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Abstract

This dissertation describes two-dimensional nuclear magnetic resonance theory and
experiments which have been developed to study quadrupoles in the solid state. The
technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed
and expanded upon in this thesis. Specifically, MQMAS is first compared with another
technique, dynamic-angle spinning (DAS). The similarity between the two techniques

allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS

‘to a series of aluminum containing materials is then presented. The superior resolution

enhancement through MQMAS is exploited to detect the five- and six—coordinated
aluminum in many aluminosilicate glasses. Combining the MQMAS method with other
experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to
study a large range of problems and is demonstrated in Chapter 5. Finally, the technique
switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a
quadrupolar spin system in which all of the § NMR parameters are accurately determined.
This dissertation is meant to demonstrate that with the combination of two-dimensional
NMR concepts and new advanced spinning technologies, a series of multiple-dimensional
NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the

solid state.
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Chapter 1

Introduction

More than 60% of the isotopes in the periodic table have an uneven distribution
of nuclear charges, and thus an electric quadrupole moment. The coupling between
the nuclear quadrupole moment and the electric field gradient (EFG) generated at
the center of the nucleus gives an electric quadrupolar interaction that dominates all
other internal spin interactions (such as chemical shift and dipolar interactions) that
a quadrupolar nucleus experiences. The nuclear magnetic resonance (NMR) spectra
of quadrupoles are often broadened by this interaction, whose second-order effect
can not be efficiently removed by the conventional sample rotation method magic-
angle spinning (MAS). The low resolution of the resultant spectra greatly limits the
applicability of NMR to various important materials, and requires novel techniques
to give liquid-like resolution in the solid-state.

Dynamic-angle spinning (DAS) [1, 2] and multiple-quantum magic-a.ngie spinning
(MQMAS) [3] are two of the most i'mportmﬂ; developments that overcome the resol-
ution problem. DAS, first realized at Berkeley in 1990, has evolved into a relatively
mature technique by now; the MQMAS method proposed by L. Frydman in 1995,
however, is showing great promise and has some intrinsic advantages over DAS. This
thesis describes the MQMAS and DAS experiments [ performed at Berkeley that
represent some newer contributions to high-resolution NMR. of quadrupoles. Even
though my research has been focusing on MQMAS. the great similarity between DAS
and MQMAS makes it desirable to present both techniques in parallel, and compare
them when possible.

Following this short introduction. chapter 2 presents some basic NMR theories
!



that are used throughout this thesis. In chapter 3, DAS and MQMAS are discussed
and compared to each other in great detail. The similarities between the two tech-
niques are clearly demonstrated and various developments based on DAS are shown
to be equally applicable to MQMAS. Chapter 4 applies MQMAS to ?”Al-containing
minerals and zeolites. The advantages of MQMAS over MAS is illustrated in both
crystalline and glass samples. Preliminary application of MQMAS to 70O is also
given. Chapter 5 shows another interesting experiment that utilizes MQMAS to give
high-resolution HETCOR spectra for quadrupoles.

The last chapter in this thesis focuses on the switching-angle spinning (SAS)
technique that allows the determination of chemical shift parameters along with the
relative orientation between the chemical shift and quadrupolar principal axis systems
(PAS). Compared to conventional one-dimensional techniques, this method is more
accurate and reliable, when the magnitude of chemical shift interaction is moderate.

Since MQMAS is now a hot topic in the NMR. community, great advances have
been achieved in the past two years. A briel review of this area is given in the
appendix. With this review , the thesis becomes a complete reference for high-

resolution NMR of quadrupoles.



Chapter 2

Basic NMR Theory

The wealth of structural and dynamic information in NMR experiments comes
from the combination of various nuclear spin interactions and the external perturb-
ations applied to the system. The nuclear spin interactions aflect the eigenstates
of the system, therefore change the experimental NMR spectra. The external per-
turbations generated by RI fields can be manipulated with arbitrary flexibility to
selectively utilize or average out specific interaction(s), leaving us with spectra mani-
festing different aspects of the system. There have been many good books that
provide general discussions of the principles of nuclear n‘m.gnél;ic resonance [4, 5, 6, 7]
and its application to solid state materials [8, 9]. In the current chapter, I will only

include some fundamentals of NMR theory that are used in the later chapters to -

describe the more advanced NMR experiments.

2.1 Rotations

All techniques used for selective averaging in NMR rely on rotations of one or
another kind of the internal Hamiltonians. The behavior of any physical property
under rotation can be studied more casily when the property is expressed in terms of
irreducible tensor operators [! 0]. The reason is that the transformation of the tensors
under rotation is well known.

Rotations in NMR take two distinct forms: rotations in spin space and rotations

in real space. Each NMR Hamiltonian can be written as a summation of product of



spin and spatial tensors as shown below.

]]\ - Z Z le -m 1117\71 (21)

m=-—|

The tensor components Ry, and T} are the spatial and spin tensor components,
respectively. The rotations in each space only affect the variables in tha.t.space, thus
by writing the Hamiltonians in the above form, the spin and real spaces are decoupled
and handled separately.

A rotation is often specified by three Euler angles (o, 3,7) between the two ref-
erence frames before and after rotation, as shown in [Figure 2.1. An [th-rank tensor

then transforms in the following way.

Xl

Figure 2.1: The Euler angles o. /3, that describe the transformation between two
reference frames.

—_
E\D
[\-]

~—

! y
lm Z I)Su)n l/) Aln

Il_—

Here, A and A" are tensors in the original and new [rames. The evaluation of tensor



DU is facilitated by the reduced Wigner rotdtion matrix elements d(*) .

Dt

(0 B,7) = ¢

—i(ma+n !
(ratm i) (B)

(2.3)

For most of the work in this thesis, | will deal primarily with second-order tensors

in the spin and spatial spaces. Thereflore, a table of second-order Wigner matrices is

included here for further references.

m
n 2 1 0 -1 -2
o || (efyr | _LeesBgnp | fRein?g | -lmwmlgng | (Lol
1 —————chc'sﬁ sinf3 | cos? 3 — ————1","2"Sﬁ —\/gsin 20 —'+C2°”'ﬁ — cos? 3 ——"C2°s’3 sin 3.
; T T2 T ;
0 \/gsmzﬂ \/gsm 20 3cos” -1 —\/gsm 206 \/§81112ﬁ
-1 —ll;s—ﬁsin[} —cos? B+ izi’“—ﬁ gsin 208 | —lz=sf g cos? B —% sin 8
I—-cos3\2 l—cosd .« 9 3 2 l4cosf - 1+cos3\2
-2 (—=5=5) —=sinfd \/gsm I} ~22E sin 3 (—52F)

Table 2.1: Reduced Wigner rotation matrix elements d(2) (3)

2.2 Perturbation Theory

Static perturbation theory [11. 12] is used throughout this thesis to analyze the
effects of the nuclear spin Hamiltonians on the resultant NMR spectra. The theory

is useful when the Hamiltonian can be written as

1= Iy + AV, (2.4)

where V « Hy and 0 < X < |. Assuming that the eigenstates and eigenvalues of Hy

are |n > and &,, that is

Hyln >= c,|n >, (2.5)

perturbation theory makes the assumption that the cigenstates and eigenvalues of
H are obtained by adding higher order correction terms to those of the unperturbed
> g g

9



system.

IN > = |n>+AND > AN > 4. (2.6)

-N = &y + /\E(l) + /\25‘(2) + tr (27)

[

Here, |N() > and 55\’,) are a series of correction terms to the eigenstate |n > and

eigenvalue ¢,. Inserting iqns 2.6 and 2.7 into
HIN >= (Hy + AV)|N >=cn|N >, (2.8)

and collecting terms on both side of the equation with the same power of A, the first-

and second-order energy corrections can be obtained.
~( 1 ;
lsf\,) =<n|Vin > (2.9)

< nfVim ><m|Vin >

BN =% -

=
[ <
1 ;é,’” n m

The result on the first-order energy correction states that we need merely to
calculate eigenvalue corrections using the original basis set. This is equivalent to
ignoring all the terms in V' that do not commute with the basis Hamiltonian Hy (non-
secular terms). Using a matrix representation, this means that all the non-diagonal
matrix elements in V" are neglected and the Hamiltonian Hy+ 1V is approximated by a
diagonal Hamiltonian. This process of truncating Hamiltonians has proved essential

in the treatment of internal spin Hamiltonians in NMR.

2.3 Nuclear Spin Hamiltonians

The nuclear spin Hamiltonians consist of a number of terms that describe phys-

ically different interactions of the nuclear spins.

1= 1l,+ Hy + /:/Q + Hes + Hp (211)

6



The first two terms, Hy and Hpp, veflect the coupling of the nuclear magnetic dipole
moment with the external static and RI" magnetic fields. These fields are controlled
by the experimenter. The last three terms are determined by the local environment
around the nucleus instead. Of all the spin interactions mentioned here, only the
electric quadrupolar interaction will be discussed in any details, as the thesis is mainly

concerned with half-interger quadrupolar nuclei.

2.3.1 Zeeman Interaction

The single strongest interaction in high-field NMR experiment is the Zeeman
interaction, whose magnitude is proportional to the static magnetic field strength

By. This direction of By also delines the z-axis of the laboratory frame.
Hy = —li~ Boly = —hwoly (2.12)

In this equation, v is a ratio between the nuclear dipolc moment and the nuclear
angular momentum (gyromagnetic ratio), and wy is the Larmor frequency. The spin
operator

lo =1y, (2.13)
is one of the three spherical operators making up the complete spin operator set. The

other two are defined helow.

| |
e = £ (lx £ ily) (2.14)

The eigenstates of the dominating Zeeman Hamiltonian form a basis set for
the perturbative treatment of other nuclear spin interactions. A nuclear spin with
quantum number / will have 2/ 4 | eigenstates. each denoted as |Im > where

—I < m < I. In the basis set formed by these cigenstates, the matrix elements



of the spin operators are given helow.

Llim> = m ' (2.15)

. 1 ,
IHMD>=:%EWmeUim+UMmi]> (2.16)

2.3.2 Quadrupolar Interaction

While the nuclear charge distribution for a S[)il'l-% nucleus is spherical, the distri-
bution is uneven lor a quadrupolar nucleus. The reorientation of the nucleus therefore
affects the energy of the nucleus and the electric interaction of the nucleus with its
surrounding becomes important when dealing with a quadrupolar nucleus. Classic-
ally, the interaction between a charge distribution o(7) and an electric field potential
V(F) is

ﬁbzﬁmmwmw (2.17)

—

integrated over the three-dimensional space. Since V() often takes a quite complex

form dependent on the spatial distribution of all the electronic and nuclear charges,

7

a Tavlor series expansion is used nstead to simplily Egn 2.1
| ) |

VA = V o L PR 9
V(F) = V(0)+ > « P |70 + Y > (.1,f(,__)0:0/3 lr=o + ... (2.18)

RN RN =t afP=nwy

The expansion is about the center of mass of the nucleus, which coincides with the
center of charge of the nucleus. Substituting Eqn 2,18 into Eqn 2.17 yields the

following expression.

v 1 D*V
vo = ZeV P, = |r=c — ) P00 e 2.
LQ Zel (O) + Z ‘ Der [ o+ 2! Z (gmd ()(\()H | o+ ( 19)

IS Y LT o3=a s



Here, Ze is the total charge density of a nucleus, which is constant and of little

interest; the a component of the electric dipole moment
P, = / ao(T)dr (2.20)
y

equals to zero since the center of mass and center of charge for a nucleus coincide.
The third term is the product of two second-rank tensors. The aff component of the

electric quadrupole moment @ 5 is defined below.

Qs = [, aBo(F)(F) (2.21)
: y
The aff components of the electric feld gradient (I51°G) tensor is defined as
\F)ZV
""'-'/3 = T o4 |17=0 . (222)
dadf

It is more convenient to express the I53I°G tensor in its principal axis system (PAS)
with its three eigenvalues Vy y, ¥y and Vi, These eigenvalues fulfill the following

relationship.

Vazl 2 Wy | 2 [V x] (2.23)
Since the EI'G tensor is traceless, two parameters (eq and 7, ) are actually enough

to define it uniquely.

cq = \uyz (2.24)

\/;\, v o= by
o = e (2.25)

The second parameter 1. is the asymmetric parameter of the electric field gradient
1 lo 3 |

and takes a value between 0 and 1. This parameter refllects the local symmetry

around the nucleus, and equals to zero when the surrounding of the nucleus is axial

symmetric.



The derivation of the quantum mechanical Hamiltonian for a quadrupolar nucleus

then becomes quite complicated [4, 6], but the final result has the following form.

2
Ho = hwy S AS_.Ts, (2.26)
where
o = cq-eQ) _ e2qQ (2.27)
TSI = Oh T 2021 = D' =

The nuclear quadrupole moment ¢@ is derived from Q" in Eqn 2.21. A quadrupolar
coupling constant Cg is now introduced to report the coupling between the nuclear
quadrupole moment and the clectric field gradient.
.2
. e q(

P 2

The different spin tensor components in Fqn 2.26 have the {ollowing meanings.

o= B -1 (2.29)
0 ! | |
IS W([f)/i+/¢/o) (2.30)
1Y, = I} (2.31)
The spatial tensor component
, ' ,
A, = 3" DB 3% 4908, (2.32)
n=-—12

is expressed in the laboratory frame. The spatial tensor p? in the quadrupole prin-

cipal axis frame (PAS) is defined as

3
P = \5 (2.33)
/)gg.:i:‘l =0 (2-34)
Pies = /2 (2.35)



These two tensors relate to cach other through a general rotation with three Euler
anglgs a?, 49 and v9 between the two frames.

The magnitude of quadrupolar interaction is often in the megahertz range, and
quadrupolar interaction dominates all other nuclear spin interactions except for the
Zeeman interaction. Perturbative treatment for this interaction needs to be cam"ied
out to the second-order to [ully account for its influence on the NMR spectra. On
the other hand, Cq and 7, contain invaluable information about the local geometry
around the nucleus that experimental extraction of them has proved essential in the

determination of structure and dynamics of many classes of materials.

'2.3.3 Chemical Shift Interaction

Chemical shift interaction is a magnetic interaction deriving from the coupling
between the nuclear dipole moment and the local magnetic field created by the mo-
tions of the surrounding clectrons. The Hamiltonian is expressed here in the labor- .
atory frame using a spherical tensor representation.

2
Hes = hy( AT + des Y (1) ASIT 2 (2.36)
m=-2

In this equation, the spin space tensors are given helow in Iign 2.37 to IEqn 2.40.

Te = Bulo (2.37)
S 2 9

e’ =\ 3Bl (2.38)
I35 = s (2.39)
Iyd, = 0 (2.40)

Similar to the quadrupole case. it is more convenient to define chemical shift
.
parameters in its principal axis system (PAS). The three eigenvalues of the tensor

I



are dyx, dyy and dzz. The isotropic chemical shift is then the trace of the chemical

shift tensor.

G = dxx + (;) + 827 (2.41)

The assignment of dx x.dyy and dzz needs to {ulfill the following condition.

2

1677 — isal 2 |0yy — biso Oxx — Gisol (2.42)

The chemical shift anisotropy (CSA) and asymmetric parameter are defined by

. 3 .

(3('5 = ;((B// Slw) (243)
Sv v — dyy .

Nes XN 7 vy (2.44)

C k)
Oz — biso
where d¢s characterizes the size of CSA and n. reflects the local symmetry around
the nucleus.

Using the above delinitions. the spatial tensor components pf’,q in the chemical

shift PAS are described as

Po = Oise (2.45)
. 3

P = 3 (2.46)

Pis = 0 | (2.47)

Piie = es/2 (2.48)

The spatial tensor AS in the laboratory frame is obtained from the PAS frame tensor

p¢S through a general rotation.

! CcSs 8y .CS
/m E /)(m)n N4 > )/)[n (249)
¢ n=-—|



Here, a®%, 8% and v¢% arc¢ Euler angles between the CSA PAS and the laboratory
frame.

Chemical Sh.iﬂ; anisotropy is usually in the range of kilohertz and is more conveni-
ently reported in the units of parts per million (ppm). Perturbative treatment of this
interaction only needs to be done to the first-order. Like Cq and 7,,, dis0, 0cs and
Nes Probe the local structure and dynamics near to the nucleus that a series of NMR

applications are solely dependent on the accurate measurement of these parameters.

2.3.4 Dipolar Interaction

Dipolar Interaction (DI)-between two spins /; and /; is described by following

equation.
2 D D
: 3 yymoegdiy o i
/ll):j = _/”""D,_, Z - (—] )I I'Zm.J "42‘—3771, (250)
m=-2

Here, w, is the magnitude of the dipolar interaction that ranges from zero to tens
ij

of kilohertz for different spin pairs.

>

The spin tensor components are given by

ey oy 1 . y )

ly” = _\/—E('”Z.ilZ.j =1 1) (2.52)
i = - zilzj + 1+ilz) (2.53).
. ' | g
Iygy = lsils, (2.54)

The lab frame tensor AP is defined based on tensor pPo in the dipolar principal

axis system (PAS). The conversion between the two tensors involves only one Euler

13



angle (8P4) since only the z-axis of the dipolar PAS frame is fixed.

n=2

Al = 3 D0, 875,0)p57 (2.55)
n=-—-2

where

D, 3
P = 5 (2-56)
priy = 0 | (2.57)
D, '
pris = 0. (2.58)

The strong dependence of w,, ~on the distance between the two spins makes the
dipolar interaction a unique probe on internuclear distances. This thesis, however,
will not consider dipolar interaction in much detail. The readers can consult with
other references to see how the dipolar interaction is utilized to enhance NMR signal
[13, 14], to do spectral editing [15] and to establish connectivities among complex

spin networks [5, 16]. -

2.4 Perturbative Treatment of Spin Hamiltonians

We now start to look at how the internal spin interactions aflect the NMR spectra
using perturbation theory. As mentioned before. first-order perturbative treatment
is needed for all three of the interactions (CSA, QI and DI), while second-order ex-
pansion is also needed when dealing with the quadrupolar interaction. As long as the
first-order perturbation theory is concerned. only the secular part of the Hamiltoni-
ans that commute with the Zeecman Hamiltonian remains and all other terms can be

safely dropped.



2.4.1 Static Sample

The part of the chemical shift Hamiltonian that commutes with the Zeeman
Hamiltonian is given below.
., CSC S N ACSCS
Hes = hy(Ag Toe™ + dcsAzg Tag”)

= fiwolisolo + hydcsTsy” ASS
2. s
= hwo(Bisolo + [ 5805 loAR) (2.59)

In terms of the energy corvection, Fqn 2.9 is used and

EY = (< Im|Hes|Im > — < In|Hes|In >)/h

mern
¢ 2. 1 ¢S
= ('I'I). - 'IT.)&,U()((S,‘M-, —+ —3‘(\(_5 “20 ) (260)

The factor (m — n) here suggests that the 3/2 & —3/2 transition would have a
chemical shift tripled that of the 1/2 & —1/2 transition. =

Truncation of the quadrupolar Hamiltonian to the frst-order gives

hee o .
QA — 1+ 1), (2.61)

lo = =%

The first-order energy correction to state |/m > is again calculated by inserting this

equation into Eqn 2.9.

liw o o
Jg,-\?u(:;nﬁ — (I +1)) (2.62)

< /III.I//QI/I'I) >=

It is insightful to work out the encrgy differences for various transitions of a half-

integer quadrupolar nucleus.

e 3w .
Al""llll(f—)!”—l = 7?13{)(2"2 - ]) , (263)
A /;"/In(f—-)—m = 0 (264)



For the m < m — 1 transition with m # %,_Lhe correction is in the order of wg
(megahertz) and can hardly be observed in most experiments (for opposite examples,
see [17, 18, 19]). The most commonly observed central transition (1/2 ¢ —1/2
transition), together with other symmetric multiple-quantum transitions (m < —m
transitions), is however, not affected to the first-order by the quadrupolar interaction.
Second-order perturbation theory is thus used, and the final results are described

below [20].

. hw?
A, = (AT +1) - 8m? — 1) AR 4D, +
“&0
(20(1 + 1) = 2m? — 1)A%AG ;) (2.65)

This equation reduces to the more commonly used expression [or the central trans-
ition.
~2Q hed Y — 2 /49 AQ 4@ Q 4Q o
AL oo = .)—(/(/ + 1) = 3/ (2A5 A5 1 + A5 Az _,) (2.66)

2

3
2

Figure 2.2 shows schematically how the energy levels of a spin [ = £ nucleus are
shifted by the quadrupolar interaction. Without the quadrupolar interaction, four
(27 4+ 1) equally spaced energy levels are observed. The first-order quadrupolar inter-
action changes the encrgy of cach level by an amount in the order of the quadrupolar
interaction (megahertz). However, the m and -m energy levels are shifted in the
same direction, and the m & —m transition {requency is not aflected to the first-

order. The second-order quadrupolar interaction. however, does affect the transition

frequencies and the frequencey shilts are described by ans 2.65 and 2.66.
| | A ( ) |

2.4.2 Spinning Samples

To yield better resolution, most solid-state NMR. experiments are carried out

under spinning condition. Sample spinning introduces extra rotations in the real

16
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Figure 2.2: Zeeman, first- and second-order energy splittings for [ = % nucleus.

space (but does not change the spin space tensors), so the format of the energy
correction expressions is not changed (Eqn 2.60 and liqn 2.65), except that the spatial
tensors A? and AT now involve another rotation in the real space.

Figure 2.3 demonstrates the transformations we need to perform on a spatial
tensor A in a rotating sample. The tensor is first transformed from its principal axis
frame (PAS) to the rotor frame. and then to the laboratory frame. The Euler angles
involved in the two transformations are (o, 4, v) and (w,t,0,0) respectively. Here w,
is the spinning speed and ¢ is the angle between the spinner axis and the static field
By. According to 15qn 2.2,

l ! .
AN = S0% DU, 3,9 DY (w,1,0,0)p3.. (2.67)
{

h=—ln=-—
As a comparison, there is only one rotation involved in the static case (see Eqn 2.32

7



A Ziab

(a,B,Y) w.t,0,0
PAS Frame -———B—Y——-* Rotor Frame (—L—-—)—* Lab Frame

Figure 2.3: PAS to rotor to lab frame. The Luler angles used in the transformation
are indicated.

and Eqn 2.49). The above expression is now time-dependent and can be written as the
sum of the time-independent and time-dependent terms. The time-dependent terms
result in extra peaks (sidebands) in an NMR spectrum. and will not be discussed in
detail [21, 22]. Here. we consider only the time-independent (k = 0) terms, which
suffice for the derivation ol high-resolution NMR theory.

For chemical shift interaction. the important spatial tensor is ASY (Eqn 2.60).

13



According to Eqn 2.67,
2

. 2
ASS = 3 DiP(wet,0,0) 3 DR (a3, BO5, 465 pSS. (2.68)

k=2 n=-—2

The k # 0 terms in the summation can he dropped since they are time-dependent.

The remaining k = 0 terms give the following expression for AS?.

)

< Z

, 3 Jeos? B9 — 1 nes : <
ASS — \g/zz(cos 0y 28 s + 1% 5in? 63 cos 2a) (2.69)

Here, Py(cos 0) is the second-order Legendre polynomial.

Jcos? — 1

Py(cos ) = — | (2.70)

<

A similar result is obtained [or the first-order quadrupolar interaction.

3 Jcos? 39 -1 g . .
if? = \/;/7.2((:05 /))(———-—_)-——— + —]—? sin? 4% cos2a?) (2.71)
The expressions for a static sample can be derived by setting Py(cos0) = 1 (or -

0 = 0.0°). Applying Eqn 2.69 to Eqn 2.60, a more often used version of the chemical

shift frequency is written as.
W = w4+ AT (0T, 39%) Py(cos 0), (2.72)

where
(—“'iso = w()($i<ﬁk‘; (2.73)
and

ASH = \[—3 Ses A5 | Pa(cos 0). (2.74)

Eqn 2.72 contains an isotropic term that is independent of crystalline orientation, and
an anisotropic term that is dependent on the crystalline orientation. The latter needs

19



to B_e averaged out if ]'l.lvgl']—l'(?S()lHHOI"I is desired. Similar expression can be obtained
for the ﬁrst—orclér quadrupolar interaction.

For the second-order quadrupolar interaction, the product of two second-rank
tensors (A AQ_m) needs to be expanded. There are two ways of calculating the
expansion. The first one works well when the time-dependent terms in the expansion
are not important and can be dropped (which is the fast-spinning case). The tensor

product is first explicitly written out as follows.

A?m 12 —m = Z I)(z) OQ QQ Q)D§13L)(w't’070)p?n X (275)

lin=-2

2
Z D,(Ji)(Q'Q’ [st ’YQ )'])I(flm("‘)",q 0’ 0)/)2QP

kp==-2
Only the [ = k£ = 0 terms in the above equation are time-independent and are
separated out.
42171/12 - = Z Dnu 7/7’Q A/ )IDUm(""rfa() O)/)Zn (276)
n=-—2

2
S DB (a9, 89, 42 DE) L (wet,0,0)p3,

p=-2

. sy ¢
For the central transition. the expression 2. \,l 42 1+ \22 123_.2 expands as below.

2A% 1(23_ \ Z (1) cos 2ia ? cos )]UQ (2.77)
where
;= al + al Py(cos 0) + al) Py cos ). (2.78)
Here,
1 . :
Py(cos0) = 5(37) cos’ 0 —30cos® 0+ 3) (2.79)
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is the 4th-order Legendre polynomial. The 5,-dependent a;; elements are given in
table 2.2 [23, 24]. Using these parameters, static and MAS spectra of quadrupolar

nuclei can be simulated (simulating the sidebands requires extra eflort).

? J (Lf?T (l.g) (4)

0 0 _?2(1 + '77Q) IT.Z(l - l772) 120(18+77Q)
0 1 0 -3(1 - 172) 56(18+77 )
0 2 0 0 (18 + 75 )
1 0 0 g, §677Q

1 i 0 %774;; %nq

1 2 0 0 ——77Q

2 0 0 0 %772

2 l 0 0 ——g-né

2 2 0 0 357

Table 2.2: Coefficients in the anisotropic cosine expansion for second-order quadru-
polar correction.

Substituting Eqn 2.77 into Bgn 2.66, the energy splitting due to second-order

quadrupolar interaction is

(1 + )—3/1
2

I — 1) (2 .4?, Ag)*“' + ‘4%‘4?.—2)a (2.80)

AFI/Z(—) 1/2 =

which after rearrangement., leads to the following form for the transition {requency.

