. The set Ω is called the
domain of attraction.

The following theorem gives a condition for the stability of the origin xe = 0 for the
controlled system (2.19) in closed-loop with the model predictive controller Algorithm 1.

Theorem 5. Consider the system (2.19) in closed-loop with the model predictive controller
in Algorithm 1. Let p(x) and q(x, u) be positive definition functions. Let the sets X , XN ,
and U be closed and contain the origin in their interiors. Let XN ⊆ X be a control invariant
set. Suppose that for all x ∈ XN there exists u ∈ U such that f(x, u) ∈ XN and

p(f(x, u))− p(x) ≤ −q(x, u). (2.27)

Then the origin is asymptotically stable with domain of attraction X0.

This theorem says that we can stabilize the origin by choosing the terminal cost p(x) to
be a Lyapunov function for the system.

Real-time Implementation

The model predictive controller described in Algorithm 1 requires solving an optimization
problem at each sample-time t ∈ N. This can be challenging on embedded hardware or when
the controller is running at a high sample-rate. One method for reducing the computational
load is explicit model predictive control where the solution to the model predictive control
problem (2.25) is precomputed as a piecewise affine function of the state vector. In this
section we briefly describe explicit model predictive control.

Problem (2.25) can be written as a multi-parametric program [6]

minimize
U

J(U, x0) (2.28a)

subject to U ∈ T (x0) (2.28b)

x0 ∈ X (2.28c)

where U = [uT0 , . . . , u
T
N−1]T is the input trajectory over the horizon N , J(U, x0) is the cost

function, and T (x0) is the set of feasible input trajectories U that satisfy state and input
constraints (2.25c) and terminal constraint (2.25d) under the dynamics (2.25b).

Consider the case where the dynamics (2.25b) are linear, and the constraints on the state
and input (2.25c) and terminal state (2.25d) are polytopic. If the cost function (2.25a) is
quadratic then (2.28) is a multi-parametric quadratic program. If the cost function (2.25a)
is linear then (2.28) is a multi-parametric linear program.

In [6] it was shown that if (2.28) is a multi-parametric linear or quadratic program then
it has a continuous piecewise affine solution

U?(x0) =


F1x0 + G1 for x0 ∈ CR1

...

Fpx0 + Gp for x0 ∈ CRp

(2.29)
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where CRi ⊆ X are polytopes called critical regions, and Fi ∈ RNm×n and Gi ∈ RNm are
constant matrices. The set of initial conditions x0 for which problem (2.28) is feasible is
denoted by X0. The critical regions {CRi}pi=1 partition the set X0, i.e. ∪pi=1CRi = X0 and
int(CRi) ∩ int(CRj) = ∅ for all i 6= j.

The optimal state-feedback piecewise affine model predictive control-law can be obtained
by extracting the first m terms of the optimal input trajectory U?(x0) and setting x0 = x

u?0(x) = κ(x) =


F1x+G1 for x ∈ R1

...

Frx+Gr for x ∈ Rr

(2.30)

where Fi ∈ Rm×n and Gi ∈ Rm are the optimal feedback and feedforward gains. The regions
Ri ⊆ X are unions of critical region CRj where the first m terms of U?(x) are identical. We
refer to the triple (Fi, Gi,Ri) as the i-th piece of the controller κ(x) and I = {1, . . . , r} is
the index set of the controller pieces.

It is important to make a distinction between the optimal control-law u?0(x) and its
piecewise affine expression κ(x) defined in (2.30). The optimal control-law u?0 : X0 → U is
a function from the set of feasible states X0 to the set of feasible control inputs U . The
piecewise affine controller κ(x) is a representation of this function. Even when the optimal
control-law u?0(x) is unique the piecewise affine expression (2.30) is not unique.

A simple implementation of controller (7.2) is shown in Algorithm 2. First the algorithm
determines the region Ri that contains the measured state x ∈ Ri. This step is called
the point location problem. Next the optimal control u?0(x) = Fix + Gi is calculated. The
computational complexity of this algorithm is dominated by the point location problem which
requires O(|I|) set membership tests x ∈ Ri of complexity O(nci) where ci is the number of
constraints that defines region Ri. Many improvements of this basic implementation can be
found in the literature [80, 50, 49, 23, 59].

Algorithm 2 Standard Implementation of Explicit Model Predictive Controller

Input: Measured State x
Output: Optimal Control u

1: for i ∈ I do
2: if x ∈ Ri then return i
3: end if
4: end for
5: u?0 = Fix+Gi
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Chapter 3

Group Theory

In this chapter we define groups and their basic properties. We also introduce important
algorithms and data-structures used to manipulate groups of matrices or permutations.

3.1 Definitions and Basic Results

In this section we provide the relevant terminology and results from group theory used in
this dissertation. The definitions and results in this section are taken from [60, 48, 74, 34].

A group (G, ◦) is a set G along with an associative binary operator ◦ that satisfies the
following axioms

1. Closure: For every g, h ∈ G we have h ◦ g ∈ G.

2. Identity: There exists a unique identity element e ∈ G such that for every g ∈ G we
have e ◦ g = g ◦ e = g.

3. Inverse: For every g ∈ G there exist an element g−1 such that g ◦ g−1 = g−1 ◦ g = e.

For notational simplicity we will drop the ◦ and write gh for g ◦ h. A group G that contains
only the identity element G = {e} is called trivial.

This dissertation deals with groups of matrices and permutations. In matrix groups the
operator ◦ is matrix multiplication and the identity element is the identity matrix I. In
permutation groups the operator ◦ is function composition and the identity element is the
identity permutation e. Permutations will be described using the Cayley notation. For
instance the permutation π such that π(1) = 2, π(2) = 3, and π(3) = 1 will be denoted as

π =

(
1 2 3
2 3 1

)
. (3.1)

A permutation matrix Π ∈ Rn×n is a square binary matrix that has exactly one 1 in each
row and column. Each permutation π on {1, . . . , n} corresponds to a permutation matrix
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Π ∈ Rn×n given by

Πij =

{
1 if π(i) = j

0 otherwise
(3.2)

A signed permutation matrix Σ ∈ Rn×n is a square binary matrix that has exactly one
non-zero element in each row and column where the non-zero element is ±1. Each signed
permutation matrix can be written as the product of a permutation matrix and a diagonal
matrix with ±1 on the diagonals.

A group G acts on a set X if its elements g ∈ G are functions g : X → X on the set X .
The orbit Gx of a point x ∈ X is the image g(x) of the point x ∈ X under every function
g ∈ G in the group G

Gx = {g(x) ∈ X : g ∈ G} ⊆ X . (3.3)

One set that the group G acts on is itself X = G with action g(h) = gh where h ∈ X = G.
Under this action the orbit Gh of a point h ∈ X = G is the group Gh = G. In the next section
we will use this result to show how to reconstruct the group G = 〈S〉 from its generators S
using an orbit search algorithm.

The stabilizer subgroup Gx of a point x ∈ X is the largest subset of G that fixes the point
x ∈ X

Gx = {g ∈ G : g(x) = x} ⊆ G. (3.4)

The stabilizer Gx is a group. For a finite set B ⊆ X the point-wise stabilizer subgroup GB is
the subgroup that fixes B point-wise

GB = {g ∈ G : g(x) = x, x ∈ B}. (3.5)

This size of the orbit Gx and stabilizer Gx are related by the orbit-stabilizer theorem.

Theorem 6 (Orbit-Stabilizer). |G| = |Gx||Gx|.

A set S ⊆ G is a called a generating set if every element of G can be expressed as a
product of the elements of S and their inverses. If the group G is finite then its elements can
be expressed as products of the elements of S. The group generated by the set S is denoted
by 〈S〉. Equivalently G = 〈S〉 is the smallest group that contains S. The trivial group is
generated by the empty set 〈∅〉. Computational group theory is primarily concerned with
efficiently manipulating groups using only their generators.

A group homomorphism is a function f : G → H between groups that preserves the
group structure f(g)f(h) = f(gh) for all g, h ∈ G. A bijective group homomorphism f is
called a group isomorphism and the groups G and H are called isomorphic. If G and H are
isomorphic groups and S ⊆ G generates G = 〈S〉 then f(S) generates H = 〈f(S)〉. The
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kernel Ker(f) = {g ∈ G : f(g) = e} of a group homomorphism f : G → H is the subgroup
Ker(f) ⊆ G of elements of G that are mapped to the identity element e ∈ H.

Let H ⊆ G be a subgroup of G. The sets

gH = {gh : h ∈ H} (3.6)

are called the cosets of H in G. The set of cosets is denoted by G/H = {gH : g ∈ G}. The
cosets gH partition the group G into disjoint subsets

G =
⊔
G/H

gH. (3.7)

There are |G/H| = |G|/|H| unique cosets gH. Intuitively this mean that group G contains
|G|/|H| copies of the subgroup H. This repetitive structure in the group G is exploited in
many computational group theory algorithms. With abuse of notation we will use G/H to
denote a set of coset representatives G/H = {u1, . . . , um} such that G =

⊔m
i=1 uiH.

Equation 3.7 implies the following important property about groups.

Proposition 2. Let H ⊆ G be a subgroup of G. Then every element g ∈ G of the group G
can be decomposed into the product g = uh of a coset representative u ∈ G/H and an element
of the subgroup h ∈ H.

Proposition 2 is instrumental in allowing us to quickly and efficiently search groups.

Common Groups

In this section we introduce several common groups that will appear in this dissertation.

• General Linear Group GL(n): The general linear group GL(n) is the set of all n× n real
invertible matrices Θ ∈ Rn×n. This group has infinite order.

• Orthogonal Group O(n): The orthogonal group O(n) ⊂ GL(n) is the set of matrices
Θ ∈ GL(n) ⊂ Rn×n that preserve the euclidean norm ‖Θx‖2 = ‖x‖2. The elements
Θ ∈ O(n) have the property that Θ−1 = ΘT . Equivalently ΘΘT = ΘTΘ = I. This group
has infinite order.

• Special orthogonal group SO(n): The special orthogonal group SO(n) ⊂ O(n) is the
subgroup of orthogonal matrices Θ ∈ O(n) ⊂ Rn×n with determinant det(Θ) = +1. In
n = 2 and n = 3 dimensions the special orthogonal matrices Θ ∈ SO(n) ⊂ Rn×n are
proper rotations. This group has infinite order.

• Hyperoctahedral Group Bn: The hyperoctahedral group Bn ⊂ GL(n) is the set of matrices
Θ ∈ GL(n) ⊂ Rn×n that preserve the 1-norm ‖Θx‖1 = ‖x‖1 and∞-norm ‖Θx‖∞ = ‖x‖∞.
The hyperoctahedral group Bn ⊂ GL(n) is the set of all signed permutation matrices. This
group has finite order |Bn| = 2nn!.
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• Symmetric Group Sn: The symmetric group Sn is the set of all permutations π on the
set {1, . . . , n}. Equivalently Sn ⊂ Bn ⊂ GL(n) is the set of all permutation matrices
Π ∈ Rn×n. For a finite set X we will denote the set of all permutations on this set X by
SX . The group Sn has finite order |Sn| = n!.

• Cyclic group Cn: The cyclic-n group Cn is an abstract group generated by a single element
and has order |Cn| = n. In Rn the representations of the cyclic group are rotation matrices
Θ ∈ SO(n) by a fixed increment 2π/n.

• Dihedral group Dn: The dihedral-n group Dn is an abstract group with two generators; a
rotation and reflection. In two dimensions the representations of the dihedral-n group are
the symmetries of a regular n-sided polygon.

3.2 Computational Group Theory

Computational group theory is the study of groups represented on computers. One of the
major advantages of groups is that they can be represented compactly using their genera-
tors. However representing groups in this way requires algorithms to manipulate the group
using only its generators. In this section we present algorithms and data-structures from
computational group theory used to manipulate groups through their generators. We focus
on how to search a group efficiently for a group element with a specific property.

Graph Theory

The algorithms used to efficiently search groups are based on graph searches. In this section
we present basic results from graph theory. The graph theory definitions in this section are
taken from [43, 10, 36].

An undirected graph Γ = (V , E) is a set of vertices V ⊂ N together with a set of unordered
pairs E ⊂ V × V called edges. If the edges are ordered then the graph is called directed.
Vertices i, j ∈ V are called adjacent if (i, j) ∈ E or (j, i) ∈ E is an edge. The set of all vertices
adjacent to i ∈ V will be denoted by Vi. A path is a sequence of adjacent vertices. A cycle is
a path that begins and ends at the same vertex. A graph is acyclic if it contains no cycles.
A graph is connected if every pair of vertices is connected by a path.

A graph coloring c : V → C assigns a color c(i) ∈ C to each vertex i ∈ V of the graph.
An edge labeling l : E → L assigns a set of labels l(e) ⊆ L to each edge e = (i, j) ∈ E of the
graph. A graph symmetry π : V → V is a permutation of the vertices V that preserves the
edge list π(E) = E and vertex coloring C(π(i)) = C(i) for all v ∈ V .

A subgraph of a graph Γ is a graph whose vertex set is a subset of that of Γ and whose
edge set is a subset of that of Γ. A subgraph is spanning if its vertex set is the same as Γ.
A tree is a connected acyclic graph. A spanning tree of a graph Γ is a spanning subgraph
that is a tree.



CHAPTER 3. GROUP THEORY 21

A contraction of a set of vertices U ⊂ V merges all the vertices U into a single vertex u
where u is adjacent to the all the vertices that were adjacent to some vertex in U . Formally
let f be the function that maps each vertex in V \ U to itself and the vertices in U to u.
Then the contraction of U is the graph Γ =

(
f(V), f(E)

)
with self-loops removed from f(E).

A graph search is the problem of searching a graph for a particular node. Algorithm 3 is
an example of a graph search algorithm. In the first part, Algorithm 3 uses a breadth-first
search strategy to visit each node V of the graph while searching for a desired node d ∈ V .
As it searches the graph, Algorithm 3 constructs a search-tree data-structure parent that
records which node u = parent(v) precedes node v in the search-tree. In the second part,
Algorithm 3 uses this search-tree to reconstruct a path from the root-node r ∈ V to the
desired node d ∈ V . Algorithm 3 has computational complexity O(|E|) where |E| ≥ |V| [34].

Algorithm 3 Breadth-first Search of graph Γ = (V , E) for desired node d

Input: Graph Γ = (V , E) and desired node d ∈ V
Output: Path from root node r to desired node d

1: // Search graph Γ for desired node d ∈ V
2: enqueue root node r ∈ V in Q
3: set parent(r) = ∅
4: while unexplored nodes in Q do
5: dequeue first unexplored element v in Q
6: if v ∈ V is the desired node d ∈ V then
7: return v
8: else
9: for each node u ∈ Vv adjacent to v ∈ V do

10: if u 6∈ Q then
11: enqueue u in Q = Q∪ {u}
12: set parent(u) = v
13: end if
14: end for
15: end if
16: mark node v ∈ V as explored
17: end while

18: // Reconstruct path from desired node d ∈ V to root node r ∈ V
19: initialize path P = (d) and set v = d
20: while not at root node v 6= r do
21: update path P = P + v and node v = parent(v)
22: end while
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Group Search Algorithms

In this section we discuss how to search a group G = 〈S〉 using only its generators S. The
algorithms for searching groups are based on searching specific graphs associated with the
group. In this section we define three graphs associated with groups and discuss how to
search these graphs. This section focuses on matrix groups although the algorithms can be
used for permutation groups as well.

The first graph we introduce is the orbit graph. The orbit graph Γ(S, x) = (V , E) is a
graph that represents the orbit of a point x ∈ X under the group G = 〈S〉 generated by S.
The nodes V = Gx of the orbit graph Γ(S, x) are elements of the orbit Gx = 〈S〉x. Two
nodes y, z ∈ Gx are connected by a directed edge (y, z) with label S ∈ S if z = Sy. A path
S1, . . . , Sp from node x ∈ X to y ∈ X corresponds to a sequence of generators S1, . . . , Sp ∈ S
such that y = S1 · · ·Spx = Θx where Θ = S1 · · ·Sp.

The orbit Gx of a point x ∈ X under the group G = 〈S〉 generated by S can be searched
using Algorithm 4. This algorithm is a modification of the breadth-first search in Algorithm
3. In the first part, Algorithm 4 searches the orbit Gx of the point x ∈ X under the group
G = 〈S〉 for the desired point y ∈ X . The symbol O denotes the partially constructed
orbit Gx. The algorithm initializes the partial constructed orbit as O = {x} ⊆ Gx. During
each while-loop, Algorithm 4 uses a point z ∈ O ⊆ Gx in the orbit Gx and the generators
S of the group G = 〈S〉 to find more points Sz in the orbit Gx. The algorithm uses the
data-structure generators to keep track of its path through the orbit graph Γ(S, x). In
computational group theory the data-structure generators is called a Schreier vector.

In the second part, Algorithm 4 constructs a sequence of generators S1, . . . , Sp such that
y = S1 · · ·Spx. This is done by backtracking through the orbit graph Γ(S, x) of Gx from the
node y ∈ Gx to the root-node x ∈ Gx using the data-structure generators. In each while-
loop the algorithm adds generator S = generator(z) ∈ S to the generator sequence P and
moves to a node S−1z ∈ Gx closer to the root-node x ∈ Gx. The algorithm terminates when
it reaches the root-node x ∈ Gx. This algorithm has worst-case complexity O(n2|S||Gx|) for
matrix groups and O(|S||Gx|) for permutation groups [74, 48].

Example 2. Consider the symmetric group Sn. This group can be generated by S =
{S1, . . . , Sn−1} where Si is the permutation matrix that transposes row i and row n for
i = 1, . . . , n− 1.

Consider the points x = e1 ∈ X = Rn and y = e2 ∈ X = Rn where e1, . . . , en are the
standard basis vectors for Rn. We can use Algorithm 4 to find a sequence of generators that
maps x = e1 to y = e2.

The algorithm initializes the orbit O = {e1}. During the first while-loop the algorithm
selects z = e1 and computes Sie1 for each generator Si ∈ S. For S1 ∈ S this produces
a new point S1e1 = en which is added to the orbit O = {e1, en}. The algorithm sets
generator(en) = S1. Since this is the only new point created by the generators Sie1 the
algorithm marks z = e1 as explored.
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Algorithm 4 Search orbit Gx of a point x ∈ X under the group G = 〈S〉 generated by S
for the point y ∈ X .

Input: Points x, y ∈ X and group generators S
Output: If y ∈ Gx returns sequence of generators S1, . . . , Sp such that y = S1 · · ·Spx.

Otherwise returns y 6∈ Gx.

1: // Search orbit Gx for point y ∈ X .
2: initialize y 6∈ Gx
3: enqueue root point x ∈ X in orbit O = {x}
4: set parent(x) = ∅ and generator(x) = ∅
5: while unexplored points in orbit O do
6: select an unexplored point z ∈ O in the orbit O
7: if desired point found z = y then
8: return y ∈ Gx
9: else

10: for each generator S ∈ S do
11: if Sz 6∈ O is not in the orbit O then
12: add Sz to the orbit O = O ∪ {Sz}
13: set generator(Sz) = S
14: end if
15: end for
16: end if
17: mark point z ∈ O as explored
18: end while

19: // Reconstruct group element Θ ∈ G such that y = Θx.
20: if point y ∈ Gx is in the orbit Gx then
21: initialize generator sequence P = (I) and set z = y
22: while z not the root point x 6= z do
23: update generator sequence P = P + S where S = generator(z)
24: update point z = S−1z
25: end while
26: end if
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On the next while-loop the algorithm selects z = en from O. For the generator S2 ∈ S
this produces the point S2en = e2. The algorithm sets generator(e2) = S2. Since e2 = y is
the desired point the algorithm moves on to the second part.

In the second part, Algorithm 4 backtracks from node y = e2 to the root-node x = e1.
The algorithm initializes the path P = (I) and sets z = y = e2. In the first while-loop
the algorithm adds S2 = generator(z = e2) to the path P = (I, S2) and updates the node
z = S−1

2 e2 = en. On the next loop the algorithm adds S1 = generator(z = en) to the
path P = (I, S2, S1) and updates the node z = S−1

1 en = e1. Since e1 = x is the root-node
the algorithm terminates. The sequence P = (I, S2, S1) can be used to produce a matrix
Θ = IS2S1 that maps the point x = e1 to y = e2 = Θx.

If the set X is finite then we can extend the Schreier vector generator to the entire set
X by defining

generators(y) =


I y = x

S−1 y ∈ Gx \ {x}
∅ y 6∈ Gx

. (3.8)

As before, for a point y ∈ Gx in the orbit Gx, the Schreier vector generators returns the
generator S ∈ S corresponding to the edge entering node y ∈ X in the search-tree of the
orbit graph Γ(S, x). If the point y ∈ X is not an element of the orbit Gx then the Schreier
vector returns the null element generators(y) = ∅ indicating that it is not possible to map
x to y. For the root-node y = x the Schreier vector returns the identity element I which is
the only element of G/Gx that maps x to itself. Using this Schreier vector generators we
can reconstruct the orbit Gx by reading the non-null elements of generators. Algorithm 5
can be used to find a group element U ∈ G that maps x ∈ Gx to y ∈ Gx. Algorithm 5 has
complexity O(n2|Gx|) for matrix groups and O(|Gx|) for permutation groups [74, 48].

Algorithm 5 Use Schreier vector generators to find U ∈ G such that y = Ux.

Input: Point y ∈ Gx and Schreier vector generators for orbit Gx.
Output: Group element U ∈ G such that y = Ux.

1: initialize group element U = I and set z = y
2: while not at root-node generators(z) 6= I do
3: read generator S = generators(z)
4: update group element U = SU and point z = Sz
5: end while

Often we are only interested in calculating the orbit Gx of a point x ∈ X . In this case
we can use Algorithm 6 which is a simplified version of Algorithm 4.

The next graph we introduce is the Cayley graph. The Cayley graph Γ(S) = (V , E) is
a graph that describes how the group G = 〈S〉 is constructed from its generators S. The
vertices V = G of the Cayley graph Γ(S) are the elements Θ ∈ G of the group G. Two group
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Algorithm 6 Orbit Construction

Input: Point x ∈ X and generators S of the group G = 〈S〉
Output: Orbit O = Gx = 〈S〉x

1: Initialize orbit O = {x}
2: while Orbit O still growing do
3: for each g ∈ S do
4: Expand orbit O = O ∪ gO
5: end for
6: end while

elements Θg,Θh ∈ G are connected by a directed edge (Θg,Θh) ∈ E with label S ∈ S if
Θh = SΘg.

Since the group G acts on itself X = G, the Cayley graph is a special type of orbit graph.
For any group element Θ ∈ G we can find a sequence of generators S1, . . . , Sp ∈ S that
generate Θ = S1 · · ·Sp by using Algorithm 4 to find a path through the Cayley graph from
the identity element x = I ∈ Rn×n to the desired element y = Θ ∈ G. The generators
S1, . . . , Sp ∈ S are the labels of the edges of the path from I to Θ.

Example 3. Consider the symmetric group Sn with the generators S defined in Example 2.
Suppose we want to find a sequence of generators for the permutation matrix Π ∈ Sn. This
can be done using Algorithm 4 with x = I and y = Π. However this will have worst-case
complexity O(n2|S||SnI|) = O(n3n!) since |S| = n− 1 and |SnI| = |Sn| = n!.

Next we introduce the Schreier graph. Recall that if H ⊆ G is a subgroup of G then
its cosets UH decompose the group G into disjoint subsets. If the generators S have the
property that H = 〈S ∩ H〉 then the Cayley graph Γ(S) of G = 〈S〉 will contain |G|/|H|
copies of the Cayley graph Γ(S ∩H) of the subgroup H = 〈S ∩H〉. Thus the Cayley graph
Γ(S) of G = 〈S〉 has the same repetitive structure as the group G it represents.

If we contract each copy of the graph Γ(S ∩ H) into a single node, then the resulting
graph is called the Schreier coset graph ΓH(S). This graph describes how the copies of the
graph Γ(S ∩ H) are connected together to form the original Cayley graph Γ(S). We can
search the Cayley graph Γ(S) of G = 〈S〉 by searching the Schreier graph ΓH(S) for the
copy of the graph Γ(S ∩ H) that contains the node we are interested in and then searching
that copy Γ(S ∩ H). This requires visiting |G|/|H| + |H| graph nodes instead of the full
|G| = |G|/|H| × |H| vertices required to search the Cayley graph Γ(S).

If the subgroup H = Gx is the stabilizer subgroup Gx of a point x ∈ X then the Schreier
graph ΓH(S) of the cosets UGx of Gx in G is also the orbit graph Γ(S, x) of the point x ∈ X .
This means we can use Algorithm 4 to search the Schreier graph ΓH(S). This decomposition
is exploited in bases and strong generating sets defined in the next section.
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Bases and Strong Generating Sets

In this section we introduce bases and strong generating sets which are an important data-
structure in computational group theory. All groups in this section are finite |G| <∞.

To motivate bases and strong generating sets we consider the following problem: Given
a set of generators S for the group G = 〈S〉 how do we determine if the matrix Θ0 ∈ Rn×n

is an element Θ0 ∈ G of the group G = 〈S〉? One method is to use Algorithm 4 to search
the Cayley graph Γ(S) for the matrix Θ0. However this will typically have exponential
complexity.

Instead we can use the following methods to determine whether Θ0 is not an element of
the group G = 〈S〉. Consider a point x1 ∈ X = Rn. If Θ0 is an element of the group G = 〈S〉
then the point Θ0x1 should be in the orbit Gx1 of the point x1 ∈ X under the group G = 〈S〉.
If Θ0x1 6∈ Gx1 is not in the orbit Gx1 then Θ is not an element of the group G = 〈S〉.

What if Θ0x1 ∈ Gx1 is an element of the orbit Gx1? Then by Proposition 2 we known
that every element of the group G is the product Θ0 = U1Θ1 of a matrix Θ1 ∈ G1 = Gx1 that
fixes the point x1 and a matrix U1 ∈ G/G1 such that U1x1 = Θ0x1. Using Algorithm 4 we
have already found a matrix U1 ∈ G/G1 such that U1x1 = Θ0x1. All that remains is to search
the group G1 = {Θ ∈ G : Θx1 = x1} for the matrix Θ1 = U−1

1 Θ0. This can be accomplished
by selecting a point x2 ∈ X = Rn and testing whether Θ1x2 ∈ G1x2 is an element of the
orbit G1x2 of the point x2 under the group G1 that fixes x1. We can continue this process
until the group

Gb =
{

Θ ∈ G : Θxi = xi, i = 1, . . . , b
}

=
{
I
}

(3.9)

contains only the identity matrix I ∈ Rn×n. In this case we have produced a sequence
U1, . . . , Ub of matrices such that Θ0 = U1 · · ·Ub.

The set of points x1, . . . , xb that we have defined is called a base. The formal definition
is given below.

Definition 3. A base B = {x1, . . . , xb} is an ordered set of points whose point-wise stabilizer
group GB is trivial

GB =
{

Θ ∈ G : Θx = x,∀x ∈ B} = 〈∅〉. (3.10)

Definition 3 says that the every element of the group, other than the identity matrix I,
transforms at least one point x ∈ B in the base B. We can uniquely identify the elements
Θ ∈ G of the group G by determining how they transform the base points B.

The base B produces a chain of stabilizer subgroups

G = G0 ⊇ G1 ⊇ · · · ⊇ GB−1 ⊇ GB = 〈∅〉 (3.11)

where

Gi =
{

Θ ∈ G : Θxj = xj, j = 1, . . . , i
}

=
{

Θ ∈ Gi−1 : Θxi = xi
}

(3.12)
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is the subgroup that fixes bases points x1, . . . , xi and G0 = G is the original group. The base
B is called non-redundant if Gi+1 ⊂ Gi is a strict subset of the group Gi. In other words
the base B is non-redundant if each base point xi+1 strictly decreases the size of the group
|Gi+1| < |Gi|.

In order to use the base B to test group membership Θ0 ∈ G0 = G we need to be able
to search the orbit Gi−1xi of the base point xi under the subgroup Gi−1 = {Θ ∈ G : Θxj =
xj, j = 1, . . . , i − 1} that fixes the first i − 1 base points x1, . . . , xi−1. We can search these
orbits using Algorithm 4 provided we have a set of generators Si for the group Gi = 〈Si〉.
One might expect that we can find generators of Gi by selecting the subset Si of generators
S for G = 〈S〉 that fix x1, . . . , xi

Si = {S ∈ S : Sxj = xj, j = 1, . . . , i}. (3.13)

However in general Si does not generate Gi ⊇ 〈Si〉 as shown in the following example.

Example 4. The dihedral-4 group in R2 can be generated by S = {S1, S2} where

S1 =

[
0 −1
1 0

]
and S2 =

[
0 1
1 0

]
. (3.14)

Consider the point x1 = [ 1
0 ]. The stabilizer subgroup G1 of this point is the set

G1 =

{[
1 0
0 1

]
,

[
1 0
0 −1

]}
. (3.15)

However the subset S1 = {S ∈ S : Sx1 = x1} of generators S that fix x1 is empty S1 = ∅.
Therefore G1 6= 〈S1〉.

A set of generators S that has the property 〈Si〉 = Gi for i = 1, . . . ,B where Si = {S ∈
S : Sxj = xj, j = 1, . . . , i} and Gi = {Θ ∈ G : Θxj = xj, j = 1, . . . , i} is called a strong
generating set of the base B. A formal definition is given below.

Definition 4. The generating set S for the group G is called strong with respect to the base
B if Si = S ∩ Gi is a generating set for Gi = 〈Si〉.

The pair (B,S) is called a base and strong generating set. A base and strong generating
set (B,S) can be calculated using the Schreier-Sims algorithm [48, 74].

Example 5. Consider the symmetric group Sn. A base for this group is the set B =
{e1, . . . , en−1}. A strong generating set S = {S1, . . . , Sn−1} for this base is the set of gener-
ators S = {S1, . . . , Sn−1} where Si is the permutation matrix that transposes row i and row
n for i = 1, . . . , n− 1.

Suppose we want to find a sequence of generators for the permutation matrix Π ∈ Sn.
This can be done by first finding a matrix U1 ∈ Sn such that U1e1 = Πe1. This can be done
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using Algorithm 4 for x = e1 and y = Πe1 with generators S. This search has complexity
O(n2|S||Sne1|) = O(n4).

Next we need to find a matrix U2 ∈ Sn−1 such that U2e2 = U−1
1 Πe2 where Sn−1 is the

subgroup of Sn that fixes x1 = e1. Since S is a strong generating set, the subgroup Sn−1

is generated by the set S1 = {S ∈ S : Sx1 = x1}. In this case we discard S1 from the
generators S = {S1, . . . , Sn−1} to produce S1 = {S2, . . . , Sn−1}. Next we call Algorithm 4
with points x = e2 and y = Πe2, and generating set S1 = {S2, . . . , Sn−1}. This returns a
matrix U2 ∈ Sn−1 such that U2e2 = U−1

1 Πe2. This step had complexity O(n4).
Continuing this process we can find a set of generators for the matrix Π ∈ Sn with worse-

case complexity O(n5) � O(n3n!). By exploiting that the elements of Sn and its subgroups
are permutation matrices this complexity can be reduced to O(n3).
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Part II

Symmetry in Constrained Linear
Control
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Chapter 4

Definitions of Symmetry

In this chapter we define symmetry for dynamic systems and controllers. In particular we
define symmetry for constrained linear systems and piecewise affine on polytope controllers.
We prove basic results about reachability for symmetric constrained systems.

This chapter is primarily focused on symmetry in model predictive control. We show
that model predictive control problems for symmetric constrained systems with symmetric
cost functions produce symmetric controllers. In particular for linear model predictive con-
trol problems with quadratic or linear costs the symmetries of the model predictive control
problem permute the pieces of a symmetric controller.

4.1 Symmetries of Dynamic Systems

Consider the discrete-time system

x(t+ 1) = f(x(t), u(t)) (4.1)

where x ∈ Rn and u ∈ Rm. A symmetry of the system (4.1) is a state-space Θ ∈ Rn×n and
input-space Ω ∈ Rm×m transformation that preserves the dynamics.

Definition 5. The pair of invertible matrices (Θ,Ω) is a symmetry of the system (4.1) if
they satisfy

f(Θx,Ωu) = Θf(x, u) (4.2)

for all x ∈ Rn and u ∈ Rm.

For an autonomous system, Definition 5 says that the vector field f(x) = f(x, 0) is invari-
ant under the state-space transformation Θ i.e. f(x) = Θ−1f(Θx). For a non-autonomous
system this definition says that if the state and input trajectories {x(t)}∞t=0 and {u(t)}∞t=0

satisfy the dynamics (4.1) then so does the state and input trajectories {Θx(t)}∞t=0 and
{Ωu(t)}∞t=0.

The set of all invertible matrices (Θ,Ω) that satisfy (4.2) is a group denoted by Aut(f).
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Proposition 3. The set Aut(f) of all invertible matrices (Θ,Ω) that satisfy (4.2) is a group
under pairwise matrix multiplication.

Proof. We will show that Aut(f) with pairwise matrix multiplication satisfies the axioms of
group theory. Note that matrix multiplication is associative.

1. Identity: The identity (In, Im) ∈ Aut(f) is an element of the set Aut(f) since

f(Inx, Imu) = Inf(x, u). (4.3)

2. Inverse: By the definition of Aut(f) for each symmetry (Θ,Ω) ∈ Aut(f) the inverse
(Θ−1,Ω−1) exists. By (4.2) the inverse (Θ−1,Ω−1) ∈ Aut(f) is an element of the set
Aut(f) since

Θ−1f(y, v) = f(Θ−1y,Ω−1v) (4.4)

where y = Θx and v = Θu.

3. Closure: Let (Θ1,Ω1), (Θ2,Ω2) ∈ Aut(f) then (Θ1Θ2,Ω1Ω2) ∈ Aut(f) since

f(Θ1Θ2x,Ω1Ω2u) = Θ1f(Θ2x,Ω2u) = Θ1Θ2f(x, u) (4.5)

The following example demonstrates this concept of symmetry.

Example 6. This example is taken from [22]. Consider the autonomous nonlinear system[
x1(t+ 1)
x2(t+ 1)

]
=

[
x1(t)
x2(t)

]
+

[
−x1(t)x2(t)2 + 2x2(t)3

−x2(t)3

]
∆τ (4.6)

where ∆τ � 1 is the sample-time. The vector-field is shown in Figure 4.1a. In [22] it was
shown that the symmetry group Aut(f) of this system is the infinite set

Aut(f) =

{[
1 θ
0 1

]
: θ ∈ R

}
. (4.7)

Any Θ ∈ Aut(f) will map the vector-field f(x) to itself f(x) = Θ−1f(Θx). Consider the
symmetry

Θ =

[
1 2
0 1

]
∈ Aut(f). (4.8)

The image Θ−1f(Θx) of the vector-field is shown in Figure 4.1b. It can be readily seen that
Θ maps the vector-field to itself.
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Figure 4.1: Example of symmetric non-linear system. (a) Vector-field f(x). (b) Vector-field
Θ−1f(Θx). Four state-trajectories have been color-coded to illustrate how Θ transforms the
vector field.

Symmetries of Linear Systems

We are particularly interested in studying the symmetry groups for linear systems

x(t+ 1) = Ax(t) +Bu(t) (4.9)

where A ∈ Rn×n and B ∈ Rn×m.
For the linear system (4.9) we will often denote its symmetry group by Aut(A,B) =

Aut(f) where f(x, u) = Ax + Bu. This group Aut(A,B) is always infinite. For θ 6= 0 ∈ R
the pair (Θ,Ω) = (θIn, θIm) ∈ Aut(A,B) is a symmetry. In fact the closure of the group
Aut(A,B) is a vector-space.

Proposition 4. The closure of the group Aut(A,B) is a finite-dimensional vector-space.

Proof. First we show that the set Vec(A,B) of all matrices (not necessarily invertible)
that satisfy (4.2) is a vector-space. Associativity, commutativity, and scalar multiplica-
tion follow from the properties of matrix algebra. The set Vec(A,B) contains the addi-
tive identity (0n, 0m) ∈ Vec(A,B) and the additive inverse (−Θ,−Ω) ∈ Vec(A,B) for all
(Θ,Ω) ∈ Vec(A,B). Distributivity follows from (4.2) and the linearity of the vector-field
f(x, u) = Ax+Bu

f
(
(αΘ1 + βΘ2)x, (αΩ1 + βΩ2)u

)
= αf(Θ1x,Ω1u) + βf(Θ2x,Ω2u) (4.10)

= (αΘ1 + βΘ2)f(x, u).
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Thus (αΘ1 + βΘ2, αΩ1 + βΩ2) ∈ Vec(A,B) for any α, β ∈ R and (Θ1,Ω1), (Θ2,Ω2) ∈
Vec(A,B). Thus Vec(A,B) is a vector-space. In particular it is a finite-dimensional vector-
space dim(Vec(A,B)) ≤ n2m2 and therefore complete [64].

Next we show Vec(A,B) is the closure of Aut(A,B). Since Aut(A,B) ⊂ Vec(A,B) and
Vec(A,B) is complete, any limit point of Aut(A,B) is contained in Vec(A,B). Conversely
every point in Vec(A,B) is a limit point of Aut(A,B). For any (Θ,Ω) ∈ Vec(A,B) we can
construct a sequence (αIn + Θ, αIm + Ω) ∈ Aut(A,B) of invertible matrices that limit to
(Θ,Ω) as α→ 0.

This proposition means that we can use standard linear algebra techniques when work-
ing with the group Aut(A,B). This makes Aut(A,B) easier to work with than the other
symmetry groups we will introduce in this chapter.

4.2 Symmetries of Constrained Systems

We now consider the system (4.1) subject to constraints on the state and input

x(t) ∈ X (4.11a)

u(t) ∈ U (4.11b)

where X ⊆ Rn and U ⊆ Rm are full-dimensional.
A symmetry of the constraints (4.11) is a state-space Θ and input-space Ω transformation

that maps the constraint sets to themselves ΘX = X and ΩU = U .

Definition 6. The pair of matrices (Θ,Ω) is a symmetry of the constraints (4.11) if they
satisfy

ΘX = X (4.12a)

ΩU = U . (4.12b)

The sets Aut(X ) and Aut(U) of all matrices Θ and Ω that satisfy (4.12a) and (4.12b)
respectively are groups. Since we can choose Θ and Ω independently, the set Aut(X ,U) =
Aut(X ) × Aut(U) of all matrix pairs (Θ,Ω) that satisfy (4.12) is the cartesian product of
the groups Aut(X ) and Aut(U).

