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ABSTRACT OF THE DISSERTATION

Machine learning based partial differential equation (PDE) recovery

by

Ruixian Liu

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)
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Peter Gerstoft, Chair

The dynamics of many natural phenomena are described by partial differential equations

(PDEs). With the rise in computing resources, machine learning methods for PDE recovery

directly from observations are emerging. Unlike traditional PDE derivation, a machine learning

method requires less mathematical prowess and is widely applicable to various dynamical

systems. This dissertation uses two machine learning methods, sparse modeling and physics

informed neural networks, to address PDE recovery issues: (1) identifying unknown PDE terms;

(2) recovering PDE coefficients from noisy, partial observations. We tackle both spatially-

independent and spatially-dependent PDEs, with the latter’s recovery elucidating the spatial

variations of medium material properties, essential for modern industrial applications.
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First, sparse modeling methods are used to identify unknown PDEs. A dictionary with

redundant hypothetical PDE terms is computed numerically from observations, and then sparse

modeling approaches extract some of the terms from this dictionary to form the identified PDE.

For spatially-dependent PDE identification, a dictionary is computed from the observations at

each location, and then sparse regression is used to extract active terms from the dictionary to be

the PDE terms at this location. The methods are validated on both synthetic datasets and real

laser measurements of structural vibrations.

Next, a deep learning method spatially dependent physics informed neural network

(SD-PINN) is used to recover spatially-dependent PDEs from noisy and partial observations. The

spatially-dependent PDE coefficients for each term at all locations in the region of interest (ROI)

are modeled as a low-rank coefficient matrix. The low-rank assumption is from the fact that the

physical property of the material at one location is impacted by its surroundings, which results in

decreased degrees of freedom for the entries in the coefficient matrix. The coefficient matrix is

rewritten as a product of two smaller matrices, where “smaller” is compared to the minimal value

of the row number and column number of the coefficient matrix. These two matrices contain

remarkably fewer unknowns than the coefficient matrix itself. Given only noisy observations

from a subset of locations within ROI, SD-PINN can efficiently recover these two matrices and

thus reconstruct the coefficient matrix, which encapsulates the PDE coefficients for all locations.
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Chapter 1

Introduction

Many natural dynamical phenomena are controlled by partial differential equations

(PDEs). Conventional techniques for modeling these dynamical systems using PDEs often hinge

on underlying physical laws, but pinpointing the correct PDE terms through analytical means

can prove challenging [1]. As a result, the development of more practical, data-driven methods

for identifying PDEs has become a focal point of rigorous research.

The goal of this dissertation is to develop and apply machine learning methods to better

analyze the measurements of dynamical fields and recover the governing PDEs for them. The

methods in this dissertation involves sparse modeling approaches and physics informed neural

network (PINN), and the PDEs to be recovered involves spatially-independent PDEs and spatially-

dependent PDEs with the latter one indicating how the physical properties of the medium vary

spatially. Overall, two kinds of problems are solved:

• Recovering unknown PDE terms. The sparse modeling techniques are used to numerically

compute all the potential PDE terms from the measurements data and identify the PDE

terms that are most possible to be the active terms in the PDE governing this dynamical

field. This task applies for both spatially-independent PDEs and spatially-dependent PDEs,

and relative methods are discussed in Chapter 2 and 3.

• Recovering unknown PDE coefficients for given PDE terms for noisy situations and missing

measurements. When the noise is high, the PINN exhibit its unique advantage of noise-
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robustness. The traditional PINN only applies to spatially-independent PDEs recovery.

This limitation is overcome in our proposed Spatially Dependent Physics Informed Neural

Network (SD-PINN) in which we keep its strength on noise-robustness and extend it to

enable its capability of recovering spatially-dependent PDEs even at locations without

available measurements.

1.1 Basics of PDEs recovery

Many natural phenomena are described by parial differential equations (PDEs) which

consist of multiple PDE terms. A PDE governing the dynamical behaviors of field U can be

described by

N[U ] = a1Ux +a2Uy +a3Ut +a4Utt + . . . (1.1)

where the partial derivatives Ux,Uy,Ut , ... are the PDE terms and the a1,a2, ... are PDE coeffi-

cients. The PDE coefficients can be fixed (spatially-independent) across the whole region of

interest (ROI) or be spatially-dependent, which indicates an inhomogeneous medium for the

dynamics.

There are many types of PDEs, like the wave equation for the fluid dynamics, the heat

equation for the heat diffusion and Maxwell’s equation in electromagnetism. In this dissertation,

we mainly use the wave equation as an example to demonstrate machine learning based PDE

recovery approaches:

N[U ] =Utt +αUt − c2
∇

2U , (1.2)

where Ut ,Utt are the 1st and 2nd-order temporal derivatives of U and ∇2U =Uxx +Uyy the sum

of 2nd-order spatial derivatives of U (also called the Laplacian of U). The PDE coefficient α ≥ 0

is the wave attenuation factor and c2 > 0 is the square of the phase speed c.

In this dissertation, we assume that the sensors measuring the dynamical field is either

placed in 1D spatially or 2D forming a rectangular array. With the additional dimension for time,

the measurements data denoted by U, which is a measured field potentially satisfying a PDE, is a
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2D or 3D matrix.

The machine learning based PDE recovery methods contain two steps: (1) computing the

partial derivatives from U as the potential active PDE terms; (2) computing the coefficients with

respect to these terms. Different methods have various computing schemes, but overall these two

steps always exist.

1.2 PDE identification using sparse modeling

In real scenarios, the number of PDE terms is limited. This inspires the PDE identification

methods based on sparse regression, in which a dictionary ΦΦΦ containing redundant hypothetical

active PDE terms is first computed based on the measurements U and then a sparse regression is

applied to select only a few of the terms to be the true active ones. Since the true active terms are

sparsely distributed within the dictionary, the sparse regression is viable. For example, such a

dictionary ΦΦΦ containing D terms may be

ΦΦΦ = [ut , utt , ux, uxx, uxxx, uux, uy, uyy, uyyy, uuy] ∈ RN×D (1.3)

where each column is the stack of values for one PDE term computed at all spatio-temporal

coordinates in the ROI directly from U by numerical differentiation, e.g., the finite difference. If

the PDE governing the field is the wave equation (1.2), then the terms {ut , utt , uxx, uyy} should

be extracted via sparse regression.

For the spatially-dependent PDE case, the dictionary is separately computed for every

location. For example, a dictionary ΦΦΦn is built for the location of index n in the ROI, and the

active PDE terms at this location are extracted from ΦΦΦn during which the PDE coefficients

specific to this location are also recovered.

There are already sound research on this topic. In the PDE identification work “PDE-

FIND” [1], the sequential threshold ridge regression (STRidge) is applied to select the active

terms from the dictionary. In the work [2], a sparse Bayesian learning (SBL) technique is
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leveraged to locate the active terms. In this dissertation, we introduce a cross-validation based

PDE identification method [3] for spatially-independent PDEs as detailed in Chapter 2 and an

ℓ1-norm minimization based approach [4] for spatially-dependent PDEs as in Chapter 3. A

common advantage of works [3] and [4] is that they do not require any assumed active PDE

terms.

1.3 Physics informed neural network

The physics informed neural network (PINN) [5, 6, 7] is a method to recover the PDE

coefficients for given PDE terms from measurements using a feedforward neural network (FNN)

parametrized by θ , which includes weights and bias of all layers. The input of the FNN is the

spatio-temporal coordinate (xxx, t) in the ROI (where xxx is a vector in 2D cases), and the output is

the estimated dynamical field measurement Û(xxx, t) at there. Suppose the true measurements of

the field U(xxx, t) are available with the region Ωu inside the ROI, the loss function

lossu(θ) = ∑
(xxx,t)∈Ωu

(Û(xxx, t)−U(xxx, t))2 (1.4)

is minimized during training to encourage the FNN to output better dynamical field estimation.

Meanwhile, the PDE terms, i.e., the partial derivatives of U , are estimated by FNN using

automatic differentiation [8]. Then these estimations of PDE terms are used to recover their

coefficients by minimizing a lossf. Take the wave equation (1.2) for example, the lossf is

lossf(α̂, ĉ,θ) = ∑
(xxx,t)∈Ωf

(Ûtt(xxx, t)+ α̂Ût(xxx, t)− ĉ2
∇

2Û(xxx, t))2 (1.5)

where Ûtt , Ût , ∇2Û = Ûxx +Ûyy are partial derivatives estimated by automatic differentiation

and Ωf are the collection of coordinates used for computing lossf. The weighted sum of the two
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losses forms the overall loss by minimizing which the PINN is trained:

loss(θ , α̂, ĉ) = wu × lossu +wf × lossf . (1.6)

The PINN is robust to noise, because the similarity between the Û estimated by FNN

and the true U is constrained by the minimization of lossf. To be specific, when U is noisy, the

ability of the FNN to model the dynamical field is constrained by lossf, inhibiting its capacity to

simulate every detail. Consequently, the FNN’s simulation of the additive noise affecting the

field is also suppressed and the output of FNN Û is thus denoised. The automatic differentiation

on this denoised Û will benefit the calculation of PDE terms and thus benefit PDE recovery.

In addition, the automatic differentiation is more accurate than other numerical differentiation

approaches, such as the finite difference [9, 10].

1.4 Dissertation overview

This dissertation applies machine learning based methods to a diverse set of problems

in PDE recovery. Our results demonstrate that the sparse modeling methods can identify the

unknown PDEs without any active PDE terms assumed active a priori, and the PINN can be

extended to recover spatially-dependent PDEs from noisy and incomplete measurements.

Chapters 2 and 3 address PDE identification using sparse modeling approaches. In

Chapter 2, a cross validation with a sparsity penalty algorithm is proposed to select the active

PDE terms from a dictionary of redundant terms computed from the measurements. Unlike

previous developments which assume at least one active PDE term, here the assumption of any

active PDE term is not required and the method can automatically locate all active terms within

the dictionary. The method is applied to an Aluminum plate to recover the dispersion properties

of the waves propagating on it. In Chapter 3, an ℓ1-norm minimization based method is proposed

to recover the spatially-dependent PDEs from measurements. In this work, no assumption for

active PDE terms is required as well, and the method is computationally efficient. This method
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can also be used with a denoising approach based on integration transformation to recover the

PDEs from noisy measurements.

Chapter 4 describes a spatially-dependent PDE coefficients recovery approach using an

extension of physics informed neural networks, i.e., the SD-PINN. From the (potentially noisy)

dynamical field measurements at some locations in the ROI, the method is able to recovery the

spatially-dependent PDEs at all locations including those without available measurements. Some

matrix analysis knowledge including low-rank factorization is involved.

The dissertation is concluded in Chapter 5, in which the sparse modeling approaches and

neural network based methods for PDE recovery are summarized.
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Chapter 2

Automated Partial Differential Equation
Identification

2.1 Introduction

Partial differential equations (PDEs) govern many natural dynamical phenomena. Tra-

ditional methods for modeling dynamical systems with PDEs are typically based on physical

principles, and analytically determining the correct PDE terms can be difficult [1]. Thus the

more applicable data-driven PDE identification methods are the subject of intensive research.

There has been significant development in data-driven PDE extraction theory thanks to

the advancements in physics-informed machine learning [1, 2, 7, 11, 12, 13, 14, 15, 16, 18]. Our

exploration is inspired by recent work in sparse modeling [1, 15]. Sparse modeling [19, 20]

assumes a parsimonious data representation [21, 22] that scales well to big data problems and

has obtained compelling results in many related fields [23, 24]. Early applications of sparse,

data-driven PDE estimation to real data has appeared [25, 26, 27].

Often we have a priori assumption for the PDE and then retrieve relevant terms. In

previous PDE-discovery developments, one or more active PDE terms (e.g., the 1st order time

derivative term [1, 15] or multiple PDE terms [7]) are assumed a priori for the PDE. The other

contributing terms together with their coefficients are then derived from this prior information.

Thus only parts of the PDE is found by data-driven approaches. This can be problematic when

the assumed existing term is not obvious, e.g., to identify the governing PDE for a surface wave
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which may either be an inviscid Burgers equation or a non-attenuating wave equation who share

no PDE terms in common, one must specify the correct existing term according to sufficient

prior knowledge.

To alleviate the data-driven PDE identification method’s reliance on the prior information,

the proposed approach can automatically identify all contributing terms consisting the PDE for

the dynamics shown by the data. The method computes a dictionary of hypothetical PDE terms

from data using finite difference and pseudo spectral methods, and selects the contributing terms

using sparsity and resampling. We show that the wave-, Burgers- and Helmholtz-equation are

well-identified from data.

2.2 Theory

From a given observed field, the inverse problem solves the background parameters

generating the field. Often the inverse problem is solved under strong assumptions as only source

locations are unknown or it is a wave guide problem. The PDE generating the field has been

assumed known. We relax this assumption and solve for the PDE that could have generated the

observations.

2.2.1 Background

Consider a field U(x,y, t) across spatial x,y and temporal t coordinates. Let it be governed

by a PDE N[U(x,y, t)] with f (x,y, t) the source term

N[U(x,y, t)] = f (x,y, t) (2.1)

with corresponding spatial and temporal boundary conditions. We are here concerned with

discovering the homogeneous PDE N[U(x,y, t)] = 0, thus f (x,y, t) = 0.
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Examples of N[U ] with the typical 2–3 terms include

N[U ] =
∂ 2U
∂ t2 +α

∂U
∂ t

− c2
∇

2U , Wave eq. (2.2)

N[U ] = ω
2U + c2

∇
2U , Helmholtz eq. (2.3)

N[U ] =
∂U
∂ t

+U
∂U
∂x

−ν
∂ 2U
∂x2 . Burgers eq. in 1D (2.4)

In many physical environments the exact form of N(U) is unknown. Consider the general form

with D terms

N[U ] = a1
∂U
∂x

+a2
∂U
∂y

+a3
∂U
∂ t

+a4
∂ 2U
∂ t2 + . . . (2.5)

often up to 2nd order is assumed, but 4th order is not uncommon. Non-linear terms like U ∂U
∂x

can appear (2.4), and the time derivative might be absent (2.3).

Consider the data of the form U∈CNx×Ny×Nt for Nx horizontal Ny vertical and Nt temporal

points, with stepsize ∆x, ∆y and ∆t. The field is generated by a physical source or perturbed

initial condition, and propagates through the media. We identify PDEs governing the field from

the region of interest (ROI), which is U excluding the near-field for potentially existing sources

and the spatial-temporal boundary regions where derivatives are not defined.

2.2.2 Building a dictionary

From U(ix, iy, it) we obtain hypothetical PDE terms by evaluating derivatives at all points

in ROI. The derivatives are estimated using numerical methods including finite difference [9] and

the pseudo-spectral approach [28]. At every point, the homogeneous PDE like (2.5) is satisfied

as

a1Ux(ix, iy, it)+a2Uy(ix, iy, it)+ · · ·= 0 . (2.6)
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In vector notation (2.6) becomes

ϕϕϕ
T(ix, iy, it)a = 0 , a = [a1 . . .aD]

T

ϕϕϕ
T(ix, iy, it) = [Ux(ix, iy, it) Uy(ix, iy, it) . . . ].

(2.7)

For all points in ROI, we obtain

ΦΦΦa = 0, ΦΦΦ =


ϕϕϕT(1x,1y,1t)

...

ϕϕϕT((N)x,(N)y,(N)t)

 ∈ CN×D, (2.8)

with N < NxNyNt , ϕϕϕ(ix, iy, it) all hypothetical PDE terms evaluated at (ix, iy, it), and a ∈ CD the

PDE term coefficients. (N)x is ix when row index i = N.

Each column of ΦΦΦ contains values for one PDE term evaluated at every point in ROI.

Denote the dth column as φφφ d , from (2.8), we rewrite ΦΦΦ having D = 14 terms used for our

experiments with indices shown in superscripts as

ΦΦΦ = [ φφφ 1 . . .φφφ D] = [
1
1

2
ut

3
utt

4
u

5
ux

6
uy u7◦ux u8◦uy

9
uxx

10
uxy

11
uyy u12◦uxx u13◦uxy u14◦uyy] (2.9)

with u = vec(U) ∈ CN , subscripts indicating numerical differentiation, 1 is all-ones vector, and

◦ the Hadamard (element-wise) product. ΦΦΦ contains common terms for multiple PDEs possibly

governing U in ROI including spatial, temporal derivatives of various orders and non-linear

terms. Only a few of these are in the true PDE, i.e., ∥a∥0 ≪ D with ∥ ·∥0 the number of non-zero

entries.

To calculate ΦΦΦ, the 2nd order finite difference (FD) we use for 1st and 2nd order

derivatives is computed by approximating analytical derivatives using truncated Taylor series.

With step ∆x, its truncation error is O(∆x2) [9]. For FD, the first and last pixels in each dimension

are not considered as ROI.
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The pseudo-spectral (PS) method [28, 29] is typically more accurate than finite difference,

as it is the limit of finite difference approximations when the order tends to infinity [30]. The PS is

based on Fourier transform. Denote some discrete signal along x-axis for fixed y, t as u(x) = U(:

,y, t) in CNx , with its spectral coefficients ũr obtained by ũr =
1

Nx
∑

Nx−1
j=0 u(x j)e−2πi jr/Nx , i =

√
−1,

the pth order derivative is

∂
(p)
x u(x j) =

Nx/2

∑
r=−Nx/2+1

(ikr)
pũreikrx j , j = 0, . . . ,Nx−1 (2.10)

where the wavenumber kr =
2π

∆x
r

Nx
. To avoid issues at the spatial boundaries, Tukey windowing is

used to preserve most parts of signal. In all experiments, for each dimension, 40% of the signal

is tapered and excluded from the ROI, with 20% at either end.

2.2.3 Identifying PDE terms

Beyond the assumption that the representation is parsimonious, we assume no prior

intuition of which PDE terms in the library should be relevant to a given problem. The approach

is data-driven as we rely on cross-validation to obtain coefficients, which is a commonly used

technique in machine learning to avoid fitting noise due to redundant terms. The proposed

method which is non-recursive and free of the assumption for i.i.d. Gaussian noise forms an

intuitive alternative to the threshold sparse Bayesian learning approach[14], and is summarized

in Algo.1 with details in the following.

