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Characterization of arterial plaque composition with dual energy 
computed tomography: a simulation study

Huanjun Ding, Chenggong Wang, Shant Malkasian, Travis Johnson, Sabee Molloi
Department of Radiological Sciences, University of California, Irvine, California, 92697

Abstract

To investigate the feasibility of quantifying the chemical composition of coronary artery plaque in 

terms of water, lipid, protein, and calcium contents using dual-energy computed tomography (CT) 

in a simulation study. A CT simulation package was developed based on physical parameters of a 

clinical CT scanner. A digital thorax phantom was designed to simulate coronary arterial plaques 

in the range of 2–5 mm in diameter. Both non-calcified and calcified plaques were studied. The 

non-calcified plaques were simulated as a mixture of water, lipid, and protein, while the calcified 

plaques also contained calcium. The water, lipid, protein, and calcium compositions of the plaques 

were selected to be within the expected clinical range. A total of 95 plaques for each lesion size 

were simulated using the CT simulation package at 80 and 135 kVp. Half-value layer 

measurements were made to make sure the simulated dose was within the range of clinical dual 

energy scanning protocols. Dual-energy material decomposition using a previously developed 

technique was performed to determine the volumetric fraction of water, lipid, protein, and calcium 

contents in each plaque. For non-calcified plaque, the total volume conservation provides the third 

constrain for three-material decomposition with dual energy CT. For calcified plaque, a fourth 

criterion was introduced from a previous report suggesting a linear correlation between water and 

protein contents in soft tissue. For non-calcified plaque, the root mean-squared error (RMSE) of 

the image-based decomposition was estimated to be 0.7%, 1.5%, and 0.3% for water, lipid, and 

protein contents, respectively. As for the calcified plaques, the RMSE of the 5 mm plaques were 

estimated to be 5.6%, 5.7%, 0.2%, and 3.1%, for water, lipid, calcium, and protein contents, 

respectively. The RMSE increases as the plaque size reduces. The simulation results indicate that 

chemical composition of coronary arterial plaques can be quantified using dual-energy CT. By 

accurately quantifying the content of a coronary plaque lesion, our decomposition method may 

provide valuable insight for the assessment and stratification of coronary artery disease.
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1. Introduction

A significant amount of work has been done on the algorithms and clinical applications of 

material decomposition using dual energy computed tomography (CT) [1–7]. Dual energy 

CT decomposition has successfully been used to quantify bone mineral density. Alvarez et 
al. [8] reported the ρZ method in pre-construction (projection) space for dual energy CT 

material decomposition. Lehmann et al. [9] reported the basis material method for dual 

energy material decomposition. Fundamentally, the ρZ method is equivalent to the basis 

material method. However, the basis material decomposition method is more practical in 

clinical applications since it can determine the mass fraction of two materials in a mixture or 

compound of interest directly, as well as the effective density and effective atomic number, 

while the ρZ method only gives the effective density and effective atomic number of the 

whole mixture. Those decomposition methods were limited to a two-material mixture, which 

limited the clinical application of the dual energy CT decomposition [10, 11].

Recently, the performance of the dual energy CT has been improved in terms of both basic 

technology and new clinical applications. Different materials have different mass attenuation 

coefficients when interacting with X-rays, which is how dual-energy imaging is able to 

quantify material compositions in a region of interest. Therefore, in CT imaging, different 

tissue may be represented with either different or the same CT numbers depending on their 

chemical concentration. The National Institute of Standards and Technology (NIST) website 

supplies the mass attenuation coefficients for different elements (Z=1–92) [12]. It lists the 

coefficients of 48 compounds and mixtures, which include nearly all the chemical elements 

and compounds or mixtures found in the human body. For a mixture with more than one 

constituent element, the summation of weighted mass attenuation coefficients of each 

constituent element could generate the mass attenuation coefficient of the mixture.

Liu et al. [13] recently reported dual energy CT could successfully resolve a three-material 

mixture consisting of water, calcium hydroxyapatite and iron nitrate in a single voxel. A 

three-material decomposition dual energy CT algorithm, based on conservation of mass, was 

reported. They used a mixture composed of water, iron, and calcium, where the latter two 

materials were high Z materials with higher attenuation coefficients.