Proposition 5. The set Aut(X ) of all matrices Θ that satisfy (4.12a) and the set Aut(U)
of all matrices Ω that satisfy (4.12b) are groups under pairwise matrix multiplication.

Proof. The proof follows the lines of the proof of Proposition 3. In particular the matrices
Θ ∈ Aut(X ) and Ω ∈ Aut(U) are invertible since otherwise ΘX and ΩU would be lower
dimensional and thus ΘX 6= X and ΩU 6= U .
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The symmetry group of the system (4.1) subject to the constraints (4.11) is a group
denoted by Aut(Σ) = Aut(f)∩Aut(X ,U). Next we use this group to prove some basic results
about reachability for symmetric constrained systems. The following proposition states that
the maximal control invariant set of the symmetric constrained system is symmetric.

Proposition 6. Let C∞ be the maximal control invariant set for the system (4.1) subject to
the constraints (4.11) is symmetry with respect to the group Aut(Σ)

C∞ = ΘC∞ (4.13)

for all Θ ∈ Aut(Σ) = Aut(f) ∩ Aut(X ,U)

Proof. Consider the set

C =
⋃

Θ∈G
ΘC∞ (4.14)

where G = Aut(Σ). This set is symmetric by construction C = ΘC for all Θ ∈ Aut(Σ). We
will show C = C∞.

First we will prove C is a control invariant set. Let x ∈ C then there exists Θ ∈ Aut(Σ)
such that Θ−1x ∈ C∞. By the definition of control invariance there exists a feasible control
input v ∈ U such that

f(Θ−1x, v) ∈ C∞. (4.15)

Using the properties of the symmetry group Aut(Σ) = Aut(f) ∩ Aut(X ,U) we have

f(x,Ωv) ∈ ΘC∞ ⊆ C. (4.16)

Thus for any x ∈ C there exists u = Ωv ∈ ΩU = U such that f(x, u) ∈ C. Therefore C is a
control invariant set.

Since C∞ is the maximal control invariant set we have C ⊆ C∞. However by construction
C∞ ⊆ C. Therefore C = C∞ is symmetric with respect to the group Aut(Σ).

The following proposition shows that the set of states x that are driven into a symmetric
set S is symmetric. Likewise the set of states x that can be reached from the symmetric set
S is symmetric.

Proposition 7. Let S ⊆ Rn be a symmetric set ΘS = S for all Θ ∈ Aut(Σ). Then the
backward Pre(S) and forward Reach(S) reachable sets for the system (4.1) subject to the
constraints (4.11) are symmetric

Θ Pre(S) = Pre(S) (4.17a)

Θ Reach(S) = Reach(S) (4.17b)

for all Θ ∈ Aut(Σ).
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Proof. Let y ∈ Reach(S) be forward reachable. Then there exists x ∈ S and u ∈ U such
that y = f(x, u). Thus Θy ∈ Reach(S) since

Θy = Θf(x, u) = f(Θx,Ωu) (4.18)

where Θx ∈ ΘS = S and Ωu ∈ ΩU = U . Therefore Θ Reach(S) ⊆ Reach(S) for all
Θ ∈ Aut(Σ). Since Aut(Σ) is a group, for any Θ ∈ Aut(Σ) we have Θ−1 ∈ Aut(Σ).
Therefore Θ Reach(S) = Reach(S).

Let x ∈ Pre(S) be backward reachable. Then there exists u ∈ U such that f(x, u) ∈ S.
Thus Θx ∈ Pre(S) since

f(Θx,Ωu) = Θf(x, u) ∈ ΘS = S (4.19)

where Ωu ∈ ΩU = U . Therefore Θ Pre(S) ⊆ Pre(S) for all Θ ∈ Aut(Σ). Since Aut(Σ) is a
group, for any Θ ∈ Aut(Σ) we have Θ−1 ∈ Aut(Σ) therefore Θ Pre(S) = Pre(S).

Symmetries of Constrained Linear Systems

We are particularly interested in studying the symmetry of linear systems (4.9) subject to
polytopic constraints. For bounded, full-dimensional polytopic sets X and U the symmetry
group Aut(X ,U) is finite.

Proposition 8. Let X and U be bounded, full-dimensional polytopes. Then the set Aut(X ,U)
is a finite group.

Proof. Each matrix Θ ∈ Aut(X ) permutes the vertices of X since ΘX = X . Since the set
X is bounded and full-dimensional its vertices contain an affinely independent subset. Thus
Θ is uniquely defined by how it permutes the vertices. Since there are a finite number of
vertices, there are a finite number of permutations of these vertices. Thus Aut(X ) is finite.
Likewise Aut(U) is finite. Therefore Aut(X ,U) = Aut(X )× Aut(U) is finite.

The following examples show that if the polytope X is unbounded or lower-dimensional
its symmetry group can be infinite.

Example 7. Consider the positive quadrant X = {x ∈ R2 : x ≥ 0} shown in Figure 4.2a.
This set X is unbounded. Its symmetry group Aut(X ) is the infinite set

Aut(X ) =

{[
α 0
0 β

]
,

[
0 α
β 0

]
: α, β > 0

}
. (4.20)

This symmetry group Aut(X ) says we can positively scale the space R2 and permute the basis
vectors x1 and x2 without changing the set X .
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Figure 4.2: Examples of polytopes with infinite symmetry groups. (a) Unbounded polytope
X = {x ∈ R2 : x ≥ 0} with infinite symmetry group Aut(X ). (b) Lower-dimensional
polytope with infinite symmetry group Aut(X ).

Example 8. Consider the lower-dimensional set

X = conv

{[
1
0

] [
−1

0

]}
(4.21)

shown in Figure 4.2b. The symmetry group Aut(X ) of this set X is the infinite set

Aut(X ) =

{[
1 0
0 θ

]
,

[
−1 0

0 θ

]
: θ ∈ R \ {0}

}
. (4.22)

This symmetry group Aut(X ) says that we can arbitrarily scale the x2 dimension without
changing the set X . In the x1 dimension we can only permute the vertices [ 1

0 ] and [ −1
0 ]

Since Aut(X ,U) is finite for bounded full-dimensional polytopes X and U this implies
that Aut(Σ) = Aut(A,B) ∩ Aut(X ,U) is finite. Therefore we will need to use techniques
from discrete mathematics to analyze this group.

The following example demonstrates symmetry for linear system with polytopic con-
straints.

Example 9. Consider the constrained linear autonomous system

x(t+ 1) = Ax(t), x(t) ∈ X (4.23)

where X is the octagon shown in Figure 4.3a and

A =

[
0.2 0.5
−0.5 0.2

]
. (4.24)

The set X is symmetric with respect to the dihedral-8 group Aut(X ) = D8 which includes
planar rotations by 45 degrees. The matrix A is invariant under all rotations SO(2) ⊂
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Figure 4.3: Example of symmetric of constrained linear system. (a) State constraint set X
with vector-field f(x) = Ax. (b) Input constraint set U . (c) Set Pre(X ) of states that can
be driven into X .

Aut(A). Therefore the symmetry group Aut(Σ) of the autonomous system is the cyclic-8
group Aut(Σ) = C8 of rotations by 45 degrees.

Now we add control inputs to the system

x(t+ 1) = Ax(t) +Bu(t) (4.25)

x(t) ∈ X , u(t) ∈ U (4.26)

where A and X are the same as before, and B = I ∈ R2×2 is the identity matrix and U is the
square shown in Figure 4.3b. The symmetry group Aut(U) of the square U is the dihedral-4
group Aut(U) = D4. Therefore Aut(X ,U) = D8 × D4 is the set of pairs (Θ,Ω) such that
Θ ∈ D8 and Ω ∈ D4.

The dynamics couple the state and input spaces. For each Θ ∈ Aut(A) the matrix Ω = Θ
commutes ΘB = BΩ with the matrix B = I. Therefore we are no longer able to choose Θ
and Ω independently. Thus the symmetry group Aut(A,B) of the dynamics is

Aut(A,B) =
{

(Θ,Ω) : Θ ∈ Aut(A),Ω = Θ
}
. (4.27)

Thus the symmetry group Aut(Σ) = Aut(A,B)∩Aut(Σ) is the cyclic-4 group Aut(Σ) = C4.
This can be seen in the pre-set Pre(X ) of X shown in Figure 4.3c. The set Pre(X ) is not
symmetric under rotations of 45 degrees, only rotations by 90 degrees.

Finally we provide a corollary of Proposition 6 that allows the construction of symmetric
control invariant sets for constrained linear systems.

Corollary 1. Let C be a control invariant set for the system (4.9) subject to polytopic
constraints (4.11). Then the set C̄ = conv{ΘC : Θ ∈ Aut(Σ)} is a symmetric control
invariant set.
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Proof. The set C̄ is symmetric since

Θ̂C̄ = conv{Θ̂ΘC : Θ ∈ G} = conv{ΘC : Θ ∈ G} = C̄ (4.28)

for all Θ̂ ∈ G = Aut(Σ).
Next we show this set is control invariant. By the definition of C̄ for any x ∈ C̄ there

exists xi ∈ ΘiC for i = 1, . . . , |G| such that x is the convex combination

x =
∑|G|

i=1
λixi. (4.29)

By the definition of control invariance for each Θ−1
i xi ∈ C there exists vi ∈ U such that

AΘ−1
i x+Bvi ∈ C. (4.30)

Thus ui = Ωvi ∈ ΩU = U satisfies Axi + Bui ∈ ΘiC. Therefore we have shown there exists
u =

∑|G|
i=1 λiui ∈ U such that

Ax+Bu = A
(∑|G|

i=1λixi

)
+B

(∑|G|
i=1λiui

)
=
∑|G|

i=1λi
(
Axi +Bui

)
(4.31)

∈ conv
{

ΘC : Θ ∈ G
}

= C̄.

This corollary is useful when we cannot calculate the maximal control invariant set C∞
for a constrained linear system but we have a non-symmetric control invariant set C ⊆ C∞.
This corollary allows us to build a symmetric control invariant set C̄ ⊇ C from C.

4.3 Symmetries of Controllers

A symmetry of the control-law u = κ(x) is a state-space Θ and input-space Ω transformation
that preserves the control-law.

Definition 7. The pair of invertible matrices (Θ,Ω) is a symmetry of the control-law u =
κ(x) if

Ωκ(x) = κ(Θx) (4.32)

for all x ∈ X

Definition 7 says that the control actions at point x and y = Θx are related by a linear
transformation Ω. For a linear controller u = Fx, Definition 7 says that a symmetry is a
pair of invertible matrices Θ and Ω that commute ΩF = FΘ with the feedback gain matrix
F .

The set of all symmetries of the control-law u = κ(x) is a group denoted by Aut(κ).
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Proposition 9. The set Aut(κ) of all invertible matrices (Θ,Ω) that satisfy (4.32) is a group
under pairwise matrix multiplication.

Next we use the symmetry groups Aut(Σ) and Aut(κ) to prove some basic results about
reachability for symmetric constrained systems in closed-loop with symmetric controllers
κ(x). The following proposition shows that the maximal positive invariant set O∞ is sym-
metric.

Proposition 10. The maximal positive invariant set O∞ of the system (4.1) subject to the
constraints (4.11) in closed-loop with the controller κ(x) is symmetric ΘO∞ = O∞ with
respect to the symmetry group Aut(Σ) ∩ Aut(κ).

Proof. Consider the set

O =
⋃
Θ∈G

ΘO∞ (4.33)

where G = Aut(Σ) ∩ Aut(κ). This set is symmetric by construction O = ΘO for all Θ ∈
G = Aut(Σ) ∩ Aut(κ). We will show O = O∞.

First we will prove O is positive invariant. Let x ∈ O then there exists Θ ∈ G such that
Θ−1x ∈ O∞. By the definition of positive invariant

f
(
Θ−1x, κ(Θ−1x)

)
∈ O∞ (4.34)

where κ(Θ−1x) = Ω−1κ(x) ∈ Ω−1U = U is a feasible input. By the symmetry of the dynamics
Aut(Σ) and controller Aut(κ) we have

f
(
x, κ(x)

)
∈ ΘO∞ ⊆ O. (4.35)

Thus for any x ∈ O we have f
(
x, κ(x)

)
∈ O. Therefore O is a positive invariant set.

Since O∞ is the maximal positive invariant set we have O ⊆ O∞. However by con-
struction O∞ ⊆ O. Therefore O = O∞ is symmetric with respect to the group Aut(Σ) ∩
Aut(κ).

The following proposition shows that the set of states x that the controller κ(x) drives
into a symmetric set S is symmetric. Likewise the set of states x that the controller κ(x)
can reach from the symmetric set S is symmetric.

Proposition 11. Let S ⊆ Rn be a symmetric set ΘS = S for all Θ ∈ Aut(Σ)∩Aut(κ). Then
the backward Pre(S) and forward Reach(S) reachable sets for the system (4.1) in closed-loop
with the controller κ(x) are symmetric

Θ Pre(S) = Pre(S) (4.36a)

Θ Reach(S) = Reach(S) (4.36b)

for all Θ ∈ Aut(Σ) ∩ Aut(κ).
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Proof. Let y ∈ Reach(S) be forward reachable. Then there exists x ∈ S such that y =
f(x, κ(x)). Thus Θy ∈ Reach(S) since

Θy = Θf
(
x, κ(x)

)
= f

(
Θx, κ(Θx)

)
(4.37)

where Θx ∈ ΘS = S and κ(Θx) = Ωκ(x) ∈ ΩU = U . Therefore Θ Reach(S) ⊆ Reach(S).
Since Aut(Σ) ∩ Aut(κ) is a group, for any Θ ∈ Aut(Σ) ∩ Aut(κ) we have Θ−1 ∈ Aut(Σ) ∩
Aut(κ). Therefore Θ Reach(S) = Reach(S).

Let x ∈ Pre(S) be backward reachable. Then f(x, κ(x)) ∈ S. Thus Θx ∈ Pre(S) since

f(Θx, κ(Θx)) = Θf(x, u) ∈ ΘS = S (4.38)

where κ(Θx) = Ωκ(x) ∈ ΩU = U . Therefore Θ Pre(S) ⊆ Pre(S). Since Aut(Σ) ∩ Aut(κ) is
a group, for any Θ ∈ Aut(Σ)∩Aut(κ) we have Θ−1 ∈ Aut(Σ)∩Aut(κ) therefore Θ Pre(S) =
Pre(S).

Symmetries of Piecewise Affine Controllers

We are particularly interested in symmetries of piecewise affine on polytopes control-laws

κ(x) =


F1x+G1 x ∈ R1

...

Fpx+Gp x ∈ Rp

(4.39)

where Fi ∈ Rm×n and Gi ∈ Rm are the feedback and feedforward gains, andRi are polytopes.
The regions Ri for i ∈ I partition the domain X of the controller κ(x).

We are interested in symmetries (Θ,Ω) ∈ Aut(κ) of the controller κ(x) that permute the
controller pieces (Fi, Gi,Ri)

ΩFi = FjΘ (4.40a)

ΩGi = Gj (4.40b)

ΘRi = Rj. (4.40c)

Equation (4.40) says that the state-space transformation Θ maps the i-th region Ri ⊆ X
to the j-th region Rj = ΘRi. Furthermore the symmetry (Θ,Ω) maps the control-law in
region Ri to the control-law in region Rj. The control-law for x ∈ Rj = ΘRi is

κ(x) = Fjx+Gj (4.41)

= ΩFiΘ
−1x+ ΩGi

where Fi and Gi are the feedback and feedforward gains respectively for region Ri. We will
denote the subgroup of symmetries that satisfy (4.40) by Aut(I).
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Clearly symmetries (Θ,Ω) ∈ Aut(I) that permute the pieces I of the controller κ(x) are
symmetries (Θ,Ω) ∈ Aut(κ) of the controller κ(x). However symmetries (Θ,Ω) ∈ Aut(κ) of
the control-law κ(x) do not necessarily permute the controller pieces I i.e. Aut(I) ⊆ Aut(κ).
The symmetries (Θ,Ω) ∈ Aut(I) that permute the controller pieces I depend on how the
partition {Ri}i∈I is chosen. For instance we can break symmetry by splitting region Ri but
not its image Rj = ΘRi. The following theorem shows that when {Ri}i∈I is the minimal
p-collection partition for the control-law κ(x) then the symmetries (Θ,Ω) ∈ Aut(κ) of the
controller κ(x) permute the pieces I i.e. Aut(I) = Aut(κ).

Theorem 7. Let {Ri}i∈I be the minimal p-collection partition of the domain of κ. Then
Aut(I) = Aut(κ).

Proof. Any symmetry (Θ,Ω) ∈ Aut(κ) of the control-law κ(x) is a symmetry of its piecewise
affine expression (4.39). Thus Aut(I) ⊆ Aut(κ). Next we show the converse.

Suppose (Θ,Ω) ∈ Aut(κ) does not permute the controller pieces (Θ,Ω) 6∈ Aut(I). Then
there exists i ∈ I such that (4.40) does not hold for any j ∈ I.

Consider the set ΘRi ⊂ X . There exists a minimal finite covering J ⊆ I of this set

int
(
ΘRi

)
⊆
⋃

j∈J
Rj (4.42)

since {Ri}i∈I is a partition of the domain X of the controller κ(x) and ΘRi ⊆ X is a subset
of the domain X = ΘX . The sets

Pj = (ΘRi) ∩Rj (4.43)

for j ∈ J are full-dimensional since ΘRi is full-dimensional and J is a minimal cover.
Therefore each Pj contains a set of affinely independent points. Since Ωκ(x) = κ(Θx) at
each of these affinely independent points we have

ΩFi = FjΘ (4.44a)

ΩGi = Gj (4.44b)

for each j ∈ J . Thus (ΩFiΘ
−1,ΩGi,ΘRi) and (Fj, Gj,Rj) differ only by the partition

ΘRi 6= Rj.
Suppose |J | = 1 then ΘRi ⊂ Rj since ΘRi 6= Rj. In this case we can reverse the

roles of i and j and consider a cover K of Θ−1Rj where |K| > 1. Since Aut(I) is a group
(Θ−1,Ω−1) ∈ Aut(I) implies (Θ,Ω) ∈ Aut(I). Thus we can assume without loss of generality
that |J | > 1.

For |J | > 1 we can merge the regions Rj for j ∈ J . However this contradicts the
assumption that {Ri}i∈I is the minimal partition. Therefore we conclude that (Θ,Ω) ∈
Aut(κ) permutes the controller pieces (Θ,Ω) ∈ Aut(I).

The following example shows that this result does not hold when Ri are not p-collections.
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R1

R2

R3

R4

R5

R6

R7

(a)
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R5

R6

(b)

R̂1

R̂2

R̂3

R̂2

R̂5

(c)

Figure 4.4: Example of symmetry under the minimal p-collection partition. (a) Convex
partition {Ri}7

i=1 for the symmetric controller κ(x). (b) The image {ΘRi}7
i=1 of the partition

{Ri}7
i=1 under the 90 degree counter-clockwise rotation matrix Θ. (c) The unique minimal

p-collection partition {R̂i}5
i=1 for the symmetric controller κ(x).

Example 10. Let κ(x) be a piecewise affine on p-collection controller that is symmetric with
respect to the dihedral-4 group Aut(κ) = D4 with the partition {Ri}i∈I shown in Figure 4.4a.

For the partition shown in Figure 4.4a the symmetries Θ ∈ Aut(κ) do not permute
Aut(κ) 6= Aut(I) the controller pieces I = {1, 2, 3, 4, 5, 6, 7}. For instance a 90 degree
rotation Θ will map the partition in Figure 4.4a to the partition in Figure 4.4b. This is
because the partition is not the minimal p-collection partition.

By symmetry of the controller κ(x) we know the feedback Fi and feedforward gains Gi in
regions R1, R2 and R3 must be the same. Therefore we can merge these regions as shown
in Figure 4.4c. This symmetric partition is the minimal p-collection partition. Under this
partition symmetries Θ ∈ Aut(κ) of the controller κ(x) permute the regions R̂i. Therefore
Aut(κ) = Aut(I).

The group Aut(I) is the set of controller symmetries (Θ,Ω) ∈ Aut(κ) that permute the
controller pieces (Fi, Gi,Ri) for i ∈ I. Each symmetry (Θ,Ω) ∈ Aut(I) corresponds to a
permutation π : I → I of the controller pieces I where j = π(i) for i and j satisfying (4.40).
It will be convenient to define a function Π that maps transformations (Θ,Ω) ∈ Aut(I)
to the corresponding permutation π = Π(Θ,Ω) of the controller pieces π : I → I. This
function is a group homomorphism from Aut(κ) to SI .

Proposition 12. The function Π : Aut(I)→ SI is a group homomorphism. The subgroup
Aut(κ)/Ker(Π) is finite.

Proof. Suppose (Θ1,Ω1) ∈ Aut(κ) corresponds to the permutation π1 = Π(Θ1,Ω1) and
(Θ2,Ω2) ∈ Aut(κ) corresponds to the permutation π2 = Π(Θ2,Ω2). Then clearly (Θ1Θ2,Ω1Ω2) ∈
Aut(κ) corresponds to the permutation π1π2 ∈ Π(Aut(κ)). Thus Π is a group homomor-
phism.
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Since Π is a group homomorphism, the subgroup Aut(κ)/Ker(Π) isomorphic to the
group Π(Aut(κ)) which if finite since it is a permutation group on a finite set I.

The function Π is not necessarily an isomorphism. There may be symmetries (Θ,Ω) ∈
Aut(I) that permute the controller pieces but simply send every controller pieces i ∈ I to
itself. These are the elements of the subgroup Ker(Π) = {(Θ,Ω) ∈ Aut(I : Π(Θ,Ω) = e}
where e(i) = i is the identity permutation. In Chapter 7 we will discuss how symmetry can
be used to reduce the complexity of piecewise affine on polytopes control-laws. Symmetries
(Θ,Ω) ∈ Ker(Π) in the set Ker(Π) cannot be used to compress the controller. The subgroup
Ker(Π) can potentially be infinite as shown in the following example.

Example 11. For an open-loop stable system we can use the controller u = κ(x) = 0 for all
x ∈ X . This controller has one piece κ(x) = 0x+ 0 for x ∈ R = X . Therefore there is only
one permute of the controller pieces |Π(Aut(κ))| = 1. However the symmetry group Aut(κ)
of the controller is infinite since any invertible matrix Ω ∈ Rm×m is a symmetry Ω0 = 0.
Therefore the set of useless symmetries Ker(Π) is infinite.

4.4 Symmetries of Model Predictive Controllers

Consider the following model predictive control problem

J?(x) = minimize
u0,...,uN−1

p(xN) +
∑N−1

k=0
q(xk, uk) (4.45a)

subject to xk+1 = f(xk, uk) (4.45b)

xk+1 ∈ X , uk ∈ U (4.45c)

xN ∈ XN (4.45d)

x0 = x (4.45e)

where x ∈ Rn is the measured state, xk is the predicted state under the control action
uk ∈ Rm over the horizon N , and XN is the terminal constraint set.

A symmetry of the cost function (4.45a) is a state-space Θ and input-space Ω transfor-
mation that preserves the cost function J(X,U) = p(xN) +

∑N−1
k=0 q(xk, uk).

Definition 8. The pair of invertible matrices (Θ,Ω) is a symmetry of the cost function
(4.45a) if it satisfies

p(Θx) = p(x) (4.46a)

q(Θx,Ωu) = q(x, u). (4.46b)

Definition 8 says that the cost (4.45a) of the state trajectory {x(t)}Nt=0 and input trajec-
tory {u(t)}N−1

t=0 is the same as the cost (4.45a) of the state trajectory {Θx(t)}Nt=0 and input
trajectory {Ωu(t)}N−1

t=0 . The set of all symmetries of the cost function (4.45a) is a group
denoted by Aut(J).
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Proposition 13. The set Aut(J) of all invertible matrices (Θ,Ω) that satisfy (4.46) is a
group under pairwise matrix multiplication.

The symmetry group Aut(MPC) = Aut(J)∩Aut(XN)∩Aut(Σ) of the model predictive
control problem (4.45) is the intersection of the symmetry groups of the cost function Aut(J),
the terminal set Aut(XN), and the constrained system Aut(Σ) = Aut(f) ∩ Aut(X ,U).

Typically the terminal set XN is chosen to be a control invariant set to guarantee persis-
tent feasibility. In Proposition 6 we showed the maximal control invariant set C∞ is symmet-
ric with respect to the symmetry group Aut(Σ) of the constrained system. Furthermore in
Corollary 1 we showed how to construct a symmetric control invariant set C̄ for a constrained
linear system. Thus we will assume the terminal set XN is symmetric with respect to the
symmetry group Aut(Σ) ⊆ Aut(XN) of the constrained system. Therefore the symmetry
group Aut(MPC) = Aut(J) ∩Aut(Σ) of the model predictive control problem (4.45) is the
intersection of the symmetry groups of the cost function Aut(J) and the constrained system
Aut(Σ) = Aut(f) ∩ Aut(X ,U).

We will use the group Aut(MPC) to study the symmetry of model predictive controllers.
Our analysis will be based on the dynamic programming formulation of the model predictive
control problem (4.45). We define the terminal cost-to-go as

J?N(xN) = p(xN) (4.47)

where p(xN) is the terminal cost of the model predictive control problem (4.45a). This cost
J?N(xN) is defined on the terminal set XN . For each stage k = N − 1, . . . , 0 the cost-to-go is
the solution to the one-step optimization problem

J?k (x) = minimize
u∈U

q(x, u) + J?k+1

(
f(x, u)

)
(4.48a)

subject to f(x, u) ∈ Xk+1. (4.48b)

The cost function J?k (x) is defined on the feasible set

Xk =
{
x ∈ X : ∃u ∈ U , f(x, u) ∈ Xk+1

}
(4.49)

= Pre(Xk+1) ∩ X .

For each stage k = N − 1, . . . , 0 the optimal control-law u?k(x) is an optimizer u?k : Xk → U
of the one-step optimization (4.48). A model predictive controller u?0(x) is an optimizer at
stage k = 0. The following theorem shows that the cost-to-go J?k (x) and feasible region Xk
are symmetric at each stage k = 0, . . . , N . Furthermore the one-step optimization problem
has a symmetry solution u?k(x) at each stage k = 0, . . . , N .

Theorem 8. Let the model predictive control problem (4.45) be convex. Then the cost-to-go
J?k (x) and feasible region Xk are symmetric

J?k (Θx) = J?k (x) (4.50a)

ΘXk = Xk (4.50b)
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for all Θ ∈ Aut(MPC) and k = 0, . . . , N . The one-step optimization problem (4.48) has a
symmetric solution ū?0(x)

ū?k(Θx) = Ωū?k(x) (4.51)

for all Θ ∈ Aut(MPC) and k = 0, . . . , N − 1.

Proof. First we will prove the symmetry of J?k (x) and Xk by induction on k. Note that
J?N(x) = p(x) is symmetric since p(Θx) = p(x) by definition of Aut(MPC) ⊆ Aut(J). Like-
wise XN is symmetric since ΘXN = XN by the assumption on the terminal set Aut(MPC) ⊆
Aut(Σ) ⊆ Aut(XN).

Assume J?k+1(x) and Xk+1 are symmetric with respect to Aut(MPC). Then we will show
J?k (x) and Xk are symmetric. By Proposition 7 the set Pre(Xk+1) is symmetric with respect
to Aut(MPC) ⊆ Aut(Σ). Thus Xk = Pre(Xk+1)∩X is symmetric since it is the intersection
of symmetric sets.

Next we will prove the symmetry of J?k (x). Let u?k(x) be an optimal solution to (4.48)
at the state x. Then Ωu?k(x) is a feasible solution to (4.48) at the state Θx since Ωu?k(x) ∈
ΩU = U and f(Θx,Ωu?k(x)) = Θf(x, u?k(x)) ∈ ΘXk+1 = Xk+1. Using this input Ωu?k(x) we
obtain an upper-bound on the cost-to-go J?k (Θx) at Θx

J?k (Θx) ≤ q(Θx,Ωu?k(x)) + J?k+1

(
f(Θx,Ωu?k(x))

)
(4.52)

= q(x, u?k(x)) + J?k+1

(
Θf(x, u?k(x))

)
= q(x, u?k(x)) + J?k+1

(
f(x, u?k(x))

)
= J?k (x). (4.53)

Thus J?k (Θx) ≤ J?k (x) for all Θ ∈ Aut(MPC) and x ∈ Xk+1. Since Aut(MPC) is a group
for every Θ ∈ Aut(MPC) we have Θ−1 ∈ Aut(MPC). Therefore J?k (Θx) = J?k (x).

Finally we prove (4.48) has a symmetric optimal solution ū?k(x). Let u?k(x) be an optimal
solution to (4.48). Define

ū?k(x) =
1

|G|
∑

(Θ,Ω)∈G

Ω−1u?k(Θx) (4.54)

where G = Aut(MPC). By construction ū?k(x) is symmetric Ωū?k(x) = ū?k(Θx) for all
(Θ,Ω) ∈ Aut(MPC).

We will show that the function ū?k(x) is a convex combination of optimal solutions
Ω−1u?k(Θx) to (4.48). First we note that Ω−1u?k(Θx) is a feasible solution to (4.48) since
Ω−1u?k(Θx) ∈ Ω−1U = U and f

(
x,Ω−1u(Θx)

)
= Θ−1f

(
Θx, u(Θx)

)
∈ Θ−1Xk+1 = Xk+1

where Θx ∈ ΘXk = Xk. Thus ū?k(x) is a feasible solution since it is a convex combination of
feasible solutions and the feasible set of (4.48) is convex.

Next we show Ω−1u?k(Θx) is an optimal solution to (4.48). Note

q
(
x,Ω−1u?k(Θx)

)
+ J?k+1

(
f(x,Ω−1u?k(Θx))

)
= q(Θx, u?k(Θx) + J?k+1

(
Θ−1f(Θx, u?k(Θx))

)
= q(Θx, u?k(Θx) + J?k+1

(
f(Θx, u?k(Θx))

)
= J?k (Θx) = J?k (x). (4.55)
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Thus ū?k(x) is an optimal solution to (4.48) since it is a convex combination of optimal
solutions and (4.48) is convex

q(x, ū?k(x)) + J?k+1

(
f(x, ū?k(x))

)
(4.56)

= q
(
x,

1

|G|
∑

G
Ω−1u?k(Θx)

)
+ J?k+1

(
f
(
x,

1

|G|
∑

G
Ω−1u?k(Θx)

))
≤ 1

|G|
∑

G
q
(
x,Ω−1u?k(Θx)

)
+ J?k

(
f(x,Ω−1u?k(Θx))

)
=

1

|G|
∑

G
J?k (x) = J?k (x)

where G = Aut(MPC). Therefore ū?k(x) is a symmetric optimal solution to the one-step
optimization problem (4.48).

This theorem says that every convex symmetric model predictive control problem has
at least one symmetric solution ū?0(x) where Aut(ū?0) ⊇ Aut(MPC). However if there are
multiple solutions then some of these solutions can be non-symmetric. The following corollary
states that if the model predictive control problem (4.45) is strictly convex then the model
predictive controller u?0(x) is symmetric.

Corollary 2. Suppose (4.45) is strictly convex. Then the model predictive controller u?0(x)
is symmetric Aut(MPC) ⊆ Aut(u?0).

Proof. Since (4.45) is strictly convex u?0(x) is its unique solution. Thus by Theorem 8 it is
symmetric Ωu?0(x) = u?0(Θx) for all (Θ,Ω) ∈ Aut(MPC).

The following example shows that a symmetric model predictive controller ū?0(x) can have
symmetries (Θ,Ω) ∈ Aut(ū?0) that do not appear in the model predictive control problem
(Θ,Ω) 6∈ Aut(MPC). Thus the symmetry group of the model predictive control problem
can be a strict subset Aut(MPC) ⊂ Aut(ū?0) of the symmetry group Aut(ū?0) of a symmetric
model predictive controller ū?0(x).

Example 12. Consider the one-step model predictive control problem

minimize
u0∈U

‖Ax+Bu0‖2
2 + ‖x‖2

2 + ρ‖u0‖2
2 (4.57a)

subject to Ax+Bu0 ∈ X (4.57b)

where ρ = 5× 105 and the dynamics matrices are

A =

[ √
2
√

2

−
√

2
√

2

]
and B =

[
1 0
0 1

]
. (4.58)

The state constraints are the octagon shown in Figure 4.5a and the input constraints are the
box shown in Figure 4.5b.
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(a) (b) (c) (d)

Figure 4.5: Counter-example showing the symmetry group Aut(u?0) of the model predictive
controller u?0(x) can be larger than the symmetry group Aut(MPC) of the model predictive
control problem.

The model predictive control problem is symmetric with respect to rotations of the state-
space and input-space by 90 degree increments Aut(MPC) = C4. However the controller
κ(x) is symmetric with respect to rotation of the state-space Θ and input-space Ω by 45
degree increments Aut(u?0) = C8. This symmetry can be seen in Figure 4.5c which shows
the controller partition {Ri}i∈I of the piecewise affine solution u?0(x) to this model predictive
control problem.

The limiting factor in the symmetry group Aut(MPC) of the model predictive control
problem in this example is the input constraint set U . However the model predictive controller
u?0(x) does not use every possible control input u ∈ U . The image u?0(X ) of the optimal control
for each x ∈ X is shown in Figure 4.5d. It can be seen that the model predictive controller
only uses an octagonal subset of U . Therefore the controller u?0(x) can have a larger symmetry
group Aut(u?0) than the model predictive control problem Aut(MPC). Likewise the symmetry
group Aut(u?0) could be strictly larger than Aut(MPC) if the feasible state-space X0 ⊂ X has
more symmetries than X .

If the model predictive control problem (4.45) can be posed as a linear or quadratic pro-
gram then the model predictive controllers u?0(x) are piecewise affine on polytope functions.
According to Theorems 7 and 8 the symmetries (Θ,Ω) ∈ Aut(MPC) of the model predictive
control problem permute the pieces (Fi, Gi,Ri) of the controller u?0(x) when {Ri}i∈I is the
minimal p-collection partition. In the next two subsections we will show this holds when
{Ri}i∈I = {CRi}i∈I is the critical region partition. This stronger result will be used in
Chapter 7 to simplify the explicit model predictive controller.
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Linear Model Predictive Control with Quadratic Cost

Consider the following model predictive control problem for a constrained linear time-
invariant system with quadratic cost function and polytopic constraints

J?(x) = minimize
u0,...,uN−1

xTNPxN +
∑N−1

k=0
xTkQxk + uTkRuk (4.59a)

subject to xk+1 = Axk +Buk (4.59b)

xk+1 ∈ X , uk ∈ U (4.59c)

xN ∈ XN (4.59d)

x0 = x (4.59e)

where x ∈ Rn is the measured state, xk is the predicted state under the control action
uk ∈ Rm over the horizon N , X , U , and XN are polytopic sets, and P = P T � 0, Q = QT � 0
and R = RT � 0. The optimal solution u?0(x) to this model predictive control problem is a
piecewise affine on polytopes function.

According to Definition 8 the symmetries (Θ,Ω) ∈ Aut(J) of the quadratic cost function
(4.59a) must satisfy

ΘTPΘ = P (4.60a)

ΘTQΘ = Q (4.60b)

ΩTRΩ = R. (4.60c)

Often the terminal cost p(x) = xTPx is chosen to be the cost-to-go J?∞(x) = xTP∞x for
the infinite-horizon linear quadratic regulator problem. In this case the terminal cost p(x)
is symmetric with respect to the symmetries of the dynamics Aut(A,B) and cost matrices
Q and R.

Proposition 14. Let (A,B) be controllable and (Q1/2, A) be observable. Let P∞ be the
solution to the discrete algebraic Riccati equation

P = Q+ ATPA− ATPB(R +BTPB)−1BTPA. (4.61)

Let Aut(Q,R) be the set of all matrices (Θ,Ω) that satisfy ΘTQΘ = Q and ΩTRΩ = R.
Then P∞ is symmetric ΘTP∞Θ = P∞ for all Θ ∈ Aut(A,B) ∩ Aut(Q,R).

Proof. Consider the positive definite matrix P̄ = ΘTP∞Θ for some Θ ∈ Aut(A,B) ∩
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Aut(Q,R). Note that this matrix satisfies the discrete algebraic Riccati equation

Q+ AT P̄A−AT P̄B
(
R +BT P̄B

)−1
BT P̄A (4.62)

= Q+ ATΘTPΘA− ATΘTPΘB
(
R +BTΘTPΘB

)−1
BTΘTPΘA

= ΘTQΘ + ΘTATPAΘ−ΘTATPBΩ
(
ΩTRΩ + ΩTBTPBΩ

)−1
ΩBTPAΘ

= ΘT
(
Q+ ATPA− ATPB

(
R +BTPB

)−1
BTPA

)
Θ

= ΘTPΘ

= P̄

where P = P∞. However since (A,B) is controllable and (Q1/2, A) is observable, P = P∞
is the unique positive definite solution to (4.61). Thus P∞ is symmetric since P∞ = P̄ =
ΘTP∞Θ for any Θ ∈ Aut(A,B) ∩ Aut(Q,R).

This proposition allows us to simplify the definition of the symmetries of the quadratic
cost function (4.59a). With this simplification, the symmetry group Aut(MPC) = Aut(J)∩
Aut(Σ) of the model predictive control problem (4.59) is the set of all pairs of matrices (Θ,Ω)
that satisfy

ΘA = AΘ (4.63a)

ΘB = BΩ (4.63b)

ΘX = X (4.63c)

ΩU = U (4.63d)

ΘTQΘ = Q (4.63e)

ΩTRΩ = R (4.63f)

where XN is a symmetric set Aut(XN) ⊇ Aut(Σ).
According to Theorem 8 the solution u?0(x) to the model predictive control problem (4.59)

is symmetric with respect to this group. The following theorem shows a stronger result: when
{Ri}i∈I = {CRi}i∈I is the critical region partition, the symmetries (Θ,Ω) ∈ Aut(MPC)
permute the pieces (Fi, Gi,Ri) of the controller u?0(x) .

Theorem 9. Let u?0(x) be the optimal piecewise affine controller law for the model predictive
control problem (4.59) where {Ri}i∈I = {CRi}i∈I is the critical region partition. Then
Aut(MPC) ⊆ Aut(I).

Proof. For each (Θ,Ω) ∈ Aut(MPC) and critical region CRi there exists a critical region
CRj such that the set P = CRi∩ΘCRj is full-dimensional since {ΘCRi}i∈I covers ΘX0 = X0.
This set P contains an affinely independent set of points. Thus the feedback gains of u?0(x)
satisfy FiΘ = ΩFj and the feedforward gains satisfy Gi = ΩGj since u?0(Θx) = Ωu?0(x) by
Theorem 8.
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Next we show CRi = ΘCRj. The critical region CRi is defined as

CRi =
{
x : Fix+ Gi ∈ UN , (A + BFi)x+ BGj ∈ XN

}
(4.64)

where A ∈ RNn×n and B ∈ RNn×Nm come from the N -step batch dynamicsx1
...
xN

 =

 A
...
AN


︸ ︷︷ ︸

A

x0 +

 B
...