W = w2 4 A7 0%, 39 Pofcos0) + AT (0, 5) Pa(cos 0) (2.81)
Here,
2 3(1(1+ 1) —3/4) n?
(2Q2) ) o -
W = — " l g 262
1$0 40“‘,0/2(2I ___ 1)2 Q( + 3 ) ( )

1s the isotropic second-order quadrupolar shift. The last two terms, being anisotropic,
depend on the crystalline orientation and the relative orientation between the rotor
axis and the laboratory [rame z-axis. These two terms are to be averaged out when

high-resolution spectra are desived.



If Eqn 2.65 instead ol Eqn 2.66 is combined with Eqn 2.77, the second-order

quadrupolar frequency shift for the m ¢ —m transition is obtained.

W = Co(I,m)2+C\(1,m)AL(a®, 32)Py(cos 0)+Co(I,m)AZ(a®, B2) Py(cos 8)
(2.83)
Compared to Eqn 2.81, three constants dependent on the transition and the spin

quantum number are introduced. These values are shown in table 2.3.

1 m Co 6‘1 6'2
3/2 1/2 1 1 1
2 3 -21/27
5/2 1/2 | 1 1
3/2 6/3 60/32 114/72
5/2 -50/3 -20/32 -150/72
7/2 1/2 ! 1 1
3/2 27/15 144/60 303/135
5/2 -1 2 165/135
7/2 -147/15 -168/60 -483/185
9/2 1/2 : 1 1
3/2 54/24 252/96 546/216
5/2 30/2- 300/96 570/216
7/2 -81/24 168/96 84/216
9/2 -324/24 -216/96 -1116/216

Table 2.3: Coeflicients Cip. Cy and Cy in Equ 2.83.

Another way ol expanding the product of second-rank tensors takes the advantage

that the product of two second-rank tensors is a sum of rank 0, 2, 4 tensors.

19,45, = S <022, —m > ay (2.84)

A2 N —m
1=0,2.4 '

I
I



In this equation, a;g is the tensor element of an [th-rank tensor.

{ . l .
wo =5 Di(w1,0,0) S DY (a?, 52,490 (2.85)
n=—1 k=-1
Here
2
oy = Z < //‘I.)..ZJ, k —j > P2iP2,k—-j, (286)
J==2

and < [0|22m, —m > and < [k]225,k — j > are Glebsh-Gordon coefficients [12].
Of all the terms in Fiqn 2.85. only the n = 0 components are time-independent.

Neglecting all the terms with n 5 0,

{
AL AG = S dhe ST < 10122, —m > D, 89,49 0. (2.87)

2m
1=0.2,1 h=—1

Notice that

(l(()l(-)) (cos ) = Pcos ), (2.88)

Eqn 2.81 is reached after inserting qn 2.87 into Isqn 2.80.

2.5 Evolution of Spin System

After a briel discussion of the cigenstates and cigenvalues of a single spin, we now
start to look at how these cigenstates and eigenvalues evolve in an NMR experiment.
The evolution corresponds to rotations in the spin space, and is better described with

the concepts of density matrix and density operator introduced as follows {11, 12].

2.5.1 Density Operator

For a given spin ensemble. il all of the spins are in the same state (pure state),

described by the state lunction [W (1) > in an orthonormal basis {|In >} with coeffi-
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cients C,,(1), the density operator p(1) is defined by

!
p(t) =1W() >< W)= > Co()CEH)|Im >< In] (2.89)

mn=—1

If on the other hand, not all of the spins are in the same state (mixed state), the

density operator is described by the ensemble average over all the spins.

p(t) = U(1) >< W(! Z (,,, 0 Im >< In] (2.90)

map=-—1

The density matrix A is the matrix representation of the density operator, and is

used to facilitate the numerical calculation of the evolution of the density operator.

Apn(t) = Con (D C(D) (2.91)

n

The equation of motion of the density operator is described by the Liouville-von

Neumann equation

%p(/) = —i[H(1),p(1)].- (2.92)
whose solution is given by
p(L) = U(1)p(0)/ (1)~ (2.93)
Here,
V() = Terp(—i [ 1) (2.94)

JU
and T is the Dyson time-ordering operator [25]. When H (1) is time-independent, the

evolution of the density matrix can bhe simply represented as
=il Lt ‘
pll) = e " p(0)e"". (2.95)

In a real system where sample is spinning, H is often time-dependent even in the
rotating frame (the reference frame that rotates around the laboratory z-axis at the
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Larmor frequency. In this {rame, the effect of the static field on the NMR spectra
is removed. It is also the NMR. detection frame). The general approach to calculate
the density matrix at time [ is to break up the time axis into small intervals, during
each of which the Hamiltonian is constant (IFigure 2.4). The density operator is then

the cascaded evolutions in all the time intervals.

p(t) = e Hntn pmitn—ttu—y 6'_“'1""/)(0)(%:“1'"' oo gtttn=itn-t gifints (2.96)
Hz, t2 Hn' 1> tn-]
Hip, tg Hj, t3 Hp, ty
e o0 ® & ¢ e &0
time

Figure 2.4: Treatment of a time-dependent Hamiltonian. The time axis is divided
into small intervals, during cach of which the spin Hamiltonian is time-independent.

The observable in an NMR experiment is [y . and the detection is achieved
by using a single coil capable of collecting data in guadrature (both the real and
imaginary components of the signal). Using the density operator representation, the

expectation value of the operator 14 is expressed as

< Irip()yl |y >. (2.97)
I

<y >=Tr(pl)ly) =

||i M\

< Iy > is time-dependent and induces an electric signal that is picked up by a

detection coil. The detected signal is the [ree induction decay (IF1D) of the system.
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In most experiments, the phase ol the receiver (¢,) may be controlled to arbitrary

accuracy in the computer, so the actual signal is described as

a)

(1) = e < Iy >= e Tr(p(t)],). (2.98)

By inserting ign 2.90 into Liqn 2.97, we get.

!
<ly> = Z C'm(l:)C',,';({) < Ir|tm >< In|li]Ir >

= Z (m( )( ( )émr(snr-}-l

munr=—1

= Z (m Cr(l)onmer = Z Aptm. (2.99)

nm=—/ me=—F

This sdggests that only single-quantum transitions (m ¢ m — 1) are directly ob-
servable, whereas multiple-quantum transitions vl'l;rl.\-"(:? to be detected indirectly. This
also brings about the concept of coherence, which is specified by a variable number
p, and corresponds to the ofl-diagonal elements A,,, (m # n) in the density matrix.
Usually, a non-zero off-diagonal clement in the density matrix means that there is
a connection between the two energy levels. A coherence phase factor then exists
in the density matrix element, which evolves as the system evolves, At equilibrium,
however, only diagonal elements exist and the density matrix is

o=z lkT

0) = . 2.
pl0) = — (2.100)

where Z is a normalization prefactor and I s the Zeeman Hamiltonian. With Hy
being much smaller than LT py is approximated as

/),"‘]“B()

p(0) =

20



after dropping the constant prefactors. This gives the initial state of an NMR sys-
tem. The linear dependence of p(0) on v means that a larger v often gives a la,x;ger

population difference and stronger NMNR signal.

2.5.2 Evolution Under RF pulses

Radio frequency pulses of a well-defined length (), amplitude (B;) and phase
(¢) are used to rotate nuclear spin states by creating and destroying coherences or
changing populations of the different energy levels. The strength of the pulse is

defined by
| w =D, (2.102)

The frequency w of the pulse is often set very close to the Larmor frequency wy, so

the Hamiltonian corresponds to the RI pulse is described as
Hpr = hwlyz + liw)(Iy cos(wr + @) + Iy cos(wT + ¢)). (2.103)4
In the rotating frame, the Larmor frequency no longer enters the expression,
ML = liAwly + haey (I cos @ + 1y sin ¢) (2.104)

and the pulse acts as if it is a static field in the transverse @ — y plane at an angle
¢ with respect to the a-axis. Here, Aw includes the chemical shift contribution and
the frequency offset in an experiment. Nofice that this Hamiltonian is no longer
time-dependent in the rotating frame. one can easily calculate the density operator
at time ¢.

p(1) = e )M (2.105)

For a spin-% nucleus under RIT irradiation with phase o, the evolution of different

initial states is shown in the following equations.

Upr(1) U5 (1y) = 1y coswil +sinw 1y sing — [y cos ¢) (2.106)
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sin2¢

URF(A[(,,)/_,\'I,'/,}',';(/',,«,) = Ix(cos® o+ sin @coswt) + Iy ——(1 — cos w,t)
— [ysingsinw i (2.107)

sin 2¢

Upr(I3)IyUpp(ls) = Iy (sin? ¢+ cos® pcoswit) + Iy (1 = coswt)

<

+ Iy cosdsinw;t (2.108)

: ey . .
Here, Upr(l,) = ¢™*'#r and ¢ is the phase of the pulse.. These equations are more

useful when they are expressed in the spherical tensor hasis set.

1sinwyl

I;/I?l'“l()(--',['_{]]‘“ = l() COs Lt)ll + ——'\/_—5‘—(/+(ff_i{/) + ]_(iid)) (2109)
'= I l h
[,,//?/:‘/i{,"’/?ll,. = —Z-li(] +(_'OSL<)|/,) + ——\/'SIUCi‘ISII]u)lt
. iy ‘
- ;)—/;(f:ﬂ”"(l — coswt) (2.110)

Some important points arc worth noting:

[. A 90° pulse (wit = 7/2) generates a 90° rotation in the spin space. It
rotates [y into & — y plane and creates both /4 and [_ coherences (we
assign each coherence [, (or /) a coherence number 1(-1), and give it a
variable name p). The coherences after the pulse have well-defined phases.

Ior example, a 902 pulse creates magnetization along the —y direction.

II. When
[Hi!. p(0)] = 0, (2.111)

the density matrix does not evolve since

T L0)e T = (0), (2.112)
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For example, alter a 90% pulse, il another pulse is applied along the y-
direction, The density matrix does not evolve and the system is in a

spin-locked state. The second pulse is called a spin-locking pulse.

ITII. A single pulse causes the mixing of elements in the density matrix. For
instance, if p(0) = I, and another RI pulse is applied for a time ¢, p(t)
is a mixture of three coherences: +1, 0 and -1. The change of coherence

order under RI' pulse is called coherence transfer.

IV. The phase factor (Ad) experienced by each coherence after a pulse with
phase ¢ is proportional to the coherence number change (Ap) during
coherence transfer.

Ad = —Apd (2.113)

Thus different phase factors are experienced for different final coherences.
This is the key to the selection of coherence pathway, which is introduced

later.

The existence of more than two energy levels for a quadrupolar nucleus in high-
field greatly complicates the cffect of an RTY pulse on the spin system (26, 27]. In this
case, the relative magnitude of wy and @ (|(;*t'.(-rn'ni.nc‘s the exact eflect, of the pulse
on the spin system. In onc extreme. when wy > wg. the RIY pulse is a hard pulse
and a nuclear spin nutates just like a non-quadrupolar spin. On the other hand, if
wy <<. wg, the pulse is a soft pulse and only the central transition is excited. The
spin then nutates / + L times as fast as a non-quadrupolar spin. In this respect,
it is not unique to define 90° pulse length for a quadrupolar nucleus. When a soft
pulse is used, the 90° pulse length reported is the solid-state pulse length; When a
hard pulse is instead used. the pulse length is the liquid-state pulse length (since in

the liquid state, the averaged quadrupolar coupling constant is zero), which is [ + %
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times as long as the solid-state pulse length. The diflerent definitions of pulse length
sometimes cause conlusion. We shall go back to the excitation problem in chapter 3

when multiple-quantum experiments are involved.

2.5.3 Free Induction Decay

Free induction decay (I'ID) is the evolution of the spin system after or between
RF pulses. The evolution is governed by the total Hamiltonian of the system, which

may consist of many internal spin Hamiltonians.
Hids = Hes + Ho + Hp (2.114)

The evolution of the density operator is described by

p(1) = e 5(0) D (2.115)

if Hf,ﬂj,{) is time-independent.
Free induction decay does not. cause the creation and destroy of coherences, thus

no coherence transfer is involved. However. a phase factor is still experienced for each

coherence.
Crrin /(l("’/?/l/) = Iy (2.116)
Urplal 5y = Lec™ (2.117)
In these equations.
Uiy = ¢~ 1D, (2.118)

and €2 is a sum of the shift frequencies due to chemical shift and 2nd-order quadru-
polar interaction.

0= 4% (2.119)

Some important points are worth noting here:
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I1.

ITL.

Il the spin system is in [y state, it does not evolve when there is no pulse
applied. As a result, when a 90° pulse is applied to the magnetization
in the @ — y plane, the final density matrix has an Iy component that
does not evolve after the pulse. This component can be kept for a short
time (tens of milliseconds to many seconds) and restored by another 90°
pulse. The pair of 90° pulses separated by a short delay used for stor-
ing magnetization is called a z-filter. The stored magnetization actually
decays slowly during the delay between the pulses. The decay is the res-
ult of exchanging cnergy between the spin reservoir and its environment,
and can be characterized by an exponential decay with time constant T

(spin-lattice relaxation) [28, 29].
My — My = Mye™!!T (2.120)

Here My is the remaining magnetization in the z-direction and Mg is the
magnetization when the system is al equilibrium. z-filter is used in DAS

¢

to store magnetization along the z-axis during the reorientation of spinner

axis.

The phase factor that is accumulated during [F1D is dependent on the
resonance [requency . This is where the chemical shift and quadrupolar

interactions come into play to allect the NMR spectra.

The shilt frequencies for the +1 and -1 coherences have opposite signs.
If the +1 and -1 cohcrences are both detected. mirror image of the real
peaks is expected. Thisis not a problem in a simple one-dimensional NMR
experiment, as the detector records only the signal from [ coherence. In
a two-dimensional experiment. this does canse problems that need to be

treated carefully.



2.5.4 Example: A Simple 1D NMR Experiment

As an example, let us consider the evolution of the density matrix of a spin system

in a simple one-dimensional NMR experiment shown in Figure 2.5. We also assume

(T[/2)¢1

ACQqy,
2

e

Figure 2.5: Pulse scquence for a simple one-dimensional NMR. experiment.

that all of the spins have the same resonance lrequency Q. The experiment has only
one 902 pulse (¢ = 0). which is {ollowed by quadrature detection with ¢, = 90°. The
density matrix at equilibration is /o, which after the pulse becomes a mixture of I

and I_ (IEqn 2.109).

Iy — —=(T4 + 1_) (2.121)

/3

This mixed state after delay { hecomes (Iign 2.117)

KN i i 5 199
\/E(/++/_)—._> \/§(l+( +l—(—' ) (""1““‘)

The signal is then expressed as
Sy = () 4) = eap(iQL), (2.123)

which after complex Fourier transformation. gives a d-function in the frequency do-

main.



The line observed in a real NMR experiment is never a §-function but has a finite
linewidth. Since the sample has a finite volume, different parts of the sample have
slightly different resonance frequencies due to the field inhomogeneity. This frequency
difference broadens the NMR spectrum. Impurities in a sample may contribute to the
broadening as well. Even if all of these factors do not exist, the spin-spin relaxation
dephases the coherences and still broadens the spectra. Notice that a nuclear spin
is not isolated in the system, its interaction with environment could add a random
phase factor to the coherence. This causes the dephasing of the magnetization whose
net effect can often be approximated by an exponential decay with a time constant
T> (spin-spin relaxation time) [30]. Including this decay in Eqn 2.123 gives the

experimentally detected signal.

S(t) = e~ (2.124)

Fourier transformation of this signal results in a Lorentzian-shape peak at frequency

Q.

2.5.5 Coherence Pathway

It is common in NMR that multiple pulses are used. Since an RIF-pulse creates
and mixes cohierences of difflerent orders and cach coherence evolves with different
frequencies, after many pulses. the resultant density matrix may be very complicated.
Even though the detector only picks up the -1 coherence, the signal still comes {from
spins followed different paths and is quite complex. The coherence orders that the
nuclear spins (ollow can be specified by writing out the coherence numbers along the
path sequentially (coherence pathway). lor example, in FFigure 2.6, the coherence
pathway designated by the bolded line is the 0 - —1 = 0 — —1 pathway, whereas
the dotted line is the 0 = +1 — 0 — —1 pathway.

In a multiple-pulse NMR experiment. the desived signal often comes from a specific
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Figure 2.6: The coherence pathway for a simple DAS experiment. The bolded and
dashed lines are the desived signal.

coherence pathway. To get rid of the signal from other pathways, we can add up signal
from many different experiments in which the phases of the pulses and the receivers
are systematically incremented (phase cycle). Some empirical rules that are used to

design correct phase cycles are listed below [31, 32, 33].
[. The last pulse needs no phase cycle since the detection ensures that the

-1 coherence is selected.
II. Tf a pulse is changed in phase by o, then a coherence undergoing a change
in coherence order of Ap experiences a phase shilt of —Ap - ¢.
I If the coherence order changes along a desired coherence pathway is
(Apy, Apy, - Ap, ). the receiver phase should be set to

n
®, = — Z Ap; - @i, ' (2.125) -

=1

to ensure the selection of this pathway, Here, ¢; is the phase of the ith

RF pulse.



IV. To restrict the coherence transfer under a pulse to a particular change Ap
in coherence order, we may perform m(m > |Ap|) experiments with the

RF phase
@i = 2w [m, (2.126)

where k; =0,1,---,m — 1.

V. The above procedure retains not only the coherence undergoes a change

Ap, but also those with changes equal to Ap 4+ nm, where nn is an integer.
s i 5

As an example, consider the coherence pathway ol a simple DAS experiment
(Figure 2.6). Here, both the bolded and the dashed pathways are to be retained.
The first pulse induces coherence transfer with Ap = £1. According to rule IV, this
pulsé need to be cycled through at least two phases (0°, 180°). According to rule
V, the phase cycle retains all the odd-order coherences, and rejects the even-order
coherences. Similarly, the second pulse is cycled through two phases (0°, 180°) to.
guarantee coherence transfer with Ap = £1. The third pulse can be left uncycled
since receiver picks up the -1 coherence order. Using IEqn 2.125, the receiver phases

can be determined and the following 4-step phase cycle is obtained.

o = 0°,0°.180°,180°
dy = 0°180°,0° 180°
Gy = 0°.0°,0°.0°

o, = 0°.130°.180°.0° (2.127)

In an experiment that involves a lot of pulses. it may be possible to leave some
pulses uncycled. In the above DAS experiment. the delay between the second and
third pulses is 30-60msec, which is long enough that coherences other than the zeroth

order (the I state) disappear due to relaxation. This means that the long delay kills
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all the unwanted coherences and phase cycle of the sccond pulse is unnecessary. The

simplified two-step phase cycle is given below.

o = 0°,180°

b = 0°.0°

¢y = 0°,0°

¢ = 0°180° (2.128)

More examples of how to construct correct phase cycles are discussed in chapter 3.

2.6 Two-Dimensional NMR
2.6.1 Basics

A two-dimensional NMR. experiment has two distincet free evolution periods, usu-
ally separated by RI pulses to enhance the information content of the spectra. The
basic scheme of the experiment is shown in Figure 2.7 and four different intervals
exist in the experiment. During the preparation period, the spin system is prepared
in a coherent state from Lhe cquilibrated state 1y through RIT pulses. [n the course
of evolution period, the spin system is allowed to undergo free evolution under the
effective Hamiltonian I-/,(;\',)D. The superscipt designates that this Hamiltonian is the
Hamiltonian during the first evolution period. The evolution period is made variable
in a two-dimensional experiment. allowing the sampling of {-evolution. The mix-
ing period may consist. ol one or more pulses, separated by constant intervals. For
example, in the DAS experiment shown in Figure 2.6, the second and third pulses
separated by a time interval (z-filter) comprises the mixing period. The mixing pro-
cess introduces perturbation to the spin system so that the eflective Harniltonidn
after mixing period (l'/},?,),)) is often different from /'/;rl,),_)‘ The detection period is
similar to that in a one-dimensional experiment.
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Figure 2.7: A schematic diagram of a two-dimensional NMR experiment.

Assuming that the [requency shifts in the evolution period and the detection
period are 2y and € respectively, the signal from a two dimensional experiment can

often be described by the product of two {ree induction decay signals.
S(ti,12) = e~/ TagiShit o=t [Ts it (2.129)

‘After two-dimensional Fourier transformation. [requency domain spectrum is ob-

tained which reflects the correlation between the two frequency domains.

2.6.2 Pure-Absorption Phase 2-D NMR Lineshape

Fourier transformation of Tign 2.129 actually does not give a spectrum with best
resolution. The frequency spectrum contains negative intensity (dispersive) and does
not have pure phase. To see the problem clearly, consider the Fourier transformation

of the ¢ty dimension of Lgn 2.129.

S(tywy) = ¢l A1y, Qy) + 1 D(wy, ) (2.130)

Here A(w, ) and D(w, Q1) are the absorptive and dispersive lineshape functions with

a peak at Q in the w dimension.

Alw. Q) = e (2.131)



(w — )13
I+ (w0 — Q277

D(w. Q) (2.132)

After a second Fourier transformation, the signal in the frequency domain is then

S(wi,we) = (Alwr, ) +iD(wr, 1)) (Alws, Q2) + 1D(w2, Q2))
= Afwy, Q) A(wy, Q) — D{wy, Q )D(w-;, Q‘z)

+ i(.»‘-‘(a.'h Q,)D(wg, Qg) + D(wl,Ql)A(wg, Qg)) (2133)

The imaginary component can he dropped now and the real component is displayed.
The real component contains the —D(w. Q) D(wz. Q) term which leads to a phase-
twisted lineshape. The desired signal is A(w;, Q) )A(wq, 22) only.

One of the solutions (States method) [34] is to acquire the data in a hypercomplex
fashion. Instead of recording a single dataset. two datasets S:(1,,12) and Ss(t1,1;)
are recorded separately. Mathematically, the two signals correspond to the cosine

and sine portions ol the signal in the ¢y dimension.
Sl ly) = cos(Qty)e it/ Tzt (2.134)

So(thdy) = sin(Q1)eHR)/ T it (2.135)

Fourier transformation about f, is then separately done on both datasets.

Selliows) = cos(Q0)e™ T (Alwr, Q2) + i D(wy, Q) (2.136)
Solliews) = sin{Q 0072 Alws. Q) + 1 D{wy, Q) (2.137)

The imaginary components of both datasets are then dropped and the real compon-

ents are combined appropriately to form a dataset

S(lowy) = Alws. Q)™ T2 (2.138)

The Fourier transformation of this dataset with respect to 4 is

S(w‘l cwa) = Ay, Q_r)( Alw. Q, ) + I:[)(wl , Q, )). (2139)
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Only the real channel of this signal is showed and the spectrum is of pure-absorption
phase lineshape.

In the simple DAS experimént shown in Figure 2.6, the l)ol(léd line gives the
signal in Eqn 2.129. In order to get S. and S;, it is essential to retain the coherence
pathway designated by the dashed line. The signal corresponding to the dashed line
is

Sy, 1) = e T2 gmithit=ta/ Ty (12t (2.140)
The detected signal is then

Sty 1) = S 4+ 8" = 2cos(Myty e~/ T2 emta/ T2 gilkatz (2.141)

For the last equality,

(_..—iQI + (_iQI

cos(QU) = (2.142)

2
is used.
The sine part of the signal can be obtained by phase shifting the first pulse by

-90°, and keeping the phases of all other pulses unchanged. The detected signal is

“thus

Syl ly) = ¢S 42

= 2Sill(§2|t|)(:'.'_/'I/le(‘.‘—’?/’l‘?@—inﬂ?. (2143)
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Chapter 3

High-Resolution NMR of Quadrupoles

In the preceding chapter, the orientational dependence of the chemical shift and
quadrupolar interactions were devived. Conventional sample spinning techniques
(magic-angle spinning (MAS) and variable-angle spinning (VAS)) are first introduced
in this chapter and are shown to be inelfective to average out the 2nd-order quadru-—
polar interaction. Dynamic-angle spinning (DAS) and multiple-quantum magic-angle
spinning (MQMAS) methods are then presented which reconstruct high-resolution
isotropic spectra for quadrupolar nuclei. Experimental results with both techniques

are shown and compared in detail.

3.1 Magic-Angle and Variable-Angle Spinning

Magic-angle spinning (MAS) was first developed by Andrew [35, 36] to remove
heteronuclear dipolar coupling and chemical shift anisotropy that a sp.in—% nucleus
experiences. Combined with cross polarization (('_"/l"v) [13], it allows routine rapid
collection of proton-enhanced ' Sp(‘('l‘.l‘al\\"il.h Hquid-tike resolution in most solid-
state NMR. laboratories [141]. The principles of the MAS techinique were discussed in

chapter 2, where the Ist-order frequency shift due to chemical shift was written as
AT 3Ny = oy .J\g'ls((_,i'(""g. 393 Py(cos 0) (3.1)

The symbols all have their common meanings. It is instantaneously clear that spin-
ning the sample at the magic-angle (MAS. 0 = 54.74°) averages out the orientation-
dependent terms in the above equation (/%4 (cos ) = 0).

[igure 3.1 is the simulated static and MAS spectra of a spin—% nucleus at two
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MAS, ©,=15kHz

MAS, ©,=3kHz

Frequency (kHz)
Figure 3.1: Simulated static and MAS spectra of a spin—% nucleus. The parameters

used for simulation are d,,, = 0.0ppm, d¢s = 100ppm, 7., = 0.0, wy = 100MHz.

spinning rates. As expected. MAS removes the anisotropy of chemical shift inter-
action, leading to a sharp peak at the isotropic chemical shift position. It is also
clear that additional lines may appear at d;, + nw,. when the spinning speed w, low.
These lines are spinning sidebands that come from the modulation of the free evol-
ution by the sample rotation. The modulation originates {rom the time-dependent
terms we neglected in Eqns 2.68 and 2.76. and will not be.considered in detail in this
thesis [21, 22, 37]. For now. we consider only the isotropic sites (centerbands) in the
spectra. Experimentally, discriminating centerbands [rom sidebands is overcome by
performing measurements at two spinning rates and the peaks that do not shift will
be the isotropic sites.
MAS is also eflicient in removing the tst-order quadrupolar interaction. Again,sidebands



are expected [19].

