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Abstract 

This report documents the findings of the study “Vehicle/Driver Monitoring for Enhanced Safety 

of Transit Buses” conducted as part of the PATH project TO5400. The goal of study TO5400 is to 

design and implementation of a reliable vehicle/driver monitoring system with aim to enhance 

driving safety of transit buses. 

 

The main objectives of the project are: (1) to identify a simply model that best describes the 

driving patterns of human drivers, and (2) to develop an algorithm which can generate warning 

messages when there is a provision of danger. 

 

In this study, it is assumed that the driver sets the angle of the steering wheel in response to the 

lateral deviation of the vehicle from the center line of the road and/or the road curvature ahead of 

the vehicle which he/she infers from the visual perception. It is also assumed that the dynamic 

relationship between the lateral deviation and the road curvature (i.e. the inputs to the driver) and 

the steering angle (i.e. the output from the driver) may be represented by a linear model with 

Auto Regressive Moving Average with eXogeneous (ARMAX) structure. The order of the 

ARMAX model is determined by off-line analysis of experimental data collected from actual 

driving tests. Once the order of the model is determined, the parameters of the model can be 

estimated by processing the input and output data in real time during actual driving. 

 

The on-line data processing and prediction can also estimate three critical parameters for driving 

safety: the driver’s response time (tr), the time-to-collision (TTC) and the time-to-lane-crossing 

(TLC) TLC. A timely warning message scheme, which incorporates all the three parameters, is 

designed to determine whether an alarm should be issued. 

 

Keywords: ARMAX driver model, closed-loop system identification, collision warning system, 

response time, road/lane departure warning system, time-to-collision, time-to-lane-crossing. 
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Executive Summary 

Vehicle safety is one of the most important concerns of transit authorities and automotive 

manufacturers. Vehicle crashes cause more than 41,000 fatalities per year, as well as 5.3 million 

injuries, and cost the society more than $230 billion per year. A large portion of these accidents is 

due to drivers’ inattention or inability to properly perform driving tasks. Automotive 

manufacturers have introduced driver assistant systems such as collision warning systems (CWS) 

and road departure warning systems (RDW) to enhance safety. However, most CWS/RDW 

systems cannot directly monitor the driver while the negligence of the driver is the major cause 

of highway accidents. If a system is capable of monitoring the driver’s state from available data 

and incorporating it into the driver assistant systems, then it will be possible to alert the driver in 

a timely and effective manner and greatly increase the safety of highway driving.  

 

In this study, we develop an effective and reliable vehicle/driver monitoring system, where the 

driver’s state can be retrieved from data collected on-line and a warning message can be issued 

to the driver if his/her state deviates from the normal state in a significant manner.  

 

The driver is modeled as a dynamic process with an ARMAX (Auto-Regressive, Moving 

Average with eXogenous input) structure, where the inputs of the model are the look-ahead error 

and the road curvature, and the output is the angle of the steering wheel. From off-line data 

analysis, the best combination of the orders of the ARMAX model (which is applicable to all 

drivers) is first found. This particular structure is employed in on-line data processing, where it is 

coupled with the vehicle lateral dynamics for closed-loop identification and prediction. The 

driver state (for example the response time) can be determined from the parameter estimates.  

 

A simplified linear bicycle model is utilized to describe the vehicle’s lateral motion, under the 

assumptions of small steering angle, negligible roll and pitch motion and linear tire model. Key 

parameters used in the CWS/RDW systems, such as the time-to-collision (TTC) and the 
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time-to-lane-crossing (TLC), are predicted based on the driver model and vehicle’s lateral 

dynamics in a closed-loop system. 

 

A warning system, which takes into account the driver’s response time, the TTC and TLC, is 

designed to determine whether a warning message should be issued to the driver. The system 

uses prescribed thresholds. 

 

The major contributions of this project include: 

1. A simple yet effective method is developed to monitor the driver from the view point of 

driving skills and their variations due to inattentiveness and/or drowsiness. 

2. The resulting vehicle/driver monitoring system can send an early warning to the driver to 

alert his/her abnormal driving behavior. It can improve the effectiveness and reliability of 

current CWS/RDW systems, and enhance the safety of highway traffic. 
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2. Experimental Settings 

Experiments have been conducted on a passenger car1 at the Richmond Field Station of 

University of California at Berkeley. The test vehicle is a 2002 Ford Taurus Sedan (CA license 

#1046993). We show a photo of the test vehicle in Figure 1. Detailed information regarding the 

test vehicle can be obtained from PATH. 