Because of noise introduced by derivatives computing and measurements, the equality in

(2.8) may not hold. To enforce parsimony and avoid the trivial a = 0 , we assume there being

one term φφφ j in ΦΦΦ included in the PDE and search for T other terms, thus estimate a by
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Algorithm 1: PDE identification.
Input: ΦΦΦ = [φφφ 1 . . .φφφ D] ∈ CN×D, λ

Output: a = [a1 . . .aD]
T ∈ CD

Φ̄ΦΦ = [φ̄φφ 1 . . . φ̄φφ D], where φ̄φφ d = φφφ d/∥φφφ d∥2, ∀d
for j = 1 : D do

for T = 0 : D−1 do
L j(T)=CrossValid( j,T) // Eq.(2.13)

T̂ j = argminT L j(T)+λL j(D−1)T̂̄a j = argminā j ∥Φ̄ΦΦā j∥2,s.t. ā j = 1,∥ā j∥0 = T̂ j +1
Err( j) = ∥Φ̄ΦΦ̂̄a j∥2/∥̂̄a j∥2

ĵ = argmin j Err( j) // Choose assumed term

â = argmina ∥ΦΦΦa∥2,s.t. a ĵ = 1,∥a∥0 = T̂ ĵ +1

{â, ĵ, T̂}= arg min
a, j,T

∥ΦΦΦa∥2 (2.11)

s.t. a j = 1, ∥a∥0 = T+1, T = argmin
T′

ψ j(T′).

For a given j, ∥a∥0 is chosen from sparsity-penalized cross-validation error, defined by ψ j (2.14),

as described next. Since D is small (∼ 101), we cycle through all D columns for j in (2.11) and

optimize a, T in every case. Then â is selected by minimizing a normalized fitting error (defined

in (2.15), to be discussed) over all cases.

Specifically, let Φ̄ΦΦ = [φ̄φφ 1 . . . φ̄φφ D] with φ̄φφ d = φφφ d/∥φφφ d∥2,∀d be the normalized ΦΦΦ. Under

the assumption a j = 1 for an arbitrary j ∈ {1 . . .D}, we solve ā j = [ā1 . . . āD] as

̂̄a j = argmin
ā j

∥Φ̄ΦΦā j∥2
2, s.t. ∥ā j∥0 = T j +1, ā j = 1. (2.12)

The T j, i.e., the number of non-zero entries other than ā j in ā j, is chosen using K-

fold cross-validation [31] with an additional sparsity penalty. For cross-validation, we evenly

divide the rows of Φ̄ΦΦ into K folds. The kth fold Φ̄ΦΦ
k is the validation data including the jth
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column φ̄φφ
k
j val ∈ CN

K and the other columns denoted by Φ̄ΦΦ
k
− j val ∈ CN

K ×(D−1). All other folds are

concatenated as training data including the jth column φ̄φφ
k
j tr ∈ CK−1

K N and the other columns in

Φ̄ΦΦ
k
− j tr ∈ CK−1

K N×(D−1). For each fold k, we calculate the coefficient ̂̄ak
− j tr(T) with T non-zero

entries minimizing ∥φ̄φφ
k
j tr + Φ̄ΦΦ

k
− j trāk

− j tr∥2
2. To solve this least squares objective using limited

columns of Φ̄ΦΦ
k
− j tr, we choose the columns contributing most in the least squares solution,

resulting in a threshold least squares (TLS) scheme (detailed in Appendix.2.6.2). The TLS

selects locations for non-zero values in āk
− j tr using the entries with T largest magnitudes in

the least squares solution for fitting φ̄φφ
k
j tr using all columns in Φ̄ΦΦ

k
− j tr. Compared to a classic

basis selection method OMP[32], it is non-iterative and can work better when the column in

Φ̄ΦΦ
k
− j tr most correlated to φ̄φφ

k
j tr is not active, with an example given in Sec.2.3.3. The loss for

cross-validation is (here K = 5)

L j(T) =
1
K

K

∑
k=1

∥φ̄φφ
k
j val + Φ̄ΦΦ

k
− j val̂̄ak

− j tr(T)∥2
2. (2.13)

Minimizing (2.13) might not give the correct sparsity due to two reasons: (i) Columns

in Φ̄ΦΦ are often coherent since they are computed from the same U. A newly incorporated

column might be well-fitted by linearly combined existing columns, and thus cause L j(T) to

plateau. For example, consider non-dispersive attenuating waves U = Re(e−i(k(x+2y)−ωt)+

e−2i(k(2x+y)−ωt)) governed by (2.2) whose complex wavenumber k ≈ ω

c (1−
iα
2ω

), when α

2c ≈ 0

we have Ut ≈ − c
3(Ux +Uy) (see (2.22) and (2.28) in Appendix.2.6.1), causing Utt = −αUt +

c2(Uxx+Uyy)≈−α(mUt +n(Ux+Uy))+c2(Uxx+Uyy) for some non-zero m and n, i.e., L3(3)≈

L3(5). (ii) After all the relevant terms being recognized, the incorporated irrelevant columns

with small coefficients can fit the noise in φ̄φφ j introduced by numerical differentiation, and thus

decrease L j(T) when T already exceeds the correct sparsity.

To exclude redundant atoms, we incorporate a sparsity penalty term [33], and select the

13



optimal sparsity as:

T̂ j = argmin
T

ψ j(T), ψ j(T) = L j(T)+λL j(D−1)T (2.14)

with λ = 1 chosen empirically working well for our data. The L j(D−1) is the average fitting

error (2.13) for all folds with all terms used.

With ̂̄a j in (2.12) solved by TLS using T j = T̂ j, the normalized fitting error with the

range [0,1] is

Err( j) = ∥Φ̄ΦΦ̂̄a j∥2/∥̂̄a j∥2. (2.15)

where Err( j) = 1 indicates T̂ j = 0 and thus φ̄φφ j can not be fitted properly by other columns of Φ̄ΦΦ.

Calculating Err( j) for all j, and ĵ = argmin j Err( j) is chosen. Setting j = ĵ, T = T̂ ĵ, and letting

a j = 1 in (2.11) provides â.

We verify this PDE identification approach by both simulation and real data experiments

as to be described in the following sections.

2.3 Synthetic experiments

Three sets of experiments are carried out, i.e., identifying (i) wave equations from 3D

spatial-temporal areas; (ii) Helmholtz equations from 2D spatial areas; (iii) Burgers equations

from 2D spatial-temporal areas. Datasets used for (ii) are from the frequency components of

wavefields used for (i).

2.3.1 Wave equation

The PDE identification is tested with videos U sampled from continuous wavefields

generated by the wave equation (2.2). Cylindrical propagation is assumed, since we are modeling

a plate. For a source f at ( fx, fy) and field at (x0,y0) with an Euclidean distance d to the source,

U(x0,y0, t) = A eIm(k)d
√

d
f (t − d

c ) where k is wavenumber, c phase speed, A amplitude. The Im(k) is

determined by (2.2), see Appendix A.
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(a)

(b)

Figure 2.1. (a) Frame 50 for the synthetic wave equation and (b) frequency components of
70 kHz for the synthetic Helmholtz equation. Pixels inside the red square are not considered.
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Figure 2.2. The initial state and the waveforms at t=5 s corresponding to Burgers equations with
various ν .

We simulate propagation similar to the metal plate in the real data. Three videos with

Nx,Ny,Nt set to 100, and ∆x = ∆y = 0.001 m and ∆t = 10−6 s are generated with free boundaries.

The source f (t) is at the center (50.5∆x,50.5∆y) and formed by summing 5 sinusoidals 30,

40, 50, 60, and 70 kHz with unit magnitude and zero phase at t = 0. Each video shows a

specific wavefield, (1) non-dispersive non-attenuated wave, (2) dispersive non-attenuated wave;

(3) non-dispersive attenuated wave. The 50th frame for each of them is in Fig.1(a).

The field {(ix, iy, it)|46≤ ix ≤ 55;46≤ iy ≤ 55;∀it} near the source is dropped when

extracting the PDE. We extract the PDEs for the waves at each frequency provided by a bank of

ideal bandpass filters. Since utt ≈−k2u with a constant k always holds for narrow band signals

(|φ̄φφ T
3 φ̄φφ 4|> 0.99 in our experiments), we do not consider u in (2.9).

For the non-dispersive non-attenuated waves, all the waves propagate at c = 500 m/s,

with α = 0. For the dispersive non-attenuated waves, the waves at 30, 40, 50, 60 and 70 kHz are

with phase speeds at c = 300, 400, 500, 600 and 700 m/s respectively and α = 0 also holds. For

the non-dispersive attenuated waves, c = 500 m/s and α = 2×104 are for all frequencies.

For all the datasets with derivatives based on both FD and PS, minimizing Err( j) in (2.15)

gives a3 = 1, which is for utt . For non-attenuated waves, T = 2 is selected by (2.14) with a9 and

a11 non-zero; for attenuated wave, T = 3 is chosen with the non-zero entries at a2, a9 and a11.

The results are detailed in Table.2.1, with all entries in a being 0 except a2,a3,a9 and a11. The

wave equations are discovered since a2, a9 and a11 are the coefficients for ut , uxx and uyy. The
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(a)

(b) (c)

(d)

Figure 2.3. (a) Err( j) vs. atom index j in ΦΦΦ, including: wave equations for attenuated and
dispersive non-attenuated waves at 70kHz, Helmholtz equation for the dispersive wave at 70kHz,
Burgers equation. (b–c) |c−ĉ|

c for wave equations and Helmholtz equations. (d) |α−α̂|
α

of
attenuated waves.
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estimated speed ĉ =
√

|a9|+|a11|
2 . Fig.3(a) shows Err( j) based on PS, and Fig.3(b), 3(d) where

α̂ = a2 suggest the method works well as the correctly chosen PDE terms are with errors less

than 5% (majority < 2.5%). For a given dataset, using the PS based dictionary always provides

a smaller error than using the FD based dictionary. The relation between errors and frequencies

in Fig.3(b),3(d) is explained as following.

(i) The spatial-temporal differentiation works as high-pass filtering in wavenumber-

frequency domain. For PS which computes derivatives in wavenumber-frequency domain, an

input signal of a higher frequency or wavenumber indicates a larger ratio between the derivative

of the signal and the noise (from numerical differentiation), which benefits the identification. As

the frequency increases, the wavenumber increases linearly for non-dispersive waves and is a

constant in our dispersive waves (100 m−1). The identified coefficients have smaller errors in

both cases and the performance improvement is larger for the non-dispersive case.

(ii) The FD computes derivatives in the spatial-temporal domain. As the period or wave-

length decreases, the identification suffers from insufficient sampling. For our non-dispersive

cases, both the wavelength and the period decrease for higher frequencies, the insufficient sam-

pling is significant and leads to increasing errors. For the dispersive case, only period decreases

while the wavelength is constant for larger frequencies, the benefit described in (i) is significant

and results in decreasing coefficients errors.

Comparing (i) and (ii), the PS is more robust to insufficient sampling. This is due to its

computing the derivatives in wavenumber-frequency domain, implying an implicit trigonometric

interpolation in spatial-temporal domain before numerical differentiation[34].

The proposed approach can also identify the PDE from a summation of its multiple

solutions. We show this by experiments using the two unfiltered non-dispersive wavefields

(attenuated and non-attenuated). Each of them is a summation of 5 solutions (one solution for

one frequency) of one wave equation (2.2), with c = 500 m/s and α = 0 or 2×104.

Using the dictionary constructed by PS, the identified PDE for the non-attenuated waves
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Table 2.1. Results for synthetic wave equation recovery experiments, with ‘–’ denoting the same
values as in its upper entry. In last 4 columns for each dataset, the top value in each entry is the
result based on FD and the bottom is based on PS.

Freq
(kHz)

c
(m/s)

α

(×104)
a2

(×104)
−a9

(×105)
−a11

(×105)
ĉ

(m/s)
c

(m/s)
α

(×104)
a2

(×104)
−a9

(×105)
−a11

(×105)
ĉ

(m/s)
c

(m/s)
α

(×104)
a2

(×104)
−a9

(×105)
−a11

(×105)
ĉ

(m/s)
Non-dispersive, non-attenuated waves Dispersive, non-attenuated waves Non-dispersive, attenuated waves

30 500 0 FD: 0
PS: 0

2.52
2.52

2.52
2.52

502
502

300 0 FD: 0
PS: 0

0.92
0.90

0.92
0.90

303
301

500 2 FD: 2.02
PS: 2.02

2.53
2.53

2.53
2.53

503
503

40 – – – 2.53
2.51

2.53
2.51

503
501

400 – – 1.63
1.60

1.63
1.60

404
401

– – FD: 2.03
PS: 2.01

2.53
2.52

2.53
2.52

503
502

50 – – – 2.54
2.51

2.54
2.51

504
501

500 – – 2.54
2.51

2.54
2.51

504
501

– – FD: 2.04
PS: 2.01

2.54
2.51

2.54
2.51

504
501

60 – – – 2.55
2.50

2.55
2.50

505
500

600 – – 3.64
3.61

3.64
3.61

603
601

– – FD: 2.06
PS: 2.00

2.56
2.51

2.56
2.51

505
501

70 – – – 2.57
2.50

2.57
2.50

507
500

700 – – 4.93
4.91

4.93
4.91

702
701

– – FD: 2.08
PS: 2.00

2.57
2.51

2.57
2.51

507
501

is

Utt −2.50×105(Uxx +Uyy) = 0 (2.16)

and for the attenuated waves is

Utt +2.00×104Ut −2.50×105(Uxx +Uyy) = 0 . (2.17)

Thus the recovered ĉ ≈ 500 m/s for both waves, α̂ ≈ 2×104 for the attenuating wave. For the

dictionary based on FD, they are

Utt −2.56×105(Uxx +Uyy) = 0

Utt +2.06×104Ut −2.56×105(Uxx +Uyy) = 0 ,

(2.18)

for the non-attenuated and attenuated waves respectively. So the recovered ĉ ≈ 506 m/s for both

waves, α̂ ≈ 2×104 for the attenuating wave.

2.3.2 Helmholtz equation

Fourier transforming the U governed by wave equations (2.2) with α = 0 at each spatial

location over time, we obtain the frequency components U ∈CNx×Ny×N f , N f = Nt . Data in each

spatial frame of U satisfy Helmholtz equation (2.3). We thus use frequency components of the

previous non-attenuated waves as datasets for Helmholtz equations identification.
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The 1st spatial frame of U is for DC, and ∆ f = 1/∆t
N f

= 10 kHz between neighboring

frames. Thus we have 10 datasets used for Helmholtz equation identification, with each dataset

being one frame among the 4–8th frames in two spectra U , which are for non-attenuated (i)

non-dispersive and (ii) dispersive waves. Fig.1(b) shows the 8th frame for both U . The ROI on

each frame excludes region {(ix, iy)|46≤ ix≤55;46≤ iy≤ 55} near the source. Using the same

symbol U to denote U and constructing ΦΦΦ as (2.9), since each equation is identified from a 2D

frame in frequency domain, ut and utt are not included.

Minimizing Err( j), a4 = 1 is selected and thus u is chosen. From (2.14), T = 2 is chosen

for all experiments with a9 and a11 non-zero, the coefficients for uxx and uyy. The results are

detailed in Table.2.2, with all entries in a being 0 except a4,a9 and a11. The PDE (2.3) is scaled

by 1/ω2 with a4 = 1, thus the estimated speed ĉ = ω

√
|a9|+|a11|

2 , see Fig.3(c). Err( j) for 70 kHz

component from dispersive waves is in Fig.3(a). The relation between errors and frequencies in

Fig.3(c) is explained as following.

(i) For Helmholtz equations, no temporal derivatives are involved, and thus the benefit

for higher frequencies due to the differentiation’s working as a high-pass filter disappears. But

for larger wavenumbers this benefit from differentiation still exists. This explains the decreasing

errors for non-dispersive waves and the constant error for dispersive waves (whose wavenumber

is a constant 100 m−1) for higher frequencies using PS based dictionaries.

(ii) For the FD cases, the wavenumber (thus wavelength) is constant for all frequencies

in the dispersive waves. So the same sampling sufficiency leads to a constant error. The

non-dispersive waves have shorter wavelengths for higher frequencies, and the insufficient

sampling issue outweighs the benefit from larger wavenumbers, causing an increasing error.

Comparing it with the errors for dispersive waves (FD) in Fig.3(b), decreasing samples spatially

is more influential than decreasing samples temporally. This is because for our data the temporal

sampling is more sufficient, e.g., for the 50 kHz wave propagating at 500 m/s, there are 10

spatial samples in one wavelength and 20 temporal samples in one period.
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Table 2.2. Results for synthetic Helmholtz equation recovery experiments. For entries in the last
3 columns of each dataset, the top value is the result based on FD and the bottom is based on PS.
ω = 2π ×Freq.

Freq
(kHz)

True c
(m/s)

ω2a9
(×105)

ω2a11
(×105)

ĉ
(m/s)

True c
(m/s)

ω2a9
(×105)

ω2a11
(×105)

ĉ
(m/s)

Non-dispersive wave case Dispersive wave case

30 500 FD:2.53
PS:2.51

2.53
2.51

503
501

300 FD:0.92
PS:0.90

0.92
0.90

304
300

40 – FD:2.54
PS:2.51

2.54
2.51

504
501

400 FD:1.64
PS:1.60

1.64
1.60

405
400

50 – FD:2.56
PS:2.50

2.56
2.50

506
500

500 FD:2.56
PS:2.50

2.56
2.50

506
500

60 – FD:2.58
PS:2.50

2.58
2.50

508
500

600 FD:3.68
PS:3.60

3.68
3.60

607
600

70 – FD:2.61
PS:2.50

2.61
2.50

511
500

700 FD:5.02
PS:4.91

5.02
4.91

708
700

2.3.3 Burgers equation

The Burgers equation (2.4) with viscosity ν can describe shock wave formation. We

consider 1D Burgers equation on the field U ∈ R500×500 with ∆x = 0.04 m and ∆t = 0.01 s.

Three fields with a same initial condition (a perturbation shaped as a Gaussian distribution PDF)

governed by (2.4) with ν = 0.025,0.05 and 0.1 are generated by 4th order Runge-Kutta method

[35]. Fig.2 shows the common initial state and the waveforms at t = 5 s for various ν . For a

larger ν , the shock at t = 5 s becomes smoother due to the increased diffusion. No source is

included.