. . .

AN−1B · · · B


︸ ︷︷ ︸

B

 u0
...

uN−1


︸ ︷︷ ︸

U

(4.65)

and Fi ∈ RNm×n and Gi ∈ RNm come from the optimal solution U?(x0) = Fix0 + Gi of the
multi-parametric program (2.28) formulation of the model predictive control problem (4.59).

Since (Θ,Ω) ∈ Aut(Σ) = Aut(A,B) ∩ Aut(X ,U), the critical region CRj satisfies

Θ−1CRj =
{
x : FjΘx+ Gj ∈ UN , (A + BFj)Θx+ BGj ∈ XN

}
=
{
x : (I ⊗ Ω)Fix+ Gj ∈ UN , (I ⊗Θ)(A + BFi)x+ BGj ∈ XN

}
=
{
x : Fix+ Gi ∈ (I ⊗ Ω)−1UN , (A + BFi)x+ BGi ∈ (I ⊗Θ)−1XN

}
= CRi

where ⊗ is the Kronecker product.
Thus each (Θ,Ω) ∈ Aut(MPC) permutes the controller pieces (Fi, Gi,Ri) for i ∈ I of

the controller u?0(x).

This theorem means that we do not need to redefine the partition {Ri}i∈I of the controller
u?0(x) in order to use symmetry to permute the controller pieces (Fi, Gi,Ri). This result will
be important in Chapter 7 when we use symmetry to reduce the complexity of explicit model
predictive controllers.

Linear Model Predictive Control with Linear Cost

Consider the following model predictive control problem for a constrained linear time-
invariant system with linear cost function and polytopic constraints

J?(x) = minimize
u0,...,uN−1

ΦP(xN) +
∑N−1

k=0
ΦQ(xk) + ΦR(uk) (4.66a)

subject to xk+1 = Axk +Buk (4.66b)

xk+1 ∈ X , uk ∈ U (4.66c)

x0 = x (4.66d)

where x ∈ Rn is the measured state, xk is the predicted state under the control action
uk ∈ Rm over the horizon N , X , U , XN , P , Q, and R are polytopic sets, and ΦP(x), ΦQ(x),
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and ΦR(u) are the Minkowski functions for the sets P , Q, and R respectively. Recall that
the Minkowski function for a set X is defined as ΦX (x) = inf{λ ∈ R+ : x ∈ λX}.

According to Definition 8 the symmetries (Θ,Ω) ∈ Aut(J) of the linear cost function
(4.66a) must satisfy

ΘP = P (4.67a)

ΘQ = Q (4.67b)

ΩR = R. (4.67c)

For polytopic sets P , Q, and R, the model predictive control problem (4.66) can be posed
as a multi-parametric linear program. The optimal solutions u?0(x) to the model predictive
control problem (4.66) are piecewise affine on polytopes functions. The value function J?(x)
is piecewise affine

J?(x) = max
i∈I

cTi x+ di (4.68)

where the critical regions CRi are given by [83, 51]

CRi = {x ∈ X0 : cTi x+ di ≥ cTj x+ dj,∀j ∈ I}. (4.69)

The symmetries Θ ∈ Aut(MPC) of the model predictive control problem (4.66) permutes
the value function pieces.

Lemma 1. For each Θ ∈ Aut(MPC) and i ∈ I there exists j ∈ I such that ΘT ci = cj and
di = dj.

Proof. For each Θ ∈ Aut(MPC) and critical region CRi there exists a critical region CRj

such that CRi ∩ ΘCRj is full-dimensional since the partition {ΘCRi}i∈I covers X0 and
CRi ⊆ X0. In the critical region CRi the value function is J?(x) = cTi x + di and in critical
region CRj the value function is J?(x) = cTj x+ dj. By Theorem 8 we have

J?(x) = cTi x+ di = cTj Θx+ dj = J?(Θx) (4.70)

over the set CRi ∩ ΘCRj. Since CRi ∩ ΘCRj is full-dimensional it contains an affinely
independent set of points x. Thus ΘT ci = cj and di = dj.

One consequence of this result is that there exists a symmetric piecewise affine on critical
regions solution ū?0(x) to the model predictive control problem (4.66).

Theorem 10. The model predictive control problem (4.66) has a symmetric piecewise affine
control-law defined on the critical regions

ū?0(x) =


F̄1x+ Ḡ1 x ∈ CR1

...

F̄1x+ Ḡp x ∈ CRp.

(4.71)
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Proof. Let u?0(x) be a continuous piecewise affine on polytopes solution to (4.66). Define

ū?0(x) =
1

|G|
∑

(Θ,Ω)∈G
Ω−1u?0(Θx) (4.72)

where G = Aut(MPC). By Theorem 8, ū?0(x) is a solution to (4.66). Furthermore it
is piecewise affine on polytopes since it is the finite sum of piecewise affine on polytope
functions. The partitions of ū?0(x) are sets of the form

⋂|G|
j=1 ΘjCRij . Since ū?0(x) is continuous

we are only interested in full-dimensional partitions. By Lemma 1 the sets
⋂|G|
j=1 ΘjCRij are

only full-dimensional if ij = i1 for all j = 1, . . . , |G|. Thus the partition of ū?0(x) is the critical
region partition {CRi}i∈I .

The importance of this theorem is that it shows there exists a symmetric controller ū?0(x)
with the same number of pieces |I| as the non-symmetric controllers u?0(x). This means
storing the symmetric controller ū?0(x) requires the same amount of memory as storing a
non-symmetric controller u?0(x).
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Chapter 5

Identification of Symmetry Groups

In this chapter we consider the problem of finding the symmetry groups of linear system
Aut(A,B), constrained linear system Aut(Σ), and linear model predictive control problems
Aut(MPC) with linear and quadratic costs. This problem is called symmetry identifica-
tion. For constrained systems and model predictive control problems with bounded full-
dimensional sets X and U the symmetry groups Aut(Σ) and Aut(MPC) are finite. Identify-
ing these groups requires techniques from discrete mathematics. We transform the problem
of finding the symmetries of a constrained linear system into the problem of finding the
symmetries of a vertex colored graph. The symmetries of a vertex colored graph can be
found efficiently using graph automorphism software. In the last section we demonstrate our
symmetry identification procedure on a quadrotor system.

5.1 Symmetry Identification for Linear Systems

In this section we address the problem of finding the set Aut(A,B) of all state-space Θ and
input-space Ω transformations that preserve the dynamics ΘA = AΘ and ΘB = BΩ. This
problem is called symmetry identification for linear systems.

This problem is straight-forward since the closure of the group Aut(A,B) is a vector-
space. The closure of the group Aut(A,B) is the set of all matrices Θ and Ω that satisfy[

Θ 0
0 Ω

] [
A B
0 0

]
=

[
A B
0 0

] [
Θ 0
0 Ω

]
. (5.1)

The group Aut(A,B) is the invertible elements of this space.

5.2 Symmetry Identification for Constrained Linear

Systems

In this section we address the problem of finding the set Aut(Σ) of all state-space Θ and
input-space Ω transformations that preserve the dynamics (4.2) and constraints (4.12).
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Recall that a set S is a generating set for the finite group G = 〈S〉 if every element Θ ∈ G
of the group G can be written as a product Θ = S1S2 · · · of elements S1, S2, . . . . ∈ S of the
set S. The set S is analogous to a basis for a vector-space. Thus we can describe the group
Aut(Σ) by finding a set S that generates the group Aut(Σ) = 〈S〉. We call this problem
symmetry identification for constrained linear systems.

Problem 1 (Symmetry Identification for Constrained Linear Systems). Find a set S of
state-space and input-space transformations (Θ,Ω) ∈ S that generate the symmetry group
Aut(Σ) = 〈S〉 of the system (4.9) subject to the constraints (4.11).

For bounded full-dimensional polytopes X and U the symmetry group Aut(Σ) ⊆ Aut(X ,U)
is finite. Therefore we must use techniques from discrete-mathematics to identify Aut(Σ).
In the next section we will describe how to find the symmetries Aut(X ,U) of polytopes X
and U . We will extend this method to find the symmetry group Aut(Σ) of constrained linear
systems.

In order to simplify our analysis we will assume the dynamics matrices A and B, and the
constraint sets X and U are expressed in the regular basis. Recall that we can transform
the state-space and input-space into the regular basis using the state-space transformation
Tx = (H̄T

x H̄x)
−1/2 and input-space transformation Tu = (H̄T

u H̄u)
−1/2 where H̄x and H̄u are

the non-redundant half-space matrices of the constraint sets X̄ and Ū in the original basis.
Under this regular basis we have Hx = H̄x(H̄

T
x H̄x)

−1/2 and Hu = H̄u(H̄
T
u H̄u)

−1/2 satisfy
HT
xHx = In and HT

xHx = Im. The dynamics matrices are

A = (H̄T
x H̄x)

1/2Ā(H̄T
x H̄x)

−1/2 (5.2a)

B = (H̄T
x H̄x)

1/2B̄(H̄T
u H̄u)

−1/2 (5.2b)

where Ā and B̄ are the dynamics matrices in the original basis.
We are searching for the set Aut(Σ) of matrices Θ and Ω that preserve the dynamics

ΘA = AΘ (5.3a)

ΘB = BΩ (5.3b)

and the constraints

ΘX = X (5.4a)

ΩU = U . (5.4b)

These matrix pairs (Θ,Ω) ∈ Aut(Σ) will be represented in the regular basis and must be
converted back to the original basis using the transformations

Θ̄ = (HT
xHx)

−1/2Θ(HT
xHx)

1/2 (5.5a)

Ω̄ = (HT
xHx)

−1/2Ω(HT
xHx)

1/2. (5.5b)
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Identifying the Symmetries of Polytopes

In this section we describe how to find the symmetry group Aut(X ,U) = Aut(X )×Aut(U)
of polytopes X and U . We assume the polytopes X and U are bounded, full-dimensional,
and contain the origin in their interiors.

For bounded, full-dimensional sets X and U the symmetry group Aut(X ,U) = Aut(X )×
Aut(U) is isomorphic to a permutation group acting on the facets of X and U . We will
denote this group by Perm(X ,U). The symmetries (Θ,Ω) ∈ Aut(X ,U) and the permutation
matrix (Πx,Πu) ∈ Perm(X ,U) are related by the expression[

Πx 0
0 Πu

] [
Hx 0
0 Hu

]
=

[
Hx 0
0 Hu

] [
Θ 0
0 Ω

]
(5.6)

where Πx ∈ Rcx×cx and Πu ∈ Rcu×cu are permutation matrices. Taking the pseudo-inverse of
Hx and Hu we can express Θ and Ω in terms of Πx and Πu by

Θ = HT
x ΠxHx (5.7a)

Ω = HT
u ΠuHu (5.7b)

where HT
xHx = In and HT

uHu = Im under the regular basis. In [18] it was shown that (5.7)
is a group isomorphism from Perm(X ,U) to Aut(X ,U). Therefore the problem of identify
the symmetry group Aut(X ,U) is equivalent to finding the group of permutation matrices
Perm(X ,U).

In [18] the permutation group Perm(X ,U) was characterized as the set of all permutation
matrices Πx and Πu that satisfy the commutative relation[

Πx 0
0 Πu

] [
HxH

T
x 0

0 HuH
T
u

]
=

[
HxH

T
x 0

0 HuH
T
u

] [
Πx 0
0 Πu

]
. (5.8)

In Section 5.4 we will show how to convert the problem of finding all permutation matrices
Πx and Πu that satisfy (5.8) into a graph automorphism problem.

Identifying the Constrained Linear Systems

In this section we extend the method presented in the previous section for identifying the
symmetries (Θ,Ω) ∈ Aut(X ,U) of polytopes X and U to the problem of identifying the
symmetries (Θ,Ω) ∈ Aut(Σ) of constrained linear systems.

For the matrices (Θ,Ω) ∈ Aut(X ,U) to be elements of the symmetry group Aut(Σ) ⊆
Aut(X ,U) they must preserve (5.3) the dynamics matrices A and B. This suggests that we
use Algorithm 7 for computing the symmetry group Aut(Σ).

Unfortunately Algorithm 7 is impractical since the group Aut(X ,U) can be very large
|Aut(X ,U)| = O(cnxc

m
u ). In order to be computationally tractable we need to design an algo-

rithm that will operate on the generators S of the group Aut(X ,U) = 〈S〉. The generators
are bounded in size by |S| ≤ (cx−1)(cu−1). Unfortunately in general Algorithm 7 does not
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Algorithm 7 Naive calculation of Aut(Σ)

1: Calculate Aut(X ,U)
2: for each (Θ,Ω) ∈ Aut(X ,U) do
3: if ΘA = AΘ and ΘB = BΩ then
4: Add (Θ,Ω) to Aut(Σ).
5: end if
6: end for

produce the full symmetry group Aut(Σ) when the for-loop is restricted to the generators S
of Aut(X ,U) = 〈S〉. This is demonstrated by the following example.

Example 13. Consider the constrained autonomous system

x(t+ 1) = Ax(t) (5.9a)

x(t) ∈ X (5.9b)

where X is the square X = {x ∈ R2 : Hx ≤ 1} with

A =

[
0 −1
1 0

]
and H =

1√
2


1 0
0 1
−1 0

0 −1

 (5.10)

where HTH = I since we are in the regular basis.
The symmetry group Aut(X ) of the square X is the dihedral-4 group; the eight element set

of all rotations by increments of 90 degrees and the reflections about the horizontal, vertical,
and both diagonal axes. The group Aut(X ) can be generated by the horizontal and diagonal
reflections

Θ1 =

[
−1 0

0 1

]
and Θ2 =

[
0 1
1 0

]
. (5.11)

The symmetry group Aut(Σ) contains four elements; the rotations by increments of 90
degrees. However executing Algorithm 7 using the generators S = {Θ1,Θ2} will not return
Aut(Σ) since neither of the generators Θ1 or Θ2 commute with the matrix A.

Our method for finding Aut(Σ) is similar to the method for finding Aut(X ,U). We find
a permutation group Perm(Σ) isomorphic to Aut(Σ). The generators of Aut(Σ) are then
the image of the generators of Perm(Σ) mapped through the isomorphism (5.7).

Since Aut(Σ) ⊆ Aut(X ,U) is a subgroup of Aut(X ,U) it is also isomorphic to a permu-
tation group Perm(Σ) ⊆ Perm(X ,U). The permutations (Πx,Πu) ∈ Perm(Σ) must not only
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permute the facets of X and U but also the facets of the pre-set Pre(X ) of the set X un-
der the linear dynamics (4.9) subject to the constraints (4.11). Therefore the permutations
(Πx,Πu) ∈ Perm(Σ) and linear transformations (Θ,Ω) ∈ Aut(Σ) must satisfy[

Πx 0
0 Πu

] [
HxA HxB

0 Hu

]
=

[
HxA HxB

0 Hu

] [
Θ 0
0 Ω

]
. (5.12)

This expression allows us to characterize Perm(Σ) ⊆ Perm(X ,U) as the set of all permutation
matrices (Πx,Πu) ∈ Perm(X ,U) from the permutation group Perm(X ,U) that satisfy the
commutative relation[

Πx 0
0 Πu

] [
HxAH

T
x HxBH

T
u

0 HT
uHu

]
=

[
HxAH

T
x HxBH

T
u

0 HT
uHu

] [
Πx 0
0 Πu

]
(5.13)

where HT
xHx = In and HT

uHu = Im under the regular basis. The following theorem shows
that (5.13) ensures the linear transformations Θ = HT

x ΠxHx and Ω = HT
u ΠuHu preserve the

dynamics (5.3) and constraints (5.4).

Theorem 11. Let Perm(Σ) be the set of all permutation matrices Πx and Πu that satisfy
(5.8) and (5.13). Then Perm(Σ) is isomorphic to Aut(Σ) with isomorphism (5.7).

Proof. In order to prove this theorem we must prove three claims: the matrices Θ and Ω
given by (5.7) for (Πx,Πu) ∈ Perm(Σ) are symmetries (Θ,Ω) ∈ Aut(Σ) of the linear system
(4.1) subject to the constraints (4.11), the function (5.7) is a group homomorphism, and it
is bijective.

First we prove that the transformations Θ and Ω produced by (5.7) are symmetries
(Θ,Ω) ∈ Aut(Σ) of the constrained linear system. First we show Θ and Ω satisfy (5.3). By
(5.13) the permutation matrices (Πx,Πu) ∈ Perm(Σ) satisfy

ΠxHxBH
T
u = HxBH

T
u Πu. (5.14)

We pre-multiply this expression by HT
x and post-multiply by Hu to produce

HT
x ΠxHxBH

T
uHu = HT

xHxBH
T
u ΠuHu. (5.15)

Since HT
xHx = In and HT

uHu = Im under the regular basis, we have

ΘB = BΩ (5.16)

where Θ = HT
x ΠxHx and Ω = HT

u ΠuHu. Likewise we can show ΘA = AΘ. Thus (Θ,Ω) ∈
Aut(A,B) ⊇ Aut(Σ).

Next we show that Θ and Ω satisfy (5.4). By (5.8) we have

HxΘ = HxH
T
x ΠxHx (5.17)

= ΠxHxH
T
xHx

= ΠxHx
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where HT
xHx = In. Thus Θ permutes the rows of Hx. Since Hx is non-redundant this

means Θ permutes the facets of the set X = {x : Hxx ≤ 1} which preserves the set
X = ΘX . Likewise we can show Ω preserves the set U = ΩU . Thus (Θ,Ω) ∈ Aut(Σ) =
Aut(A,B) ∩ Aut(X ,U).

Now we show that (5.7) is a group homomorphism from Perm(Σ) to Aut(Σ). This follows
from the expression

Θ(Π1
x)Θ(Π2

x) = HT
x Π1

xHxH
T
x Π2

xHx (5.18)

= HT
x Π1

xΠ
2
xHxH

T
xHx

= HT
x Π1

xΠ
2
xHx

= Θ(Π1
xΠ

2
x)

where HT
xHx = In and the second equality follows from (5.8). Likewise Ω is a group homo-

morphism.
Finally we show that (5.7) is bijective. Since the sets X and U are bounded and full-

dimensional the matrices Hx ∈ Rcx×n and Hu ∈ Rcu×m are full row-rank. Therefore the
pseudo-inverse expressions Θ = HT

x ΠxHx and Ω = HT
u ΠuHu are the unique solutions to

HxΘ = ΠxHx and HuΩ = ΠuHu where HT
xHx = In and HT

uHu = Im. Therefore (5.7) is
injective.

To prove that (5.7) is surjective we need to show that for every (Θ,Ω) ∈ Aut(Σ) there
exists a (Πx,Πu) ∈ Perm(Σ) such that Θ = HT

x ΠxHx and Ω = HT
u ΠuHu. By definition of

Aut(Σ) there exists permutation matrices Πx and Πu such that HxΘ = ΠxHx and HuΩ =
ΠuHu since ΘX = X and ΩU = U , and Hx and Hu are non-redundant. We need to show
Πx and Πu satisfy (5.8) and (5.13) i.e. (Πx,Πu) ∈ Perm(Σ). Note

ΠxHxBH
T
u ΠT

u = HxΘBΩTHT
u

= HxBΩΩTHT
u

= HxBΩ(HT
uHu)

−1ΩTHT
u

= HxB(Ω−THT
uHuΩ

−1)−1HT
u (5.19)

where (HT
uHu)

−1 = Im and ΘB = BΩ since Ω ∈ Aut(Σ). Since Ω−1 ∈ Aut(Σ) there exists
a permutation matrix Q such that HuΩ

−1 = QHu. Thus

ΠxHxBH
T
u ΠT

u = HxB(Ω−THT
uHuΩ

−1)−1HT
u

= HxB(HT
uQ

TQHu)
−1HT

u

= HxB(HT
uHu)

−1HT
u

= HxBH
T
u (5.20)

where QTQ = Icu by the orthogonality of permutation matrices. Therefore Πx and Πu satisfy
ΠxHxBH

T
u = HxBH

T
u Πu. Similarly we can show Πx and Πu satisfy each of the commutative

relations in (5.8) and (5.13). Therefore (Πx,Πu) ∈ Perm(Σ).
We conclude that Aut(Σ) and Perm(Σ) are isomorphic with isomorphism (5.7).



CHAPTER 5. IDENTIFICATION OF SYMMETRY GROUPS 59

Remark 1. In [18] the authors proved this results for Aut(X ,U) and Perm(X ,U) using graph
theory. In Theorem 11 we have re-proven their result using linear algebra and extended it to
constrained linear systems.

Our procedure for identifying the symmetry group Aut(Σ) can be summarized by Pro-
cedure 1. In the Section 5.4 we will describe the procedure for finding the group Perm(Σ).

Procedure 1 Calculation of symmetry group Aut(Σ) of constrained linear system Σ

1: Regularize the constrained linear system using the state-space and input-space transfor-
mations Tx = (H̄T

x H̄x)
−1/2 and Tu = (H̄T

u H̄u)
−1/2

A = T−1
x ĀTx

B = T−1
x B̄Tu

and
Hx = H̄xTx

Hu = H̄uTu

where Ā and B̄ are the dynamics matrices and H̄x and H̄u are the half-space matrices
under the original basis.

2: Compute the matrices M1 and M2 from (5.8) and (5.13)

M1 =

[
HxH

T
x 0

0 HuH
T
u

]
and M1 =

[
HxAH

T
x HxBH

T
u

0 HuH
T
u

]
.

3: Find a set of generators P for the group Perm(Σ) = 〈P〉 of permutation matrices
(Πx,Πu) ∈ Perm(Σ) that satisfy (5.8) and (5.13) i.e. commute with M1 and M2.

4: Calculate the generators S for the symmetry group Aut(Σ) = 〈S〉 from P using the
isomorphism (5.7)

Θ = HT
x ΠxHx

Ω = HT
u ΠuHu.

5: Convert Θ and Ω to the original basis using the transformations T−1
x = (HT

xHx)
1/2 and

T−1
u = (HT

uHu)
1/2

Θ̄ = TxΘT
−1
x

Ω̄ = TuΩT
−1
u .

Before proceeding we prove one useful corollary to Theorem 11.

Corollary 3. Under the regular basis, the symmetries (Θ,Ω) ∈ Aut(Σ) of the linear system
(4.9) subject to the constraints (4.11) are orthogonal Θ−1 = ΘT and Ω−1 = ΩT .
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Proof. By isomorphism (5.7) we have

ΘTΘ = HT
x ΠxHxH

T
x ΠT

xHx (5.21)

= HT
xHxH

T
x ΠxΠ

T
xHx = I

since ΠxHxH
T
x = HxH

T
x Πx by (5.8), ΠxΠ

T
x = I, and HT

xHx = I under the regular basis.
Likewise we can show ΩTΩ = I.

5.3 Symmetry Identification for Model Predictive

Control Problems

The symmetry group Aut(MPC) = Aut(Σ) ∩ Aut(J) ∩ Aut(XN) is the intersection of the
symmetry groups of the cost Aut(J), the constrained linear system Aut(Σ), and terminal set
XN . We will assume the terminal set XN is symmetric with respect to the symmetry group
Aut(Σ) of the constrained linear system. In the previous section we showed how to find
generators S of the symmetry group Aut(Σ) = 〈S〉 of a constrained linear system. There are
two ways we can address the symmetry of the cost function: we can identify the symmetries
Aut(J) of the cost function J or we can modify the cost function J so that it is symmetric
with respect to the symmetry group Aut(Σ) of the dynamics and constraints.

Consider the quadratic cost function

J(X,U) = xTNPxN +
∑N−1

k=0
xTkQxk + uTkRuk (5.22)

where U = {uk}N−1
k=0 is the input trajectory and X = {xk}Nk=0 is the state trajectory. Recall

that (Θ,Ω) is a symmetry of (5.22) if they satisfy

ΘTPΘ = P (5.23a)

ΘTQΘ = Q (5.23b)

ΩTRΩ = R. (5.23c)

The symmetry group Aut(MPC) = Aut(Σ)∩Aut(J) can be identified by finding the set
of all permutations (Πx,Πu) ∈ Perm(Σ) in the symmetry group Perm(Σ) that satisfy the
commutative relations[

Πx 0
0 Πu

] [
HxQH

T
x 0

0 HuRH
T
u

]
=

[
HxQH

T
x 0

0 HuRH
T
u

] [
Πx 0
0 Πu

]
(5.24)

and [
Πx 0
0 Πu

] [
HxPH

T
x 0

0 0

]
=

[
HxPH

T
x 0

0 0

] [
Πx 0
0 Πu

]
. (5.25)
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Corollary 4. Let Perm(MPC) be the set of all permutation matrices (Πx,Πu) ∈ Perm(Σ)
in Perm(Σ) that satisfy (5.24) and (5.25). Then Perm(MPC) is isomorphic to Aut(MPC)
with isomorphism (5.7).

Proof. Let Perm(J) be the set of permutation matrices Πx and Πu that satisfy (5.24)
and (5.25). It can be easily verified that Perm(J) is a group. Therefore Perm(MPC) =
Perm(Σ) ∩ Perm(J) is a group.

Next we prove that for each (Πx,Πu) ∈ Perm(MPC) the matrices Θ = HT
x ΠxHx and

Ω = HT
u ΠuHu satisfy (5.23). Note

ΘTPΘ = HT
x ΠT

xHxPH
T
x ΠxHx

= HT
xHxPH

T
x ΠT

xΠxHx

= P. (5.26)

Likewise for Q and R. Therefore (5.7) is an injection from Perm(MPC) = Perm(Σ) ∩
Perm(J) to Aut(MPC) = Aut(Σ) ∩ Aut(J).

Finally we show (5.7) is surjective. Let (Θ,Ω) ∈ Aut(MPC) ⊆ Aut(Σ) and (Πx,Πu) ∈
Perm(Σ) be the corresponding permutation matrices. Then

ΠxHxPH
T
x ΠT

x = HT
x ΘTPΘHT

x

= HT
x PHx (5.27)

where ΠHx = HxΘ and ΘTPΘ = P since Θ ∈ Aut(MPC). Thus Πx and Πu satisfy
(5.25). Likewise we can show Πx and Πu satisfy (5.24). Thus (Πx,Πu) ∈ Perm(MPC) =
Perm(Σ) ∩ Perm(J).

Alternatively we can modify the cost function of the model predictive control problem so
that it shares the symmetries (Θ,Ω) ∈ Aut(Σ) of the system. The quadratic cost function
(5.22) can be made symmetric with respect to Aut(Σ) by taking its barycenter

J̄(X,U) = xTN P̄ xN +
∑N−1

k=0
xTk Q̄xk + uTk R̄uk (5.28)

where

P̄ =
1

|G|
∑
Θ∈G

ΘTPΘ (5.29a)

Q̄ =
1

|G|
∑
Θ∈G

ΘTQΘ (5.29b)

R̄ =
1

|G|
∑
Ω∈G

ΩTRΩ (5.29c)

and G = Aut(Σ).
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Proposition 15. The cost function (5.29) is symmetric with respect to the symmetries
Aut(Σ) of the dynamics and constraints.

Proof. From the closure of groups we have ΘT P̄Θ = P̄ , ΘT Q̄Θ = Q̄, and ΩT R̄Ω = R̄ for all
(Θ,Ω) ∈ Aut(Σ). Therefore J̄

(
(I ⊗Θ

)
X, (I ⊗ Ω)U) = J̄(X,U).

Now consider the linear cost function

J(X,U) = ΦP(xN) +
∑N−1

k=0
ΦQ(xk) + ΦR(uk) (5.30)

where P , Q, and R are bounded, full-dimensional polytopes containing the origin in their
interior. Recall that the pair (Θ,Ω) is a symmetry of the cost (5.30) if it satisfies

ΘP = P (5.31a)

ΘQ = Q (5.31b)

ΩR = R. (5.31c)

The symmetry group Aut(J) can be identified by finding permutation matrices Πp, Πq, and
Πr that satisfy the commutative relationship

0 0 HxH
T
p HxH

T
q 0

0 0 0 0 HuH
T
r

HpH
T
x 0 0 0 0

HqH
T
x 0 0 0 0

0 HrH
T
u 0 0 0




Πx 0 0 0 0
0 Πu 0 0 0
0 0 Πp 0 0
0 0 0 Πq 0
0 0 0 0 Πr

 (5.32)

=


Πx 0 0 0 0
0 Πu 0 0 0
0 0 Πp 0 0
0 0 0 Πq 0
0 0 0 0 Πr




0 0 HxH
T
p HxH

T
q 0

0 0 0 0 HuH
T
r

HpH
T
x 0 0 0 0

HqH
T
x 0 0 0 0

0 HrH
T
u 0 0 0


where Hp, Hq, and Hr are the non-redundant half-space matrices of P , Q, andR respectively.

Corollary 5. Let Perm(MPC) be the set of all permutation matrices (Πx,Πu,Πp,Πq,Πr)
that satisfy (5.32) with (Πx,Πu) ∈ Perm(Σ). Then Perm(MPC) is isomorphic to Aut(MPC)
with isomorphism (5.7).

Proof. First we show that each (Πx,Πu,Πp,Πq,Πr) ∈ Perm(MPC) produces a matrix pair
(Θ,Ω) ∈ Aut(MPC). Since (Πx,Πu) ∈ Perm(Σ) we have (Θ,Ω) ∈ Aut(Σ). We need to
show that (Θ,Ω) ∈ Aut(J) and thus (Θ,Ω) ∈ Aut(MPC) = Aut(J) ∩ Aut(Σ).

The matrices Πp and Πx satisfy

ΠqHpH
T
x = HpH

T
x Πx. (5.33)
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Post-multiplying this expression by Hx produces ΠpHp = HpΘ. Likewise we have ΠqHq =
HqΘ and ΠrHr = HrΩ. Thus Θ and Ω satisfy ΘP = P , ΘQ = Q, and ΩR = R. Therefore
(Θ,Ω) ∈ Aut(J).

Next we show that each (Θ,Ω) ∈ Aut(MPC) corresponds to a set of permutation ma-
trices (Πx,Πu,Πp,Πq,Πr) ∈ Perm(MPC). Since (Πx,Πu) ∈ Aut(Σ) we only need to show
(Πx,Πu,Πp,Πq,Πr) ∈ Perm(J). Since Θ ∈ Aut(Σ) ⊇ Aut(MPC) there exists Πx such that
Θ = HT

x ΠxHx. Since Θ ∈ Aut(J) ⊇ Aut(MPC) there exists a permutation matrix Πp that
describes the permutation the facets of P = {x : Hpx ≤ 1} by Θ. Thus

ΠpHp = HpΘ = HpH
T
x ΠxHx (5.34)

since Hp is non-redundant. Post-multiplying this expression by HT
x we obtain

ΠpHpH
T
x = HpH

T
x Πx (5.35)

since HT
x ΠxHxH

T
x = HT

xHxH
T
x Πx by (5.8) and HT

xHx = I. Likewise we can show Πx, Πu, Πp,
Πq, Πr satisfies all the commutative relationships in (5.32). Therefore (Πx,Πu,Πp,Πq,Πr) is
an element of Perm(MPC).

Alternatively we can modify the cost function of the model predictive control problem
so that is shares the symmetries (Θ,Ω) ∈ Aut(Σ) of the system. The linear cost function
(5.30) can be made symmetric with respect to Aut(Σ) by taking the barycenter of the sets
P , Q, and R

P̄ =
⋂

Θ∈G
ΘP (5.36a)

Q̄ =
⋂

Θ∈G
ΘQ (5.36b)

R̄ =
⋂

Ω∈G
ΘR (5.36c)

where G = Aut(Σ). The following linear cost is symmetric with respect to Aut(Σ)

J̄(X,U) = ΦP̄(xN) +
∑N−1

k=0
ΦQ̄(xk) + ΦR̄(uk). (5.37)

Proposition 16. The cost function (5.36) is symmetric with respect to the symmetries
Aut(Σ) of the dynamics and constraints.

Proof. From the closure of groups we have ΘP̄ = P̄ , ΘQ̄ = Q̄, and ΘR̄ = R̄ for all
(Θ,Ω) ∈ Aut(Σ). Therefore J̄

(
(I ⊗Θ

)
X, (I ⊗ Ω)U) = J̄(X,U).

5.4 Matrix Permutation Groups

In the previous sections we transformed the symmetry identification problems into the prob-
lem of finding the group of permutation matrices that commute with a set of matrices
{M1, . . . ,Mr}. In this section we reformulate this problem as a graph automorphism prob-
lem. Graph automorphism groups can be identified efficiently using software packages such
as Nauty [63], Saucy [33], Bliss [53], and GAP [41].
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Permutations that Commute with a Single Matrix

We begin by presenting the procedure for finding the set Perm(M) of all permutation ma-
trices Π ∈ Rn×n that commute with a single matrix M ∈ Rn×n

ΠM = MΠ. (5.38)

This problem was first addressed in [63]. We identify the group Perm(M) by constructing
a graph Γ(M) whose symmetry group Aut(Γ(M)) is isomorphic to the permutation group
Perm(M). The generators of Aut(Γ(M)) can then be mapped to generators for Perm(M).
Recall that a graph symmetry π : V → V is a permutation of the vertex set V of the graph
Γ = (V , E) that preserves the edges list π(E) = E and vertex coloring C(π(v)) = C(v) for all
v ∈ V . The group Aut(Γ) is the set of all symmetries π of the graph Γ.

Procedure 2 produces a vertex colored graph Γ(M) whose symmetry group Aut(Γ(M))
is isomorphic to Perm(M). The generators of the group Aut(Γ(M)) are found using graph
automorphism software [63, 46, 33, 53, 41].

Procedure 2 Create graph Γ(M) whose symmetry group Aut(Γ(M)) is isomorphic to the
permutation group Perm(M)
.

Input: Square matrix M ∈ Rn×n

Output: Vertex colored graph Γ(M) = (V , E)
1: Construct the vertex set V :

add a vertex ri for i = 1, . . . , n of color r for each row

add a vertex cj for j = 1, . . . , n of color c for each column

add a vertex eij for i, j = 1, . . . , n of color e for each element

add a vertex s for each unique value Mij

2: Construct the edge set E :

connect each row vertex ri with the matrix element vertex eij

connect each column vertex cj with the matrix element vertex eij

connect each matrix element vertex eij with the unique matrix value sk

The graph Γ(M) contains a vertex ri for each row i = 1, . . . , n, a vertex cj for each column
j = 1, . . . , n, and a vertex eij for each element i, j = 1, . . . , n of the matrix M ∈ Rn×n. For
each unique value s ∈ {Mij : i, j = 1, . . . , n} of the matrix we create a vertex s. The rows,
columns, and element vertices are different colors. Each value vertex s ∈ {Mij : i, j =
1, . . . , n} has a different color. The graph Γ(M) contains edges that connect each element
vertex eij to the row ri and column cj vertices and the vertex for the value s = Mij. If
Mij = Mkl then the element vertices eij and ekl are both connected to the same value vertex
s ∈ {Mij : i, j = 1, . . . , n}.
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The graph Γ(M) = (V , E) has |V| = n2 + 2n + ns vertices where ns = |{Mij : i, j =
1, . . . , n}| is the number of unique values in the matrix M . There are 3 + ns vertex colors.
The graph Γ(M) has |E| = 3n2 edges; each element vertex eij is neighbors with the row
vertex ri, column vertex cj, and the value s = Mij vertex.

The graph automorphism software searches for permutations π ∈ Aut(Γ(M)) of the
vertex set V that preserves the edge list E and vertex coloring. The graph automorphism
software produces a set S, of at most n−1 permutations, that generates the symmetry group
Aut(Γ(M)) = 〈S〉.

The graph Γ(M) is constructed so that the symmetries π ∈ Aut(Γ(M)) have a particular
structure. The graph automorphism software will not find permutations π that transpose
row vertices with non-row vertices since they have different colors. Therefore each π ∈
Aut(Γ(M)) will map row vertices ri to row vertices. Likewise each π ∈ Aut(Γ(M)) maps
column vertices cj to column vertices and element vertices eij to element vertices. The value
vertices s ∈ {Mij : i, j = 1, . . . , n} can only be mapped to themselves since each has a
different color.

Let πn denote the restriction of the permutations π ∈ Aut(Γ(M)) to the set of row vertices
Vr = {r1, . . . , rn} ⊂ V . The edges of the graph Γ(M) are constructed such that πn is also the
restriction of π ∈ Aut(Γ(M)) to the column vertices. The element vertices eij are permuted
according to the expression π(eij) = eπn(i)πn(j). The value vertices s ∈ {Mij : i, j = 1, . . . , n}
are not permuted by any π ∈ Aut(Γ(M)). Therefore each row permutation πn uniquely
defines the permutation π ∈ Aut(Γ(M)). Thus the set of restricted permutations{

πn : π ∈ Aut(Γ(M))
}

(5.39)

is a group isomorphic to Aut(Γ(M)). With abuse of notation, we will denote this group by
Aut(Γ(M)). Thus we can define the following isomorphism from Aut(Γ(M)) to Perm(M)
by

Πij =

{
1 for rj = πn(ri)

0 otherwise
(5.40)

where Π ∈ Perm(M) ⊂ Rn×n and πn ∈ Aut(Γ(M)). This result is formally stated in the
following theorem.

Theorem 12. The symmetry group Aut(Γ(M)) of the vertex colored graph Γ(M) is isomor-
phic to the permutation group Perm(M) of the square matrix M ∈ Rn×n with isomorphism
(5.40).

Proof. See [13].

This procedure is demonstrated by the following example.

Example 14. The graph Γ(I) for the 2 × 2 identity matrix I ∈ R2×2 is shown in Figure
5.1. The green diamonds represent the row vertices r1 and r2 and the blue squares represent
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r1 r2 c1 c2

e11 e12 e21 e22

s1 s0

Figure 5.1: Graph Γ(I) for the identity matrix I ∈ R2×2. Green diamonds represent row
vertices ri, blue squares represent column vertices cj, white circles represent element vertices
eij, and the hexagons represent the unique values s1 = 1 and s0 = 0.

the column vertices c1 and c2. The white circles represent the matrix element vertices eij.
The purple and yellow hexagons represent the unique matrix values I1,1 = I2,2 = 1 and
I1,2 = I2,1 = 0 respectively.