SafeTRACSafeTRAC

 

Figure 1. Test vehicle – 2002 Ford Taurus Sedan (CA license # 1046993) 

 

For any collision warning and vehicle monitoring system, it is essential to have a reliable sensing 

system that senses the environment in front of and around the vehicle. A SafeTRAC2 video 

camera is installed under the windshield of the test vehicle, which monitors the road in front of 

the vehicle. The video system tracks the lane markings, as shown in Figure 2b, and retrieves road 

geometry information such as the lane width, the relative lateral position of the vehicle with 

respect to the center of the lane, and the road curvature. 

 

Other information is measured by on-board sensors. For example, the steering angle is measured 

by the encoder installed under the steering wheel. A list of collected variables is shown in Table 1. 

The sampling time is 0.075 second, which corresponds to a sampling frequency of 13Hz. There 

                                                        
1 As suggested by the title of the project, the original plan was to study vehicle/driver monitoring for transit buses.  It turned out, 
however, that it was not practical to use a bus for experimental data gathering because of an experimental buses and qualified bus 
drivers were both difficult to obtain. 
2 SafeTRAC is an on-board electronic warning system that prevents crashes caused by driver drowsiness or distraction. 
Manufactured and developed by Assistware Technology, SafeTRAC uses a forward-looking video camera to track a vehicle’s 
position in its lane. 
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is also a computer installed on the test vehicle, which is used to record and process collected 

data.  

     

Figure 2a. SafeTRAC system    2b. Sample view from SafeTRAC video camera 

 

Data Unit 

clock time of day HH:MM:SS:sss 

steering wheel angle deg 

acceleration x m/s/s 

acceleration y m/s/s 

throttle position % 

Brake 0=off, 10=on 

left turn signal 0=off, 10=on 

right turn signal 0=off, 10=on 

speed over ground km/h 

lateral offset cm 

lateral velocity cm/s 

road curvature 1/m 

lane width cm 

Table 1. Collected data and the corresponding units 

 

Driving tests are conducted on a specified segment of Interstate Highway I-80 between 

Richmond and Fairfield, CA. Figure 3 shows a map of the test route. We choose this segment 

because: (1) there are both straight and curved sections, which assure that the collected data is 
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informative enough (refer to Appendix C for more detailed information), (2) this segment can be 

easily accessed from Richmond Field Station (RFS) where the test vehicle is maintained, and (3) 

the traffic on this segment is normally not too congested to properly carry out the experiments. A 

typical testing route consists of the following: (1) the tests start from RFS; (2) the drivers go on 

I-80 from Carson Blvd entrance (point A on the map); (3) the drivers turn back at Red Top Road 

(point B on the map); and (4) the tests end at RFS. The length of the round-trip route is 

approximately 50 miles. 

 

Figure 3. Test route from Yahoo map 

 

Twenty experienced drivers participated in the experiment. They consisted of 15 males and 5 

females. In the experiment, they were asked to drive the test vehicle in the normal way they 

would drive everyday. The test for each driver took about one hour, and it was either between 9 

and 11am or between 1pm and 4pm, when traffic was relatively low. Also, the experiments were 

normally taken under clear weather conditions, with only one exception of raining. On-board 

sensors and the SafeTRAC video camera were used to collect data for each test, as shown in 

Table 1. 
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3. Driver/Vehicle Operation in A Closed-loop System  

The vehicle lateral dynamics appears in a feedback closed-loop system in the sense that the 

human driver observes how the vehicle goes and takes corresponding control of the vehicle. The 

closed-loop system can be represented by the diagram in Figure 4.  

 

Driver Vehicle

steering

angle

lateral

position

road

curvature

-

 

    Figure 4. Block diagram of the driver/vehicle closed-loop system 

 

One of the major tasks of this project is to identify a proper driver model. This is a closed-loop 

identification problem, since it is not possible to open the loop and study the driver. A brief 

review of closed-loop identification techniques is provided in Appendix C. The direct method, as 

described in the appendix, is adopted in this project.  
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4. Off-line ARMAX Driver Model Identification 

The modeling of human driver’s behavior has attracted great attentions from many researchers 

recently. In order to model the driving pattern, complex input-output models, such as the 

nonlinear regression models and the neural network and fuzzy systems have been used. It is not 

our intention to introduce another model for a comprehensive description of driver behaviors. 

Rather, we are interested in a driver model that will benefit the monitoring and warning system, 

or more specifically, a model that may represent the driver as a time varying controller of the 

vehicle. Previous studies show that the ARMAX (Auto Regressive and Moving Average with 

eXogenous) model is a promising candidate for human driver models [4]. In this project, we 

follow this direction and test the ARMAX model with real experimental data. A brief review of 

the model is presented in Appendix A. 