Dual energy CT has previously been used as one of the methods to diagnose coronary artery 

disease (CAD), especially to distinguish stable and unstable plaque [7, 14–16]. The use of 

dual-energy material decomposition in assessing coronary arterial plaque is mainly limited 

by two factors. First, coronary arterial plaques are usually composed of three to four 

materials; current algorithms cannot decompose mixture with four materials. Second, the 

size of the coronary arterial plaque is relatively small with an approximate range of 2–5 mm 

in diameter [17]. Partial volume effect makes quantitative measurements challenging [18]. In 

this case, the quantitative compositional analysis for a four-material mixture in a small-size 

arterial plaque is clinically important, as compositional analysis can potentially be used to 

decide whether it is a vulnerable plaque [19–21].

Coronary plaques are usually composed of three to four different materials, such as water, 

lipid, protein and sometimes calcium. The mass attenuation curves for water, lipid, protein, 
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and calcium are shown in Figure 1. The mean attenuation coefficient of calcium is higher 

than that of water, lipid and protein for much of the diagnostic energy range (~33 – 80 keV). 

Because of this, calcium is easily discerned from other mixture components. Conversely, 

water, lipid, and protein are difficult to differentiate in mixtures, as their attenuation 

coefficients are very similar.

The primary goal of this study was to simulate the performance of three-material and four-

material decomposition by using dual-energy CT, specifically, in the case where the region 

of interest is assigned to be a four-material mixture.

2. Theory

The decomposition of measured linear attenuation into fractional measurements of tissue 

composition was based on the solution to a dual energy system of three equations and three 

unknowns:[22, 23]

μW
L ⋅ fW + μL

L ⋅ fL + μCa
L ⋅ fCa = SL

μW
H ⋅ fW + μL

H ⋅ fL + μCa
H ⋅ fCa = SH

fW + fL + fCa = 1
(1)

where μW
i , μL

i , and μCa
i  are the linear attenuation coefficients of water, lipid, and calcium, 

respectively, where i denotes either low (L) or high (H) energy scans. fW, fL, and fCa are the 

volume fractions of water, lipid, and calcium, respectively. SL and SH are the measured CT 

Hounsfield units (HU) for the low and the high-energy scans, respectively. The first two 

equations represent the measured log signal in the low or high energy scan, as a linear 

combination of the attenuation coefficients of the three components, while the last equation 

comes from the CT voxel size constraint [1, 23–25]. The assumption of mass conservation 

would be more universal. However, it requires the knowledge of the exact incidence spectra 

from the X-ray source, which can be difficult to obtain in practice. One of the first 

descriptions of the use of the dual energy CT with 3 equations and 3 unknowns to solve for 

the soft tissue, fat and bone composition of spongiosa was first introduced by Goodsitt et. al. 
in 1987 [26]. Conversely, for soft tissue components such as water, lipid, and protein, the 

errors induced by the assumption of volume conservation can be negligible [1, 22, 23].

Although the theory of dual energy imaging is well represented in Eq. 1, some technical 

obstacles remain due to the use of polyenergetic spectra and the presence of the non-linear 

artifacts. Instead of solving Eq. 1 directly, low-order polynomial approximations are usually 

used for generating the basis images from the measured signals [8, 9]. In this study, we 

chose a non-linear equation with the following form to approximate the inverse of Eq. 1:

fi = a0 + a1SL + a2SH + a3(SL)2 + a4SLSH + a5(SH)2

1 + b1SL + b2SH (2)

where fi stands for fW, fL, and fCa. Solving for fW, fL, and fCa was a two-step process that 

was accomplished numerically by means of least-squares fitting. The first step was 
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substituting the known values and each respective image attenuation measurement of fW, fL, 

and fCa from the calibration phantom. Origin (OriginLab Co., Northampton, MA) was used 

to perform the non-linear fitting according to Eq. 2 and solve for the system matrix 

calibration coefficients, a0, a1, a2, a3, a4, a5, b1, and b2 for each material, respectively. After 

determining these coefficients, image attenuation measurements from vessels with unknown 

compositions were substituted into the system to determine the image-based measurements 

of water, lipid, and calcium contents [22].