In the 1D case, terms in (2.9) involving derivatives along y are meaningless and thus

excluded. With derivatives based on both FD and PS, a7 = 1 is selected by minimizing (2.15) for

all experiments, and thus u◦ux is identified, see Fig.2.3a. T = 2 is found by minimizing (2.14),

with non-zero entries a2, a9 being 1.01,1.00,1.00 and −0.024,−0.05,−0.10 for the 3 cases of

ν based on PS. For FD, recovered a2,a9 are the same except that a2 = 1.00,a9 =−0.025 when

ν = 0.025. It works better because the spatial derivatives used for implementing Runge-Kutta

method are FD based.

If we use OMP instead of the TLS for the cross-validation and the final coefficients
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recovery, it will provide incorrect PDEs. Because under the assumption uxx is active (a9 = 1),

the utt is its most correlated term and will be selected in the 1st iteration by OMP. The utt

is correlated with all other terms in the dictionary, and thus incorporating utt into the set of

the terms to fit uxx will introduce the components of some irrelevant terms. This makes L9(T)

become plateaued and thus ψ9(T) be minimized at a sparsity larger than the correct value. With a

larger T̂9 selected, the Err( j) in (2.15) for j = 9 is smaller than for the other correct assumptions

( j = 2 or 7) which has the correct T̂ j, because of more involved terms. For the Burgers equations,

the T̂9 = 7,7,6 using PS and 3,6,6 using FD for ν = 0.025,0.05,0.1 (Fig.2.4 shows the L9(T),

ψ9(T) for ν = 0.025 with PS), and j = 9 always minimizes (2.15). After a9 = 1 is assumed,

since the T̂9 is incorrect (which is supposed to be 2, see (2.4)), the Burgers equations can not be

identified.

Fundamentally, the OMP’s only considering the most correlated atom without utilizing

the relationship among all atoms in the dictionary in its 1st iteration leads to its failure. Unlike

OMP, for j = 9, the TLS selects T atoms contributing most to the orthogonal projection of uxx in

the subspace spanned by all the D−1 terms in Φ̄ΦΦ
k
−9 tr. This orthogonal projection is a vector sum

and is influenced by the relationship (correlation) among all vectors in the dictionary. A linear

combination of ut and u◦ux forms the majority of the projection, and thus they are identified

when T = 2. With all the true active terms selected, the other non-zero entries in āk
−9 tr are found

by fitting small noise in the training data, so they are of small magnitudes and work poor in

the validation data, causing L9(T) to plateau and T̂9 = 2 being selected (see an example as a

comparison to OMP using the same dataset in Fig.2.4). So (2.15) is not minimized at j = 9 by

involved irrelevant terms. In fact, Err(2) ≈ Err(7) ≈ Err(9) and either of the assumption for

j = 2,7 or 9 leads to the correct PDE.
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Figure 2.4. Atoms selection via OMP and TLS for Burgers equation identification, assuming
uxx active (i.e., j = 9). For a given method and a sparsity T, the selected atoms are the same for
every fold in cross-validation as indicated around ψ9(T) for T=1 or 2. The red asterisk shows
the minimizer of ψ9(T).

2.4 Application to real video

Our approach is demonstrated on a video of aluminum plate vibrations [36], see Fig.4.

One period of this video considered is U ∈ R100×100×100 with ∆x and ∆y 1 mm and sampled at

300 kHz. Vibrations contained in U are impulse responses for a delta function in the past, thus

no source is within the selected time.

Since aluminum plate waves are dispersive [37], the signal is band-pass filtered to isolate

wave equations for each frequency. We explore frequency bins centered from 20 to 70 kHz, with

5 kHz steps. Each bin has 1 kHz width. As in synthetic experiments, u is not considered for

these filtered narrow band signals. a3 = 1 minimizes (2.15) for all frequencies, with some shown

in Fig.5, and T = 2 with non-zero entries at a9, a11 is always chosen by (2.14), as detailed in

Table.2.3. Wave equations on the plate are discovered, with ĉ =
√

|a9|+|a11|
2 shown in Fig.6.

The proposed approach is compared to a classic phase speed estimation based on Fourier

transform [38, 39]. The method estimates phase speeds ĉcl by finding the primary wavenum-

ber k̂ for each frequency f and ĉcl = f/k̂. Due to the isotropic property of the wave prop-

agation on the plate, from the wavenumber-frequency spectrum K of U, for frequency f0,
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(a)

(b)

Figure 2.5. The vibrating plate: (a) the first and last selected frames, with magnitudes normalized;
(b) the traces for locations at x = 50 mm, the selected time period is between the red lines.
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(a)

(b)

Figure 2.6. Err( j) vs. atom index j in ΦΦΦ for 3 frequency bins of vibrating plate signal, with
derivatives based on (a) FD, and (b) PS.

k̂ = argmaxk ∑
k
kx=0 |K(kx,

√
k2 − k2

x , f0)|, which finds the radius of a quarter ring with the maxi-

mal power of K.

The underestimation by FD for high frequencies (see Fig. 6) arises from insufficient

sampling along time. The PS does trigonometric polynomial interpolation [34], and ∂
(p)
t u(t j)

(which is calculated in the same way as ∂
(p)
x u(x j) in (2.10)) is evaluated at t j (the point)

sampled from the interpolated signal. Thus the high frequencies producing derivatives with

large magnitudes are preserved. But FD evaluates ∂
(p)
t u(t j) based on slopes of the line segments

connecting u(t j) with u(t j−1) and u(t j+1) respectively. When ∆t is not sufficiently small, these

slopes can be far from the slope of the tangent line passing u(t j), causing significant bias.

2.5 Conclusion

We formulated a data-driven approach to extract PDEs without assumed terms and

tested it on synthetic data and a real vibrating aluminum plate video. A dictionary containing
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Figure 2.7. Phase speeds recovered from identified PDEs and wavenumber extraction.

hypothetical PDE terms is built and correct terms are extracted by sparse modeling using cross

validation with a sparsity penalty.

2.6 Supplemental materials

2.6.1 Wavenumber determined by wave equations with attenuation

The term c2∇2u in wave equation indicates an isotropic propagation nature of the waves

with a phase speed c. For the part of wave which propagates along direction r in a circular wave,

the simplified equation

utt =−αut + c2urr + f . (2.19)

can depict its dynamics without the effect of decay due to the increasing area encompassed by

the wave front. For f = 0 and a wave at frequency ω having propagated a distance r along r, the

complex solution

uc = e−i(kr−ωt) (2.20)
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Table 2.3. Results for wave equation recovery on a real vibrating plate. In the column −a9, −a11
and ĉ, the top value in each entry is the result based on FD and the bottom is based on PS.

Freq (kHz) −a9 (×105) −a11 (×105) ĉ (m/s) ĉcl (m/s)

20 FD: 1.25
PS: 1.21

1.36
1.32

361
355

377

25 FD: 1.84
PS: 1.92

1.68
1.65

419
422

431

30 FD: 2.16
PS: 2.22

2.13
2.18

463
469

476

35 FD: 2.40
PS: 2.40

2.44
2.49

492
494

500

40 FD: 2.81
PS: 2.88

2.83
3.01

531
543

556

45 FD: 3.13
PS: 3.32

3.13
3.19

559
571

570

50 FD: 3.46
PS: 3.69

3.43
3.59

587
603

610

55 FD: 3.73
PS: 4.04

3.75
4.06

612
637

640

60 FD: 4.04
PS: 4.40

3.94
4.37

632
662

667

65 FD: 4.23
PS: 4.74

4.27
4.81

652
691

691

70 FD: 4.45
PS: 5.06

4.48
5.17

668
715

722

can satisfy (2.19). Plugging (2.20) into (2.19) yields:

−ω
2uc + iαωuc + c2k2uc = 0

−ω
2 + iαω + c2k2 = 0 .

(2.21)

So

k2 =
1
c2 (ω

2 − iαω) =
ω2

c2 (1− i
α

ω
)

k =
ω

c

√
1− i

α

ω
≈ ω

c
(1− iα

2ω
)

(2.22)

We can rewrite uc(r, t) as

uc(r, t) = a(r, t)+ ib(r, t) (2.23)

where
a(r, t) = Re(uc(r, t)) ∈ R

b(r, t) = Im(uc(r, t)) ∈ R .

(2.24)

In the following equations we abbreviate a(r, t),b(r, t) as a,b respectively.
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Plug (2.23) into (2.19) (assume f = 0), we have

∂ 2(a+ ib)
∂ t2 +α

∂ (a+ ib)
∂ t

− c2 ∂ 2(a+ ib)
∂ r2 = 0 (2.25)

thus

(
∂ 2a
∂ t2 +α

∂a
∂ t

− c2 ∂ 2a
∂ r2 )+ i(

∂ 2b
∂ t2 +α

∂b
∂ t

− c2 ∂ 2b
∂ r2 ) = 0 (2.26)

and thus
∂ 2a
∂ t2 +α

∂a
∂ t

− c2 ∂ 2a
∂ r2 = 0,

∂ 2b
∂ t2 +α

∂b
∂ t

− c2 ∂ 2b
∂ r2 = 0 (2.27)

So a(r, t) and b(r, t) are both solutions for (2.19).

Since the displacement field is real, we use a(r, t) which is Re(uc(r, t)), where k is

determined in (2.22).

Plug (2.22) into (2.20), a(r, t) is

a(r, t)≈ Re(e−i[ω

c (1−
iα
2ω

)r−ωt]) = e−
αr
2c cos(

ω

c
r−ωt) . (2.28)

If αr
2c is small across the domain, the attenuation does not contribute much to the derivatives of

a(r, t), causing ∂a
∂ t ≈−c∂a

∂ r .

2.6.2 Threshold least squares (TLS)

The TLS finds the coefficients a = [a1 . . .aD]
T ∈ CD which selects T other columns in

ΦΦΦ ∈ CN×D to fit its jth column. The notations here may not refer to the same variables as in

the main text, for example, when in the training stage of the K-fold cross-validation, we use the

K −1 concatenated Φ̄ΦΦ
k defined in the text as the “ΦΦΦ” here and thus the “N” is assigned as K−1

K N.

First we normalize each column of ΦΦΦ by its ℓ2 norm and denote the normalized dictionary

as Φ̄ΦΦ ∈ CN×D. For a given j, use Φ̄ΦΦ− j ∈ CN×(D−1) to denote Φ̄ΦΦ dropping its jth column φ̄φφ j, and

similarly use ΦΦΦ− j ∈ CN×(D−1) to denote ΦΦΦ dropping its jth column φφφ j. Correspondingly, we

set a j = 1 and store the other entries of a in a− j ∈ CD−1. The TLS is employed to compute a− j
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Algorithm 2: Threshold least squares (TLS).

Input: ΦΦΦ− j = [φφφ 1 . . .φφφ j−1 φφφ j+1 . . .φφφ D] ∈ CN×(D−1), φφφ j, T
Output: a− j
w− j={∥φφφ d∥2|∀d,d ̸= j}∈CD−1// Column norms of ΦΦΦ except its jth

column

Φ̄ΦΦ− j=ΦΦΦ− jdiag−1(w− j) // The normalized ΦΦΦ− j with its dth column

denoted by φ̄φφ d

āls
− j = Φ̄ΦΦ

†
− jφφφ j// Least squares

Ω = {Ω(1) . . .Ω(T)}= {Indices of entries in āls
− j with T maximal magnitudes}

// Thresholding

Φ̄ΦΦ
th
− j = {φ̄φφ d|∀d,d ∈ Ω} ∈ CN×T // Columns kept

āth
− j = [āth

1 . . . āth
T ]

T = Φ̄ΦΦ
th†
− jφφφ j // Least squares

ā− j = [ā1 . . . āD−1]
T = 0 // Initialize for a− j

āΩ(i) =−āth
i , ∀i = 1 . . .T // Assign non-zero values to selected entries

â− j = ā− j ⊘w− j // Scaling by Hadamard division

such that φφφ j ≈−ΦΦΦ− ja− j (since ∥ΦΦΦa∥2 ≈ 0) subject to ∥a− j∥0 = T.

Algo.2 outlines the TLS, with “†” for pseudo-inverse, “diag” for constructing a diagonal

matrix from a vector and “⊘” for element-wise division (Hadamard division). Within Algo.2,

the Ω = {Ω(1) . . .Ω(T)} denotes the set of T selected indices, e.g., if T = 3 and the 3 entries

with maximal magnitudes in āls
− j have indices 2,5,7, then Ω = {Ω(1),Ω(2),Ω(3)}= {2,5,7}.

2.6.3 Comparison with SINDy

In the previous data-driven PDE identification method SINDy[1], the authors used

sequential threshold ridge regression (STRidge) to select active PDE terms in a normalized

dictionary Φ̄ΦΦ− j ∈ CN×(D−1) (all columns have unit ℓ2 norm) to fit a given PDE term φφφ j.

The STRidge is a recursive method, where a ridge regression is implemented and the

columns corresponding to small coefficients are dropped in each recursion, as illustrated in

Algo.3. After the active terms are selected, the final coefficients are acquired by least squares

regressing the assumed term φφφ j onto the identified terms in the original dictionary (without

normalization) ΦΦΦ− j.
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Algorithm 3: Sequential threshold ridge regression (STRidge)[1]
Input: Φ̄ΦΦ− j, φφφ j, λ , τ, iters
Output: ā whose ith entry denoted by āî̄a = argminā ∥Φ̄ΦΦ− jā−φφφ j∥2

2 +λ∥ā∥2
2

bigcoeffs = {i : |̂̄ai| ≥ τ}̂̄a[∼ bigcoeffs] = 0 // Threshold̂̄a[bigcoeffs] = STRidge(Φ̄ΦΦ− j[:,bigcoeffs],
φφφ j,λ ,τ, iters−1) // recursive call

If the correct PDE term φφφ j is assumed, given proper λ and τ , the STRidge can work

on our dataset. For example, the STRidge can recover the correct terms Uxx and Uyy for all

frequencies in the Helmholtz equation dataset for dispersive waves given the correct assumption

that U is an active term and λ = 1, τ = 0.1.

If the incorrect assumed term is chosen, the SINDy can not recognize it and will return

incorrect PDE. For the same Helmholtz equation dataset, if the assumed term is Ux, then only

Uxx is identified to be active in the dictionary.
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Chapter 3

Recovery of Spatially Varying Acoustical
Properties via Automated PDE Identifica-
tion

3.1 Introduction

Natural phenomena are in general caused by partial differential equations (PDEs) with the

PDE-coefficients derived from medium properties. For example, the observed waves propagating

on a plate are governed by wave equations with the PDE-coefficients determined by phase speeds

and attenuation factors, which are further decided by the elastic properties and density of the

plate’s material.

The focus of this paper is solving the inverse problem, i.e., we invert for the active PDE

terms from the observations, determine the coefficients of each active PDE term, and then use

the coefficients to recover physical properties. We highlight the use case of the proposed method

in recovering various properties for the medium of propagating waves in acoustical scenarios,

and thus the relative PDEs like the wave equation and Burgers’ equation are used as examples.

This area has been an active focus of applied mathematics research [1, 15, 16, 18, 12, 11,

2, 7, 14, 3] with a few applications [26, 25, 27]. Considering the abundance of sensor-collected

measurements and the wide range of use cases of material properties recovery (e.g., materials

diagnostics, fatigue detection), this inversion technique would be broadly applicable.
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Superior to previous data driven PDE identification approaches [1, 15, 16, 18, 12, 11, 2,

7, 14, 3, 26, 25, 27], our method can recognize spatially dependent PDEs, and thus recover 1D or

2D maps for the spatial variations of material properties from measurements of the phenomena.

Unlike classic spatially dependent parameter estimation or tomography methods which require

the PDE form known a priori and employ the domain knowledge only pertinent to such a

particular PDE [24, 40, 41, 42, 43, 44, 45], the proposed method can identify multiple kinds of

unknown PDEs using a same formulation with no PDE-dependent knowledge, and thus is widely

applicable and can recover various properties in more scenarios with fewer assumptions.

We start with the spatially 1D case in the theory and include 2D examples for experiments.

Consider a physical system U(x, t) that describes the spatio-temporal dynamics. Within the

system U(x, t), suppose we have Nx evenly spatially distributed sensors collecting measurements

(e.g., displacement, pressure, etc.) at Mt evenly separated time steps and thus we obtain measure-

ments U∈RNx×Mt at discrete spatial-temporal coordinates of U(x, t). The system properties are

recovered by identifying its governing PDE

N[U ] = 0 (3.1)

from the measurements. Here N[U ] is a linear combination of PDE terms involving partial

derivatives of U , e.g., N[U ] describing the 1D wave propagation at speed c with the attenuation

factor α is

N[U ] =Utt +αUt − c2Uxx , (3.2)

where Ut , Utt are the 1st and 2nd-order temporal derivative and Uxx the 2nd-order spatial

derivative of U . Recently, there are many developments focusing on identifying PDEs directly

from observed data [1, 15, 16, 18, 12, 11, 2, 7, 14, 3, 26, 25, 27]. However, they have two

limitations: (i) the need for prior knowledge of the active PDE terms; (ii) the inability to recover

spatially-dependent parameters.
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Regarding (i): Most previous developments require one or more active PDE-terms to

be known a priori (e.g., the 1st order time derivative Ut [1, 15, 16, 18, 12, 11], the 2nd order

time derivative Utt [27], one term with predefined order [2], or multiple PDE terms [7]). They

then derive other contributing PDE terms and their coefficients, and thus only parts of the

PDE are inferred from data. This is problematic when the knowledge of which term should be

assumed active is uncertain or unknown, e.g., to identify the governing PDE for a wave which

may either be an inviscid Burgers’ equation (Ut +UUx=0) or a non-attenuating wave equation

(Utt − c2∇2U =0) with no PDE terms in common, one must specify the correct active term from

more prior information. The few methods that do not require active term assumption use a

sparse Bayesian learning (SBL) based approach [14] or a cross-validation (CV) based method

[3]. They both iteratively assume one active term from a library of terms, identify the PDE

for each assumption using SBL [14] or sparsity penalized CV [3], and finally select the best

assumption by comparing the posterior confidence [14] or the minimal fitting error [3]. They are

time-consuming as the identification process is repeated for every assumption.