 

In this project, we construct a model of the human driving behavior based on its representation as 

an ARMAX model. The structure is shown in Figure 5. One advantage of this model is that a 

rich body of knowledge is available in the field of modeling and identification of dynamic 

systems. Another advantage is that many of its coefficients have clear physical interpretations; 

for example, the delay time may be estimated based on the poles of the identified model, and the 

delay time may be interpreted as the driver’s response time. We refer to Section 5 for more 

details. 
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Figure 5. ARMAX driver model 
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The inputs of the ARMAX driver model are the look-ahead lateral position of the vehicle ly  

and the look-ahead road curvature ρ ; and the output is the steering angleδ . ly  and ρ  are 

measured by the SafeTRAC video system, which captures the road condition in front of the 

vehicle. A graphic representation is shown in Figure 6. The look-ahead distance can be adjusted 

by changing the angle of the lens when the SafeTRAC camera is installed, and we set it as 20 

meters in this study. In other words, the look-ahead lateral position is the lateral position of the 

vehicle with respect to the road condition 20 meters ahead of the vehicle. Similar interpretation 

holds for the road curvature. The output δ  is measured by the encoder installed under the 

steering wheel.  

y yl

look-ahead 
distance

y yl

look-ahead 
distance

 

Figure 6. Look-ahead distance and Look-ahead lateral position 

 

 

The ARMAX model can be expressed as, 
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4.1. Model Order Selection 

First of all, we investigate what order set ( kcba nnnn ,,, ) the ARMAX model should take to yield 

the best representation of human driver. Since data is collected from 20 different drivers, and 

parameters may vary from time to time, the data are divided into 966 subsets, with each one 

contains data of 30-seconds long. The selection of orders is carried out using the following 

approach, 

1) For each subset of the data, and for each combination of orders of the ARMAX model 

( kcba nnnn ,,, ), we estimate the model and calculate the final prediction error (FPE)3 with the 

prediction error method (PEM)4. The choices of the model orders include all possible 

combinations of ]5,1[∈an , ]10,1[∈bn , ]20,1[∈cn  and ]10,1[∈kn .  

2) The lowest FPE value is found for each subset of data, and the corresponding orders 

( kcba nnnn ,,, ) are detected. The FPE can be used as a model selection criterion. The 

ARMAX model with orders corresponding to the smallest FPE, is selected as the optimal 

model for this subset. 

3) For the 966 subsets, there are 966 combinations of ( kcba nnnn ,,, ) with the lowest FPEs. A 

histogram is plotted for each component to determine the overall orders. 

                                                        
3 FPE is a model selection criterion, defined as 

Nd

Nd
VFPE
−

+
=
1

1
, where V  is the loss function calculated from the model 

estimation, d  is the number of model parameters, and N  is the number of available data. FPE compensates the effect of 

increasing order, i.e. the bigger the order, the smaller the loss function. Other model selection criteria, which compensate such 
order effects, include Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC), Mallow’s Cp, and Minimum 
Description Length (MDL), etc. 

4 The prediction error method estimates model parameters θ  by minimizing the loss function ∑=
=

N

t
t

N
NV

1
),(

1
)(

2 θεθ , where 

ε  is as defined in Appendix A and N is the time duration, and N = 400 for each data subset in this project. 
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MATLAB 6.5 System Identification Toolkit was adopted to perform task (1). Given the data and 

the prescribed order combination ( kcba nnnn ,,, ), the armax function from the toolkit can 

estimate the parameters of the model. The FPE of the model can also be calculated. The armax 

function uses an iterative search algorithm to minimize the prediction error. The iterations are 

terminated when the expected improvement between adjacent iterations is within a 

predetermined tolerance, or when a fixed number of iterations has been reached. The iterative 

algorithm is robust; however, it may take a long time to converge. On a Pentium M 1.6GHz 

computer, it takes around 5 minutes to obtain results for one subset of data. Thus the toolkit can 

only be used for the off-line data analysis. We resort to a recursive algorithm for our on-line data 

processing. We refer to Section 8 for more details. 

 

The histograms in step 3) are shown in Figure 7. We observe that 3=an , 1=bn , 17=cn
5 

and 1=kn  occur most frequently, which means for all the drivers and any 30-seconds time 

intervals, ARMAX(3,1,17,1) model can best describe human driver’s behavior. On-line 

parameter identification will be based on this selected model.  
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Figure 7. Histogram of the ARMAX model orders 

 

4.2. Sample results of Off-line data analysis 

The model estimation results from one subset of data are shown in Figure 8 and Figure 9. Each 

                                                        
5 From the histogram of cn , we see that 16=cn  is almost as frequent as 17=cn . However, since the noise itself is 

unknown exactly, we defer the investigation of the effect that small difference in choice of cn  will cause to a later study.  
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subset contains observations from a 30-second period for one driver. The estimation is based on 

the above selected ARMAX(3, 1, 17, 1) model.  

 

Figure 8 shows the inputs of the model – the look-ahead lateral position and the road curvature, 

in the upper right and lower left plots, respectively. It also shows the results from the data 

analysis based on the model, i.e. the estimated output and error. 
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Figure 8. Sample results from the data analysis on one data subset 

 

The output of the model – the steering angle – is shown in the upper left plot of Figure 8. The 

blue line is the measured steering angle, and the red line is the estimated output from the model. 