©3cos?f? -1
(cos 0)( _g)@_)__- + ]?TQ sin? B9 cos 2a9) (3.2)

<

L@ _3(2m = 1)hCq P
mem=t T g2l —1)

The difficulty is, however, that the lst-order quadrupolar interaction is often so large
that the satellite transitions (m <> m —1 transitions . m # 1) that are broadened by
the 1st-order interaction arc not observable (see [17, 18, 19]) for opposite examples).
The central transition is [urther broadened by 2nd-order quadrupolar interaction,

which has scalar and P-, Pi-dependent terms that give the frequency expression

below (see also, Eqn 2.81).
w??(a?,49) = w22 + AZ(a?.39) Py(cos 0) + AL(a®, B9) Py(cos ) (3.3)

The dependences of P(cos ) and Pi(cos0) on the spinning angle 0 is shown in
Figure 3.2. It is obvious that % (cos) = 0 and Py{cos ) = 0 have no common roots.
This means that spinning the sample at the magic-angle (MAS) or at, an angle other
than 54.74° (variable-angle spinning, VAS) is not effective for the removal of the
2nd-order quadrupolar anisotropy. As an example, [Figure 3.3 shows the 2>Na 9.4T
static and MAS spectra of Nay(',04. The MAS spectrum is narrower than the static
spectrum by a factor of 5. but is still broadened to 4kHz by the residue 2nd-order
quadrupolar interaction.

To further demonstrate the cflect of sample spinning on the quadrupolar lineshapes,
Figure 3.4 shows the simulated spectra with different. quadrupolar asymmetric para-
meters (1,) and spinning angles (0) [38. 39]. It is interesting that when Mo = 0,
spinning the sample at 79.19° ov 37.38° gives better resolution than MAS [40, 41].
Nevertheless, this is not true when y, approaches unity, and the spectra are rarely
as sharp as the MAS spectra of spin-3 nuclei. Dynamic-angle spinning (DAS) and

multiple-quantum magic-angle spinning (MQMAS) are two of the solutions that over-
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Figure 3.2: 2nd and 4th order Legendre polynomials as a function of spinner angle.
There is no single angle at which both polynomials are zero.
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Figure 3.3: 2*Na static and MAS spectra of NayCy04 at 9.4T. The MAS spectrum
is narrower than the static spectram. but is still broadened to about 4 kilohertz.
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come this resolution problem and will be discussed primarily in this chapter. Altern-
ative solutions such as double rofation (DOR) and dynamic-angle hopping (DAH)‘

are also briefly discussed at the end of this chapter.

3.2 2nd-order Averaging: Theory

The analysis in section 3.1 reveals a major problem to overcome in the NMR of
half-integer quadrupolar spins. The central transition, which are not broadened to
‘the Ist-order by quadrupolar interaction, 1‘(:‘.111‘(‘11118 broad under MAS or VAS since the
frequency expression for 2nd-order quadrupolar interaction contains two anisotropic

terms that depend on Py(cos0) and Py(cos 0) respectively (Eqn 2.83).

2Q = Co(I,m)2+C,\ (1, 777.).»3\?((.\'(3, AV Py(cos 0)+Co(1, m )A?(aQ, B2) Py (cos 6)

me'—TI‘L LS50
(3.4)

3.2.1 Hahn-Echo Experiment

The simplest experiment that removes the 2nd-order quadrupolar broadening, is
the Hahn-echo experiment. The experiment consists of a 90° (¢,) pulse followed
by a clela,;v 11/2 followed by an 180° (¢;) pulse {ollowed by another delay t,/2 and
then acquisition with receiver phase ¢, (Figure 3.5). When {, is incremented in a
two-dimensional [ashion. this experiment allows the measurement of the intrinsic T,
relaxation time.

The observed signal in this experiment may be calculated as follow. The initial

density matrix [y evolves daving the first pulse into a mixture of two states.

.Q(*)f; [ —imy Y
Iy — ﬁ(/ﬂf M) | (3.3)
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Figure 3.4: Simulated quadrupolar variable-angle spinning (VAS) spectra assuming
infinite spinning rate. The vertical scale is not the same for different spectra.
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Figure 3.5: 90°-180° Hahn-echo sequence and coherence pathway. This sequence
allows the measurement of intrinsic spin-spin relaxation time 73. The sequence re-
focuses the 2nd-order quadrupolar interaction, together with the isotropic chemical
shift and 2nd-order quadrupolar shift.

The states continue to evolve under the effective FID Hamiltonian for a time ¢,/2.

U =i gy L L —i(dy+02,/2) : i(¢1+nt,/2)
—(fpemi [y B (et /) 4 ) (3.6)

When the 180° pulse is applied. the system evolves into

1809

(I+(‘{:——i(fz’)|+Qf.1/2) + ]’-61:(1/)|+S211/'2) b2

L—i{oy =200 42, [2) S ~202+ Q1) [2)
\/S(I_c + lie ) (3.7)
which then evolves for a time 1, /2 helore final detection is done. Since evolution does
not result in any coherence transfer. the only cohercence we need to consider here is

the -1 coherence.

_ b emiter =22y IR P i =262400 /2001 /2) (3.8)

V2T V2

< . @ —{t 2)/ T . —i{a —'2{':'4 br) iU -
b(tl,[.n;) - —ﬁ( (titt2)/ 2e i =202+ )G.' 77[[-]+]
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Figure 3.6: Hahn-echo spectrum of ¥Rb in RbNO3 at 11.7T. Notice that only one

zero-frequency peak is observed even though there are three distinet rubidium sites
in the salt.

b o iH12)/Ta =il =202+ ) i (3.9)
2V2

Except for the T, decay, this signal has no ¢; dependence. The dephasing due to the
chemical shift and quadrupolar interactions in the £ dimension is refocused, and an
echo forms at the start of the acquisition. An isotropic peak is expected' in the t;
dimension (Figure 3.6) as all of the anisotropies are removed.

This method is in fact, not suitable Tor practical applications since it does not
discriminate chemical sites with dilferent isotropic shifts or quadrupolar coupling
constants. The 180° pulse refocuses the evolution under isotropic shifts and a single
zero-frequency peak is obscrved in the isotropic dimension (g 3.6). The desired
technique would in principle. relocus the dephasing due to the anisotropic terms in
"Eqn 3.3, but would not refocus the evolution under the isotropic shifts. Both DAS and
MQMAS achieve this goal. DAS accomplishes this selective averaging spatially, by
spinning the sample at two angles sequentially; MQMAS, instead, combines sample
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spinning and multiple-quantum transitions to achieve this purpose. In DAS, the iso-
tropic evolution is not disturbed so the observed shifts in the isotropic dimension are
the same as those observed in DOR or DAH; MQMAS, however, partially refocuses
the isotropic evolution so the observed shifts, only alter correct transformation, give
the DAS shifts. In this 1'espec>1;, both DAS and MQMAS are special types of echo
experiments.

Two points are worth noting here about the echo experiment. TFirst, the above
derivation assumes that the 90° and 180° pulses are ideal so that no signal from other
coherence pathways is observed. Experimentally, phase cycle must be exploited to
ensure that the correct pathway (0 = +1 — —1) is selected. A four-step phase cycle

is given below.

¢ = 0°0°0°%0°
@ = 0°90°,180°,270°

¢, = 0°,1380°,0° 180° (3.10)

Second, the #; dimension in a two-dimensional experiment can be broken up into
many intervals. This gives us more freedom to prepare the spin system to achieve
desired averaging. In fact, the | dimensions of DAS and MQMAS are both broken

up into two separated time intervals.

3.2.2 DAS

Figure 3.7 shows the DAS experiment. the pulse sequence and the corresponding
coherence pathway [1]. In this experiment, the sample undergoes free precession after
a 90° pulse with the sample spinning at a first angle 0, for 1—21_7 Here, k is a constant

that is defined later. A second 90° pulse stores half of the magnetization along the

z-axis, after which the spinner axis is flipped to 0. A third 90° pulse then brings the
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Figure 3.7: DAS experiment and pulse sequence. In this experiment, the value ¢,
is incremented in a two-dimensional fashion. During the time interval between the

z-filter pulses, the spinning angle is flipped from 0, to ;. The t; dimension gives the
isotropic DAS spectrum.

stored magnetization to the transverse plane (This pair of 90° pulses separated by a
time interval is termed as a z-filter. 1t behaves as if 1;hé density matrix were the same
before and after the z-filter. "This is true when appropriate phase cycle is performed).
A DAS-echo is formed at %17 after the thivd pulse and acquisition starts exactly on
the echo top. By incrementing ; in a two-dimensional fashion, a two-dimensional

dataset is acquired which, after Fourier transform, has an isotropic {7 dimension.

To see how the DAS-echo is formed, consider the 2nd-order quadrupolar frequency

49



expressions at two angles.

W, 49) = W2+ A9(a?,B9)Py(cos b)) + AZ(a?, B2) Py(cos B;) (3.11)

150

ng(aQ,ﬁQ) = 2?4 A9(a?, 592) Py(cos 03) + A?(GQ,[}Q)PL,(COS 6;) (3.12)

150

Unlike the Hahn-echo experiment, in both parts of the echo time, the -1 coherence
pathway is selected and the isotropic evolution due to 2nd-order quadrupolar shift
and the isotropic chemical shift is preserved. To get rid of the anisotropic terms,
6, and 0, are chosen to have opposite signs for P(cos ) and Pp(cosf;), and for

Pi(cos8,) and Py(cos ).

Py(cosy) = —kiPy(cosly) (3.13)

Py(cos)) = —kyPy(coshsy). (3.14)

It is interesting to see what happens when k) = Iy = £k > 0. In this special case, if

another function on a® and A% is defined as
AR(a® . 39) = AZ(a®. 39) Py(cos 02) + AL (a®, B2)Py(cos 02), (3.15)

Eqn 3.11 and Eqn 3.12 can be rewritten as

a9 %) = W19 - A%, 59 (3.16)
w309, 39) = Wi+ A%a%, 89). (3.17)

The phase factor experienced by a cuadrupolar spin at the start of the acquisition

time is
62(1,) = / TR0, 39dt + [T 29(aR, 39 dt (3.18)
A0 JO
. /, bt ki ki
= ung _l_. ___I_ — A Q 1’-}(2 ______l_ _ !
s T e AN TR
= Wil (3.19)
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Figure 3.8: DAS angle pairs as a [unction of k. The angle 0; and 0, are solutions
to Iiqn 3.20. '

The derivation assumes that the z-filter does nothing but restore the density matrix.

The assumption that by = ky = k leads to,

P;(cos 03) _ Py(cos 03)
Py(cos0y) — Py(cos0,)’ (3.20)

whose solution gi\;'(zs 0.8 <k <5 Figure 3.8 shows the DAS angle pairs as a function
of parameter k. The most popularly used pairs ave the k=1 (37.38° a‘nd.79.1'€‘)°) and
the £ =5 (0.00° and 63:43°) pairs [12, 43]. The chemical shift anisotropy (CSA) is

also averaged out hy DAS. To see this, consider the evolved phase due to the chemical

shift interaction.

5 (1) = /0’-“ 5SS JE8ar + 0’-+' W53 (083 55y
t /\'l o STV aT /{,/ ]I:L
= Wi+ ) = AP 5N (- )

1+ £ 1 + k
= wWiwli. : (3.21)

L+k L4k



The evolution under the anisotropic chemical shift is refocused at. £;. The total phase

that a quadrupolar spin experiences after {; evolution is
. , N
P (11) = (wiso + I, (3.22)

and the observed shift in DAS (in the unit of ppm) is

§PAS = §,,, + 629, (3.23)
Here,
; 106 - w29
529 = —-w—‘“— (3.24)
1

A DAS-spectrum of RbNOj3 is shown in Iigure 3.9. There are three different
rubidium environments in this salt, corresponding to the three isotropic peaks in
the DAS spectrum [44]. Also shown here is the one-dimensional projections in the
isotropic (1-D DAS spectrum) and the anisotropic dimensions (VAS spectrum). The
projection in the anisotropic dimension matches the VAS spectrum at 79.19°. Since
the three rubidium sites are well-resolved in the DAS dimension, we can even add up
the intensity for each site respectively. This gives us three VAS spectra in Figure 3.9,

each of which can be separately simulated to give quadrupolar parameters.

3.2.3 MQMAS

In DAS, only the spinning angle is rendered to achicve high-resolution. There is
another degree of freedom in Eqn 3.4 that is not well-exploited. The quadrupolar
Hamiltonian associated with the symmetric multiple-quantum transition also has a
similar format to that ol the central transition. and can be utilized to construct
1sotropic spectra.

In MQMAS, the sample is continuously spun around the magic-angle. Strong RF
pulses (usually with the highest achievable power level. and the pulse is termed as ex-
citation pulse) are applied to create a triple-quantum coherence from the equilibrated
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Figure 3.10: MQMAS experiment. pulse sequence and coherence pathway. In

this experiment, the value {; i1s incremented in a two-dimensional fashion. The

t; dimension reconstructs the isotropic MQMAS spectrum. For spjn—% nuclei, the
0 — —3 — —1 pathway is selected; For spin—% nuclei, the 0 — 3 — —1 pathway is

selected.

- spin state [y. Such a coherence evolves under the triple-quantum Hamiltonian for E%-LT’

before another pulse (reconversion pulse) is applied to transfer the triple-quantum
coherence into single-quantum coherence. Like DAS. an MQMAS echo is formed at

k%_ﬂ]— after this pulse. The experiment. pulse sequence and coherence pathway are

shown in Figure 3.10 for [ = 2 and [ = 2 nuclei.

5
2 2

To see how an MQMAS-echo is formed, assume | = 53 and 0 = 54.74°. The P,-

dependent term in Eqn 3.4 is dropped and the frequency expressions for the single-



and triple-quantum coherences are

w2 (@9,89,4°) = Coll,1/2)wi® 4+ Cy(1,1/2) A (a?, 42) Pa(cos 0)3.25)

1/20-1/2

Wit 32(0%.89,9°%) = Coll,3/2)wi2 + Ca(1,3/2)AF (a9, 89) Py(cos 0)3.26)

isa

Assuming that

Cy(1,3/2)
k= |t .
o1, 1/2)| (3.27)
that Cg([,%) and Cy(/,3) have different signs (which is true when [ = %), and

that the —3 — —1 coherence pathway is selected, the phase factor experienced by a

quadrupolar spin at the start of the acquisition is

2Q =T a9 Q 3@ =g Q
() = / Wy ey gple” B7)dl + / Wy oo 2ler ,39)dt
J0 JO
20, Col1.3/2)1 Co(l,1/2)kt
20, Co 1 ; !
s 328
s 14k 14k ( )
o RCHT 120 Co(1,3/2)t
+ Pi(cos ())‘VL\,C‘Z(()'Q.(;'}Q)( , 21 +/{ 1 2 1 —{-//;: ])
_ CU(/J}/'Z) + Col(l, 1/2)/‘7('02@_[.1
l+/f 150
= Iyl (3.29)
For the second to last equality.
Cy(1,3/2) :
b= —————r—— 3.30
Co(l.1/2) ( )

is used. Similar to DAS. the anisotropic phase is cancelled out at £ and an echo is

formed. It is however, worth noting that the evolved phase ol a quadrupolar spin at

. 2 .
t; is no longer w,ﬁtl, but is w

20

18¢

[y scaled by a factor ky defined by

/.‘- =
2 1+ A

(3.31)
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The removal of chemical shift anisotropy (CSA) by MQMAS is obvious since the
sample is rotating around the magic-angle. The frequency shift due to chemical shift

interaction is however, different {rom that in DAS.

t kt
d)CS(i ) _ r*-’LT cs ( C3 'CS) m “_+J'_ cs CS pCs dt
1 - o Wm0 7y B at + o wl/?H-—l/?(a ,,B )
_, —2m + ke Yo
- 4+ 1 B+1 st
= /clu,',;sl.,'l,l (332)

The fact that the chemical shift of m < —m transition is 2m times as large as that of
the central transition is used in the above equation. The scaling factor k, is defined
by

—2m + k
ky = ————. .
; P (3.33)

The experimentally observed shift in the isotropic dimension of MQMAS is a

combination of the isotropic chemical shift and the 2nd-order quadrupolar shift.

().":\IIQI‘IA’S. = A‘.] 5,j30 + /‘:259 (334)

iso
This éhift is different from the DAS shift.

Figure 3.11 shows the MQMAR spectrum of RbNO;, t6g<?l:]1en' with the 1D pro-
jections (1D MQMAS and MAS spectra). Compared to Figure 3.9, the observed
chemical shifts for the three sites are dillerent in both experiments, as a result of the
scaling factors (ky and /).

The assumption that Cy(1.3/2) and Co(1.1/2) have opposite signs can be dropped
without cha.n.ging the principles of the MQMAS experiment. If they instead have
same sign (/ > %) the 0 = 43 = —1 coherence pathway can be chosen, to remove
the anisotropic part of the 2nd-order quadrupolar interaction. This is shown in Fig-
ure 3.10. The phase cycle that selects the appropriate coherence pathway is discussed
in the next section.
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I m Coherence Pathway ke ky ko

3/2 1/2 - - - -
3/2 0— -3 —1 7/9 17/8 -5/4
5/2 1/2 - - - -
3/2 03— —1 19/12 -17/31 10/31
5/2 0— —5— —1 25/12 85/37 -50/37
7/2 1/2 - - - -
3/2 03— —1 101/45  -17/73 10/73
5/2 05— —I 11/9 -17/10 1
7/2 0— =7 > —1 161/45  148/103  -140/103
9/2 1/2 - - - -
3/2 0—3— —1 91/36  -17/127  10/127
5/2 0—5— —1 95/36  -13/131  50/131
7/2 07— —1 7/18 -A7/25 14/5
9/2 0= =9 — —1 31/6 79/55 -50/37

Table 3.1: Coherence pathway and different scaling values [or different spins.

Even though the above discussion focuses on the combination of triple- and siﬁgle—
quantum transitions, other multiple-quantum transitions (5/2 < —5/2, etc.) can also
be exploited. The & (IEqn 3.27), &y (Iqn 3.33) and ke (15qn 3.31) values are different
for different transitions. These values. together with the relevant coherence pathways

that are chosen to achieve selective average are shown in Table 3.1 [45].

3.3 Phase Cycle

The acquisition schenmes shown o Figures 3.7 and 3.10 do not lead to pure-
absorption phase DAS or MQMAS spectra even il hypercomplex datasets are ac-
quired. Recall from chapter 2 that mirror image coherence pathways are required to
give pure-absorption phase two-dimensional spectra. For DAS, the &1 pathways are

to be retained in both halves of the {; evolution time. For MQMAS, the 3 pathways

33



are to be retained in the first half, and the £1 pathways are necessary in the second
half of the ¢, evolution. In the original sequences, the receiver detects only the -1

coherence during the second half, thus the detected signal is [1]

So(l ly) = e tHl T oo5(Q) 1 [2) "2 20t ~(3.35)

Sl ty) = e 2 Tegin(Qq,/2)ehh/2eihtz (3.36)

It is not possible to get pure-absorption phase spectra from these two datasets.

The first modification to DAS to overcome this problem is to have a z-filter at
the time the DAS-echo forms [16, 17]. The filter mixes /4 and /_ coherences and
stores the magnetization along z-axis and later restores it. This allows the retention
of £1 coherences in hoth halves of the {; period. The method has also been applied
to MQMAS by Amourcux [48] and Wimperis [49]. While pure-absorption phase
lineshape is obtained. one hall of the signal is lost due to the use of z-filter. A
better approach that is used in our experiment was first proposed by Grandenetti
[50] to get pure-phase DAS spectra; a similar approach is also useful for MQMAS [51].
Figure 3.12 shows the modified DAS and MQMAS sequences. The major difference
between the new sequences and the original ones is that the acquisition starts right
after the last pulse. This corresponds to a redefinition of 1, and {;. For DAS, the
evolution at the first angle is now £, and the evolution at the second angle is t,.
For MQMAS., the evolution under the triple-quantum Hamiltonian is ¢, and that
under the single-quantum Hamiltonian is 7,0 This definition places a shifting DAS
(MQMAS) echo in the £, dimension at time k. When the data is processed like other
two-dimensional data without modification, a peak with a slope k is observed. This
peak correlates the frequencies in two dimensions. A conventional DAS (MQMAS)

spectrum can be obtained by shearing this spectrum with angle 0 [52, 53; 54].

0 =tan”" k (3.37)
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Figure 3.12: Hypercomplex DAS and MQMAS experiment. Coherence pathways

designated by the bolded and dashed lines are both retained.
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DAS cosine

b1 0° 0° 180° 180°
by 0° 130° 0° 180°
¢3 0° 0° 0° 0°
o, 0° 180° 180° 0°
DAS sine
&, 90° 90° 270° 270°
by 0° 180° 0° 180°
b3 0° 0° 0° 0°
b, 0° 180° 180° 0°

Table 3.2: Hypercomplex DAS phase cycle with redefinition of ¢; and t,.

This definition of the time axes is very similar to the definitions in other two-
dimensional experiments. Using the rules in chapter two, phase cycles for DAS and
MQMAS can be derived (Tables 3.2 and 3.3). For DAS, the derivation has already
been worked out in chapter 2 for the cosine part of the signal (Iiqn 2.127). The
sine part of the signal is obtained by adding a 90° phase shilt to the first pulse,
and keeping all other pulses with their original phases. The phase cycle is shown in
Table 3.2. For MQMAS. the change of the coherence order Ap is £3 during the first
pulse thus a six-step phase cycle is needed to select these two coherences. The last
pulse is left uncycled so the total number of steps in a cycle is 6. The receiver phase
is set by

&y = =3¢, + 1os,. (338)
The first-pulse needs to be phase shifted by 30° (instead of 90°) to get the sine portion
of the signal because the triple-quantum coherence experiences a phase shift three
times that of the single-quantum coherence after a pulse applied to /y. The phase
cycle is shown in Table 3.3.

Most of the spectra presented in this thesis, are however, obtained using whole-
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3QMAS cosine

i 0° 60° 120° 180° 240° 300°

d)2 OO 00 00 OO 00 00

&b, 0° 180° 0° 180° 0° 180°
3QMAS sine

o3 30° 90° 150° 210° 270° 330°

b9 0° 0° 0° 0° 0° 0°

by 0° 180° 0° 180° 0° 180°

Table 3.3: Hypercomplex MQMAS phase cycle with redefinition of ¢; and ¢,.
echo acquisition [50, 51, 55] in which a pulse sequence of the form

/2 =1, — 7T — acq. (3.39)

is used to refocus the signal and produce an echo. Here (. is an echo time set to
many milliseconds so the acquisition [ollows both the formation and decay of the
echo. Notice that in an ordinary echo experiment, only the decay of the echo is

recorded. The two-dimensional signal is of the form

S(ll, /,2) — (::—I.|/'/!_,{‘::/'Q,{., (:_.—(/Q—I,?)'-?/']:_;‘)(EZQ'_)(/'z—le). » (340)

When this signal is Fourier transformed with respect to {5 and then phase corrected

by a time 1, to the w, dimension. the following signal is obtained,

Slywy) = /el g () Q) C(3.41)
where
A (wa. ) = ¢~ 2= R)2T2/1, (3.42)

When the ¢, dimension is also Fourier transformed. purc-absorption mode 2D-spectrum
is obtained.

.S'(Lu'l,w‘g) - .4':‘5-(.((.«,‘2.QQ)("‘(L&)]._Q;) + II)(th])) ’ (343)



HyperSIEDAS cosine

¢ | 0°  0° 0° 0° 180° 180° 180° 180°
¢2 00 00 00 00 00 00 00 00
¢3 | 0°  90°  180° 270° 0° 90°  180° 270°
¢, | 0°  270° 180° 90° 180° 90° 0° 270°
HyperSEDAS sine

¢y | 90° 90°  90°  90°  270° 270° 270° 270°
(‘/)2 00 00 00 00 00 00 00 OO
@3 | 0° 90°  1S0° 270° 0° 90°  180° 270°
¢ 1 0°  270° 180° 90°  180° 90°  0° 270°

Table 3.4: Hypcrcomplex SEDAS phase cycle with redefinition of ¢y and t,. -

The advantage of whole-ccho acquisition is that it does not require the additional
dataset like the States method. It thus has a factor of /2 improvement in signal-
to-noise ratio. Shifted-ccho DAS (SEDAS) and shifted-echo MQMAS (SEMQMAS)
were discussed in [50] and [51], respectively. The experiments can be further modified
to combine with the States method to give HyperSEDAS and HyperSEMQMAS
sequences, which collect also the mirror image coherence in the first half of the ¢,
period and have another factor of V2 improvement. in signal-to-noise ratio.

The sequences and colicrence pathways for the HyperSEDAS and HyperSEM-
QMAS experiments are shown in Figure 3.13. The phase cycles for these two ex-
periments are given in Table 3.4 and Table 3.5, Tor DAS, the first pulse is cycled
through two-steps to select the +1 coherences. The third pulse is cycled through
4-steps to select the +1 coherence. TFor MQMAS, the first pulse is cycled through
six-steps to select the £3 coherences. The third pulse is cycled through S;Sl}(ips to

select the +1 coherence.
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Figure 3.13: HyperSEDAS and HyperSEMQMAS experiments which acquire whole

DAS or MQMAS echo in the 1, dimension
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HyperSEMQMAS cosine

¢1 | 0° 60°  120° 180° 240° 300°

¢2 | 0°

¢3 | 0° 0° 0° 0° 0° 0° 45°  45°  45° 45° 45°  45°
g0° 90° 90° 90° 90° 90°  135° 135° 135° 135° 135° 135°
180° 180° 180° 180° 180° 180° 225° 225° 225° 225° 225° 225°
270°  270° 270° 270° 270° 270° 315° 315° 315° 315° 315° 315°
¢ | 0° 180° 0° 180°  0° 180° 906°  270° 90°  270° 90°  270°
180° 0° 180°  0° 180° 0° 270° 90°  270° 90°  270° 90°

HyperSEMQMAS sine

¢ | 30°  90° 150° 210° 270° 330°
¢z | 0°

@3 | 0° 0° 0° 0° 0° 0° 45°  45° 45°  45°  45°  45°
90° 90° 90° 90° 90°  90° 135 135° 135° 135° 135° 135°
180° 180° 180° 180° 180° 180°  225°  225°  225° 225° 225° 225°
270° 270° 270° 270° 270° 270° 315° 315° 315° 315° 315° 315°

o | 0° 180° 0° 180°  0° 180°  90°  270° 90° 270° 90°  270°
180° 0° 180°  0° 180° 0° 270° 90°  270° 90°  270° 90°

Table 3.5: Hypercomplex SEMQMAS phase cycle with redefinition of ¢, and ¢,.

3.4 Excitation and Reconversion Pulses

The preceding section on MQMAS made an assumption that a single-RF pulse
applied on resonance is capable of exciting multiple-quantum coherence and trans-
ferring it back to single-quantum coherence for detection. In fact, the behavior of
the quadrupolar spin system subject to strong RIF pulses needs to be carefully re-
considered here to see how the excitation and reconversion lmpp(—:‘,n. Some important

questions to be answered ave:
I. With what eflicicney can multiple-quantum coherence be excited?

