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ABSTRACT OF THE DISSERTATION

Distributed Algorithms to Convex Optimization Problems

by

Peng Wang

Doctor of Philosophy, Graduate Program in Electrical and Computer Engineering
University of California, Riverside, December 2017

Dr. Wei Ren, Chairperson

This dissertation studies first a distributed algorithm to solve general convex optimization

problems and then designs distributed algorithms to solve special optimization problems

related to a system of linear equations.

First, a wider selection of step sizes is explored for the distributed subgradient

algorithm for multi-agent optimization problems with time-varying and balanced commu-

nication topologies. The square summable requirement of the step sizes commonly adopted

in the literature is removed. The step sizes are only required to be positive, vanishing

and non-summable, which provides the possibility for better convergence rates. Both un-

constrained and constrained optimization problems are considered. It is proved that the

agents’ estimates reach a consensus and converge to the minimizer of the global objective

function with the more general choice of step sizes. The best convergence rate is shown to

be the reciprocal of the square root of iterations for the best record of the function value at

the average of the agents’ estimates for the unconstrained case with the wider selection of

step sizes.
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Then we design a distributed algorithm for a special optimization problem to find

the solution of the linear equationsAx = b with minimum energy, i.e. the minimum weighted

norm associated with the weighted inner product. We first prove that for a special case

when the norm is two-norm, the algorithm can make multiple agents reach the minimum

two-norm solution of the global linear equations Ax = b if the agents are initialized at

the minimum two-norm solutions of their local equations. We then prove that if there are

bounded initialization errors, the final convergence of the algorithm is also bounded away

from the minimum two-norm solution of the global linear equations. Next, we prove the

case with the two-norm replaced with a weighted norm associated with the weighted inner

product.

Next, we solve a system of linear equations Ax = b in a distributed way motivated

by a special subgradient algorithm. A discrete-time distributed algorithm to solve a system

of linear equations Ax = b is proposed. The algorithm can find a solution of Ax = b from

arbitrary initializations at a geometric rate when Ax = b has either unique or multiple

solutions. When Ax = b has a unique solution, the geometric convergence rate of the

algorithm is proved by analyzing the mixed norm of homogeneous M -Fejer type mappings

from the subgradient update. Then when Ax = b has multiple solutions, the geometric

convergence rate is proved through orthogonal decompositions of the agents’ estimates onto

the row space and null space of A, and the relationship between the initializations and the

final convergence point is also specified. Quantitative upper bounds of the convergence rate

for two special cases are given.

Finally, we propose a communication-efficient distributed algorithm to solve a sys-
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tem of linear equations Ax = b. We suppose that the matrix A has a similar sparsity

structure to the Laplacian matrix of the communication topology. Every agent only trans-

mits through a communication link its own state and that of the neighbor connected by the

communication link, instead of the states of all agents. The distributed algorithm is de-

signed based on gradient descent method with constant step size and is proved to converge

at a linear rate. We also provide a way to select the step sizes in a distributed way.
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Chapter 1

Introduction

1.1 Overview and Related Works

1.1.1 Distributed Subgradient Algorithm for General Convex Optimiza-

tion Problems

With the emergence of large-scale networks and complex large systems, distribut-

ed optimization arises in many areas such as distributed model predictive control [27],

distributed signal processing [6], optimal network flow [55] and network utility maximiza-

tion [51] and has attracted significant attention. The distributed optimization problems

can be roughly classified into two categories. In the first category, each agent has a local

objective function and sometimes a local constraint, both unknown to others, but different

agents share the same optimization variable. This means that different agents’ estimates of

the optimizer should be the same at last [12, 18, 22, 33, 34, 44, 56, 57]. The problems in this

category can be regarded as distributed potential problems. In the second category, every
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agent has a local objective function unknown to others, the constraints of the agents are

coupled, and every agent knows only a part of the coupled constraints [5, 27, 51, 55]. The

problems in this category can be regarded as distributed network flow problems. In this

dissertation, we will focus on the problems in the first category.

Various algorithms have been developed to solve the problems in the first catego-

ry. In [33], a distributed subgradient algorithm is designed for an unconstrained distributed

optimization problem, with the assumption of uniformly bounded subgradients, and non-

degenerate, time-varying and balanced communication topologies. In [34], a distributed op-

timization problem with identical local constraints or non-identical local constraints in the

context of a complete graph is considered through a projected distributed subgradient algo-

rithm. Ref. [22] considers non-identical local constraints for balanced and state-dependent

switching graphs. Then [18] proves the convergence of the distributed subgradient algo-

rithm with non-identical local constraints and time delays under time-varying balanced

and fixed unbalanced graphs. Some accelerated algorithms are proposed in [12], in which

two distributed Nesterov gradient methods are designed and these algorithms are shown

to converge faster than the distributed subgradient algorithm in [33]. Ref. [44] develops a

distributed algorithm with a constant step size using the gradients of last two iterations

and shows that the algorithm can guarantee a faster convergence rate. A zero-gradient-sum

algorithm is developed in [25], in which each agent starts from its local minimizer and the

sum of the gradients is kept at zero. On the other hand, some dual or primal-dual sub-

gradient algorithms are developed for distributed optimization problems with equality and

inequality constraints. Ref. [56] proposes a distributed primal-dual subgradient algorithm
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to deal with identical affine equality and convex inequality constraints. A projected subgra-

dient method is designed to find the saddle point of the Lagrangian of the primal problem.