There is only small discrepancy between the measured and estimated outputs. The R2 value6 of 

the fitted model is 92.7%, which indicates that the selected model can explain a great majority of 

the variations and thus satisfactory fitting. 

                                                        
6 R2 value is the fraction of the variance in the data that is explained by the model. It is also called as the coefficient of 
determination. It indicates how well the model fits the data, e.g. an R2 close to 100% indicates that we have accounted for almost 
all of the variability with the variables specified in the model.. 
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Figure 9. Scatter plot of error and QQ-plot f the model 

 

Comparison of the measured data versus estimated data is also shown in the QQ-plot7 in Figure 

9. The measured steering angle is plotted on the horizontal axis, and the estimated steering angle 

from the model is plotted on the vertical axis. The data points are all close to the reference line – 

the straight line with unit slope and zero intercept. It indicates that the underlying model can 

sufficiently explain the data. Furthermore, there is no significant trend in the scatter plot of the 

error. Thus the model assumption that it has an ARMAX(3,1,17,1) structure is validated.  

 

                                                        
7 The quantile-quantile (QQ-plot) is a plot of the quantiles of the first data set against the quantiles of the second data set. It is a 
graphical technique for determining if two data sets come from populations with a common distribution. A 45-degree reference 
line is also plotted. If the two sets come from a population with the same distribution, the points should fall approximately along 
this reference line. The greater the departure from this reference line, the greater the evidence for the conclusion that the two data 
sets have come from populations with different distribution. 
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5. Driver’s Response Time 

The response (reaction) time is defined as the difference between the time the driver observes a 

lateral deviation and the time a corrective action is taken. It consists of basically 

components-processing time and transmission time (neuromuscular lag) [3]. Processing time is 

the time needed to decide what corrective action should be taken, and transmission time is the 

time necessary to initiate that action after the decision has been made. Various studies, in many 

different science fields, have been conducted to investigate the human response time. It has been 

shown that age, drunkenness, and drowsiness can affect human’s driving performance, especially 

the response time. For example, about 60% of young drivers (23 years old or less) exhibit the 

control delay on straight lanes less than 0.4 sec while less than 20% of old drivers (75 years old 

or more) exhibit the same statistics [12]. Figure 10 shows qualitatively the effects of another 

factor: drowsiness on the reaction time [28]. 

 

Figure 10. Inverse of reaction time versus time on task plot [28] 

 

In this project, we propose a new method to retrieve information about the driver’s response time. 

The method is based on the identified model and its corresponding parameters. First, we note 

that the 3rd order ARMAX model has 3 poles, i.e.  

)2)(1()( 22
 nnssssA ωξωτ +++=        (6) 

The first term in equation (6) usually corresponds to the delay in the system, and we can interpret 

it as the driver’s response time, i.e. τ=rt .  
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Figure 11 presents an example of how to determine the driver’s response time. First, since the 

model is estimated in discrete time, we have to transform it into the continuous time domain in 

order to find the response time. A relationship between the poles for discrete system and its 

corresponding continuous system, using the zero-order hold equivalent transformation, is given 

by, 

   )exp( scd Tpp =  or sdc Tpp /)ln(=       (7) 

where pc is the continuous time pole,  pd is the discrete time pole, and Ts is the sampling time. 

In this project we set Ts as 0.075 second.  

 

Once the continuous poles are determined, we choose the one that corresponds to the pole in the 

first term on the right side of equation (6)8, i.e. τ1−=cp . The response time is then computed 

as the negative inverse of that pole. For example, the red crosses in Figure 11 are the results from 

one subset of data, and the pole corresponding to the delay time is chosen as 7.6−=cp , which 

leads to the drivers response time at this instant 15.0≈= τrt  seconds. 
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Figure 11. Driver’s response time estimation from the estimated driver model, 

Red and Green points are the results from two different data subset. 

                                                        
8 In the case that the system has three real poles, the one closest to the negative real-axis is chosen as the desired pole. This is the 
worst case of the possible delay time. In designing the warning system, if the worst case – maximum response time – stays in the 
range of normal driving, other possible delays are also in the range. Otherwise, there is a possibility that the delay time is long, 
and a warning shall be given. 
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The driver’s response time tr indicates how fast the driver can react if emergency occurs during 

driving. The designed warning system takes this information into account to determine whether 

to issue a warning message or not. In section 9, we set the threshold of the driver’s response time 

to 0.5 second. Furthermore, the thresholds of the time-to-collision and the time-to-lane-crossing 

are also related to the driver’s response time. With a more accurate estimation of the driver’s 

response time, the warning system may perform better by issuing necessary warnings and 

reducing the false alarm rate. Further discussions on issuance of warning messages are in 

Sections 7 and 9. 
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6. Vehicle Lateral Dynamics 

The vehicle and driver interact with each other in a close-loop form, as shown in Figure 4. Thus 

a dynamic model of the vehicle is necessary for the on-line data prediction when the measured 

data is not available. This research project focuses on the lateral movement of the vehicle and its 

lane crossing/departure events. For this purpose, a simplified bicycle model for the vehicle 

lateral dynamic is adopted.  