IT. How efficiently can multiple-quantum coherence he reconverted into single-

quantum coherence?

[II. How do multiple-quantum coherences evolve?

G5



IV. How do the phases of the RIFF-pulses affect the phase of the signal?

V. For a powder sample, arc the excitation and reconversion processes ho-
mogeneous? That is, are crystallites with different orientations equally
excited? As a result, is the resultant lineshape in the MAS dimension the

same as ordinary MAS lineshapes?
VI. Is MQMAS quantitative?

Experimental answers to the above questions are summarized here. Relatively
good signal-to-noise ratios can be achieved for nuclei with high v, high abundance
and short spin-lattice relaxation time [45, 56, 57, 58. 59, 60, 61, 62]. The Excitation
and reconversion are expected to be inhomogeneous, but experimental results seem to
disagree with this since good quadrupolar lineshapes are often observed in the MAS
dimension when the quadrupolar coupling constant. are not too large [58]. MQMAS
is not quantitative, at lcast for the case that a single pulse is used for excitation.

Relatively quantitative results, however. were presented recently by Griffin et al.

[63].

3.4.1 Fictitious Spin—% Operators

For the description of a spin-3 system (or the central transition of a quadrupolar
nuclear spin system), three special operators Iy, [1 are introduced. Together with the

unity operator 1, the four operators form a complete basis that the density matrix

can be expressed as
Py = ao() o+ a (U4 + ay (Y - + ayl. (3.44)

The commutation relations among these operators often allow the analytical solution

of the evolution of the density matrix of the syvstem. More importantly, the effects
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of RF-pulses and free inrluct‘ibn decay on the spin svstem can be described in an
intuitive way (See section 2.5.2).

In the general case of I > 1/2 spins, there are 2/ + 1 eigenstates and other
operators are needed. Suppose that we have N Hermitian operators A, the density

matrix and Hamiltonian are then expressed as

N

p(t) = an (1) A, + ayl (3.45)
n=1\
N

Ho= > ha(l)Aa, (3.46)
n=1l

analogous to the spin-% case. The N operators should be chosen to fulfill certain
Cartesian commutation relations whicht facilitate the calculation of the evolution of

the system.

p(t)y = ¢ p(0)e ! : (3.47)

One way of choosing the operators is to define fictitious spin—% operators for a
quadrupolar system. When [ = 2, the cigenstates |2 >, [£ >, | =1 >, | =2 > can be
renamed as |4 >,|3 >,|2 > and || >. For each pair of the eigenstates, we introduce

three operators according to the three Pauli matrices o,, 0, and o..

1y = é(lr >S<s|+ s ><r]) (3.48)
I o= —é(lr >< s = s ><r]) (3.49)
= %(\r S< ]~ [s >< s]), (3.50)
where
< -,-I/R;* s> = é (3.51)



<r|lfls> = —% (3.52)
<r|lyls> = é (3.53)
Tﬁe commutation relations among these operators arc described below.
(e ) =40y ' (3.54)
1130 = (3.59)
(17, 1] = —%I,’l’ (3.56)
(15215 =0 (3.57)
1) =~ 1Y (3.58)

Other commutation relations can be found in [64, 65]. The above relations can be
generalized as

[P,Q] =ixRR (3.59)
where P, (0, and IR are three operators in I5qns 3.54 through 3.58. Notice that these
operators are not totally independent. For example,

P 9z

ly=1,+1;. (3.60)
In principle, only (27 + 1)? — | independent operators are needed for a spin-I system.

The observable operators [y, Iy 1, can be expressed as the summation of the

above operators. For a spin-/ svsten.
Ixy = Y Velg, (3.61)

Iy = Sy (3.62)

s
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and

A = [+ 1) — myn,. (3.63)
Rotations in the spin space by RIF pulses are then described by
(f:_i()])Q(::ior) = @ cos nl) + Rsin k0. (3.64)
For example, from Eqn 3.56, we get
U2 (=0 U (0) = 1§ cos(0]2) — T7 sin(0/2) (3.65)
with
Ur(0) = ¢, (3.66)

where p = X, Y, 7.

3.4.2 Excitation by Single Pulse

The Hamiltonian of a spin-2 systen is expressed by

H = ]’I(,jf + ”Q + /'[n/.‘
= —AwBIP 1)+ w (1 = 13 —wi (VBT +20% + V3, (3.67)

where H,¢; is the frequency offsel and includes the chemical shift. We have used

Eqns 3.61 and 3.62 for spin-2 nuclens.

Iv o= VALY I+ (3.68)
Ly = V34124212 (3.69)
ly = 31 +13 (3.70)

Here, the 2nd-order quadrupolar interaction has been neglected. Il we also take
Aw = 0 and assume w; € wg. we get

Ho=w, )} = B 1 — e 15— VB I — e 18, (3.71)
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where the first two terms comumute with the next two terms. We can transform the

above Hamiltonian into a tilted [rame by the following operator,

U0 UE(—0) (3.72)
where
0 = l‘,a,n_'(ﬁwl/wQ). - (3.73)

The resultant Hamiltonian is then

Hr = w (I}~ 13") = 20, U3 (=0 U OV I U (=0 ULE(0)

o

a1
I+ 5 sin 0 I+ 1)), (3.74)

. N/ o
= w ([}~ 13") = 2w (cos? ;/iﬁ3 + sin?

where

L R— (3.75)

and My is the Hamiltonian in the tilted frame. 1f we also neglect the last term in the

equation for [y and assume w; < w,,. the tilted Hamiltonian becomes

. 3. L
Hy mwo (1) = 15) = 2 17 = o= 1Y (3.76)
.du.’Q

Clearly, the last two terms correspond to the single- and triple-quantum transition
operators. The separation of the last two terms has the advantage that rotations
in single-quantum and triple-quantum subspaces are independent. The equilibrated
density matrix
p(0) o 158431 (3.77)
then evolves under y according to
p(1) = ()

= (17 cos 2wl + 11 sin 2w,1)

RWH ) 3w _
+ 3( 13" cos( 5 1)+ 1y sin(_—);%l.)). (3.78)
e )
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This equation can now be used to describe the effect of an RIF-pulse on a spin-3

system.

[. The terms in the first parenthesis describe the effect of the pulse on the
central transition. This expression is almost the same compared to the
spin-1 sxcept for the extra factor of 2. It sueeests that tl ral
spin-3 case except lor the extra factor ol 2. It suggests that the centra
transition behaves like an isolated fictitious spin—% nucleus with a doubled
nutation frequency. More generally, for a spin-/ nucleus, scaling factor

for the nutation frequency is [ + %

II. The terms in the second parenthesis describes the effect of the pulse on
the triple-quantum transition. It suggests that an RI%-pulse generates a
rotation in the triple-quantum subspace. The nn,ll;ai)_iqn frequency is w;
scaled by a lactor (%5_:)2 The magnitude of the nutation, however, is
two times larger than that ol the central transition. This means that if
the triple-quantnm coherence is fully excited, its intensity is even stronger
than that of the central transition. Ixperimentally, this is hardly true due

to the inefliciency ol the excitation.

ITI. The triple-quantum nutation frequency is dependent on the quadrupolar

frequency.

(' Jeos? 39 — | Ny a0 ¢ )
o = [P ‘v *) Q 2 7
« = 57037 = l)( 5 + 5 sin” 4% cos 2a07) (3.79)

which is ovientation-dependent. This means that a 90° pulse for one
crystallite is not the 90° pulse for other crystatlites and a triple-quantum
90° pulse for a powder sample can not be defined. As a result, the triple-

quantum excitation is mhomogencous.



The nutation behavior of a single crystal sample with w, = 400kHz is calculated
as a function of RF-pulse length and shown in Fignre 3.14a. From the sinusoidal
dependence of the excitation elliciency on the pulse length, it is clear that the ex-
citation is very inhomogencous. When an average over the whole sample is taken,
Figure 3.14b is obtained, where the triple-quantum signal builds up initially and fluc-
tuates with longer pulses. The maximum of the excitation occurs when wyt = 37
from this simple model.

It seems that for a spinning sample. the derivation above is still qualitatively
correct, especially when the spinning speed is not very high and the RF power is
high (see Figure 3.15). Assuming that «; = 100kHz and w, = 10kHz, a solid state
37 pulse for [ = —; nucleus is about 7.5us, which takes 7.5% of a rotor period and
the spinning effect may be neglected. The assumption that w, < wg is not often
true, because wg is orientation-dependent. Nevertheless, the experimental data in
Figure 3.15a suggests that spinning effect is not crucial and (:'(.1.1'1 be neglected in a

qualitative analysis.

3.4.3 Reconversion by Single Pulse

To calculate the reconversion efficiency, we assume that the initial density matrix

is [ and calculate the evolution of the system under RF-pulse. we then have

at' = %sin‘l()(mw""/.,+<-ow'—”'z—2) (3.80)
al' = 0. (3.81)
where
e = (Bl 4 (wy —w))? (3.82)
L= (el A+ (w, e (3.83)
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Figure 3.14: Calculated triple-quantum excitation efficiency for single crystal (up-
per) and powder (lower) samples as a (unction of pulse length. The magnitude
of the RI" field strength (wy) is shown as legends. The calculation assumes that

w, = 400kHz. Sy is the maximum signal intensity {or the single-quantum transition.
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Figure 3.15: Experimental data on triple-quantum excitation (upper) and recon-
version (lower) efficiency as a function of pulse length. The magnitude of the RF
field strength (wy) is shown as legends. The calculation assumes that w, = 400kHz.
Computer simulated resull is also shown in the upper graph.



Unfortunately, af? quickly drops to zero as the ratio between the quadrupolar fre-
quency and the RI™-pulse strength increases. To see this, notice that when w; € wg,

aij3 < sin?0 =~ tan?0 = 3(51—)2 (3.84)
Q

This suggests that the reconversion efficiency is proportional to the square of the
ratio between the RF field strength and the quadrupolar frequency, which is often
very small. As a result, the reconversion problem is more serious than the excitation
problem.

In Figure 3.16, the dependence of the reconversion efficiency on the reconversion
pulse length is presented. Again, one sees the buildup of the single-quantum signal
in a short period of time (wi! = 0.87). However, the magnitude of the signal is very
small. Neglecting spinning eflect in this case is appropriate since the pulse length

takes only about 2% ol a rotor cycle (See Figure 3.15).

3.4.4 Excitation and Reconversion: Computer Simulation

To fully understand the excitation and reconversion processes under spinning
condition, computer simulation has to be exploited (8, 66]. This is because the
Hamiltonians of the system at time { and ¢ + d¢ do not, commute to each other and

the evolution of the density matrix has to be solved numerically by calculating

p(t) _ 6—1H|AI| (:‘—l]/';)A’Q L (:_:—z/./,.,’_\l.,,p(o)ctll,,;\t,, . ezllgAtg L eiHlAfl ) (385)

The calculation is often facilitated by the diagonalization of each Hamiltonian in the
equation [8]. The calculation on the excitation cfficiency is shown in Figure 3.15
(upper). The results qualitatively match those obtained by Amoureux [67] and Wu
[68], that is, a relatively long pulse is needed for excitation. The discrepancy may be

due to the slightly different parameters we used in the simulation. The simulation
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for single crystal (upper) and powder (lower) samples as a function of pulse length.
The magnitude of the RIY field strength (wq) is shown as legends. The calculation
assumes that w, = 400kliz.



Pulse length(us)

Exct./Recov. 3/2 5/2 7/2 9/2
Excitation zg’rr 3r ?ﬂ gﬂ'
Reconversion 3T T T T

Table 3.6: Pulse lengths that maximize the excitation and reconversion efficiency.

also reproduces the shovt-term behavior of the experimental data. The interested
readers should consult other relerences [67, 68]. The best pulse lengths for excitation
and reconversion are however, summarized in Table 3.6. Notice that the pulse lengths
here are solid-state pulse lengths, and the result qualitatively agrees with the numbers

obtained by the simple model which neglects the spinning eflect.

3.4.5 Excitation and Reconversion by Spin-Locking

Another interesting method that is reported for excitation and reconversion was
proposed by Wu et al. [63]. The pulse sequence and phase cycle are shown in
Figure 3.17 and Table 3.7, respectively. Instead of using a single long pulse for
excitation, two pulses (without time interval in between) are used. The first pulse
is a solid-state 90° pulse, and the second pulse is a spin-locking pulse phase shifted
by 90° with respect to the first pulse. The length of this second-pulse is set to
7./4, where 7, is the rotor period. The reconversion pulse is a single pulse whose
length is again set to 7./4. This pulse is much longer than the optimal pulse length
suggested by Amoureux [67]. The efficiency of the sequence has been illustrated both
by experiments and simulations. The most significant advantage of the sequence is
that it is more quantitative.

The key idea behind this new sequence is that when the sample is spinning, the
eigenstates of the spin Hamiltonian change with time. If initially the spin systern is

in I3 state, part of the coherence is converted into triple-quantum coherence I at
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SL t] SL 2

T/4 /4

Figure 3.17: Spin-Locking pulse sequence for the excitation of triple-quantum co-
herence and its conversion back to single-quantum coherence.

Spin-Locking 3QMAS cosine

%) 0° 60° 120° 180° 240° 300°
b2 90° 150° 210° 270° 330° 30°
b3 0° 0° 0° 0° 0° 0°
o 0° 180° 0° 180° 0° 180°
spin-Locking 3QMAS sine
oy 30° 90° 150° 210° 270° 330°
b2 120° 180° 240° 300° 0° - 60°
b3 0° 0° 0° 0° 0° 0°
&, 0° 130° 0° 180° Qe 180°

Table 3.7: The spin-locking 3QMAS phase cycle with redefinition of ¢, and t,.
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7,/2 and returns to /3 after a full rotor cycle when a spin-locking pulse is applied
(69, 70, 71]. Also, part of the coherence is converted into [} at 7,./4 and returns to /%
at 7./2. If this is true, the first 90° pulse in the sequence shown in Figure 3.17 creates
coherence 1%, which evolves into I} at 7./4. The third pulse, similarly transfer the
coherence back into a single-quantum coherence.

Even though the authors have shown that their sequence is far more quantitative
than the two-pulse sequence, t;h'e sequence has not been widely used untill now. One
of the reasons may bhe that the sequence is only efficient for spin—% nuclei. Another
reason is probably that the sequence is still not well-understood. According to Vega,
the spin-locking efficiency for quadrupolar nuclei is low and only under adiabatic
conditions is the transfer of coherence by spin-locking possible [70]. It seems contro-
versial that the spin-locking sequence gives good results since the adiabatic condition
is expected to be hard to fulfill. People with further interests should read other

references (69, 70, 71].

3.5 Comparison of DAS and MQMAS

This section addresses several complementary aspects of MQMAS and compares
MQMAS with DAS [45]. Tssues such as feasibility, linewidth, resolution are discussed.
The chemical shift effect on the resultant spectra is then presented in great detail.
It is also demonstrated here that CSA parameters can be extracted for quadrupoles

using the multiple-quantum strategy.

3.5.1 Experiments

Most of the spectra presented in this chapter were obtained at 9.4T or 11.7T using
a home-built 5mm DAS probe [72]. The spinning axis was initially set to 54.74° by

maximizing the observed sideband intensity using KBr (3'Br) or deuterated HMB

)



(?H) as standards. The 2"Al spectra were collected using.a, Doty Scientific 5mm
high-speed MAS probe [73]. Spinning speeds greater than 7.5kHz were exploited in
all experiments except for the one designed to give the intense Na,;C,04 sideband
pattern. The RI° power level in the DAS experiments was set to ensure selective
excitation of the central transition, and a typical 90° pulse length was about 7us. In
the MQMAS experiments, high power (35-40kHz for '"O, 50-60kHz for other nuclei)
was used to achieve efficient excitation.

The shifted-echo DAS sequence (5 — 1, — 5 — hop — 5 — 7. — m—acq.) [50] and
shifted-echo MQMAS [31] sequence used in our experiments were described in Sec-
tion 3.3. The echoes were typically shifted out by twenty to thirty rotor cycles (many
milliseconds il possible) to achieve high sensitivity and undistorted signal. If the
sensitivity was a problem due to Ty relaxation during echo formation, the simple
two-pulse MQMAS sequence (Figure 3.12) was used. 540° solid-state pulses were ap-
plied for the excitation and reconversion, which according to the results of Amoureux
[67], do not give the maximum multiple-quantum excitation and reconversion effi-
ciency. The data were processed according to the method suggested by Grandinetti
[50, 51]. RMN soltware was used and can be downloaded from the following URL:
http://www.chemistry.ohio-state.edu/ grandinetti/RMN/rmun.html.

All of the inorganic compounds used in the experiment were obtained from com-
mercial sources, typically with a stated purity of at least 98%. The anorthite and
170 enriched stilbite were made at. Stanford tn'li\«‘l'#it;y and characterized by X-ray

diffraction (XRD) and 2Si NMR.

3.5.2 Feasibility

MQMAS spectraof #*Na (1=2). ¥Rb (1=3), 77Al (1=2), 170) (1=2) and **Sc (1=1)

2

in some model compounds are shown in Figure 3.18. The typical recycle delay varies
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between 0.5 and 1 second for different samples, resulting in an acquisition time no
longer than 12 hours. This suggests that MQMAS spectrum can be acquired in a
reasonable time period for these nuclei (also for "B, I=2 [62]) when the T; of the
sample is not very long. The quadrupolar coupling constants (Cg) are 3.6MHz for
87Rb in RbCIO, [21], 2.4MHz for Na in Na,C,0, [58], about 5MHz for the 43Sc
sites in LizScy(PO.4)s, 2.8-3.AMHz for 27Al sites in anorthite [60] and 3.4MHz and
4.8MHz for the two types of oxyvgen sites in stilbite. The MAS dimension of these
spectra usually show well-defined MAS powder patterns, suggesting a rela.tivvely even
excitation of the triple-quantum coherence.

The single-hop DAS spectra for the above 8"Rb, **Na and "0 samples were also
recorded. However, acquisition of the "B, 2"Al and **Sc DAS spectra was far less
successful because of the short T. Typically, 30-50 milliseconds are needed to flip
the spinner axis in a DAS experiment which means it can only be applied to samples
with Ty longer than 100-150ms. Another limiting lactor for DAS is the homonuclear
dipolar coupling, which creates coherences that may not be restored following axis
-reorientation [42]. There is no such limitation for MQMAS because a hopping period
is not necessary between the two correlated evolution periods.

The major limiting [actor [or MQMAS is the magnitude of the quadrupolar in-
teraction. Since the triple-quantum transition is forbidden to 1st-order, the MQMAS
experiment is currently limited to sites with Cg less than AMHz for spin-% nuclei. As
a comparison. C'g of up to 6.5MHz for I:E nuclei does not lead to extra experimental
difficulties for DAS [24]. In the extreme, Massiot et al. have obtained a ' Ga (I=2)
DAS spectrum of 3-Ga,Oy with a (g of  12MHz [74].

As shown earlier in this chapter, the excitation efficiency of the triple-quantum
coherence is determined by :—‘f— To achieve maximum excitation efficiency, highest

power level is usnally used. When the RIT strength is fixed, the quantity that de-
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Figure 3.18: 3QMAS spectra of (a) ®RbCIO, (b) #Nay(C,04 (c) **Sc in
LizScy(POy4)s (d) Al in anorthite (¢) '"O in stilbite. Spectra (a), (b), (d) were
taken at 11.7T while the other two were taken at 9.4T. Frequencies are referenced to
1M RbNO; for ¥ Rb, 1M NaCl for *Na, 1M AI(NO3); for 27 Al and H,0 for '70. Spec-
trum (d) is a slice taken along the isotropic dimension, which has better resolution
than the isotropic projection. '



termines the excitation efficiency is w, which is defined as

Ca

@ TR -1 (3.86)

w
and smaller w, usually means better excitation unless w, is vanishingly small. It is
thus not surprising to sce the efficient excitation for 2*Al (Figure 3.18d, anorthite,
with Cg up to 8.4MIz), but the inferior excitation for 3 Rb (Figure 3.18a, RbClOy,
Cp=3.6MHz). The smallerscaling factor for > ;25 nuclei suggests that the observation
of Co up to 10MHz for *"Al is {easible, based on the relatively efﬁ.cient excitation
of the triple-quantum coherence for #*Na (e.g. Na,C,0y, I:g, Co=2.4MHz ). This
is actually demonstrated by our experiment on kyanite (see next chapter), which
contains 7Al site with Cg up to 10.0MHz. The fact that tﬁe single pulse excitation
scheme is relatively efficient for spin—_‘%’ nuclei is important because VC'VQ for 27Al gnd
70 (both spin-2) are smaller than 10MHz in a lot of commonly used technological

materials. However, care must be taken in the use of this technique for the study of

site quantification.

3.5.3 Linewidth

The DAS and MQMAS linewidths (full width at half maximum, FWHM) of some
model compounds are compared in Table 3.8, Also shown in this table is the linewidth
“data from MAS and Hahn-ccho experiments (Ty-linewidth). In addition, the DAS
linewidths for "B in D3B30 [72]. ¥ Al in LiAISi Oy [75] and 7O in diopside [46] are
also included.

The DAS linewidth increases [rom about 200Hz for 3 Rb to 1.2kHz for 27Al, con-
sistent with the increasing homonuclear dipolar coupling strength. The MQMAS
1inewidth, on the other hand, is largely nucleus-independent, spanning the range

between 1701z and 270Hz. While the DAS and MQAMAS lines are usually an order
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Linewidth(Iz)
Nucleus/compound DAS MQMAS Hahn-Echo  MAS
' RbNO3 160 . 130 10 2500
8TRbCI0, 250 270 10 5000
Na,C,0, 500 260 25 3500
D31"BO; [72] 1100 - - 4500
TAl Kyanite [60] - 170 30 7300
27Al LiA1Si4 0,4 [76] 1200 - - 4200
70 Diopside [75] 120 100 - 3800
170 Stilbite 600 270 30 4500

Table 3.8: Comparison of the DAS. MQMAS, echo and MAS linewidths for some
model compounds.

of magnitude narrower than the MAS lines, they are an order of magnitude broader
than the echo-linewidth. This is not a surprise, since magnetic field inhomogeneity
as well as inhomogencous broadenings is refocused by an echo sequence, leaving only
the intrinsic Ty relaxation under MAS. To understand completely why the MQMAS
lines are so much wider than the echo lines requires more detailed and careful meas-
urements to evaluate the contribution of each broadening mechanism. The residue
dipolar coupling, the defects in the crystal and the field inhomogeneity can all be the
dominating broadening mechanism.

The DAS linewidth can he related to the magnitude of the homonuclear dipolar
interaction in the system [42]. The bilinear terms in the density matrix arising from
the dipolar Hamiltonian can not be retained through a DAS angle change. Thus the
dipolar Hamiltonian '(I(LISII)III‘(‘I)’ as a relaxation superoperator and it is not refocused
at the DAS echo maximum. The independence of the MQMAS linewidth on the
nucleus of interest at least suggests that homonuaclear dipolar coupling is not a crucial
factor for the imp]cn'léntation of the MQMAS experiment, which is a major advantage
of MQMAS over DAS.

Strong heteronuclear dipolar coupling may render the MQMAS spectra broad

|



too. The problem seems serions only when 'H is involved and can be overcome by

'H decoupling [77].

3.5.4 Resolution

As shown in Eqn 3.34, the observed MQMAS shifts are scaled by two factors k;
and k; and different from DAS (k;=ky=1) shifts. This makes the resolution of a
MQMAS spectrum dependent not only on &, and wfg, but also on %k, and k;. Some
general conclusions about resolution can he drawn, but for a specific sample, care
must be taken in spectral int:(—:rpretalxiorn..

Eqn 3.34 indicates that two chemically different sites having the same quadrupolar

coupling constant will have a [requency separation proportional to ky in the MQMAS

/C]

spectrum. If is greater than 1.0, better resolution is expected for MQMAS; on the
other hand, if |&| is smaller than 1.0, DAS has better resolution. The factor k; has
a similar effect on resolution, when the chemical shift of the two sites is the same. In
the case that l:%, MQMAS has better resolution than DAS according to Table 3.1,
and the opposite is true for I> 2 nuclei. Tor [=3 nuclei, the enhanced resolution of
MQMAS over DAS is readily seen in Figures 3.9 and 3.11 where the separation of the
two MQMAS peaks in RbNO, (9ppm) is twice that in the DAS spectrum (5ppm-).

For I:% nuclei, an example is given in Figure 3.19, which is an 7O stilbite spectrum

taken at 9.4T. In this case. DAS gives two partially resolved peaks, whereas only one

peak is observed in the MQAMAS spectram. Similar resolution limitation was also
seen for **Sc (IZ%)‘
Despite the small scaling lactors (k) = —17/31,k, = 10/31) for spin—‘-;’— nuclei,

TAL is an ideal nucleus for MQMAS, as will be demonstrated in the next chapter
[60]. MAS spectra for ?"Al are usually too broad to take advantage of the improved

spectral dispersion. The moderate coupling constants for 27Al in most materials [78]
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make it very suitable for MQMAS studies. In addition, the decreased resolution in the
3QMAS spectrum can be overcome by correlating the quintuple-quantum coherence

with the single-quantum coherence [79].

3.5.5 Chemical Shift Effect

It is somewhat int.erestiﬁg to see that two of the three rubidium sites in ¥ RbNO3
collapse together in the 11.7T MQMAS spectrum. At the same field strength, three
peaks exist in the DAS spectrum even though the MQMAS spectrum is expected
to have better resolution. This problem happens also in the RbNQO3 DAS spectrum
at 7.0T [24], whereas at that field strength, the MQMAS spectrum has three well-
resolved peaks [51]. This overlap indicates that sites with different chemical shifts
and quadrupolar interactions can appear at the same {requency in a DAS or MQMAS
spectrum. Such an accidental overlap is a result of the cancellation of the chemical
shift difference and the 2nd-order quadrupolar shift difference.

For well-crystallized samples, the accidental overlap can be overcome by multiple-
field experiments. One can also |l>('-,rforn'1 both DAS and MQMAS experiments on the
same sample at only one field, since the overlap conditions are different for these
two experiments. In this respect. the combination of DAS and MQMAS removes the
possibility of spectral misinterpretation.