3. Method

a. CT simulation

The current simulation study was designed to match the physical parameters of a specific CT 

scanner (Canon Aquilion One, Canon America Medical Systems, Tustin, CA) as close as 

possible, so that it may bring more useful information for the future phantom studies. 

Polyenergetic x-rays were simulated within the range of 80 – 135 keV. Spectra was provided 

by the XCOMP5R code of Nowotny and Hoofer [27]. The polyenergetic x-ray beam flux at 

80 and 135 kVp tube voltage is shown in Fig. 2. We chose the aluminum pre-filtration of the 

low- and high- energy beams to make sure they could match the mean beam energies of 53.3 

and 71.0 keV for the physical CT scanner at tube voltages of 80 and 135 kVp, respectively. 

By incrementally increasing the thickness of aluminum until the desired mean beam energies 

were reached, a total added filtration of 7.5 mm aluminum was selected in the current 

simulation study. The half-value layer of each reference beam was determined to be 

approximately 5.35 mm Al and 8.53 mm Al for the 80 kVp beam and the 135 kVp beam, 

respectively. The amount of the aluminum filtration did not change throughout the study 

regardless of which tube voltage we used. Although some scanners use different filtrations 

for the low- and high-energy beam to improve spectral separation, Canon Aquilion One, 

which is the modeled CT scanner in this simulation study, does not switch filtration between 

different kVps. The presence of a bowtie filter was not simulated in the current study. 

Sinograms were simulated using ray tracing method, realized through the ASTRA Toolbox 

in MATLAB [28]. Quantum noise was introduced using Poisson noise model in the 

sinogram to reflect the realistic dose level. Focal spot blurring was introduced with a 

Gaussian filter on the sinogram, which matched the 0.9 mm focal spot size in the physical 

scanner. Simulated CT images were reconstructed with Filtered Back Projection (FBP) using 

a Ram-Lak filter. Based on the simulation parameters, the estimated CTDIvol from the 

Canon Aquilion One CT scanner were calibrated to be 18.9 and 22.1 mGy for 80 and 135 

kVp, respectively. The detailed parameters used in the simulation are summarized in Table 1.

b. Phantom design

A 3200×2200 pixel ordinal digital phantom was created to emulate an axial cross-sectional 

CT image of a 32-cm wide human chest, with four vessels located along the anterior edge of 

the simulated heart and 0.01 cm/pixel resolution. The size of the lesions used in simulation 

was in the range of 2–5 mm diameter. For compositions, we used the range of water, lipid, 

protein and Ca according to expected clinical range. Although the calcification in the plaque 

is calcium hydroxyapatite rather than Ca, we have carefully converted the Ca volumetric 

fraction according to the mass ratio of Ca in hydroxyapatite. In this case, the amount of Ca 
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used in the simulation is clinically relevant. We generated random numbers within the range 

for water and Ca volumetric fraction. We determined the protein volumetric fraction using 

the assumed linear correlation between water and protein with a random Gaussian noise 

addition. We finally determined the lipid volumetric fraction by assuming the sum of the all 

components is 1. Materials were assigned indices according to the chest phantom shown in 

Figure 3, and X-ray attenuation coefficients for each material were derived using data from 

NIST. The white objects were designed to simulate the ribs and vertebra in the body. The 

central circle was used to simulate the area of heart. Two designated regions in the left and 

right lung tissue stand for the air and water regions used to calibrate Hounsfield Units, in 

each simulation.

The soft tissue of arterial plaque consists of a fibrous cap and fatty core. The fatty tissue 

contains mostly lipid, while the fibrous cap consists of water, lipid, and protein. Therefore, 

there exists a biological correlation between water and protein, as both contents appear 

primarily in the same type of tissue. This assumption has been demonstrated in a previous 

study on breast tissue [29]. For arterial plaque, the correlation coefficients may be different 

but the concept is expected to be similar. The assumption that there is a biological 

correlation between water and protein renders the possibility of decomposing arterial plaque 

into four basis materials.

To make the simulation more realistic, Gaussian noise was introduced to the linear 

relationship in the previously reported data [29], yielding data shown in Figure 4. We used 

the linear relationship in Figure 4 to decompose the protein content from the four-material 

mixture.

