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Abstract

The fact that pharmacokinetic (PK) properties of drugs influence the interaction with protein 

targets is a principle known for decades. The same cannot be said for the opposite – namely that 

targets influence PK properties of drugs. Evidence confirming this possibility is first introduced 

here, as we show that certain protein families have a clear preference for drugs having specific PK 

properties. We investigate this by cross-referencing “druggable target” annotations for over 1,000 

FDA approved drugs with their PK profile, as defined by the BDDCS criteria, then examining 

BDDCS preference for several major target protein families and therapeutic categories. Our 

findings may open a novel way to conduct drug discovery by focusing PK profiles at the very early 

stage of target selection.
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Introduction

The advance of computational procedures and their integration with improving experimental 

technologies have resulted in more effective risk mitigation and improved patient safety. 

However, the process of developing new chemical entities (NCEs) continues to include 

sequential steps that span several refinement cycles over multiple years. When the lead 

NCEs fail to meet the anticipated target properties needed for progression to the next 

development step, the cycle undergoes another iteration or the project is closed. For 

example, lead identification and optimization remain sequential steps [1], and are often 

separated from target identification and validation [2]. This lack of integration between cycle 
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steps, particularly at the level of data, information and knowledge transfer, impacts both the 

costs and time of drug discovery projects. One way to improve integration is to introduce an 

additional identification-optimization criterion by incorporating BDDCS (Biopharmaceutics 

Drug Disposition Classification System) criteria in early drug discovery by cross-referencing 

BDDCS with drug target information. The BDDCS [3] can be used to estimate 

pharmacokinetics (PK) properties [4] and to forecast drug disposition [5] issues for small 

molecule NCEs based on aqueous solubility (as defined by FDA criteria) and extent of 

metabolism [6] (see also Figure 1). Its usefulness, when combined with the “rule of 5” 

physico-chemical property criteria for drugs [7] was recently discussed [8]. Categorizing 

drugs into four BDDCS classes is an effective, easy to interpret tool for mapping PK 

properties and their relationships with other events such as transporters effects, drug-drug 

interaction (DDI) risk, etc. [9,10]. The BDDCS methodology and its relevance in early drug 

discovery are summarized in Box 1.

Here, we report cross-referencing BDDCS categories for over 1,000 approved drugs to their 

mode-of-action (MoA) protein (“MoA_protein”) targets [11], as well as other targets that 

may be responsible for off-target effects. DrugCentral [12], the online drug compendium, 

was used to extract data for major protein families, particularly those that have been 

extensively explored and are considered “druggable” [13]. BDDCS classes, attributed to 

each drug, were assigned to the corresponding annotated MoA and off-target proteins, and 

thus for the associated protein families. This mapping reveals that certain protein families 

have higher preference for a specific BDDCS class. This information might be used to better 

understand the influence that drug targets may exert on defining the PK properties of NCEs. 

In the case of protein families that exhibit a clear BDDCS-class bias, these observations can 

reduce the sampling space to only chemicals that match specific PK properties, potentially 

streamlining the lead identification and optimization process. While the influence of PK 

properties on drug-target interactions, i.e., pharmacodynamics, has been amply studied, here 

we show that some protein drug target categories have themselves specific preference for 

drugs with certain PK profiles. Thus, pharmacodynamics influences pharmacokinetics as 

well. We further discuss BDDCS and target druggability integration in more detail for 

specific protein families in the context of ATC (Anatomic, Therapeutic and Chemical) 

classification codes and subcellular compartment location of proteins. To further verify 

differences in BDDCS class – MoA target category preference, we applied the Pearson’s 

chi-squared test to each data sample discussed in this work (data summarized in Figures 2 to 

6G). For most of the examples, the p-values are below 0.05, suggesting that target 

preferences for a given BDDCS category are not aleatory (see Supplementary Table 1).

BDDCS overview

For this study we combined a collection of over 900 drugs [3], with an additional 175 drugs 

[4]. BDDCS Class 0 drugs were not included in this study. The number of drugs belonging 

to the four BDDCS classes are summarized in Figure 1. During the 5-year gap that separates 

the two collections, there has been a 28% increase in BDDCS class 2 drugs, compared to 

17% and 18% increase for class 1 and 3, respectively. Surprisingly, the overall under-

represented class 4 drugs also increased by 26%, when compared to the 2011 collection. 
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Additional temporal aspects (e.g., separating the collection into pre-1998 and post-1997 by 

approval date) are discussed below.