 

The bicycle model assumes a small steering angle, negligible roll and pitch motion and a linear 

tire model [9]. It can be described as a fourth order system in the state space as, 

[ ] 
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ρ
δ

21 BBAxx&          (8) 

( )TrrCGCG yy εε &&=x         (9) 

where x  is the state variable, δ  is the front wheel steering angle, ρ  is the road curvature 

(disturbance), CGy  is the lateral deviation at the vehicle CG (Center of Gravity), and rε  is the 

yaw angle of the vehicle sprung mass relative to the road reference frame. The system matrices 

are 
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where  
2

1
m

C
fαφ =  and 

m

C
rαφ

2
2 = . The physical meanings and values of the symbols used in 

the above equations are listed in Table 2. 
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Symbol Physical Meaning Value 

m  mass of the vehicle 1485 kg 

L  relative longitudinal distance between vehicles 5 m 

sd  distance of rear bumper to CG 2.1 m 

zI  yaw moment of inertia 2872 kg/m2 

f
Cα  front wheel cornering stiffness 4200 N/rad 

r
Cα  rear wheel cornering stiffness 4200 N/rad 

1l  distance between front wheel and the CG 1.1 m 

2l  distance between rear wheel and the CG 1.58 m 

Table 2. Vehicle Parameters 
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7. Collision and Road Departure Warning Systems 

There are several types of collision warning systems on the market nowadays, which include 

frontal collision, intersection collision and road departure warning systems. A frontal collision 

warning system evaluates the time-to-collision to determine whether a warning should be issued; 

an intersection or side collision warning system targets at alleviating the hazards in lane 

changing, and a road departure waning system issues warnings whenever the vehicle tends to 

depart from the road without a turning signal. 

 

In addition to monitor the vehicle’s lateral position, a warning may be issued by observing the 

driver’s inappropriate states (e.g. the driver’s response time). For example, a drowsy driver needs 

longer time to react to any emergency situation. In this case, if the driver gets warning messages 

right before the vehicle is too close to the lane, he/she may not have enough time to react. Also, a 

drowsy driver may stop reacting to the lateral deviation of the vehicle, which will result in a 

large prediction error in the identification algorithm. In this case, a timely warning shall be 

issued before the vehicle gets too close to the lane boundary. A warning system, which takes 

account of the driver’s response time, will further enhance the driving safety. 

 

7.1. Frontal Collision Warning System 

Frontal collision accidents account for approximately 30% of all accidents in transit bus 

operations. Current commercial frontal collision warning systems reduce as much as 51% of 

crashes [27], and in general they evaluate the time-to-collision (TTC) to determine whether a 

warning should be issued.  

 

The TTC concept was introduced in 1972 by Hayward [1]. A TTC value at an instant t is defined 

as the time that remains until a collision between two vehicles would have occurred if the 

collision course and speed difference were maintained. TTC can be calculated simply as the ratio 

of relative distance to the relative speed [19], i.e.  
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or more elaborately by the equation, 
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under the assumption that the relative acceleration is constant, where x is the relative distance to 

the preceding vehicle. The reference TTC is the smaller of the two roots [2]. Figure 12 illustrates 

the notion of TTC. If TTC is less than the prescribed threshold, a warning is issued. 

 

 

Figure 12. Time-to-collision notion illustrated with vehicle trajectories [19] 

 

In the study, TTC is compared with a prescribed threshold γ1 to determine whether the vehicle is 

too close to the preceding vehicle, i.e., if TTC < γ1 and there is no breaking reaction detected, a 

warning message shall be issued to the driver. The threshold γ1 may also be adjusted according to 

the estimated driver response time tr, for example, rtαγγ += 11 , where α and 1γ  are two fixed 

numbers to be determined. The investigation on α  and 1γ  is deferred to future research. We set 

a fixed threshold sec41 =γ  in this project, as suggested by Van der Horst [32]. 
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7.2. Road/Lane Departure Warning System 

Road/Lane departure warning systems (RDW) issue alarms when they predict that the vehicle is 

going to leave the road/lane without a turning signal. A vision-based system is adopted in sensing 

the vehicle’s lateral position and the road geometry, and the RDW system uses time-to-lane 

crossing (TLC), a metric similar as TTC, to determine the conditions to issue warning messages. 