Then in [57], a similar idea is adopted to develop a distributed dual subgradient algorithm

to solve a non-convex problem approximately, with the consensus requirement relaxed.

In the above papers on subgradient-related distributed solutions to the optimiza-

tion problem [18,33,34,56,57], the step sizes for the subgradient should be positive, vanish-

ing, non-summable but square summable. However, such selection of step sizes excludes an

important class of step sizes that is not square summable in the form of D√
k+1

, where D is a

positive constant and k denotes the kth iteration. Actually, in the centralized subgradient

algorithm [36], such selection guarantees convergence and provides the fastest convergence

rate for the best record of the objective function values. It would be interesting to explore

whether a similar result holds in the distributed context. That will be what to be done in

Chapter 3.

Next, we turn to designing distributed algorithm to some special optimization

problems that are related to linear equations because solving a group of linear equations

Ax = b is probably among the most important problems in numerical computations of real

numbers.

1.1.2 Distributed Algorithms to Find Minimum Norm Solution of Ax = b

In Chapter 4 of this dissertation, we will focus our attention on finding the solution

of a system of linear equations Ax = b with minimum norm in the distributed way by

assuming that each agent knows one or several rows of the augmented matrix [A b], as

in [1, 29, 43]. [29] proposes a distributed algorithm to solve Ax = b from locally feasible
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initializations with synchronous and asynchronous updates and also considers time-varying

linear equations and a least square solution to unsolvable equations. Ref. [1] provides

a continuous-time distributed algorithm by using a result from differential geometry and

removes the requirement of feasible initializations. Then two continuous-time algorithms

are proposed in [43], with convergence guarantees, explicit formulations of relationships

between the initial values and final convergence value, and considerations of least square

problems with additional requirements.

When the equations Ax = b have multiple solutions, one might be more concerned

about obtaining a specific solution with some special properties, e.g., minimum norm, rather

than merely obtaining a solution. Although the algorithms in [1, 20, 29, 43] are proved to

arrive at some solution for solvable linear equations with multiple solutions, but it is not

clear how to obtain a solution of Ax = b with special properties from these results. In

Chapter 4, we will design a distributed algorithm to find the special solution with minimum

norms associated with inner product of a system of linear equations Ax = b.

If we look further into the discrete-time distributed algorithms to solve a system

of linear equations in [30,49,53], we will see that they require some unnecessary conditions.

Next, we will remove those conditions motivated by a special subgradient algorithm in [46].

1.1.3 Distributed Algorithm to Solve Ax = b

Many distributed algorithms are proposed in the literature (see e.g., [1,19,30,38–

40, 43, 49, 52, 53]), assuming that each agent knows one or several rows of the augmented

matrix

[
A b

]
. The algorithms in [1, 19, 43, 52] are continuous-time ones, which require

communication at every time. In contrast, in this part, we focus on discrete-time distributed

4



algorithms to solve a system of linear equations Ax = b. In [30], a distributed algorithm

with locally feasible initializations is proposed for both synchronous and asynchronous cases

and is proved to converge at a geometric rate under repeatedly jointly strongly connected

graphs. Then in [49], when Ax = b has a unique solution, a distributed algorithm is designed

to allow arbitrary initializations with feedback of the deviation from local systems of linear

equations and the geometric convergence rate is proved. Also, when Ax = b has a unique

solution, [53] proposes an algorithm with an adaptation of the subgradient algorithm and

proves the linear convergence rate. In [38–40], a distributed algorithm is also proposed to

solve a system of linear equations. The algorithm requires agents to share the kernel of

local equations with their neighbors, which leads to heavy communication burden because

the kernels of local equations are usually of large volumes of data.

The algorithms in [30, 49, 53] are shown to be effective, but they require either

special initializations in [30] or the unique solution of Ax = b in [49, 53]. In Chapter 5,

we will design a distributed algorithm to solve a system of linear equations Ax = b, which

allows arbitrary initialization and can handle the cases when Ax = b has multiple solutions.

1.1.4 Distributed Algorithm to Solve Ax = b for sparse A

The distributed algorithms in [30, 49, 53] requires that every agent store and es-

timate the whole x vector, which leads to a lot of overhead when the matrix A is sparse.