The graph automorphism software will search for permutations π of the vertex set V that
preserve the edge list E and vertex coloring. For instance the the permutation

π =

(
r1 r2 c1 c2 e11 e12 e21 e22 s1 s0

c1 r2 r1 c2 e11 e12 e21 e22 s1 s0

)
(5.41)

is not a symmetry of Γ(M) since it transposes vertices of different colors: row vertex r1 and
column vertex c1. The permutation

π =

(
r1 r2 c1 c2 e11 e12 e21 e22 s1 s0

r1 r2 c2 c1 e11 e12 e21 e22 s1 s0

)
(5.42)

is not a symmetry of Γ(M) since it changes the edge list: {c2, e22} ∈ E but π({c2, e22}) =
{c1, e22} 6∈ E. However the permutation

π =

(
r1 r2 c1 c2 e11 e12 e21 e22 s1 s0

r2 r1 c2 c1 e22 e21 e12 e11 s1 s0

)
(5.43)

and the identity permutation are elements of Aut(Γ(I)) since they preserve the edge list E and
vertex coloring. In fact these are the only permutations, out of the 10! possible permutations
of the vertex set V, that preserve the edge list E and vertex colors. Using the isomorphism
(5.40) we find that the permutation group of the matrix M = I is

Perm(I) =

{[
1 0
0 1

]
,

[
0 1
1 0

]}
. (5.44)

Alternative graph constructions Γ(M) can be found in the literature [17, 63]. Using our
graph construction Γ(M) in Procedure 2 we can find the permutation group Perm(M) for
matrices M ∈ Rn×n in thousand of dimensions O(n) = 1000.
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Permutations that Commute with Multiple Matrices

In this section we present the procedure for finding the set of all permutation matrices that
commute with multiple matrices M1, . . . ,Mr. The obvious way to calculate the set of all
permutation matrices that commute with multiple matrices M1, . . . ,Mr is to calculate the
groups Perm(M1), . . . ,Perm(Mr) and then compute their intersection. However this method
is impractical since the groups Perm(Mi) can have exponential size in n.

Calculating the intersection of groups using the generators is non-trivial since the inter-
section of the group generators S =

⋂r
i=1 Si does not necessarily generate the intersection of

the groups
⋂r
i=1 Perm(Mi) 6= 〈S〉. This is demonstrated by the following example.

Example 15. Consider the matrices

M1 =

[
In−1 0

0 2

]
and M2 =

[
2 0
0 In−1

]
. (5.45)

The size of the permutation groups for these matrices are |Perm(M1)| = |Perm(M2)| =
(n−1)!. Therefore directly computing the intersection Perm(M1)∩Perm(M2) is impractical.

In general we cannot calculate the intersection Perm(M1) ∩ Perm(M2) using the group
generators S1 and S2 of Perm(M1) = 〈S1〉 and Perm(M2) = 〈S2〉 respectively. A set of
generators for the group Perm(M1) are the permutation matrices that transpose row 1 with
row j for j = 2, . . . , n− 1. A set of generators for the group Perm(M2) are the permutation
matrices that transpose row n with row j for j = 2, . . . , n − 1. Therefore the intersection
of these generators is the empty set. However the intersection of the groups Perm(M1) and
Perm(M2) is non-empty. It has size |Perm(M1) ∩ Perm(M2)| = (n− 2)!.

We identify the permutation group Perm({Mk}rk=1) by creating a single matrix M that
captures the structure of the set of matrices {Mk}rk=1. The matrix M has the property Mij =
Mhl if and only if Mij,k = Mhl,k for k = 1, . . . , r. Thus a permutation matrix Π will commute
with M if and only if it will commute with each Mk. Therefore Perm(M) = Perm({Mk}rk=1).
The permutation group Perm(M) is identified using Procedure 2 from the previous section.
This method is demonstrated in the following examples.

Example 16. Consider the matrices M1 ∈ Rn×n and M2 ∈ Rn×n from Example 15. The
matrix

M =

1 0 0
0 2In−1 0
0 0 3

 ∈ Rn×n (5.46)

has the property that Mij = Mhl if and only if Mij,1 = Mhl,1 and Mij,2 = Mhl,2. From
inspection we can see that the symmetry group Perm(M) of this matrix M is the set of
permutation matrices Π that permute rows 2, . . . , n − 1. This is the permutation group
Perm(M1,M2) = Perm(M).
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Example 17. Consider the autonomous system (5.9) from Example 13. In order to find the
symmetry group Aut(Σ) we must find the group Perm(Σ) of all permutation matrices Π that
commute with the matrices M1 = HHT and M2 = HAHT where

M1 =
1

2


1 0 −1 0
0 1 0 −1
−1 0 1 0

0 −1 0 1

 and M2 =
1

2


0 −1 0 1
1 0 −1 0
0 1 0 −1
−1 0 1 0

 . (5.47a)

The pair of matrices M1 and M2 has four unique values

(Mij,1,Mij,2) ∈
{

(1
2
, 0), (0, -1

2
), (-1

2
, 0), (0, 1

2
)
}
. (5.48)

Arbitrarily labeling these value a = (1
2
, 0), b = (0, -1

2
), c = (-1

2
, 0), and d = (0, 1

2
) we can

construct the following matrix

M =


a b c d
d a b c
c d a b
b c d a

 (5.49)

which has the property that Mij = Mhl if and only if Mij,1 = Mhl,1 and Mij,2 = Mhl,2.
Using Procedure 2 we can construct a graph Γ(M) = (V , E) whose automorphism group

Aut(Γ(M)) is isomorphic to Perm(M) = Perm(M1) ∩ Perm(M1). The graph has |V| = 28
vertices and |E| = 48 edges. The generators of the symmetry group Aut(Γ(M)) of the graph
Γ(M) are found using graph automorphism software. The group Aut(Γ(M)) = 〈πn〉 has one
generator

πn =

(
r1 r2 r3 r4

r4 r1 r2 r3

)
. (5.50)

Using isomorphism (5.40) we find that Perm(M) = 〈Π〉 is generated by the cyclic matrix

Π =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 . (5.51)

Using isomorphism (5.7) for Perm(Σ) to Aut(Σ) we find that Aut(Σ) = 〈Θ〉 is generated by
the 90 degree rotation matrix

Θ =

[
0 1
−1 0

]
. (5.52)

Thus the symmetry group Aut(Σ) = 〈Θ〉 of the autonomous system (5.9) is the set of all
rotations of the state-space by increments of 90 degrees.
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Block Structured Permutation Matrices

In this section we show how to modify Procedure 2 to restrict our search for permutation
matrices Π ∈ Rn×n to permutations matrices with a block structure

Π =

Π1

. . .

Πq

 . (5.53)

We can encode this desired block structure into the graph Γ(M). Let the blocks Πk ∈ Rnk×nk

have size nk such that n =
∑q

k=1 nk. For i ∈ [nk, nk+1) we give the row vertex ri color k for
k = 1, . . . , q. Since the row vertices have different colors, the graph automorphism software
will only return permutations πn that correspond to the block structure (5.53). This is
demonstrated by the following example.

Example 18. Consider the double integrator system

x(t+ 1) =

[
1 1
0 1

]
︸ ︷︷ ︸

A

x(t) +

[
0
1

]
︸︷︷︸
B

u(t) (5.54)

subject to the constraints x(t) ∈ X and u(t) ∈ U where

X = {x ∈ R2 : −1 ≤ xi ≤ 1, i = 1, 2} (5.55a)

U = {u ∈ R : −1 ≤ u ≤ 1}. (5.55b)

Under the regular basis we have

A =
1√
2

[
1 1
0 1

]
and B =

1√
2

[
0
1

]
. (5.56)

In order to find the symmetry group Aut(Σ) of this constrained linear system we must find
the group Perm(Σ) of all permutation matrices Πx ∈ R4×4 and Πu ∈ R2×2 that commute with
the matrices

M1 =

[
HxH

T
x 0

0 HuH
T
u

]
=

1

2


1 0 −1 0 0 0
0 1 0 −1 0 0
−1 0 1 0 0 0

0 −1 0 1 0 0
0 0 0 0 1 −1
0 0 0 0 −1 1

 (5.57a)

M2 =

[
HxAH

T
x HxBH

T
u

0 HuH
T
u

]
=

1

2


1 1 −1 −1 0 0
0 1 0 −1 1 −1
−1 −1 1 1 0 0

0 −1 0 1 −1 1
0 0 0 0 1 −1
0 0 0 0 −1 1

 . (5.57b)
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The pair of matrices M1 and M2 have seven unique values. We can construct a matrix
M ∈ R6×6 with the property Mij = Mhl if and only if Mij,1 = Mhl,1 and Mij,2 = Mhl,2.

Using Procedure 2 we can construct a graphΓ(M) = (V , E) that captures the symmetry
of the constrained double integrator system. This graph has |V| = 55 vertices and |E| = 108
edges. The generators of the symmetry group Aut(Γ(M)) of the graph Γ(M) are found using
graph automorphism software. The group Aut(Γ(M)) = 〈πn〉 has one generator

πn =

(
r1 r2 r3 r4 r5 r6

r3 r4 r1 r2 r6 r5

)
. (5.58)

The vertices {r1, r2, r3, r4} correspond to the facets of the set X ⊂ R2 and the vertices {r5, r6}
correspond to facets of the polytope U ⊂ R. Parsing the permutation πn we obtain the
permutation matrices

Πx =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 and Πu

[
0 1
1 0

]
. (5.59)

Using isomorphism (5.7) for Perm(Σ) to Aut(Σ) we find that Aut(Σ) = 〈(Θ,Ω)〉 is generated
by the pair of matrices

Θ =

[
−1 0

0 −1

]
and Ω = −1. (5.60)

Since Θ2 = I and Ω2 = 1 this is the only non-trivial symmetry (Θ,Ω) ∈ Aut(Σ) of the double
integrator system.

5.5 Example: Quadrotor

In this section we apply Procedure 1 to the quadrotor system described in [19, 7] and shown
in Figure 5.2. The quadrotor has n = 13 states: 6 cartesian position and velocity states,
6 angular position and velocity states, and 1 integrator state to counteract gravity. The
quadrotor has m = 4 inputs corresponding to the voltage applied to the four motors. The
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continuous-time non-linear dynamics were derived using a Newton-Euler model

ẍ = − 1

m

(
βẋ+ sin(θx)

∑4

i=1
Fui

)
(5.61a)

ÿ = − 1

m

(
βẏ + cos(θx) sin(θy)

∑4

i=1
Fui

)
(5.61b)

z̈ = − 1

m

(
βż + cos(θx) cos(θy)

∑4

i=1
Fui

)
− g (5.61c)

θ̈x = − l

Ixx

(
Fu2 − Fu4

)
(5.61d)

θ̈y = − l

Iyy

(
Fu3 − Fu1

)
(5.61e)

θ̈z = − 1

Izz

(
− Tu1 + Tu2 − Tu3 + Tu4

)
(5.61f)

ė = z (5.61g)

where x, y, z describe the cartesian position, θx, θy, θz describe the angular orientation, e
is the integrator state, F is the gain from the motor voltage ui to thrust, T is the gain
from the motor voltage ui to torque, l is the length of the arms holding the motors, g is
the gravitational acceleration, m is the mass of the quadrotor, Ixx, Iyy, and Izz are the
moments of inertia of the quadrotor about the x, y, and z axes respectively, and β is the
drag coefficient. The parameters for this model were taken from [19, 7]. The dynamics
were linearized about the equilibrium [x, y, z, ẋ, ẏ, ż, θx, θy, θz, θ̇x, θ̇y, θ̇z]

T = 0. The dynamics
discretize using the zero-order hold method.

The constraints on the states and inputs are simple upper and lower bounds

−p ≤ x, y, z ≤ p
−v ≤ ẋ, ẏ, ż ≤ v
−α ≤ θx, θy, θz, ≤ α

−ω ≤ θ̇x, θ̇y, θ̇z, ≤ ω
−ū ≤ u1, u2, u3, u4 ≤ ū

(5.62)

where p, v, α, and ω are the maximum deviation of the cartesian position, cartesian velocity,
angular position, and angular velocity from 0 respectively, and ū maximum deviation of the
motor voltages ui from the nominal voltage. The values for p, v, α, and ω were taken from
[19, 7].

Using Procedure 1 we found |Aut(Σ)| = 16 symmetries with |S| = 3 generators. The
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u1

u2u3

u4

x

yz

Figure 5.2: Quadrotor layout.

generators of the state-space transformations are

Θ1 = blkdiag

I2 ⊗

 1 0 0
0 −1 0
0 0 1

 , I2 ⊗

−1 0 0
0 1 0
0 0 1

 , 1

 (5.63a)

Θ2 = blkdiag

I2 ⊗

 0 1 0
−1 0 0

0 0 1

 , I2 ⊗

 0 −1 0
1 0 0
0 0 1

 , 1

 (5.63b)

Θ3 = blkdiag

I2 ⊗

−1 0 0
0 −1 0
0 0 −1

 , I2 ⊗

−1 0 0
0 −1 0
0 0 −1

 ,−1

 (5.63c)

where ⊗ is the Kronecker product and blkdiag represents a block-diagonal matrix. The
generators of the input-space transformations are

Ω1 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , Ω2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , Ω3 = −


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (5.64)

The generator pair (Θ1,Ω1) mirrors the quadrotor through the xz-plane. The input-space
transformation Ω1 swaps motors 2 and 4. The state-space transformation Θ1 reverses the
y-axis. Rotations about the x-axis are reversed since motors 2 and 4 have been swapped.

The generator pair (Θ2,Ω2) rotates the quadrotor 90 degrees about the z-axis. The
input-space transformation Ω2 maps motor 1 to 2, motor 2 to 3, motor 3 to 4, and motor
4 to 1. The state-space transformation Θ2 maps the x-axis to the y-axis and the y-axis to
the negative x-axis. Rotations about the x- and y axis are swapped and rotations about the
x-axis are reversed.

The generator pair (Θ3,Ω3) flips the gravity vector. The input-space transformation
Ω3 = −I reverses the thrust on all the motors. The state-space transformation reverses each
of the x, y, and z axes and rotations about these axes.
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From a controls perspective, these symmetries make intuitive sense. Designing an input
sequence {u(t)}∞t=0 that makes the quadrotor fly along the positive x-axis is equivalent to
designing an input sequence {Ωu(t)}∞t=0 that makes it fly along the negative x-axis or along
either direction along the y-axis. With the integrator state counteracting gravity, an input
sequence {u(t)}∞t=0 that increases altitude is equivalent to one {Ωu(t)}∞t=0 that decreases
altitude. Symmetry codifies this intuition into linear transformations.
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Chapter 6

Fundamental Domains

In this section we define fundamental domains and present algorithms for solving two com-
mon problems associated with fundamental domains. A fundamental domain X̂ is a type of
subset of a symmetric set X . Intuitively a fundamental domain contains all the ‘information’
of the original set but without the ‘redundancy’ due to symmetry. Later in this dissertation
we will use fundamental domains to simplify symmetric controllers by eliminating part of
the controller that is symmetrically redundant.

6.1 Definition of Fundamental Domain

In this section we define minimal polytopic fundamental domains and present two problems
associated with fundamental domains.

Recall that the symmetry group Aut(X ) of a polytope X ⊆ Rn is the set of all matrices
Θ ∈ Rn×n that map the set to itself ΘX = X . Two points x, y ∈ X are equivalent under a
group G ⊆ Aut(X ) if they are in the same orbit i.e. y = Θx for some Θ ∈ G. Thus the group
G ⊆ Aut(X ) partitions the set X into disjoint orbits Gx = {Θx : Θ ∈ G} where x ∈ X . A
fundamental domain X̂ is subset of X that contains at least one representative y ∈ Gx from
each orbit Gx for x ∈ X .

We would like our fundamental domains to have two additional properties. First we
want the fundamental domain X̂ ⊆ X to be a polytope. This property is desirable since
in our applications we will be solving optimization problems on X̂ . Second we want the
fundamental domain X̂ to be minimal in the sense that any closed subset of X̂ will not be
a fundamental domain. We call such a set a minimal polytopic fundamental domain.

Definition 9. A polytope X̂ is a fundamental domain of X with respect to the group
G ⊆ Aut(X ) if for each x ∈ X there exists Θ ∈ G such that Θx ∈ X̂ . The fundamental
domain X̂ is minimal if each closed polytopic subset Ŷ ⊂ X̂ is not a fundamental domain.

The following theorem characterizes fundamental domains with these properties.
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Theorem 13. A polytope X̂ ⊆ X is a polytopic fundamental domain if it satisfies⋃
Θ∈G

ΘX̂ = X . (6.1)

The fundamental domain X̂ is minimal if it satisfies

int(X̂ ∩ΘX̂ ) = ∅ (6.2)

for all Θ 6= I ∈ G.

Proof. By the hypothesis of the theorem the set X̂ is a polytope.
Next we show by contraposition that (6.1) implies X̂ is a fundamental domain. Suppose

there exists an orbit Gx = {Θx : Θ ∈ G} for some x ∈ X that does not have a representative
in X̂ . Then

⋃
Θ∈G ΘX̂ 6= X since it does not contain x. By the contrapositive, this means

(6.1) implies that X̂ contains a representative from every orbit.
Finally we prove (6.2) implies X̂ is a minimal fundamental domain. Suppose there exists

a closed fundamental domain Ŷ ⊂ X̂ . Then the set X̂ \ Ŷ has a non-empty interior since Ŷ
is a closed strict subset of X̂ ⊆ Rn. Consider an open ball B ⊂ X̂ \ Ŷ . By (6.2) we have

int(B ∩ΘX̂ ) ⊂ int(X̂ ∩ΘX̂ ) = ∅. (6.3)

Thus int(B∩ΘŶ) = ∅ since ΘŶ ⊂ ΘX̂ . Additionally B∩Ŷ = ∅ by definition of B ⊂ X̂ \ Ŷ .
Thus Ŷ fails to satisfy (6.1) since it does not cover B ⊂ X .

We consider two problems related to fundamental domains. The first problem is how to
construct a minimal polytopic fundamental domain.

Problem 2 (Fundamental Domain Construction). Given a polytope X and finite matrix
group G ⊆ Aut(X ) calculate a minimal polytopic fundamental domain X̂ .

The second problem is how to search the group G for a symmetry that maps a point
x ∈ X into the set X̂ .

Problem 3 (Fundamental Domain Search). Given a point x ∈ X find a group element
Θ ∈ G that maps the point x to its orbit representative y = Θx ∈ Gx in the fundamental
domain Θx ∈ X̂ .

We assume the polytope X is bounded, full-dimensional, and contains the origin in
its interior. In this case under the regular basis the half-space matrix H of the polytope
X = {x : Hx ≤ 1} satisfies HTH = I.

For a bounded, full-dimensional polytope X a linear symmetry Θ ∈ Aut(X ) will permute
its facets. Thus Aut(X ) can be represented by a permutation group acting on the set of
non-redundant half-space indices {1, . . . , c}. We restate the following theorem that relates
permutations π and linear transformations Θ.
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Theorem 14. The linear symmetry group Aut(X ) of a polytope X is isomorphic to a permu-
tation group acting on the facets of X . A permutation π ∈ Aut(X ) and matrix Θ ∈ Aut(X )
are related by

Θ = HTΠH (6.4)

where Π is the permutation matrix of the permutation π and H is the half-space matrix of
X in the regular basis.

6.2 Fundamental Domain Construction

In this section we present an algorithm for constructing a minimal fundamental domain X̂ of
a polytope X with respect to a group G ⊆ Aut(X ). First we present an existing method for
computing minimal fundamental domains. Then we present a modification of this method
that can construct minimal fundamental domains in polynomial time.

Existing Method

In [2] the authors presented a method for constructing minimal polytopic fundamental do-
mains. Their method is based on calculating the Voronoi diagram of the orbit of a point
z ∈ X not fixed Θz 6= z by any non-identity element Θ 6= I of the group G. The following
theorem summarizes and generalizes the results of [2].

Theorem 15. Let G ⊆ Aut(X ) be an orthogonal matrix group. The Voronoi cell

FGz(z) =
{
x ∈ X : ‖z − x‖2 ≤ ‖Θz − x‖2, ∀Θ ∈ G

}
(6.5)

of a point z and its orbit Gz has the following properties

1. FGz(z) = {x ∈ X : zTx ≥ zTΘx, ∀Θ ∈ G}

2.
⋃

Θ∈G ΘFGz(z) = X

3. int
(
FGz(z) ∩ΘFGz(z)

)
= ∅ for all Θ ∈ G/Gz.

Proof.

1. Follows directly from the orthogonality of the matrices Θ ∈ G and definition of the
Euclidean norm.

2. For any x ∈ X we can define the finite set of real-numbers{
zTΘx : Θ ∈ G} ⊂ R. (6.6)

This set has a maximum element zT Θ̄x ≥ zTΘx for all Θ ∈ G. By the closure of the
group G this is equivalent to zT Θ̄x ≥ zTΘΘ̄x for all Θ ∈ G. Thus for all x ∈ X there
exists Θ̄ such that Θ̄x ∈ FGz(z).
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3. The set FGz(z) is contained in the half-space {x : (z − Θz)Tx ≥ 0} for Θ ∈ G. The
set ΘFGz(z) is contained in the half-spaces {x : (Θz −ΘΘ̂z)Tx ≥ 0} for every Θ̂ ∈ G.
In particular for Θ̂ = Θ−1 ∈ G we see the set ΘFGz(z) is contained in the half-space
{x : (z − Θz)Tx ≤ 0}. Thus FGz(z) ∩ ΘFGz(z) ⊆ {x : (z − Θz)Tx = 0}. If Θ 6∈ Gz is
not in the stabilizer subgroup Gz of z then Θz 6= z and therefore {x : (z−Θz)Tx = 0}
has no interior.

An immediate corollary of this theorem, given below, allows us to construct minimal
fundamental domains.

Corollary 6. If the point z is not fixed Θz 6= z by any non-identity element Θ 6= I of G
then the Voronoi cell FGz(z) is a minimal fundamental domain.

Proof. Since the point z is not fixed by any non-identity element of G, its stabilizer subgroup
Gz = 〈∅〉 is trivial and therefore G/Gz = G. Thus the Voronoi cell FGz(z) satisfies (6.1) and
(6.2).

This corollary says that we can construct a fundamental domain using the Voronoi cell
of a non-fixed point z. This suggests Procedure 3 as a method for constructing minimal
polytopic fundamental domains. First we find a non-symmetric point z such that Θz 6= z
for all Θ ∈ G. Then we calculate the image Θz of this point z under every symmetry Θ ∈ G.
Finally we use a Voronoi cell FGz(z) to separate the point z from its orbit Gz. This procedure
is demonstrated in the following example.

Procedure 3 Fundamental Domain Construction

1: Find a point z ∈ X not fixed by G.
2: Calculate the orbit of Gz
3: Construct the Voronoi cell FGz(z)

Example 19. Consider the square X = {x ∈ R2 : −1 ≤ x ≤ 1} shown in Figure 6.1a.
The square X is symmetric with respect to the dihedral-4 group Aut(X ) = D4 generated
by S = {S1, S2} where S1 is the 90 degree counter-clockwise rotation and S2 is the vertical
reflection

S1 =

[
0 −1
1 0

]
and S2 =

[
1 0
0 −1

]
. (6.7)

The point z = [ 1
0.5 ] ∈ X is not fixed by any element Θ ∈ G = Aut(X ) of the group Aut(X ) =

D4. The orbit Gz of this point z is the set

Gz =

{[
1

0.5

]
,

[
0.5
1

]
,

[
-0.5

1

]
,

[
-1
0.5

]
,

[
-1

-0.5

]
,

[
-0.5
-1

]
,

[
0.5
-1

]
,

[
1

-0.5

]}
(6.8)
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z

Θ8z

Θ6z

Θ3z

Θ2z Θ5z

Θ7z Θ4z

(a)

X̂ = FGz(z)

(b) (c)

Figure 6.1: Example of constructing a fundamental domain using a Voronoi cell. (a) Square
X with orbit Gz of non-fixed point z. (b) Fundamental domain X̂ = FGz(z) constructed
using Voronoi cell FGz(z) of non-fixed point z.

where G = Aut(X ) = 〈S1, S2〉. These points are shown in Figure 6.1a. The Voronoi cell

FGz(z) =

{
x ∈ X :

[
−1 1

0 −1

]
x ≤

[
0
0

]}
(6.9)

shown in Figure 6.1b is a fundamental domain for the square X under the dihedral-4 group
D4. This can be seen in Figure 6.1c. The images ΘX̂ of the set X̂ = FGz(z) under the group
D4 cover the square X . Furthermore these images ΘX̂ only overlap on the boundary. The
fundamental domain X̂ = FGz(z) is the set of points x ∈ X closer to z than any other point
Θz ∈ Gz in the orbit Gz of z.

There are two drawbacks to this procedure. First we do not have a systematic method
for finding a point z that has no symmetry Θz 6= z for all Θ ∈ G. The second drawback is
the computational complexity of computing the orbit Gz of the non-fixed point z. Algorithm
6 which may be used for computing orbits has complexity O(|S||Gz|) where S is a set of
generators for the group G. Since z is not-fixed Θz 6= z by any non-identity Θ 6= I element
of the group G, the number of points |Gz| in the orbit Gz is the same as the group |Gz| = |G|
by the Orbit-Stabilizer Theorem. The group size |G| is potentially exponential O(|G|) = cn

in the number c of facets and dimension n of the set X ⊆ Rn.
In the next section we present a systematic algorithm for constructing minimal polytopic

fundamental domains in polynomial time.

Proposed Method

Consider the Voronoi cell FGz(z) when the point z is fixed Θz = z by some elements Θ ∈ G of
the group G. By Theorem 15 the Voronoi cell FGz(z) is still a fundamental domain. However
it is not necessarily a minimal fundamental domain since int(FGz(z)∩ΘFGz(z)) may not be
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empty for Θ ∈ Gz. In fact it turns out FGz(z) ∩ ΘFGz(z) = FGz(z) since FGz(z) = ΘFGz(z)
for all Θ ∈ Gz.

Lemma 2. ΘFGz(z) = FGz(z) for all Θ ∈ Gz in the stabilize subgroup Gz of z.

Proof. For Θ ∈ Gz = {Θ ∈ G : Θz = z} we have

ΘFGz(z) = {x : zTΘx ≥ zT Θ̂Θx, ∀Θ̂ ∈ G} (6.10)

= {x : zTx ≥ zT Θ̂Θx, ∀Θ̂ ∈ G}
= {x : zTx ≥ zT Θ̄x, ∀Θ̄ ∈ Θ−1G}
= {x : zTx ≥ zT Θ̄x, ∀Θ̄ ∈ G}
= FGz(z)

where Θ̄ = Θ̂Θ and Θz = z since Θ ∈ Gz.

This lemma says symmetries Θ ∈ G that fix the point z = Θz also fix its Voronoi cell
FGz(z) = ΘFGz(z). In other words, the Voronoi cell FGz(z) is a symmetric set with respect
to the stabilizer subgroup Gz = {Θ ∈ G : Θz = z} of the point z.

To create a minimal fundamental domain we need to eliminate the left-over symmetry
Gz of the set X̂1 = FGz(z). This can be done by constructing a fundamental domain X̂2 of
the set X̂1 = FGz(z) with respect to its symmetry group Gz. This set X̂2 will be fundamental
domains of the original set X since

⋃
Θ∈Gz ΘX̂2 covers FGz(z) and

⋃
Θ∈G/Gz ΘFGz(z). We can

repeat this process until the resulting fundamental domain is minimal. This is the principle
behind our proposed algorithm for constructing minimal fundamental domains.

Algorithm 8 Fundamental Domain Construction

Input: Base and strong generating set (B,S) for group G
Output: Minimal fundamental domain X̂ = X̄|B| of X with respect to G.

1: Initialize fundamental domain X̂0 = X
2: for i = 1 to |B| do
3: Calculate the orbit Gi−1zi = 〈Si−1〉zi.
4: Calculate the Voronoi cell Fi−1(zi)
5: Calculate the intersect X̂i = X̂i−1 ∩ Fi−1(zi)
6: end for

Algorithm 8 describes our method for constructing minimal fundamental domains. The
algorithm requires as an input a non-redundant base B and strong generating set S for the
group G. A non-redundant bases and strong generating set can be systematically generated
using the Schreier-Sims algorithm [48, 74]. Thus our algorithm does not have the previous
issue of finding a non-fixed point.

The algorithm is initialized with the non-minimal fundamental domain X̂0 = X which has
the symmetry group G0 = G. During iteration i, the algorithm computes a new fundamental
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domain X̂i = X̂i−1 ∩Fi−1(zi) by taking the intersection of the previous fundamental domain
X̂i−1 and the Voronoi cell

Fi−1(zi) =
{
x ∈ X : zTi x ≥ yTx,∀y ∈ Gi−1zi

}
(6.11)

of the base point zi ∈ B and its orbit Gi−1zi under the subgroup Gi−1 which stabilizes the
previous i− 1 base points

Gi−1 = {Θ ∈ G : Θzj = zj, j = 1, . . . , i− 1}. (6.12)

Since the base B is non-redundant the symmetry group Gi ⊂ Gi−1 of the fundamental domain
X̂i is strictly smaller than the symmetry group Gi−1 of the previous fundamental domain X̂i−1.
The final fundamental domain X̂|B| is minimal since its symmetry group G|B| = 〈∅〉 is trivial
by the definition of a base.

Since S is a strong generating set, the orbit Gi−1zi of base point zi ∈ B under the subgroup
Gi−1 = 〈Si−1〉 can be calculated using Algorithm 6 with generators

Si−1 = {Θ ∈ S : Θzj = zj, j = 1, . . . , i− 1}. (6.13)

The following theorem shows that the final set X̂|B| is a minimal fundamental domain.

Theorem 16. Algorithm 8 will produce a minimal polytopic fundamental domain X̂ = X̂|B|
of the set X with respect to the group G.

Proof. We will prove by induction that each set

Ŷi−1 =
⋂|B|

j=i
Fj−1(zj) (6.14)

for i = |B|, . . . , 1 is a minimal polytopic fundamental domain of X for the subgroup Gi−1.
Thus Ŷ0 = X̂|B| is a minimal polytopic fundamental domain of X for the group G = G0.

First we show that Ŷ|B|−1 = F|B|−1(z|B|) is a minimal polytopic fundamental domain of
X under the group G|B|−1. This follows from Corollary 6. The base point z|B| is not fixed by
any non-identity element of G|B|−1 since (G|B|−1)b|B| = G|B| = 〈∅〉 is trivial by the definition
of a base B.

Next we assume Ŷi is a minimal polytopic fundamental domain and we will show that

Ŷi−1 = Ŷi ∩ Fi−1(zi) (6.15)

is a minimal polytopic fundamental domain. First note that Ŷi−1 is a polytope since it is
the intersection of polytopes. Next we show⋃

Θ∈Gi−1

ΘŶi−1 = X . (6.16)



CHAPTER 6. FUNDAMENTAL DOMAINS 81

By the properties of union and intersection we have⋃
Θ∈Gi−1

Θ
(
Ŷi ∩ Fi−1(zi)

)
⊆ X (6.17)

since
⋃

Θ∈Gi−1
ΘŶi = X by the induction hypothesis and

⋃
Θ∈Gi−1

ΘFi−1(zi) = X by Theorem

15. We need to show that for all x ∈ X there exists Θ ∈ Gi−1 such that Θx ∈ Ŷi and
Θx ∈ Fi−1(zi).

By Theorem 15 for each x ∈ X there exists Θi−1 ∈ Gi−1 such Θi−1x ∈ Fi−1(zi). Since Ŷi
is a fundamental domain, for any Θi−1x ∈ X there exists Θi ∈ Gi such that ΘiΘi−1x ∈ Ŷi.
But by Lemma 2 we have ΘiΘi−1x ∈ Fi−1(zi) since Θi ∈ Gi fixes Fi−1(zi). Thus ΘiΘi−1x ∈
X̂i ∩ Fi−1(bi) and ⋃

Θ∈Gi−1

Θ
(
Ŷi ∩ Fi−1(bi)

)
⊇ X . (6.18)

Therefore
⋃

Θ∈Gi−1
ΘŶi−1 = X .

Next we show

int
(
Ŷi−1 ∩ΘŶi−1

)
= ∅ (6.19)

for all Θ 6= I ∈ Gi−1. By Proposition 2 we can decompose the matrix Θ = UiΘi where
Θi ∈ Gi ⊂ Gi−1 and Ui ∈ Gi−1/Gi. Thus we can write the intersection Ŷi−1 ∩ΘŶi−1 as

Ŷi ∩ UiΘiŶi ∩ Fi−1(zi) ∩ UiFi−1(zi) (6.20)

where ΘiFi−1(zi) = Fi−1(zi) by Lemma 2 since Θi ∈ Gi. If Ui 6= I ∈ Gi−1/Gi then (6.20)
has an empty interior since int(Fi−1(zi) ∩ UiFi−1(zi)) = ∅ by Theorem 15. If Ui = I then
Θi = Θ 6= I ∈ Gi−1. Thus (6.20) has an empty interior since int(Ŷi ∩ UiΘiŶi) = ∅ by the
induction hypothesis that Ŷi is a minimal fundamental domain for the group Gi−1.

Thus Ŷi−1 is a minimal polytopic fundamental domain for the group Gi−1 since it satisfies
the conditions of Theorem 13. Therefore Ŷ0 = X̂|B| is a minimal polytopic fundamental
domain of the set X with respect to the group G = G0.

The complexity of Algorithm 8 depends on the length of the base |B| and the lengths of
the orbits |Gi−1zi|. The length of a non-redundant base |B| ≤ n is bounded by the dimension
n of the set X ⊆ Rn since the only matrix Θ ∈ Rn×n that fixes n linearly independent points
zi ∈ B is the identity matrix Θ = I. The length of the orbit |Gi−1zi| ≤ c can be bounded
by choosing the base points zi = hi to be the normal vectors of facets of the polytope
X = {x : hTi x ≤ 1, i = 1, . . . , c}. Since G ⊆ Aut(X ) permutes the facets of X , each orbit
Gi−1zi of a facet normal vector zi = hi will be a subset of facets. Therefore the orbit Gi−1zi
cannot be larger than the total number c of facets. Thus Algorithm 8 computes at most n
orbits of length c while Procedure 3 potentially requires computing one orbit of length cn.
The following example demonstrates Algorithm 8.
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Example 20. Consider the square X = {x ∈ R2 : −1 ≤ x ≤ 1} shown in Figure 6.1a. The
square X is symmetric with respect to the dihedral-4 group G = 〈S〉 generated by S = {S1, S2}
defined in (6.7).

The set S = {S1, S2} is a strong generating set for the base B = (h1, h2) where h1 = [ 1
0 ]

and h2 = [ 0
1 ] are normal vectors of facets 1 and 2 of the square X shown in Figure 6.1a.

The subgroup G1 = Gh1 which fixes facet 1 is generated by the vertical reflection S2 and the
subgroup G2 = (G1)h2 which fixes facets 1 and 2 is trivial G2 = 〈∅〉. Thus we have the
stabilizer subgroup chain

D4 = G0 = 〈S1,S2〉 ⊃ G1 = 〈S2〉 ⊃ G2 = 〈∅〉. (6.21)

For each base point B = {h1, h2} the algorithm will generate a Voronoi cell Fi−1(hi) of
the point hi and its orbit Gi−1hi. In iteration i = 1, the algorithm calculates the orbit G0h1

of the normal vector h1 of facet 1 under the group G0 = 〈S1, S2〉

G0h1 = {h1, h2, h3, h4} =

{[
1
0

]
,

[
0
1

]
,

[
-1
0

]
,

[
0
-1

]}
. (6.22)

The Voronoi cell F0(h1) that separates h1 from its orbit G0h1 is shown in Figure 6.2a. The
Voronoi cell F0(h1) is a fundamental domain. However it is not a minimal fundamental
domain. The Voronoi cell F0(h1) is symmetric with respect to the stabilizer subgroup G1 =
〈S2〉 which is generated by the vertical reflection S2.

In the next iteration i = 2, the algorithm generates a new Voronoi cell F1(h2) that
eliminates the symmetry G1 = 〈S2〉 of the Voronoi cell F0(h1). The orbit G1h2 of the normal
vector h2 of facet 2 under the subgroup G1 = 〈S2〉 is

G1h2 = {h2, h4} =

{[
0
1

]
,

[
0
-1

]}
. (6.23)

The Voronoi cell F1(h2) that separates h2 form its orbit G1h2 is shown in Figure 6.2b.
Since |B| = 2 the algorithm is now complete. The set X̂|B| = F1(h2) ∩ F0(h1) is a

minimal fundamental domain of X with respect to the group G. The minimal fundamental
domain X̂ = F1h2 ∩ F0h1 shown in Figure 6.1b is the same fundamental domain produces
by Procedure 3 in the previous example.

Using the facet normal vectors hi as base points has another advantage. The matrices Θ ∈
G ⊆ Aut(X ) permute the facets Θhi = hπ(i) of X . This means we can use the permutation
representation of the group G ⊆ Aut(X ) to compute the orbits of the bases points zi = hi.
Therefore Algorithm 8 never needs to perform expensive matrix computations.

The following example demonstrates how to use the permutation representation to im-
plement Algorithm 8.

Example 21. Consider the square X = {x ∈ R2 : −1 ≤ x ≤ 1} shown in Figure 6.1a. The
square X is symmetric with respect to the dihedral-4 group G = 〈S〉 generated by S = {S1, S2}
defined in (6.7).
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F0(h1) h1

h2

h3

h4

(a)

F1(h2)

h2

h4
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Figure 6.2: Example showing the construction of fundamental domain from Voronoi cells.
(a) Voronoi cell F0(h1) of the normal vector h1 of facets 1 and its orbit G0h1 = {h1, h2, h3, h4}
under the group G0 = 〈S1, S2〉 generated by the rotation matrix S1 and vertical reflection
matrix S2. (b) Voronoi cell F1(h2) of the normal vector h2 of facets 2 and its orbit G1h2 =
{h2, h4} under the group G1 = 〈S2〉 vertical reflection matrix S2.

The symmetry group Aut(X ) can be represented by a permutation group on the set of the
facets {1, 2, 3, 4} of the square X . This group is generated by the permutations

s1 =

(
1 2 3 4
4 1 2 3

)
(6.24a)

s2 =

(
1 2 3 4
1 4 3 2

)
(6.24b)

where the permutation s1 is isomorphic to the 90 degree counter-clockwise rotation matrix S1

in (6.7) and the permutation s2 is isomorphic to the vertical reflection matrix S2 in (6.7).
The bases points h1 = [ 1

0 ] and h2 = [ 0
1 ] are the normal vectors of the facets 1 and 2 of

the square X . The orbit G0h1 of the base point h1 under the matrix group G0 = 〈S1, S2〉
corresponds to the orbit G0(1) of facet 1 under the permutation representation group G0 =
〈s1, s2〉. Likewise the orbit G1h2 of the base point h2 under the matrix group G1 = 〈S2〉
corresponds to the orbit G1(2) of facet 1 under the permutation representation group G1 =
〈s2〉.