TLC is defined as the remaining time until the vehicle’s center of gravity (CG) crosses either 

edge of the roadway [14], as shown in Figure 13. 

 

 

Figure 13. Time to lane-crossing (TLC) assuming constant steer angle. [14] 

 

However, the above defined TLC does not take into account of the width of the vehicle itself, 

and safety is not ensured if a part of the vehicle is outside of lane/road while the vehicle’s CG is 

still inside. In this project, we revise the definition and calculate TLC as the remaining time until 

either side of the vehicle crosses the lane or road. In other words, to ensure safety, the following 

condition should be satisfied: 

α−−≤ )(
2

1
vehiclelanel WWy        (15) 

where ly  is the look-ahead lateral position of the vehicle as defined in section 4. Wlane is the 

look-ahead lane width in front of the vehicle, and is obtained from the on-board video camera. 

Wvehicle is the width of the vehicle, and for the test vehicle – Ford Taurus 2002, it equals to 186cm. 
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The last term, α  is a small positive number for confidence. We set cm5=α  in this project. 

As mentioned above, the road geometry and a vehicle path are needed in order to calculate the 

TLC. The road geometry in front of the vehicle is estimated based on the camera images, and the 

vehicle path is predicted under the assumption of a constant steering angle and constant vehicle 

speed in [14]. The assumption that the steering angle is fixed over the next a few seconds is not 

realistic. In this project, we predict the vehicle path based on the lateral dynamics of the vehicle; 

more specifically, the simplified bicycle model for the vehicle lateral dynamics is adopted, and is 

coupled with the driver model to yield prediction for the next a few seconds. We refer to section 

8 for more information. 

 

Once the TLC is determined, it is compared with a prescribed threshold 2γ . A warning message 

will be issued to the driver if the predicted TLC is less than or equal to the threshold. The 

bandwidth of TLC is found to be 2.5Hz in normal driving [31], and accordingly we choose the 

threshold as sec 4.02 =γ .  
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8. On-line Data Processing 

The on-line driver model estimation is based on the ARMAX(3,1,17,1) model we identify in 

Section 4. However, since the on-line data processing has a higher demand on the computing 

speed, the iterative method used to solve the ARMAX model is no longer appropriate. We adopt 

the recursive method (see Appendix B) for on-line model estimation. At each time step once a 

new data point is collected, the recursive method updates the parameter estimate utilizing the 

new data point and the previous estimate, instead of calculating the new estimate based on the 

whole data set. For example, 

 termcorrection)1(ˆ)(ˆ +−= tt θθ        (16) 

 

The on-line data processing has three main tasks: 

1. estimate the parameters of the driver model, and obtain the driver’s response time, 

2. calculate the time-to-collision and time-to-lane-crossing, and 

3. check if the driver stays in the safe driving mode, otherwise a warning message will be 

issued. 

 

At each time step, once we update the estimate of the driver model, )(ˆ tθ  becomes available, We 

can then predict the driver’s performance at the next time step, i.e. 

)(ˆ)()1(ˆ ttt Tθψδ =+          (17) 

where δ  is the angle of the steering wheel, ly  is the lateral position of the vehicle, and  

T
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The driver’s response time tr, is also obtained from the parameter estimate )(ˆ tθ , as described in 

Section 5. A sample results of the estimated model parameters and the response time is shown in 
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Figure 14, where the coefficients of the model polynomial A(q
-1
), a1, a2, a3 are shown in the left 

plot. The x-axis is time. The plot also reveals the time-variant property of the human driver.  
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Figure 14. Sample results of the online estimation for coefficients of A(q
-1
) and the poles 

 

The estimation of δ  and ly  over the next a few time steps, i.e. )(ˆ it +δ  and )(ˆ ityl + , are all 

based on the current estimate )(ˆ tθ  since no new measured data is available unless we proceed 

to the next time step. 

 

The estimation of δ  and ly  will also require knowledge of the vehicle dynamics, which is 

based on the simplified bicycle model. The bicycle model takes the estimated )1(ˆ +tδ  from the 

driver model as its input, and predicts )1(ˆ +tyl  for the next time step. )1(ˆ +tyl  is then fed 

back to the driver model to get )2(ˆ +tδ 9, and the bicycle model predicts )2(ˆ +tyl , and so on. 

The estimation process continues in the closed-loop until enough information has been acquired 

about the TLC. The process is depicted in Figure 15.  