For materials with a continnous distribution of chemical shifts and quadrupolar
coupling constants (és in many amorphous and glassy materials), the problem of
overlapping peaks limits the applicability of DAS and MQMAS. To sce this, T will
give a briel description of the general features of the 'O DAS spectra for silicate
glasses [80, 81]. DAS spectra of these materials are broadened usually from one to
twenty kilohertz by the distribution of chemical sites (which have a distribution of

chemical shift and quadrupolar parameters). Because DAS gives a two-dimensional



spectrum correlating the isotropic DAS shiflts and the anisotropic interactions, an
anisotropic slice taken perpendicular to the DAS dimension corresponds to a VAS
spectrum and can be simulated to provide a set of quadrupolar (Cg and n,) and
chemical shift (4;,,) parameters (See igure 3.9). These parameters are related to
structural information such as the Si-O-Si bond angles for bridging oxygen in 7O glass
(Eqn 4.1). The above approach assumes that each slice that is taken out corresponds
to only one type of site. Because it is possible that sites with different chemical
environments show up at the same [requency, this assumption does not necessarily
hold.

As an example. consider the amorphous Si'70, DAS data obtained by Baltisberger
et al. [82] Using the quadrupolar and chemical shift parameters they obtained, the
isotropic shifts in DAS. triple-quantum MAS and quintuple-quantum MAS spectra
were calculated using Eqn 3.23 and 3.34. The results are shown in Figure 3.20a,
where 100ppm is first subtracted from the 5QMAS shifts and then plotted. The data
points on the left side of the figure are characterized by substantial error bars, which is
mainly a result of simulation errors. The observed DAS shifts increase monotonically
as a function of the slice number whereas the multiple-quantum shifts do not vary
monotonically over the corresponding slices. What is also noted is that the spread
of MQMAS shifts is much smaller [or the same sites as in DAS as a result of the
scaling factors in Iiqn 3.34. For many of the 70 inorganic glasses, the quadrupolar
coupling constants (Cg) decrease with the increase of the isotropic chemical shifts
over a wide range of the Si-O-5i hond angles [82, 81]. The effect of a decreasing Cg
is to shift the MQMAS spectra to higher frequency (imore positive ppm values). This
effect is partially undone by the simultancous increase ol the tsotropic chemical shift
(note that &y < 0). The net result is a smaller spread of shifts in MQMAS spectra of

170 glasses than one would get from a similar DAS experiment. The reason for the
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difference between DAS and MQMAS is that &y and &y in DAS have the same sign
(both plus), but they have opposite signs in MQMAS.

While Figure 3.20a shows that glassy samples may have a potential problem
with overlap, it is worth considering a crystalline 'O sample where Cq and 7, are
better defined. Figure 3.20b shows similar calculations for the five 7O sites in well-
crystallized coesite [47]. All five sites are clearly separated in DAS, but sites 3, 4 and
5 are expected to overlap in the 3QMAS spectrum, and sites 4 and 5 are expected
to overlap in the 53QMAS spectrum. This sort of overlap is possible in any sample
depending on the relative sizes of l',IneA coupling constants and shifts. In this regard,
performing all three experiments (DAS, 3QMAS and 5QMAS) would provide useful

overall information as the overlap conditions for these techniques are different.

3.5.6 Chemical Shift Anisotropy

As discussed in the theory part of MQMAS, the CSA effect is magnified by a factor
of 2m for the m & —m transition, which allows it to dominate the triple-quantum
spectrum when its magnitude is comparable to that of the 2nd-order quadrupolar
interaction in a single-quantum spectrum. In this case, anisotropic 2nd-order quad-
rupolar effect may be neglected in the triple-quantum dimension. Simulation of the
1D MQMAS spectrum then divectly vields the CSA parameters. Carefully check-
ing Table 2.3 suggests that this approach is only valid for 1= nuclei (as long as
3QMAS is involved). When [ # —: the 2nd-order quadrupolar effect is also ampli-
fied. However, when [ = :ﬁ the magnitude of the 2nd-order quadrupolar interaction
for the t‘.riplt.f-quam‘.um coherence is scaled down (by a lactor of %), compared to that
for the single-quantum coherence.

Figure 3.21 is the one- and two-dimensional 11.7T ¥Rb MQMAS (w,=8.9kHz)

spectra of RbyCr(Qy. Two sites exist in this compound, but only the one with smaller
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two-pulse sequence is used.
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Figure 3.22: Simulated 1L.7T MAS spectrum of STRb in RbyCrOy4. Experimental
spectrum (not shown) can not be reproduced il CSA is neglected.

mk-+n

W, nw, ) away from the

Cq is observed. The spectram has a lot of sidebands (
centerband in the two-dimensional lrequency space. confirming the conclusions on the
MQMAS sideband pattern [15. 33]. The simulated MAS spectra that either considers,
or does not consider, the chemical shilt anisotropy are shown in Figure 3.22.. It is
clear that chemical shift anisotropy plays an important role in interpreting the data.

Figure 3.23 shows and compares the 1) DAS and MQMAS spectra of 8Rb in

RboCrQy4. The MQMAS projection shows well-defined sideband pattern that is sim-
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ulated in Figure 3.23c. The CSA and the 2nd-order quadrupolar broadening for
RbyCrOy4 at 11.7T are 27kHz (¢s = —110ppm) and 13kHz (Co = 3.5MHz), re-
spectively [84]. Since they are somewhat comparable, the combined effect of CSA
and quadrupolar interaction is complicated, and the DAS and MAS spectra are not
sensitive to variations in the CSA parameters. It m then very difficult to obtain CSA
information from either the DAS or MAS spectra. However, as CSA is amplified
to 75kHz in the MQMAS dimension, the MQMAS spectrum of RbyCrOy4 covers
a much larger frequency range and neglecting the 2nd-order quadrupolar interac-
tion in simulating the MQMAS sideband intensities is possible. 'rom Figure 3.23c,
the magnitude and asymmetry parameter of CSA are determined (écs = —110ppm,
Noe = 0.0). These values are in good agreement with those determined by a switching-
angle spinning (SAS) approach [34](chapter 6) but do not agree with other numbers
found in the literature [85]. The Rb,CrQy spectrum here also serves as an example to

demonstrate that relatively large CSA does not limit the implementation of MQMAS.

3.6 Multiple-Quantum Variable-Angle Spinning

The concept of multiple-quantum NMR can be extended to the case that the

sample is spinning at angles other than the magic-angle. To see how this can lead to

other information not accessible through MQMAS, consider a spin-% nucleus spinning
at 70.12° or 30.56°, where Py(cos ) = 0. Since ¢1(3/2,3/2) = 0 (Table 2.3), Eqn 2.83

reduces to

20

L3 )
iz = Col5, el (3.87).

[ O

This means that anisotropic 2nd-order quadrupolar interaction does not broaden the

triple-quantum spectrum. The spectrum is however, not a high-resolution spectrum
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Figure 3.23: 11.7T DAS (a), MQNAS (b) and simulated MQMAS (c¢) spectra for
87Rb in RbyCrO4. The simulation neglects the anisotropic 2nd-order quadrupolar

interaction.
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since chemical shift anisotropy (CSA) still influences the spectrum.
WS frer-ass = Blwiso + AF3 (a5 BO9) Pa(c0s0)) (3.88)

The pure CSA dimension (triple-quantum dimension) allows one to determine
chemical shift anisotropy (CSA) directly, even if it is too small to be separated from
the quadrupolar interaction in a single-quantum spectrum. The method would also
be more sensitive to small chemical shift anisotropy since the CSA effect on a triple-
quantum spectrum is magnified by a factor of three, compared to its effect on a
single-quantum spectrum. Iixperimentally, the MQVAS data can be collected using
the MQMAS sequences and processed accordingly. A shearing transformation is not
needed since redefinition of the evolution time is not necessary here.

As an example, [Nigure 3.24 shows the 11.7T RbNO3; 3QVAS spectrum acquired
with sample rotated at 70.12°. The quadrupolar parameters for each of the three sites
in this salt have been determined by DAS and MQMAS [51, 24}: &5, = —27.4ppm,
Co=1.68MHz, n, = 0.2 for the first site. &y, = —28.5ppm, Co=1.94MHz, n, = 1.0
for the second and di, = —31.3ppm, Co=1.72MHz, n, = 0.5 for the third. Us-
ing these parameters, the isotropic lrequency shifts in the triple-quantum dimension
were calculated to give -74.2. -71.4 and -84.9ppm, respectively. These numbers are
in the same region as the peaks in the triple-quantum spectrum. Compared with
the simulated spectra in Figure 3.25, it is likely that the spectrum contains mul-
tiple overlapping well-defined patterns. However, accurate determination of the CSA
parameters {or this salt requires a three-dimensional experiment that separates the
three sites.

Experiments on other samples were also performed (for example, *Na,C,0y,
BNayS04, FRbCIO, and 3 RD,SO4) and in all of the cases. pure-absorption phase
3QVAS spectra \~\’(;tl'é obtained. The spectra all have an asymmetric triple-quantum
dimension, but no clear singularities can be identified to accurately determine CSA
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Figure 3.24: 11.7T 3QVAS spectrum of ¥ Rb in RbNOs.

parameters. This is most likely due to the existence of other anisotropic interactions
including dipolar coupling. Tor MQVAS to be useful, such interactions have to be
small enough that they do not obscure the CSA eflect.

The next chapter shows that 2D switching-angle spinning (SAS) spectra for quad-
rupolar nuclei are more sensitive to small variations in Fuler angles between the chem-
ical shift and quadrupolar principal axis systems (PAS) [84, 86]. The two-dimensional
3QVAS patterns lor [ = E’ nuclet may also be used to vield similar information.
Figure 3.25 shows the simulated 2D 3QVAS spectra using same chemical shift and
quadrupolar parameters. As one can see. the patterns show a significant dependence

on the relative orientation ol the two tensors, thus providing a promising method for
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Figure 3.25: Simulated (wo-dimensional 3QVAS  patterns  with  different
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are (a) (0°,0°,0°) (b)(0°, 0°. 45°) (¢) (0°.0°,90°) (d) (90°,90°.90°).
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quantifying the Suler angles.

3.7 Alternatives to DAS and MQMAS

3.7.1 Double Rotation (DOR)

DAS and MQMAS are two-dimensional echo like experiments that reconstruct
isotropic NMR spectra for quadrupoles in the indirect dimension. Double rotation
(DOR) is a simple experiment that does not involve this second-dimension [87, 88].
However, it is technically more difficult since the sample is spun around two angles
simultaneously. The two angles are chosen to be the roots of the second- and fourth-
order Legendre polynomials (51.74° and 30.56°). To derive the Hamiltonian under
DOR, an extra rotation transformation is involved and Eqn 2.84 is needed.

AL AT = ST < l022m, —m > ar (3.89)

1=0.2.4
Notice that even though the other approach that expands the second-rank tensor
product (I5gqn 2.76-2.82) works too, it is \fel'jy tedious to use with this extra rotation.

ajp now has a definition different (rom qn 2.85.

l ' :
wo =Y. Diglwnt 01.0) D) (weat, 02,0) D) (a®, B2, 7)o, (3.90)
n,j,k=-1 ' :

In this equation, w,; and w.y are the spinning rates at two spinning angles 8, and 0,.

If only the time-independent terms are considered. we have n = 7 = 0 and

[ _
o = ds) (00)d5(05) 5= = DU (Ao (3.91)

=~

Notice that
) = Pi(cos0), (3.92)
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The frequency shift under DOR can be written as

W = w9 4 A?(aQ,ﬂQ)PQ (cos0y)Pa(cosly) + A?(on,/jQ)R,(cos 01)Ps(cos 05).

(3.93)

Since
Py(cos b)) = 0 (3.94)
Py(cos0y) = 0, (3.95)

only the first term in Igqn 3.93 is nonzero (isotropic 2nd-order shift) and high-
resolution is achieved.

DOR has been successfully used to study a series of aluminum or oxygen contain-
ing materials [89, 90, 75]. The problem with DOR is that it requires sample spinning
at two angles at the same time and the outer spinner can only be spun at about 1kHz.:
Even with rotor synchronization which creates a virtual spinning speed two times as
fast as the real spinning speed, the spectra are still congested with sidebands that

spectral interpretation is often complicated.

3.7.2 Dynamic-Angle Hopping

Dynamic-angle hopping (DATH) [91] is an inl,.er('?.st;ing two-dimensional experiment
that rotates the sample very slowly but totally removes the sidebands in the isotropic
dimension. The isotropic dimension is constructed using a similar scheme as DAS
and a hopping is also involved. The experiment is an extension of the magic-angle
hopping (MAH) experiment [92]. The basic idea is that high-resolution and removal
of spinning sidebands are two different goals in NMR and can be dealt with separately.
To achieve high-resolution, the sample does not need to be spun very last (DOR is
an example). Tast spinning is often used since slow spinning gives extra sidebands
[22, 93]. If the sidebands can be vemoved through other ways, fast spinning is not

needed.
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In DAH, high-resolution is achieved by spinning the sample first at 63.43°, and
then at 0° (£ = 5). The sideband is removed however, by applying five pairs of pulses
at 63.43°. Since [ have chosen not to include a complete description of spinning
sideband theories in chapter 2, T will not go any details about how DAH gets rid of
the spinning sidebands. The technique does not find much application, because a
DAS probe is still required and the large number of RI° pulses used may render many

samples inaccessible.
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Chapter 4

Application of MQMAS to
Aluminum-Containing Materials

The use of multiple-quantum magic-angle spinning to study 2 Al-containing ma-
terials is probably the most important application of this experiment so far. Alu-
minum, along with oxygen and silicon, is one of the most common nuclei in zeolites,
minerals, glasses and other technologically important materials. Solid-state NMR
is becoming increasingly important in resolving some structural and quantification
problems in these materials [94, 95, 96, 97, 98, 99, 78, 100, 101].

In aluminosilicate and aluminate crystals and glasses, there are three common
types of aluminum environments with different aluminum coordination number. The
four- and six-coordinated aluminum sites have been identified in a series of glasses
(102, 103, 104, 105, 106]. even though the static and MAS spectra of *"Al (I=3) in
glasses are often poorly resolved becanse of disorder and quadrupolar broadening.
The four- and six-coordinated aluminum site appear around 60 and Oppm respect-
ively, whereas the quadrupolar conpling constants for each type of sites may range
from 2-3MHz to T0MHz. An NMR peak around 30ppm was also observed in many
silicate materials, especially in samples prepared under high-pressurve [107, 108, 109,
110, 111]. This peak was attribnted 'l(_> live-coordinated aluminum in analogous to
the assignment of the silicon spectra [112]. even though the existence and quantific-
ation of this site remain controversial [113]. The high-resolution achieved through
MQMAS may shine great light on this problem. In this chapter, [ will discuss some
of the experiments that are performed on aluminosilicate and aluminate samples that

lead to a relatively clear picture of these materials. The utility and the limitation of
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MQMAS are also discussed.

4.1 Interpretation of MQMAS Spectra

Before going into any detail about our ?"Al experiments, the interpretation of
MQMAS spectra is to be discussed first. The goal of most solid-state NMR exper-
iments is to extract uselul structural and dynamic information about the materials
of interest. Such information is strongly coupled to some NMR. parameters including
quadrupolar coupling constant (Cg) and isotropic chemical shift (d;5,). For example,
it was suggested that the isotropic chemical shift of ?"Al or 2Si directly reflects the
coordination number of aluminum or silicon [114, 78]. It was also found that the
quadrupolar coupling constant (Cp) for 'O in the Si-O-Si linkage is approximated

by [47, 80, 115]

2 cos(/.S'i -0 — 51)
cos(LSi—0 — Si)y -1

Col(LSi— O — Si) = Co(180°) (4.1)

Thus the measurement ol chemical shift and quadrupolar parameters may be essential
in discriminating and quantifying aluminum sites with different coordination number.

The extraction of quadrupolar (Co and 7,) and chemical shift parameters (s,
dcs, Nes) May not always be obvious. For instance, the observed DAS and MQMAS
shifts are the combination of the isotropic chemical shift and second-order quadru-
polar shift. Special treatment needs to be done to separate the shifts from the two

sources.

4.1.1 Spectral Simulation

Simulating the experimental NMR lines is by far the most widely used approach in
solid-state NMR to get information about the anisotropic interactions. For quadru-
polar nucleus, the simulation would ideally include up to 8 independent parameters
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(8is0,0C5, s CQr g @y 3,7). The large number of parameters may overfit the data
and practically, three parameters (i, Co and n,) are used in simulations. This
approximation neglects CSA, but is proved adequate, especially when fast MAS is
performed which minimizes the CSA effect.

The problem with the fitting procedure is that the number of fitting parameters
grows up quickly when there are multiple sites in the system. This is one of the
reasons that MAS spectra of 2 Al are often hard to qualify and quantify. The overlap
of the four-, five- and six-coordinated aluminum peaks makes the simulation almost
impossible in some cases. [ligh-resolution techniques such as DAS or MQMAS are
then useful to differentiate distinct sites in the system and provide initial guess of
the NMR. parameters for these sites. In the best cases (See IFigures 3.9 and 3.11),
when distinct sites are resolved in the DAS or MQMAS spectrum, each site can be
simulated separately, which greatly reduces the number of parameters in the fitting

and increases the accuracy and precision of the simulation.

4.1.2 DAS and MQMAS: Extraction of d;,, and Fy

It is possible to obtain 8, and Py (deflined below) without resorting to the simula-
tion method. As shown in section 3.2, the observed DAS or MQMAS frequency is the

combination of the isotropic chiemical shift and the isotropic 2nd-order quadrupolar

shift.
OIS _ s g (43)

To obtain the isotropic chemical shift and the quadrupolar coupling constant, multiple-
field experiments are performed. The isotropic chemical shift 4,4, is not dependent

on the external ficld strength (in the units of ppm); the second-order quadrupolar
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shift, on the other hand, is inversely proportional to the square of the By field.

519 _ 310 (I + 1) = HCEO+R) P

= C— 4.4
o 40 wii?(2] —1)2 wd (44)
Here,
: B 7
[')Q = (.«Q I + T ; (45)
and
3 3x 108 (11 +1)~2
C=- ( ( : ) , L (4.6)
40 1221 —1)?
If DAS measurements are done at two separate fields, one gets
' P3
P = S+ O~ (4.7)
Wul
o 2
PN = i+ C—=E. (4.8)
Wiy
Solving the simultancous equations gives
§PAS _ gDAS
Po = worwn - (4.9)
PN O (wi = wiy)
) o (5 DAS g)D A5
disg =~ Lol (4.10)
wh = Wiy

One should notice that to obtain % and §,. all we need is two linearly inde-
pendent equations of I’p and d,,,. Thercfore, one of the equations may come from

DAS (or MAS). and the other one from MQMAS. To sce this. recall that

_ I
g = gy ? (4.11)
"“0
) . . /f)‘l
JMQMAS s 4 ey -2, (4.12)

'
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Site 5%?‘15‘(1?13'“) 5_3}3[{,‘,45 ‘5/'\},1"1 5;}2}-\11 1» diso Po(MHz)
T1 58.6+£2.0 -34.240.2 59.6+£1.5 -34.0£0.2 61.0+0.7 2.07+0.50
T2 50,7420  -36.1+£0.2 61.8+£1.5 -35.7+0.2 63.9+£0.6 2.5840.50
2

T3 66.1+£2.0 -39.1+0.2 67.2£1.5 -38.4£0.2 69.2+£0.7 2.34%0.50

Table 4.1: Isotropic shifts and quadrupolar coupling parameters {or leucite from 11.7

T and 9.4 T 3QMAS experiments, derived from 3QMAS and MAS peak positions.

If the observed shifts in the single- and triple-quantum spectra are available, one

would get

o) SDAS _ SMQALAS
Po = w . ' 4.13
@ “J Cln =) (4.13)
) [ §PAS _ sMQMAS
5. o= -~ —(/“ : (4.14)

Figure 4.1 shows how ligqn 4.13 and Eqn 4.14 can be used to extract both” Py and
8iso from a single MQMAS experiment. In the two-dimensional 2”Al spectrum of
leucite at 11.7T, three isotropic peaks are observed in both dimensions. Inserting
the observed shifts for each site in both dimension into Eqn 4.13 and Tiqn 4.14, the
isotropic chemical shift and quadrupolar product for each site can be generated.

To improve the overall accuracy and precision for the measurement of Pg and &;s,,
multiple experiments should be performed at many fields. This opens the possibility
of a linear least-square (it ol the observed shifts. Since the MQMAS and DAS shifts
are scaled differcntly. preprocessing ol the observed shilts is needed belore the fitting
can be done. To do this. the observed shift is first written in the more general form
as follows.

3 = hy iy + g2 (4.15)

tSw

For DAS, Iy = by = 1. Dividing both sides of the equation by &y, we get an equation
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Figure 4.1: Contour plot of *"Al 3QMAS NMR spectrum for leucite. The 1D
MQMAS spectrum on top is the projection onto the isotropic dimension.
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that can be used for the linecar regression:

600 ] /C2 Cv L 5
= 5i~*>'0 + Eu)?s? - (S'isa + __1)5 (416)

kyw?

vl

Plotting QE’_ versus kcl—:fg would give a straight line{, whose slope is the square of Py,
and the interception is the isotropic chemical shift. TFigure 4.2 demonstrates this
strategy for leucite, where the 9.4T and 11.7T data are combined and used in the
fitting. This linear regression gives significant improvement on the overall errors, and

the fitting results are reported in table 4.1.
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Figure 4.2: Least-square fit of 11.7T and 94T MAS and 3QMAS shifts for leucite.
The data and fitting results are tabulated in Table 4.1.

It is important to note that it is impossible to extract Cq and 75, from only
the isotropic shifts in DAS or MQMAS spectra. Such information comes from the
simulation of the NMR lincshape. In this respect. MQMAS has a subtle advantage
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over DAS. The anisotropic spectrum in DAS (assuming k = 1) is a VAS spectrum
with sample rotating at 79.19° or 37.38°. The anisotropic spectrum in MQMAS,
on the other hand, is a MAS spectrum. Simula.l;inglthe MAS spectrum gives more
accurate isotropic chemical shift and quadrupolar parameters for two reasons. First,
the chemical shift anisotropy does not distort the MAS lineshape. Second, at one of
the two & = 1 DAS angles, the NMR spectrum has a long tail (I'igure 3.4), whose
intensity is so low that can not be precisely measured in experiments and reproduced
by simulation. This long tail, however, determines the magnitude of the quadrupolar
coupling constant and introduces significant uncertainties. The MAS spectrum does

not have this problem and can often he accurately simulated.

4.1.3 Quantification

h

Sometimes, not. only the NMR lineshapes for each site, but also the quantification
for the sites are important. Since MQMAS is not quantitative, the isotropic spectra
can seldom be used for quantitative purpose unless all the sites have very similar
quadrupolar coupling constants. There has been some work showing that DAS is
relatively quantitative, il the 77 lor different sites are similar [116].

A better approach for quantification may he a combination of the high-resolution
techniques with the simulation of static or MAS spectra [47]. In this approach, DAS
or MQMAS provide initial estimate of the number of sites in the sample, and the
chemical shift and ¢uadrupolar parameters for cach site. These parameters are then
fed to a fitting program to fit. the static or MAS spectra. In the case that each site in
the sample has well-defined lineshape. this approach is superior to other approaches

that use the information from only one technicue.



4.2 Experiments

4.2.1 Sample Preparation

The sample of the natural framework silicate mineral leucite (IXAlSi,O¢, from
the Roman volcanic province) has been previously studied in detail by 2°Si MAS
NMR [117]. Several samples of crystalline anorthite (CaAl;Si,Og, another framework
silicate) were prepared by the method described in a detailed study of Si/Al disorder
[118]. A glass of this composition was prepared by melting of the oxides at 1650°C
for about 1 hour followed by air quenching. Several portions of the glass were then
crystallized by reheating at 1400°C for cither 4 minutes (sample 1) or 65 hours (sample
2). Powder X-ray diffraction on these samples, and 51 MAS NMR spectra, showed
only anorthite to be present. The latter spectra closely resemble those of Phillips et
al. [118] for samples crystallized for 15 minutes and 179 hours, respectively, and thus
have a smaller diflerence in the extent of disorder than expected (presumably beéause
of vagaries of thermal history and nucleation kinetics). A sample of natural kyanite
(Al;S10s5, locality unknown) was also selected in order to test the relative excitation
efficiencies for Al sites with widely varving quadiupolar coupling constants. A glass of
composition 40 mole% MgO, 10 mole% 13,04. 20 mole%. Al,03 was selected because of
its large concentrations of four-. five-. and six-coordinated aluminum as determined
previously by 2*Al MAS NMR, and was also prepared by mixing and melting the

oxides.

4.2.2 NMR Spectroscopy

The MAS experiments at 9.4T were performed on a modified Varian VXR-400S
spectrometer with a Smm high-speed MAS probe from Doty Scientific, Inc., with
spinning rates of abont Il kIz. At 1.7 T, experiments were performed on a Che-
magnetics spectrometer using the same probe or a home-built DAS probe described
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in the preceding chapter. Spin-lattice relaxation times (T7) were measured with the
saturation-recovery method, and delay times in 3QMAS experiments were chosen to
be at least 37; to assure nearly complete relaxation. The low efficiency of the triple-
quantum excitation, and the two-dimensional data acquisition, resulted in typical
total acquisition times for the spectra shown here of 12-24 hours, much longer than
times typically required for 11, single-quantum MAS experiments (typically a few
minutes for 2“Al). Uselul 3QMAS spectra can generally be obtained in somewhat
shorter times of a few hours.

The pulse sequence used was the shift-echo 3QMAS sequence and is shown in
Figure 3.10. The first and seccond pulses are solid-state 540° pulses applied with
the highest allowable power (50-60kHz). The thivd pulse is a 180° pulse applied
with lower power level and is approximately 15-20ps in duration. T'he {; period was
selected to have a dwell time which was equal to the desived £ dwell time (after
complete processing) multiplicd by '3—(1' This factor arises from the scaling of observed
shifts (Table 3.1). The MAS £, spectral width was usually 6-20 kHz while in the ¢,
dimension it was usually 6-15 kilz. Usually 40-100 {; points were required to obtain
spectra without truncat ilon artifacts. The delay between the second and third pulses
was sef to values ranging from -3 ms (10-30 rotor cyvcles). In the referencing stage,
the offset in the isotropic dimension (the ppm value of the center of the resulting ¢;
dimension spectrum) need to be multiplied by ;—;—f or -'7?—

The determination ol the isotropic chemical shilt (d,4,) and ¢ u'a._(l rupolar coupling
product Py was done using the approach described at the beginning of this chapter.
When possible. MAS peak shapes in slices of the 2D spectra were fitted with a
least-square program (utilizing the CERN MINUIT voutines) in which all relevant
parameters in the MAS peak shape (Cg.i,. dis,. integrated intensity, Lorentzian and

Gaussian broadening) were allowed to vary., In general, the two methods produced
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similar results, although the latter approach may allow n, and Cgq to be derived in

addition to Fp.