The Voronoi cell F0(h1) is the set of points x ∈ X closer to facet 1 than the other facets
in its orbit G0(1) = {1, 2, 3, 4}. Thus constructing the Voronoi cell F0(h1) only requires three
vector subtractions

F0(h1) =
{
x ∈ X : (h1 − h2)Tx ≥ 0, (h1 − h3)Tx ≥ 0, (h1 − h4)Tx ≥ 0

}
. (6.25)

The Voronoi cell F1(h2) is the set of points x ∈ X closer to facet h2 than the other facets
in the orbit G1h2 = {2, 4}. Constructing the Voronoi cell F1(h2) only requires one vector
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subtraction

F0(h1) = {x ∈ X : (h2 − h4)Tx ≥ 0}. (6.26)

The fundamental domain X̂ = F0(h1) ∩ F1(h2) is the intersection of these sets.

The following theorem shows that Algorithm 8 has polynomial computational complexity.

Theorem 17. Algorithm 8 has computation complexity O(nc2) where c is the number of
facets and n is the dimension of X .

Proof. The orbit Gi−1zi is calculated using Algorithm 6. Using permutations π ∈ G ⊆
Aut(X ), this algorithm has complexity O

(
|Si−1||Gi−1zi|

)
where |Si−1| ≤ c− 1 is the number

of generators of Gi−1 and |Gi−1zi| ≤ c is the number of points in the orbit. Thus the
complexity of computing the orbit is O(c2).

Computing the Voronoi cell Fi−1(zi) requires subtracting at most c vectors of n dimen-
sions and therefore has complexity O(nc). Since X is bounded the number of inequalities
is greater than the dimension c ≥ n + 1. Thus calculating the Voronoi cell Fi−1(zi) has
worst-case complexity O(c2).

Computing the intersection has trivial complexity. It simply requires concatenating the
inequalities of X̂i and Fi−1(zi).

Algorithm 8 loops |B| times. The size of a non-redundant base is bounded |B| ≤ n
since the only matrix to fix n linearly independent vectors is the identity matrix I ∈ Rn×n.
Therefore we conclude that Algorithm 8 has complexity O(nc2).

6.3 Fundamental Domain Search

In this section we present an algorithm for searching a group G for an element Θ ∈ G that
maps a point x ∈ X to its representative Θx ∈ X̂ in the fundamental domain X̂ . First
we present a naive algorithm for solving this problem and detail the flaws of this method.
Using properties of groups and fundamental domain, we present an algorithm that solves
this problem in polynomial time.

Existing Method

A straight forward solution to Problem 3 is the exhaustive search procedure presented in
Algorithm 9. An obvious drawback to this Algorithm is its poor computation complexity.
In the worst-case, Algorithm 9 requires searching every element of the group G = 〈S〉 which
can have exponential size O(|G|) = cn in the number c of facets and dimension n of the set
X ⊆ Rn.

However there is another more subtle issue with Algorithm 9, we do not have an exhaus-
tive list of the elements of G. Instead we have a list of generators S from which the elements
of G = 〈S〉 can be obtained by multiplying sequences of generators S ∈ S of arbitrary length.
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Algorithm 9 Fundamental Domain Search - Exhaustive Search

1: for all Θ ∈ G = 〈S〉 do
2: if Θx ∈ X̂ then return Θ
3: end if
4: end for

Even for a finite group G every element Θ ∈ G can have an infinite number of sequences of
generators that will generate it.

The problem of enumerating the elements of G using a set of generators S requires
searching the Cayley graph Γ(S) of the group G = 〈S〉. Recall that the nodes of the Cayley
graph Γ(S) are the elements of G and two group elements Θg and Θh are connected by a
directed edge (Θg,Θh) with label S ∈ S if Θh = SΘg. For small groups a spanning-tree can
be created using the orbit graph search given by Algorithm 4. An example of the construction
of a spanning-tree is given in the following example.

Example 22. Consider the square X = {x ∈ R2 : −1 ≤ x ≤ 1} shown in Figure 6.1a. The
square X is symmetric with respect to the dihedral-4 group G = 〈S〉 generated by S = {S1, S2}
defined in (6.7).

The Cayley graph Γ(S) of the group Aut(X ) with generators S = {S1, S2} is shown in
Figure 6.3b. The |G| = 8 nodes of this graph correspond to elements of the group Θ ∈ G = D4.
The edges are created by the 90 degree rotation matrix S1 and vertical reflection matrix S2.

Any path from the root node Θ1 = I to the node Θ ∈ G corresponds to a sequence of
generators S1, S2 ∈ S that will produce the matrix Θ ∈ G. For instance the matrix Θ7 ∈ G
can be generated by the sequence Θ7 = S2S1 or Θ7 = S3

1S2 which correspond to two different
paths through the Cayley graph Γ(S). Since the graph Γ(S) contains loops there are an
infinite number of paths to each node Θ ∈ G. Therefore there are an infinite number of
sequences of generators S that will produce the matrix Θ ∈ G.

Figure 6.3a shows the image of the fundamental domain X̂ under each element Θ ∈ G.
This figure helps to understand how the nodes of the Cayley graph Γ(S) operate on the set X .
Each polytope in Figure 6.3a corresponds to a node in the Cayley graph. The fundamental
domain X̂ corresponds to the root node Θ = I of the Cayley graph. If we wished to map a
state in the image Θ6X̂ to the fundamental domain X̂ we could apply the vertical reflection
S2 and then the counter-clockwise rotation S1 twice or we could apply the rotation S1 twice
and then the reflection S2.

Figure 6.3c shows a spanning tree of the Cayley graph Γ(S) produced using breath-first
search. In this search-tree there is a unique path from the root node Θ = I to each matrix
Θ ∈ G. Therefore the elements of G can be enumerated without repetition using these search-
trees.

We now demonstrate the exhaustive search in Algorithm 9 for the breadth-first search-
tree shown in Figure 6.3c. Suppose x = [ -0.75

0.5 ] as shown in Figure 6.3a. We exhaustively
test each node Θ ∈ G of the search-tree to determine whether Θx ∈ X̂ . In the breadth-first
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Figure 6.3: Example of exhaustive search using Cayley graph. (a) Fundamental domain X̂
and its images ΘX̂ under each element Θ ∈ G. Cayley graph Γ(S) shows how these images
ΘX̂ are related by the generators S1, S2 ∈ S. (b) Cayley graph Γ(S) of the dihedral-4 group
and generators S = {S1, S2} where S1 is the 90 degree rotation matrix and S2 is the vertical
reflection matrix. (c) Depth-first search-tree of the Cayley graph Γ(S).

search-tree the nodes will be tested in the order Θ1, Θ2, Θ8, Θ3, Θ7, Θ5, Θ4, and Θ6. Finally
we find the matrix

Θ6 = S2S
2
1 =

[
−1 0

0 1

]
(6.27)

which maps the state x = [ -0.75
0.5 ] into the fundamental domain X̂ . Using the breadth-first

search-tree shown in Figure 6.3c this search required visiting all |D4| = 8 nodes.

Unfortunately Algorithm 9 is impractical for large groups. The computational complexity
of using Algorithm 4 to search the Cayley graph Γ(S) is O(n2|S||G|). As discussed previously
the group G can have exponential size O(|G|) = cn in the number c of facets and dimension
n of the set X ⊆ Rn. In the next section we present a polynomial algorithm for solving
Problem 3.

Proposed Method

Algorithm 10 describes our method for searching the group G for a symmetry Θ ∈ G that
maps a point x ∈ X to its representative in Θx ∈ X̂ in the fundamental domain X̂ . This
algorithm uses the nested sequence of fundamental domains X̂i =

⋂|B|
i=0Fi−1(zi) produced

by Algorithm 8 to search the group efficiently. The algorithm begins with a point x ∈ X
in the initial fundamental domain X̂0 = X . During each iteration i, the algorithm searches
the subgroup Gi−1 for the symmetry Ui ∈ Gi−1 that maps the point Θx ∈ Xi−1 into the
next fundamental domain X̂i = X̂i−1 ∩ Fi−1(zi). Since Gi−1 is the symmetry group of the
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non-minimal fundamental domain X̂i−1 = UiX̂i−1 we only need to find Ui ∈ Gi−1 that maps
Θx into the Voronoi cell Fi−1(zi). Then we have UiΘx ∈ X̂i = X̂i−1 ∩Fi−1(zi). Furthermore
we do not need to search the entire group Gi−1 since elements Ui ∈ Gi of the subgroup
Gi ⊂ Gi−1 are symmetries of the Voronoi cell Fi−1(zi) = UiFi−1(zi). Instead we search
the non-redundant set Gi−1/Gi of group elements Ui ∈ Gi−1/Gi that move the Voronoi cell
Fi−1(zi) 6= UiFi−1(zi).

Algorithm 10 Fundamental Domain Search

Input: Point x ∈ X , Voronoi cells Fi−1(zi), and group G
Output: Group element Θ ∈ G such that Θx ∈ X̂

1: Initialize matrix Θ = I
2: for i = 1 to |B| do
3: Find Ui ∈ Gi−1/Gi such that UiΘx ∈ Fi−1(zi)
4: Update matrix Θ = UiΘ
5: end for

In terms of group theory, this algorithm breaks up the search of the group G into a
sequence of searches of the cosets UiGi ⊂ Gi−1 of the subgroup Gi in Gi−1 over the chain of
subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ G|B|−1 ⊃ G|B| = 〈∅〉. (6.28)

During each iteration i, the algorithm searches the coset representatives Gi−1/Gi for the coset
UiGi that contains the matrix Θ ∈ UiGi that maps x into the fundamental domain X̂ . Since
the cosets UiGi divide the group Gi−1 into disjoint subsets Gi−1 =

⊔
Ui∈Gi−1/Gi UiGi we know

that Θ ∈ UiGi is contained in exactly one of these cosets. The Voronoi cell Fi−1(bi) is used
to determine when we have found the appropriate coset representative Ui ∈ Gi−1/Gi. At
termination the algorithm has constructed a symmetry Θ = U|B| · · ·U1 that maps the point

x ∈ X into the fundamental domain Θx ∈ X̂ =
⋂|B|
i=1Fi−1(zi).

Algorithm 10 is more efficient that the exhaustive search in Algorithm 9 since it avoids
the redundancy of searching the entire subgroup Gi−1 rather than its cosets Gi−1/Gi. In the
worst-case, this Algorithm 10 requires

|B|∑
i=1

|Gi−1|/|Gi| = cn (6.29)

point-in-set tests UiΘx ∈ Fi−1(zi) while Algorithm 9 requires

|G| =
|B|∏
i=1

|Gi−1|/|Gi| = cn (6.30)

point-in-set test Θx ∈ X̂ .
The following example demonstrate Algorithm 10.
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Example 23. Consider the square X = {x ∈ R2 : −1 ≤ x ≤ 1} shown in Figure 6.1a. The
square X is symmetric with respect to the dihedral-4 group G = 〈S〉 generated by S = {S1, S2}
defined in (6.7). A minimal fundamental domain X̂ for X is shown in Figure 6.1b.

Consider the point x = [ -0.75
0.5 ]. Algorithm 10 maps this point x into the fundamental

domain X̂ = F0(h1) ∩ F1(h2) by first mapping it into the Voronoi cell F0(h1) and then into
the Voronoi cell F1(h2). The Voronoi cells F0(h1) and F1(h2) are shown in Figures 6.2a and
6.2b respectively.

First Algorithm 10 searches the coset representative U1G1 of G1 in G0 for the symmetry
U1 ∈ G0/G1 that maps x it into the Voronoi cell F0(h1). In this case U1 = S2

1 . Next Algorithm
10 searches the coset representative U2G2 of G2 in G1 for the symmetry U2 ∈ G1/G2 that maps
U1x into the Voronoi cell F1(h2). In this case U2 = S2. Thus the symmetry Θ = U2U1 ∈ G
maps the point x = [ -0.75

0.5 ] into the fundamental domain.

Next we discuss the details of how Algorithm 10 searches the coset representative Gi−1/Gi
for a symmetry Ui ∈ Gi−1/Gi that maps Θx into the Voronoi cell Fi−1(zi). Like Algorithm
9, our algorithm uses graph search techniques to search the group G. However Algorithm 10
replaces the Cayley graph Γ(S) with a sequence of Schreier graphs Γi(S) for i = 1, . . . , |B|
of the cosets of Gi in the group Gi−1. In each iteration i, Algorithm 10 uses a search tree of
the i-th Schreier graphs Γi(S) to find the node Ui ∈ Gi−1/Gi such that UiΘx ∈ Fi−1(zi).

Searching the Schreier graphs Γi(S) is equivalent to searching the Cayley graph Γ(S)
since the Schreier graphs Γi(S) can be combined to form a spanning subgraph of the Cayley
graph Γ(S). The i-th Schreier graph Γi(S) is appended by the root to each node in the
(i− 1)-th Schreier graph Γi−1 for each i = 1, . . . , |B|. The resulting graph is connected and
spans the nodes of the Cayley graph Γ(S). Thus a spanning search-tree of the sequence of
Schreier graphs Γi(S) is also a spanning search-tree of the Cayley graph Γ(S).

Searching a sequence of Schreier graphs Γi(S) is more efficient than searching the Cayley
graph Γ(S) since the Schreier graphs are significantly smaller and can be searched indepen-
dently in sequence. Furthermore the number of node in the each Schreier graph is bounded.
Since Gi is the subgroup of Gi−1 that stabilizes the i-th base point zi ∈ B, the Schreier graph
Γi(S) is also the graph of the orbit Gi−1zi of zi ∈ B. Since the base points B are facets of X
their orbits are bounded by the number of facets c.

The following example demonstrates the Schreier graph and Algorithm 10.

Example 24. Consider the square X = {x ∈ R2 : −1 ≤ x ≤ 1} shown in Figure 6.1a. The
square X is symmetric with respect to the dihedral-4 group G = 〈S〉 generated by S = {S1, S2}
defined in (6.7).

The set S = {S1, S2} is a strong generating set for the base B = {h1, h2} where h1 = [ 1
0 ]

and h2 = [ 0
1 ] are the normal vectors of facets 1 and 2 respectively. This base produces the

chain of stabilizer subgroups

D4 = G0 = 〈S1,S2〉 ⊃ G1 = 〈S2〉 ⊃ G2 = 〈∅〉. (6.31)

The Schreier graph Γ1(S) of the cosets UG1 of G1 in G0 is shown in Figure 6.4a. Since
G1 is the subgroup of G0 = G that stabilizes h1 = [ 1

0 ], this graph corresponds to the graph of
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the orbit G0h1 of the base point h1 = [ 1
0 ] under the group G0 = 〈S1, S2〉. Searching this graph

corresponds to searching for the coset representative U ∈ G0/G1 that contains the matrix
Θ ∈ UG1 ⊂ G0 such that Θx ∈ X̂ .

The Schreier graph Γ2(S) of the cosets UG2 of G2 in G1 is shown in Figure 6.4b. Since
G2 = 〈∅〉 is trivial this is also the Cayley graph of the subgroup G1 that stabilizes the base
point h2 = [ 0

1 ].
The Schreier graph Γ2(S) can be appended to each node of the Schreier graph Γ1(S) to

form the graph shown in Figure 6.4c. This graph is a spanning subgraph of the Cayley graph
Γ(S) shown in Figure 6.3b. Clearly any spanning search-tree of the graph in Figure 6.4c will
also be a spanning search-tree of the Cayley graph Γ(S) shown in Figure 6.3b. Therefore
searching the Schreier graphs Γi(S) for i = 1, . . . , |B| is equivalent to searching the Cayley
graph Γ(S).

We now demonstrate Algorithm 10 for the point x = [ -0.75
0.5 ]. First we search the coset

representatives G0/G1 for a matrix U1 that maps x ∈ X into the Voronoi cell F0(h1) shown
in Figure 6.4a. This is equivalent to performing a depth-first search on the Schreier graph
Γ1(S) in Figure 6.4a. We obtain the matrix U1 = S2

1 which maps x = [ -0.75
0.5 ] to U1x =

[ 0.75
−0.5 ] ∈ F0(b1).

In the next iteration we search for a matrix U2 ∈ G1/G2 that maps U1x = S2
1x into

the set F1(b2) shown in Figure 6.4b. This is equivalent to searching the Schreier graph
Γ2(S) shown in Figure 6.4b. We obtain the matrix U2 = S2 which maps U1x = [ 0.75

−0.5 ]
to U2U1x = [ 0.75

0.5 ] ∈ F1(h2). Since U2 ∈ G1/G2 ⊆ G1 it keeps U1x ∈ F0(h1) inside the
set F0(h1) = U2F0(h1). Thus we have found the matrix Θ = S2S

2
1 which maps the point

x = [ -0.75
0.5 ] into the fundamental domain X̂ = F1(h2) ∩ F0(h1). This is the same matrix

found using the exhaustive search in the previous example.
In this small example searching the Schreier graphs Γi(S) is only slightly more effi-

cient than exhaustively searching the Cayley graph Γ(S). In the worst-case, searching the
Schreier graphs requires visiting |G0|/|G1| + |G1|/|G2| = 4 + 2 = 6 nodes rather than the
(|G0|/|G1|) × (|G1|/|G2|) = 4 × 2 = 8 nodes that are visited in Cayley graph search. For
larger problems the computational savings becomes more significant. We will discuss the
computational complexity of this algorithm in detail in the next section.

The following theorem shows that Algorithm 10 maps x into the fundamental domain X̂ .

Theorem 18. Algorithm 10 will produce a matrix Θ ∈ G that maps the point x ∈ X into
the fundamental domain X̂ .

Proof. First we show that at each iteration i the point Θx is mapped into Fi−1(zi) for
i = 1, . . . , |B|. The matrix Θ = Ui−1 · · ·U1 is an element of G0/Gi ⊆ G ⊆ Aut(X ). Thus
Θx ∈ X . By Theorem 15 there exists a matrix Ui ∈ Gi−1/Gi such that UiΘx ∈ Fi−1(zi).

Next we show that after iteration i the point Θx = Ui · · ·U1x does not leave Fi−1(zi). At
iteration j > i the matrix Uj · · ·Ui+1 is an element of Gi+1/Gj ⊂ Gi. Thus by Lemma 2 we
have Uj · · ·Ui+1Ui · · ·U1x ∈ Fi−1(zi).
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Figure 6.4: Example of group search using Schreier graphs. (a) Schreier graph Γ1(S) of the
orbit G0h1 of the normal vector h1 of facet 1 under the dihedral-4 group G = G0 = 〈S1, S2〉.
This is also the graph of the cosets U1G1 of the subgroup G1 in G0. (b) Schreier graph Γ2(S)
of the orbit G1h2 of the normal vector h2 of facet 2 under the stabilizer subgroup G1 = 〈S2〉.
This is also the graph of the cosets U2G2 of the trivial subgroup G2 = 〈∅〉 in G1. (c) Spanning
subgraph of the Cayley graph Γ(S) formed by appending the Schreier graph Γ2(S) by the
root to each node of the Schreier graph Γ1(S). This graph is a spanning-subgraph of the
Cayley graph Γ(S). (d) Cayley graph Γ(S) of the dihedral-4 group.
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Since X̂ =
⋂|B|
i=1Fi−1(bi), we conclude that Algorithm 10 maps x ∈ X to the fundamental

domain X̂ .

Permutation Search

In this section we present a variant of Algorithm 10 that uses the permutation representation
of the group G ⊆ Aut(X ) to improve computational complexity. Algorithm 11 uses Schreier
vectors and the permutation representation of the group G ⊆ Aut(X ) to efficiently compute
a matrix Θ ∈ G that maps the point x into the fundamental domain. This algorithm has
computational complexity O(nc2) and memory complexity O(c2).

Algorithm 11 exploits the structure of the Voronoi cells Fi−1(hi) given in Theorem 15.
The Voronoi cell Fi−1(hi) is the set of points x such that hTi x ≥ hTi Θx for all Θ ∈ G. Or
equivalently the 1 − hTi x ≤ 1 − hTj x for any hj ∈ Gi−1hi in the orbit of hi. In other words,
the point x ∈ X is in the Voronoi cell Fi−1(hi) if it is closer 1− hTi x ≤ 1− hTj x to the facet
i than any other facets j in the orbit Gi−1hi of facet i. Thus we can determine which cell j
of the Voronoi diagram of the orbit Gi−1hi contains the point x ∈ X by finding the closest
facet j = argmink{1− hTk x : hk ∈ Gi−1hi} to the point x ∈ X . The orbit

Gi−1hi = {hj : generatori(j) 6= ∅} (6.32)

of the i-th facet can be determined by reading the non-null elements of the Schreier vector
generatori for the orbit Gi−1hi.

Once we know which cell of the Voronoi diagram contains the point x ∈ X we can
construct a matrix U ∈ Gi−1/Gi that maps x ∈ X into the Voronoi cell Fi−1(hi) using a
Schreier vector. By Theorem 14 each matrix U ∈ Gi−1/Gi permutes the facets of X and
therefore permutes the cells of the Voronoi diagram of the facet orbit Gi−1hi. Thus if x ∈ X
is closest to facet j then we can map x ∈ X into the Voronoi cell Fi−1(hi) by finding a matrix
U ∈ Gi−1/Gi that maps facets j to facet i. This is equivalent to searching the permutation
representation of G ⊆ Aut(X ) for a permutation u ∈ Gi−1/Gi that maps j to i. This can be
done efficiently using Schreier vectors and Algorithm 5.

Recall that a Schreier vector is a data-structure that represents a search-tree in a Schreier
graph. The Schreier vector generatorsi tells us how to combine generators s ∈ S to produce
a permutation u = s1s2 · · · ∈ Gi−1/Gi that maps j to i = u(j). Each entry generatorsi(j) of
the Schreier vector contains the generator s ∈ S that is the label of the edge entering node
j in the Schreier graph. The Schreier vector allows us to backtrack through the graph Γi(S)
of the orbit Gi−1hi from node j ∈ Gi−1hi to the root node i. Each base point hi ∈ B has a
Schreier vector generatorsi. The Schreier vectors can be created using Algorithm 4.

Finally Algorithm 11 improves on Algorithm 10 by not calculating the matrix U ∈ Gi−1/Gi
at each iteration i. Instead Algorithm 11 calculates the final matrix Θ = U|B| · · ·U1 using
corresponding permutation θ = u|B| · · ·u1 and the isomorphism (6.4). This avoids having to
perform expensive matrix computations at each iteration.

Implementing Algorithm 11 requires storing the half-spaces hi for i = 1, . . . , c of the
set X , the generators S of G ⊆ Aut(X ), and the Schreier vectors generatorsi for i =
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1, . . . , |B|. Storing the half-spaces requires O(nc) memory. Storing the generators requires
O(c2) memory since each generator s ∈ S is a permutation of length c and there are at most
c − 1 generators. Storing the Schreier vectors requires O(nc) memory since each Schreier
vector is of length c and there are at most |B| ≤ n Schreier vectors. Therefore Algorithm 11
has memory complexity O(c2).

Algorithm 11

Input: Point x ∈ X , group generators S, Schreier vectors generatorsi, facets hi
Output: Group element Θ ∈ G such that Θx ∈ X̂

1: calculate initial distances to facets dj = 1− hTj x
2: initialize permutation θ = e
3: for i = 1 to |B| do
4: read the orbit Gi−1hi = {hj : generatorsi(j) 6= ∅} of facet hi ∈ B
5: calculate the closest facet j? = argminhj∈Gi−1hi

dj to the point Θx ∈ X
6: use generatorsi to find permutation ui ∈ Gi−1/Gi that maps facet j? to facet i
7: update distances d+

j = du(j) and permutation θ+ = uiθ
8: end for
9: calculate Θx = HT (1− d) or calculate Θ = HTΠθH.

The following example illustrates the use of Algorithm 11.

Example 25. Consider the square X = {x ∈ R2 : −1 ≤ x ≤ 1}. This set is symmetric
with respect to the dihedral-4 group. The permutation representation of the dihedral-4 group
is generated by the permutations

s1 =

(
1 2 3 4
4 1 2 3

)
(6.33a)

s2 =

(
1 2 3 4
1 4 3 2

)
. (6.33b)

The permutation s1 corresponds to a 90 degree counter-clockwise rotation of the square and
the permutation s2 corresponds to a vertical reflection of the square. The generators S =
{s1, s2} are strong generators for the base B = {1, 2} ⊂ {1, 2, 3, 4}.

The Schreier vectors generators1 and generators2 for orbit G0h1 of facet h1 under the
group G0 = 〈s1, s2〉 and the orbit G1h2 of the facet h2 under the group G1 = 〈s2〉 respectively
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are

generators1 =


e for y = 1

s1 for y = 2

s1 for y = 3

s1 for y = 4

(6.34a)

generators2 =


∅ for y = 1

e for y = 2

∅ for y = 3

s2 for y = 4

. (6.34b)

These Schreier vectors represent trees of the graphs shown in Figures 6.4a and 6.4b respec-
tively.

We now demonstrate Algorithm 11 for the point x = [ -0.75
0.5 ]. First we calculate the

distances from x ∈ X to each facet d = 1 −Hx = [1.75, 0.5, 0.25, 1.5]T . The permutation θ
is initialized as the identity permutation

θ =

(
1 2 3 4
1 2 3 4

)
. (6.35)

In iteration i = 1 we are trying to map the point x ∈ X into the Voronoi cell F0(h1)
shown in Figure 6.4a. The Voronoi cell F0(h1) = {x : hT1 x ≥ hTj x, j = 2, 3, 4} is the set of
points x ∈ X closer to facet h1 than facets G0h1 \ {h1} = {h2, h3, h4}. The orbit G0h1 can be
read from the Schreier vector generators1 which has no null elements.

The point x ∈ X is not in the Voronoi cell F0(h1) since it is closest d3 ≤ d1, d2, d4 to
facet h3 ∈ G0h1. Therefore we need a permutation u ∈ G0/G1 that maps facet 3 to facet 1.
This can be constructed using the Schreier vector generators1.

Using Algorithm 5 with generators1 and y = 3 we obtain the permutation

u1 = s1s1 =

(
1 2 3 4
3 4 1 2

)
∈ G0/G1 (6.36)

which maps facet 3 to facet 1. This permutation corresponds to the 180 degrees rotation
matrix

U1 = HTΠu1H =

[
−1 0

0 −1

]
∈ G0/G1. (6.37)

Applying the transformation Θ = U1 maps the point x ∈ X into the Voronoi cell F0(h1).
The updated distances d+

j = 1− hTj Θx0 = 1− hTj U1x0 from Θx0 = U1x0 ∈ X to each of the
facets hj can be calculated using the permutation u

d+ = Πu1d =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1.75
0.5
0.25
1.5

 =


0.25
1.5
1.75
0.5

 (6.38)
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where Πu1 is the permutation matrix for the facet permutation u1. Finally we update the
permutation θ corresponding to transformation Θ = U1

θ+ = u1θ =

(
1 2 3 4
3 4 1 2

)
. (6.39)

In iteration i = 2 we are trying to map the point Θx = U1x ∈ X into the Voronoi cell
F1(h2) shown in Figure 6.4b. The Voronoi cell F1(h2) = {x ∈ X : hT2 x ≥ hT4 x} is the set of
points x ∈ X closer to facet h2 than facet h4 where G1h2 = {h2, h4}. The orbit G1h2 can be
read from the Schreier vector generators2 which has elements 2 and 4 as non-null.

The point U1x0 ∈ X is not in the Voronoi cell F1(h2) since it is closest d4 ≤ d2 to facet
h4 ∈ G1h2. Therefore we need a permutation u ∈ G1/G2 that maps facets 4 to facet 2. This
can be constructed using the Schreier vector generators2.

Using Algorithm 5 with generators2 and y = 4 we obtain the permutation

u2 = s2 =

(
1 2 3 4
1 4 3 2

)
∈ G1/G2 (6.40)

which maps facet 4 to facet 2. This permutation corresponds to the vertical reflection matrix

U2 = HTΠu2H =

[
1 0
0 −1

]
∈ G1/G2. (6.41)

Applying the transformation U2 maps the point Θx = U1x ∈ X into the Voronoi cell F1(h2).
Since U2 ∈ G1/G2 fixes the Voronoi cell F0(h1) = ΘF1(h2) for all Θ ∈ G1 we have that U2U1x
is in the fundamental domain

U2U1x ∈ X̂ = F1(h2) ∩ F0(h1). (6.42)

In Algorithm 11 the matrix Θ = U2U1 is computed last from the permutation

θ = u2u1 =

(
1 2 3 4
3 2 1 4

)
(6.43)

which produces the matrix Θ = HTΠθH = HTΠu2Πu1H

Θ =

[
−1 0

0 1

]
. (6.44)

This matrix Θ ∈ G is the horizontal reflection which maps the point x =
[
−0.75, 0.5

]
into

the fundamental domain X̂ = {x ∈ X : x1, x2 ≥ 0, x1 ≥ x2} = F1(h2) ∩ F0(h1).

The correctness of Algorithm 11 is proven by the following theorem.

Theorem 19. Algorithm 11 is equivalent to Algorithm 10.



CHAPTER 6. FUNDAMENTAL DOMAINS 95

Proof. First we will show that if the distances dj from Θx to each facet j are correct dj =
1 − hTj Θx then U = HTΠuH maps Θx into the Voronoi cell Fi−1(hi) where u ∈ Gi−1/Gi is
a representative function that maps i to j. By definition of dj? = argminhj∈Gi−1hi

1− hTj Θx,
we have

dj? = 1− hTj?Θx = 1− hTu(i)Θx = 1− hTi UΘx ≤ 1− hTj Θx = dj (6.45)

for all hj ∈ Gi−1hi where hu(i) = hTi U since ΠuH = HU by Theorem 14. Since U ∈ Gi−1/Gi ⊆
Gi−1 we have UGi−1 = Gi−1 and thus

hTi UΘx ≥ hTj UΘx (6.46)

for all hj ∈ Gi−1hi. By Theorem 15 this means U maps Θx into the Voronoi cell Fi−1(hi) =
{x : hTi x ≥ hTj x, ∀hj ∈ Gi−1hi}.

Next we will prove by induction that at iteration i the updated distances dj = du(j) are
correct d = 1−HΘx where Θ = Ui−1 · · ·U1. This is clearly true in the base case i = 1 since
Θ = I and the distances dj are initialized as dj = 1− hTj x. For iteration i > 1 the updated
distances d satisfy

du(j) = 1− hTu(j)Θx = 1− hTj UΘx. (6.47)

Thus d = 1−HΘx = 1−HUi · · ·U1x at the end of each iteration i = 1, . . . , |B|.
Finally we note Θx = HT (1− d) = HTHΘx since the polytope X is regularized HTH =

I.

The computational of Algorithm 11 is given by the following proposition.

Proposition 17. Calculating Θx ∈ X̂ has complexity O(nc) and calculating Θ has complex-
ity O(nc2) where c is the number of facets and n is the dimension of the set X ⊆ Rn.

Proof. Calculating the initial distances dj = 1− hTj x has complexity O(nc). Calculating the
orbit Gi−1hi using the Schreier vector generatorsi has trivial complexity O(1). Calculating
the minimum distance dj? has complexity O(c). Calculating the representative function has
complexity O(|Gi−1hi|) ≤ c. And updating the distances dj has trivial complexity O(1).
Thus the for-loop of Algorithm 11 has complexity O(nc).

Finally calculating Θx = HT (1 − d) has complexity O(nc). Thus finding Θx has com-
plexity O(nc). On the other hand calculating Θ = HTΠθH has O(cn2) complexity.

6.4 Sorting using Fundamental Domains

In this section we will show that the set of sorted states is a fundamental domain that
can be constructed using Algorithm 8. Furthermore Algorithm 10 can be used as a sorting
algorithm. In this context Algorithm 10 is equivalent to bubble search [34].
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Consider the set X = ρ[−1, 1]n for large radius ρ→∞. A symmetry group G ⊆ Aut(X )
of this set is the symmetric group Sn ⊆ Aut(X ) which is the set of all permutation matrices
Π ∈ Rn×n. We will use Algorithm 8 to show the set of sorted states is a fundamental domain
of this set.

Consider the base B = {e1, e2, . . . , en−1} where ei is the i-th standard basis vector. This
base produces the stabilizer chain

G = Sn ⊃ Sn−1 ⊃ · · · ⊃ S2 ⊃ S1 = 〈∅〉 (6.48)

where Sn−i is the subgroup of permutation matrices Π ∈ Rn×n that fix Πej = ej the first
i ≥ j basis vectors e1, . . . , ei. Note that the indexing of these stabilizer subgroups is the
reverse of our standard notation Gi = Sn−i.

We will execute Algorithm 8 with this base. The orbit Gi−1ei of the base point ei under
the subgroup Gi−1 = Sn−i+1 is the set Gi−1ei = {ei, . . . , en}. The Voronoi cell Fi−1(ei) that
separates ei from its orbit Gi−1ei = {ei, . . . , en} is the set

Fi−1(ei) = {x ∈ X : (ei − ej)Tx ≥ 0, for j = i, . . . , n} (6.49)

=
{
x ∈ X : xi ≥ xj, for j = i, . . . , n

}
.

This set says that xi is larger than xi+1, . . . , xn. According to Algorithm 8 the set X̂ =⋂B
i=1Fi−1(ei) is a fundamental domain

X̂ =
n⋂
i=1

Fi−1(ei) =
n⋂
i=1

{
x : xi ≥ xj, for j = i, . . . , n

}
(6.50)

=
{
x ∈ X : x1 ≥ x2 ≥ · · · ≥ xn

}
.

This is the set of sorted states X̂ =
{
x ∈ X : x1 ≥ x2 ≥ · · · ≥ xn

}
.

Using this base B = {e1, e2, . . . , en−1} we can find a symmetry Θ = Π ∈ Sn = G that
sorts the elements x ∈ X (i.e. Θx ∈ X̂ ) using Algorithm 10.

In iteration i the Algorithm 10 finds a symmetry Ui ∈ Gi−1/Gi = Sn−i+1/Sn−i that maps
Θx = Ui−1 · · ·U0x into the Voronoi cell Fi−1(ei) = {x ∈ X : xi ≥ xi+1, . . . , xn}. The set
Gi−1/Gi = Sn−i+1/Sn−i is the set of permutation matrices Π ∈ Rn×n that permute the base
vectors {ei, . . . , en} modulo the permutations Sn−i that fix base vector ei. This set has size
|Sn−i+1/Sn−i| = (n−i+1)!/(n−i)! = n−i+1 ≤ n. The Voronoi cell Fi−1(ei) is the set where
xi is the largest element of the subset {xi, . . . , xn}. Thus after iteration i Algorithm 10 has
mapped the point x into the non-minimal fundamental domain X̂i =

⋂i
j=1Fj−1(ej) where

the first i elements x1, . . . , xi of x are sorted x1 ≥ · · · ≥ xi. At termination i = |B| = n
the algorithm has sorted all n elements of the vector x ∈ Rn. This sorting algorithm is
equivalent to the bubble search [34]. It has computational complexity O(n2).
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Chapter 7

Symmetric Explicit Model Predictive
Controllers

In this chapter we present two novel explicit model predictive control designs that exploit
symmetry to reduce memory complexity. The orbit controller reduces memory by elimi-
nating pieces of the controller that are symmetrically redundant. The fundamental domain
controller reduces memory by eliminating a portion of the state-space that is symmetrically
redundant. We describe how to synthesize and implement these controllers.

In this chapter we consider the following model predictive control problem for a con-
strained linear time-invariant system with polytopic constraints, and a linear or quadratic
cost function

J?(x) = minimize
u0,...,uN−1

p(xN) +
∑N−1

k=0
q(xk, uk) (7.1a)

subject to xk+1 = Axk +Buk (7.1b)

xk+1 ∈ X , uk ∈ U (7.1c)

xN ∈ XN (7.1d)

x0 = x ∈ X (7.1e)

where x ∈ Rn is the measured state, xk is the predicted state under the control action
uk ∈ Rm over the horizon N , and X , U , and XN are polytopic sets.

Problem (7.1) has a state-feedback piecewise affine on polytopes control-law

u?0(x) = κ(x)


F1x+G1 if x ∈ R1

...

Fpx+Gp if x ∈ Rp

(7.2)

where Fi ∈ Rm×n and Gi ∈ Rm are the optimal feedback and feedforward gains. The regions
Ri are polytopes.
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7.1 Orbit Controller

In this section we define the orbit controller κo(x) which uses symmetry to reduce the com-
plexity of storing the optimal control-law u?0(x) = κ(x). The results of this section hold for
any subgroup G ⊆ Aut(I) of controller symmetries.

Consider an explicit model predictive controller u?0 = κ(x) of the form (7.2). Symmetry
tells us that pieces i, j ∈ I of the controller are related by state-space Θ and input-space
Ω transformations. Thus we need only store one of these controller pieces and the other
piece can be recovered using the symmetry transformations. This intuition is formalized and
generalized using the concept of a controller orbit.

Two controller pieces i, j ∈ I are symmetrically equivalent if there exists a state-space
and input-space transformation pair (Θ,Ω) ∈ G ⊆ Aut(I) that maps controller piece i to
piece j = π(i) for π ∈ Π(G). The set of all controller pieces equivalent to the i-th piece is
called a controller orbit

G(i) =
{
π(i) : π ∈ Π(G)

}
(7.3)

where Π maps linear symmetries (Θ,Ω) ∈ Aut(I) to the corresponding permutation π =
Π(Θ,Ω) of the controller pieces I. The set of controller orbits is denoted by I/G =
{G(i1), . . . ,G(ir)}, read as I modulo G, where {i1, . . . , ir} is a set that contains one represen-
tative controller piece ij from each orbit G(ij). With abuse of notation we will equate the set
of controller orbits I/G with sets of representative controller pieces I/G = {i1, . . . , ir}. The
controller orbits G(i) for i ∈ I/G partition the controller pieces I into disjoint equivalence
classes I =

⊔
i∈I/G G(i).

Using orbits the memory requirements for the explicit model predictive controller κ(x)
can be reduced by storing only one representative i ∈ G(i) from each controller orbit G(i).
The other controller pieces j ∈ G(i) can be recovered using the state-space and input-space
transformations (Θ,Ω) ∈ G ⊆ Aut(I) and the symmetry relation

u?0(x) = Fjx+Gj = ΩFiΘ
−1x+ ΩGi. (7.4)

In terms of the controller orbits, the optimal control-law u?0(x) = κ(x) can be written as

u?0(x) =


ΩFi1Θ

−1x+ ΩGir if x ∈ ΘRi1 for some (Θ,Ω) ∈ G
...