Table 2 shows the mixture composition we used in the simulation. Generally, coronary 

plaques were classified into calcified and non-calcified plaques [30]. The calcified plaque 

contains water, lipid, protein, and calcium while the non-calcified plaque contains only 

water, lipid, and protein. Previously reported plaque compositions are also included in Table 

2 [31, 32]. The column labeled, “simulation” represents the mixture of contents we used in 

our simulation. In order to make the simulation more realistic, the plaque compositions were 

chosen to be within the previous reported range.

c. Simulation and material decomposition calibration

A digital circular phantom was designed for the dual-energy calibration purposes. The 

calibration phantom had a diameter of 30 cm, with four 5 cm circular plugs. The background 

material was assigned as PMMA, and each of the four plugs was simulated as known 

mixtures of water, lipid, protein, and Ca. CT images of the calibration phantom was 

simulated using our CT simulation package. The compositions of the four plugs were 

modified each time to generate a total of 22 calibration points. The simulated HU of the low- 

and high-energy CT images of those calibration points were substituted into Eq. 2 (SL and 

SH), together with the known fraction of the content (fi), so that the decomposition 

coefficients of the corresponding content (ai and bi) could be determined. Those 

decomposition coefficients were used later in the validation study with the simulated low- 

and high-energy HU to derive the composition of the plaque. For calcified plaques, the same 

technique was first used to decompose the tissue into each component. However, due to the 

Ding et al. Page 5

Int J Cardiovasc Imaging. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



presence of four different components in the plaque, the decomposed values may not reflect 

the true volumetric percentages. Therefore, a secondary calibration was required. To address 

this issue, a linear transformation of the initial results from the dual-energy decomposition 

was performed to obtain the final volumetric percentages. The slope and the offset of this 

linear transformation were determined from a linear fitting of 10 samples with known 

chemical volumetric fractions.

d. Validation and image analysis

Ninety- five different vessel percent volume compositions were simulated during each trial, 

as determined by a clinically constrained material distribution for water, lipid, protein, and 

calcium. For each trial, 47 pairs of simulated images were created. Two different vessel 

compositions of water, lipid, protein, and calcium were assigned to Vessel Group 1 and 

Vessel Group 2, according to Figure 3, for each image pair. In this case, each mixture was 

simulated on both the left and right vessels and the location effect on the mixture 

decomposition could be studied. While one image of the pair was simulated with 80 kVp 

and 218.4 mA, the other image was simulated with 135 kVp and 65.6 mA. The tube current 

was adjusted to achieve the same radiation dose for the low and high energy images. In this 

simulation study, we adjusted our simulation dose to be similar to the typical clinical dose. 

We used 218 mA at 80 kVp with a dose of 19 mGy and 65 mA at 135 kVp with a dose of 23 

mGy. The previously reported dose for dual energy CT scan is 20 mGy at 80 kVp and 23 

mGy at 135 kVp [33, 34]. Therefore, the current simulation study was done within the 

clinically acceptable dose range. The mean HU of each vessel in the simulated image was 

calculated using a region of interest of approximately 50% of the luminal area of the vessel 

in order to minimize the partial volume effects.

Five simulation trials were conducted where vessel lumen cross-sectional images were 

simulated. The details of the trials are shown in Table 3. In Trial 1, non-calcified plaques 

were simulated with 2 mm vessels, which consisted of mixtures of water, lipid, and protein 

contents. In Trial 2, calcified plaques were simulated with 5 mm vessels, which consisted of 

mixtures of water, lipid, protein, and calcium contents. The protein volumetric fractions in 

this data set were directly correlated to those of water without any correlation noise. Trial 3 

had the same design as Trial 2, but with added Gaussian noise in the water-protein 

correlations when the plaque composition was determined for the digital phantom. It is thus 

demonstrated the effect of uncertainty in this biological correlation. In Trials 4 and 5, 

simulated vessel diameters were reduced to 3 and 2 mm, respectively. Vessel compositions 

for Trials 4 and 5 were simulated with added Gaussian noise in the water-protein 

correlations to include the biological uncertainty as well.

e. Statistical analysis

In this study, we used the linear regression model to fit our decomposition data to conduct 

the statistical analysis. Slopes from the linear fitting between the measured and the known 

volumetric fractions were used to investigate the correlation of the results.