                                                        
9 Notice here, the estimation )(ˆ)1()2(ˆ ttt

T θψδ +=+ , and it is different from )1(ˆ)1()2(ˆ ++=+ ttt
T θψδ  if )1(ˆ +tθ  

were available. 
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Figure 15. Closed-loop prediction and calculation of TLC 

 

The TLC is then simply obtained by accumulating the time steps elapsed in the closed-loop 

prediction, and multiplying the sampling time sec 075.0=sT . Suppose that the number of time 

steps that have elapsed is m . Then the TLC can be calculated as, 

mTLC 075.0=          (19) 

and, m  is the smallest integer that satisfies, 

( ) α−−≥+ vehiclelane WWmty
2

1
)(ˆ       (20) 

where again, laneW  is the look-ahead lane width obtained from the video camera, 

cm186=vehicleW  is the width of the test vehicle, and cm5=α  is the confidence parameter. 

 

As shown in Figure 15, we can acquire enough information on the TLC, if (1) the TLC is 

obtained; or (2) 2TLC γ>  is satisfied even though it has not been obtained. By allowing 

condition (2), the computation time can be saved, since we now can stop incrementing TLC as 

soon as it reaches the prescribed threshold 2γ . The value of the TLC beyond the threshold 

provides no further information and will not be needed. 
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9. Warning Message Issuing Mechanism 

Alarms should be generated in a timely manner since they will be useless if the driver cannot 

make use of them for corrective actions. On the other hand, a system that gives excessive 

warning may either desensitize the driver, causing future warnings to be ignored or distract the 

driver. Undesired warnings may also make the driver turn off the system completely. To reduce 

the nuisance alarms, we should issue at most one alarm at each possible collision or lane 

departure. If the driver has already taken an appropriate action (e.g. decelerate, or turn the 

steering wheel towards the correct direction) right before a warning is issued, the warning should 

be discarded. We propose such a lane departure warning system and a frontal collision warning 

system. The block diagram is shown in Figure 16, where the threshold of the driver’s response 

time is set to 0.5sec, and the thresholds for TTC and TLC are chosen as sec41 =γ  and 

sec4.02 =γ , respectively.  
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Figure 16. Block diagram of the alarm issuing mechanism 
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10. Conclusion 

This research project, entitled “Vehicle/Driver Monitoring for Enhanced Safety of Transit Buses”, 

is performed as part of the California PATH Program at the University of California at Berkeley. 

The main contributions of the project are: (1) to find a simple model for human drivers which 

represents the driving pattern with minimum errors, and (2) to develop the algorithm which gives 

warning messages when there is a provision of danger. 

 

Based on analysis of data collected from 20 human subjects in actual driving tests, it has been 

found that human driver can be modeled as a dynamic process with the ARMAX(3,1,17,1) 

model. The inputs of the model are the look-ahead error and the road curvature, and the output is 

the angle of the steering wheel. A simple yet effective way to retrieve information about the 

driver’s response time from the identified model parameters has also been developed. 

 

The performance of the driver and vehicle is predicted while they are in closed-loop operation. A 

simplified bicycle model is adopted for the vehicle lateral dynamics. The on-line data processing 

also provides the estimate of the driver’s response time, the time-to-collision and the 

time-to-lane-crossing.  

 

A warning system, which takes account of the response time of the driver, the TTC and TLC, is 

designed to determine whether a warning message should be issued to the driver to alert his/her 

abnormal driver behavior. The system uses prescribed thresholds. It will improve the 

effectiveness and reliability of current CWS/RDW systems, and thus enhance the safety of 

highway driving. 
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Appendix 

A. Brief review of ARMAX model 

The standard ARMAX model is shown in Figure 17, and it is described by, 
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or, 

)()()()()()( 111 teqCtuqBqtyqA kn −−−− +=       (A.2) 

where, y  and u  are the output and input of the system, e  is the noise and is assumed to have 

a Gaussian distribution with variance 2σ . Also, an , bn , cn  and kn  are the orders of the 

ARMAX model, and 
anaaa ,,, 21 Λ , 

bnbbb ,,, 10 Λ , 
cncc ,,1 Λ  are the model parameters.  
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Figure 17. Block diagram of an ARMAX model 

By using the vector form, we have 
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Equation (A.1) can be rewritten as, 

)()()( tetty T += θψ          (A.5) 

From the above equation, we recognize that the identification of the model parameters is a least 

squares problem. It should be noted, however, that the regressor )(tψ  contains noise at previous 
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time steps )(,),1( cntete −− Λ , which are not available., so that the two terms on the right hand 

side of (A.5) are coupled. Thus, the stand least squares algorithm needs to be modified as 

discussed in Appendix B. 
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B. Recursive Least Square Method 

As described previously, the noise terms )(,),1( cntete −− Λ  in the regressor )(tψ  are 

unknown. Since there is no way to measure the noise )(te , we substitute it with the estimated 

error yy ˆ−=ε , where ŷ  is the estimate of the output.  