Large-scale systems of linear equations with sparse matrices widely exists in many fields

such as power system, e.g., the Ybus, and finite element method to partial differential e-

quations. In these problems, there are more numerous nodes, e.g., buses in power systems,

in the system, but each node is connected to only a few other buses, which makes the
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matrix sparse. It is neither practical to make every node know the whole vector due to

the system scale nor necessary due to the sparsity of the connections. So it is important

to investigate communication-efficient distributed algorithms to solve Ax = b with sparse

A. Such an algorithm is proposed in [28], but it requires that nodes share the information

of their common neighbors, which may not be available to the nodes and are not used by

the nodes. In Chapter 6, we will design a communication-efficient distributed algorithm to

solve Ax = b employing the sparsity structure of matrix A. The connected nodes share only

their estimations of their own states and those of one of their neighbors’, which requires

less communication than existing results.

1.2 Organization

In Chapter 3, we will show that the square summability of the step sizes is not

necessary for the distributed subgradient method, which provides the possibility for better

convergence rates. We will prove that in both unconstrained and constrained distributed

optimization problems, the positive, vanishing and non-summable step sizes can make the

agents’ estimates converge to the minimizer of the global objective function under time-

varying balanced graphs. This step size selection is actually the same as that required

by the centralized subgradient method [46] for the unconstrained optimization problems,

including D√
k+1

as a special case. We also show that when the step sizes are chosen as D√
k+1

,

the best record of the function value at the average of the agents’ estimates converges at

the rate of O( 1√
k
) for the unconstrained case. The convergence rate O( 1√

k
) is the same

as the optimal one in the centralized subgradient algorithm in [36]. For the unconstrained
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optimization problem, we first show the convergence to the minimizer of a subsequence of

the average of the agents’ estimates by investigating the distance change from the average

to the optimal set. Then we show that as time goes by, the average stays in a neighborhood,

vanishing with the step sizes, of arbitrary level sets of the global objective function. Next,

with consensus, we prove that the estimates of all agents approach the same minimizer. For

the constrained optimization problem under the assumption of bounded constraint sets,

we perform a similar analysis on the summation of distances of the agents’ estimates to a

minimizer. As the unconstrained case cannot be treated as a special case of the constrained

case under the assumption of bounded constraint sets and vice versa, we deal with them

separately. The above results hold for time-varying balanced graphs that are jointly strongly

connected. We then show the convergence rate O( 1√
k
) from the distance change mentioned

above when the step sizes are selected as D√
k+1

for the unconstrained case.

In Chapter 4, we will focus on finding the solution of Ax = b with the minimum

weighted norm associated with the weighted inner product in a distributed way as this

kind of solution represents the solution with minimum energy. We propose a discrete-time

distributed algorithm to find such a solution of Ax = b, including the algorithm in [20,29,31]

as a special case. We first prove that when the norm is the two-norm, if all agents start

from the minimum two-norm solution of their local equations and travel along the sequence

generated by the algorithm, they will finally converge to the minimum two-norm solution

of the global linear equations Ax = b. We also prove that if there are bounded initialization

errors, the final solution of the algorithm is also bounded away from the global minimum

two-norm solution. Then we extend the results to weighted norms associated with the
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weighted inner products.

In Chapter 5, we propose a discrete-time distributed algorithm motivated by a

special subgradient algorithm to solve Ax = b with either unique or multiple solutions from

arbitrary initializations. The algorithm can guarantee convergence to a solution of Ax = b

at a geometric rate. When the system of linear equations Ax = b has a unique solution,

we show the geometric convergence rate by analyzing the mixed norms of homogeneous M -

Fejer type mappings related to the dynamics of the algorithm. When the system of linear

equations Ax = b has multiple solutions, we first perform an orthogonal decomposition of

the agents’ estimates onto the row space and null space of matrix A, and then show that

the part in the row space admits a unique solution and that in the null space is a consensus

algorithm. Combining the two parts, we can obtain the geometric convergence rate for a

system of linear equations Ax = b with more than one solution. When Ax = b has multiple

solutions, the limit point of the agents’ estimates is proved to be determined by the agents’

initializations, communication topologies, and the minimum 2-norm solution of the linear

equations. We also obtain quantitative upper bounds related to the condition number of

A and a parameter in the algorithm for the convergence rate for two special cases. To the

best of our knowledge, this is the first quantitative result on the convergence rate of such

an algorithm.

In Chapter 6, we propose a communication-efficient distributed algorithm to solve

Ax = b when the matrix A has a sparsity structure to the Laplacian matrix. The proposed

algorithm is based on gradient descent method with constant step size. Agents connected

by an edge only share their estimates of the states of the two agents connected by the same

8



edge. The convergence to a solution of Ax = b is proved to be either in finite time or at a

linear rate.