We calculated the RMSE to determine the accuracy of our decomposition studies. RMSE is 

frequently used to measure the differences between values observed and the value predicted 
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by a model or an estimator. RMSE is an accuracy measurement, which is used to compare 

forecasting errors of different models for a particular variable. It did not compare between 

variables so it is scale-dependent.

We also calculated the standard error of estimate (SEE) to determine the precision of our 

decomposition studies. The standard error of the estimate is a prediction accuracy 

measurement. We used the regression line to minimize the sum of squared deviations of 

prediction. The standard error of the estimate is defined below:

σest = ∑(Y − Y ′)2

N
(4)

Where σest the standard error of the estimate, N is the number of pairs of scores, Y is an 

actual score and Y’ is a predicted score. The sum of squared differences between the actual 

scores and the predicted scores is the numerator.

4. Results

The results of the tissue composition measurements of the non-calcified plaques are 

presented in Fig. 5 for water (a), lipid (b), and protein (c) contents. The volumetric fractions 

of the three components measured with the image-based dual energy technique were 

compared to the known contents. The identity lines are shown in each plot for visual clarity. 

The correlation between the image-based measurement and the designed one was estimated 

with a linear regression model. The fitted slopes were estimated to be 1.01, 1.09, and 1.01 

for water, lipid and protein contents, respectively. The RMSE of the image-based 

decomposition with respect to the known volumetric fraction is estimated to be 0.7%, 1.5%, 

and 0.3% for water, lipid, and protein contents, respectively. The linear regression results 

show a good agreement between the measured and the known compositions for all the 

vessels. The RMSE of lipid is slightly higher than those of water and protein. This is mostly 

due to the fact that the volumetric fraction of lipid is generally the highest among all 

chemical components in tissue.

Figure 6 shows the four- materials mixture decomposition results for calcified coronary 

plaques for water (a), lipid (b), calcium (c), and protein (d) contents. The volumetric 

fractions of the four components measured with the image-based dual-energy technique 

were compared to the known components. The identity lines are shown in each plot for 

visual clarity. The correlation between the image-based measurement and the known 

volumetric fraction was estimated with a linear regression model. The fitted slopes were 

estimated to be 0.97, 0.97, 1.00, and 0.92 for water, lipid, calcium, and protein contents, 

respectively. The RMSE of the image-based decomposition with respect to the known values 

from the designed mixture were estimated to be 5.6%, 5.7%, 0.2%, and 3.1% for water, 

lipid, calcium, and protein contents, respectively. The linear regression results show a good 

agreement between the measured and the known compositions.

Another interesting question is the location dependence for the quantitative plaque 

characterization. To investigate this issue, we studied the correlation of the image-based 

composition measurements from the left and right vessels of the same contents. This 
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correlation is shown in Figure 7 for the results obtained from dual energy decomposition (a) 

water, (b) lipid, (c) protein, and (d) calcium, respectively. The identity lines are shown in red 

for visual guidance. It can be seen from the dual-energy analysis that the image-based 

decomposition has good linear correlation, with a slope of 1.00, 1.00, 1.08, and 1.00 for the 

water, lipid, protein, and calcium, respectively, between the left and the right vessels.

The RMSE for different vessels is shown in Table 4. First, we compared the decomposition 

results for the Trial 2 and 3 (5 mm diameter vessels without and with noise) in the 

relationship of water and protein. We found that there is no obvious different between the 

RMSE for the Trial 2 and 3. However, we still observed that the RMSE for the 

decomposition results with added noise is slightly higher than the one without noise. 