Druggable targets according to BDDCS

Analysis of major protein families—We examine the distribution of protein drug 

targets for those drugs that already have a BDDCS class annotation (“BDDCS_drug”), by 

focusing on six major target families: G-protein coupled receptors (GPCRs), ion channels, 

kinases, nuclear hormone receptors, enzymes and transporters, respectively. Note that 

enzymes and transporters relate here to the mechanism of action, not to the mechanism of 

drug disposition. We only considered those drug-protein pairs for which both MoA_protein 

and BDDCS_drug annotations were already present, i.e., known BDDCS_drug - 

MoA_protein pairs. MoA proteins are grouped by the most frequently annotated mechanism 

of action (e.g. agonist, antagonist, etc.) of the associated drugs, and displayed with one of 

four colors, depending on the BDDCS class of the corresponding drugs. The result of this 

analysis for GPCRs, ion channels, nuclear hormone receptors and kinases is summarized in 

Figure 2. The numbers on the vertical axis are drug-target annotations counts, not drug 

counts or protein counts. Supporting data are provided in the Supplementary Information file 

(Supplementary Table 2).

Uneven class distributions, which emerge when comparing GPCRs and ion channels against 

kinases and nuclear receptors, allow us to make some observations regarding drug 

lipophilicity and protein subcellular location. For GPCRs and ion channels, BDDCS class 1 

drugs (high solubility, high metabolism) dominate, whereas nuclear hormone receptors and 

kinases seem to be targeted mostly by BDDCS class 2 (low solubility, high metabolism) 

drugs (see Box 1 for additional details on BDDCS). These data suggest that certain 

“druggable” target families have clear preference for a specific BDDCS class – and 

according to Pearson’s chi-squared test, these preferences are statistically significant (p = 

2.2*10−16, Chi-squared = 147.62; see also Supplementary Table 1).

In our opinion, these differences can primarily be explained by the subcellular location of 

these proteins: GPCRs and ion channels are located primarily on the cell membrane, and 

appear to be better targeted by highly soluble, BDDCS Class 1 drugs. Kinases and nuclear 

receptors, on the other hand, have an intracellular location and are targeted by the less 

soluble, more lipophilic Class 2 drugs, i.e., drugs that are required to cross the cell 

membrane in order to exert their therapeutic action. This observation does not imply that low 

solubility is the primum mobile of drug-target interaction where kinases and nuclear 

receptors are concerned. Indeed, additional aspects need to be considered with respect to the 

specific hydrophilicity/hydrophobicity profile of the individual target’s binding site. 

Nevertheless, in accordance to these findings, it seems prudent to incorporate FDA solubility 

as one of the design factors when developing NCEs for these target families.

Analysis of protein sub-families—With respect to enzymes and transporters, BDDCS 

classes are more evenly distributed (data not shown), which is not surprising: Transporter 

active site(s) can be reached by both hydrophilic (from extracellular space or cytoplasm) and 

lipophilic (through the lipid bilayer) drugs [14]. Concerning enzymes, their mechanistic, 
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substrate and cellular location diversity (compared to kinases) is far greater, and therefore 

BDDCS categories show less specificity. Since we did not find a clear BDDCS class 

preference for enzymes or transporters, we interrogated more specific protein sub-families, 

as summarized in Figure 3. Instances where the count of BDDCS_drug - MoA_Protein was 

under 5 were excluded for clarity. Supporting data are provided in the Supplementary 

Information file (Supplementary Tables 3 and 4).

Only poorly metabolized (designated here as low metabolism) drugs are annotated as 

carbonic anhydrase (CAs) inhibitors (seven BDDCS class 3 and four BDDCS class 4 drugs 

– see also Figure 3A and Supplementary Tables 1 and 3). In terms of cellular compartment 

location, seven CAs are cytosolic and four are membrane-associated. With respect to our 

observations, class 3 and class 4 drugs target both cytosolic (CA1, CA2 and CA7) and 

membrane associated (CA4 and CA12) proteins. Low metabolism drugs (BDDCS class 3 

and 4) are expected to have a low passive permeability (see Box 1). Hence, they are likely to 

access membrane-bound proteins, but not cytosolic proteins, by passive diffusion only. This 

may explain why membrane bound CAs are targeted by low metabolism drugs. How do 

Class 3 and 4 drugs reach cytosolic CAs? We suspect that, to overcome their low passive 

permeability, uptake transporters may be involved. However, the only evidence to support 

this hypothesis is a study where 2 CAs inhibitors, methazolamide and acetazolamide, Class 

3 and Class 4 drugs respectively, are reported to have an affinity with two organic anion 

transporter proteins (OAT1 and OAT3) [15].