4.3 Results

4.3.1 Leucite

The leucite MQMAS spectrum has been shown in Figure 4.1 to demonstrate
different strategies in giving useful NMR parameters. This mineral has a complex
structure with three crystallographically distinct tetrahedral sites (T, T3, Ts). Be-
cause of the complexity of the 2Si spectra (as many as 15 overlapping peaks), and
the low resolution of 2" Al MAS spectrum (Figure 4.3), the fraction of the total Al
on each site remains imprecisely known. Models of essentially identical 2°Si spectra
have yielded fractions ol about 0.4, 0.2, 0.4 on T, Ty, T3 respectively, in one model
[117], 0.25, 0.50, 0.25 in a sccond model [119] and 0.50, 0.25, 0.25 in a third {120].

The MAS spectra shown in Figure 4.3 seems to suggest that the fractions are
0.5, 0.25, 0.25, consistent with carlier analysis of **Al MAS data by others [121].
However, this conclusion is based on the assumption that the quadrupolar coupling
constants for each site is so small that the MAS spectrum is a superposition of three
Gaussian peaks. This may not be true since intensity in one peak may come from
the shoulders in the quadrupolar lineshape of other peaks. The 27Al 2D 3QMAS
spectrum of leucite (IMigure 4.1) shows 3 partially overlapping peaks corresponding
to the three sites. The projection in the isotropic dimension shows considerably
better resolution than NMAS spectra in Figure 4.3, Compared to the MAS spectra,
the 3QMAS data are more definitive in ruling out any influence of second-order
quadrupolar coupling on peak shape. itting the projection with three Gaussian
peaks suggests thal the intensities of the three peaks are equal within about a 20%

error. Residual broadening. presumably due to the disordered arrangement of second-
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Figure 4.3: "Al MAS spectra of Leucite. The spectrum was taken with the
Hahn-echo sequence. The spectral region 40-80ppm is expanded to show the three
partially resolved peaks.

neighbor cations and a resulting distribution of isotropic chemical and quadrupolar
shifts, appears to limit the ultimate resolution.

Imperfect site excitation has the potential to be quite significant in 3QMAS ex-
periments, making quantification of intensities complex. Even though a long pulse
is capable of transferring coherence {rom a zero- to a triple-quantum state, the effi-
ciency of this process is highly dependent on C¢g and on the overall RF field strength.
An assumption of uniform excitation is thus most likely to be valid if Cg values for
different sites are similar. Iixact (g values are not known for leucite, but data for
isotropic chemical shilts and for I’y have be extracted and shown in Table 4.1 from
the two-dimensional NNR spectra at 94T and 1177, The chemical shifts agree well
with values previously derived from MAS spectra including satellite sidebands, and
Py data are consistent with previous rough estimates of 1-2MHz [121]. The close
similarity of the Py values [or the three peaks suggests that in this case intensities in

the 3QMAS experiment are likely to be quantitative and thus imply site occupancies
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that are somewhat discrepant from previous models. Given the disagreements among
existing models, however, the significance of their differences with the present data

are uncertain.

4.3.2 Kyanite

Kyanite was studied to further assess the quantification of 3QMAS peak intens-
ities. The mineral contains 4 equally populated octahedral Al sites, with Cg values
of 10.0, 9.4, 6.5, and 3.7 MHz. The MAS spectrum is contrasted with the isotropic
projection ol the 3QMAS spectrum in Figure 4.4. The resolution in the latter is
dramatically increased: separation of the peaks in the latter is enhanced by the large
range in Cp, and peaks arc much narrower because of the full averaging of the second-
order quadrupolar broadening. Fven sites with very large Cg values are excited and
observed. However, it is clear that observed intensities are systematically reduced
with increasing Cg, suggesting that caution is vequired in materials where ranges of

Cg are large or are unknown.

4.3.3 Crystalline Anorthite

Anorthite is an excellent test for 2" Al spectral resolution: it has eight crystal-
lographically distinct tetrahedral Al sites, and is fully ordered (natural samples) or
nearly so (synthetic samples). Cp and 1, values for all sites have been reported
from single crystal data. but isotropic chemical shilts are not known because 27Al
MAS spectra are completely unresolved. 3QMAS data at 11.7 T for more ordered
crystalline anorthite are shown in ignre 4.5, The spectrum is complex, but contains
a number of significant, resolvable features. The 94T spectrum is essentially the
same in overall appearance with slight shifts. Results for the somewhat less ordered

crystals are very similar, if perhaps slightly less well-resolved, and have not been
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Cq = 3.7 MHz

Cq =6.5 MH:z

Co=9-10 MHz

Figure 4.4: (above) *’ Al MAS spectrum for kyanite; (below) Isotropic projection of
3QMAS spectrum. Labels indicate Py for each site.
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analyzed in detail. Both approaches described at the beginning of this chapter are
taken to analyze the data. In both, slices through the 2D spectra at the positions

of obvious spectral features were taken (IYigure 4.6). In the first approach, the peak
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Figure 4.5: Contour plot of Al 3QMAS NMR spectrum for crystal anorthite at
11.7T. The number points show the position of singularities, through which slices
were taken for simulations.

position in the w; dimension and the center of gravity in the wy (MAS) dimension
were determined, and d;,, and %5 were calenlated using Iign 4.13 and 4.14. Results
for the data at 9.4T and 11.77T are shown in Tables 4.2 and 4.3, and are consistent

with each other within estimated nuncertainties.



Peak daras{ppm)  dsgasas(ppm) b (ppm) Po(MHz)
1 48.0+3.0 -35.440.2 58.4+1.1 5.43£0.50
2 61.0£1.0 -36.040.2 '63.940.4 2.884+0.33
3 58.0£3.0 -37.44+0.2 64.4+1.1 4.26+0.63
| 55.0£3.0 -39.1£0.2 (65.2+1.1 5.38+0.50
5 47.04+3.0 -42.540.2 66.2+1.1 7.37+£0.37
6 40.04:5.0 -44.4£0.2 65.8+1.9 8.54+0.52

Table 4.2: Isotropic shifts and quadrupolar coupling parameters for crystalline
anorthite from 11.7T 3QMAS experiments, derived from 3QMAS and MAS peak

positions.
Peak Saras(ppm)  dsgaras(ppm)  dig (ppm) Py(MHz)
1 40.5+2.0 -37.1£0.3 57.7£0.8 5.53+£0.21
2 59.04+1.0 -36.240.2 (63.4%£0.4 2.8340.20
3 56.04£2.0 -37.14£0.3 63.34+0.8 3.644+0.32
4 51.14£3.0 -39.14£0.3 63.8+1.1 4.80+£0.36
b) 36.6+£4.0 -15.63+0.3 65.9£1.5 7.2840.32
6 25.0+5.0 -19.0£0.3 8.5640.33

63.5£1.9

Table 4.3: Isotropic shilts and quadrupolar coupling parameters for crystalline
anorthite from 9.4T 3QMAS experiments. derived from 3QMAS and MAS peak po-
sitions.

MAS peak shapes in slices of the 21 spectra were also simulated as described in
the experimental section. lor example. the slice projected [rom -34.5 to -36.5 ppm
in the w; dimension (which contains two distinet sites) is shown in Figure 4.6. The
simulated spectrum agrees well. with all singularities appearing in the wy dimension
of the experimental data as expected. One possible limitation of this approach is
distortion of the wy dimension (MAS) peak shape due to non-uniform excitation of
nuclei in crystallites with dilferent orientation. but we do not expect this problem to
be severe in this case. Results of simulations are shown in Table 4.4. The fit allows
assignment of at least five features in the spectra to particular crystallographic sites,

based on published single crvstal data (Table 4.4).
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Figure 4.6: MAS Projection [rom -34.5 to -36.5 ppm in the isotropic dimension of
the 11.7 T 3QMAS spectrum ol anorthite. The simulation of this slice was fit and
the parameters are those for peaks 1 and 2 as shown in Table 4.4.

A sixth feature, at the low {requency side in wy, can be simulated with paramet-
ers that are closest to those expected for the 0zi0 site, but could probably also be
attributed to 0200 (Co= 7.4 MHz) or to m000 (Co= 6.3 MHz). In fact, the whole
tail of the spectrum in this region could well be comprised of poorly resolved signal
from the three peaks with largest Cg. As noted above for kyvanite, peaks for sites
with relatively large Co are expected to have reduced intensities as well as greater
width in the wy dimension, and thus are expected to be relatively difficult to observe
with 3QMAS. The broad [(cature on the high frequency (w)) side of the tallest peak
is also likely to be due to an unvesolved peak, again possibly one of the unassigned
peaks with large Co. In general. the agreement between the results for d;4, and Py
of the two approaches to assigning spectral features is excellent.

The estimated isotropic chemical shifts for the five relatively well-constrained

sites are plotted in Figure 4.7 as a [unction of the mean intertetrahedral (Si-O-
| g
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Powder Results

Peak JgngAS(ppm)?ggﬁ,/,_g(ppm) dise (ppm)  Co(MHz) Mo Py(MHz)
1 - -35.3 -37.2 60.6 5.76 0.45 5.95
2 -35.9 -35.8 63.6 2.66 0.53 2.78
3 -37.3 -37.9 64.7 4.39 0.51 4.58
4 -39.1 -39.0 © 656 _ 4.87 0.62 5.17
5 -42.2 -10.3 66.3 6.58 0.70 7.10
6 -44.0 -45.0 66.2 3.19 0.65 8.75

Single Crystal Results and Assignments

Single Crystal

Peak  Cgo(MHz) g Py (MHz) site mean angle
1 5.5 0.42 5.7 m0:0 145.4°
2 2.6 0.66 2.8 mzi0) 137.9°
3 1.4 0.53 1.6 0000 138.0°
4 4.9 0.75 5.3 m.z00 133.5°
5 6.8 0.65 .3 00:0 131.1°
-6 3.5 0.66 9.1 0z20 132.0°

Table 4.4: Results from fitting the MAS projections (slices) out of the 3QMAS
NMR spectrum at 11.77T for crystalline anorthite, compared with previous results
from single crystal NMR [122] and with mean Si-O-Al bond angles from the x-ray
diffraction structure. Uncertaintics in fitted Co values are about 0.5MHz; in 5, about
0.2, and in d;,, about 1 to 2 ppm.

Al) angle. As expected from previous MAS NMR. studies of both 2°Si and ?7Al in
framework aluminosilicates. 4, decreases systematically with increasing mean angle.
The 3QMAS data fall close to a line previously fitted to data from ordered phases,
confirming the accuracy of the new data and of the site assignments. An earlier fit
that included data for disordered minerals as well agrees even more closely with the
anorthite data. This agreement may be fortuitous. in that bond angle calculations
for disordered crystals are based on average long range structure. and thus may be

distorted by the lack of data on true local bonding geometry.
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Figure 4.7: Isotropic chemical shifts [or anorthite, derived from 3QMAS data, plot-
ted against the mean Si-O-Al angle (0) at cach site. Only six sites are plotted, as
data for remaining two are not well constrained by the spectra. Solid circles: results
from simulations of slices in 11.7 T spectrum; solid triangles: results from 2D peak
positions at 11.7 T; solid squares: results from 2D peak positions at 9.4 T. Solid line
is a fit to data for a variety of aluminosilicates (both ordered and disordered) with
§ = -0.500 + 132; dashed line is a fit to data for ordered structures only, with § =
-0.770 + 167.9 .

4.3.4 Anorthite (CaAl,Si,04) Glass

The 3QMAS spectram for the glass ol anorthite composition is shown in Fig-
ure 4.8. As expected from the NMAS spectrum. it is broad and unresolved. The peak
maximum and the center of mass are vShi['te(l by roughly 5 ppm from those of the
crystal in both dimensions. suggesting a decrease in the mean chemical shift and/or
an increase in the mean Cg. The much greater overall width is not surprising in light
of the disorder in the glass.

In MAS spectra of glasses in which Al is expected to be four-coordinated by
oxygen (as in this composition). there is often significant spectral intensity in the
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region of isotropic chemical shifts for five- and six-coordinated Al. In the absence of
clear, discrete peaks in such spectra, it is generally assumed that such low-frequency
tails are the result of second-order quadrupolar broadening. (This is supported by
the narrowness of satellite transition sidebands in MAS spectra.) The 2D 3QMAS
spectrum confirms this conclusion strongly: in comparison with clearly separated
features for AlOs and AlQg groups as seen in the glass described next (Figure 4.9),
there is no detectable intensity a.t:.(:hese positions in the CaAl;Si,0z glass. On the
other hand, the 2D shapes of the AlO4 peaks in both glasses are surprisingly similar,

perhaps suggesting similar ranges of d,,, and Cq.

4.3.5 Magnesium Aluminoborate Glass

This material was chosen becanse it contains sub-equal concentrations of four,
five-, and six-coordinated Al which are clearly seen as partially resolved peaks in
Al MAS NMR spectra. The 3QMAS spectrum is shown in Pigure 4.9, and has
three well-separated peaks that can be assigned to the three coordinations. The lack
of significant overlap of the 21) peaks indicates that this approach may be very useful
for detecting (or excluding) the presence of relatively small concentrations of the
higher coordination states, whose presence is likely to be ambiguous in MAS spectra.
Estimates of isotropic chemical shifts and quadrupolar products P for these peaks
can be made by measuring the positions of the peak maxima in both dimensions as
above. For the AlQg. :-\I():—,.. and AlOy peaks respectively. we obtain 4, 31, a.n.d 63 ppm
for é;5, and 2. 3, and 5 Mz for C'y. These results are com plicated by the likelihood
of overlap of signal from sites with varying parameters within each major peak, and
uncertainties are at least. 2 ppm and 0.5 to 1.0 M Hz. The relative population of £l]e
above three environments obtained from the total projection of the 2D spectrum is

about 1: 2: 6. As shown belore for the kyanite sample. however, the triple quantum
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Figure 4.8: Contour plot of 2 Al 3QMAS NMR spectrum for CaAl,SiyOg (anorthite

composition) glass at [1.7 1. The peak assignable to AlOQ, sites is labeled. Note the
absence of peaks at the AlO; and AlOg regions seen in Figure 4.9. Low-intensity
feature to left of main peak is a spinning sideband (SSB).



excitation efficiency for Al sites systematically decreases with increasing Pg. Thus,
the intensity observed for the AlO4 peak is likely to be underestimated relative to
the others. |

The 2D spectrum is consistent with ranges of chemical shifts and coupling con-
stants known from crystalline materials. AlQg sites generally have 4;,, between 1 and
15 ppm and Cg between 1 and 10 MHz. This would result in 3QMAS peak positions
of -1 to -30 ppm in the isotropic dimension and -50 to 12 ppm in the MAS dimension.
Values of 4,5, for AlOs sites typically fall between 30 and 40 ppm, with Cg between
3 and 10 MHz, giving 3QMAS peak positions ranging from -18 to -40 ppm in the
isotropic dimension and -30 to 30 ppm in the MAS dimension. Finally, AlO, sites
typically have d;,, between 35 and 88 ppm and C;Q between 1 and 10 MHz, resulting
in 3QMAS peak positions [rom -30 to -G0 ppm in the isotropic dimension and 0 to
80 ppm in the MAS dimension. Note that in Figure 4.9, each of the labeled peaks
.falls neatly in the center of the corrésponding regions. For the AlO4 peak we also
fitted slices along the wy dimension, as was done for the crystalline phases. Again,
for a disordered material results [rom this procedure are non-unique because each
slice contains unresolved intensity from sites with ranges in chemical shift and Cgp.
However, this approach does give some estimate ol the range of parameters present,

about 62 to 75 ppm flor &, and 41 Lo 6.5 M1z for Co.

4.3.6 Goosecreekite

Goosec.ref-)]\:ii;(:' is a natnral zeolite whose structure bis still somewhat controversial.
Earlier studies showed that there is only one tetrahedral aluminum site in this zeolite.
A recent refinement of the structure, however, showed that two slightly different
aluminum sites exist. The MAS spectrum of this sample shows however, only one

peak. In this respect, MQMAS would be an ideal technique to resolve this structural
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problem.

Figure 4.10a shows the "”-IAI BQMAS spectrum of goosecreekite taken at 11.7T.
The 1D 3QMAS speétrum has only one Gaussian ~pea.k (1ppm, FWHM), which is
narrower than the MAS spectrum (3ppm, FWHM). The two-dimensional spectrum
has already resolved some structures. As one can see, the low frequency side of the
isotropic dimension corresponds to a larger quadrupolar coupling constant, and thus
a broader MAS dimension. Even though the spectrum can be interpreted as two
overlapping peaks with slightly different chemical shifts and quadrupolar coupling
constants, the assignment s not unique.

The 5QMAS spectrum in Figure 1.10b, however, shows clearly that there are two
distinct aluminum sites in this zeolite. The observed frequency in MAS and 5QMAS

can be described by

(S"‘I':\ 5 = (Siso + 572.5(3 (417)
e 85 50 Lo
SHQMAS 70 f”fsq (4.18)

Using the shifts in the single-quantum and multiple-quantum dimensions, isotropic -
shifts and quadrupolar coupling constants for both sites can be extracted, using the

strategy developed at the beginning of this chapter. The results are listed in Table 4.5.

site SMAS(opm) 3RS ) YA hm) b (ppm) Po(MHz)
1 55.9 -33.8 137.5 58.4 2.7
2 55.2 -32.8 1417 59.3 34

Table 4.5: Isotropic chemical shifts and quadrupolar coupling products for
goosecreekite.

The use of quintuple-quantum coherence to enhance the resolution of 2?Al spec-
tra was well-studied by Amourenx in a series of aluminum-phosphate zeolites [79].
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However, in all of the samples he studied and onr goosecreekite sample, the quad-
rupolar coupling constants are relatively small. The question of excitation for large
coupling constants is a future problem in the utilization of this higher-order multiple-

quantum coherence.

4.4 "0 3QMAS

Before concluding this chapter. 1 will include some initial results on the application
of 3QMAS to the study of oxyvgen sites in silicate crystals. Oxygen is the most
important element in various types of materials and has been extensively studied by
MAS and by DAS [47. 31. 95. 75, 96. 97. 100. 101. 123, 124, 125]. Because of its low
resonance frequency and low natural abundance, isotopic enrichment is often needed
in most of the studies.

Oxygen sites in silicate and aluminosilicate materials are roughly classified into
two types: the bridging and the non-bridging oxygens. The bridging oxygen con-
nects two framework atoms (silicon or aluminum), whereas the non-bridging oxygen
has charge compensating cations (often alkaline or alkaline earth cations) as nearest
neighbors. The guadrupolar conpling ('f()l'lSllél.l';IZS for the bridging oxygens range from
4-TMHz, which are larger than those for the non-bridging oxveens (2.5-3.5MHz). This
large difference in quadrupolar conpling constants induces diflerent quadrupolar shifts
tha.t.t;he bridging and non-bridging oxvgens are at least partially separated in a DAS
or MQMAS spectrum,

Figure 4.11 shows the 3QMAS spectra of two minerals larnite (CaSiOy4) and
forsterite(Mg,Si0,). Corresponding DAS spectra revealed 4 peaks for larnite, and
3 sites for forsterite [75]. The 3QMAS spectra of larnite gives only two resolved
peaks. The three forsterite peaks are however, all resolved. In both samples, only

non-bridging oxygens exist so all of the sites are expected to be excited. For another
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sample enstatite, where bridging oxygen sites also exist, we were not able to excite
the bridging oxygens using a relatively low power (30-40kHz). However, 3QMAS
experiments on bridging oxygens have been performed in many groups, and their
results suggest that such experiments are feasible when the enrichment level is high
(20-40%) and when the spin-lattice relaxation time is short (less than 1 second)
[56, 116, 126, 127]. More importantly, oxygen sites in Si-O-Si and Si-O-Al linkages
are often well-separated. It is also interesting that when Ty is short, 3QMAS actually
gives better S/N than DAS. Based on these preliminary works, it is quite promising to
use 3QMAS for the study of a scries of technologically important materials, including

multi-component oxides, zeolites and supported oxide catalysts.

4.5 Conclusions

Multiple-quantum magic-angle spinning (MQMAS) spectra can provide enhanced
resolution for 27Al in aluminoesilicate and aluminate materials, both crystalline and
amorphous, although resolution in the isotropic dimension may still be limited by dis-
order and other less well understood mechanisms of residual broadening. Additional
information on NMR. parameters may be obtainable because the two dimensional
spectra provide some separation ol chemical shift and quadrupolar effects, both from
simple peak position data and from fitting of NLAS peak shapes in slices of the spectra.
MQMAS signal can be obtained cven [rom sites with quadrupolar coupling constants
as large as OMIlz. but intensity is systematically reduced \\'it.l'nl increasing Cg. We
have derived new data for isotropic chemical shilts for five or six of the eight sites
in crystalline anorthite, which agree reasonably well with previous correlation with
structure. In glasses, the separation between peaks for Al in different coordination
states is excellent, and provides a new and sensitive test for the presence of AlOs

and AlQg sites in glasses dominated by AlO,. although absolute quantification may
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remain difficult.
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Chapter 5

Correlation Spectroscopy with MQMAS

Up to now, we have only considered the NMR. spectra under s'ingle-spin interac-
tions (chemical shift and/or quadrupolar interactions). To interpret NMR spectra of
networks of spins, connectivity among dilferent spins is to be established. Heteronuc-
lear correlation (HIXTCOR) as a means of mapping out the spin topology, is proved
powerful to correlate the chemical shifts of directly coupled spins and elucidate the
.structure of heteronuclear coupling networks [3]. HETCOR in the solid-state has
been limited to pairs of spin-1 nuclei in the past, due to the lack of high-resolution
for quadrupolar nuclei. With the development ol DAS and MQMAS, we demonstrate
in this chapter that true high-resolution HETCOR spectra are equally obtainable for

quadrupolar nuclei.

5.1 Heteronuclear Correlation (HETCOR)

Heteronuclear correlation spectroscopy is a routine method in liquid-state NMR
and represents only a special experiment among a scries of two-dimensional correl-
ation methods [5. 8]. The |<<:_§-' ol the experiment is coherence transfer between two
types of coupled heterospins. Inweakly coupled svstems. coherence transfer between
two spins occurs only if there is a non-varnishing dipolar- or J-coupling between the
spin pair. Since the magnitude of dipolar and J-couplingsis inversely proportional
to the third power of the distance hetween the two spins, only those spins that are
in spatial proximity show significant couplings and induce coherence transfer. As
a result, the appearance ol cross-peaks in 2D HETCOR. spectra serves as a proof

of spatial proximity between the coupling partners. The spectrum is thus a visu-
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alization of the topology of the spin system in a direct and informative way. This
detailed information about the spin system is often essential for the determination of
~the structure of large molecules [128] and complicated materials [129].

It is worth describing cross-polarization (CP) [13, 130] here before we go into
any details about HETCOR. Cross-polarization is the most widely used technique in '
the solid-state to achieve heteronuclear coherence transfer and signal enhancement.
Dipolar coupling, whose magnitude often exceeds that of the J-coupling by an order of
magnitude, is the basis of the coherence transfer process. The simplest CP scheme,

. : RPN < ey o T e R T .
as shown in Figure 5.1. starts by applying a 5 pulse along the rotating frame y-

(n/2)g, o

ACQ¢R

Figure 5.1: (‘ross-Polarization between two spins | and S.

axis on one type of the spins (usually the more abundant spin type that serves as
magnetization source and is termed as l-spin). This pulse generates single-quantum
coherence on the I-spins, which is subsequently locked along the rotating fra.me‘:v—
axis by applying a long pulse along the w-axis. If a long pulse is also applied to the

S-spins (the less abundant spin type that borrows magnetization {rom I-spins), and
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the magnitude of the RI" ficld fulfills the Hartmann-Hahn condition
Y 1311_275[3157 (51)

the precession frequencies of the two types of spins are equal and the flip-flop terms
in the dipolar Hamiltonian are now zero-enecrgy process. This greatly enhances the
energy transfer process befween two types of spins and the net result is often that
the rare spin (S-spin) magnetization is amplified significantly. For instance, When
cross-polarization (CP) is applied to a 'I-"*C system, a gain of a factor of 3-4 in
13C polarization can be achieved. The signal to noise (S/N) ratio is often boosted
by more than an order of magnitude, since 'H has shorter T than BC that fast
repetition can be used with C'P0 Currently. cross-polarization 'rna.gic-a.ngle spinning
(CPMAS), which combines cross-polarization with magic-angle spinning, is the single
most routine experiment performed in most solid-state NMR laboratories.
Cross-polarization hetween two quadeupolar nuclei or a spin—% and a quadrupolar
nuclei suffers a number of difficulties. IPirst, the rotating frame Hamiltonian is dom-
inated by the large first-order quadritpolar interaction, which is highly anisotropic

that the quadrupolar coupling constant depends on the crystalline orientations.
el _ Q0 2 450 b sin? 32 cos 209
Co ' = 5 (Beos™ 3% — 1 4, sin” 5% cos 2a%) (5.2)

Here, Cg” is the effective quadrupolar coupling constant and (a?, 82,v9) are the
Euler angles between the quadrnpolar principal axis frame (PAS) and the lab frame.
The differences in the quadinpolar coupling constants complicate the Hartmann-
Hahn matching condition for cross-polarization [69. 70]. For instance, when Cg” <
wy, the Hartmann-Hahn condition is the same as that of a spin-5 pair.

By /gl/ = A,</f]\ (53)
However, when C’é” > wy, the Hartmann-tahn condition needs to be modified to
include a constant factor dependent on the spin ¢uantum number of the quadrupolar
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nucleus.
] Lo
1B = (8 + =)ysBis (5.4)

In a powder sample, it is often the case that neither of the above two conditions are
fulfilled and the eflective quadrupolar coupling constant Caf /is comparable to the
RF strength (w;). The spin dynamics is {ar more complicated (see the discussions
in chapter 3 on spin locking) that no single intuitive formulus exists for the whole
sample.

The matching condition in a rotating sample is further complicated by two facts.
First, the dipolar interactions that mediate the CP transfer are averaged to zero over
a rotor period (the instantancous dipolar coupling, instead, still exists and induces
coherence transler), reducing the efficiency of cross-polarization (CP). Second, the
effective coupling constant for a quadrupolar spin is no longer constant and fluctuates
periodically. As a rvesult, there exists no unique matching condition that all of the
spins with different crystalline orientations fulfitl. This suggests that CP spectra
involving quadrupolar nuclei are often not quantitative. Nevertheless, the fact that
only spin pairs with non-varnishing dipolar couplings give rise to coherence transfer
and therefore cross-peaks in 2D HETCOR: spectra is still valid. This means that
HETCOR experiment |)<‘,~l.\\'<,';'xx quadrupolar and Spin—% nuclei would in principle,
provides similar information on the spin coupling network compared to the correlation
for spin-% pairs.