Therefore, introduced noise in the correlation between the water and protein will affect the 

accuracy of our decomposition but the effect is limited, meaning our decomposition method 

is relatively independent of the noise. Compared to the range of the water, lipid, calcium, 

and protein, the RMSE for water, lipid, calcium, and protein is much smaller than the 

corresponding range, indicating that our decomposition results are very reliable. Knowing 

the noise introduced in the correlation between the water and protein would not affect the 

decomposition very much, we tested the four-material mixture decomposition in Trial 4 (3 

mm diameter) and Trial 5 (2 mm diameter) vessels with random noise in the water-protein 

correlation. The RMSE of water, lipid, and protein for Trial 4 are approximately 50% higher 

than the ones of Trial 3. This is most probably due to the smaller vessels leading to partial 

volume effect. The measurement of image-based ROI is not strictly accurate and it affects 

the decomposition results. We also noticed that the RMSE of calcium in Trial 4 is close to 

the one for Trial 2. This is due to the higher Z number of calcium leading to the higher 

attenuation affect, which will be easier to distinguish among the water, lipid, and protein. As 

for the RMSE for Trial 5 for water, lipid, calcium, and protein, we observed that the RMSE 

number for four contents are almost the same as the trial 4 numbers, meaning that with the 

vessel diameter further decreasing, the four-material decomposition reached its limit but still 

has reliable results.

The standard error of estimation (SEE) on different vessels is shown in Table 5. The 

standard error of the estimate is a measure of the precision for predictions made with a 

regression line. The results show that for the 5 mm diameter vessels (Trial 2 and 3), the SEE 

value without the introduced noise is slightly lower than the one with noise, which is 

expected. The SEE for Trial 4 (3 mm diameter) and trial 5 (2 mm diameter) is nearly 50% 

higher than that of Trial 3, which indicates that the partial volume effect plays an important 

role for smaller vessels.

5. Discussion

Previous reports have shown that dual-energy CT material decomposition could be used for 

quantitative measurement in approximately 10 mm vessels for three high Z materials [13]. 

The current study investigated the possibility of dual-energy material decomposition in a 2 

mm vessel with 3–4 different low Z materials. For the presence of three materials, i.e. water, 

lipid and protein contents, dual-energy material decomposition was accomplished by 

assuming total volume conservation in the current simulation study. Volume conservation is 
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a first order approximation and has been used successfully in previous studies [1, 22–25, 

35]. Although total volume conservation may not always be true, it should be noted that the 

errors can be reasonably small in cases where the mass densities of the components and the 

effective density of the mixture are close to each other. In the present study, the density of 

water, lipid and protein were assumed to be 1.00, 0.92, and 1.35 g/cm3, respectively. The 

mass density for non-calcified arterial plaque is difficult to measure. However, reports have 

shown that the mass density for myocardial tissue is approximately 1.05 g/cm3 [36]. Thus, 

the constant volume assumption is expected to be valid here. In fact, our previous study on 

postmortem breast tissue suggested a good accuracy in three-material decomposition using 

volume conservation. In the case of calcified plaques, Ca has a mass density of 1.55 g/cm3, 

which is slightly higher than that of soft tissue. However, in the case of non-calcified plaques 

and considering the small fraction of Ca (<10%), volume conservation can still be used as a 

first order approximation. A more rigorous method will be using total mass conservation as 

the additional constraint. A more generalized method for material-deposition in absence of 

volume conservation is matter of future studies.

This study proposed a possible method for four-material decomposition using dual-energy 

CT. Besides volume conservation, another constraint must be provided. The additional 

constraint was based on the presence of a correlation between the fundamental chemical 

components of water, lipid and protein contents in soft tissue. This indicates that the four 

variables are not completely independent of each other. It is thus possible to expand the basis 

materials beyond three. In early studies by Woodard and White [37], fairly strong 

correlations among the three fundamental components are shown for adipose and muscle 

tissues. A previous tissue compositional study on postmortem breasts also suggested a 

strong correlation between water, lipid and protein contents [29]. It is thus expected that 

such correlation may also exist for vascular plaque lesions, as the soft tissue component of 

the lesions consist mostly of adipose and fibrous tissue. Presently, the fundamental chemical 

compositions of arterial plaques and their potential correlations are unknown. In order to 

verify the proposed model, this study assumed a water-protein correlation based on a 

previously reported data [29]. It is important to note that the true correlation for arterial 

plaque, if any, can be very different from that of breast tissue. However, that does not affect 

the feasibility study of the proposed four-material decomposition method. The water-protein 

correlation was not used in material decomposition to quantify lesion chemical composition. 