Most drugs targeting SLC6A (solute carrier 6A) transporters are BDDCS class 1 (high 

metabolism, high solubility; see Figure 3B, and Supplementary Tables 1 and 3). SLC6A 

transporter family proteins, which are, e.g., involved in transporting GABA and monoamine 

(dopamine, serotonin and norepinephrine) neurotransmitters, are expressed on both pre- and 

post-synaptic membranes in the central nervous system (CNS) and act as neurotransmitter 

re-uptake pumps. These are well-characterized drug targets for several neurological and 

psychiatric disorders, such as Parkinson’s, epilepsy and depression [16]. Preference for 

BDDCS class 1 drugs can perhaps be explained by the requirement that SLC6A drugs 

should be active at the synaptic interface, which is similar to the extracellular matrix, and 

perhaps by the lack of clinical effect of efflux transporters on these drugs. Efflux 

transporters represent a major xenobiotic elimination route for chemicals that pass the 

blood-brain barrier, but do not influence Class 1 drugs, most likely due to transporter 

saturation effects caused by the high degree of passive permeability and solubility of Class 1 

drugs. According to our interpretation, drugs belonging to all other BDDCS categories, 

which do not exhibit the same permeability as class 1 drugs, could more effectively be 

removed from the brain and would therefore not be able to achieve a meaningful blockade 

on SLC6A transporters. The fact that BDDCS Class 1 drugs are optimal for reaching CNS 

targets has been noted before [17].

To compare BDDCS class relevance when examining clinical and in vitro data, we explored 

situations where a clear mechanism of action was not reported [11] for both enzymes 

(Figure 3C, and Supplementary Tables 1 and 4) and transporters (Figure 3D, and 

Supplementary Table 4). For carbonic anhydrases, “non-MoA” records show a relatively 

even distribution of BDDCS classes. The fact that only BDDCS classes 3 and 4 have a 
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known MoA (Figure 3A) might be illustrative of the situation where measured in vitro 
activity may not be relevant in vivo. We can reach similar conclusions for SLC6A 

transporters, as the dominance of Class 1 drugs, which is relevant for MoA, shifts towards an 

even Class 1 / Class 2 distribution where in vitro data are concerned. Therefore, it seems 

prudent to conclude that situations where a specific BDDCS/MoA category is dominant can 

inform the likelihood of clinical success for NCE development.

In Figure 3B, we also show that SLC12A transporter inhibitors are preferentially targeted by 

BDDCS classes 3 and class 4, i.e., low metabolism drugs, similar to CAs. SLC12A 

transporters are expressed on kidneys cell membranes and are relevant in renal diseases [18]. 

According to definition, “low extent of metabolism” often implies that a high fraction of the 

drug is excreted unchanged in the urine; i.e., renal clearance plays a major role in their 

elimination. In this case, the drugs reach the organ where their intended drug targets are 

specifically expressed. In another example, SLC22A transporter inhibitors show preference 

for BDDCS Class 2 drugs. SLC22A are organic anion transporters expressed mainly in 

kidneys [19]. SLC22A12 (URAT1), which is expressed on the apical membrane of the 

proximal tubular cells, mediates the reabsorption of urate from primary urine into plasma. 

However, an abnormally high plasma level of urate, or hyperuricemia, causes gout. The 

Class 2 drug lesinurad is approved to treat gout by specifically blocking the URAT1 

transporter. The SLC22A transporters preference for Class 2 low solubility drugs (Figure 

3B) over Class 1 and 3 high solubility drugs (Figure 3D) may be explained by these targets 

location: High metabolism, low solubility drugs (Class 2) may have an optimal PK profile, 

in contrast to Class 1 drugs, which undergo hepatic clearance or Class 3 drugs, which 

require basolateral uptake to reach URAT1 or may involve drug-drug interactions.