A simple HETCOR sequence is constructed by incorporating the CP sequence
with a simple one pulse (".\’[)‘(Z‘I"Hn(‘lll- on S-spins. As shown in Iigure 5.2, a 7. pulse
applied to the I-spins brings the I-spin magnetization into the a-y plane of the labor-
atory frame. The magnetization evolves under the l-spin Hamiltonian for a variable
time t;, during which the I-spin resonance frequencies are encoded into the result-

ant magnetization. Through cross-polarization. this magnetization on the I-spin is
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Figure 5.2: Pulse sequence and coherence pathway for a traditional HETCOR ex-
periment. Notice that only the coherence pathway on [ spin is shown.

transferred into S-spin magnctization, which continues to evolve under the S-spin
Hamiltonian and is l'g—r('()n‘l(wi with quadrature detection. The two [requency domains
after two-dimensional Fourvier transformation are the I- and S-spin chemical shifts,
with cross-peaks appearing between the resonances of dipolar coupled heteronuc-
lear spins. Magic-angle spinning is usunally a.pplié(l during the wl’iole experiment to

enhance the spectral resolution in both dimensions.

5.2 HETCOR with Quadrupoles

1

Figure 5.3 is an example of regular two-dimensional HETCOR spectrum between
a spin-1 and a quadrupolar nuclens. The #*Na/*'P HETCOR spectrum is taken on
sodium trimetaphosphate (NayPP30g). which was prepared by heating NaHoPOy at
550° for 3 hours and slowly cooling the sample dow I Lo room temperature [43]. X-ray
diffraction (XRD) shows that the sample is well-crystallized and of the correct phase.
MAS NMR spectra on #*Na and *'P conflirm the conclusion that there are two distinct

23N : . . . 1Q 7
types of *Na and ?'P sites in this componnd. The two phosphorus peaks, -18.7 and
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Figure 5.3: A conventional two-dimensional #Na-*'P HETCOR spectrum of

NazP30g collected at 11.7T. The sample is spinning at 5kHz and the contact time is
dmsec.

-15.5 ppm away from a 85% 113P0y standard (0.0ppm), are the general and mirror
sites respectively. The 2*Na spectrum. broadened to about 4kHz by second-order
quadrupolar interaction. can be deconvoluted into two quadrupolar powder patterns,
with isotropic chemical shifts at -6.2 and -22.1 ppm with respect to solid NaCl at 0.0
ppm.

The existence of lour cross-peaks between the two 2P and #*Na resonances sug-
gests that each »'P site is near to both **Na sites. Similarly, each *3Na site is also
near to both 2'P sites. This qualitatively agrees to the crystal structure of NagP3O0yq
that all of the sodium and phosphorns positions are interconnected (through oxygen

atoms).



Notice that the HETCOR experiment is performed by transferring coherence from
the lower gyromagnetic ratio quadrupolar nucleus (**Na) to the higher gyromagnetic
ratio spin—% nucleus (*'P). This is the reversed case of most CP experiments. For
cross-polarization between spin—% and quadrupolar nuclei, unless 'H or 'QF is involved

or the quadrupolar nucleus is of very low abundance, CP from Spil-% nucleus to

quadrupolar nucleus does not enhance the signal to noise ratio [42, 70, 131, 132].

1
2

Two reasons account for this anomaly: (1), CP between quadrupolar and spin-
nuclei is often inefficient; (2), spin-% nuclei often have long spin-lattice relaxation
times (T7) which preclude rapid signal averaging. Therefore CP is better used as a
spectral editing method, rather than a signal-enhancing technique. On the contrary,
like in the current case, CP from gquadrupolar spins enhances S(:‘.nsil;i vity of the spin-%
nucleus.

Due to the complex spin dynamics during cross-polarization, it is not easy to
retrieve exact distance information from the HETCOR experiment. Also, the res-
olution in the quadrupolar dimension is fow. The resolution problem is less severe
for Na,_gl')gog, where the two sodium sites are separated by their chemical shifts. For
more interesting materials with complex structures and 0\'<‘f.rla.|)ping resonances, 1t-is
important to have liquid-like resolution in the quadrupolar dimension. As shown in
the next section, high-resolution is achievable for quadrupoles in both dimensions of
a HETCOR spectrum. when DAS or MQAMAS is applied to the regular HETCOR

experiment.

5.3 High-Resolution HETCOR

True high-resolution correlation between quadrupolar and spin-3 nuclei can be
achieved by correlating the dynamic-angle spinning (DAS) or multiple-quantum magic-

angle spinning (MQMAS) spectrum ol a quadrupolar nucleus with the magic-angle
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spinning (MAS) spectrum ol the nearby spin-i nucleus. Like DAS and MQMAS,
both approaches reconstruct the isotropic quadrupolar dimension by breaking up the
t; evolution time into two parts. The anisotropic resonance frequency of each spin is
rendered to have opposite signs during the two separated ¢, time periods of the evol-
ution. When the ratio between the two times are well-selected, anisotropies arising
from CSA and the second-order quadrupolar interaction are removed and an echo is
formed at the end of {, evolution.

In Figure 5.4, we compare the experimental schemes and coherence pathways of
DAS/HETCOR and MQMAS/HETCOR. For DAS/HETCOR., a DAS experiment is
performed first on **Na before the sodium magnetization is transferred to 3'P through
cross-polarization. The experiment proposed by Jarvi et al. chose the (79.19°,37.38°)
angle pair with & = . The sample stays at 79.19° and 37.38° for an equal amount of
time (&), which creates a DAS echo at the end of the £, period due to the refocusing
of the second-order quadrupolar interaction. Cross-polarization is then perforlﬁed at
0° to maximize the CP efficiency. This results in a second rotor axis reorientation
that brings the spinner axis to the direction of the static field. After CP, another
reorientation of the rotor axis is needed to allow data acquisition at the mzi.gic-a,ng]e.
Including the final hop doring veevele defay that brings the spinner axis back to
79.19°, a total of 4 hops are required for cach single scan that takes about 120-
150msec. Representative spectrum ol DAS/HETCOR can be found in the paper by
Jarvie and Mueller [13]. Notice that a static-coil hopping probe is a priori for this
type of experiment, since pulsing at 0° is needed.

The number of hops in DAS/HETCOR can be decreased to 3 by choosing the
k = 5 DAS angle pair. This however, still requires a hopping DAS probe. The
MQMAS/HETCOR experiment, which does not involve reorientation of spinner axis,

relieves the requirement ol a static-coil hopping DAS probe. [t starts by excit-
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Figure 5.4: Comparison of DAS/HETCOR and MQMAS/HETCOR. pulse se-

quences and coherence transfer pathways.
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ing the triple-quantum coherence on **Na.  As described in earlier chapters, the
excitation is most efficiently performed by applying a single strong RIF pulse near
to the sodium resonance frequency. The triple-quantum coherence is then allowed
to evolve for 1_’+JT and then another strong pulse (reconversion pulse) transfers the
triple-quantum coherence to single-quantum coherence, which evolves for lk—_& hefore
cross-polarization is done at the magic-angle. The subsequent detection period is the
same as in DAS/HETCOR.

The 96-step phase cycle for MQMAS/HETCOR. is given in Table 5.1. Mirror
image coherence transfer pathways are retained during the two separated ¢y period,
leading to two-dimensional pure-absorption lineshapes. The phase cycle has incor-
porated CYCLOPS and spin-temperature alternation to remove possible artifacts
due to imperfections of hardware sctting. A separate dataset that shifts the phase of

@3 by 90° is needed to allow for purc-absorption spectra.

MQMAS/HETCOR cosine

¢ | 0° 60°  120° 180° 240° 300°

@2 | 0° 0° 0° 0° 0° 0° 90°  90°  90°  90°  90°  90°
180° 180° 180° 180° I80° 180°  270°  270° 270° 270° 270° 270°
¢3 | 0°

¢4 00 00 00 ()O 00 00 ()O 00 00 00 00 00
0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°
go°  90°  90°  90°  90°  9o°  9o° o 90 90°  90° 90°  90°
90°  90°  90°  90°  90°  90°  90°  90°  90°  90°  90°  90°
180°  180° 180 I180°  180°  Is0° [80° 180°  1s0° 180° 180° 180°
180°  130° 130° 180° I80°  180°  180°  1s0°  180°  180° 180°  180°
270°  270°  270°  270°  270° 270°  270°  270°  270° 270° 270° 270°
270°  270°  270°  270°  270° 270° 270° 270° 270° 270° 270° 270°
o | 0° 180° 0° [80° 0° . 180° 180° 0° 180°  0° 180° 0°
g90°  270° 90°  270° 9op°  270°  270° 90°  270° 90°  270° 90°
180° 0° 180° 0° 180° 0° 0° 180° 0° 180°  0° 180°
270° 90°  270° 90°  270° 90°  90°  270° 90°  270° 90°  270°

Table 5.1: Phase cveles for NIQMAS/HETCOR
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The utility of the MQMAS/HETCOR experiment is well-demonstrated in Fig-
“ure 5.5 on NagP304. Experimental conditions are chosen to closely mimick the reg-
ular HETCOR. experiment (IFignre 5.3); For example, the sample is spun at 5kHz in
both cases, and the contact time is sct to Hmsec in both experiments. As expected,
the 2>Na dimension contains two isotropic peaks (3ppm, FWHM) af -5.0 and -24 ppm.
These numbers are dillerent from those observed in DAS/HIETCOR due to the differ-
ent field strengths and scaling factors. Again, four distinct cross-peaks are observed,
confirming the conclusion of a [ully coupled #*Na/?'P spin network. Analogous to
the fact that DAS/HIETCOR has many advantages over DAS, MQMAS/HETCOR
has similar advantages over DAS/HETCOR. For example, the most important one
is that technically, NMQMAS/HETCOR is much simpler because dynamic-angle spin-
ning probe is not a prevequisite. To perform CP at 0°. a static-coil DAS probe
is required, which is not available currently from most NMR probe venders. As a
comparison, our MQMAS/HETCOR experiment was done on a doubly-tuned MAS
probe, which is available in most modern solid-state NMR labs.

The technical simplification of MQMAS also gives another advantage that makes
MQOQMAS/HETCOR a preferred (v(‘(:|'lll.l('|l|(‘ to study a wider range of zeolitic and glassy
materials that contain nuclei with short spin-lattice relaxation times (for instance,
2TALand 'B). As an example. Chimelka ot al. showed that regular 'I1/27A1 HETCOR
experiment is able to discriminate acidic sites in zeolite catalysts.  Incorporating
MQMAS to this experiment is natural and would enhance the Al dimension res-
olution by an order of magnitude. Another example shown by Amoureux recently
demonstrates that NMQNMAS can he combined with CP for spectral editing [15]. In
his study, the connectivity among the different ™17 and 27 Al sites are studied in alu-
minum phosphate zeolites. MQMAS/HETCOR in this case may lead to a direct

mapping of the connectivity topology. More importantly, MQMAS/HETCOR. with
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Figure 5.5: Two-dimensional #Na-2'P MQMAS/HETCOR spectrum of NazP30g

collected at 11.7'1. The sample is spinning at H5kHz and the contact time is Smsecc.
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2TA1/Si spin pair can potentially be used to study a whole spectrum of minerals
and zeolites. In all of these cases, DAS/HETCOR. would fail due to short T} for 27Al.

Another potential advantage of MQMAS/HETCOR. experiment for spin—% is that
the resolution in the ¢uadrupolar dimension may be better than that observed in
the DAS/HETCOR experiment for two reasons: (1), the DAS linewidth for Na
is determined by homonuclear dipolar interaction, which is not averaged out effi-
| ciently in DAS and often gives larger linewidth than MQMAS. For example, the
BNa linewidth in DAS/HETCOR is about S800Hz (FWHM), whereas that iﬁ the
MQMAS/HETCOR spectram is only 400Hz. (2). the scaling factors of the chemical
and quadrupolar shifts in MQMAS is larger than | (or smaller than -1). This better
resolution is crucial, for example, in diflerentiating sodium sits in sodium phosphate
and silicate glasses [133].

The disadvantage of NIQMAS/HETCOR is again associated with the inefficiency
of excitation and reconversion pulses. Compared with the DAS/HETCOR spectrum
(which is not gnantitative either). the intensity of the low frequency **Na site is much
lower than the site population expected from NXRD. ISven though simulations show
that low frequency site with larger qnadrupolar coupling constant has one-quarter
of intensity of the other site due to different excitation and reconversion efficiencies,
it is not clear how much of the discrepancy can be attributed to this effect. Cross-
pola.riz.a.tion, as discussed carlier. infroduces extra problems that are hard to quantify.
Because of this, MOQMAS/HETCOR and DAS/HETCOR. experiments should both
be considered as qualitative. rather than quantitative.

[t is worth noting that different multiple-quantum excitation and reconversion
schemes can be combined with [HETCOR to better quantily the MQMAS/HETCOR
spectra. While this partially solves the qua,nl,ifi‘c.al',ion problem, it is ver'y likely that

the problem will still exist. Even though there is a scheme that claims quantitat-

112



ive MQMAS excitation and reconversion [63]. the validity of it is still limited to
high excitation power and small variations in the quadrupolar coupling constants for

different sites.

5.4 Conclusion

In summary, high-resolution HETCOR spectra involving quadrupolar nuclei can

be obtained by correlating DAS or MQMAS spectrum of the quadrupolar nucleus with

1

5. The two resultant techniques are complementary

the MAS spectrum of the spin-
to each other that provide qualitative characterization of the spin coupling networks.
These techniques would have divect application to sodium phosphate glasses, where
the characterization of site distribution and connectivity network is essential to the
understanding ol local ordering in amorphous materials. With the new resolution

and spectral editing capabilities. detailed inspection of local microstructure in various

classes of technologically important materials is possible.



Chapter 6

Switching- Angle Spinning of Quadrupoles

One of the major goals in the other chapters of this thesis is to determine the
isotropic chemical shift (d;,,) and the quadrupolar coupling parameters (Cq and 7).
The anisotropic chemical shilt interaction that a quadrupolar nucleus also experiences
is only briefly discussed. The chemical shift anisotropy, however, like the quadrupolar
interaction, contains valuable information about the local geometry around the nuc-
leus and is the major structural probe for spin—% nuclei. This chapter is concerned
primarily with the extraction of the [ull chemical shift parameters and the relative

orientation between the CSA tensor and the quadrupole tensor.

6.1 Overview

Study of coexistent interaction tensors by NMR. can be dated back to the early
sixties [134, 135]. There are at least two major reasons that such a study is crucial.
First, the NMR spectra can not be well-understood or reproduced by theoretical

"
calculations if only one of the interactions is assumed to be dominating; second, in
the case of coexisting dipolar and chemical shift tensors, the dipolar tensor is often
coaxial with the intermolecular vector. Wnowing the relative orientation between the
chemical shift and the dipolar tensors allows a divect mapping of the chemical shift
tensor to the molecular [rame [136]. In the case of coexisting chemical shift and
quadrupolar tensors, mapping the guadrupolar tensor (rame onto the chemical shift
tensor frame may lead to a better picture of the velationship between the quadrupolar
interaction and the molecular strocture.

The most accirate method for the study of coexisting chemical shift and quad-
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rupolar tensors is the single-crystal method [137]. By carelully reorienting the single
crystal sample in the static magnetic field, the change of the NMR peaks is recorded
and analyzed. Good agreement between (-:xperimenta'.l data and fittings can often be
achieved. The method. while being accurate, is tedious and sometimes impossible
since the growth of the single-crvstal may be nontrivial.

Simulating the static NMR spectra is another approach that was used by Bray
et al. in 1969 [134] and by Cheng ct al. in 1990 [85] for the study of *'V and
87Rb, respectively. The simulation involves at least 8 parameters, and multiple-field
or multiple-nuclear experiments ?14'(—_\ often required; thus, the technique is not very
powerful, especially in cases where multiple sites exist in the sample. For example,
the result obtained by Cheng ot al. on RbCIO, (one Rb site) is consistent with the
DAS and MQMAS results; however. their results on RSOy and RbyCrOy (multiple
sites) are much less accurate and are inconsistent with the data [rom high-resolution
techniques [24].

Simulating the MAS spectra [138, 139] has the similar problem as simulating the
static spectra. The advantage is, however, that some small interactions (for instance,
dipolar coupling) may be averaged out by MAS and do not aflect. the NMR lineshape.
This ma‘.y be a disadvantage as well, since chemical shift interaction is also averaged
and its effect on the spectrais only reflected by the sideband intensity.

The above two techniques, while being less accurate, are quite simple and straight-
forward. Another interesting approach is to simulate the whole MAS spectra, includ-
ing the satellite transitions [140. I11]. This tvpe of spectra often has enough in-
formation to constrain the simulation. and determination of very small chemical shift
anisotropies has been reported. The experiment may, however, be difficult and re-
quires well-calibrated hardware. Since the spectra may cover up to a 1MHz frequency

range, a single experiment does not suffice to excite the whole spectral range. In this
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case, multiple spectra are recorded with different carvier frequencies. The resultant
spectra have to be scaled and combined carefully to give the final spectrum.

The major problem with 1;]'16. previous simulation method is that the spectra are
not sensitive enough to small or intermediate chemical shift interaction. A natural
extension is then to exploit a second dimension. This idea has been applied to the
coexisting dipolar and chemical shift tensors, where a separated local field(SLF) NMR
technique maps out both interactions and their relative orientation to each other in
two separate requency domains [8]. I would like to demonstrate in this chapter that
it is equally ])(;ssil)le to extract quadrupolar and chemical shift tensor orientation

through a two-dimensional switching-angle spinning (SAS) experiment.

6.2 Theory

6.2.1 Coexisting Tensors

In this section, only the coexistence of chemical shift and quadrupolar tensors is
considered, even though the hasic theory is applicable to other coexisting tensors.
As discussed in chapter two, the guadrupolar and chemical shift interactions are
characterized by two and three parameters respectively. These parameters are Cg
a.nd_ Mo for quadrupolar interaction and 8;,,.d¢s and 1, for CSA. These parameters
are defined in the principal axis frame (PAS) of cacl interaction and the two frames
are related to cach other through a general votation (Figure 6.1). We will assume
that the three Fuler angles hetween the two frames are o, \ and .

Calculating the powder NMR spectra under spinning condition involves an en-
semble a,\’(e,.l'a.g("-: over all the crvstallites. We can specily each crystallite by giving the
three Euler angles (a9, .49.49) hetween the (|Il?\(ll'll])0|'cﬁ' PAS and the rotor frame:

The frequency shift for this crvstallite has contributions {rom the chemical shift in-
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Figure 6.1: A schematic representation of the quadrupolar and chemical shift prin-
ciple axis systems (PAS) with a relative orientation characterized by the Euler angles

¢, x and .

teraction and the quadrupolar interaction.
0 =w" %@ (6.1)

Eqn 2.60 and Eqn 2.66 can be used to calculate the relevant terms in the above
equation. For the quadrupolar shift. the quadrupolar tensor is first transformed into
the rotor frame, and then to the laboratory frame. This is exactly the same as what

we did in chapter 2 and the final result is Egn 2.77. For the chemical shift interaction,

however, an extra rotation [rom its PAS to the quadrupolar PAS is needed.

rQ .1( -~

o R L . I R AT - 0.0 - .
CSA PAS 25 Q1 PAS™ 257 Rotor Frame ™5 Lab Frame (6.2)

Eqn 2.68 needs to be modified to include this rotation.

2 2
ST % D0 3 ) D62 A\ ) ST (6.3)

==2nu=—12

2
AST = 3 Dt 0.0)
{

fo=—2

N



Exact expansion of this equation is tedious and complicated, but the final chemical

shift would have the following format.

WS = Voo 4 Ag"S(O,’ B, ~, (;I)Q’ /\,Q)P2(cos 0) (64)

6.2.2 Switching-Angle Spinning

The experimental scheme of switching-angle spinning (SAS) {142, 143] is shown
in Figure 6.2, together with the pulses applied. The experiment is in fact, similar to
a DAS experiment for quadrupoles (Iigure 3.7). The difference is, however, that the
two angles (0,0;) are not one of the DAS angle pairs. Most often, the experiment
is used to correlate the isotropic and anisotropic chemical shilt spectra of a spin-%
nucleus. For this reason. one of the spinning angles is chosen to be the magic-angle
to give high-resolution in one dimension. [n onr experiment, we also keep the magic-
angle as one of the angles. since MAS narrows the quadrupolar lineshape by an order
of magnitude. Diflerent from the spin-half case, both dimensions of an SAS spectrum
of a quadrupolar nuclens do not have high-resolution.

This two-dimensional SAS experiment can be viewed as mapping the resonance
frequencies of a powder sample onto a two-dimensional [requency plane, whereas a 1D
experiment maps those frequencies onto a one-dimensional axis. Since the sample is
spinning at two diflerent angles doring the two time periods, the resonance frequencies
in the two dimensions lor a single crvstallite are different. The two-dimensional map
then reflects the correlation hetween these [requencies. More specifically, the intensity
of the resulting SAS spectrum is proportional to the probdbility that a nuclear spin
having NMR frequency wy at 0 and wy at 0,.

For a powder sample. the NMR frequency as a function of orientation is not single
valued. Hence, for one-dimensional spectra there is overlap of signals corresponding
to crystallites with different orientations. When the NMR {requencies are sampled
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Figure 6.2: A schematic representation of the switching-angle spinning (SAS) ex- -
periment. As the sample is spinning about 0, relative to the magnetic field, a 90°
RF-pulse is applied. The magnetization evolves in the plane transverse to the mag-
netic field for a time #; until another RIFF-pulse stores the magnetization along the
field axis. The spinning axis is then changed to 0,. A final RF-pulse places the
magnetization back into the transverse plane where it is detected. The experiment
is repeated with ¢, incremented by a dwell time.

for two times in an SAS experiment. under dilferent spinning conditions, the relative
contributions of chemical shift and qnz-x.(l|'11|:)(_)Ia‘r interaction are different for the two
dimensions. The resulting spectra thus have less overlapping and better reflect the
relative orientation between the two tensors.

The two-dimensional SAS spectra can be simulated by caleulating the following

integration over all crystallites.
Ay
Hwi,we) = / / Slewr. Q) (0@ 39N (wr . (@, 39)) sin 39da® dp? (6.5)
0 Jo '

Here, Q; and 2, are the resonance frequencies in Faqn 6.1, and Dirac §-function is used.
To see how the SAS spectra depend on the quadrupolar parameters, [Figure 6.3 shows
the calculated spectra with diflerent spinning angles and quadrupolar asymmetric
parameters (1,). [For the simulation. 0y has been set to the magic-angle, and only
0, is varied. The spectra sngeest that. SAS technique is very sensitive to 1, and
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produces well-defined two-dimensional lineshapes.

6.3 Experiment

All samples used in the experiment were obtained from commercial sources, typ-
ically with a stated purity of 99.8%. The **Na and 8"Rb NMR spectra were acquired
at 4.2T (**Na, 49.1 MHz: 8 Rb 60.8 MHz), 9.4T (**Na, 105.9 MHz; 8Rb 130.9 MHz)
or 11.7T (®Na, 132.3 MHz: 3 Rb 163.6 MHz), with a Nalorac Quest, Bruker AM-400
or a Chemagnetics CMX-500 spectrometer, respectively. A home-built NMR probe
based on the design of Ilastman et al. [72], capable of fast reorientation of the spin-
ning axis, and emploving a Doty Scientific (Columbia, SC) 5 mm fast MAS stator
was used [73]; except for the #Na NMR spectra acquired at 4.2T, using a static-coil
DAS probe based on the design of Mueller et al. [23]. A Whedco (Ann Arbor, MI)
high torque stepping motor and motor controller were used to reorient the rotor axis
in typically 40ms. The spinning axis was initially set to 54.74° using the 3'Br NMR
signal of KBr. The pulse sequence we used are similar to the DAS sequence and same
phase cycle was used. To ensure selective excitation of the central transition, 90° RF
pulses were typically longer than 10ps. Generally, 128 and 512 points were acquired
in 1; and 1. respectively. with 32 S("H.Ivls per {; value. However, the experimental
parameters depended greatly on sample and field strength. During processing, the
t; dimension was zero (illed to 236 points and 10011z Gaussian line-broadening was
applied in both dimensions. Dilute aqueous solntions of RhNQ3 and NaCl were used
as external standards. Unlike DAS or MQMAS. no shear transformation is needed
in this case. The simulations were performed on a Silicon Graphics (Mountain View,
CA) R4000 workstation using a program written in FORTRAN. A two-dimensional
spectrum with 128 points in both dimensions takes approximately three seconds to

calculate.
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Figure 6.3: Simulated two-dimensional SAS spectra, considering only the quadru-
polar interaction, as a function of §, and the quadrupolar asymmetry parameter, n,,.
0, is 54.74°. The horizontal dimension is the MAS dimension.
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6.4 Results

As a test of the technique and the simulation program, a sample was chosen that
had been studied previously and contains one crystallographically distinct sodium site
that has negligible chemical shift anisotropy [41]. In Figure 6.4, the experimental and
simulatedv”Na. SAS NMR spectra of Nay,SO4 acquired with 0; and 03 equal to 80° and

54.74°, respectively, are shown. The magic-angle was chosen to minimize the CSA
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Figure 6.4: (A) Experimental and (13) simulated two-dimensional *Na SAS NMR
spectra of Na;SO,4 acquired at 4.27T with 0, = 80°,0, = 54.74°. The simulated
spectrum corresponds to Cg = 2.6MHz, N, = 0.6, and §;5, = 4ppm. No chemical
shift anisotropy was included in the simutation. The horizontal dimension is the MAS
dimension.

effect in this dimension: the other angle was chosen to be near to 90° to minimize
the sideband intensity. The simulated spectriun yields Cq = 2.6MHz, 5, = 0.6,
and d;5, = Appm. consistent with previously reported values. The projection of

the w, dimension corresponds to an MAS spectrum and is consistent with an MAS

spectrum acquired separately. as well as with a simulation of the one-dimensional



spectrum calculated using the same parameters as above. For simple systems, the
quadrupolar parameters are obtainable using the SAS technique, with an accuracy
equal to or greater than that obtained from one-dimensional magic-angle spinning
spectra.