ΩFirΘ
−1x+ ΩGir if x ∈ ΘRir for some (Θ,Ω) ∈ G

(7.5)

where {i1, . . . , ir} = I/G is a set of representative controller pieces. We call this representa-
tion of the optimal control-law u?0(x) = κ(x) the orbit controller κo(x).

The orbit controller κo(x) neglects part of the feasible state-space X0 where the optimal
control-law u?0(x) is symmetrically redundant. The orbit controller κo(x) only explicitly
stores the control-law u?0(x) on a subset R̂ of the feasible region X0

R̂ =
⋃

i∈I/G
Ri ⊂ X0. (7.6)
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We can visualize the orbit controller in terms of the orbit graph Γ(S) = (V , E). The node
set V of the orbit graph Γ(S) is the index set V = I of the controller pieces {(Fi, Gi,Ri)}i∈I .
By definition the symmetries (Θ,Ω) ∈ Aut(I) induce sets of edges

E(Θ,Ω) =
{

(i, π(i)) ∈ I × I : π = Π(Θ,Ω), i 6= π(i)
}

(7.7)

that related controller pieces {(Fi, Gi,Ri)}i∈I . For a subset of symmetries S ⊆ Aut(I) we
can define the graph Γ(S) = (V , ES) whose node set is the set of controller pieces V = I
and whose edge set ES =

⋃
(Θ,Ω)∈S E(Θ,Ω) is the union of edge sets induced by the symmetries

(Θ,Ω) ∈ S.
Each connected component of the graph Γ(S) corresponds to a controller orbit G(i) =

{π(i) ∈ I : π ∈ Π(G)} where G = 〈S〉 is the symmetry group generated by S. The orbit
graph Γ(S) has |I/G| connected components. An orbit controller κo(x) can be created by
selecting one representative controller piece (Fi, Gi,Ri) from each connected component of
the orbit graph Γ(S). The symmetries (Θ,Ω) ∈ S allow us to move along the edges of
the orbit graph Γ(S) between controller pieces (Fi, Gi,Ri) for i ∈ I to reconstruct the full
explicit controller κ(x). Obviously the orbit controller κo(x) is not unique since the choice
of controller pieces from each component is arbitrary.

The following example demonstrates the concept of an orbit controller.

Example 26. Consider the model predictive control problem

J?(x) = minimize
u0,...,uN−1

xTNxN +
∑N−1

k=0
xTk xk + uTk uk (7.8a)

subject to xk+1 = Axk +Buk (7.8b)

xk+1 ∈ X , uk ∈ U (7.8c)

x0 = x (7.8d)

where N = 5, the dynamics matrices are

A =

[
2 0
0 2

]
and B =

[
1 1
1 −1

]
, (7.9)

and X and U are box constraints on the state and input

X = {x ∈ R2 : −1 ≤ xi ≤ 1, i = 1, 2} (7.10)

U = {u ∈ R2 : −1 ≤ ui ≤ 1, i = 1, 2}. (7.11)

This model predictive control problem has a piecewise affine on polytope control-law u?0(x) =
κ(x). The partition {Ri}i∈I of this controller is shown in Figure 7.1a and the vector field
u = κ(x) of the controller κ(x) is shown in Figure 7.1b.

The symmetry group Aut(I) of the piecewise affine on polytope controller κ(x) is the
dihedral-4 group D4 which consists of the planar rotations by 90 degree increments and the
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reflections of the plane about the horizontal, vertical, and both diagonal axis. This group
Aut(I) = D4 can be generated by the 90 degree planar rotation and the reflection about the
vertical axis in the state-space and the 90 degree planar rotation and the diagonal reflection
in the input-space

(Θr,Ωr) =

([
0 −1
1 0

]
,

[
0 −1
1 0

])
(7.12a)

(Θs,Ωs) =

([
1 0
0 −1

]
,

[
0 1
1 0

])
(7.12b)

where (Θr,Ωr) are the 90 degree rotation matrices and (Θs,Ωs) are the reflections about the
vertical and diagonal axis respectively.

The symmetry Aut(κ) of the explicit controller κ(x) can be seen in the controller partition
{Ri}i∈I shown in Figure 7.1a. Rotating the partition {Ri}i∈I by increments of 90 degrees
does not change the pattern of the partition. Likewise reflecting the partition {Ri}i∈I about
the horizontal, vertical, or either diagonal axis does not change the partition.

The symmetry can also be seen in the vector field of the optimal control-law u?0(x) shown
in Figure 7.1b. Rotating the state-space by 90 degrees is equivalent to rotating the vector
field u?0(x) by 90 degrees Ωru

?
0(x) = u?0(Θrx). The points x, y ∈ X0 shown in Figure 7.1b are

related y = Θsx by the vertical reflection Θs. The vector field at these points is related by
the diagonal reflection Ωs

u?0(y) = u?0(Θsx) = Ωsu
?
0(x). (7.13)

Symmetry organizes the |I| = 33 pieces of the explicit controller κ(x) into |I/G| = 8
orbits: one orbit of size |G(i)| = 1, six orbits of size |G(i)| = 4 and one orbit of size
|G(i)| = 8. Each of these orbits correspond to connected component of the orbit graph Γ(S)
shown in Figure 7.2.

Figure 7.2 shows the connected components of the orbit graph Γ(S) = (V , ES) for the
explicit controller κ(x) and the generating set S = {(Θr,Ωr), (Θs,Ωs)}. The nodes i ∈ I = V
of these graph components are controller pieces (Fi, Gi,Ri) with the node drawn inside the
region Ri. The edges are induced by the 90 degree rotation matrix Θr and vertical reflection
Θs.

The orbit shown in Figure 7.2a is a singleton orbit |G(i)| = 1. The orbit shown in 7.2e
contains |G(i)| = 8 controller pieces (Fi, Gi,Ri). The regions Ri for i ∈ G(i) are related
by the reflections and rotations of the symmetry group Aut(I) = 〈S〉. The feedback Fi and
feedforward Gi gains in these regions are related by symmetry ΩFi = FjΘ and ΩGi = Gi.
This can be seen in the vector field of the optimal control-law u?0 = κ(x) shown in Figure
7.1b.

An orbit controller κo(x) can be created by selecting one representative controller piece
from each orbit. The partition {Ri}i∈I/G of an orbit controller κo(x) is shown in Figure
7.1c. The colored regions represent the pieces of the controller explicitly stored by κo(x). The
control-law in the gray regions is recovered using symmetry. This controller contains one
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(a)

x

Θsx

(b) (c)

Figure 7.1: Example of orbit controller. (a) Partition {Ri}i∈I of the explicit model predictive
controller κ(x). (b) Vector field u = κ(x) of the explicit model predictive controller κ(x).
(c) Partition {Ri}i∈I/G of an orbit controller κo(x). The control-law is explicitly stored in
the colored regions and reconstructed from symmetry in the gray regions.

node from each connected component of the orbit graph Γ(S). The choice of the pieces to
store is arbitrary.

Synthesis of the Orbit Controller

In this section we present a simple procedure for synthesizing the orbit controller κo(x).
The orbit controller can be synthesized using the steps in Procedure 4. The first step

of this procedure is to generate the full explicit controller κ(x). This can be done using
the Multi-Parametric Toolbox (MPT) [57]. Next a symmetry group G ⊆ Aut(I) of the
controller κ(x) is identified. This can be done using the techniques presented in Chapter
5 to find G = Aut(MPC) ⊆ Aut(I). Next the orbits G(i) of the controller pieces I are
calculated using Algorithm 12. Finally the orbit controller κo(x) is constructed by selecting
one controller piece (Fi, Gi,Ri) from each orbit G(i).

Procedure 4 Synthesis of Orbit Controller κo(x)

1: Generate the full explicit controller κ(x).
2: Identify a symmetry group G ⊆ Aut(I) for explicit controller κ(x)
3: Calculate the orbits G(i) of the controller pieces I
4: Select a representative controller piece (Fi, Gi,Ri) from each orbit G(i).

This procedure can be interpreted in terms of the orbit graph Γ(S). In the first step we
construct the node set I of the orbit graph Γ(S) by constructing the explicit controller κ(x).
In the second step we find the edge set ES of the orbit graph Γ(S). In the third step we use
the orbit algorithm to find the connected components of the orbit graph Γ(S). Finally we
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.2: Connected components of the orbit graph Γ(S) for the explicit controller κ(x).
The dots represent the graph nodes V = I and the lines represent the graph edges ES . The
graph nodes i ∈ I are drawn inside the region Ri of the controller piece (Fi, Gi,Ri) they
represent.

chose one representative from each connected component of the orbit graph Γ(S) to produce
an orbit controller κo(x).

The orbits G(i) of the controller pieces i ∈ I can be identified using Algorithm 12.
Algorithm 12 loops until every controller piece i ∈ I has been assigned to an orbit G(i) ∈ I/G.
During each loop, the algorithm begins by selecting an unassigned controller piece i ∈ J .
The algorithm finds a point z ∈ int(Ri) in the interior of the region Ri. This can be
accomplished by calculating the Chebyshev ball B(c, r) ⊂ Ri and letting z = c be its center.
The orbit Gz of this point z will be used to construct the orbit G(i) of the i-th controller
piece. From the definition of the symmetry group G ⊆ Aut(I), we know that if a region
Rj ∈ {Ri}i∈I contains the point Θz then Rj = ΘRi since the interiors of the partition
{Ri}i∈I are mutually disjoint int(Ri) ∩ int(Rj) = ∅. Thus the orbit G(i) contains the
indices of each region Rj that contain a point Θz from the orbit Gz. If Θz ∈ Rj then we
add j ∈ I to the orbit G(i) and remove j from the set J of unassigned controller pieces.
The algorithm terminates when all the controller pieces I have been assigned to an orbit
G(i) ∈ I/G.

The following example demonstrates the use of Procedure 4 and Algorithm 12 to synthe-
size the orbit controller.

Example 27. In this example we demonstrate the synthesis of an orbit controller for the
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Algorithm 12 Calculation of orbits G(i) ∈ I/G of the controller pieces I
Input: controller partition {Ri}i∈I and symmetry group G ⊆ Aut(I).
Output: controller orbits I/G = {G(i)1, . . . ,G(i)r}

1: set all controller pieces to unassigned J = I
2: while unassigned pieces J 6= ∅ do
3: select an unassigned controller piece i ∈ J
4: find point z ∈ int(Ri) in the interior of Ri

5: calculate orbit Gz of point z
6: for each y = Θz ∈ Gz do
7: find Rj ∈ {Ri}i∈I containing y ∈ Rj

8: add j to orbit G(i) and remove j from unassigned set J
9: end for

10: end while

model predictive control problem described in Example 26.
The partition of the explicit model predictive controller κ(x) is shown in Figure 7.3a. The

symmetry group G = Aut(I) is the dihedral-4 group identified previously. Next we need to
find the orbits of the controller pieces using Algorithm 12.

The algorithm begins by setting all of the controller pieces I = J = {1, 2, . . . , 33} as
unassigned to orbits. The algorithm selects an unassigned controller pieces i = 1 ∈ J and
finds a point z = 0 ∈ int(R1) in the interior of region R1. The orbit of this point z = 0 is
the singleton set Gz = {0}. Thus the orbit of controller piece (F1, G1,R1) is the singleton
orbit G(1) = {1}. Controller piece i = 1 is removed from the list J of unassigned controller
pieces.

On the next loop, the algorithm selects a new unassigned controller piece i = 2 ∈ J . For
the region R2 the Chebyshev ball is not unique. Suppose the algorithm chose the Chebyshev
ball shown in Figure 7.3b. Then the orbit of its center z is the set of eight points shown in
Figure 7.3b. Algorithm 12 will find that these eight points are contained in the four sets R2,
R3, R4, and R5. Thus the orbit of controller piece (F2, G2,R2) is G(2) = {2, 3, 4, 5}. These
pieces {2, 3, 4, 5} are removed from the list of unassigned controller pieces J = {6, 7, . . . , 33}.

Algorithm 12 continues until each controller piece I = {1, 2, . . . , 33} has been assigned to
an orbit. At termination, the algorithm has organized the controller pieces into |I/G| = 8
orbits. The final step of Procedure 4 is to select one representative piece from each orbit
G(i) ∈ I/G. The partition {Ri}i∈I/G of the resulting controller is shown in Figure 7.3c.

Remark 2. Instead of using the Chebyshev ball to find a point z ∈ int(Ri) in the interior
of region Ri we could use the analytic center of Ri. In this case there is a one-to-one cor-
respondence between the orbit Gz of the analytic center z and the orbit G(i) of the controller
piece. This reduces the complexity of computing the orbits Gz. However calculating the an-
alytic center is much more computationally expensive than computing a Chebyshev ball. In
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(a)

B(c, r)

(b) (c)

Figure 7.3: Example of the synthesis of an orbit controller. (a) The partition {Ri}i∈I of the
controller pieces I = {1, 2, . . . , 33}. (b) A Chebyshev ball for region R2 and the orbit Gz of
its center z ∈ int(R2) under the dihedral-4 group. (c) The partition {Ri}i∈I/G of the orbit
controller which includes one piece i from each orbit G(i) ∈ I/G of controller pieces.

practice we have found that using a Chebyshev ball in Algorithm 12 is more computationally
efficient than using the analytic center.

Implementation of the Orbit Controller

In this section we discuss the implementation of the orbit controller κo(x).
Conceptually the orbit controller κo(x) is implemented using Algorithm 13. The im-

plementation of the orbit controller κo(x) is similar to the standard implementation of the
explicit controller κ(x) in Algorithm 2. The point location problem still requires searching
the partition {Ri}i∈I of the feasible region X0. However this step is divided into two nested
loops. In the outer-loop the algorithm searches the representative regions {Ri}i∈I/G. In the
inner-loop the algorithm searches the orbit {Rj}j∈G(i) = {ΘRi}Θ∈G of the representative
region Ri for the set Rj = ΘRi which contains the measured state x ∈ ΘRi.

Once the region Rj = ΘRi containing the measured state x ∈ ΘRi has been found the
appropriate control action u?0 = κ(x) is calculated using the symmetry relation

u?0(x) = ΩFiΘ
−1x+ ΩGi (7.14)

where Θ−1x ∈ Ri.
This search can be interpreted in terms of the orbit graph Γ(S). In the outer-loop we

search among the connected components of the orbit graph Γ(S). The inner-loop searches
the components.

The computational complexity of Algorithm 13 depends on how it searches the orbits
{ΘRi}Θ∈G = {Rj}j∈G(i). The orbits {ΘRi}Θ∈G can be efficiently searched by creating a
search-tree for each connected component of the orbit graph Γ(S). The search-trees are
stored using a directed acyclic graph data-structure. The nodes j ∈ G(i) ⊆ I of the search-
tree correspond to regions Rj = ΘRi in the orbit {ΘRi}ΘG = {Rj}j∈G(i) of the region Ri.
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Algorithm 13 Conceptual Implementation of Orbit Controller κo(x)

Input: Measured State x
Output: Optimal Control u?0 = κ(x)

1: for each Ri ∈ {Rj}j∈I/G do
2: for each Rj ∈ {ΘRi}Θ∈G do
3: if x ∈ Rj = ΘRi then
4: u?0 = ΩFiΘ

−1x+ ΩGi return
5: end if
6: end for
7: end for

To each node j ∈ G(i) we assign a list child(j) of children nodes k ∈ child(j) that succeed
node j in the search-tree. If j ∈ G(i) is a leaf-node then its child list is empty child(j) = ∅.
We also assign a generator (Θj,Ωj) ∈ S to each node j ∈ G(i) which corresponds to the edge
entering node j ∈ G(i) in the search-tree. If j = i ∈ G(i) is the root-node then we chose the
identity element (Θj,Ωj) = (In, Im).

Algorithm 14 is a practical implementation of Algorithm 13 that uses search-trees to
efficiently search the orbits {ΘRi}Θ∈G of the representative controller pieces i ∈ I/G. Al-
gorithm 14 calls the function SearchPiece which recursively searches the orbit G(i) using
a search-tree. As the function SearchPiece proceeds deeper into the search-tree it trans-
forms the state z = Θ−1

jd
· · ·Θ−1

j1
x = Θ−1x and tests the condition z = Θ−1x ∈ Ri. This is

equivalent to testing Θz = x ∈ ΘRi = Rjd where Θ = Θj1 · · ·Θjd . This implementation
requires only matrix-vector multiplication Θ−1x rather than matrix-set multiplication ΘRi

where the inverses Θ−1 of the generators Θ ∈ S are stored explicitly.
If the region Ri contains the transformed state z = Θ−1

jd
· · ·Θ−1

j1
x ∈ Ri then the control

is calculated by

u = ΩjdFiz + ΩjdGi. (7.15)

The algorithm then backs out of the search-tree applying the input-space transformations
Ωjd−1

, . . . ,Ωj1 to the control input u. The orbit search returns the control input

u = Ωj1 · · ·ΩjdFiΘ
−1
jd
· · ·Θ−1

j1
x+ Ωj1 · · ·ΩjdGi. (7.16)

If the region Ri does not contain the transformed state z = Θ−1
jd
· · ·Θ−1

j1
x 6∈ Ri then the

algorithm searches the child nodes k ∈ child(j) of node j ∈ G(i) to check whether they
contain the state x ∈ Rk. If j ∈ G(i) is a leaf-node then the algorithm returns to the parent
node.

The computational complexity of Algorithm 14 is the same as the standard implementa-
tion described in Algorithm 2.

Proposition 18. Let the number of states n and inputs m satisfy m ≤ n. Then the compu-
tational complexity of Algorithm 13 using the orbit search Algorithm 14 is O

(∑
i∈I nci

)
.
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Algorithm 14 Practical Implementation of Orbit Controller κo(x)

Input: measured state x and search-tree for orbit graph Γ(S)
Output: optimal control u = κ(x)

for each representative controller piece i ∈ I/G do
SearchPiece(i,x,Fi,Gi,Ri)
if found then

return u
end if

end for
function SearchPiece(j,z,F ,G,R)

if Θ−1
j z ∈ R then

calculate control:

u = ΩjFΘ−1
j z + ΩjG

set found = true
return u and found

else
for each k ∈ child(j) do

SearchPiece(k,Θ−1
j z,F ,G,R)

if found then
transform input:

u = Ωju

return u and found
end if

end for
found = false
return found

end if
end function
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Proof. The most computationally expensive steps in Algorithm 14 are the transformation of
the state Θ−1

j z and input Ωju, and the point-in-set test z ∈ Ri which have computational
complexity O(n2), O(m2), and O(nci) respectively where ci is the number of constraints that
define Ri. Since the region Ri is bounded we have ci ≥ n+ 1. Thus the cost of visiting each
node j ∈ G(i) is O(nci).

In the worst-case, Algorithm 13 will visit every orbit G(i) ∈ I/G and every node in the
orbit j ∈ G(i) once. Thus the complexity is∑

G(i)∈I/G

∑
j∈G(i)

O(nci) =
∑
i∈I

O(nci). (7.17)

The following example demonstrates the implementation of the orbit controller.

Example 28. In this example we demonstrate the implementation of the orbit controller
from Example 27.

Consider the measured state x(t) shown in Figure 7.4a. Since the orbit controller κo(x)
does not explicit store the optimal control-law u?0(x) at this state it must be reconstructed
using symmetry. This can be accomplished using Algorithm 13.

The outer-loop of Algorithm 13 searches {Ri}i∈I/G for the orbit {Rj}i∈G(i) = {ΘRi}Θ∈G of
the region Rj = ΘRi that contains the measured state x ∈ Rj. This corresponds to searching
over the connected components of the orbit graph Γ(S) shown in Figure 7.2. After searching
the connected components of the orbit graph Γ(S) shown in Figures 7.2a-7.2d the Algorithm
will search the orbit shown in Figure 7.2e which contains the region R23 that contains the
measured state x ∈ R23.

This orbit {ΘR14}Θ∈G =
{
R14,R15,R17,R18,R20,R21,R23,R24

}
can be searched using

the search-tree shown in Figure 7.4b. Figure 7.4c shows how the nodes in this search-tree
correspond to the regions Rj in the orbit {ΘR14} of region R14.

The orbit search begins at the root node i = 14. Since the region R14 does not contain
the state x 6∈ R14 the algorithm proceeds to search the children child(14) = {15, 20} of node
j = 14. It begins with node j = 15 where region R15 = ΘsR14 is the image of region R14

under the vertical reflection Θs. This node does not contain the state Θ−1
s x 6∈ R14. Thus

the algorithm proceeds to the single child node 21 ∈ child(15) of node j = 15. This node
does not contain state Θ−1

r Θ−1
s x 6∈ R14 = Θ−1

r Θ−1
s R21. Next the algorithm tests the leaf-node

j = 18 ∈ child(21). Since this node does not contain the state Θ−1
s Θ−1

r Θ−1
s x 6∈ R14 the

algorithm backtracks to node j = 21 and tests its next child node 23 ∈ child(21). This
node does contain the state Θ−1

r Θ−1
r Θ−1

s x ∈ R14 (i.e. x ∈ ΘsΘ
2
rR14 = R23). Therefore the

algorithm calculates the control

u = ΩrF14Θ−1
r Θ−1

r Θ−1
s x+ ΩrG14. (7.18)

and returns to node j = 21. The algorithm proceeds to backtrack to the root-node i = 14. As
it returns to node 15 from node 21 and to node 14 from node 15 it applies the input-space
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x(t)

Θ−1
s x(t)

Θ−1
r Θ−1

s x(t)

Θ−1
s Θ−1

r Θ−1
s x(t)

Θ−2
r Θ−1

s x(t)

(a)

(Θs,Ωs) (Θr,Ωr)

(Θr,Ωr) (Θs,Ωs) (Θr,Ωr)

(Θs,Ωs) (Θr,Ωr)

14

15 20

21 17 24

18 23

(b) (c)

Figure 7.4: Example of the implementation of an orbit controller. (a) Partition {Ri}i∈I/G of
the orbit controller κ0(x) with measured state x(t). (b) Search-tree of controller piece i = 14.
Θr is the counter-clockwise 90 degree rotation matrix and Θs is the vertical reflection matrix.
(c) Search-tree of controller piece i = 14 drawn on the partition {Ri}i∈I of the controller
κ(x).

transformations Ωr and Ωs respectively. The final control is

u = ΩsΩrΩrF14Θ−1
r Θ−1

r Θ−1
s x+ ΩsΩrΩrG14 (7.19)

= F15x+G15.

Memory Reduction

In this section we discuss the memory advantages of using the orbit controller κo(x). The
group structure Aut(κ) is instrumental in reducing the memory needed to store κo(x).

The orbit controller κo(x) saves memory by replacing controller pieces {(Fi, Gi,Ri)}i∈I
with symmetries (Θ,Ω) ∈ G ⊆ Aut(I). We observe that symmetries (Θ,Ω) ∈ G are less
expensive to store than controller pieces (Fi, Gi,Ri). Each symmetry (Θ,Ω) ∈ G requires
O(n2) memory assuming the number of states n is greater than the number of inputs m ≤ n.
The i-th controller piece (Fi, Gi,Ri) requires O(nci) memory where ci is the number of
half-spaces defining region Ri. Since the regions Ri are bounded ci ≥ n + 1, we have
a reduction in memory O(n2) ≤ O(nci). However for our analysis we will conservatively
assume O(nci) = O(n2).

In practice the main memory savings comes from the fact that a small number generators
S can produces a large number of symmetries G = 〈S〉 that related many controller pieces.
The orbit controller requires

O(n2)
(
|S|+ |I/G|

)
(7.20)
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memory: O(n2)|I/G| memory to store the representative controller pieces {(Fi, Gi,Ri)}i∈I/G
and O(n2)|S| memory to store the generators of the group G = 〈S〉 ⊆ Aut(I). On the other
hand the full explicit controller κ(x) requires O(n2)|I| memory to store each piece I of the
controller individually.

For any group G ⊆ Aut(I)/Ker(Π) the memory requirements of storing the orbit con-
troller κo(x) are no more than storing the full explicit controller κ(x) since |S|+ |I/G| ≤ |I|.

Proposition 19. Let G ⊆ Aut(I)/Ker(Π). Then there exists a generating set S such that
|S|+ |I/G| ≤ |I|.

Proof. Consider the stabilizer chain

G = G0 ⊇ · · · ⊇ GI/G = Ker(Π(G)) = 〈∅〉. (7.21)

Let Si = (Gi−1/Gi) \ {e} be a set of coset representatives Gi−1/Gi minus the identity element

{e}. By construction Si∪Gi generates Gi−1 = 〈Si∪Gi〉. Thus S = ∪I/Gi=1Si generates G = 〈S〉.
By the orbit-stabilizer theorem |Si| = |Gi−1i| − 1 ≤ |Gi| − 1 since Gi−1 ⊆ G. Thus

|S| ≤
∑
i∈I/G

|Gi| − 1 = |I| − |I/G|. (7.22)

This proof says that in the worst-case we need to add one generator (Θ,Ω) to the gener-
ating set S for each controller piece (Fi, Gi,Ri) we eliminate. However typically the number
of generators S ⊆ G will be small compared to the number of redundant controller pieces
|S| � |I| − |I/G| eliminated. For instance if G = CN is a cyclic group then it can be ar-
bitrarily large |CN | = N ∈ N while requiring only a single generator S = {(Θ,Ω)}. If G is
an abelian group then it requires at most k generators where |G| = pn1

1 · · · p
nk
k is the unique

prime-factor decomposition of its order [60]. If G is a non-abelian finite simple group (no
non-trivial subgroup H ⊂ G satisfies gH = Hg ∀g ∈ G) then it can be generated by at most
2 generators [65]. Unfortunately quantifying the exact memory savings provided by orbit
controller κ(x) is non-trivial.

The following example shows how the orbit controller κo(x) reduces the memory require-
ments of storing the optimal control-law u?0 = κ(x).

Example 29. In this example we examine the memory reduction offered by the orbit con-
troller κo(x) defined in Example 26.

The explicit controller κ(x) requires 786 kilobytes to store the |I| = 33 controller pieces
(Fi, Gi,Ri). The orbit controller κo(x) requires 207 kilobytes to store the |I/G| = 8 repre-
sentative controller pieces (Fi, Gi,Ri) and 1.2 kilobytes to store the |S| = 2 generators of the
symmetry group Aut(I) = 〈S〉. Thus the orbit controller κo(x) achieves nearly a one-quarter
reduction in memory.
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Example: Quadrotor

In this section we apply the concept of an orbit controller to the quadrotor system described
in Section 5.5 and shown in Figure 5.2. Recall that our model of the quadrotor has m = 4
inputs corresponding to the voltages applied to the four motors and n = 13 states: 6 cartesian
position and velocity states, 6 angular position and velocity states, and 1 integrator state.
The continuous-time nonlinear dynamics are given by (5.61). The dynamics were linearized
and discretized using standard techniques. The states and inputs are subject to constraints
that upper-bound and lower-bound their values given by (5.62).

Our model predictive controller uses a quadratic cost function

J(X,U) = xTNPxN +
∑N−1

k=0
xTkQxk + ρuTk uk (7.23)

where ρ = 0.1. The diagonal matrix Q has the form

Q =


q1I3

q2I3

q3I3

q4I3

q5

 (7.24)

where q1 = q3 = 10 is the penalty on the cartesian and angular positions, q2 = q4 = 1 is the
penalty on the cartesian and angular velocities, and q5 = 10 is the penalty of the integrator
state. The matrix P is the solution to the infinite-horizon linear quadratic regulator problem.

The symmetries of the quadrotor were identified in Section 5.5. We found |Aut(Σ)| = 16
symmetries with |S| = 3 generators. The state-space generators Θ are given by (5.63) and
the input-space generators Ω are given by (5.64).

We generated an explicit model predictive controller κ(x) for the model predictive control
problem described in [19, 7]. For a horizon of N = 2 the explicit controller κ(x) has |I| =
10173 regions and requires 53.7 megabytes of memory.

From the full explicit controller κ(x) we constructed an orbit controller κo(x) by dis-
carding pieces (Fi, Gi,Ri) of the full explicit controller κ(x) that are redundant under the
symmetry group G = Aut(MPC). The orbits G(i) ⊂ I of the explicit controller κ(x)
are classified by their size |G(i)| in Table 7.1. The total number of controller pieces in
the orbit controller κo(x) is |I/G| = 772 which requires 4.2 megabytes of memory. Thus
the |Aut(Σ)| = 16 symmetries of the quadrotor reduced memory footprint of the explicit
controller by a factor of approximately 12.8.

7.2 Fundamental Domain Controller

In this section we define the fundamental domain controller κ̂(x) which uses symmetry to
reduce the memory complexity of storing the optimal control-law u?0(x) = κ(x).
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Orbit Size |G(i)| Number of Orbits
1 1
2 6
4 30
8 215
16 520

Total Number of Orbits |I/G| : 772

Table 7.1: Classification of the orbits G(i) for i ∈ I of controller pieces for the quadrotor
explicit model predictive controller κ(x)

By the definition of controller symmetry, the optimal control-law u?0(x) at two feasible
points x, y ∈ X0 is equivalent if there exists a state-space transformation Θ ∈ Aut(u?0) such
that y = Θx. Thus a group G ⊆ Aut(u?0) will partition the feasible state-space X0 into
disjoint point orbits Gx = {Θx : Θ ∈ G}. The feasible region X0 is partitioned into an
uncountable number of point orbits X0/G. Recall that a fundamental domain X̂0 ⊆ X0 of
the feasible state-space X0 is a subset of X0 that contains at least one representative from
each orbit Gx. A polytopic fundamental domain X̂0 is minimal if int(X̂0 ∩ΘX̂0) = ∅ for all
Θ 6= I ∈ G.

The set R̂ in (7.6) is a fundamental domain of X0. Each point x ∈ X0 is contained in
some region Rj of the partition {Ri}i∈I and each region Rj is contained in a controller orbit

Rj ∈ {ΘRi}Θ∈G. Thus R̂ contains at least one representative x from each point orbit Gx.

However working with the set R̂ is difficult since it is generally not convex nor connected.
This means we must use brute-force techniques in the synthesis and implementation of the
orbit controller.

To avoid this complication we are interested in using fundamental domains that are
compact polytopes. Using the results of Chapter 6 we will construct an explicit model
predictive controller that is defined on a polytopic fundamental domain.

Let us consider the model predictive control problem (7.1) restricted to a fundamental
domain X̂ of the state-space X with respect to a subgroup of problem symmetries G ⊆
Aut(MPC)

J?(x) = minimize
u0,...,uN−1

p(xN) +
∑N−1

k=0
q(xk, uk) (7.25a)

subject to xk+1 = Axk +Buk (7.25b)

xk+1 ∈ X , uk ∈ U (7.25c)

xN ∈ XN (7.25d)

x0 = x ∈ X̂ (7.25e)

where p(xN)+
∑N−1

k=0 q(xk, uk) is a linear or quadratic cost function. This problem is identical
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to the original model predictive problem (7.1) except that the initial state x0 is restricted
to the fundamental domain x0 ∈ X̂ . The feasible state-space X̂0 for this problem is a
fundamental domain of the feasible set X0 of the original model predictive control problem
(7.1).

Lemma 3. The set of initial conditions for which (7.25) is feasible X̂0 = X0∩X̂ is a minimal
fundamental domain of X0.

Proof. If x ∈ X̂ then problems (7.1) and (7.25) are identical. Thus x ∈ X̂ is feasible for
(7.25) if and only if it is feasible for (7.1) x ∈ X0 ∩ X̂ . Therefore X̂0 = X0 ∩ X̂ is the set of
feasible initial conditions for (7.25).

Next we prove X̂0 = X0∩X̂ is a fundamental domain. Since X̂ is a minimal fundamental
domain and X0 is symmetric X0 = ΘX0, the set X̂0 = X̂ ∩ X0 satisfies⋃

Θ∈G
ΘX̂0 =

⋃
Θ∈G

ΘX0 ∩ΘX̂ (7.26)

=
⋃

Θ∈G
X0 ∩ΘX̂ = X0

and

X̂0 ∩ΘX̂0 = X0 ∩ X̂ ∩ΘX0 ∩ΘX̂ (7.27)

= X0 ∩
(
X̂ ∩ΘX̂

)
where X̂ ∩ ΘX̂ has no interior for Θ 6= I ∈ G ⊆ Aut(MPC). Thus X̂0 is a minimal
fundamental domain of X0 for the group G ⊆ Aut(MPC).

Problem (7.25) is a multi-parametric linear or quadratic program and therefore has a
piecewise affine explicit solution

κ̂(x) =


F̂1x+ Ĝ1 for x ∈ R̂1

...

F̂rx+ Ĝr for x ∈ R̂r̂

(7.28)

where Î = {1, . . . , r̂} is the index set of the controller pieces. We call κ̂(x) the fundamental
domain controller. We can extend this controller from X̂0 to the domain X0 of the full model
predictive controller κ(x) using symmetry

κ̄(x) =


Ω1κ̂(Θ−1

1 x) for x ∈ Θ1X̂
...

Ω|G|κ̂(Θ−1
|G|x) for x ∈ Θ|G|X̂ .

(7.29)

This solution covers X0 since {ΘX0}Θ∈G is a partition of X0. The following theorem shows
that κ̄(x) is a solution to the model predictive control problem (7.1).
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Theorem 20. The controller κ̄(x) in (7.29) is a solution to the model predictive control
problem (7.1).

Proof. For x ∈ X̂0 the controller κ̄(x) = κ̂(x) is feasible and optimal since κ̂(x) is the
restriction of κ(x) to X̂0 for some optimal solution u?0(x) = κ(x) to 7.1.

Suppose x ∈ X0 but x 6∈ X̂0. Then there exists Θ ∈ G such that Θ−1x ∈ X̂0 since X̂0 is a
fundamental domain of X0. Thus κ̂(Θ−1x) is defined.

By Theorem 8 the controller κ̄(x) = Ωκ̂(Θ−1x) is feasible since κ̄(x) = Ωκ̂(Θ−1x) ∈
ΩU = U and

f
(
x, κ̄(x)

)
= f

(
x,Ωκ̂(Θ−1x)

)
= Θf

(
Θ−1x, κ̂(Θ−1x)

)
∈ ΘX1 = X1 (7.30)

where Θ−1x ∈ X̂0 ⊆ X0.
Furthermore by Theorem 8 the controller κ̄(x) = Ωκ̂(Θ−1x) is optimal since

q(x,Ωκ̂(Θ−1x)) + J?1
(
f(x,Ωκ̂(Θ−1x)

)
= q(Θ−1x, κ̂(Θ−1x)) + J?1 (f(Θ−1x, κ̂(Θ−1x))

= J?0 (Θ−1x) = J?0 (x). (7.31)

The concept of a fundamental domain controller is illustrated in the following example.

Example 30. In this example we construct a fundamental domain controller κ̂(x) for the
model predictive control problem described in Example 26.

We construct a fundamental domain controller κ̂(x) by solving the model predictive control
problem on the fundamental domain shown in Figure 7.5a. The partition {R̂i}i∈Î and vector
field u(x) = κ̂(x) of the resulting fundamental domain controller κ̂(x) are shown in Figure
7.5b and 7.5c respectively. Comparing Figures 7.1a and 7.5b it is clear that {R̂i}i∈Î is the
intersection of the partition {Ri}i∈I of the full explicit controller κ(x) with the fundamental
domain X̂ .

The blue region X̂0 in Figure 7.5c is the domain of the fundamental domain controller
κ̂(x). From this figure it is clear that X̂0 = X̂ ∩X0 is a fundamental domain of the domain X0

of the original controller κ(x). Thus through symmetry, the domain X̂0 of the fundamental
domain controller κ̂(x) covers the entire feasible state-space X0.

Synthesis of the Fundamental Domain Controller

In this section we describe how to synthesize the fundamental domain controller.
The synthesis of the fundamental domain controller κ̂(x) is described by Procedure 5.

First we identify the symmetries Aut(MPC) of the model predictive control problem (7.1)
using the techniques presented in Chapter 5. Next we construct a fundamental domain X̂
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X̂

X

(a) (b)

X̂0

(c)

Figure 7.5: Example of fundamental domain controller synthesis. (a) Fundamental-domain
X̂ of the set X for the dihedral-4 group G = Aut(MPC) = D4. (b) The partition {R̂i}i∈Î
of the fundamental domain controller κ̂(x). (c) Vector-field u(x) = κ̂(x) of the fundamental
domain controller κ̂(x) defined on the set X̂0.

of the state-space X for G ⊆ Aut(MPC). This can be done using Algorithm 8 presented
in Chapter 6. Finally we solve the model predictive control problem (7.25) using Multi-
Parametric Toolbox [57] for MATLAB. The solution piecewise affine solution κ̂(x) to (7.25)
completely defines the control-law u?0(x) = κ̄(x) for all x ∈ X0.

Procedure 5 Synthesis of Fundamental Controller κ̂(x)

1: Identify the symmetries Aut(MPC) of the model predictive control problem (7.1).
2: Construct a fundamental domain X̂ of X under G = Aut(MPC) using Algorithm 8.
3: Solve the model predictive control problem (7.25) for the fundamental domain controller
κ̂(x).

Implementation of the Fundamental Domain Controller

In this section we describe the implementation of the fundamental domain controller κ̂(x).
The fundamental domain controller κ̂(x) is implemented using Algorithm 15. The point

location problem has two phases. In the first phase the algorithm searches the symmetry
group G ⊆ Aut(MPC) for a state-space transformation Θ ∈ G that maps the measured
state x ∈ X0 into the fundamental domain X̂0. This can be accomplished using Algorithm
10 in Chapter 6. In the second phase of the point location problem, the algorithm searches
the partition {R̂i}i∈Î of the piecewise affine controller κ̂(x) for the region that contains the

state Θ−1x ∈ R̂i. This search can be implemented using any of techniques proposed in the
literature [80, 50, 23, 59].

Finally the optimal control is calculated using the symmetry of the optimal control-law

u?0 = ΩF̂iΘ
−1x+ ΩĜi (7.32)
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where (Θ,Ω) ∈ G is the symmetry found in the point location phase, and (F̂i, Ĝi) are the
optimal feedback and feedforward gains for region R̂i.