Temporal Analysis—Using the date-of-first launch for each drug, we examined the 

influence of temporal trends on the distribution of BDDCS_drug - MoA_protein pairs for 

GPCRs, ion channels, kinases and nuclear hormone receptors (Supplementary Table 5 and 

Supplementary Figures 1 and 2, in Supplementary Information file). We separated the data 

into “drugs approved before 1998”, or “drugs approved after 1997”, respectively based on 

the year (1997) when the “rule of 5” landmark paper [7] was first published. All kinase 

inhibitors (except one) were approved after 1997. Most (53) BDDCS_drug – nuclear 

hormone receptor pairs are for drugs approved before 1998, compared to 23 after 1997. 

Therefore, we discuss GPCRs (234 pre-1998 and 90 post-1997) and ion channels (170 

pre-1998 and 46 post-1997), respectively. While BDDCS Class 1 drugs remain the dominant 

category overall for both GPCRs and Ion Channels, there is a slight increase in BDDCS 

Class 2 drugs for GPCR antagonists launched after 1997 (Supplementary Figure 1), and a 

net increase in BDDCS Class 3 drugs for both GPCR agonists and ion channel positive 

modulators and blockers launched after 1997 (Supplementary Figures 1 and 2), respectively. 

BDDCS Class 1 drugs are less dominant in post-1997 drugs, both for GPCRs and Ion 

Channels. However, “high solubility” drugs (Class 1 and 3) remain dominant in the second 

time period (60 out of 90 BDDCS-GPCR drug pairs; and 33 out of 46 BDDCS-ion channel 

drug pairs, respectively).
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Therapeutic categories according to BDDCS

To further explore the relationship between drug categories and BDDCS classes, we cross-

referenced BDDCS-annotated drugs with ATC codes extracted from DrugCentral. The 

Anatomical Therapeutic Chemical (ATC) Classification System classifies each drug based 

on five different levels [20]. Briefly, the first ATC level is the anatomical component (organ 

or system of the human body) in which the drug acts; the second level indicates the 

therapeutic purpose; the third level describes pharmacological action; the fourth level is the 

chemical class of the drug in question; and the fifth level is the actual substance, 

respectively. A drug can have multiple ATC codes when it has multiple therapeutic uses. 

This can either refer to a different posology or to a different administration route. Examining 

the distribution of BDDCS classes from a pharmacological point of view, as summarized by 

ATC codes, can provide additional information regarding the BDDCS_drug - MoA_Protein 

relationships, particularly if specific pharmacological sub-categories appear to have a 

dominant BDDCS class. Such information could thus be used to guide the drug discovery 

process for cases involving that specific pharmacology, by focusing on a specific BDDCS 

class, or at least on a specific PK category, in the early stages of the process.

Drug counts, grouped by BDDCS, for each ATC Level 1 group are shown in Figure 4. We 

excluded groups having less than 50 drugs for simplicity. Figure 4 suggests that certain 

BDDCS classes have preference for specific anatomic components or organs; some of these 

are expected (e.g., Class 1 for nervous system (CNS) drugs), whereas others are not (e.g., 

Class 2 drugs for the musculo-skeletal system). This begs the question, is this preference 

conserved for lower ATC levels or not? To address this issue, we focused on those cases 

showing an uneven distribution among BDDCS classes.

The majority of “antiinfectives for systemic use” drugs are low metabolism (Classes 3 and 

4). By expanding ATC Level 1 into Level 2 (Figure 5A), we note that classes 3 and 4 pertain 

mostly to antibacterials (antibiotics), whereas most antivirals are BDDCS Class 2, and some 

are Class 3. As we expand into ATC Level 3 (Figure 5B), both class 3 and class 4 continue 

to be present in each subcategory. When developing new antibiotics, it seems prudent to give 

preference to molecules exhibiting BDDCS class 3 properties, since there are significantly 

fewer class 4 drugs, which suggests the approval process would be more problematic. Their 

low extent of metabolism could perhaps be explained by the fact many such antibacterials 

inhibit the formation of cross-links between bacterial cell wall peptides by blocking DD-

transpeptidase, an enzyme that is accessible from the periplasm [21]. Regarding antivirals, 

BDDCS class assignment may be influenced by the life cycle stage of the targeted virus. 

Before viral entry, cell membrane proteins would be targeted (BDDCS Class 3), whereas 

cytoplasmic proteins or nucleic acids would be targeted at later stages (BDDCS Class 1 and 

2).