Regarding (ii): In reality the PDEs governing the observed system can have spatially-

dependent coefficients, e.g., the coefficient for Uxx in (3.2) can vary across space which indicates

the phase speed c is spatially-dependent. The spatially-dependent coefficients is due to the spatial

variation of the materials, and thus the recovery of spatially-dependent PDEs can unveil the

spatial properties of the underlying materials. The above methods, however, can only identify

PDEs that are constant across space. The current spatially dependent coefficients recovery

schemes are limited to a few specific PDEs [40, 41] and can not be used for PDE identification

since they require the kind of PDE to be known. No methods can identify unknown PDEs which

are potentially spatially-dependent.

Suppose there is no information about the spatial variation of the PDEs available and

thus we must identify the PDE for every location. The challenges in tackling this task include:

(a) fewer measurements available for one location comparing to the whole field; (b) longer CPU

time because the process is repeated for all locations. Thus, a viable method should be robust in
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selecting the correct PDE from limited measurements and also be computationally efficient.

To address these limitations, we propose an ℓ1-norm minimization based data-driven

method that identifies unknown PDEs for every spatial location without any assumption of the

assumed active PDE term. No information about the spatial variation of the PDEs is assumed.

An auxiliary vector is introduced to robustify the identification from limited measurements and

enable the recovery of all active PDE terms without iterative assumptions. The method is applied

pixel-wise and recovers the spatial variation of the PDEs to the highest resolution. For noisy

measurements, we extend the integration transformation approach [12] to our spatially-dependent

PDE identification scheme to make it more robust against noise.

This paper is extended from the work [4] to integrate the noise resistance technique and

perform extensive experimental validations, including the ones using data collected from real

physical settings. It is organized as follows: Sec. 3.2.1 presents the spatially-dependent PDE

identification method, and Sec. 3.2.2 briefly introduces the integration transformation approach

to alleviate the impact of noise. Sec. 3.3 shows synthetic experimental results, including an

experiment for noise-robustness in Sec. 3.3.3. The experiments for a real vibrating aluminum

plate using both clean and noisy measurements are in Sec. 3.4. In Sec. 3.5 we emphasize the

efficiency of the proposed approach by comparing the required CPU time to identify the PDEs

for 3 datasets using the proposed method, the methods in Refs. [14, 3] and exhaustive search.

Finally, we conclude our work in Sec. 3.6.

Notation: For the measurements U ∈ RNx×Mt , U(ix, it) is U sampled at the coordinate

(ix∆x, it∆t), where 0 ≤ ix ≤ Nx −1, 0 ≤ it ≤ Mt −1, and ∆x, ∆t are sampling intervals. Sets Ix, It

contain N spatial and M temporal coordinates within the region of interest (ROI). Use n ∈ [1,N]

as the index of the elements in Ix. The temporal coordinates in It are indexed by m ∈ [1,M]. For

any matrix A other than U, the entry at its ith row and jth column where i ≥ 1, j ≥ 1 is denoted

by A(i, j). A(i, :) denotes the ith row, and A(:, j) the jth column. The subscript/superscript of a

matrix denotes the properties of the whole matrix, not its entries. E.g., An can indicate that all

entries of A are computed from the measurements at location n, and An(i, j) is for the entry at
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ith row and jth column of An. For vector a, its ith entry (i≥1) is denoted by either a(i) or ai.

The variable superscripted bŷdenotes its estimation.

3.2 Theory

In this part, we first propose the method to efficiently identify spatially-dependent PDEs

in Sec. 3.2.1, and then introduce an integration transformation technique that increases the

approach’s robustness against measurement noise in Sec. 3.2.2.

3.2.1 PDE identification

We first formulate the PDE identification problem mathematically in Sec. 3.2.1, and then

solve it in Sec. 3.2.1.

Problem formulation

We select N spatial locations with M time steps for each location from the measurements

U∈RNx×Mt as the ROI. In this work, suppose we know the range of PDEs governing the dynamics

in the ROI, to be specific, they may be the (attenuating) wave equation, the (viscous) Burgers’

equation with a non-linear term UUx (product of U and Ux), and the sine-Gordon equation with

a non-derivative term sin(U) [46, 47]. They can model various fluid dynamics.

For the nth spatial location within the ROI, we use u ∈ RM to denote its measurements at

all M time steps, i.e., from U(Ix(n), It(1)) to U(Ix(n), It(M)). We build a dictionary ΦΦΦn containing

all D=6 PDE terms potentially appearing in the PDEs mentioned above as:

ΦΦΦn=

[
ut , utt , u◦ux, uxx, utx, sin(u)

]
∈RM×D, (3.3)

where each term is an M-length vector evaluated at all M time steps and the derivatives are

computed numerically by finite difference [9], e.g., the mth entry of ut is [U(Ix(n), It(m)+1)−

U(Ix(n), It(m)−1)]/(2∆t). The ◦ denotes element-wise production, e.g., the mth entry of u◦ux
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is U(Ix(n), It(m))×{[U(Ix(n)+1, It(m))−U(Ix(n)−1, It(m))]/(2∆x)}. Measurements outside

the ROI boundaries should exist so that the spatial derivatives for n=1 or N and the temporal

derivatives for m=1 or M can be computed by finite difference, which requires N<Nx−1 and

M<Mt−1.

Initially, we can treat the problem as recovering the coefficient an = [an(1) . . . an(D)]T ∈

RD such that

ΦΦΦnan ≈ 0, ∥an∥1 > 0 , (3.4)

where ∥an∥1 > 0 is to avoid the trivial solution an = 0, and the approximation is due to the

assumption M > D and the noise in the measurements or generated by numerical differentiation.

Exhaustive search can find the set of active PDE terms by iterating through all combina-

tions of atoms in the dictionary and minimizing the fitting error with the constraint that not too

many columns of ΦΦΦn are chosen (sparsity constraint). The cardinality of all possible sets ranges

from 2 to D. For each hypothetical set, assume the coefficient for one term in an is 1, and fit the

other terms by least squares regression.

Given an assumed active term with coefficient 1, the difference between ΦΦΦnan and 0, i.e.,

∥ΦΦΦnan∥2, is monotonically non-increasing as more columns of ΦΦΦn are chosen, and is decreasing

for most cases. Using all columns of ΦΦΦn will minimize the difference, but it indicates that the

PDE has all the D active terms, which is typically not true. Thus a sparsity constraint should be

introduced to avoid selecting all terms in ΦΦΦn as active terms. One way to impose this constraint is

to minimize an augmented loss function which is the sum of ∥ΦΦΦnan∥2 and a penalty proportional

to ∥an∥0[3].

This process requires combinatorial complexity because we can not directly select all

the columns as discussed above, and need to explore all the possible sets of selected columns

with cardinality ranging from 2 to D. For a dictionary with only a few columns like (3.3) this is

feasible, but for larger dictionaries, the CPU time increases quickly. E.g., for (3.3), there are 57

kinds of sets in total, while for (3.24) with 9 terms, there are 502 cases. A demonstration of such
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a transition is in Sec. 3.5.

Solving PDE coefficients by ℓ1-norm minimization

Instead of exhaustive search, we introduce a normalization matrix Wn ∈ RD×D which is

diagonal with Wn(i, i)=∥ΦΦΦn(:, i)∥2, and by finding the coefficients ān=[ān(1) . . . ān(D)]T that

makes the columns in the normalized dictionary Φ̄ΦΦn = ΦΦΦnW−1
n fit well under a fitting error toln

∥Φ̄ΦΦnān∥2
2 ≤ toln s.t. ∥ān∥1 = 1 , (3.5)

we acquire an = W−1
n ān.

We use the normalized dictionary so that the variation of magnitudes for columns in

ΦΦΦn does not affect the column selection, and thus the selection is only based on the dynamical

characters (i.e., the variation of the entries within each column). In addition, we use ∥ān∥1= 1 in

(3.5) instead of ∥ān∥1>0 as in (3.4), otherwise the magnitudes of the non-zero elements in ān

can be arbitrarily small to encourage ΦΦΦnW−1
n ān ≈ 0.

The limitation of (3.5) is that ∥ān∥1=1 is not a convex set and thus (3.5) is not solvable

via efficient convex optimization tools. To make (3.5) amenable to convex optimization, we

specify the positive/negative signs in ∥ān∥1 and thus reduce ∥ān∥1=1 to an affine constraint as

detailed below.

We utilize physical information to reduce ∥ān∥1 = 1 to ∑
D
i=1 siān(i) = 1, where si ∈

{−1,1} is decided by the information from potential PDE forms, e.g., s1,s2 are the same since

coefficients for Ut and Utt are of the same sign for all considered PDEs involving them. Although

there are various PDEs being taken into consideration, the relations of the coefficient signs for

the shared terms among different PDEs do not conflict, e.g., the signs for Ut and Uxx are always

different for the viscous Burgers’ equation and the attenuating wave equation (which indicates s1

and s4 are opposite). Setting s1 = 1, we obtain the auxiliary vector s = [s1 . . . sD]
T ∈ RD for the

dictionary (3.3) that is consistent with all the potential PDEs considered in this work as
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s = [1,1,1,−1,−1,1]T ∈ RD (3.6)

and ∥ān∥1 = 1 is reduced to sTān = 1, which is affine.

The dictionary (3.3) includes the terms for all potential PDEs and the true governing

PDE only involves a few of them by experience. Therefore, it is preferable for the identified PDE

to have fewer active terms under the data fitting constraint. Thus we use ℓ1-norm minimization

due to its ability to promote sparsity [48, 49, 50, 51, 52, 53, 54]:

Φ̄ΦΦn = ΦΦΦnW−1
n , Φ̄ΦΦ

s
n =

Φ̄ΦΦn

sT

 ∈ R(M+1)×D (3.7a)

̂̄an = argmin∥ān∥1 s.t. ∥Φ̄ΦΦ
s
nān − e∥∞ ≤ τn (3.7b)

ân = W−1
n ̂̄an , (3.7c)

where e ∈ RM+1 has all zero entries except e(M+1) = 1 and τn is a pre-defined toleration.

The constraint ∥Φ̄ΦΦ
s
nān − e∥∞ ≤ τn in (3.7b) enforces Φ̄ΦΦnān ≈ 0 and sTān ≈ 1. The optimization

problem in (3.7) enables identifying all active PDE terms simultaneously and thus is more

efficient than the previous methods in Refs. [14, 3] relying on iterations, which at first iteratively

assume an(i) = 1 for all 1 ≤ i ≤ D to solve (3.4), and then select the best assumption among

these D cases.

The s in (3.6) is an example used for the considered PDEs in this paper for the spatially

1D case. Fixing the six entries in (3.6), it can be extended by adding more ±1 entries to

accommodate more PDE terms in the dictionary, e.g., (3.24) for the 2D extension. ΦΦΦn and s

can also be extended to include more terms and thus encompass most PDEs for the dynamics

of acoustical waves like the KdV equation, Stokes’ wave equation[73], Van Wijngaarden’s

equation[73], etc. Since the sign relation in (3.6) is suitable for most acoustical PDEs, the s

conveys less information in the potential kinds of PDEs compared to knowing at least one active
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term and thus represents a weaker prior knowledge.

We only put the various dynamical patterns of U denoted by the PDE terms into the

dictionary ΦΦΦn, and leave the information of both the magnitudes and signs for these terms

appearing in the PDE into the coefficient ân for better physical interpretability. For example,

for the wave equation we prefer the recovered PDE to have the form of (3.2) instead of N[U ] =

Utt +αUt + c2(−Uxx). This is achieved by adding the negative signs onto entries of s instead of

onto the corresponding columns in ΦΦΦn while keeping s an all-one vector.

The information in s enables identifying PDEs from limited data, because it encourages

(3.7b) to select ān whose non-zero entries have the same signs as their corresponding entries

in s, and thus filter out the potential combinations of columns in Φ̄ΦΦn which are better fitted but

have no physical meaning. To see this, suppose there are 2 vectors p,q ∈ RD both satisfying the

requirement for ān in (3.7b) for a small τn, i.e.,

∥Φ̄ΦΦnp∥∞ ≤ τn, ∥Φ̄ΦΦnq∥∞ ≤ τn,∣∣∣∣∣ D

∑
i=1

si pi −1

∣∣∣∣∣≤ τn,

∣∣∣∣∣ D

∑
i=1

siqi −1

∣∣∣∣∣≤ τn

(3.8)

and thus using the triangle inequality:

∣∣∣∣∣ D

∑
i=1

si pi −
D

∑
i=1

siqi

∣∣∣∣∣≤ 2τn . (3.9)

If the signs of non-zero entries in p are the same as corresponding entries in s, while for q one

entry qi0 has the opposite sign of si0 resulting in si0qi0 < 0, then when −si0qi0 > τn which is

likely for a small τn, the method will choose p over q because of a smaller ℓ1 norm:

∥p∥1 =
D

∑
i=1

si pi <
D

∑
i=1

siqi −2si0qi0 = ∥q∥1 . (3.10)

An example of the failed identification due to the replacement of the informative s by 1 is given
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in Sec. 3.4.1.

In addition to encouraging selecting the ān whose entries have the correct signs, the

incorporation of the non-zero s also aims to avoid the trivial solution ān = 0 and thus the sign

information s (even the incorrect s which leads to a wrong solution as discussed above) must

be provided to make the method work. Meanwhile, to ensure that every column of Φ̄ΦΦ
s
n in (3.7a)

has the same ℓ2-norm so that the optimization is not influenced by magnitudes of dictionary

atoms, the entries in s should have the same magnitude. Here the magnitude of one is used for

simplicity.

We repeat (3.7) for all the N locations in the ROI and thus recover the physical properties

described by spatially dependent PDEs. Note that for different locations the set of recovered

active PDE terms can be different. For example, in a wavefield, the attenuation of the waves can

be negligible in some regions and thus the wave equation (3.2) does not have Ut term, but for

other regions where the attenuation is obvious the wave equation contains the term Ut .

To accelerate searching the PDE terms, we utilize the equivalence of the ℓ2-norm and

ℓ∞-norm for a vector (for any v ∈ Rk, ∥v∥∞ ≤ ∥v∥2 ≤
√

k∥v∥∞), replace the ℓ∞-norm constraint

in (3.7b) with ℓ2-norm which is ∥Φ̄ΦΦ
s
nān − e∥2

2 ≤ τn, and solve it using its Lagrangian (i.e., lasso

[55, 56]): ̂̄an = argmin
ān

∥ān∥1 +λ (∥Φ̄ΦΦ
s
nān − e∥2

2 − τn)

= argmin
ān

∥Φ̄ΦΦ
s
nān − e∥2

2 +λn∥ān∥1 ,

(3.11)

where λn=
1
λ
=0.2λ0 is chosen empirically with λ0=2∥Φ̄ΦΦ

sT
n e∥∞=2, the boundary parameter

above which the output of (3.11) is 0 according to the lasso path [57, 58, 59]. The (3.11) can be

efficiently solved by coordinate descent, where a complete iteration of updating all D entries

in ān costs O((M+1)D) operations [60], and the number of iterations to reach convergence is

often small.

Due to the noise from numerical computation, the ān minimizing (3.11) may not be sparse

enough. To further promote sparsity, we threshold entries of ān using an adaptive threshold
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proportional to ∥ān∥∞. Then use least squares regression to solve the coefficients only in the T

kept entries (denoted by ãn(Λ), where Λ with cardinality T is the set of indices for the T kept

non-zero entries) and assign 0 to other entries. Thus (3.7c) is replaced by:

Λ = {∀i, |ān(i)| ≥ ε∥ān∥∞} (3.12a)

Φ̃ΦΦ
s
n = [ΦΦΦn(:,Λ)T s(Λ)]T ∈ R(M+1)×T (3.12b)

̂̃an(Λ) = Φ̃ΦΦ
s†
n e , (3.12c)

where ε is the threshold to be tuned. It can be tuned according to prior knowledge, or from grid

search and cross validation if training data is available.

3.2.2 Denoising by integration

In this part, we extend the technique of integration transformation[12] to the spatially-

dependent PDE identification to make it more robust to noise, see Sec. 3.2.2, and discuss

implementation details in Sec. 3.2.2. Overall, the idea is to replace the ΦΦΦn in (3.3) with a new

dictionary ΦΦΦ
int
n built from integration transformation, as detailed below. All other steps for the

PDE identification are the same as in Sec. 3.2.1.

Transformed dictionary by integration

The terms in ΦΦΦn defined in (3.3) are sensitive to noise, because the noise is typically

broadband and its influence is emphasized by differentiation. We extend the denoising technique

by integration [12] to spatially-dependent PDE identification to recover the spatial variation

of properties from noisy measurements. To be specific, replacing ΦΦΦn in (3.3) with another

dictionary ΦΦΦ
int
n as described below and finishing all following steps for PDE identification in

Sec. 3.2.1 using it.

The integration method uses integration by parts to transfer the derivatives of noisy

measurements U to the derivatives of a pre-defined weighting function W, which is noise-free.
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For an arbitrary region Ω in the ROI and a finite smooth function W (x, t) defined on Ω,

N[U ] = 0 →
∫

Ω

N[U ]WdΩ = 0 , (3.13)

where
∫

Ω
N[U ]WdΩ is for

∫
(x,t)∈Ω

N[U(x, t)]W (x, t)dxdt. From (3.13), in an arbitrary region Ω

within the ROI, the integral of the product between W and the summation of all active PDE terms

is zero. E.g., if N(U) is the wave equation (3.2), then (3.13) becomes

∫
Ω

(Utt +αUt − c2Uxx)WdΩ = 0 . (3.14)

Let Ω be a square region {xl ≤ x ≤ xu, tl ≤ t ≤ tu} with (xu−xl)/∆x = (tu− tl)/∆t = 2a intervals

so that it covers (2a+1)× (2a+1) spatial-temporal coordinates within the ROI, we can move

the derivatives of U in (3.13) onto W , e.g., for component Ut

∫
Ω

WUtdΩ=
∫

Ω

(WU)tdΩ−
∫

Ω

UWtdΩ

=
∫ xu

xl

[
(WU)

∣∣∣tu
tl

]
dx−

∫
Ω

UWtdΩ

=−
∫

Ω

UWtdΩ ,

(3.15)

where W is defined as 0 at tl and tu. Similarly, using a W with its (p− 1)th order derivatives

(p ≥ 2) vanished at its spatial-temporal boundaries, we can transfer the derivatives on U for all

terms in (3.3) onto W . An eligible W is

W (x, t) = (x̄2 −1)p(t̄2 −1)p ,where

x̄ = 2
x− xl

xu − xl
−1 ∈ [−1,1], t̄ = 2

t − tl
tu − tl

−1 ∈ [−1,1] .
(3.16)

Since the PDEs are assumed spatially-dependent, for spatial location nx in U, we select

Mint integration domains Ω1, . . . ,ΩMint centered at (nx,(m0 +δ )t), . . . ,(nx,(m0 +Mintδ )t) where

δ is the interval between temporal centers of two neighboring domains, and the spatial center of
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the domains is always the location nx. All the Ωm with m = 1, . . . ,Mint are of the same size as the

Ω mentioned before. Ideally δ = 1, but a larger δ is chosen to reduce computations. Thus we can

construct a new library of atoms ΦΦΦ
int
n ∈ CMint×D consisting of integration for D = 6 integrands

on all Ωm, 1 ≤ m ≤ Mint, whose mth row is

ΦΦΦ
int
n (m, :) =

∫
Ωm

[−UW m
t , UW m

tt , −
1
2

U2W m
x , UW m

xx ,

UW m
xt , sin(U)W m]dΩm ,

(3.17)

where W m is the shifted W so that its domain exactly overlaps Ωm.