Many two-dimensional spectra were calculated to determine the eflects of a small
anisotropic chemical shift (dcs) on SAS spectra. TFor ]':% and a moderate Cg (3MHz)
at a resonance {requency of 100 Mz, a d¢s of less than 10ppm is difficult to detect.
However, a dcs of 15ppm can cause discernible changes in the spectral features. The
effect of the chemical shilt anisotropy on the two-dimensional lineshape depends on
the relative orientation of the two principle axis systems and is more significant when
the two principle axis systems are not coincident, especially when Vzz and ézz are
not parallel.

Shown in Figure 6.5 is a Rb SAS NMR spectrum of Rb,SO, acquired at 9.4T;
also shown separately are the spectra of the individual sites and the corresporlding
simulations. RbySQOy4 has two rubidinm sites that are resolved with 0; equal to 90°.
The spectrum is however. not resolved at the magic-angle. Thus the correlation
of spectra at two angles by SAS could lead to the determination of quadrupolar
parameters for both sites.

In a separated MAS spectrum acquired with the sample spinning at 10kHz, spin-
ning sidebands ave still apparent due to the large quadrapolar interactions and result
in the intensity of the two sites overlapping in the one-dimensional MAS spectrum
(not shown here). In the SAS spectrum the signal is spread into a two-dimensional
frequency plane yielding greater resolution and nearly complete separation of the
two sites. The simulations of the SAS spectrum yield (g =5.3 and 2.6MHz, ,= 0.1
and 1.0, &;5,= 16 and 40ppm for the two sites. respectively. These results are con-

sistent with those obtained by Baltisherger from field-dependent DAS measurements
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Figure 6.5: Experimental and simulated two-dimensional 3Rb SAS NMR spectra
of RSO, acquired at 94T with 0, = 90°.0, = 54.74°. The simulated spectra were
calculated for Co = 5.3 and 2.6Ml1lz, 5, = 0.1 and 1.0, and d;,, = 16 and 40ppm,
respectively. The horizontal dimension is the MAS dimension. (A). SAS spectrum
with 2-sites (Contour levels: 19%-20%. 1% increments). (B) and (D): Experimental
and simulated spectra for site T with Cg = 2.6MHz (Contour level: 5%-100%, 5% in-
crements). (C) and (12): Experimental (Contour levels: 0.5%-10%, 0.5% increments)
and simulated (Contour levels: 5%-100%, 5% increments) spectra for site II with

Cq = 5.3MHz.
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[24], by Fernandez from simulating MAS spectra [139], and for the Co = 2.6 MHz
site by Cheng et al. [85] from measurements of static powder samples. Although,
Cheng et al. [85] reported much different values for the Co= 5.3 MHz site. Overlap
between the two sites in the one-dimensional MAS spectrum complicates the accurate
determination of these parameters using one-dimensional techniques.

The discrepancy between the simulated and experimental spectra shown in Fig-
ure 6.5 may be due to the anisotropic chemical shifts of both sites. The anisotropic
chemical shifts have been reported by Fernandez et al. [139] from simulations of
one-dimensional MAS spectra to be 12 and 35ppm for the Cp=2.6 and 5.3MHz
sites, respectively. The relative orientation of the principle axis systems was also
reported, though with large uncertainties. While in some cases a better agreement,
between the experimental and simulated SAS spectra is obtained by including an-
isotropic chemical shifts, simulations incorporating their results do not match the
experimental spectrum better than simulations neglecting the anisotropic chemical
shift. This opens the question of how accurate the chemical shift parameters can be
determined by one-dimensional NMR. when the chemical shift 21,1'1isc;t1'01)y is relatively
small. Further refinements of the two-dimensional SAS spectra are needed to accur-
ately determine the small anisotropic chemical shifts and the relative orientation of
the principle axis systems.

In Figure 6.6, the ®"Rb SAS NMR spectrum and projections of RbyCrOy ac-
quired at 11.7T with 0, and 0, equal to 70.12° and 54.74°. respectively, are shown.
One-dimensional MAS specteinm of this sample was shown in chapter 3 and the mag-
nitude of CSA was estimated there to be around 110ppm (d¢s = —110ppm). The
two-dimensional SAS lineshape results from the combination of quadrupolar and
chemical shift interactions. The projection above the contour plot is indistinguish-

able from a MAS spectrum of the central-transition measured independently. Both
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Figure 6.6: Lxperimental two-dimensional ¥ Rb SAS NMR spectrum and projec-

tions of RbyCrOy4 acquirved at 11.7 T with 0y = 70.12°,0, = 54.74°. The horizontal
dimension is the MAS dimension. The projections in both dimensions are also shown.
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one-dimensional projections have structure; however the two-dimensional lineshape
contains more detail. While Rb,CrO,4 has two rubidium sites, the site with the smal-
ler quadrupolar interaction is selectively observed. The MAS spectrum of Rb,CrOy4
at 11.7 T has more structure than if only the quadrupolar interaction was present.
Both the centerband and spinning sidebands are aflected, since the spinning speed
is not fast enough to completely average the anisotropic chemical shift. The MAS
spectra of Rb,CrOy at various fields were simulated using the parameters determined
from the SAS experiments, and reproduce most of the features in the centerband and
sidebands of the experimental spectra.

In Figure 6.7, the ¥ Rb SAS NMR experimental and simulated spectra of Rb,CrOy,
obtained with 0; = 70.12° and 0, = 54.74° acquired at 4.2, 9.4 and 11.7T are shown.
The differences among the three measured spectra reflect the dependence of the chem-
ical shift and quadrupolar interactions on magnetic field strength. The smaller the
magnetic field, the smaller the chemical shift interaction is relative to the quadrupolar
interaction. Note that the spectrum acquired at the lowest field, 4.2T, appears similar
to spectra in Figure 6.3 calculated considering only the quadrupolar interaction. All
the simulated spectra in [figure 6.7 were calculated using the following parameters,
Cq = 3.5MHz, n, = 0.3, diso = =Tppm, dcs = —110ppm, 1., = 0, x = 70°, ¥ = 0°.
¢ is undefined because. in this case the chemical shilt interaction is axially symmetric
(nes = 0). The fact that the same parameters fit the spectra acquired at three field
strengths rigorously demonstrates the precision of the technique. The quadrupolar
coupling constant, quadrupolar asvimmetry parameter and isotropic chemical shift are
all consistent with the values determined using field-dependent DAS measurements
by Baltisherger et al. [21]. |

To determine the sensitivity of the spectra to the chemical shift parameters, spec-

tra were calculated with dcg and 5., varied separately by £15 ppm and from 0 to



Experimental Simulated

- 0C-

0v-

-l()”” ,-.2,(,). :{0 _40 ‘....-.5,(.) ~ .'l'(')” _.2,0

((be) CoNQy woy wdd) 11ys Kouanbaig

42T

T — T T Ty
-150 =200 0 -50 -100 -150 -200
Frequency Shift (ppm from RbNO5 (aq.))

| SR B A
0 -50 -100

Figure 6.7: Experimental and simulated two-dimensional ¥ Rb SAS NMR spectra of
RbyCrO,4 measured at 4.2'T, 9.4T, and 11.7T with 0, = 70.12°, 0, = 54.74°. The same
parameters were used for the simulated spectra at all three fields strengths, and are
Co = 3.5MHz, Ny = 0.3,8i5, = =Tppm, d¢s = —=110ppm, ., = 0,x = 70%°,9 = 0°. -
The horizontal dimension is the MAS dimension.

158



0.15, respectively, with all the remaining parameters identical to those used for the
simulations shown in Figure 6.7. From simulated spectra such as those presented in
Figure 6.8, the uncertainty in §¢s and 7., is determined to be £15ppm and less than
0.15, respectively. To determine the sensitivity of the simulated spectra on x, 1 and
N, the spectra presented in Figure 6.9 were calculated with parameters identical to
those in Figure 6.7 except that y,¢ and 7, were varied separately by £5°, from 0 to
15°; and £0.1 respectively. The simulated spectra calculated with ¥ equal to +15° or
-15° are equivalent. I'rom simulations such as those shown in Figure 6.9, conservative
error estimates for x, v and », are £5° £15°, and £0.1, respectively. Considering
the greater accuracy in determining # compared to vy, and similar results reported
by Fen'm.ndez et al. [139]. one might suspect that this is a general trend. Further
experiments on other systems can be performed to clarily this point.

Thus, the chemical shilt and ¢uadrupolar interaction parameters and the relative
orientation between the principle axis systems are determined with the following
accuracy: Cg = 3.5 0.2MHz, 5, = 0.3£0.1, diy, = =7 ppm, dcs = —110£ 15 ppm,
Nes = 02 0.15, y = 70° £5°, ¢ = 0° £ 15°, with ¢ undefined. These results differ
significantly from those determined from one-dimensional NMR spectra of powder

samples reported by Cheng et al. [S5].

6.5 Conclusion

NMR has the potential to characterize the local atomic environment in materials
and can be used to determine structure property relationships, location and distri-
bution of substitution species. and motion and diffusion of atoms, as well as other
technologically important properties in inorganic solids. With NMR, an experiment-
alist has the unprecedented advantage of being able to manipulate the Hamiltonian

of the system under study using radio frequency pulses and sample spinning, among
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. Figure 6.8: Simulated two-dimensional 3 Rb SAS NMR spectra of Rb,CrOy at
11.7T with 6, = 70.12°.0, = 54.74°. The same parameters (Co = 3.5MHz,
Ng = 0.3,0iss = —7ppm, d¢s = —110 ppm, 5., = 0,y = 70°,¢ = 0°) were used
for all the simulated spectra except where noted. The horizontal dimension is the

MAS dimension.
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Figure 6.9: Simulated two-dimensional® Rb SAS NMR spectra of RbyCrOy4 at
11.7T with 0, = 70.12°,0, = 54.74°. The same parameters (Cp = 3.5MHz,
Mg = 0.3, = =Tppm, des = =110 ppm, ., = 0.3 = 70°,y = 0°) were used
for all the simulated spectra except where noted. The horizontal dimension is the

MAS dimension.
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other techniques. The combination of these methods with multi-dimensional NMR
techniques enables the direct correlation and/or deconvolution of multiple interac-
tions. These ideas have been used in this chapter to correlate the quadrupolar and
chemical shift interactions and to determine the quadrupolar and chemical shift tensor
elements, as well as the relative orientation between the two principal axis systems
for a rubidium site in R,CrQ,. Extension of these methods to a three-dimensional
experiment by incorporating a purely isotropic dimension will be applicable to sys-
tems with multiple atomic sites and those with a distribution of isotropic shifts such
as glasses. In this case, variable-angle correlation spectroscopy can be incorporated

with SAS to simplify the technical requirement of the experiment [86, 144].
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Appendix A

A Short Review on MQMAS

This appendix gives a review on MQMAS. which after being proposed by Frydman
[3], received considerable and extensive attention in the past years. Our contribution
at Berkeley, as described in the preceding chapters, represents a very small fraction
of the problems and applications come with this technique. While much of the work
from other groups has been mentioned before, a review here makes this thesis a more

complete reference.

A.1 History

Multiple-quantum NMR on half-integer quadrupoles has been studied for more
than two decades. Most experiments were performed on single-crystals and the res-
ults served as a nice demonstration of creation and detection of multiple-quantum
coherences in the solid-state [64, 65. 145, 146, 147]. The difficulties that hinder the
application to powder samples is a general belief that the excitation and reconversion
of the multiple-quantum coherences are inefficient for powder samples.

Amoureux was probably the first to explicitly derive the second-order quadrupolar
Hamiltonian associated to symmestric multiple-quantum transitions (m < —m) for
powder samples under spinning condition [20]. The results showed that the depend-
ence of this Hamiltonian on the spinner axis is different to that of the central trans-
ition only by some constant factors. The magnified chemical shift differences were
the primary driving force of his study. The possibility of using multiple-quantum co-
herences to enhance the resolution of a quadrupolar NMR spectrum was not realized

until Frydman [3] proposed the MQMAS experiment two years later.
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Research interests on MQMAS then fall into two groups, aiming at technique
development and application respectively. The questions that the first group of people
are interested in include the efficient acquisition of MQMAS spectra and extending
MQMAS to include other features for better spectral interpretation; the latter group

concerns more about systematic studies of interesting materials in the solid-state.

A.2 Technique Development

Three types of questions are among the primary goals of the first group. The
first one involves data acquisition, processing and spectral interpretation. Due to
the similarities between DAS and MQMAS, much of the DAS variations were dir-
ectly applied to MQMAS, making this discipline somewhat mature now. The second
problem is about the excitation of multiple-quantum coherence and its reconversion
to observable single-quantum coherence. This turns out as a difficult problem that
remains unsolved. The third direction is toward the utilization of MQMAS principles

to other experiments lor spectral editing and characterization.

A.2.1 Data Acquisition

The first MQMAS spectrum presented by Fryvdman [3] is a 1D spectrum. Ac-
quisition of pure-absorption pha.s;-‘ two-dimensional NIQMAS spectra was the topic
of a subsequent paper [51] and also the topic of many other publications [48, 49]. In
principle, this problent is the same as the acquisition problem with DAS and all of
the DAS solutions [46, 50] arc-equally applicable here. For example, the z-filter tech-
nique used by Mueller [16] to give pure-absorption phase DAS spectra was used by
Amoureux [48] and Wimperis [19] to acquire pure-absorption MQMAS spectra. It is
worth noting that this solution, which was shown not optimal for the DAS case [50],

is not optimal for MQMAS cither. A stmple redefinition of the isotropic dimension
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with possible use of whole-echo acquisition for DAS is superior to the z-filter method.
Even though it was claimed that z-filter gives slightly less spectral distortion, the 2-4
fold sacrifice in sensitivity may act as the killing factor for an MQMAS experiment.

The whole-echo method, which gives better sensitivity and has been primarily
applied in DAS for Na, 5Rb and 'O, may not be a good choice for nuclei such
as YAl "B even though they sometimes show long spin-spin relaxation times. The
possible problem with this improvement is that the spin-spin relaxation time for
different sites might be different and whole-echo acquisition makes the spectra less
quantitative. The decision on whether or not this modification should be used must

be left to the experimenter.

Mossiot pointed out that data acquisition with rotor synchronization yields spec-.

tra without sidebands and gives better MAS dimension lineshapes [148]. The ac-

quisition method is also more sensitive, due to the smaller spectral width one needs
to cover in the high-resolution dimension. Iis result shows that when the spectra
have a lot of sidebands, unsynchronized acquisition may give centerband pattern
quite different from perfect. quadrupolar lineshape and lead to errors in estimating
the quadrupolar parameters. The downside of the experiment .is that fast spinning
(> 10kHz) is a priori since the spectral width is now coupled with the spinning speed
and a slow spinning speed means a small spectral window that may not cover all the
different sites.

Recently there have been many papers about the avoidance of shearing trans-
formation [49, 55]. These papers do not make significant improvement on the old
acquisition scheme. The modified experiment still requires intensive manipulation of

the time-domain data that most NMR soltwares do not provide divectly.
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A.2.2 Spectral Interpretation

Without high-resolution techniques such as DAS, DOR and MQMAS, §;5,, Co
and 7, are determined primarily by simulating the quadrupolar lineshape. With
DAS and DOR, lineshape simulation is avoidable if experimenfs are performed at
more than one field strengths. Since C'y and 7, are often coupled together, only the
quadrupolar product Py can be derived and two experiments with different fields
suffice to the determination of Py and d;5,. Even though, lineshape simulation is still
preferred since it gives better quantification, and it derives Cg and 7, separately.

Interpretation of MQMAS spectra requires a bit more eflort since the chemical
and second-order quadrupolar shifts are scaled differently other than DAS and DOR.
Multiple-field experiments are not necessary but preferred.  Diflerent spectral in-
terpretation methods have been shown in Chapter 4. TFor more complicated cases
that the observed DAS shift is not available, multiple-field experiment or spectral
simulation is still the vight choices.

As described in detail in chapter 3, MQMAS usually gives narrower lines than
DAS due to the removal ol homonuclear dipolar couplings. The broadening due to
heteronuclear dipolar coupling can however be overcome by decoupling. The scaling
of the observed frequency in MQMAS spectra gives MQMAS better or worse resolu-
tion (compared to DAS). depending on the spin quantum numbers and the transitions
observed.

MQMAS and DAS sideband patterns arve very similar [45, 83]. The sidebands are
not integer multiples of the spinning rate away from the centerband. This is due to

the scaling factors introduced in the shearing procedure.
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A.2.3 Excitation and Reconversion Pulses

The conventional way ol exciting triple-quantum coherence is to use a pair of 90°
pulses, separated by a short period of time inversely proportional to the magnitude
of the quadrupolar interaction. The conversion from the triple-quantum coherence
back to single-quantum coherence is achieved by a single 90° pulse. This scheme was
not efficient to excite sites experiencing large quadrupolar interactions [3]. Most of
the MQMAS applications use other excitation methods.

Using single long pulse for excitation of triple-quantum coherence can be dated
back to late seventies [65, 146]. Amourcux first showed that a simple single strong
pulse is equally eflective [or the creation of triple-quantum coherence and reconversion
of this coherence to single-quantum coherence in a spinning sample [149]. The method
was separately worked out by Griffin et al. later [68]. Except for the spin-locking -
method proposed by Griffin [63] (or spin—g nnclei. this simple excitation scheme seems
to be the most efficient one. and is used widely now. How to choose the lengths of
the pulses to achieve best efficiency was the topic of many subsequent publications
[58, 67].

There seem to be some inconsistencies in literature on how to choose the excit-
ation and reconversion pulse durations. For example, Amoureux [67] suggests that
excitation pulses of 240°, 1830°, 120° and 90° should be used for 1=3/2, 5/2, 7/2 and
9/2 nuclet, respectively; Griffin et al. [68] showed, however, that a 540° pulse is effi-
cient for [=3/2 nuclei: our experiments also suggests that 540° pulse is efficient. The
discrepancy comes mainly from the dilferent experimental conditions and conventions
that different research groups used. In the simulations performed by Amoureux, re-
latively high RF power is assumed (100-200kHz), whereas most of our experiments
were performed with a mnch lower power level (30-60kHz). When the povwer level

is low, longer pulse is needed to gain hetter excitation efficiency (See IFigure 3.14
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to 3.16). In addition, some factors (field strength, frequency offset, second-order
quadrupolar interaction and the spinning speed) that aflect the excitation efficiency
are not well-studied. While each of these factors may not greatly change the result,
their combined eflect may be significant and needs further study. Another factor that
contributes to the seemingly controversial results is the different conventions used by
different groups. Notice that the pulse lengths reported by Amoureux are liquid-state
pulse lengths, which are different from solid-state pulse lengths by a constant factor
dependent on the spin quantum number. If converted into solid-state pulse lengths,
the numbers they reported should read as 480° for 1=3/2, 540° for 1=5/2, 480° for
[=7/2 and 450° for 1=9/2. These results are not very different from the solid-state
pulse lengths reported by us and Griffin.

The conversion of the triple-quantum coherence back to single-quantum coherence
is less effective than the excitation process {538, 67]. A single solid-state 180° pulse is
often the most appropriate pulse length.

An interesting question with MQMAS is that even though the excitation and
reconversion are not very cfficient. the MQ-filtered MAS dimension still resembles the
quadrupolar lineshape under MAS. This surprising result was explained by Frydman
[58] using a very simple model. The effect is attributed to sample spinning, which
renders the excitation much less orientation-dependent. A more rigorous treatment
through simulation is still not available. Such a treatment is important to the full
understanding of the excitation process. Cirrently, most simulations treat the spin
ensemble as a whole and report only the ensemble averaged results. The results,
while applicable in veality, lack physical intuition. It may be insightful to classify
spins with different orientations into many groups and see how each group of spins
are aflected by diflerent excitation schemes. The results may be more intuitive and

may lead to better excitation methods.
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An alternative excitation scheme that utilizes spin-locking pulses was proposed
by Griffin et al. [63]. According to their reports, the excitation method gives better
quantification than the single-pulse method. The tenet of the method is that even
for crystallites with large quadrupolar coupling constants, under MAS and spin-
locking condition, the effective (’p.lﬂ(lnnpola.i' coupling constants go through 2 or 4
zero-crossings [69, 70]. The single-quantum coherence is transferred into multiple-
quantum coherence during spin-locking period. While the results shown in the paper
are promising, it is not clear why a better quantification is necessarily achievable,
since the spin-locking elfliciency for half-integer nuclei is orientation-dependent and
inefficient too. Answer to this question also requires a careful look at the response of
each spin to RIE pulses.

There are at least two other groups that work on the application of shaped pulses
for excitation. However. their results are not positive compared to the simple single
pulse excitation and reconversion mechanisms. 1t is also worth noting that when the
excitation field strength exceeds some limit, further increase in £, does not necessarily
lead to improved excitation efficiency. This conclusion is not well tested, since in most

NMR laboratories, very high RIF power (>200kHz) is still not available.

A.2.4 Extensions

Examples of utilizing quintuple-quantuim coherence to enhance spectral resolution
for spin-2 nuclei was first demonstrated by Amoureux [7()] 5QMAS gives better
l‘esolut‘,'ion than 3QMAS. but has primarily been applied to *"Al in zeolites with
small quadrupolar coupling constants [45. 79, 150]. Ixcitation of quintuple-quantum
coherence is often difficult, thus this spectral enhancement method is only applicable
to sites with very small quadrupolar coupling constants (2-3MHz).

An interesting extension of MQMAS is to use it for the measurement of chemical
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shift anisotropy (CSA) [45]. For spin-3 nuclei. chemical shift effect is magnified
by a factor of greater than 2 in the multiple-quantum isotropic dimension, and the
second-order quadrupolar interaction is scaled down. CSA dominates the isotropic
dimension sideband pattern when it is relatively large. Simulation of the isotropic
dimension gives CSA parameters, even though the method does not provide detailed
information about the relative orientation between the CSA and QI tensors. Another
method that performs multiple-quantum experiment at 30.56° or 70.12° removes
second-order quadrupolar interaction totally. and allows the direct determination
of CSA parameters [15]. The method however is limited to samples with moderate
CSA of many kilohertz.

Combining MQMAS with Cross-polarization (CP) was recently presented by
Amoureux et al. [15]. CP was performed on T /2" Al pair and the resultant spectra
suggested that fluorine is connected to only one type of the aluminum sites. The
result is promising for spectral editing, but special care must be taken to interpret
the CP/MQMAS spectra.

In the above CP experiment, YF single-quantum coherence was first transferred
to 27 Al single-quantum coherence. which was then stored as z-magnetization. Triple-
quantum excitation was performed on this magnetization. The coherence transfer
is somewhat inefficient since a =-filter is used. It is not clear if it is experimentally
feasible to transfer the "I single-quantum coherence directly to 2°Al triple-quantum
coherence. Farly (’-_‘.\"|)(-‘l'.l'lll(‘l'lls on 21 give positive signs even though H usually has
smaller quadrupolar coupling constant [147].

In Chapter 5, we showed another CP bhased experiment-——MQMAS/HETCOR
[151]. The experiment allows the registry of high-resolution HETCOR spectra for
quadrupoles and maps out the spin network directly. The experiment was demon-

strated on ZNa/*' P pairs, but by no means should be limited to those systems.
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A.3 Application

A.3.1 %Al

About half of the MQMAS applications by now involves-aluminum [60, 61, 79,
150, 152, 153]. The high abundance and high resonance frequency makes it very
suitable for MQMAS studies. Also, aluminum is one of the most important nuc-
lide in zeolites, minerals, glasses and other interesting materials. - In zeolites, it was
demonstrated that MQMAS is able to differentiate aluminum sites with slightly dif-
ferent environments. The resolution is usually good enough compared to DOR, and
could be further improved by exciting the quintuple-quantum coherences. In most
of the zeolitic materials studied so [ar, the quadrupolar coupling constants are small
(2-5MHz). MQMAS was also applied to the study of alumina catalysts. Once again,
the quadrupolar coupling constants are not too large. A systematic study of alu-
minum in aluminosilicate and aluminate minerals has been presented in detail in
chapter 4. The result there suggest that when Cg is large, the spectra are no longer
quantitative. Two dillerent. methods of retrieving quadrupolar parameters were also
discussed there. 1t was shown that MQMAS is often able to differentiate aluminum
sites with different coordination numbers, which is important in understanding the

microstructure of glassy materials.

A.3.2 %Na

Most of the *Na work were performed on model compounds to demonstrate the
efficiency of diflerent experimental schemes. It was found that MQMAS is often effi-
cient for 2Na as most sites have small quadrupolar coupling constants [58]. Sodium
sites with small differences in chemical shilts and/or quadrupolar coupling constants

are differentiable from cacl other with MQMAS. The technique has been utilized
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to separate two strongly overlapping resonances [rom distinct sites in glasses and to

detect impurities in Nay[H{O3 [57].

A.3.3 1B

Even though ''B sites uéua.lly have small Cg values, published MQMAS results
on this nuclide is surprisingly rare. In principle, ''B spectra are easy to obtain. As
a very positive example, Hwang et al. presented a series of ''B spectra of B,O3 and
B2S3 glasses that up to 8 boron peaks were identified in a single spectrum [62]. The
superior resolution offered by MQMAS would greatly contribute to the understanding

of borate or horosilicate glasses.

A.3.4 1O

Compared to the wide application of DAS to "0, MQMAS of 70O is somewhat
limited. According to our calculation, 3QMAS and 5QMAS are both not adequate
to 1'esolvé multiple-sites with varying Si-0-Si bond angles. The conclusion seems to
find more support in the past year [127]. Our experiment on zeolite Y yielded at the
most two peaks whereas DAS gives 3 well-resolved peaks. For non-bridging oxygen,
however, MQMAS is as powerful as DAS in resolving overlapping peaks.

It is clear that non-bridging and bridging oxyvgen sites usually gives different peaks
in the isotropic dimension [116G. 126, 127]. Same conclusion is also true for oxygen
in Si-O-Si and 5i-O-Al fragments [56]. Based on the high-resolution available from
MQMAS, kinetics of '7O labeling [I16] has been studied to show that Si-O-Si and
Si-O-Al have different reactivity, Such an eflcct was first observed in ZSM-5 zeolite

through 80 labeling [151]. and rvecently received more interests in other areas.



A.3.5 Less Common Quadrupolar Nuclides

MQMAS on 3 Rb [45, 51], *Sc [45], **Mn [3] were also performed. The results
serves as demonstration of the potential a.pl.)lica:bility of MQMAS to a series of other
nuclei. My experience with nuclides such as *Ga and **Nb is however, negative. The
large quadrupolar coupling constants are the major ])roblen; with the experiment,

even though homonulcear dipolar coupling may introduce extra complications.
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