CNS-acting drugs are typically high metabolism (Class 1 or 2), and often high solubility as 

well (Class 1 only). As already stated, BDDCS Class 1 drugs have high brain permeability, 

which makes them ideal for CNS targets. Class 1 drugs preference is conserved over 

pharmacological subcategories as well (Figure 5C and 5D). Musculo-skeletal system drugs 

are equally interesting, since anti-inflammatory drugs are prevalently Class 2 (see Figure 5E 

and 5F). These drugs mainly target cyclooxygenases 1 (PTGS1) and 2 (PTGS2), which have 
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intracellular location: on the Golgi apparatus, on the endoplasmic reticulum and in 

mitochondria, respectively.

Contrary to the previous examples, drugs acting on the cardiovascular system have a more 

even BDDCS distribution. At the ATC Level 2, there are cases where high solubility (Class 

1 and 3) prevails, e.g., for beta blocking agents, and where low metabolism prevails, e.g., for 

diuretics (Class 3 and 4). There is no clear separation for agents acting on the renin-

angiotensin system (see Figure 6A). For beta-blockers and diuretics, ATC Level 3 (Figure 

6C and 6D) and Level 4 (Figure 6F and 6G) do not provide additional information, as the 

prevailing classes have similar distribution. However, ATC Level 3 provides additional 

information for renin-angiotensin system inhibitors (Figure 6B). Yet, there are some 

categories for which even Level 4 shows the nearly equal BDDCS class distribution. 

Angiotensin receptor AT1 blockers are such an example (Figure 6E): Class 2 drugs are 

irbesartan, losartan potassium, tasosartan and telmisartan, whereas Class 4 drugs are 

candesartan cilexetil, eprosartan and valsartan; olmesartan medoximil is Class 1. This 

finding is in agreement with the different PK profiles for these drugs [22].

Concluding remarks and future directions

In this article, we examined the relationship between BDDCS categories for over 1000 drugs 

and their annotated Mode-of-Action protein targets. The BDDCS distribution can show clear 

specificity for certain “druggable” target families or sub-families, as well as for specific 

pharmacological (ATC) drug categories. These results can often be rationalized in terms of 

protein tissue or compartment location. While this work is primarily descriptive, i.e., lacking 

a complete exploration across all proteins and pharmacological categories, there appears to 

be clear evidence that certain protein families are preferentially targeted by one, sometimes 

two BDDCS classes. The evidence is supported by Pearson’s chi-squared test 

(Supplementary Table 1). The preference for Class 1 drugs of GPCRs and ion channels, as 

opposed to the preference for Class 2 drugs of kinases and nuclear receptors, may be 

indicative of the way these target families “select” drugs with different solubility and 

hydrophobicity. The requirement for high solubility, detected by the temporal analysis, is 

clearly shown for GPCR- and ion channel-acting drugs. Furthermore, carbonic anhydrases 

and SLC12A transporters are preferentially targeted by low metabolism drugs (Class 3 and 

4), whereas Class 1 are better suited to target SLC6A transporters and Class 2 drugs are 

better SLC22A transporters, respectively. The ATC drug classification system can also be 

used to show that, for certain therapeutic categories, a BDDCS Class is dominant.

We believe these concepts can lead to the development of an integrated “discovery” and 

“optimization” system that supports parallel property optimization that may significantly 

influence the drug design process. Indeed, these findings may help medicinal chemists by 

giving preference on lead series, or scaffolds, that meet specific PK profiles at the step of hit 

identification, and certainly lead optimization. In order to make available to the scientific 

community this type of analysis, we plan to create a web-app that medicinal chemists could 

use to study the BDDCS distribution for protein families or therapeutic drug categories of 

interest. The analysis described here could be extended in several ways. Future efforts could 

be aimed on exploring in more detail the location of protein targets and how BDDCS classes 
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are distributed. Furthermore, the influence of the nature of the protein (drug target) binding 

sites on the BDDCS – target preferences described in this work could be examined by 

pharmacophore analyses of the known (e.g., X-ray crystallography) binding pockets for 

drugs having BDDCS/MoA target annotations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

The Biopharmaceutics Drug Disposition Classification System (BDDCS)

BDDCS is an adaption of an FDA classification system based on the extent of intestinal 

permeability and solubility of the highest approved dose strength over a pH range of 1–

6.4 to facilitate waiver of in vivo bioequivalence studies for generic drugs and newly 

developed formulations of drugs previously approved by the regulatory agencies [6]. In 

contrast, BDDCS was developed to predict drug disposition of new molecular entities 