It was implemented to define the chemical composition of the tested vessels, such as in Trial 

2. The results of the study suggested that four-material decomposition can be performed 

with reasonably good accuracy using dual-energy CT, as long as there is some correlation 

between the fundamental components in soft tissue.

In fact, the exact correlation may not affect the precision of the simulation results. The main 

challenge here is not the linear relationship, but the uncertainty in the biological correlation. 

This issue was addressed by the addition of some uncertainty in the biological correlation 

between water and protein as the form of Gaussian noise in Trial 3. Comparing the RMSE in 

Trial 3 to that in Trial 2, where protein fraction is linearly correlated to water fraction 

without any uncertainty, results of the simulation show that although the RMSE increased 

when random noise was added to protein volumetric fraction, the overall accuracy for all 

four materials was well-preserved. Thus, the proposed method can potentially be used for 
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measurement of plaque composition as long as there is a reasonable correlation between its 

water and protein contents.

Dual energy material decomposed CT images are expected to have high noise. It should be 

noted that the proposed technique is intended to provide quantitative information regarding 

the chemical composition for the whole plaque. The numerical results, integrated over the 

whole plaque, may be used as an adjunctive approach to facilitate the conventional image-

based diagnosis. A measurement with reasonable accuracy can only be performed using 

integrated information from relatively large number of voxels, which may be achieved by 

exploring the whole plaque.

The accuracy of dual-energy material decomposition for four different materials is 

particularly limited in the case of low attenuation coefficient materials as expected. The 

accuracy of dual - energy material decomposition is dependent on the ratio of the low and 

high energy attenuation coefficients and the CT number accuracy. CT number accuracy is 

dependent on many factors such as beam hardening, scatter, and partial volume effect [38, 

39]. These factors should be addressed in order to have the most accurate CT numbers for 

dual-energy material decomposition. Given the existing beam hardening and scatter 

correction algorithms, the error in dual-energy material decomposition is expected to be 

relatively small. However, this error can be much more significant in the case where the ratio 

of low and high energy attenuation coefficients is small.

The error in dual- energy material decomposition is also dependent on the vessel size. The 

results of this study showed that the error increased as the vessel size decreased. For 

example, the RMSEs for water, lipid and protein in a vessel with a 2 mm diameter were 

approximately 40% higher than in a 5 mm diameter vessel. It was also shown that the error 

for higher Z materials, such as calcium, is not very sensitive to the change in vessel size. 

This is due to the fact that the attenuation coefficient of the calcium is higher than that of 

water, lipid and protein.

In order to investigate the location dependent error in material decomposition, simulation 

measurements were made both in the right and left side of the heart. The results showed that 

the decomposition results of the left and right vessels had a good agreement, which means 

our decomposition study was location independent.

However, there are some limitations in the study. First, the biological correlation used was 

cited for breast glandular tissue instead of the coronary arterial plaque tissue. This 

correlation may not accurately translate to other tissues, especially for coronary plaques. 

This relationship will have to be validated for coronary plaque tissue in future studies. 

Furthermore, while the vessels investigated in this study were in the range of 2– 5 mm, the 

plaque size can be smaller than 2 mm, as it may not cover the whole vessel. Therefore, 

smaller vessel sizes should be considered in future. Finally, the simulation was conducted in 

an ideal condition where x-ray scatter and beam hardening effects were not included. The 

simulated CT images are free of artifacts induced by such non-linear effects. The purpose of 

this simulation study was to determine whether three or four element decomposition is 

possible assuming that appropriate corrections are made for beam hardening and scatter. CT 
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manufacturers currently apply corrections for beam hardening and scatter so the next step 

will be to evaluate the technique using physical phantoms and determine whether further 

corrections are necessary. This will be done as part of future studies. It is possible to 

improve the separation of the low and high energy spectra by using Cu or Sn to filter the 

high energy beam.