Computation of integrals

To compute entries in (3.17) numerically, we evaluate the values of W m at discrete

coordinates and save it into Wm ∈ RN×M, in which

Wm(ix, it) =


W (ix∆x, it∆t), if (ix, it) ∈ Ωm

0, otherwise
(3.18)

where W is pre-defined with an eligible choice given in (3.16) whose xu,xl, tu and tl are the

spatio-temporal boundary of Ωm. Similarly, the derivatives are also computed and saved in

matrices in RN×M, e.g.,

Wm
tt (ix, it) =


Wtt(ix∆x, it∆x), if (ix, it) ∈ Ωm

0, otherwise
(3.19)

where Wtt(ix∆x, it∆t) = ∂ 2W (x,t)
∂ t2

∣∣∣
x=ix∆x,t=it∆t

is computed analytically and thus noise-free.

A demonstration of the integration is shown in Fig. 3.1(a), where Mint = 4. The integration

of dth integrand indicated in (3.17) within Ωm is ΦΦΦ
int
n (m,d). The Fig. 3.1(b) shows a Wm with its

non-zero region in Ωm = {(x, t)|20∆x ≤ x ≤ 30∆x,17∆t ≤ t ≤ 27∆t} enclosed by a dashed box.
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By choosing W as (3.16) with p ≥ 2 and analytically computing its derivatives, all

derivatives of W necessary for (3.17) are obtained, enabling the transfer of derivatives on U

to derivatives on W . The integral for each term in (3.17) within each Ωm is integrated along

t and then along x numerically by summation approximation. Note that W and its derivatives

are calculated analytically with t̄ in [−1,1], but the true domain of W covers [−a∆t,a∆t]. Thus,

for the p0th order temporal derivative of W , its real values are the analytical result divided by

(a∆t)p0 , and for spatial derivatives the scaling is similar. For example, the mth row of the 2nd

column in ΦΦΦ
int
n is computed as

ΦΦΦ
int
n (m,2)=(

1
a∆t

)2
∑{ix,it}∈Ωm

U(ix, it)Wm
tt (ix, it)∆x∆t, (3.20)

which is a scaled summation of (2a+1)2 values of the element-wise product between U and

Wm
tt within Ωm.

To reduce the error caused by approximating the integration with a finite sum, which can

dominate when the derivative of W has a high order, we use interpolation. Before integration,

each time slice of the raw signal U within Ωm (e.g., red line in Ω2 in Fig. 3.1(a)) is interpolated

using polynomial fitting. Let the raw signal be the blue line in Fig. 3.1(c) with 2a+ 1 points

(here a = 5), we fit it using a 5th order polynomial and interpolate q values evenly between each

neighboring points. Therefore the interpolated signal has 2a(q+1)+1 points. To match the

interpolated signal, W m and its derivatives are also evaluated at these evenly spaced 2a(q+1)+1

points along the temporal direction. We then sum up values of the integrand at all these points to

be the temporal integral for this location, and the ΦΦΦ
int
n (m,d) is acquired by summing up such

temporal integrals for all 2a+1 spatial locations within Ωm. Thus, in the example for (3.20),

ΦΦΦ
int
n (m,2) becomes a scaled summation of (2a+1)× (2a(q+1)+1) values.

Replacing ΦΦΦn in (3.3) with ΦΦΦ
int
n efficiently increases its robustness to noise, as shown in

Sec. 3.3.3 and 3.4.2. In all experiments, a = 5, p = 3, q = 9.
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Figure 3.1. (a) 4 integration domains in ROI with each having 2a+1 points in both x, t axes. (b)
A Wm whose non-zero part centered at (x = 25∆x, t = 22∆t). (c) When integrating the signal
along time (e.g., red line in (a)), use polynomial interpolation and integrate on the interpolated
slice (red dashed line).
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Figure 3.2. For Burgers’ equation (3.22), (a) U with ν = 0.1, ∆x = 1 m, ∆t = 0.05 s. Therefore
0 ≤ ix ≤ 100, 0 ≤ it ≤ 150. The ROI is {ix|20 ≤ ix ≤ 90} between the red lines where obvious
dynamics is observed. (b) log10|ān(i)| where i corresponds to the indices in (3.21) for all
n = 1 . . .71.

3.3 Numerical experiments

This part includes a spatially independent (not known a priori) and two spatially de-

pendent PDE identification experiments. The Sec. 3.3.1 to 3.3.2 are based on clean signal, and

Sec. 3.3.3 experiments with noisy measurements. The datasets are generated by finite difference

modeling [9].

For the 1D case in Sec. 3.3.1, the dictionary used is (3.3). To simplify the demonstration,

we index its columns as

ΦΦΦn=

[
1
ut ,

2
utt ,

3
u◦ux,

4
uxx,

5
utx,

6
sin(u)

]
∈RM×6 . (3.21)

and use the indices for the columns (1 ∼ 6) to show the results.
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3.3.1 Spatially-independent Burgers’ equation

Here we recover the fluid viscosity from fluid speeds. The Burgers’ equation [61, 62]

Ut +UUx −νUxx = 0 (3.22)

is non-linear and can model the formation of shock waves in free turbulence, where ν ≥ 0 is the

viscosity of the fluid which is spatially-independent in this example. The aim of this experiment is

to show that the method can extract the medium property from a non-linear dynamic system, and

it works when the PDE to be identified is in fact spatially-independent (indicating a homogeneous

medium) but not known a priori.

A dataset U ∈R101×151 with ∆t = 0.05 s and ∆x = 1 m modeling the speed of the fluid at

each location along a thin pipe as time progresses governed by (3.22) with ν = 0.1 is generated

as Fig. 3.2(a). The initial state is a scaled probability density function (PDF) of the normal

distribution, as time goes by, the wave is moving in the positive x direction.

We choose the spatial region where the dynamics can be easily observed as the ROI, to

be specific, choose Ix = {ix|20 ≤ ix ≤ 90} which is bounded by the red lines in Fig. 3.2(a), so

N = 71 and n = 1 corresponds to ix = 20. We do not consider the temporal boundaries where the

derivatives are not well defined and thus use It = {it |1 ≤ ix ≤ 149} for the ROI, i.e., M = 149.

To find the governing PDE, we build Φ̄ΦΦ
s
n according to (3.3), (3.6) and (3.7a) for every

1 ≤ n ≤ N. From (3.11), the coefficients are distributed as Fig. 3.2(b). After thresholding using

(3.12a) with ε = 10−3, {ut ,u◦ux,uxx} appearing in the Burgers’ equation are selected for all

locations in the ROI.

For every location, we build Φ̃ΦΦ
s
n and compute ãn as (3.12). The coefficients for Ut

and UUx are always nearly identical since ∑
N
n=1 |ãn(3)− ãn(1)|= 1.7×10−14. The estimated

viscosity is ν̂n =− ãn(4)
ãn(1)

, which equals to 0.1 for every n.
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Figure 3.3. The true phase speeds c and attenuating factors α for ix, iy in [1,30] (∆x=∆y=0.1 m).
Waves can not arrive at the places where either ix or iy is 0 or 31 because of the boundary
condition.

3.3.2 2D spatially-dependent wave equation

In this part, we recover the 2D maps of phase speeds and attenuation from observed

propagating waves. A 2D wavefield U ∈ R32×32×200 in which ∆x = ∆y = 0.1 m and ∆t = 0.01 s

describing waves excited by an initial perturbation and propagating through various media is

used for the experiment. The PDE governing it is the wave equation

Utt +αUt − c2
∇

2U = 0 , (3.23)

where α ≥ 0 the attenuating factor, c > 0 the phase speed and ∇2 the Laplacian, i.e., Uxx +Uyy.

We adopt the Dirichlet boundary condition, where the measurements on spatial boundaries are

zero. The initial perturbation is shaped as a scaled 2D normal distribution PDF, and the phase

speeds 2 ≤ c ≤ 4 m/s and attenuation 0 ≤ α ≤ 0.2 are varying across the domain as shown in

Fig. 3.3. Some frames are shown in Fig. 3.4. We choose the ROI to be all the spatial regions

without the boundaries and its immediate neighboring points (i.e., 2 ≤ ix ≤ 29, 2 ≤ iy ≤ 29)

and the time steps 1 ≤ it ≤ 198. Therefore N = 282 = 784, M = 198 and n = 1 corresponds to

ix = iy = 2. The 2D locations within ROI are indexed from 1 to N in the row-major manner.
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Figure 3.4. The wavefield governed by (3.23) with spatially dependent c and α at 3 selected
time points. ∆x=∆y=0.1 m,∆t=0.01 s. Therefore ix, iy both ranged from 0 to 31.

Figure 3.5. For 2D wave equation, (a) log10|ān(i)| where i corresponds to the indices of columns
for ΦΦΦn in (3.24) for all n = 1 . . .282; (b) the locations of their active entries after thresholding.
The 2D 28×28 locations are indexed from 1 to 784 in a row-major manner.

For this 2D case, we extend the dictionary (3.3) and s (3.6) to

ΦΦΦn = [
1
ut ,

2
utt ,

3
u◦ux,

4
u◦uy,

5
uxx,

6
uyy,

7
utx,

8
uty,

9
sin(u)]

s = [1,1,1,1,−1,−1,−1,−1,1]T .

(3.24)

Build dictionaries using (3.24) according to (3.7a), and from (3.11), the ā1 to āN are acquired as

Fig. 3.5(a). After thresholding as (3.12a) with ε = 10−3, the kept non-zero entries are indicated

in Fig. 3.5(b).
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Figure 3.6. Number of identified active PDE terms within the ROI.

Comparing Fig. 3.5(b) to (3.23), the method successfully identifies the PDEs for all 784

locations. Fig. 3.6 shows the number of identified active PDE terms for each location in the

ROI, where the 3 terms contain {utt ,uxx,uyy}, and for 4 terms ut is also included. Build Φ̃ΦΦ
s
n

and compute ãn as (3.12), the coefficients for Uxx and Uyy are nearly identical as ∑
N
n=1 |ãn(5)−

ãn(6)|= 3.3×10−12. The recovered ĉn =
√
− ãn(5)+ãn(6)

2ãn(2)
and α̂n =

ãn(1)
ãn(2)

, which are satisfactory

as the RMSE = 1.1×10−14 m/s for phase speeds and 1.5×10−14 for attenuating factors with

respect to the ground truth in Fig. 3.3 across the whole ROI.

3.3.3 2D spatially-dependent wave equation with noise

The field is of size U ∈ R100×100×1000, ∆x = ∆y = 1 m, ∆t = 0.2 s. The ROI is selected

to be 5 ≤ ix < 95,5 ≤ iy < 95 (8100 locations in total) and for time period use 5 ≤ it < 995.

The field has free boundaries and is excited by two chirp sources located outside the region at

(−6 m,18 m) and (109 m,80 m), and governed by attenuating or non-attenuating wave equations

with various coefficients, as indicated in Fig. 3.7(a). One frame is in Fig. 3.8(a).

Without noise, build dictionaries for all locations using (3.24) according to (3.7a) and

implement (3.11), we obtain the coefficients distributed as Fig. 3.9. Thresholding them with

ε = 10−2, the PDEs are correctly identified for all 8100 locations in the ROI. The ĉ and α̂

are well recovered, with the RMSE = 1.7× 10−15 m/s for phase speeds and 3.2× 10−16 for
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attenuating factors comparing to the ground truth.

We add additive white Gaussian noise (AWGN) with σ2 = 2 (arbitrarily chosen to be

∼ 1% of the signal variance in a frame) to the measurements, see Fig. 3.8(b). Using the same

procedure as before without denoising, the ān is as Fig. 3.10(a). No proper ε can be found

to extract the active terms and thus the PDE identification fails. We thus use the integration

transformation to build ΦΦΦ
int
n ∈ RMint×9 for each location as described in Sec. 3.2.2 with its mth

row

ΦΦΦ
int
n (m, :)=

∫
Ωm

[
1

−UW m
t ,

2
UW m

tt , −
1
2

3
U2W m

x , −1
2

4
U2W m

y ,

5
UW m

xx ,
6

UW m
yy ,

7
UW m

xt ,
8

UW m
yt ,

9
sin(U)W m]dΩm .

(3.25)

The center of the integration domains starts from it = 19 and ends at it = 979 with δ = 10, so

Mint = 97. The recovered ān is in Fig. 3.10(b), a clear improvement of Fig. 3.10(a). Now it

is possible to use thresholding to extract active terms. Using ε = 0.13, the recovered result is

shown in Fig. 3.7(b) where the terms corresponding to {Utt ,Uxx,Uyy} or {Ut ,Utt ,Uxx,Uyy} are

identified at 97.6% of all 8100 locations. Specifically, for the ROI with attenuation (upper right

in Fig. 3.7(a)), the four PDE terms {Ut ,Utt ,Uxx,Uyy} are selected at 86.1% of the 452 locations.

For each location of the 2.4% region where the wave equation is not identified, the recovered

ĉ and α̂ are interpolated using the median value within a window covering 21 locations along

y-axis centered at it.

For the phase speed recovery, the sharp edges between distinct true speeds are smoothed.

The reason is that the integration domains centered near the edges cover the regions with different

speeds, thus the results are affected by both speeds. The recovered speed smoothly changes

because the integration domain smoothly slides over the boundary. The integration domain

size is important: a larger integration domain leads to more noise-robust estimation and more

extensively smoothed edges. Unlike phase speed recovery, when the integration domain centers

near the boundary of attenuating and non-attenuating areas, if ān(1) is kept after thresholding

in (3.12a) then α̂ is recovered from least squares regression in (3.12c) and thus near the true α ,
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Figure 3.7. (a) The true phase speeds c and attenuating factors α for ix, iy in [0,99] (∆x=∆y=
1 m). (b) The recovered ĉ and α̂ in the ROI for the noisy measurements using ε = 0.13.

Figure 3.8. A frame of the wavefield governed by (3.23) with spatially dependent c and α in
Fig. 3.7(a). The 2 sources are outside the region at (−6 m,18 m) and (109 m,80 m). (a): clean
measurements; (b): noisy measurements with AWGN for σ2 = 2.
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Figure 3.9. For 2D wave equation with spatially dependent c and α in Fig. 3.7(a), log10|ān(i)|
from clean measurements where i corresponds to the indices of columns for ΦΦΦn in (3.24).

Figure 3.10. For noisy measurements of waves governed by (3.23) with c and α in Fig. 3.7(a):
(a) log10|ān(i)| with ān recovered from ΦΦΦn where i corresponds to the indices of columns for ΦΦΦn
in (3.24); (b) log10|ān(i)| with ān recovered from ΦΦΦ

int
n in (3.25).
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Figure 3.11. The vibrating plate: (a) 2 of the selected 1000 frames, with magnitudes normalized;
(b) the traces for locations at y = 50 mm in the first 0.5 ms.

otherwise ãn(1) is set to 0, thus α̂ = 0, causing the sharp transition for α̂ .

3.4 extracting PDEs for a vibrating plate

3.4.1 Identification from clean measurements

The approach is demonstrated on laser scanned measurements of vibrations of a real

aluminum plate sampled at 300 kHz provided by University of Utah [36], see Fig. 3.11. The part

taken into consideration is U ∈ R100×100×1000, i.e., the measurements are collected from 10000

sampling locations uniformly distributed on the square plate (100 rows and 100 columns) with

1000 time steps. The spatial sampling interval ∆x = ∆y = 1 mm.

The PDEs governing the vibrations of the plate is the wave equation. Since the aluminum

plate waves are dispersive [37], i.e., phase speeds c varies across frequencies, we extract the

narrow band signals from U and identify the PDE for every band. Five 6th order Butterworth

bandpass filters centered at 30 to 70 kHz stepped by 10 kHz are employed to extract narrowband
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Figure 3.12. For the 300th frame of the signal with frequency band centered at 30 kHz, (a) clean
signal; (b) signal corrupted by AWGN with σ2 = 103.

signals with 2 kHz bandwidth, with one frame of the narrowband signal centered at 30 kHz

shown in Fig. 3.12 (a). We drop five neighboring locations on each axis end, so for the ROI

5 ≤ ix < 95, 5 ≤ iy < 95, 5 ≤ it < 995, and thus N = 902 = 8100, M = 990.

The PDE identification results are summarized in Table 3.1 which is explained in detail

as the following. We build the dictionary ΦΦΦn ∈ R990×9 for each location as (3.24), and build

Φ̄ΦΦ
s
n using the terms and s in (3.24) according to (3.7a) for every 1 ≤ n ≤ N. From (3.11), the

coefficients for {utt ,uxx,uyy} are found to have significant greater magnitudes, as shown in

Fig. 3.13 (a) for the 70 kHz case as an example. We threshold ān(i) as (3.12a) using ε = 0.2

at each location that gives the active PDE terms. Counting the number of locations with the

PDE terms correctly identified (either {utt ,uxx,uyy} or these including ut) and normalizing it

with N gives the “Success rate”. The mean phase speed and mean absolute deviation (MAD,

computed by 1
N ∑

N
n=1 |ĉn − ( 1

N ∑
N
n=1 ĉn)| where ĉn the recovered phase speed at location n) over

these “success” locations are calculated. The recovered speeds ĉn =
√

− ãn(5)+ãn(6)
2ãn(2)

are shown in

Fig. 3.14. For each location in the region where the wave equation is not identified (3.2% of the

ROI at most, at 70 kHz), the recovered ĉ is interpolated using the median value within a window

covering 21 locations along y-axis centered at it.