Algorithm 15 Implementation of Fundamental Controller κ̄(x)

Input: Measured State x ∈ X0

Output: Optimal Control u?0(t) ∈ U
1: Find (Θ,Ω) ∈ G such that Θx ∈ X̂0

2: Find R̂j ∈ {R̂i}i∈Î such that Θx ∈ R̂j ⊆ X̂0

3: Calculate optimal control u?0(t) = Ω−1F̂iΘx+ Ω−1Ĝi

The computational complexity of Algorithm 15 is dominated by the point location prob-
lem. Finding a state-space symmetry Θ ∈ G that maps the measured-state x into the
fundamental domain x ∈ X̂ requires O(ncx) time where cx is the number of non-redundant
half-spaces defining the state constraint set X . The computational complexity of searching
the partition {R̂}i∈Î of κ̂(x) is O(n log |Î|) [50].

Searching the group G and the controller partition I have comparable computational
complexities O(ncx) = O(n log |I|) since the number of critical region |I| grows exponentially
with the number of constraints O(|I|) = 2c where c ≥ cx is the total number of constraints
in the multi-parametric program (7.1). Thus the implementation of the fundamental domain
controller κ̂(x) has the same complexity as the implementation of the full explicit controller
κ(x).

The following example illustrates the implementation of the fundamental domain con-
troller.

Example 31. In this example we demonstrate the implementation of the fundamental do-
main controller κ̂(x) from Example 30.

Consider the measured state x shown in Figure 7.6a. Since this state lies outside the
domain X̂0 of the fundamental domain controller κ̂(x) the optimal control at this point must
be reconstructed using symmetry. This can be accomplished using Algorithm 15.

In the first step Algorithm 15 searches the symmetry group G = Aut(MPC) for a state-
space transformation Θ ∈ G that maps the measured state x into the fundamental domain X̂
shown in Figure 7.6b. This can be accomplished using Algorithm 10 in Chapter 6. Algorithm
10 maps the state x ∈ X into the fundamental domain X̂ = F0(z1)∩F1(z2) by first mapping
it into the set F0(z1) shown in Figure 7.6c and then into the set F1(z2) shown in Figure 7.6d.
The state x ∈ X can be mapped into F0(z1) by applying the 90 counter-clockwise rotation
matrix Θr twice. The state Θ−2

r x can then by mapped into the set F1(z2) by applying the
vertical rotation Θs. Thus Θ−1

s Θ−2
r x ∈ X̂ = F0(z1) ∩ F1(z2).

Next Algorithm 15 searches the partition {R̂i}i∈Î of the fundamental controller κ̂(x) for

the region R̂i containing the state Θ−1
s Θ−1

r Θ−1
r x. In this case the yellow region shown in

Figure 7.5b contains Θ−1
s Θ−1

r Θ−1
r x. This provides us with the appropriate feedback Fi and

feedforward Gi gains.



CHAPTER 7. SYMMETRIC EXPLICIT MODEL PREDICTIVE CONTROLLERS 116

x(t)

Θ2
rx(t)

ΘsΘ
2
rx(t)

(a)

X̂

X

(b)

F0(z1) z1

z2

z3

z4

(c)

F1(z2)

z2
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Figure 7.6: Example of the implementation of a fundamental domain controller. (a) Partition
{R̂i}i∈Î of the fundamental domain controller κ̂(x). (b) Fundamental domain X̂ of the set
X under the dihedral-4 group Aut(MPC) = D4. (c) Voronoi cell F0(z1) of point z1 under
the group G0 = Aut(MPC). (d) Voronoi cell of facet z2 under the subgroup G1 = 〈Θs〉 which
fixes z1.

Finally the optimal control is given by

u?0(t) = ΩFΘ−1x+ ΩG

= ΩrΩrΩsFΘ−1
s Θ−1

r Θ−1
r x+ ΩrΩrΩsG. (7.33)

Example: Quadrotor

In this section we apply the concept of a fundamental domain controller to the quadrotor
system described in Section 5.5 and shown in Figure 5.2. Recall that our model of the
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quadrotor has m = 4 inputs corresponding to the voltages applied to the four motors and
n = 13 states: 6 cartesian position and velocity states, 6 angular position and velocity states,
and 1 integrator state. The continuous-time nonlinear dynamics are given by (5.61). The
dynamics were linearized and discretized using standard techniques. The states and inputs
are subject to constraints that upper-bound and lower-bound their values given by (5.62).

Our model predictive controller uses a quadratic cost function

J(X,U) = xTNPxN +
∑N−1

k=0
xTkQxk + ρuTk uk (7.34)

where ρ = 0.1. The diagonal matrix Q has the form

Q =


q1I3

q2I3

q3I3

q4I3

q5

 (7.35)

where q1 = q3 = 10 is the penalty on the cartesian and angular positions, q2 = q4 = 1 is the
penalty on the cartesian and angular velocities, and q5 = 10 is the penalty of the integrator
state. The matrix P is the solution to the infinite-horizon linear quadratic regulator problem.

The symmetries of the quadrotor were identified in Section 5.5. We found |Aut(Σ)| = 16
symmetries with |S| = 3 generators. The state-space generators Θ are given by (5.63) and
the input-space generators Ω are given by (5.64).

For a horizon of N = 2, we generated the full explicit model predictive controller κ(x).
Generating this controller required 2.1 hours. We were unable to generate the full explicit
controller for a longer horizon. However using the fundamental domain controller we were
able to extend the controller horizon to N = 3. This is the horizon of the implicit MPC used
in [19, 7]. The fundamental domain controller had 6493 regions and required 0.8 hours to
compute. Increasing the controller horizon will improve the closed-loop performance. This
demonstrates one of the main advantages of our symmetric controllers: for a fixed memory
size we can produce a controller with a longer horizons and therefore better closed-loop
performance.
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Part III

Application: Battery Balancing
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Chapter 8

Battery Balancing

In this chapter we introduce the battery balancing problem which will be used as an example
to demonstrate the theory of symmetric model predictive control developed in the previous
chapters.

Cell-balancing is the process of balancing the state-of-charge of the cells in a battery
pack. The state-of-charge of battery cells naturally tends to drift due to manufacturing
differences, environmental factors, and aging. Over the course of several charge/discharge
cycles the state-of-charge of the battery cells drifts apart. In older battery technologies, such
as lead-acid, the imbalance is corrected using a controlled over-charge [20]. This process
can cause permanent damage to lithium-based batteries. Instead lithium-based batteries
employ a system called a battery balancer to balance the cells. There are two classes of
battery balancers: dissipative and redistributive. In dissipative balancing, excess charge
is drawn from the cells with the highest state-of-charge and dissipated through a resistor.
In redistributive balancing, charge is exchanged between battery cells. Information about
battery balancing hardware can be found in [20, 32, 66, 61].

Cell-balancing can increase the effective capacity of the battery pack and improve its
durability. The active materials in lithium-based batteries can be damaged by overcharging
or over-discharging. Since all the cells are charged simultaneously, charging must stop when
one of the cells has reached the maximum state-of-charge. This leaves the other battery cells
partially uncharged, reducing the effective capacity of the entire battery pack. Likewise, the
battery system can only be discharged until one of the cells is depleted. This leaves the
remaining charge in the other cells inaccessible and thereby reducing the effective capacity.

The time-scale of cell balancing is typically measured in minutes or hours. Therefore our
model neglects the fast dynamics of the power electronics and internal battery chemistry.
We model the battery cells using simple integrator dynamics. Higher fidelity mathematical
battery models can be found in [77]. We consider seven hardware designs proposed in the
literature [20, 32, 66, 61], although our balancing controller will work for general balancing
systems. Throughout this chapter, we assume that the battery state-of-charge is known.
Details on estimating the state-of-charge for battery cells can be found in [69, 76].

We begin this chapter by defining the battery balancing problem. We define the dy-



CHAPTER 8. BATTERY BALANCING 120

namics, constraints, and control objectives. In the next subsection we propose a controller
for balancing the battery cells and prove its stability, persistent feasibility, and constraint
satisfaction. Next we present seven battery balancing hardware designs described in the
literature. In the next chapter we will exploit symmetry to reduce the complexity of our
balancing controller for these seven hardware configurations. Finally we present simulation
results for each of the battery balancing hardware designs in closed-loop with our battery
balancing controller.

8.1 Battery System

The amount of charge stored in the battery cells is Qxx(t) ∈ Rn
+ where x ∈ [0, 1]n ⊆ Rn

+

is the normalized state-of-charge of the cells and the diagonal matrix Qx ∈ Rn×n
+ contains

the charge capacities of the battery cells. State-of-charge is the amount of stored charge
normalized by the total charge capacity of the cell. A state-of-charge of xi = 1 corresponds
to a full battery cell and xi = 0 corresponds to an empty cell.

The state-of-charge of the battery cells is controlled through the balancing currentQuu(t) ∈
Rm where u(t) ∈ [−1, 1]m is the normalized balancing current and the diagonal matrix
Qu ∈ Rm×m

+ contains the current capacities of the balancing hardware.
The state-of-charge and balancing current are related by the integrator dynamics

Qxẋi(t) = TQuu(t) (8.1)

where the topology matrix T relates the balancing currents and state-of-charge. The topology
matrix T depends on the balancing hardware topology. In Section 8.3 we will define the
balancing topology matrices T for the hardware topologies considered in this dissertation.

For notational simplicity we write the dynamics as

ẋ(t) = Bu(t) (8.2)

where B = Q−1
x TQu ∈ Rn×m.

In practice we use discrete-time controllers. The dynamics (8.2) in discrete-time are

x(tk+1) = x(tk) +Bu(tk)∆t (8.3)

where ∆t is the sample-time, tk = t0 + k∆t for k ∈ N, and the input u(t) = u(tk) is held
constant over the sample-period ∆t.

The state-of-charge and normalized balancing current are constrained by

x(t) ∈ X (8.4a)

u(t) ∈ U (8.4b)

for all t ∈ R+ where X = [0, 1]n and the input constraints U ⊆ [−1, 1]m depend on the
hardware topologies described in Section 8.3.
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We consider two types of battery balancing systems: systems that redistribute charge
between the battery cells and systems that dissipate charge from the battery cells. We make
the following assumptions about the topology matrix T ∈ Rn×m and the input constraint
set U ⊆ Rm for these two classes of systems.

Assumption 1 (Redistributive System).

1. The topology matrix T ∈ Rn×m satisfies range(T ) = null(1T ).

2. The input constraint set U ⊂ Rm is full-dimensional and contains the origin in its
interior.

The assumption that range(T ) = null(1T ) means that the battery balancing system can
arbitrarily redistribute charge in the battery pack but cannot change the total amount of
charge. In particular if charge is redistributed over a network, the condition range(T ) =
null(1T ) ensures that the network is connected. The assumption that U ⊂ Rm is full-
dimensional means that bidirectional current flow is allowed on every link. The assumption
that U ⊆ Rm contains the origin 0 ∈ U means that it is always possible to not move any
charge between battery cells.

Assumption 2 (Dissipative System).

1. The topology matrix is T = −I ∈ Rn×n.

2. The input constraint set U ⊂ Rm
+ is full-dimensional and contains the origin.

The assumption that T = −I ∈ Rn×n means that every battery cells has its own circuit
to dissipate charge. The assumption that U is full-dimensional means that every cell can
dissipate charge since U ⊂ Rm

+ . The assumption that U ⊂ Rm
+ contains the origin means

that it is always possible to not dissipate any charge.

Reachable Sets

In this section we introduce the set of all states which can be reached from an initial state
x0 = x(0) by choosing an appropriate control action. This set will be used in the next section
to define the sets of equilibria to be controlled to and stabilized by feedback control.

Definition 10 (N -step Reachable Set). The N -step reachable set from x0 ∈ X for system
(8.3) subject to the constraints (8.4) is defined recursively as

Rk+1(x0) = Reach(Rk) ∩ X (8.5)

for k = 1, . . . , N − 1 and R0(x0) = {x0}.
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Definition 11 (∞-step Reachable Set). The ∞-step reachable set from x0 ∈ X for system
(8.3) subject to the constraints (8.4) is defined as

R∞(x0) = lim
N→∞

RN(x0). (8.6)

The following two propositions characterize the set of reachable states for the system
(8.3) subject to the constraints (8.4) for redistributive and dissipative balancing system
respectively.

Proposition 20. Let T and U satisfy Assumption 1. Then the ∞-step reachable set for the
system (8.2) subject to the constraints (8.4) is

R∞(x0) =
{
x ∈ X : 1TQxx = 1TQxx0

}
. (8.7)

Proof. First we show that reachable states x∞ ∈ R∞ must satisfy the conservation law

1TQxx∞ = 1TQxx0 (8.8)

where 1 ∈ Rn is the vector of ones. By Assumption 1 we have 1TT = 0 and thus from the
dynamics (8.3) we have

1TQxx(tk+1) = 1TQxx(tk) + 1TTQu∆tu(tk) (8.9)

= 1TQxx(tk)

Therefore charge is conserved.
Next we show every state x∞ ∈ X that satisfies (8.8) is reachable x∞ ∈ R∞. The linear

equation

Qxx∞ −Qxx0 = TQu∆tv (8.10)

has a solution v ∈ Rm since Qxx∞−Qxx0 is in the range-space of T by (8.8). Since U contains
the origin in its interior there exists ε > 0 such that the ball B(0, ε) ⊂ U is contained in U .

There exists N ∈ N such that ‖v‖
N
≤ ε. Thus the input sequence

u(tk) =

{
v
N

for k = 0, . . . , N − 1

0 for k ≥ N
(8.11)

is feasible u(tk) ∈ U for all k ∈ N and reaches x∞ = x0 + B
∑∞

k=0 u(tk). Every intermediate

state x(tj) = x0 +B
∑j

k=0 u(tk) is feasible x(tj) ∈ X by the convexity of X . Thus x∞ ∈ R∞
is reachable.

Proposition 21. Let T and U satisfy Assumption 2. Then the ∞-step reachable set for the
system (8.2) subject to the constraints (8.4) is

R∞(x0) =
{
x ∈ X : x ≤ x0

}
. (8.12)
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Proof. Clearly any state x ∈ X such that xi(tk) > xi(0) for some i ∈ {1, . . . , n} is not
reachable since we cannot add charge to the cells. We will show that any state x∞ ∈ X
such that x∞ ≤ x0 is reachable x∞ ∈ R∞. Since U is full-dimensional, convex, and contains
the origin there exists N ∈ N such that v

N
∈ U where v = x0 − x∞ ∈ Rm

+ . Thus the input
sequence

u(tk) =

{
v
N

for k = 0, . . . , N − 1

0 for k ≥ N
(8.13)

is feasible u(tk) ∈ U for all k ∈ N and reaches x∞ = x0 + B
∑∞

k=0 u(tk). Every intermediate

state x(tj) = x0 +B
∑j

k=0 u(tk) is feasible x(tj) ∈ X by the convexity of X . Thus x∞ ∈ R∞
is reachable.

Battery Balancing Problem

The battery balancing problem involves finding a feasible balancing current trajectory that
balances the battery cells. We define the set of balanced states as

X̄ =
{
x ∈ Rn : xi = xj ∀i, j = 1, ..., n

}
⊆ X (8.14)

In a balanced state, the amount of charge that can be removed from the battery pack and
amount of charge that can be added to the battery pack are both maximized [30]. The
battery balancing problem is formally defined below.

Problem 4 (Battery Balancing). Find a terminal time τ and input trajectory u(t) for
t ∈ [0, τ ] such that x(t) ∈ X and u(t) ∈ U for all t ∈ [0, τ ], and x(τ) ∈ X̄ .

According to Propositions 20 and 21, the balanced set X̄ is reachable R∞(x0) ∩ X̄ 6= ∅
from any initial condition x0 ∈ X . Therefore Problem 4 always has a solution.

Performance Metrics

In this section we introduce two performance metrics; time to balance and energy dissipation
during balancing. These performance metrics are used to evaluate the balancing trajectories
u(t) produced by our controller.

The time-to-balance τ(x, u) is the amount of time required to equalize the state-of-charge
of the battery cells for a given initial imbalance x ∈ X and input trajectory u(t) ∈ U for
t ∈ [0,∞)

τ(x, u) = argmin
{
τ ∈ R+ : x(τ) = x+B

∫ τ

0

u(t)dt ∈ X̂
}
. (8.15)

The energy-dissipated-to-balance ε(u) is the amount of energy dissipated in the process
of balancing the battery cells. Each charge transfer u(t) dissipates a portion of the stored
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energy. The power dissipation is a non-linear function of the voltage and current [81, 71].
However in practice the power electronics operate about a single current set-point. Further-
more the voltage range of the battery cells is limited and can be upper-bounded. Therefore
we assume the energy dissipation is directly proportional to the magnitude of the control
action according to the relation

ε(u) =

∫ τ

0

‖ηu(t)‖1dt (8.16)

where η ∈ Rm×m is a diagonal matrix which defines the power dissipation of the links.
Realistic efficiency ranges were obtained from [81, 71].

The ideal controller should be the solution u?(t) to the infinite-horizon constrained opti-
mal control problem

minimize
τ,u(t)

τ + ρ

∫ ∞
0

‖ηu(t)‖1dt (8.17a)

subject to x+B

∫ τ

0

u(t)dt ∈ X̂ (8.17b)

u(t) ∈ U , x(t) ∈ X ∀t ∈ R+ (8.17c)

where x = x(t) is the measured state and the tuning parameter ρ ∈ (0,∞) weights the impor-
tant of fast balancing verses energy efficient balancing. As ρ→ 0 equation (8.17) becomes the
minimum-time control problem. As ρ → ∞ equation (8.17) becomes the minimum-energy
control problem.

8.2 Controller Design and Analysis

Our battery balancing controller is described in Algorithm 16. At each time instance tk
the controller measures or estimates the current state-of-charge x(tk) of the battery cells.
The controller then solves a minimum-cost flow problem [8] to find the optimal total charge
redistribution v? needed to balanced the battery cells x + Bv? ∈ X̄ . The balancing current
u(tk) over the sample-period ∆t is calculated by dividing the total charge redistribution v?

by a time-interval τ that ensures the current u(tk) = 1
τ
v? ∈ U is feasible. If the charge

redistribution v? can be accomplished in the sample-time ∆t then we implement the current

u(tk) =
v?

∆t
∈ U . (8.18)

Otherwise we calculate the minimum amount of time τ = ΦU(v?) a feasible current u ∈ U
needs to be applied to accomplish the charge redistribution v? where ΦU(v?) = min{τ ∈
R+ : u ∈ τU} is the Minkowski function for the set U . In this case we apply the saturated
current

u(tk) =
v?

ΦU(v?)
∈ U . (8.19)
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Algorithm 16 Battery Balancing Controller

1: Measure (or estimate) the current state-of-charge x = x(tk)
2: Solve the minimum-cost flow problem (8.20) to obtain the total charge redistribution v?

minimize
v∈Rm

ΦU(v) + ρ‖ηv‖1 (8.20a)

subject to x+Bv ∈ X̄ . (8.20b)

3: Calculate the current u(tk)

u(tk) =

{
v?

ΦU (v?)
for ΦU(v?) > ∆t

v?

∆t
for ΦU(v?) ≤ ∆t

. (8.21)

In the next subsections we show that this control satisfies the state and input constraints,
and is persistently feasible. We then prove that this controller stabilizes the equilibrium set
X̂ . In Chapter 9 we will use the symmetry to generate memory efficient explicit solutions to
the one-step optimization problem (8.20).

Constraint Satisfaction and Feasibility

In this section we show that the controller described in Algorithm 16 satisfies the constraints
and is persistently feasible. The following proposition shows that the control satisfies the
state and input constraints.

Proposition 22. Let x(tk) ∈ X be feasible. Then the control input u(tk) produced by Algo-
rithm 16 satisfies the state and input constraints

u(tk) ∈ U (8.22a)

x(tk+1) ∈ X . (8.22b)

Proof. First we show that u(tk) satisfies the input constraints u(tk) ∈ U . By the definition
of the Minkowski function ΦU(u) the control input u = u(tk) is feasible u ∈ U if and only if
ΦU(u) ≤ 1. By the properties of Minkowski functions we have

ΦU
(
u(tk)

)
≤ ΦU

( v?

ΦU(v?)

)
=

1

ΦU(v?)
ΦU(v?) = 1. (8.23)

Next we show that x(tk+1) satisfies the state constraints x(tk+1) ∈ X . We can write
x(tk+1) as

x(tk+1) = x(tk) +Bu(tk)∆t =
(
1− λ

)
x(tk) + λ

(
x(tk)Bv

?
)

(8.24)



CHAPTER 8. BATTERY BALANCING 126

where λ = min
{

∆t
∆t
, ∆t

ΦU (v?)

}
∈ [0, 1]. By assumption x(tk) ∈ X is feasible and by (8.20b) the

point x(tk) + Bv? ∈ X̄ ⊂ X is feasible. Thus x(tk+1) is the convex combination of feasible
points. Since X is convex we have x(tk+1) satisfies the state constraints x(tk+1) ∈ X .

This proposition tacitly assumes that the one-step optimization problem (8.20) has a
solution and therefore the control u(tk) is defined. The following proposition show that
(8.20) is persistently feasible.

Proposition 23. The system (8.3) subject to the constraints (8.4) in closed-loop with the
controller in Algorithm 16 is persistently feasible for all x ∈ X .

Proof. By Propositions 20 and 21 for any x ∈ X there exists an input trajectory {u(tk)}∞k=0

such that

x+B
∑∞

k=0u(tk) ∈ X̄ . (8.25)

Since the set X and X̄ are compact there exists a subsequence {u(tkj)}∞j=0 such that the
limit

lim
N→∞

x+B
∑N

j=0u(tkj) = x̄ (8.26)

exists and x̄ ∈ X̄ ∩R∞ is balanced. By the properties of linear transformations there exists
a finite vector v ∈ Rm such that Bv = x̄ − x. Thus we have shown there exists a vector
v ∈ Rm that satisfies (8.20b) for every x ∈ X .

Finally we need to show v is in the domain of the cost function, in particular the
Minkowski function ΦU(v). For redistributive systems the domain of ΦU(v) is Rm since
by Assumption 1 the set U is full-dimensional and contains the origin in its interior. For
dissipative system we have v = x̄ − x ∈ Rm

+ since B = −T and x̄ ∈ R∞. The domain of
ΦU(v) is Rm

+ since by Assumption 2 the set U ⊂ Rm
+ is full-dimensional and contains the

origin.
Therefore we conclude (8.20) is feasible for all x(tk) ∈ X .

Stability of Equilibria Set

In this section we show that the balancing controller described in Algorithm 16 stabilizes the
set of balanced states X̄ . We give the following definition of stability for a set of equilibria.

Definition 12 (Semistability [9]). The equilibrium set X e is semistable if for all xe ∈ X e

and for all ε > 0 there exists δ > 0 such that

‖x(0)− xe‖ < δ ⇒ ‖x(t)− xe‖ < ε (8.27)

for all t ∈ N and limt→∞ x(t) = x∞ ∈ X e for all x(0) ∈ X .
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For the battery systems, this definition says that if the state-of-charge x starts near
‖x(0) − x̄‖ < δ a balanced state x̄ ∈ X̄ then it will stay near ‖x(t) − x̄‖ < ε this state and
converge to a state x∞ ∈ X̄ in the set of balanced states X̄ . This definition is important
for balancing systems with dissipative balancing since there are multiple equilibria x∞ ∈ X̄
to which the state can converge. The following theorem on set-valued Lyapunov functions
provides a method for proving the stability of systems with sets of equilibrium points.

Theorem 21 (Set-Valued Lyapunov Functions[67]). Let X e be a set of equilibrium points
and let W : X → 2X be an upper-semicontinuous set-valued Lyapunov function satisfying

1. x ∈ W (x) ∀x ∈ X and W (xe) = {xe} ∀xe ∈ X e

2. W (f(x)) ⊆ W (x) ∀x ∈ X

3. There exists a function µ : Im(W )→ R≥0, bounded on bounded sets, such that

µ
(
W (f(x))

)
< µ

(
W (x)

)
(8.28)

for all x ∈ X \ X e.

Then X e is semistable and x(t)→ xe for some xe ∈ X e as t→∞.

Proof. See Theorem 4 in [67].

The following proposition uses this theorem to show the stability of the set of balanced
states X̄ under our controller.

Proposition 24. The set of balanced states X̄ is semistable for the system (8.3) in closed-
loop with the controller described in Algorithm 16.

Proof. Consider the candidate set-valued Lyapunov function

W (x) =
{
x+ λBv : v ∈ V ?(x), λ ∈ [0, 1]

}
(8.29)

where V ?(x) is the set of optimizers v? of (8.20) at x. The set W (x) is the convex-hull of the
current state x and the set of equilibrium states x̄ = x + Bv ∈ X̄ that the controller wants
to reach.

First we prove that W (x) is upper-semicontinuous. Consider the graph

graph =
{

(x, v) : x ∈ X , v ∈ V ?(x)
}
. (8.30)

This set is closed since it is the pre-image of the value function J?(x) of (8.20) which is
continuous. Thus by the closed-graph theorem [39] the set-valued function F (x) = {x +
Bv : v ∈ V ?(x)} is upper-semicontinuous. We will use this fact to prove W (x) is upper-
semicontinuous.
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Consider an open neighborhood W ⊃ W (z) of W (x) at x = z. Let W̄ ⊂ W be an open
convex neighborhood of W (x) ⊂ W̄ ⊆ W at x = z. Since F (x) and the identity function
G(x) = x are upper-semicontinuous there exists an open neighborhood Z ⊂ X of z ∈ Z such
that F (Z) ⊂ W̄ and G(Z) ⊂ W̄ . Since W̄ is convex we have W (x) ⊆ conv(F (Z), G(Z)) ⊂
W̄ ⊂ W for all x ∈ Z. Thus we have shown that for every open neighborhoodW ⊃ W (z) of
W (z) there exists a neighborhood Z of z ∈ X such that W (x) ∈ W for all x ∈ Z. Therefore
W (x) is upper-semicontinuous.

Next we show W (x) satisfies the conditions of the theorem.

1. For λ = 0 we see that x ∈ W (x) = {x+λBv : v ∈ V ?(x), λ ∈ [0, 1]}. For a state x̄ ∈ X̄
in the equilibrium set X̄ we have V ?(x̄) = {0}. Thus W (x̄) = {x̄}.

2. Next we show W (x + Bu∆t) ⊆ W (x). We will show that extreme-points of W (x +
Bu∆t) are contained in W (x) thus by convexity W (x+Bu∆t) ⊆ W (x).

Consider the extreme-point x + Bu∆t ∈ W (x + Bu∆t). According to Algorithm 16,
we have u∆t = λv̄ for some v̄ ∈ V ?(x) and λ = min{1, 1/Φ(v̄)} ∈ [0, 1]. Therefore
x+Bu∆t = x+ λBv̄ ∈ W (x).

Now we consider the extreme-points z + Bu∆t + Bv+ ∈ W (z + Bu∆t) for some
v+ ∈ V ?(z + Bu∆t) where x = z. We will show that v = u∆t + v+ ∈ V ?(z) and thus
z +B(u∆t+ v+) ∈ W (z). First note that v = u∆t+ v+ is a feasible solution to (8.20)
for x = z since z + B(u∆t + v+) ∈ X̄ by the definition of v+ ∈ V ?(z + Bu∆t). Next
we show optimality.

Since u∆t = λv̄ for some v̄ ∈ V ?(z) we have

ΦU(u∆t) + ρ‖ηu∆t‖1 ≤ ΦU(λv̄) + ρ‖ηλv̄‖1 = λJ?(z). (8.31)

Note that v̄+ = (1 − λ)v̄ is a feasible solution to (8.20) at x = z + Bu∆t since
z + Bu∆t + B(1 − λv̄) = z + Bv̄ ∈ X̄ . This provides an upper-bound on the cost
J?(x+Bu∆t) for any v+ ∈ V ?(z +Bu∆t)

ΦU(v+) + ρ‖ηv+‖1 ≤ (1− λ)ΦU(v̄) + (1− λ)ρ‖ηv̄‖1 (8.32)

= (1− λ)J?(z).

Finally by the triangle inequality, we upper-bound the cost of v = u + v+ for any
v+ ∈ V ?(x+Bu∆t)

ΦU(u∆t+ v+)+ρ‖ηu∆t+ v+‖1 (8.33)

≤ λΦU(u∆t) + λρ‖ηu∆t‖1 + (1− λ)ΦU(v+) + (1− λ)ρ‖ηv+‖1

= λJ?(z) + (1− λ)J?(z) = J?(z).

Thus v = u∆t + v+ ∈ V ?(z) is an optimal solution to (8.20) at x = z and therefore
z +Bu∆t+Bv+ ∈ W (z).

Finally since W (x+Bu∆t) is the convex-hull of z+Bu∆ ∈ W (z) and z+Bu∆t+Bv+ ∈
W (z) for all v+ ∈ V ?(z +Bu∆t) we conclude W (z +Bu∆t) ⊆ W (z).
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3. Finally we show W (x) satisfies condition 3. Define the function

µ(W (x)) = sup
z∈W (x)

d(z, X̄ ) (8.34)

where d(z, X̄ ) = infy∈X̄ ‖z − y‖ is the Hausdorff distance from z ∈ W (x) to the equi-
librium set X̄ . Note that for any z ∈ W (x) we have

d
(
z, X̄

)
= d((1− λ)x+ λ(x+Bv), X̄ ) (8.35)

≤ (1− λ)d(x, X̄ ) + λd(x+Bv, X̄ )

= (1− λ)d(x, X̄ )

≤ d(x, X̄ ).

Thus µ(W (x)) = d(x, X̄ ) is the Hausdorff distance from the current state x to the
equilibrium set X̄ .

Next we show d(x+Bu∆t, X̄ ) < d(x, X̄ ). Since X̄ is a compact set there exists x̄ ∈ X̄
such that d(x, X̄ ) = ‖x−x̄‖. By convexity of X̄ we can define y = (1−λ)x̄+λ(x+Bv) ∈
X̄ . By the definition of Hausdorff distance we have

d(x+Bu∆t, X̄ ) ≤ ‖x+Bu∆t− y‖ (8.36)

= ‖(1− λ)x+ λ(x+Bu∆t)− (1− λ)x̄+ λ(x+Bv)‖
= (1− λ)‖x+ x̄‖
= (1− λ)d(x, X̄ ).

For x 6∈ X̄ we have λ > 0 thus d(x+Bu∆t, X̄ ) < d(x, X̄ ).

Finally we conclude by Theorem 21 that the equilibrium set X̄ is semistable and x(t)→ x̄ ∈
X̄ .

8.3 Hardware Topologies

In this section we present seven models for battery balancing hardware designs described in
the literature [20, 32, 66, 61]. We are concerned with modeling the behavior of the balancing
hardware over long time-scales relative to the dynamics of the power electronics and battery
chemistry. Each hardware topology is modeled using the generic model (8.2) and (8.4)
where the topology matrix T and polytopic input constraint set U vary between hardware
topologies. For a comparison of the performance of these battery balancing topologies see
[70].

Dissipative Topology

The dissipative topology is shown in Figure 8.1. In the dissipative topology charge is removed
from cells with high state-of-charge and dissipated as waste heat. Examples of dissipative
topologies are the dissipative resistor and dissipative shunting topologies from [20, 32, 66, 61].
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Figure 8.1: Dissipative topology. Charge from individual cells is dissipated through a resistor
[70].

In the dissipative shunting topology each cell has an independently actuated shunt circuit.
The topology matrix T = −I is given by

T =


−1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 −1

 ∈ Rn×m (8.37)

where n is the number of cell and m = n is the number of dissipative links.
The input u is limited by peak current constraint of the links |ui| ≤ 1 and since the

topology is dissipative we have ui ≥ 0 for each i = 1, 2, . . . ,m. Dissipating excess charge
produces heat that can damage the battery cells. Therefore we limit the total dissipation
current

∑m
i=1 ui ≤ umax where umax is the maximum current that can be dissipated without

overheating. The input constraint set is

U =
{
u ∈ Rm | 0 ≤ ui ≤ 1,

∑m
i=1ui ≤ umax

}
⊆ [0, 1]m. (8.38)

Shunting Topologies

The shunting topologies are shown in Figure 8.2. In the line topology shown in Figure
8.2b charge is moved between neighboring cells in the series connection using buck-boost
converters. In the ring topology shown in Figure 8.2a the first and last cells in the stack are
connect to form a ring using a flyback converter. Examples of shunting topologies are the
controlled shunting and switched capacitor topologies from [20, 32, 66, 61].

The topology matrix T for the line shunting topology is given by

T =


1 0 · · · 0

−1 1
...

0 −1
. . . 0

...
. . . 1

0 · · · 0 −1

 ∈ Rn×m (8.39)
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(a) Ring

(b) Line

Figure 8.2: Shunting topologies. Charge is moved between neighboring cells in the series
connection [70].

where n is the number of battery cells and m = n − 1 is the number of links. The ring
shunting topology has the topology matrix

T =


1 0 · · · 0 −1

−1 1
... 0

0 −1
. . . 0

...
...

. . . 1 0
0 · · · 0 −1 1

 ∈ Rn×m (8.40)

where n is the number of battery cells and m = n is the number of links.
The input u is limited by peak current constraint of the links |ui| ≤ 1 for i = 1, 2, . . . ,m.

Therefore the input constraint set is

U =
{
u ∈ Rm : −1 ≤ ui ≤ 1

}
= [−1, 1]m. (8.41)

Storage Element Topologies

The storage element topologies are shown in Figure 8.3. In these topologies a passive storage
element (capacitor or inductor) provides temporary storage for moving charge between cells.
In Figure 8.3a the temporary storage element is a capacitor and the links a realized with
flyback converters. In Figure 8.3b the temporary storage element is an inductor and we use
the multiple-winding inductor converter. In both topologies the charge level of the storage
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(a) Inductive

(b) Capacitive

Figure 8.3: Storage element topologies. A passive storage element is used to move charge
between cells [70].

element remains constant. Examples are the single-switched capacitor topology and the
multiple-winding inductor topology [20, 32, 66, 61].

The topology matrix T = I for both the inductive and capacitive storage element topolo-
gies is given by

T =


1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1

 ∈ Rn×m (8.42)

where n is the number of cells and m = n is the number of links.
The input constraint sets are different for the capacitive and inductive storage element

topologies. In both variants, the input u is limited by peak current constraint of the links
|ui| ≤ 1 for i = 1, 2, ...,m. Since the storage element should neither be charged nor discharged
over time, we have the addition constraint

∑n
i=1 ui = 0. Therefore the input constraint set

of the capacitive storage element topology is

U =
{
u ∈ Rm : −1 ≤ ui ≤ 1 and

∑m
i=1ui = 0

}
. (8.43)

In the inductive topology (Figure 8.3a) only one link can be active at each time instant.
This constraint can be satisfied by ensuring that the total control action is less than one
at each time instant ‖u‖1 ≤ 1. Therefore the input constraint set of the inductive storage



CHAPTER 8. BATTERY BALANCING 133

(a) Individual

(b) Common

Figure 8.4: Cell-to-Stack topologies. Charge is removed from a cell and distributed equally
among the stack or removed equally from the stack and added to a cell [70].

element topology is

U =
{
u ∈ Rm : −1 ≤ ui ≤ 1,

∑m
i=1ui = 0 and ‖u‖1 ≤ 1

}
. (8.44)

Cell-to-Stack Topologies

The cell-to-stack topologies are shown in Figure 8.4. In these topologies, charge is removed
from one cell and distributed equally among all the cells in the stack. Likewise charge can be
drawn equally from all the cells and added to a single cell. We consider two variants of the
cell-to-stack topology; the common cell-to-stack topology shown in Figure 8.4b, which uses
a converter with parallel mutual inductors, and the individual cell-to-stack topology shown
in Figure 8.4a, which uses flyback converters. In the latter each cell has an individual link to
the stack that can be operated independently from the other cells. This requires more high
voltage switches but allows simultaneous movement of charge to and from multiple cells.
Examples of the cell-to-stack topologies are the single and multiple transformer topologies
from [20, 32, 66, 61].

The topology matrix T = I − 1
n
11T for the cell-to-stack topologies is given by

T =


1− 1

n
− 1
n

· · · − 1
n

− 1
n

1− 1
n

...
...

. . . − 1
n

− 1
n

· · · − 1
n

1− 1
n

 ∈ Rn×m (8.45)



CHAPTER 8. BATTERY BALANCING 134

where n is the number of cells and m = n is the number of links. We use the sign convention
ui > 0 to indicate charge flow from the stack to cell i and uj < 0 to indicate charge flowing
from cell j to the stack.

The input constraint sets are different for the individual and common cell-to-stack topolo-
gies. In both the input u is limited by peak current constraint of the links |ui| ≤ 1 for
i = 1, 2, ...,m. Therefore the input constraint set of the individual cell-to-stack topology is

U =
{
u ∈ Rn : −1 ≤ ui ≤ 1

}
. (8.46)

In the common cell-to-stack topology only one link can be active at each time instant
‖u‖1 ≤ 1. Therefore the input constraint set of the common cell-to-stack topology is

U =
{
u ∈ Rn : −1 ≤ ui ≤ 1 and ‖u‖1 ≤ 1

}
. (8.47)

The literature [20] describes unidirectional variants of the cell-to-stack topology. However
we do not consider these variants since they cannot balance an arbitrary initial imbalance.

8.4 Simulation Results

In this section we demonstrate the controller in Algorithm 16 for each of the battery balancing
hardware designs presented in Section 8.3. For this example the battery pack contains n = 8
cells. The charge capacity of the battery cells is Qx = 9.3 amp-hours and the current capacity
of the links is Qu = 5 amps. The sample-time is ∆t = 60 seconds. The maximum voltage
for the battery cells is 3.9 volts. We assume the link efficiencies are 0% for the dissipative
links and 95% for the non-dissipative links. Thus the power dissipation rates on the links
are η = 18.5 watts for the dissipative topologies and η = 0.975 watts for the non-dissipative
topologies.

Our simulation model include ohmic losses on the current links and uncertainty about
the charge capacities of the cells.

Dissipative Simulation Results

The simulation results for the dissipative battery balancing system are shown in Figure
8.5. Figure 8.5a shows the state-of-charge trajectories x(t) for the battery system (8.2) in
closed-loop with the controller in Algorithm 16. Figure 8.5b shows the normalized balancing
current u(t) produced by the controller in Algorithm 16.

Shunting Simulation Results

The simulation results for the ring shunting battery balancing system are shown in Figure
8.6. Figure 8.6a shows the state-of-charge trajectories x(t) for the battery system (8.2) in
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Figure 8.5: Dissipative topology simulation results. (a) Closed-loop trajectories x(t) for the
dissipative battery balancing system. (b) Normalized balancing current u(t) for the battery
balancing controller.
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Figure 8.6: Ring shunting topology simulation results. (a) Closed-loop trajectories x(t) for
the ring shunting battery balancing system. (b) Normalized balancing current u(t) for the
battery balancing controller.
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Figure 8.7: Line shunting topology simulation results. (a) Closed-loop trajectories x(t) for
the line shunting battery balancing system. (b) Normalized balancing current u(t) for the
battery balancing controller.

closed-loop with the controller in Algorithm 16. Figure 8.6b shows the normalized balancing
current u(t) produced by the controller in Algorithm 16.