 

Thus, from equation (A.5), 

θψ Ttty )()(ˆ =          (B.1) 
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In the regular Least Square Method, the parameters are estimated as,  

( ) yttt T )()()(ˆ 1
ψψψθ

−
=          (B.3) 

which requires a large amount of computation and involves the inverse of ( ) 1)()(
−Ttt ψψ  at each 

time t . The Recursive Least Square Method, on the other hand, uses current knowledge and 

estimates at time t  to obtain a new estimate at next time step 1+t , i.e. 

termcorrectiontt   )(ˆ)1(ˆ +=+ θθ       (B.4) 

 

There are several approaches to get the correction term in (B.4), and we adopt the a-posteriori 

version in this project.  

 

Define )1(ˆ)1()(ˆ −−= ttty To θψ  as the a-priori output estimate, and )(ˆ)()( tytyt oo −=ε  as the 

a-priori output estimation error. Similarly, )(ˆ)1()(ˆ ttty Tθψ −=  and )(ˆ)()( tytyt −=ε  are the 

a-posteriori output estimate and a-posteriori output estimation error, respectively. Then, the 

complete algorithm can be summarized as, 
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C. Review of closed-loop identification methods 

The basic problem with closed loop data is that it typically has less information than the open 

loop system – any important purpose of feedback is to make the closed loop system less sensitive 

to changes in the open loop system. Figure 18 shows a standard feedback closed-loop system, 

where u is the input, y is the output, e is the noise, and r is a reference signal. The goal is to 

identify the plant model G and the noise model H. Generally, there is no requirement on the 

knowledge of the regulator K. Also notice that )()()()( tyqKtrtu −= , so r carries no further 

information about the system, if u is measured. 
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Figure 18. Feedback closed-loop system 

 

The plant G is identifiable under the closed-loop system if and only if the data is informative, 

which requires at least one of the following two conditions to hold [39],  

1. The external signal r is persistently exciting, or  

2. [ ] 0)()()()(
2 ≠∆+∆ tuqWtyqWE uy , i.e. there is no linear time-invariant and noise-free 

relationship between y and u such that )()()()( tyqWtuqW yu ∆≈∆ . 

In our study, the external signal r is always equal to 0. However, since human is a very 

complicated nonlinear, time-varying system, usually there is no linear time-invariant and 

noise-free relationship between the steering angle and look-ahead lateral. Thus the second 

condition can be satisfied. The non-zero road curvature further assures that the collected data is 
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informative, thus the driver’s model is identifiable. 

 

There are three major approaches to solve this closed-loop system identification problem,  

1. The direct approach – Apply the basic prediction error method in a straightforward manner, 

i.e. use the output y of the process and the input u in the same way as for open loop operation, 

ignoring any possible feedback, and not using the reference signal r. 

2. The indirect approach – If the regulator K is known, we can identify the closed loop system 

from reference input r to output y. The plant model G can be retrieved from that information 

and the knowledge of K, and we don’t even have to estimate the noise model H. Bear in mind 

that this approach does require true knowledge about K.  

3. The joint input-output approach – If the reference signal r is known or can be measured, the 

joint input-output approach can be pursued. We consider y and u as outputs of a system 

driven by r and noise; then the plant G can be recovered from the joint model as Gry/Gru. Also 

notice that the reference r can not be 0 for this method to work. 

 

Each approach has its own advantages or disadvantages. For example, the indirect method 

requires the knowledge of the regulator, and the joint input-out method assumes that the 

reference signal r can not be 0 and it can be measured. These conditions restrict them to be 

applied in this project, since either the vehicle dynamics (equivalent to the regulator K) is not 

known exactly, or the reference signal is 0, as can be seen from Figure 4. 

 

The direct method, on the other hand, works regardless of the complexity of the regulator, and 

requires no knowledge about the character of the feedback. There are no special algorithms and 

software required either, and it has also been proved that consistency and optimal accuracy can 

be obtained using the direct method if the data is informative (see next paragraph for explanation) 

and the model structure contains the true system [39]. Furthermore, unstable systems can also be 

handled, as long as the closed loop system is stable.  
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The only drawback of the direct approach is that the identified plant model may be biased, unless 

we have a good noise model. In open loop operation we can always obtain unbiased estimates of 

model parameters of G without requirements on the noise model H. Thus, we can not handle 

model approximation issues with full control in the feedback case. However, consistency and 

optimal accuracy is guaranteed, just as in the open loop case, if the true system is contained in 

the model structure. No knowledge of the feedback or reference signal is required. 

 

The prediction error method, applied in a direct fashion, is chosen to solve the off-line 

closed-loop driver model identification problem in this project. No knowledge of the vehicle 

dynamics or the reference signal is required. The method works well under the assumption that 

the identified noise model can describe the true noise properties, and they give consistent 

estimates and optimal accuracy. This direct PEM method can be further improved by first 

building a higher order model Ĝ , with small bias, and then reducing the identified model to 

lower order with a proper frequency weighting.  

 