The mean phase speeds in Table 3.1 are close to the recovered phase speeds when the

PDE coefficients are assumed constant across the space and recovered from one dictionary built
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Table 3.1. Success rate (using s as (3.24) or s = 1 in ΦΦΦ
s
n) of the PDE identification and the

recovered speeds for various frequency bands.

Center Freq.(kHz) 30 40 50 60 70
Success rate using correct s in (3.24) (%) 99.5 98.1 99.1 99.4 96.8

Success rate using s = 1 (%) 0 0 0 0 0
Mean speed (m/s) 467 532 586 628 663

MAD (m/s) 4.9 8.7 6.9 7.7 6.1
MAD/Mean (%) 1.1 1.6 1.2 1.2 0.9

ĉall (m/s) 463 531 587 632 668

from the measurements at all locations (a big dictionary ΦΦΦ = [ΦΦΦT
1 ΦΦΦ

T
2 . . . ΦΦΦ

T
N ]

T ∈ RNM×D) in

Ref. [3], as given in ĉall . The relative MAD is ∼ 1%, indicating the recovered speed is nearly a

constant across the plate for a narrow frequency band, which coincides with our physical setting.

The correct s selected from physical knowledge is a key for the successful identification.

If we use 1 as s in (3.24), no wave equations are identified at any location for any frequency

band. Using 1, the ān for the band centered at 70 kHz is shown in Fig. 3.13 (b). The 1 used as

s indicates the coefficients for Utt ,Uxx and Uyy have the same sign. Since this is not true, these

terms are suppressed (comparing Fig. 3.13 (b) with Fig. 3.13 (a)), and the energy that should

appear in ān(2), ān(5) and ān(6) is redistributed to other entries to make the combination of

selected columns in Φ̄ΦΦ
s
n still fit e. This can not be remedied by tuning ε since the incorrect terms

have larger coefficients than correct ones.

Table 3.2. PDE identification success rate with or without integration transformation for the noisy
narrowband signal at 30 kHz. Values in the 2nd column is the direct quotient, not percentage.

Noise Variance
Noise/Signal

Variance
Without Integration

(%)
With Integration

(%)
104 65.56 2.2 9.2
103 6.56 0.3 62.1
102 0.66 1.2 98.1
101 6.56×10−2 25.3 99.5
100 6.56×10−3 90.9 99.5
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Figure 3.13. Magnitudes of ān(i) where i corresponds to the indices of columns for ΦΦΦn in (3.24)
for all n = 1 . . .902 from clean measurements, (a) using s in (3.24); (b) using 1 as the s.

Table 3.3. Success rate of the PDE identification from noisy measurements aided by integration
transformation and the recovered speeds for various frequency bands. The correct s is from
(3.24) and other rows in the dictionary are the normalized terms of (3.25).

Center Freq.(kHz) 30 40 50 60 70
Success rate using correct s (%) 98.1 99.3 99.2 93.4 96.6

Mean speed (m/s) 473 548 613 675 731
MAD (m/s) 5.8 4.2 5.5 9.6 5.4

MAD/Mean (%) 1.2 0.8 0.9 1.4 0.7
ĉcl (m/s) 476 556 610 667 722

3.4.2 Identification from noisy measurements

To test the robustness against AWGN, we add the AWGN with variance σ2=104,103,102,

10 and 1 respectively to the signal with frequency band centered at 30 kHz (1 frame shown

in Fig. 3.12), and identify PDEs from the dictionary (3.25) where the center of the integration

domains starts from it = 19 and ends at it = 979 with δ = 20 (so Mint = 49). The successful

identification rate is in Table 3.2, in which the “Signal Variance” in the 2nd column is the average

variance across all 1000 frames of the clean signal centered at 30 kHz in the ROI. Table 3.2

shows the integration method significantly increases the robustness against AWGN. In reality, the

method should provide a high success rate for the sensors satisfying basic quality requirements.

From Table 3.2 when the noise variance is 102, i.e. the noise variance is 66% of the signal
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Figure 3.14. The recovered phase speeds for various frequency bands on the plate from clean
measurements.
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variance and thus a SNR = 1.83 dB, the success rate is larger than 98%.

Add AWGN with σ2 = 100 to all 5 narrowband signals and use the integration transfor-

mation to assist PDE identification, the PDE coefficients are recovered with the example for

70 kHz shown in Fig. 3.15. The coefficients for {Utt ,Uxx,Uyy} have larger coefficients at most

locations and thus can be extracted by thresholding. Use ε = 0.2 to extract active terms and the

recovered speeds ĉn =
√

− ãn(5)+ãn(6)
2ãn(2)

are shown in Fig. 3.16 and recorded in Table 3.3. For each

location in the region where the wave equation is not identified (6.6% of the ROI at most, at

60 kHz), the recovered ĉ is interpolated using the median value within a window covering 21

locations along y-axis centered at it.

The mean speeds in Table 3.1 for high frequencies are underestimated because of in-

sufficient sampling along time [3]. For 70 kHz, if we assume the speed being 700 m/s, the

wavelength becomes 10−2 m = 10∆x, while the period is 1.43× 10−5 s ≈ 4∆t. Since finite

difference evaluates ∂ttU(ix, iy, it) based on slopes of the line segments connecting U(ix, iy, it)

with U(ix, iy, it − 1) and U(ix, iy, it + 1) respectively, when ∆t is not sufficiently small, these

slopes can be far from the slope of the tangent line passing U(ix, iy, it), causing significant bias.

In comparison, the mean speeds in Table 3.3 are not underestimated because of the 9 points

interpolation between each neighboring time steps. The result is similar to a classic phase

speed estimation based on Fourier transform by first finding the primary spatial frequency ξ̂ for

each frequency f , and then ĉcl = f/ξ̂ [38, 39] assuming the PDE is spatially independent wave

equation and the waves are isotropic. The ĉcl computed from clean measurements is also shown

in Table 3.3, indicating that the surface wave is strongly dispersive.

3.5 Efficiency

We emphasize the efficiency of the proposed method by comparing its CPU time to

the PDE identification using sparse Bayesian learning (SBL) [14], cross-validation (CV) based

method[3] and exhaustive search (Exhaust). Since methods in Refs. [14, 3] only work for
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Figure 3.15. From noisy measurements of the vibrating plate centered at 70 kHz, |ān(i)| where i
corresponds to the indices of columns for ΦΦΦ

int
n in (3.25) for all n = 1 . . .902.

spatially-independent PDEs, we use 3 datasets describing such PDEs for the experiments: (a)

dataset in Sec. 3.3.1; (b) non-attenuating 2D wave equation (3.23) with α =0,c=2.5 m/s; (c)

attenuating 2D wave equation (3.23) with α = 0.025,c =2.5 m/s. All other settings for (b)–(c)

are the same as in Sec. 3.3.2.

As in Refs. [14, 3], since the PDE is identical for all locations we concatenate ΦΦΦn (defined

by (3.3) or (3.24)) for each column to build the dictionary

ΦΦΦ = [ΦΦΦT
1 ,ΦΦΦ

T
2 , . . . ,ΦΦΦ

T
N ]

T ∈ RNM×D (3.26)

for Refs. [14, 3] and exhaustive search, and the proposed method utilizes normalized (3.26)

appended by s as its last row.

All the methods successfully identify the PDEs, and the CPU time shows the superior

efficiency of our proposed method as demonstrated in Table 3.4. From Table 3.4, the proposed

method outperforms others significantly. The exhaustive search is efficient for the dictionary

with 6 terms, but time-consuming for 9 terms.
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Figure 3.16. The recovered phase speeds for various frequency bands on the plate from noisy
measurements.
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Table 3.4. The average CPU time (s) for 10 trials on a MacBook Pro to correctly identify spatially
independent PDEs on 3 datasets using sparse Bayesian learning (SBL) [14], the cross-validation
(CV) based method[3], exhaustive search (Exhaust), and the proposed method.

SBL[14] CV[3] Exhaust Proposed
Burgers’ eq. 0.69 0.16 0.06 0.002
Non-atten. wave eq. 1.7 15 35 0.028
Atten. wave eq. 1.0 4.3 9.4 0.010

Besides efficiency, the proposed method and the baselines in Table 3.4 have similar

performance for correctly identifying the PDEs. With the same success rate, the higher efficiency

makes our approach suitable for recovering spatially-dependent PDEs in a large ROI, in which

the PDE identification is repeated for every spatial location.

3.6 Conclusion

We proposed a technique to efficiently recover the spatial variations of physical properties

via spatially-dependent PDEs identification given observations, and validated it by recovering

various acoustical properties for the medium of propagating waves.

The identification employs a constrained ℓ1-norm minimization, which encourages spar-

sity and is solved via Lasso, to select active PDE terms from a dictionary of all potential terms.

It is computationally efficient due to not requiring iterative assumptions of active PDE terms and

the implementation of a fast computing scheme for Lasso. Using an integration transformation to

transfer the derivatives on the noisy measurement to a smooth pre-defined function, the method

can also identify spatially-dependent PDEs from highly noisy measurements.
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Chapter 4

SD-PINN: Deep Learning based Spatially
Dependent PDEs Recovery

4.1 Introduction

Lots of natural phenomena find their mathematical representation in partial differential

equations (PDEs), which are inherently composed of multiple terms and coefficients. A PDE

describing the dynamics of field U can be written as

N[U ] = a1Ux +a2Uy +a3Ut +a4Utt + . . . (4.1)

where the partial derivatives Ux,Uy,Ut , ... are the PDE terms and the a1,a2, ... are PDE coeffi-

cients. The coefficients are often related to the physical properties of the medium and thus are of

great interest in many applications. For example, in mechanical vibrations, the coefficients in the

wave equation are related to the elastic properties of the medium [63]; in electromagnetics, the

coefficients in Maxwell’s equations are related to the electrical properties of the medium [64].

The spatial variation of the physical properties, like the various elasticities due to the various den-

sities of the medium at different locations, leads to spatially-dependent PDE coefficients (e.g., in

(4.1), the coefficients become a1(x,y),a2(x,y), etc.). Thus by recovering the spatially-dependent

PDE coefficients from observations (i.e., measurements of the dynamical field), we can obtain

the spatial distribution of the physical properties of the medium.
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The recent developments in computing power have enabled data-driven approaches to

identify the PDEs directly from measurements [7, 5, 6, 15, 1, 16, 17, 18, 11, 67, 27, 14, 3, 65, 66].

Within these methods, the Physics Informed Neural Network (PINN) [5, 6, 7] has garnered

considerable scholarly interest due to its notable resilience against measurement noise. Given

the type of PDE which delineates the active PDE terms, PINN can learn the representation of the

function mapping the spatiotemporal coordinate (xxxm, t j) (where for spatially 2D cases xxxm is a

vector) to its measurement um j by a fully connected feed-forward neural network (FNN) [68][69]

and recover the PDE coefficients. However, the PINN has limitations when the coefficients for

the PDEs are spatially dependent, as it assumes the coefficients are identical across the whole

region of interest (ROI).

We propose a Spatially Dependent Physics Informed Neural Network (SD-PINN) which

can recover spatially-dependent PDEs using only one neural network (in contrast to previous

works which use two networks, one for PDE coefficients recovery and the other for solving the

PDE [70, 80, 81]), without requiring domain-specific physical knowledge (in contrast to the prior

arts which employ prior knowledge for specific situations, e.g., the stress-strain relationship [70]),

and offers improved robustness against noise in input signals compared to previous methods [4].

Meanwhile, exploiting the low-rank assumption of the spatial variations for the PDE coefficients,

the method can recover the coefficients at locations without available signals. A preliminary

version of this work was in the conference paper [72].

Notations: The 2D or 3D matrices are given in bold capitalized letters, the vectors are

in bold lowercase letters, and the scalars are in plain letters. For any variable X (or xxx, x), its

estimation is denoted by X̂ (or x̂xx, x̂). The entry at the ith row and jth column of matrix X is

denoted by X(i, j), and XT(i, j) denotes the entry at the ith row and jth column of XT (the

transpose of X). PΩ(X) denotes the span of matrices vanishing outside a region Ω so that the

(i, j)th component of PΩ(X) equals to X(i, j) if (i, j) ∈ Ω and zero otherwise. The number of

entries within Ω is denoted by |Ω|.
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4.2 Theory of SD-PINN

With the type of PDE governing the field of interesting dynamics U in the ROI (with

M spatial locations and T time steps) assumed known, we recover the spatially dependent

coefficients for each term in the assumed PDE within the ROI. There are true PDE coefficients at

only a few locations in the ROI given, the coefficients at all other locations, which consist the

majority of the ROI, are recovered from the measurements of U .

The sign information (non-positive or non-negative) of each coefficient is known from

the assumed type of PDE, which is determined by the physical background of the PDE and is the

same at all locations. For example, in the wave equation [73]

Utt +αUt − c2
∇

2U = 0 (4.2)

the coefficient −c2 for ∇2U (the Laplacian of U , i.e., Uxx +Uyy) must be non-positive since c is

a real number for the phase speed of the wave, and α which is the factor for attenuation must be

non-negative for a system without input energy from external sources.

In an overview of this work, an FNN denoted by a function Netθ used to predict the

observation ûm j given its coordinates (xxxm, t j) as Fig. 4.1 is trained, where θ is the parameters

(weights and bias) of the FNN. Then PDE terms (i.e., partial derivatives) are computed by

automatic differentiation of Netθ . The spatially-dependent PDE coefficients are then recovered

using these partial derivatives computed at various locations. The details are described below.

4.2.1 Formulation of spatially-dependent PDEs

We focus on time-invariant homogeneous PDEs, i.e., there is no source in the ROI and

the coefficients do not change with time.

The PDE is written with one term on the left-hand side (LHS) equaling other terms on the

right-hand side (RHS). The coefficient of the one term in the LHS is set to one at every location,
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e.g., for (4.2),

Utt =−αUt + c2
∇

2U . (4.3)

Our task is to recover the coefficients for all terms in the RHS for all locations.

We denote the LHS at the location xxxm and time step t j by ℓ
j
m. The RHS r j

m contains K

terms r j
mk, each of which is a product of a time-invariant coefficient λmk and a PDE term d j

mk. So

the LHS equaling RHS gives:

ℓ j
m = r j

m =
K

∑
k=1

r j
mk =

K

∑
k=1

λmkd j
mk . (4.4)

For example, the wave equation (4.3) is rewritten as

(Utt)
j
m =−αm(Ut)

j
m + c2

m(∇
2U) j

m =
K

∑
k=1

λmkd j
mk (4.5)

where K = 2, λm1 =−αm, λm2 = c2
m, d j

m1 = (Ut)
j
m and d j

m2 = (∇2U)
j
m = (Uxx)

j
m +(Uyy)

j
m. Thus

the PDEs at all locations and time steps are written as

ℓ j
m = r j

m =
K

∑
k=1

λmkd j
mk , ∀m, ∀ j . (4.6)

From (4.4), we can write the RHS for all the locations and PDE terms at time t j in a

matrix as 
r j

11 · · · r j
1K

r j
21 · · · r j

2K

... · · ·
...

r j
M1 · · · r j

MK

=


λ11 · · · λ1K

λ21 · · · λ2K

... · · ·
...

λM1 · · · λMK

◦


d j

11 · · · d j
1K

d j
21 · · · d j

2K

... · · ·
...

d j
M1 · · · d j

MK

 (4.7)

where the MK unknown λmk are the coefficients to be recovered and ◦ is the Hadamard product.

This differs from the conventional PINN, where only a vector of coefficients [λ1, . . . ,λK] is

recovered since the PDE is assumed to be spatially independent. The SD-PINN is demonstrated

using the wave equation (4.5) as an example, but it works the same way for other PDEs.
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Figure 4.1. The FNN used in this work is denoted by a function ûm j = Netθ (xxxm, t j).

4.2.2 Low-rank assumption for the spatial variation of coefficients

In this work, we consider spatially 2D cases and assume the ROI to be a rectangular

area with M = M1M2, thus the measurements of the dynamical field acquired at T time steps

are stored in a 3D matrix U ∈ RM1×M2×T . By reshaping the M×1 vector for the coefficients of

the kth term in (4.7) into an M1 ×M2 matrix and moving the index of the PDE term k to the 3rd

dimension, the coefficients will be stored in a 3D matrix containing K slices in RM1×M2 with its

kth slice being the spatially-dependent coefficients of the kth PDE term denoted as:

ΛΛΛk =



λ11k · · · λ1M2k

λ21k · · · λ2M2k

... · · · ...

λM11k · · · λM1M2k


. (4.8)

The xxxm represents the mth location in the ROI and is a vector containing a row index and a

column index. The objective of SD-PINN is to find an estimation Λ̂ΛΛk for all entries of ΛΛΛk for all

k based on a few given entries.
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In real-world scenarios, the spatial variations of the physical properties of the medium

for the dynamics are not random, as the properties at a certain point are influenced by the

surrounding medium. The decreased degrees of freedom are represented by a lower rank for ΛΛΛk,

which is smaller than min(M1,M2).

For ΛΛΛk ∈ RM1×M2 with rank rk, there exist two smaller matrices with rk columns whose

multiplication is ΛΛΛk[74]:

ΛΛΛk = U kV
T
k (4.9)

where U k ∈ RM1×rk and V k ∈ RM2×rk .

The method aims to find Û k ∈RM1×rk and V̂ k ∈RM2×rk for all k which satisfy Û kV̂
T
k =

Λ̂ΛΛk, such that Λ̂ΛΛk ≈ ΛΛΛk and specifically PΩ(Λ̂ΛΛk) = PΩ(ΛΛΛk) by exploiting the information from

measurements U of the dynamical field governed by PDEs parameterized by {ΛΛΛk|∀k = 1, . . . ,K},

where Ω covers the few locations for the given coefficients.

Instead of assuming the exact rank of ΛΛΛk, we assume a reasonable upper limit for that

and use it as rk, which not only represents a weaker assumption that is empirically viable but

also provides a better recovery as detailed in the following sections. Since the rank of ΛΛΛk can be

smaller than rk, the column vectors in Û k and V̂ k are not necessarily linear independent.