The simulation results for the line shunting battery balancing system are shown in Figure
8.7. Figure 8.7a shows the state-of-charge trajectories x(t) for the battery system (8.2) in
closed-loop with the controller in Algorithm 16. Figure 8.7b shows the normalized balancing
current u(t) produced by the controller in Algorithm 16.
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Figure 8.8: Capacitive storage-element topology simulation results: (a) Closed-loop tra-
jectories x(t) for the capacitive storage-element battery balancing system. (b) Normalized
balancing current u(t) for the battery balancing controller.
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Figure 8.9: Inductive storage-element topology simulation results. (a) Closed-loop trajec-
tories x(t) for the inductive storage-element battery balancing system. (b) Normalized bal-
ancing current u(t) for the battery balancing controller.

Storage Element Simulation Results

The simulation results for the capacitive storage element battery balancing system are shown
in Figure 8.8. Figure 8.8a shows the state-of-charge trajectories x(t) for the battery system
(8.2) in closed-loop with the controller in Algorithm 16. Figure 8.8b shows the normalized
balancing current u(t) produced by the controller in Algorithm 16.

The simulation results for the inductor storage element battery balancing system are
shown in Figure 8.9. Figure 8.7a shows the state-of-charge trajectories x(t) for the battery
system (8.2) in closed-loop with the controller in Algorithm 16. Figure 8.9b shows the
normalized balancing current u(t) produced by the controller in Algorithm 16.

Cell to Stack Simulation Results

The simulation results for the individual cell-to-stack battery balancing system are shown in
Figure 8.10. Figure 8.10a shows the state-of-charge trajectories x(t) for the battery system
(8.2) in closed-loop with the controller in Algorithm 16. Figure 8.10b shows the normalized
balancing current u(t) produced by the controller in Algorithm 16.

The simulation results for the common cell-to-stack battery balancing system are shown
in Figure 8.11. Figure 8.11a shows the state-of-charge trajectories x(t) for the battery system
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Figure 8.10: Individual cell-to-stack topology simulation results. (a) Closed-loop trajectories
x(t) for the individual cell-to-stack battery balancing system. (b) Normalized balancing
current u(t) for the battery balancing controller.
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Figure 8.11: Common cell-to-stack topology simulation results. (a) Closed-loop trajecto-
ries x(t) for the common cell-to-stack battery balancing system. (b) Normalized balancing
current u(t) for the battery balancing controller.

(8.2) in closed-loop with the controller in Algorithm 16. Figure 8.11b shows the normalized
balancing current u(t) produced by the controller in Algorithm 16.
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Chapter 9

Symmetric Battery Balancing
Controllers

In this Chapter we apply the symmetric explicit model predictive control theory from Chap-
ter 7 to the battery balancing problem. For each of the battery balancing systems described
in Section 8.3 we study the memory savings offered by the orbit and fundamental domain
controllers. We assume the batteries have identical charge capacities Qx = qxIn and the links
have identical current capacities Qu = quIm. Therefore the symmetry groups of the battery
balancing system depends on the hardware topology matrix T ∈ Rn×m and constraint set
U ⊆ Rm

In the following subsections we will derive the symmetry group Aut(MPC) for the model
predictive control problem (8.20) for each of the battery balancing hardware designs. For
a fixed battery pack size n, we can use the techniques described in Chapter 5 to identify
Aut(MPC). However in this chapter we provide propositions that describe the symmetry
group Aut(MPC) for each hardware configuration with an arbitrary pack size n. Each of
these propositions is based on the following lemma which limits the class of matrices Θ and
Ω we need to consider.

Lemma 4. Let (Θ,Ω) ∈ Aut(MPC) be symmetries of the one-step optimization problem
(8.20). Then Θ = Πx is a permutation matrix and Ω = Σu is a signed permutation matrix.

Proof. Since the cost function q(x, u), the parameter set X , and the terminal set X̄ of (8.20)
do not change between the different hardware designs, we use these to restrict the class of
matrices to which Θ and Ω can belong.

The stage cost q(x, u) = ΦU(v)+ρ‖ηv‖1 contains a 1-norm terms. The symmetry group of
the 1-norm is the hyperoctahedral group Bm which contains all signed permutation matrices
Σ ∈ Rm×m. Suppose Ω 6∈ Bm. Then Ω is not a symmetry of the cost function since

q(Θx,Ωv) = ΦU(Ωv) + ρ‖ηΩv‖1 6= ΦU(v) + ρ‖ηv‖1 = q(x, v) (9.1)

where ΦU(Ωv) = ΦU(v) since ΩU = U but ‖v‖1 6= ‖Ωv‖1 since Ω ∈ Bm.
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Next we show the state-space symmetries Θ must be permutation matrices Θ = Π. The
state constraint set X = [0, 1]n is intersection of a hypercube with the positive orthant. The
symmetry group of a hypercube is the hyperoctahedral group Bn. Thus symmetries of X
can only be signed permutation matrices Θ = Σ. However since X is a subset of the positive
orthant the matrix Θ = Π must be a permutation matrix.

Terminal set X̄ is the intersection of X = [0, 1]n with the range-space of the ones-vector
1 ∈ Rn. The permutation matrices Θ = Π preserve the ones-vector 1 ∈ Rn and therefore its
range-space. Thus Aut(X ) = Aut(X̄ ) = Sn is the set of all permutation matrices Θ = Π.

9.1 Dissipative Battery Balancing System

The symmetry group Aut(MPC) of the dissipative battery balancing system is the sym-
metric group Aut(MPC) = Sn. The group is generated by S = {(Θc,Ωc), (Θt,Ωt)} where
Θc = Ωc = Πc is the cyclic matrix Πc corresponding to the cyclic permutation

πc =

(
1 2 3 . . . n− 1 n
2 3 4 . . . n 1

)
(9.2)

and Θt = Ωt = Πt is the transposition matrix corresponding to the transposition permutation

πt =

(
1 2 3 . . . n− 1 n
2 1 3 . . . n− 1 n

)
. (9.3)

Proposition 25. Let T ∈ Rm×n be given by (8.37) and U ⊆ Rm be given by (8.38). Then the
symmetry group Aut(MPC) of the model predictive control problem (8.20) is the symmetric
group Sn which contains all pairs of permutation matrices (Θ,Ω) = (Π,Π).

Proof. First we show that if (Θ,Ω) are not permutation matrices then they are not symme-
tries (Θ,Ω) 6∈ Aut(MPC). By Lemma 4 the matrix Θ must be a permutation matrix. Since
B = − qu

qx
I the symmetry condition ΘB = BΩ implies Ω = Θ is a permutation matrix.

Next we prove that every pair of symmetry matrices (Θ,Ω) = (Π,Π) is a symmetry
(Π,Π) ∈ Aut(MPC). By Lemma 4 we only need to verify that (Θ,Ω) satisfy ΘB = BΩ
and ΩU = U . We have ΘB = BΩ since B = − qu

qx
I and Θ = Ω = Π. We have ΩU = U since[

−Im
1T

]
︸ ︷︷ ︸

Hu

Π =

[
Π 0
0 1

] [
−Im
1T

]
︸ ︷︷ ︸

Hu

and

[
0

umax

]
︸ ︷︷ ︸

Ku

=

[
Π 0
0 1

] [
0

umax

]
︸ ︷︷ ︸

Ku

(9.4)

where U = {u : Huu ≤ Ku}. Thus Ω = Π simply permutes the constraints that define U .

Intuitively this symmetry group says that permuting the battery cells does not change
the hardware topology shown in Figure 8.1. Likewise permuting the battery cells does not
change the input constraint set U ⊆ Rm.
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In Chapter 6.2 we showed that a fundamental domain X̂ for the set X = [0, 1]n with
respect to the group Aut(MPC) = Sn is the set of sorted states

X̂ =
{
x ∈ [0, 1]n : x1 ≥ x2 ≥ · · · ≥ xn

}
. (9.5)

We generated a full explicit model predictive controller κ(x), an orbit controller κo(x),
and a fundamental domain controller κ̂(x) for the dissipative topology for battery packs
between n = 2 and n = 10 cells. Figure 9.1a shows the number of pieces |I| in the full
controller κ(x), the number of pieces |I/G| in the orbit controller κo(x), and the number
of pieces |Î| in the fundamental domain controller κ̂(x). Figure 9.1b shows the memory
requirements for the full controller κ(x), the orbit controller κo(x), and the fundamental
domain controller κ̂(x). This information is also summarized in Table 9.1.

For battery packs with n cells, the full explicit controller κ(x) has n pieces. On the other
hand, the orbit controller κo(x) and fundamental domain controller κ̂(x) have one piece
regardless of pack-size n. The orbit controller κo(x) and fundamental domain controller κ̂(x)
use the single control-law

τ ? = qx
quumax

(∑n−1
i=1 xi − xn

)
(9.6a)

v?i = qx
qu

(xi − xn) (9.6b)

where τ ? = ΦU(v?). Recall that in the fundamental domain, battery cell n has the lowest
state-of-charge xn. Therefore this control-law says that the amount of charge we should
discharge v?i from cells i = 1, . . . , n − 1 is proportional to the difference between the cells
state-of-charge xi and the state-of-charge xn of the lowest cell n. The reason that the
full explicit controller has n pieces is that without restricting ourselves to the fundamental
domain any of the cells 1, . . . , n can have the lowest state-of-charge.

κ(x) κo(x) κ̂(x)

# of Cells Pieces |I| Memory Pieces |I/G| Memory Pieces |Î| Memory
2 2 11.7 1 7.5 1 7.5
3 3 14.9 1 7.7 1 7.7
4 4 18.6 1 8.0 1 8.0
5 5 23.2 1 8.4 1 8.4
6 6 28.6 1 8.7 1 8.7
7 7 35.0 1 9.1 1 9.1
8 8 42.6 1 10.1 1 10.1
9 9 51.6 1 10.6 1 10.6
10 10 62.0 1 11.2 1 11.2

Table 9.1: Dissipative topology balancing controllers. Number of pieces and memory (kilo-
bytes) for the full explicit controller κ(x), the orbit controller κo(x), and the fundamental
domain controller κ̂(x).
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Figure 9.1: Dissipative topology battery balancing controllers. (a) Number of pieces |I| for
the full explicit controller κ(x), |I/G| for the orbit controller κo(x), and |Î| for the funda-
mental domain controller. (b) Memory requirements in bytes for the full explicit controller
κ(x), the orbit controller κo(x), and the fundamental domain controller.

9.2 Shunting Battery Balancing Systems

The symmetry group Aut(MPC) of the ring-shunting battery balancing system is the
dihedral-n group Aut(MPC) = Dn. The group is generated by S = {(Θc,Ωc), (Θr,Ωr)}
where Θc = Ωc = Πc is the cyclic matrix Πc corresponding to the cyclic permutation (9.2)
and Θr = −Ωr = Πr is the reflection matrix corresponding to the reflection permutation

πr =

(
1 2 . . . n− 1 n
n n− 1 . . . 2 1

)
. (9.7)

Proposition 26. Let T ∈ Rm×n be given by (8.40) and U ⊆ Rm be given by (8.41). Then the
symmetry group Aut(MPC) of the model predictive control problem (8.20) is the dihedral-n
group Dn generated by the matrix pairs (Θc,Ωc) and (Θr,Ωr).

Proof. The matrix T is the incident matrix of a cycle graph. Therefore its symmetry group
is the dihedral-n group generated by the matrix pairs (Θc,Ωc) = (Πc,Πc) and (Θr,Ωr) =
(Πr,−Πr). The matrices Ωc and Ωr are also symmetries of the hypercube U .

Intuitively this symmetry group says that we can rotate or reflect the battery arrangement
shown in Figure 8.2a with out changing the hardware topology T or constraint set U .
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Using Algorithm 10 we can construct a fundamental domain X̂ for the set X = [0, 1]n

with respect the group Aut(MPC) = Dn. Regardless of the pack-size n we can use the base
B = {e1, e2} where e1, . . . , en are the standard basis vectors in Rn. A strong generating set
S = {S1, S2} for this base B are the generators S1 = Πc and S2 = Π−1

c Πr. Using Algorithm
10 we obtain the fundamental domain

X̂ =
{
x ∈ [0, 1]n : x1 ≥ x2, . . . , xn and x2 ≥ xn

}
. (9.8)

This fundamental domain says that the first battery cell i = 1 has the highest state-of-charge
x1 ≥ x2, . . . , xn and that the state-of-charge x2 of the second battery i = 2 is greater x2 ≥ xn
than the state-of-charge xn of the last battery i = n.

The symmetry group Aut(MPC) of the line-shunting battery balancing system is the
reflection group Aut(MPC) = S2. This group Aut(MPC) = S2 has only one non-trivial
element: the reflection matrix Θ = Ω = Πr corresponding to the reflection permutation
(9.7).

Proposition 27. Let T ∈ Rm×n be given by (8.40) and U ⊆ Rm be given by (8.41). Then the
symmetry group Aut(MPC) of the model predictive control problem (8.20) is the reflection
group S2 generated by the matrix pair (Θr,Ωr).

Proof. The matrix T is the incident matrix of a path graph. Therefore its symmetry group
is generated by the single reflection (Θr,Ωr) = (Πr,Πr). The matrix Ωr is also a symmetry
of the hypercube U .

This group says that the only operations that do not change the hardware topology shown
in Figure 8.2a are the identity and the reflection of the cells (9.7).

Using Algorithm 10 we can construct a fundamental domain X̂ for the set X = [0, 1]n with
respect the group Aut(MPC) = S2. Regardless of the pack-szie n we can use the singleton
base B = {e1} where e1, . . . , en are the standard basis vectors in Rn. By default S = {Πr} is
a strong generating set for this base. Using Algorithm 10 we obtain the fundamental domain

X̂ =
{
x ∈ [0, 1]n : x1 ≥ xn

}
. (9.9)

This fundamental domain says that the state-of-charge x1 of the first cell is higher than the
state-of-charge xn of the last cell.

Ring Shunting Controllers

We generated a full explicit model predictive controller κ(x), an orbit controller κo(x), and a
fundamental domain controller κ̂(x) for the ring shunting topology for battery packs between
n = 2 and n = 10 cells. Figure 9.2a shows the number of pieces |I| in the full controller
κ(x), the number of pieces |I/G| in the orbit controller κo(x), and the number of pieces |Î|
in the fundamental domain controller κ̂(x). Figure 9.2b shows the memory requirements for
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the full controller κ(x), the orbit controller κo(x), and the fundamental domain controller
κ̂(x). This information is also summarized in Table 9.2.

This hardware topology has a relatively small symmetry group |Dn| = 2n. Therefore
memory savings from using the orbit controllers κo(x) and the fundamental domain κ̂(x)
is minor. In this case, the orbit controller κo(x) asymptotically reduces the memory by a
factor of 2n. However the number of controller pieces |I/G| still grows exponentially with
the number of cells n. The fundamental domain controller does not perform as well, in terms
of complexity reduction, as the orbit controller in this case as shown in Figure 9.2a.

κ(x) κo(x) κ̂(x)

# of Cells Pieces |I| Memory Pieces |I/G| Memory Pieces |Î| Memory
3 14 42.6 1 7.7 1 7.7
4 48 140.2 8 22.4 9 31.9
5 200 621.9 23 66.8 48 151.9
6 420 1456.9 41 132.4 108 365.8
7 1470 5656.5 111 393.9 380 1426.4
8 2800 12254.2 191 780.3 816 3405.2
9 9072 43930.0 557 2502.7 2529 11810.0
10 16380 90904.0 859 4493.1 5114 26902.6

Table 9.2: Ring topology balancing controllers. Number of pieces and memory (kilobytes)
for the full explicit controller κ(x), the orbit controller κo(x), and the fundamental domain
controller κ̂(x).
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Figure 9.2: Ring topology battery balancing controllers. (a) Number of pieces |I| for the
full explicit controller κ(x), |I/G| for the orbit controller κo(x), and |Î| for the fundamental
domain controller. (b) Memory requirements in bytes for the full explicit controller κ(x),
the orbit controller κo(x), and the fundamental domain controller.

Line Shunting Controllers

We generated a full explicit model predictive controller κ(x), an orbit controller κo(x), and a
fundamental domain controller κ̂(x) for the line shunting topology for battery packs between
n = 2 and n = 10 cells. Figure 9.3a shows the number of pieces |I| in the full controller
κ(x), the number of pieces |I/G| in the orbit controller κo(x), and the number of pieces |Î|
in the fundamental domain controller κ̂(x). Figure 9.3b shows the memory requirements for
the full controller κ(x), the orbit controller κo(x), and the fundamental domain controller
κ̂(x). This information is also summarized in Table 9.3.

This hardware topology has the smallest symmetry group |Sn| = 2. Therefore memory
savings from using the orbit controllers κo(x) and the fundamental domain κ̂(x) is minimal.
On average the orbit controller reduced memory by a factor of approximately 1.9 and the
fundamental domain controller reduced the memory by a factor of approximately 1.5. How-
ever the number of pieces and therefore memory still grows exponentially with the number
of cells n in the pack.
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κ(x) κo(x) κ̂(x)

# of Cells Pieces |I| Memory Pieces |I/G| Memory Pieces |Î| Memory
2 2 11.7 1 7.5 1 7.5
3 8 27.3 4 17.2 4 17.2
4 24 73.6 12 43.9 14 45.8
5 64 203.7 32 115.0 40 128.9
6 160 557.1 80 306.5 104 360.5
7 384 1492.8 192 809.4 256 984.9
8 896 3918.7 448 2104.1 608 2625.9
9 2048 10099.1 1024 5382.6 1408 6851.4
10 4608 25602.6 2304 13562.9 3200 17542.6

Table 9.3: Line topology balancing controllers. Number of pieces and memory (kilobytes)
for the full explicit controller κ(x), the orbit controller κo(x), and the fundamental domain
controller κ̂(x).
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Figure 9.3: Line topology battery balancing controllers. (a) Number of pieces |I| for the
full explicit controller κ(x), |I/G| for the orbit controller κo(x), and |Î| for the fundamental
domain controller. (b) Memory requirements in bytes for the full explicit controller κ(x),
the orbit controller κo(x), and the fundamental domain controller.
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9.3 Storage Element Battery Balancing Systems

The symmetry group Aut(MPC) of the storage element battery balancing systems is the
symmetric group Aut(MPC) = Sn. The group is generated by S = {(Θc,Ωc), (Θt,Ωt)}
where Θc = Ωc = Πc is the cyclic matrix Πc corresponding to the cyclic permutation (9.2)
and Θt = Ωt = Πt is the transposition matrix corresponding to the transposition permutation
(9.3).

Proposition 28. Let T ∈ Rm×n be given by (8.42) and U ⊆ Rm be given by (8.43) or (8.44).
Then the symmetry group Aut(MPC) of the model predictive control problem (8.20) is the
set of all pair of permutation matrices (Θ,Ω) = (Π,Π).

Proof. First we show that if (Θ,Ω) are not permutation matrices then they are not symme-
tries (Θ,Ω) 6∈ Aut(MPC). By Lemma 4 the matrix Θ must be a permutation matrix. Since
B = qu

qx
I the symmetry condition ΘB = BΩ implies Ω = Θ is a permutation matrix.

Next we prove that every pair of symmetry matrices (Θ,Ω) = (Π,Π) is a symmetry
(Π,Π) ∈ Aut(MPC). By Lemma 4 we only need to verify that (Θ,Ω) satisfy ΘB = BΩ
and ΩU = U . We have ΘB = BΩ since B = − qu

qx
I and Θ = Ω = Π.

The constraint set U given by (8.43) is the intersection of a hypercube with the null-
space of the ones-vector 1. The hypercube is invariant under permutations. Likewise the
ones-vector 1, and therefore its null-space, are invariant under permutations Π1 = 1.

The constraint set U given by (8.44) is the intersection of a cross-polytope with the
null-space of the ones-vector 1. These sets are invariant under permutations.

Intuitively this symmetry group says that permuting the battery cells does not change
the hardware topology shown in Figure 8.3. Likewise permuting the battery cells does not
change the input constraint sets U ⊆ Rm for the capacitive and inductive cases.

In Section 6.2 we showed that a fundamental domain X̂ for the set X = [0, 1]n with
respect to the group Aut(MPC) = Sn is the set of sorted states (9.5).

Capacitive Storage Element Controllers

We generated a full explicit model predictive controller κ(x), an orbit controller κo(x), and a
fundamental domain controller κ̂(x) for the ring shunting topology for battery packs between
n = 2 and n = 10 cells. Figure 9.4a shows the number of pieces |I| in the full controller
κ(x), the number of pieces |I/G| in the orbit controller κo(x), and the number of pieces |Î|
in the fundamental domain controller κ̂(x). Figure 9.4b shows the memory requirements for
the full controller κ(x), the orbit controller κo(x), and the fundamental domain controller
κ̂(x). This information is also summarized in Table 9.4.

In this numerical study, the number of pieces |I| in the full explicit controller κ(x) grew
exponentially with the number of battery cells n in the pack. However the orbit controller
κo(x) had |I/G| = 2 pieces for battery packs with more than n = 3 battery cells. The
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control-laws are

τ ? =
qx
qu


[
(1− 1

n
) 1

n
. . . 1

n

]
x for x ∈ R1[

1
n

. . . 1
n

(1− 1
n
)
]
x for x ∈ R2

(9.10a)

v?i = −qx
qu

(
xi −

1

n

∑n

i=1
xi

)
(9.10b)

where τ ? = ΦU(v?) and the regions R1 and R2 polytopes. This control-law says that the
optimal total charge redistribution v?i = − qx

qu
(xi − 1

n

∑n
i=1 xi) is always proportional to the

deviation of the state-of-charge xi of cell i from the average state-of-charge 1
n

∑n
i=1 xi. The

difference between the two regions is the amount of time τ ? needed to implement the charge
redistribution v?. In the first case the time τ ? depends on the difference between the highest
state-of-charge x1 and the average state of charge 1

n

∑n
i=1 xi. In the second case the time

τ ? depends on the difference between the lowest state-of-charge xn and the average state of
charge 1

n

∑n
i=1 xi.

We conjecture that this result holds for arbitrary battery pack sizes n.

κ(x) κo(x) κ̂(x)

# of Cells Pieces |I| Memory Pieces |I/G| Memory Pieces |Î| Memory
2 2 11.8 1 7.5 1 7.5
3 6 22.6 2 12.2 2 12.2
4 32 95.7 2 13.3 4 18.1
5 110 344.4 2 14.7 6 25.3
6 312 1075.8 2 16.2 8 33.6
7 798 3079.1 2 17.8 10 43.2
8 1920 8331.4 2 19.4 12 54.5
9 4446 21706.5 2 21.2 14 67.4
10 10040 55049.7 2 23.1 16 82.4

Table 9.4: Capacitive topology balancing controllers. Number of pieces and memory (kilo-
bytes) for the full explicit controller κ(x), the orbit controller κo(x), and the fundamental
domain controller κ̂(x).
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Figure 9.4: Capacitive topology battery balancing controllers. (a) Number of pieces |I| for
the full explicit controller κ(x), |I/G| for the orbit controller κo(x), and |Î| for the funda-
mental domain controller. (b) Memory requirements in bytes for the full explicit controller
κ(x), the orbit controller κo(x), and the fundamental domain controller.

Inductive Storage Element Controllers

We generated a full explicit model predictive controller κ(x), an orbit controller κo(x), and a
fundamental domain controller κ̂(x) for the ring shunting topology for battery packs between
n = 2 and n = 10 cells. Figure 9.5a shows the number of pieces |I| in the full controller
κ(x), the number of pieces |I/G| in the orbit controller κo(x), and the number of pieces |Î|
in the fundamental domain controller κ̂(x). Figure 9.5b shows the memory requirements for
the full controller κ(x), the orbit controller κo(x), and the fundamental domain controller
κ̂(x). This information is also summarized in Table 9.5.

In this numerical study, the number of pieces |I| in the full explicit controller κ(x) grew
exponentially with the number of battery cells n in the pack. However the number of pieces
|I/G| in the orbit controller κo(x) grows linearly with the number of batteries n in the pack.
For each case the optimal total charge redistribution v?i = − qx

qu
(xi − 1

n

∑n
i=1 xi) is always

proportional to the deviation of the state-of-charge xi of cell i from the average state-of-
charge 1

n

∑n
i=1 xi. The difference between the n − 1 control-laws is the amount of time τ ?

needed to implement the charge redistribution v?. There are n−1 different weighted averages
of the state-of-charge of the cells used to determine the time τ ?. The regions R1,. . . ,Rn−1

determine which of these weighted averages to use.
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We conjecture that this result holds for arbitrary battery pack sizes n.

κ(x) κo(x) κ̂(x)

# of Cells Pieces |I| Memory Pieces |I/G| Memory Pieces |Î| Memory
2 2 11.9 1 7.6 1 7.6
3 6 23.2 2 12.4 2 12.4
4 14 49.0 3 16.0 3 16.0
5 30 107.8 4 20.3 4 20.3
6 62 241.4 5 25.5 5 25.5
7 126 544.5 6 31.6 6 31.6
8 254 1230.0 7 39.0 7 39.0
9 510 2775.9 8 48.3 8 48.3
10 1022 6249.3 9 57.7 9 57.7

Table 9.5: Inductive topology balancing controllers. Number of pieces and memory (kilo-
bytes) for the full explicit controller κ(x), the orbit controller κo(x), and the fundamental
domain controller κ̂(x).
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Figure 9.5: Inductive topology battery balancing controllers. (a) Number of pieces |I| for the
full explicit controller κ(x), |I/G| for the orbit controller κo(x), and |Î| for the fundamental
domain controller. (b) Memory requirements in bytes for the full explicit controller κ(x),
the orbit controller κo(x), and the fundamental domain controller.
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9.4 Cell-to-Stack Battery Balancing Systems

The symmetry group Aut(MPC) of the cell-to-stack battery balancing systems is the sym-
metric group Aut(MPC) = Sn. The group is generated by S = {(Θc,Ωc), (Θt,Ωt)} where
Θc = Ωc = Πc is the cyclic matrix Πc corresponding to the cyclic permutation (9.2) and
Θt = Ωt = Πt is the transposition matrix corresponding to the transposition permutation
(9.3).

Proposition 29. Let T ∈ Rm×n be given by (8.45) and U ⊆ Rm be given by (8.46) or (8.47).
Then the symmetry group Aut(MPC) of the model predictive control problem (8.20) is the
set of all pair of permutation matrices (Θ,Ω) = (Π,Π).

Proof. First we show that if (Θ,Ω) are not permutation matrices then they are not symme-
tries (Θ,Ω) 6∈ Aut(MPC). By Lemma 4 the matrix Θ must be a permutation matrix. Since
T = I − 1

n
11T the symmetry condition ΘB = BΩ implies Ω = Θ + α11T for any α ∈ R.

However for α 6= 0 the matrix Ω is not a symmetry of the stage cost q(x, u) = ‖v‖U+ρη‖v‖1.
Thus Ω = Θ is a permutation matrix.

Next we prove that every pair of permutation matrices (Θ,Ω) = (Π,Π) is a symmetry
(Π,Π) ∈ Aut(MPC). By Lemma 4 we only need to verify that (Θ,Ω) satisfy ΘB = BΩ
and ΩU = U . We have ΘB = BΩ since B = − qu

qx
(I − 1

n
11T ) and Θ = Ω = Π.

The constraint set U given by (8.46) is a hypercube and the constraint set U given
by (8.47) is a cross-polytope. These sets are both symmetric with respect to permutation
matrices Ω = Π.

Intuitively this symmetry group says that permuting the battery cells does not change
the hardware topology shown in Figure 8.3. Likewise permuting the battery cells does not
change the input constraint sets U ⊆ Rm for the individual or common cases.

In Section 6.2 we showed that a fundamental domain X̂ for the set X = [0, 1]n with
respect to the group Aut(MPC) = Sn is the set of sorted states (9.5).

Individual Cell-to-Stack Controllers

We generated a full explicit model predictive controller κ(x), an orbit controller κo(x), and
a fundamental domain controller κ̂(x) for the individual cell-to-stack topology for battery
packs between n = 2 and n = 10 cells. Figure 9.6a shows the number of pieces |I| in the
full controller κ(x), the number of pieces |I/G| in the orbit controller κo(x), and the number
of pieces |Î| in the fundamental domain controller κ̂(x). Figure 9.6b shows the memory
requirements for the full controller κ(x), the orbit controller κo(x), and the fundamental
domain controller κ̂(x). This information is also summarized in Table 9.6.

In this numerical study, the number of pieces |I| in the full explicit controller κ(x) grew
exponentially with the number of battery cells n in the pack. On the other hand, the number
of pieces for the orbit controller κo(x) and fundamental domain κ̂(x) remained constant for
odd or even battery pack sizes.
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For a battery pack with an even-number of cells n, the orbit controller has three pieces

τ ? =
qx
qu


1
2

(
x1 − xn

)
for x ∈ R1

x1 − xn
2

for x ∈ R2

xn
2

+1 − xn for x ∈ R3

(9.11a)

v?i =
qx
qu


−xi + 1

2

(
x1 + xn

)
for x ∈ R1

−xi + xn
2

for x ∈ R2

−xi + xn
2

+1 for x ∈ R3

(9.11b)

where τ ? = ΦU(v?).
In the first case x ∈ R1, this control-law says that the optimal total charge redistribution

v?i for cell i is proportional to the deviation of the state-of-charge xi from the average state-of-
charge 1

2
(x1 +x2) of the highest and lowest cells. The time τ ? = ΦU(v?) needed to implement

this charge redistribution v? is proportional to the difference in state-of-charge between the
highest x1 and lowest xn cells.

In the second case x ∈ R2, this control-law says that the optimal total charge redistri-
bution v?i for cell i is proportional to the deviation of the state-of-charge xi from the upper-
median state-of-charge xn

2
. The time τ ? needed to implement this charge redistribution v?

is proportional to the difference between the highest state-of-charge x1 and upper-median
state-of-charge xn

2
.

In the third case x ∈ R3, this control-law says that the optimal total charge redistribution
v?i for cell i is proportional to the deviation of the state-of-charge xi from the lower-median
state-of-charge xn

2
+1. The time τ ? needed to implement this charge redistribution v? is

proportional to the difference between lower-median state-of-charge xn
2

+1 and lowest state-
of-charge xn.

For a battery pack with an odd-number of cells n > 3, the orbit controller had six pieces.
In this case the optimal total charge redistribution v? = − qx

qu
(xi− xm) is proportional to the

deviation of the state-of-charge xi of cells i and the state-of-charge xm of the median cell
m = dn

2
e. The time τ ? is a weighted average of the state-of-charge x that depends on which

region R1, . . . ,R6 contains the state-of-charge x.
We conjecture that this result holds for arbitrary battery pack sizes n.
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κ(x) κo(x) κ̂(x)

# of Cells Pieces |I| Memory Pieces |I/G| Memory Pieces |Î| Memory
2 2 11.8 1 7.5 1 7.5
3 14 42.8 3 14.7 3 14.7
4 48 140.3 3 15.5 3 15.5
5 200 621.0 6 25.3 6 25.3
6 420 1430.5 3 17.5 3 17.5
7 1470 5596.0 6 29.3 6 29.3
8 2800 11824.1 3 19.9 3 19.9
9 9072 42944.9 6 34.0 6 34.0
10 16380 86278.1 3 22.8 3 22.8

Table 9.6: Cell-to-stack individual topology balancing controllers. Number of pieces and
memory (kilobytes) for the full explicit controller κ(x), the orbit controller κo(x), and the
fundamental domain controller κ̂(x).
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Figure 9.6: Cell-to-stack individual topology battery balancing controllers. (a) Number of
pieces |I| for the full explicit controller κ(x), |I/G| for the orbit controller κo(x), and |Î| for
the fundamental domain controller. (b) Memory requirements in bytes for the full explicit
controller κ(x), the orbit controller κo(x), and the fundamental domain controller.
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Common Cell-to-Stack Controllers

We generated a full explicit model predictive controller κ(x), an orbit controller κo(x), and a
fundamental domain controller κ̂(x) for the common cell-to-stack topology for battery packs
between n = 2 and n = 10 cells. Figure 9.7a shows the number of pieces |I| in the full
controller κ(x), the number of pieces |I/G| in the orbit controller κo(x), and the number
of pieces |Î| in the fundamental domain controller κ̂(x). Figure 9.6b shows the memory
requirements for the full controller κ(x), the orbit controller κo(x), and the fundamental
domain controller κ̂(x). This information is also summarized in Table 9.7.

In this numerical study, the number of pieces |I| in the full explicit controller κ(x) grew
exponentially with the number of battery cells n in the pack. On the other hand, the number
of pieces for the orbit controller κo(x) and fundamental domain κ̂(x) remained constant for
odd or even battery pack sizes.

For a battery pack with an odd-number of cells n the orbit controller has one piece given
by

τ ? = qx
qu

(∑m−1
i=1 xi −

∑n
i=m+1xi

)
(9.12a)

v?i = − qx
qu

(
xi − xm

)
(9.12b)

where τ ? = ΦU(v?) and m is the median value of the set {1, . . . , n}. This control-law says
that the amount of charge v?i that should be removed from cell xi is proportional to the
deviation of the cells state-of-charge xi from the state-of-charge xm of the median cell m.
The amount of time τ ? needed to implement this charge redistribution v? is proportional to
the difference between total amount of charge qx

∑m−1
i=1 xi in the cells above the median m

and total amount of charge qx
∑n

i=m+1 xi in the cells below the median m.
For a battery pack with an even-number of cells n, there is ambiguity about which cells

is the median. In this case the orbit controller switches between three rules based on the
relative sizes of the state-of-charge xn/2 of the upper-median cell n

2
and the state-of-charge

xn/2+1 of the lower-median cell n
2

+ 1. The control-law is given by

τ ? =
qx
qu

(∑n/2
i=1xi −

∑n
i=n/2+1xi

)
(9.13)

v?i =
qx
qu


−xi + xn/2 for x ∈ R1

−xi + xn/2+1 for x ∈ R2

−F3x for x ∈ R3

(9.14)

where τ ? = ΦU(v?) and F3 is the feedback matrix for region R3. In region R1, this controller
has the cells track the upper-median cell xn/2. In region R2, this controller has the cells
track the lower-median cell xn/2+1. In region R3, the controller uses feedback v? = F3x.

We conjecture that this result holds for arbitrary battery pack sizes n.
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κ(x) κo(x) κ̂(x)

# of Cells Pieces |I| Memory Pieces |I/G| Memory Pieces |Î| Memory
2 2 11.9 1 7.6 1 7.6
3 6 22.9 1 7.8 1 7.8
4 30 95.2 3 16.0 3 16.0
5 30 105.3 1 8.6 1 8.6
6 140 529.4 3 18.5 3 18.5
7 140 586.9 1 9.6 1 9.6
8 630 2999.3 3 21.6 3 21.6
9 630 3327.5 1 10.8 1 10.8
10 2772 16714.8 3 25.4 3 25.4

Table 9.7: Cell-to-stack common topology balancing controllers. Number of pieces and
memory (kilobytes) for the full explicit controller κ(x), the orbit controller κo(x), and the
fundamental domain controller κ̂(x).
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Figure 9.7: Cell-to-stack common topology battery balancing controllers. (a) Number of
pieces |I| for the full explicit controller κ(x), |I/G| for the orbit controller κo(x), and |Î| for
the fundamental domain controller. (b) Memory requirements in bytes for the full explicit
controller κ(x), the orbit controller κo(x), and the fundamental domain controller.
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Chapter 10

Conclusions

In this dissertation we developed the theory of symmetry in model predictive control.
In Chapter 4 we defined symmetry for constrained linear systems and model predictive

control problems. A symmetry of a model predictive control problem is a state-space and
input-space transformation that preserves the dynamics, constraints, and cost function. We
proved that the symmetries of the model predictive control problem are symmetries of the
explicit model predictive controller. In particular for a linear system subject to polytopic
constraints with a linear or quadratic cost, we showed that the symmetries relate the con-
troller pieces.

In Chapter 5 we showed how to identify the symmetries of constrained linear systems. We
showed how to transform this problem into a graph automorphism problem. We extended
this result to find the symmetries of linear model predictive control problems with linear and
quadratic cost functions.

In Chapter 7 we proposed two explicit model predictive control designs, the orbit con-
troller and fundamental domain controller, that exploit symmetry to reduce the controller
complexity and save memory. The orbit controller uses the symmetry relationships between
controller pieces to eliminate pieces of the controller that are symmetrically redundant. This
reduces the complexity of the controller and saves memory. We showed how the other con-
troller pieces can be reconstructed online using symmetry. We showed that implementing
the orbit controller has the same computational complexity as the standard implementation
of an explicit model predictive controller. We analyzed the complexity reduction provided
by the orbit controller. We showed that the orbit controller will never require more memory
than the standard explicit controller and that the orbit controller offers significant memory
savings when the number of group generators is small compared to the group size.

The fundamental domain controller reduces complexity by solving the constrained finite-
time optimal control problem on a subset of the state-space called a fundamental domain. We
defined a fundamental domain as a subset that contains at least one representative from each
point of a set. In Chapter 6 we provided an algorithm for constructing fundamental domains.
This algorithm was used to synthesize the fundamental domain controller. Implementing
the fundamental domain controller requires mapping the state into the fundamental domain
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where the control-law is defined. In Chapter 6 we provided an algorithm for quickly mapping
the state into the fundamental domain.

In the final part we applied our theory of symmetric model predictive control to the cell
balancing problem. In Chapter 8 we define the battery balancing problem. Cell balancing is
the problem of balancing the state-of-charge of the cells in a battery pack in order to increase
the amount of charge that can be held in the pack. We proposed a control algorithm for
solving the battery balancing problem and showed that our controller is persistently feasible
and asymptotically stable. We described seven battery balancing hardware designs proposed
in the literature. Finally we presented simulation results for our control design.

In Chapter 9 we used our symmetry theory to reduce the memory of explicit model pre-
dictive controllers for the battery balancing problem. We applied our symmetry theory to
the seven battery balancing hardware designs presented in the previous section. Through
a numerical study we demonstrate that the orbit controller and fundamental domain con-
troller can significantly reduce the memory needed to store the explicit controller. In four
of the seven battery balancing hardware designs to which we applied our methodology, the
controller complexity did not grow with the battery pack size. We explained the intuition
of how symmetry reduced controller complexity in these examples.
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