In conclusion, the results of this study suggest that the water, lipid, protein, and calcium 

contents can be accurately measured using dual-energy CT. This technique can potentially 

be used for quantification of arterial plaque composition.
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Figure 1. 
Mass attenuation coefficient in the logarithmic coordinate for the four materials considered 

in this study within the diagnostic energy range.
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Figure 2. 
Polyenergetic x-ray beam flux at 80 and 135 kVp tube voltages.
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Figure 3. 
Chest image phantom used in the dual energy CT simulation. Different colored vessels stand 

for different materials.
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Figure 4. 
Correlation of volumetric fraction of water and protein in the soft human tissue experimental 

data with Gaussian noise introduced. The red line is the linear fitting line of the original 

data.
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Figure 5. 
Results of the three-material mixture compositional studies of trial 1. The volumetric 

fractions of water (a), lipid (b), and protein (c) contents measured with dual kVp technique 

are presented as a function of the designed phantom. The Y axes are the dual-energy 

decomposition volumetric fractions of water, lipid, and protein. Identity lines are drawn for 

visual guidance. Excellent correlations with slopes very close to one can be observed for all 

three contents.
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Figure 6. 
Results of the four-material mixture compositional studies of trial 3. The volumetric 

fractions of water (a), lipid (b), calcium (c), and protein (d) contents measured with dual 

kVp technique are presented as a function of the known volumetric fractions. Identity lines 

are drawn for visual guidance. Excellent correlations with slopes close to one can be 

observed for all contents.
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Figure 7. 
Correlation between the left and the right vessels of the simulation compositional studies of 

trial 3. The same mixtures were simulated simultaneously on both sides of the heart. The 

volumetric fractions of water (a), lipid (b), protein (c), and calcium (d) contents measured 

with dual kVp technique are presented for the results on both sides. In all cases, the slopes 

are close to one, which suggests the decomposition accuracy is independent of the vessel 

position.
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Table 1.

Simulation parameters which matched the specification of Canon Aquilion One CT scanner.

Canon Aquilion One Specifications

X-ray Source Filtration 7.5 mm Al

Detector Pixel Pitch 0.5 mm

Number of Projection Angles 900

Source to Object Distance 60.0 cm

Object to Detector Distance 47.2 cm

Focal Spot Size 0.9 mm
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Table 2.

Plaque composition information from the literature and composition used in simulation studies.

Non-calcified (literature) (%) Non-calcified (simulation) (%) Calcified (literature) (%) Calcified (simulation) (%)

water 50–90 35–65 36–83 36–83

lipid 3.7–36 5–60 8.6–34.6 1.7–47.2

protein 6.2–15.4 5–40 5.2–13.6 5.2–15.2

calcium 3–17 2–17
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Table 3.

The specifications for each trial. W, L, P, and Ca stand for water, Lipid, Protein, and Calcium, respectively.

Diameter (mm) Biological Uncertainty Exposure Composition (W, L, P, Ca)

Trial 1 2 w/ 0.5 W, L, P

Trial 2 5 w/o 0.5 W, L, P, Ca

Trial 3 5 w/ 0.5 W, L, P, Ca

Trial 4 3 w/ 0.5 W, L, P, Ca

Trial 5 2 w/ 0.5 W, L, P, Ca
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Table 4.

The RMSE statistical analysis results for all dual kVp CT simulation decomposition trials. The range of all 

contents is shown at the bottom for reference.

RMSE Water (%) Lipid (%) Calcium (%) Protein (%)

Trial 1 3.16 2.08 N/A 0.23

Trial 2 2.88 4.23 0.59 2.02

Trial 3 4.19 4.6 0.57 1.86

Trial 4 6.22 7.19 0.67 2.30

Trial 5 5.76 6.86 0.68 2.41

Range 36–83 1.7–41.2 2–16.8 5.3–15.2
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Table 5.

The SEE statistical analysis results for all dual kVp CT simulation decomposition trials. The range of all 

contents is shown at the bottom for reference.

SEE Water (%) Lipid (%) Calcium (%) Protein (%)

Trial 1 0.55 1.15 N/A 0.17

Trial 2 5.37 5.02 0.20 3.15

Trial 3 5.54 5.57 0.17 3.13

Trial 4 6.55 6.93 0.36 3.01

Trial 5 8.05 7.43 0.43 2.72

Range 36–83 1.7–41.2 2–16.8 5.3–15.2
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