By denoting Λ̂ΛΛk = Û kV̂
T
k we relate the entries in Λ̂ΛΛk by the vectors in Û k and V̂ k. We

thus decrease the number of unknowns to be recovered from KM1M2 to ∑k(M1 +M2)rk and

can use the measurements from only a part of the ROI to recover the properties in the whole

ROI. This is valuable when the sensors are insufficient, or there are areas within the ROI where

sensors can not be placed.

4.2.3 Loss functions

The used neural network Netθ parametrized by θ is an FNN with L layers as shown

in Fig. 4.1, whose inputs are the spatial-temporal coordinates (xxxm, t j) where xxxm = [am,bm]
T is
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a vector describing the location indexed by m in the ROI, and outputs are the corresponding

estimated measurements ûm j. During the training of the SD-PINN, we minimize the overall loss

loss as expressed in Eq. (4.10):

loss = lossu +wf × lossf +wg × lossg +wsi × losssi , (4.10)

which is a linear combination of four individual losses: lossu, lossf, lossg, losssi with their weights

being 1,wf,wg and wsi respectively. These losses can be classified into three categories: (i) the

data fitting loss lossu is a function of only the neural network parameters θ (weights and bias);

(ii) the functional loss lossf is a function of both θ and the PDE coefficients λ (which stands for

all entries subjected to recovery in ΛΛΛk, ∀k); and (iii) the given coefficients loss lossg and sign

loss losssi are functions of only the PDE coefficients λ .

The loss (4.10) is minimized via Adam [79]. At the beginning of the network training,

all entries in Û k and V̂ k for all k are randomly initialized together with θ . The details of these

losses are provided below, in which the Λ̂ΛΛk is an intermediate variable and during training the

gradients are used to update the Û k and V̂ k essentially. In the optimization related to Λ̂ΛΛk (which

involves Sec. 4.2.3, 4.2.3, 4.2.3), we do not include the substitution of Λ̂ΛΛk = Û kV̂
T
k to maintain

concise formulaic representation.

Data fitting loss

Given the training samples {xxxm, t j,um j} selected from measurements U, the FNN Netθ

adjusts its parameters (wights and bias) θ to learn the mapping from coordinates (xxxm, t j) to its

corresponding measurement um j by minimizing the lossu:

lossu(θ) = ∑
xxxm∈Ωu

T

∑
j=1

(Netθ (xxxm, t j)−um j)
2 (4.11)

where Ωu the set of locations where the measurements are used as training samples to minimize

lossu.
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Functional loss

After ûm j is computed by Netθ (xxxm, t j), we compute the PDE terms ℓ̂
j
m and d̂ j

mk by

automatic differentiation [8]. For example, the (Ut)
j
m is computed as ∂Netθ (xxx,t)

∂ t

∣∣∣
xxx=xxxm,t=t j

, which

is a function of (xxx, t) parametrized by θ . It can also be deemed as a function of θ parametrized

by {xxx = xxxm, t = t j} if we want to optimize θ using it, and thus {ℓ̂ j
m, d̂

j
mk} can be written as

{ℓ̂ j
m(θ), d̂

j
mk(θ)}.

The computation of ℓ̂ j
m and d̂ j

mk allows us to introduce lossf, by minimizing which we

recover the PDE coefficients λ and prevent the Netθ from overfitting the measurements when

there is noise in the training samples. The lossf is

lossf(θ ,λ ) = ∑
j∈It

∑
m∈Im

(ℓ̂ j
m(θ)− (

K

∑
k=1

λ̂mkd̂ j
mk(θ)))

2

= ∑
t∈It

∥L̂t(θ)−∑
k

Λ̂ΛΛk ◦ D̂t
k(θ)∥

2
F

(4.12)

with

L̂t(θ) =


ℓ̂t

11(θ) · · · ℓ̂t
1M2

(θ)

... · · · ...

ℓ̂t
M11(θ) · · · ℓ̂t

M1M2
(θ)

 , (4.13)

D̂t
k(θ) =


d̂t

11k(θ) · · · d̂t
1M2k(θ)

... · · · ...

d̂t
M11k(θ) · · · d̂t

M1M2k(θ)

 (4.14)

where Im is the set of location indices m corresponding to all xxxm used in lossf. As indicated by

(4.14), Im covers all M1M2 locations within the ROI for our experiments. The It is the set of time

steps used for lossf, and is chosen as all time steps from 1 to T .

In addition to recovering PDE coefficients λ , the lossf also benefits the training of neural

network parameters θ by encouraging Netθ to provide the correct partial derivatives as the PDE
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terms. If we only use the lossu to train the network, although we can quickly make the neural

network predict the dynamic field itself more accurately, the field’s partial derivatives computed

by automatic differentiation (AD) are not sufficiently accurate. This is because there are multiple

neural network parameters θ that can make ûm j = Netθ (xxxm, t j) approximately equal to the true

um j, but for different θ , the AD (for example, ∂Netθ (xxx,t)
∂ t

∣∣∣
xxx=xxxm,t=t j

) are different.

In addition to recovering the PDE coefficients λ , the lossf also encourages θ to be the

one that makes the AD of Netθ work well as the PDE terms. Without lossf, the AD based on the

θ optimized purely on lossu can not simulate the true partial differentiation of U .

Given coefficients loss

Let there be pk entries in ΛΛΛk from a sub-region Ω of the ROI known a priori, we thus

have lossg (where g stands for “given”) as

lossg(λ ) = ∑
k

∑
(a,b)∈Ω

(Λ̂ΛΛk(a,b)−ΛΛΛk(a,b))2 (4.15)

where a and b are the row and column indices to enforce all entries within Ω to be identical

between the recovered Λ̂ΛΛk and true ΛΛΛk.

Sign loss

The sign (non-negative or non-positive) for the coefficients in the given type of the PDE

is unchanged across the ROI. Thus we can encourage the recovered coefficients to have their

assumed signs by minimizing the sign loss

losssi(λ ) =
M

∑
m=1

K

∑
k=1

ReLU(−sign(λmk)λ̂mk) (4.16)

where ReLU is the Rectified Linear Unit defined as ReLU(x) = x for x > 0 and 0 otherwise, and

sign(λmk) is 1 for λmk > 0 or −1 for λmk < 0 depending only on the assumed sign of true λmk

and is irrelevant to its approximation λ̂mk. Further, the sign(λmk) depends only on k because the
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sign for a given PDE term is assumed the same in the PDE recovered at any location m. From

(4.8), the sign loss (4.16) is rewritten as

losssi(λ ) = ∑
k

∑
(a,b)∈ROI

ReLU(−sign(ΛΛΛk(a,b))Λ̂ΛΛk(a,b)) (4.17)

where the value of sign(ΛΛΛk(a,b)) is entirely determined by k.

For example, for the wave equation (4.3) where ΛΛΛ1 denotes −α (non-positive) and ΛΛΛ2

denotes c2 (non-negative), losssi is

losssi(λ ) = ∑
(a,b)∈ROI

ReLU(Λ̂ΛΛ1(a,b))+ReLU(−Λ̂ΛΛ2(a,b)) . (4.18)

Note that the ΛΛΛk and Λ̂ΛΛk stand for both the magnitude of the coefficient and its assumed sign.

For example, in (4.3), the ΛΛΛ1 and Λ̂ΛΛ1 are for −α instead of α .

4.2.4 Coefficient recovery as a matrix completion problem

The spatially dependent PDE coefficients recovery can be performed as a matrix comple-

tion problem [74, 75, 76, 77, 78]. Assuming that for ΛΛΛk there are pk entries known with their

spatial locations covered by Ω (a sub-region of the ROI), the goal of coefficients recovery is to

reconstruct the matrix ΛΛΛk from these known entries subject to the constraint rank(ΛΛΛk)≤ rk.

We discuss two factors that affects the coefficients recovery: the locations of given

coefficients and the number of columns of Û k and V̂ k (i.e., rk).

Locations of given coefficients

For Û k ∈ RM1×rk and V̂ k ∈ RM2×rk subjected to recovery, the equation Û kV̂
T
k = Λ̂ΛΛk

where Λ̂ΛΛk = Λk at pk specified entries defines a collection of pk equations with several variables
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which are a part of the entries in Û k and V̂ k:

rk

∑
i=1

Û k(a j, i)V̂
T
k (i,b j) = Λ̂ΛΛk(a j,b j) = ΛΛΛk(a j,b j),

∀(a j,b j) ∈ Ω, j = 1, . . . , pk

(4.19)

for Ω with |Ω|= pk.

The number of entries of Û k involved in these equations is rk times the number of

distinct rows covered by Ω: for example, when pk = 2, in (4.19), if a1 = a2, rk entries of Û k are

involved; otherwise, 2rk entries are involved. Similarly, the number of entries in V̂ k involved

is rk multiplying the number of distinct columns covered by Ω. Thus, for a fixed number (i.e.,

pk) of equations, the more distinct rows and columns covered by Ω, the more entries of Û k and

V̂ k are affected by these pk known coefficients. If the locations in Ω are concentrated in too

few distinct rows and columns, the recovery is difficult because the contribution of the known

coefficients is constrained within too few entries of Û k and V̂ k.

Redundant columns of Û k and V̂ k

If the specified rk which is the number of columns in Û k and V̂ k exceeds the true rank

of ΛΛΛk (denoted by r0
k ), this will be an advantage because more degrees of freedom are allowed

for the recovery. This is intuitive because when Û k and V̂ k have rk columns, their ranks can

be smaller or equal to rk. Thus, the potential Λ̂ΛΛk generated by Û k and V̂ k with more columns

encompasses the Λ̂ΛΛk derived from Û k and V̂ k with fewer columns. In other words, the potential

Λ̂ΛΛk recovered with a higher upper limit of its rank includes those recovered with a lower upper

limit, but the reverse is not true.

Meanwhile, the coefficient recovery does not monotonically improve with the increase in

the number of columns rk. If rk is too large, there are so many degrees of freedom for entries

in Λ̂ΛΛk that the information of recovered entries at locations with available measurements is

insufficient to confidently determine the values of entries at other locations.
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Figure 4.2. The true c2 and some recovered ĉ2 in the experiments with r1 = 5 (at epoch = 4000).

4.3 Experiments for SD-PINN

In this section, we explore the PDE coefficients recovery as a matrix completion problem.

Various datasets U containing the measurements of wave fields governed by the wave equation

(4.5) are used, all of which are in the shape of R30×30×198. The distances between neighboring

coordinates are ∆x = ∆y = 0.1 m and ∆t = 0.01 s. They may be noise-free or noisy and may be

complete (i.e., all entries are given) or incomplete to various extents.

All data in U with their spatiotemporal coordinates are used to train Netθ and {Û k, V̂ k}

are recovered while training. Thus, the input is the concatenation of xxxm and t j which is a three-

component vector and the output is real number ûm j which is used to be compared with the true

observation um j.
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Table 4.1. The root mean square error (RMSE) of recovered ĉ (at epoch = 4000) for various
experiments using the waves without attenuation. The small number in the right bottom corner is
the epoch at which the ĉ2

m is extracted.

Signals Noise level RMSEc2 (r1 = 3) RMSEc2 (r1 = 5)
All 0 0.140 0.128
All 10% 0.144 0.140
All 20% 0.132 0.131

50% 0 0.136 0.115
50% 10% 0.131 0.116
50% 20% 0.137 0.135

Figure 4.3. The clean and noisy signal at frame 100 with full measurements and 50% measure-
ments. The black pixels denote places without available signals, which are randomly selected.

In all experiments, we use L = 5 layers for the FNN as shown in Fig. 4.1. The activation

function tanh is applied in the 1∼4 layers. For the weights Wl of layer l, Wl ∈ R200×200 for

2 ≤ l ≤ 4, while W1 ∈ R200×3 and W5 ∈ R1×200 accommodate the input and output sizes. All

weights are initialized by He initializer [82]. All biases bbbl are in R200 except at the last layer

where it is a scalar, and they are initialized as zero. The entries in Û k and V̂ k are initialized

as samples drawn from zero-mean Gaussian random distribution with a standard deviation of

0.1. We set wf = 0.1,wsi = wg = 1 for (4.10). The Ωu for lossu in (4.11) is set to be all locations

where measurements are available. As measurements at certain locations may be unavailable,

the Ωu is not necessarily the whole ROI. For (4.12), Im is for all the M locations in the ROI, and

It is for all T time steps.
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Table 4.2. The RMSEs between the true and recovered PDE coefficients for different settings of
locations for given coefficients.

Locations of given coefficients RMSEα RMSEc2

Diagonal 1.466 0.328
Grid 4.228 2.444

Random 1.810 0.194

4.3.1 Non-attenuating waves

We recover the PDEs for non-attenuating waves described in U ∈ R30×30×198 here. The

PDE is the spatially-dependent wave equation (4.5) where αm = 0 and c2
m is distributed as the

“True” subplot of Figure 4.2 (rank = 3). The unit for the phase speed c is m/s, and for the

attenuation factor α is s−1.

In this case, the only coefficient we are recovering is c2
m for all m, and thus K = 1, the

only coefficient matrix ΛΛΛ1 to be recovered in (4.8) is for the phase speeds and has a rank r0
1 = 3.

The PDE term corresponding to c2
m is ∇2U , which is computed as the sum of Uxx and Uyy, both

of which are computed by automatic differentiation of Netθ . We carry out 12 experiments with

no noise, 10% noise, 20% noise, all measurements available, 50% measurements available (see

Figure 4.3), r1 = 3 and r1 = 5 respectively. The noise is additive zero-mean Gaussian noise.

The “10%” or “20% noise” means the standard deviation (STD) of the Gaussian noise is 10% or

20% of the STD of the measurements. The “50% measurements available” means the available

measurements are from all time steps and 50% spatial locations (randomly selected) of the

unknown region in the ROI (i.e., the ROI excluding Ω where Ω are the four boundaries, denoted

by Ωc). We measure the recovery results by the root mean square error (RMSE) which is

RMSEc2 =

√
∑m∈Ωc |ĉ2

m − c2
m|2

|Ωc|
(4.20)

where |Ωc| is the cardinality of set Ωc and summarize them in Table 4.1. The results of the

recovery for some experiments are shown in Figure 4.2. Both the RMSEs and the graphical
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Figure 4.4. One frame of the wavefield for the attenuating wave with its true α and c2, where
max(α) = 10.

demonstrations show that the recovery is satisfactory.

4.3.2 Attenuating waves

Locations of given coefficients

We experiment with a dataset U ∈ R30×30×198 showing an attenuating wavefield. One

frame of the field together with its true α and c2 is shown in Fig. 4.4. The spatial variation of c2

is the same as the dataset in Sec. 4.3.1 so that its rank is 3, and the rank for α is 2. The PDE is

the wave equation (4.5) and thus K = 2, the ΛΛΛ1 is for −α and ΛΛΛ2 is for c2. The true rank for ΛΛΛ1

is r0
1 = 2 and for ΛΛΛ2 is r0

2 = 3. Although ΛΛΛ1 stands for −α , we show α in the subsequent figures

as it more directly represents the physical properties of the medium.

For this wavefield, we first conduct three experiments with different settings of the

locations for the given PDE coefficients. Unlike before, the coefficients on the boundaries

are unknown here. In the overall 900 spacial locations within the ROI, the set of locations Ω

for given coefficients covers 30 entries, which are on the diagonal, evenly spaced grids, and

randomly selected locations respectively. We set r1 = 2,r2 = 3 to run the recovery, the same

as true ranks. After 6000 epochs, the coefficients recovery results are summarized in Fig. 4.5.

Compared to Fig. 4.4, it is visibly evident that the recovery of “diagonal” is approximately
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Figure 4.5. Recovery of PDE coefficients (at 6000th epoch) with 30 entries given: 1st row: the
locations of the given entries with the colors representing true α (white pixels are for locations
without given coefficients, i.e., Ωc); 2nd row: recovered ĉ2; 3rd row: recovered α̂ .

Figure 4.6. The locations of the given coefficients which include the right, bottom boundaries,
and the diagonal (RBD). There are 88 locations in total. The colors indicate the α at these
locations, and white pixels are for locations without given coefficients.
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Table 4.3. RMSEs between true and recovered PDE coefficients for different settings of ranks,
signal availability, and noise conditions.

Experimental
settings r1 r2 RMSEα RMSEc2

Full measurements
no noise 5 5 0.366 0.145

75% measurements
no noise 5 5 0.369 0.125

50% measurements
no noise 5 5 0.371 0.140

50% measurements
no noise 2 3 0.495 0.186

Full measurements
10% noise 5 5 0.359 0.153

75% measurements
10% noise 5 5 0.356 0.150

75% measurements
no noise 2 3 0.496 0.192

75% measurements
10% noise 2 3 0.495 0.198

Full measurements
20% noise 5 5 0.400 0.134

50% measurements
20% noise 5 5 0.398 0.139

equivalent to “random”, and both are significantly superior to “grid”. The RMSEs between the

true and recovered coefficients are given in Table 4.2, where RMSEα is defined as

RMSEα =

√
∑m∈Ωc |α̂m −αm|2

|Ωc|
(4.21)

The results coincide with our conjecture that when the locations of given coefficients are

too concentrated in a few distinct rows and columns, the recovery is hard. For the “diagonal”,

“random” and “grid”, the numbers of distinct rows where the coefficients are given are 30, 20,

and 5; and the numbers of distinct columns are 30, 18, and 6 respectively.
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Figure 4.7. One frame of the wave field with various percentages of observations and noise
levels. The randomly selected black pixels stand for locations without available measurements.

Redundant columns of Û k and V̂ k

In this section, we recover the PDE coefficients of an attenuating wavefield with one frame

shown in Fig. 4.7 and the true coefficients shown in Fig. 4.8. For the coefficients, everything is

the same as the dataset in 4.3.2 except that the attenuation is halved. There are |Ω|= 88 locations

of given coefficients on the right boundary + bottom boundary + diagonal (RBD) as shown in

Fig. 4.6. We carry out 10 experiments where the measurements at all locations are available or

at 75%, 50% locations are available, and the signal is noise-free or polluted by Gaussian noise

whose STD is 10% or 20% of the signal’s STD. The frame of the signals with various noise
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Figure 4.8. Recovered α̂ and ĉ2 at epoch 5000 given 88 entries on the right, bottom and diagonal
for the ground truth (r0

1 = 2 for α , r0
2 = 3 for c2), using r1 = r2 = 5 and fully-measured noise-free

signals.

levels and availabilities are shown in Fig. 4.7.