(NMEs) in humans, including the major route of elimination, the relative importance of 

enzymes and transporters in the elimination process and thus the ability to predict 

relevant drug-drug interactions (DDIs), the drug distribution into the brain and the 

potential for toxicity such as drug induced liver injury (DILI) [10]. BDDCS classification 

is based on the rate of membrane permeability, which distinguishes with remarkable 

accuracy NMEs that will be primarily eliminated by metabolism versus renal and biliary 

excretion of unchanged drug, and a simple 0.3 mg/ml solubility cut off to distinguish 

high and low solubility NMEs over the pH range 1–6.8, since early in drug development 

the highest approved dose strength will not be known [3]. In the BDDCS system, high 

permeability rate (extensively metabolized), highly soluble Class 1 NMEs can be 

expected to be extensively absorbed from the gastrointestinal tract, primarily eliminated 

by metabolism, transporter effects will be clinically insignificant, the NME will readily 

pass into the brain and DILI potential will be low and well predicted by preclinical 

animal studies. BDDCS Class 2, high membrane permeability rate, poorly soluble NMEs 

will also be highly absorbed and primarily eliminated by metabolism, but transporter 

effects can be rate limiting and cannot be ignored. DILI is primarily seen with BDDCS 

Class 2 NMEs and preclinical animal and in vitro studies may not be predictive. These 

NMEs, if substrates for efflux transporters, will not exhibit extensive central effects. 

BDDCS Class 3 and 4 NMEs will exhibit poor membrane permeability rate and will 

require transporters to achieve druggable pharmacokinetic characteristics. They will be 

primarily eliminated unchanged in the urine and bile and metabolic DDIs will not be a 

major source of concern.
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Figure 1. 
BDDCS drugs count in the original Benet’s collection (plain color) and in the Hosey’s 

collection (transparent color). Class 1, 2, 3 and 4 are respectively depicted in black, red, blue 

and green. The 4 BDDCS classes are as follows: Class 1, high-solubility/high-metabolism; 

Class 2, low-solubility/high-metabolism; Class 3, high-solubility/low-metabolism; and Class 

4, low-solubility/low-metabolism, respectively.
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Figure 2. 
BDDCS classes distributions for the major target families. On each plot, the vertical axis 

report the number of drug-target annotations and the horizontal axis displays the MoA. Class 

1, 2, 3 and 4 are depicted in black, red, blue and green respectively.
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Figure 3. 
BDDCS classes distributions for enzymes and transporters sub-families. (A) Drug-target 

records with annotated MoA for enzymes. (B) Drug-target records with annotated MoA for 

transporters. (C) Drug-target records without annotated MoA for enzymes. (D) Drug-target 

records without annotated MoA for transporters. On each plot, the horizontal axis reports the 

number of drugs and the vertical axis displays the sub-family name. Class 1, 2, 3 and 4 are 

depicted in black, red, blue and green respectively.
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Figure 4. 
BDDCS drugs distributions on each ATC level 1 code. Class 1, 2, 3 and 4 are respectively 

depicted in black, red, blue and green.
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Figure 5. 
BDDCS distribution plots for antiinfectives for systemic use drugs: (A) ATC level 2 and (B) 

ATC level 3; nervous system drugs: (C) ATC level 2 and (D) ATC level 3; musculo-skeletal 

system drugs: (E) ATC level 2 and (F) ATC level 3. On each plot, the number of drugs is 

reported. Class 1, 2, 3 and 4 are respectively depicted in black, red, blue and green.
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Figure 6. 
(A) BDDCS distribution for cardiovascular system drugs by ATC level 2. (B) Level 3 

distributions for agents acting on the renin-angiotensin system. (C) Level 3 distributions for 

beta blocking agents. (D) Level 3 distributions for diuretics (E) Pie chart of the unique ATC 

level 4 code of angiotensin II antagonists, plain. (F) Level 4 distributions for beta blocking 

agents (same name of level 3). (G) Level 3 distributions high-ceiling diuretics. On each plot, 

the number of drugs is reported. Class 1, 2, 3 and 4 are respectively depicted in black, red, 

blue and green.
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Figure 7. 
Biopharmaceutics Drug Disposition Classification System (BDDCS) class preference for 

certain protein families and therapeutic categories. Abbreviations: CNS, central nervous 

system; GPCR, G-protein-coupled receptor; SCL, solute carrier.
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