Setting the ranks to be r1 = r0
1 = 2 and r2 = r0

2 = 3, the recovery results for 75% mea-

surements at 5000th epoch are shown in Fig. 4.9. Setting the ranks to be r1 = r2 = 5 which

are greater than the true ranks, the recovery results at the 5000th epoch are shown in Fig. 4.10

and 4.11. Comparing Fig. 4.8, Fig. 4.9, Fig. 4.10 and 4.11, allowing additional ranks obviously

benefit the coefficients recovery. The RMSEs between the true and recovered coefficients are in

Table 4.3.

From Table 4.3, we see that the recovery using r1 = r2 = 5 is better than using r1 =

2,r2 = 3. From the table and Fig. 4.12, the recovery using r1 = r2 = 5 is satisfactory even for

the case with noisy data (noise STD = 20% of signal STD) and 50% measurements. But when

r1 = 2 and r2 = 3, the recovery is problematic for the 50% measurements case as indicated in

Fig. 4.13.

4.4 Comparison with two baseline methods

We compare the coefficient recovery result between the SD-PINN and two baseline

methods. Given the noise-free and 50% measurements of the field in Sec. 4.3.2 with the
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Figure 4.9. For the 75%-measured noise-free and noisy signals, the recovered α̂ and ĉ2 at epoch
5000 given 88 entries on the right, bottom and diagonal, using r1 = 2,r2 = 3.

Figure 4.10. The recovered α̂ at epoch 5000 for various settings with r1 = r2 = 5.

measurements sampled at the same 50% locations as in Fig. 4.7, the coefficients within all the

ROI are recovered by: (baseline-1) first interpolating the measurements by spline interpolation

[83] to obtain full measurements, and then recover the coefficients for every location iteratively

based on the interpolated signals [4][84]; (baseline-2) first recover the coefficients at a few

locations with sufficient measurements, and then use the matrix completion approach [85] to

recover the coefficients at other locations.

Before diving into the baseline methods, we outline the PDE coefficients recovery by

finite difference (FD) [9] with ordinary least squares regression (OLS) which is used in both

baseline methods and its limitation. Given the measurements at three consecutive locations along
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Figure 4.11. The recovered ĉ2 at epoch 5000 for r1 = r2 = 5.

Figure 4.12. For the 50%-measured noise-free and noisy signals, the recovered α̂ and ĉ2 at
epoch 5000 given 88 entries on the right boundary, bottom boundary, and the diagonal, using
r1 = r2 = 5.

Figure 4.13. For the 50%-measured noise-free signals, the recovered α̂ (left) and ĉ2 (right) at
epoch 5000 given 88 entries on the right boundary, bottom boundary, and the diagonal, using
r1 = 2,r2 = 3.
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x-axis centered at i with y-coordinate j and time step k: {U(i−1, j,k),U(i, j,k),U(i+1, j,k)},

the first order spatial derivative along x at (i, j) is computed as [U(i+1, j,k)−U(i−1, j,k)]/2∆x

and the 2nd order derivative is [U(i+1, j,k)−2U(i, j,k)+U(i−1, j,k)]/∆x2. Such calculations

can be repeated at all time steps, and thus for location (i, j), we can obtain vectors containing the

numerical partial derivatives along x-axis as

u(i, j)
x =

U(i+1, j, :)−U(i−1, j, :)
2∆x

u(i, j)
xx =

U(i+1, j, :)−2U(i, j, :)+U(i−1, j, :)
∆x2 .

(4.22)

The partial derivatives at (i, j) along the y-axis are computed similarly. For the partial derivatives

along time, only the measurements at (i, j) are sufficient:

u(i, j)
t (k) =

U(i, j,k+1)−U(i, j,k−1)
2∆t

u(i, j)
tt (k) =

U(i, j,k+1)−2U(i, j,k)+U(i, j,k−1)
∆t2

(4.23)

where 2 ≤ k ≤ number of time steps−1.

From (4.22) and (4.23), we do not consider the FD evaluated at the boundaries of U which

is defined differently and subjected to larger errors. For the considered dataset U ∈ R30×30×198

in Sec. 4.3.2, {ux,uxx,uy,uyy} all of which are in R198 can be computed at all locations except

the spatial boundaries, so there are 282 = 784 locations in total. The ut and utt are also computed

at these locations, and according to (4.23), {u(i, j)
t (k),u(i, j)

tt (k)} are well-defined for 2 ≤ k ≤ 197.

So for each (i, j), we drop first and last entries of {u(i, j)
t ,u(i, j)

tt } to make them in R196. Similarly,

the first and last entries of the spatial derivative vectors are also dropped. Then for (i, j) we

construct a matrix as

ΦΦΦ
(i, j) = [−u(i, j)

t ,u(i, j)
xx +u(i, j)

yy ] ∈ R196×2 (4.24)
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Figure 4.14. One frame of the 50% sampled noise-free signal and its interpolation result, and
the recovered PDE coefficients via baseline-1. For this method, the recovered coefficients are
located within [2,29] for both axes.

and then the coefficients at (i, j) are recovered by OLS as

[α̂(i, j), ĉ(i, j)2]T = ΦΦΦ
(i, j)†u(i, j)

tt (4.25)

where † denotes pseudo-inverse.

From the above discussion, the limitation of the FD+OLS method is that for location

(i, j), the measurements at all its neighbors {(i−1, j),(i+1, j),(i, j−1),(i, j+1)} must exist.

This is not true when there are many sensors out of work, e.g., the 50% measurements as in

Fig. 4.7. To recover all coefficients using only partial observations, the two methods are detailed

below.

Details of the baseline-1 method: (1) For every frame of the 50% measurements, first do

spline interpolation row by row, and then do the interpolation again column by column, and in

the end average these two interpolation results to be the interpolated signals at this frame. (2)

Except for the four boundaries, for each of the 282 locations in the ROI, use the above-mentioned

FD+OLS method to recover the coefficients. One frame of the noise-free 50% measurements

with its interpolation result and the recovered coefficients are shown in Fig. 4.14.
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Details of the baseline-2 method: (1) In addition to the known coefficients on the bottom

boundary, right boundary, and the diagonal, as indicated in Fig. 4.7, there are a few other locations

eligible for the spatial derivatives to be computed by FD (for such a location, the measurements

are available at itself and all its top, bottom, left and right neighbors). We first recover the

coefficients by FD+OLS at these locations. (2) Based on the coefficients that are given and

recovered at the few locations mentioned above, we recover the coefficients at other locations

via matrix completion by nuclear norm minimization (NNM) [85]:

Λ̂ΛΛk = argmin
X

τ∥X∥∗+
1
2
∥X∥2

F s.t. PΩ(X) = PΩ(ΛΛΛk) (4.26)

where the nuclear norm ∥X∥∗ is the sum of its singular values and ∥X∥F the Frobenius norm.

The (4.26) is solved iteratively from Y0 = 0 ∈ RM1×M2 with step δ by

 Xi = Dτ

(
Yi−1)

Yi = Yi−1 +δPΩ

(
ΛΛΛk −Xi) (4.27)

where Dτ the singular value shrinkage operator, i.e., suppose the singular value decomposition

(SVD) [71] of Y with rank r is

Y = UΣΣΣVT, ΣΣΣ = diag
(
{σi}1≤i≤r

)
, (4.28)

then

Dτ(Y) := UDτ(ΣΣΣ)VT, Dτ(ΣΣΣ) = diag
(
{σi − τ}+

)
(4.29)

with {t}+ = max(0, t). From (4.26), the rank rk of recovered Λ̂ΛΛk is adjustable: as τ increases,

rk decreases in general. Multiple experiments are carried out using various τ , but none of them

provide satisfactory coefficient recovery. Among them, the recovered Λ̂ΛΛ1 with rank 2 (for α̂)

and Λ̂ΛΛ2 with rank 3 (for ĉ2) together with the known α and c2 on which the recovery is based

87



Figure 4.15. Known and recovered PDE coefficients for the baseline-2 method. The known
coefficients include the given ones on the right, bottom boundaries and the diagonal as well as
the recovered ones via FD+OLS at a few eligible locations. Black pixels are locations without
known coefficients.

Table 4.4. RMSEs between the true and recovered PDE coefficients by two baseline methods
from noise-free 50% measurements sampled at locations indicated in Fig. 4.7, the corresponding
SD-PINN result with r1 = r2 = 5 from Table 4.3 is included for comparison.

Method RMSEα RMSEc2

Baseline-1 1.379 0.929
Baseline-2 0.381 0.810
SD-PINN 0.371 0.140

(including given coefficients and the recovered coefficients via FD+OLS) are shown in Fig. 4.15.

Visual examinations of Fig. 4.14 and 4.15 suggest that the PDE coefficients recovery by

the two baseline methods is far poorer than SD-PINN, as shown in Fig. 4.12. The RMSEs for

the two baseline methods are in Table 4.4. Compared to Table 4.3, except for the recovery of α̂

by baseline-2 which is slightly worse than SD-PINN (r1 = r2 = 5 case), all other recoveries are

much worse than SD-PINN.

4.5 Conclusion

We propose a spatially-dependent physics-informed neural network (SD-PINN) method

to recover the spatially-dependent PDE coefficients from the observations. The PDE coefficients
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are recovered as the entries of the matrices and the recovery is formulated as a matrix completion

problem with low rank constraints which is solved by a neural network. The experiments show

that the proposed method can successfully recover the PDE coefficients and the recovery is

robust to noise and poor availability of measurements. The recovery performance is better when

the locations of given coefficients are not constrained to too few distinct rows and columns, and

is affected by the assumed ranks of the coefficient matrices.
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Chapter 5

Conclusion

In this dissertation, sparse modeling and deep learning methods are utilized to solve

problems within two areas of PDE recovering: the identification of PDE terms for unknown

PDEs and the recovery of PDE coefficients for given PDE terms. Both spatially-independent and

spatially-dependent PDEs are considered, and the latter case can be used for material properties

recovery which is valuable for multiple modern applications [70, 80].

Each study in this dissertation demonstrates the capability of using machine learning

methods to recover the PDEs from observations. Compared to traditional PDE derivation meth-

ods based on theoretical reasoning, machine learning based PDE recovery methods require

significantly less expertise in mathematics and physics, and their higher demands for computa-

tional power is fulfilled by the substantial increase of the available computational resources in

recent times. Furthermore, machine learning based PDE recovery is more adaptable to various

situations: a single machine learning model can yield different PDEs based on different input data

from various dynamical system observations, whereas the classical physics derivation process

varies for each dynamical system. Overall, the machine learning based PDE recovery shows

distinctive advantages and the research into this topic will flourish.

Our machine learning based PDE recovery research has progressed through several stages.

We start our machine learning based PDE recovery research from the work in Chapter 2, in

which only the spatially-independent PDE can be identified from all measurements in the ROI.
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The work in Chapter 3 exceeds it by allowing spatially-dependent PDEs to be identified. One

limitation of Chapter 3 is that the PDE can only be identified at where the measurements are

available. This is overcome in the work of Chapter 4 in which we can recover the spatially

dependent PDE coefficients at all locations from partly observed measurements. Alghouth in

Chapter 4 we assume the correct type of PDE, this assumption can be easily dropped as will be

discussed in Sec. 5.4.

We have implemented a series of methods across different chapters for the PDE recovery.

In the work of Chapter 2, a sparse regression method (cross-validation + sparsity penalty) is

developed to identify active PDE terms from a redundant dictionary, in which each atom is

computed by numerical differentiation (like finite difference) using measurements at all spatio-

temporal coordinates in the ROI. In the work of Chapter 3, another sparse regression method

(lasso) is employed to identify active PDE terms from many dictionaries, each of which is

computed by numerical differentiation using measurements at only one spatial location, and

the extracted active PDE terms are the terms in the spatially-dependent PDE at that location. If

there is no measurement for a location, then the dictionary at that point can not be computed

and thus the PDE can not be identified. In the work of Chapter 4, a modified physics informed

neural network SD-PINN is used to recover the spatially-dependent PDE coefficients using the

measurements at only parts of the ROI, and thus is superior to the method in Chapter 3 which

requires full measurements to achieve satisfactory recovery.

In consideration of the noise conditions, the work in Chapter 2 only deals with noise-free

measurements. With an integration transformation, the method in Chapter 3 can recover the

PDE from noisy measurements using a transformed dictionary of PDE terms. The SD-PINN in

Chapter 4 is also robust to noise, which attributes to the constraint from the physical background

and the accurate derivatives computation via automatic differentiation.

We summarize the three papers within this dissertation and discuss our future work as

below.
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5.1 Automated Partial Differential Equation Identification

A sparse modeling approach to extract unknown spatially-independent PDEs directly

from observations is proposed. Given the spatio-temporal measurements of a dynamical field,

a dictionary ΦΦΦ with D PDE terms (which is redundant) is generated with its terms computed

numerically by finite difference (FD) or pseudo-spectral (PS) method. Without any prior

knowledge of the active PDE terms, the method iteratively takes one term from ΦΦΦ as the left

hand side (LHS) of the PDE. Then for each assumed LHS term, the method try selecting terms

from ΦΦΦ to form the RHS of the PDE, with the sparsity (i.e., number of terms) of RHS varying

iteratively from 1 to D−1. The choice of RHS terms with the assumed LHS term is made when

a loss function combining a data-fitting loss and a sparsity loss is minimized. The data-fitting

loss is a squared ℓ2-norm based on cross-validation, and the sparsity loss is proportional to the

number of terms in the RHS. Every assumed LHS with its corresponding selected RHS forms

a candidate PDE, and the identified PDE as the method’s output is the candidate who fits the

observations best. The synthetic fields governed by wave equation, Helmholtz equation and

Burgers equation are used to test the method. The method is also implemented to identify the

PDEs governing the vibrations of a real aluminum plate and successfully depicts its dispersion

properties.

5.2 Recovery of Spatially Varying Acoustical Properties via
Automated PDE Identification

A sparse modeling approach, to be specific, constrained ℓ1-norm minimization is used

to identify unknown spatially-dependent PDEs from observations. This method utilizes the

sparsity promotion property of ℓ1-norm minimization [48, 49] to extract the active PDE terms

within a dictionary with redundant terms. For each location, a dictionary is computed from the

observations measured there. So the spatially-dependent PDEs for all the locations are recovered

by extracting the PDE terms iteratively from every dictionary for every location. Thanks to
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the innovative structure of the dictionary whose last row representing the sign information of

the PDE coefficients, this method can identify the PDE in the absence of any assumed active

PDE term efficiently without assuming its LHS iteratively. To accelerate the process, lasso [55],

which is the Lagrangian of the constrained ℓ1-norm minimization is employed. The method is

extended by incorporating an integration transformation [12] to enhance its resistance to the

noise in observations.

5.3 SD-PINN: Deep Learning based Spatially Dependent
PDEs Recovery

An extension of the physics informed neural network (PINN) [7], SD-PINN, is proposed

to recover the spatially dependent coefficients of a given type of PDE from noisy and partial

observations. Thanks to the mutual constraints between the loss responsible for fitting training

data and the loss for fitting the PDE, as well as the precision of automatic differentiation, SD-

PINN possesses a strong capability to identify PDEs from noisy observations. Although the

PDEs to be recovered are spatially-dependent, the spatial variation of the PDE coefficients is

not totally free, because the physical property at one location of the material, on which the

dynamics are observed, is related to the property in its neighborhood. We encode this as a

low rank constraint of the matrix containing the PDE coefficients at all locations (suppose the

region of interest is rectangular), and thus reformulate the PDE recovery as a low-rank matrix

completion problem. In this way, the spatially-dependent PDEs at locations without available

observations are also recovered.

5.4 Future Work

Our future work will be focused on SD-PINN, as it can recover the spatially-dependent

PDE coefficients everywhere from noisy observations at only a small part of the ROI, which is

particularly useful in many applications including but not limited to material diagnostics and
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geological survey. The potential capabilities of SD-PINN can encompass and exceed all aspects

of the previous two papers, as its limitations can be overcome easily as discussed as follows.

In the work of SD-PINN, we have the assumption that the upper limit for the rank rk of

coefficient matrix ΛΛΛk is properly estimated. Thus one limitation comes when this upper limit

is difficult to evaluate a priori. In the future work, cross-validation may be used to solve this

problem. To be specific, we divide the given samples of (xxxm, t j,um j) into a training set and a

validation set, e.g., each of which consists of observations at all locations with available signals

and a half of the time steps (to keep the size of ΛΛΛk unchanged after dividing the samples, the

division should be made on the time axis). We thus train the SD-PINN on the training set using

various rk, and for each choice, we compute lossu which compares the ûm j estimated by Netθ

trained on the training set to the true um j in the validation set. Then we choose the rk which

provides the minimal lossu to be the assumed rk. While training Netθ , we may add noises to the

training samples so that when the rk is assumed too large, the Netθ will overfit the observations

and thus it will produce a higher lossu when used to compare its estimations with the noise-free

observations in the validation set.

Another concern is that how will the SD-PINN work for higher AWGN noise. From

(4.10), the methods robustness against noise is adjusted by wf. As the noise is higher, wf should

be set greater. In addition, for a higher noise we should use a higher rk, because in this case for

the training samples the correct relationship from (xxxm, t j) to um j is interrupted more severely.

This makes the Netθ more difficult to extract useful information and thus more likely to be

misguided during optimization. Allowing for more columns in Û k and V̂ k will help SD-PINN

decrease the error in the recovered coefficients by adding a matrix which is the product of

the additional columns as a compensation to the recovered coefficients with unwanted shifts

due to the noise. The exploration of the impacts that various levels of noise can have on the

above-mentioned cross-validation based rank selection and on the eventual PDE coefficients

recovery results is a useful future research direction. Another future research focus will be the

effects of other kinds of noise (possibly structured noise) to the SD-PINN.
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There is also an assumption that the type of PDE is known for SD-PINN. This assumption

can be easily dropped by adding more PDE terms involved in all potential PDEs for the dynamical

system of interests. We can use the same procedure to train SD-PINN, and the recovered

coefficients for inactive PDE terms should approach zero. By thresholding the coefficients and

keeping the PDE terms with only large coefficients, we can recover the spatially-dependent

coefficients for an unknown PDE using SD-PINN.
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