Notations We use R for the set of real numbers, Rn for the set of n × 1 real vectors,

Rm×n for the set of m × n real matrices, and I for the identity matrix, whose dimension

is determined by contexts. Let 0 represent zero vectors, matrices or mappings, of which

the dimension is determined by contexts. The symbol N+ represents the set of positive

integers, i.e., N+ = {1, 2, 3, · · · }, and the symbol N represents the set of natural numbers,

i.e. N = {0}
∪

N+. A sequence of real numbers or vectors x(k), k = 1, 2, · · · , is represented

by {x(k)}. We say a sequence {x(k)} converges to x⋆ at a linear rate or at a geometric rate if

there exists N ∈ N, such that for all k > N , ∥x(k+1)−x⋆∥ ≤ c∥x(k)−x⋆∥, where 0 < c < 1

is a constant. ∥ · ∥ denotes the general norm, ∥ · ∥2 means the 2-norm, and ∥ · ∥∞ denotes

the ∞-norm. The distance between a point x and some set X is d(x,X) = inf
p∈X

∥x − p∥2,

and the distance between two sets X and Y is defined as d(X,Y ) = inf
x∈X, y∈Y

∥x − y∥2.

The transpose of a vector x is represented by xT . We let 1n be the n × 1 vector of all

ones. We use

(
xj

)
n

to denote a vector whose jth entry is xj . We use PX(x) to denote

the projection of a point x onto a closed convex set X: PX(x) = argmin
p∈X

∥x − p∥2. ⌊x⌋

represents the largest integer that is less than or equal to x. O(·) is used for infinitesimals

of the same order, i.e., y is O(x) if there exists a constant C such that ∥y∥ ≤ C∥x∥ as x → 0.

If M ∈ Rn×n is symmetric and positive definite, we use ∥x∥M to represent the weighted

norm associated with the weighted inner product defined by M , i.e. ∥x∥M =
√
xTMx. We

use rank(A) to represent the rank of A, span(A) to represent the column space of A, and

ker(A) to denote the kernel of A, which is the vector space {x|Ax = 0}. We use AT for

9



the transpose of a matrix A. The dimension of a space E is represented by dim(E). The

orthogonal complement of a subspace E is denoted as E⊥. The singular value of a matrix

A is represented by σ(A), and the maximal one is denoted as σmax(A) while the smallest

one σmin(A). We use aij to represent the ijth entry of matrix A and Aij for the ijth block

of A. We also use

(
Aij

)
m×n

(

(
aij

)
m×n

) to denote an matrix whose ijth block (entry) is

Aij , which is composed of m × n such blocks (entries). We also use ⊗ for the Kronecker

product. A matrix is positive if all its entries are positive.
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Chapter 2

Preliminaries

In this chapter, we present some preliminary knowledge that will pave the way to

the main results in the following chapters.

2.1 Graph Theory

An m̄th order directed graph, denoted by G(V,E,A), is composed of a vertex set

V = {1, · · · , m̄}, an edge set E ⊆ V × V and a weight matrix A. We use the pair (j, i)

to denote the edge from vertex j to vertex i. We suppose that (i, i) ∈ E, ∀i ∈ V . The

weight matrix W = [wij ]m̄×m̄ ∈ Rm̄×m̄ associated with the graph G is defined such that wij

is positive if (j, i) ∈ E, and wij = 0 otherwise. We assume that A is row stochastic, i.e.,

m̄∑
j=1

wij = 1, ∀i ∈ V . The graph G is balanced if
m̄∑
j=1

wij =
m̄∑
j=1

wji, ∀i ∈ V . The neighbor set

of vertex i is defined as Ni = {j : (j, i) ∈ E}. A directed path from i to j is a sequence of

edges (i, i1), (i1, i2), · · · , (ip, j), starting from vertex i and sinking at vertex j. The directed

graph G is strongly connected if, for any pair of vertices i and j, there is a directed path
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from i to j. The union of a collection of graphs is a graph with the vertex and edge sets

being the unions of the vertex and edge sets of the graphs in the collection.

Let Gk denote the graph at discrete-time index k. In the rest of the dissertation, we

suppose the communication topologies of the agent network are jointly strongly connected

as in the following assumption:

Assumption 1 There exists a constant integer B and an infinite sequence k0, k1, · · · , kt, · · ·

where 0 < kj+1 − kj ≤ B, j = 0, 1, 2, · · · such that the union of Gkj ,Gkj+1, · · · ,Gkj+1−1 is

strongly connected.

This assumption ensures that agents can influence each other over a sufficient long time.

We also suppose that the weight matrix associated with Gk are non-degenerate as

in the following assumption:

Assumption 2 There exists a positive constant η > 0 such that wij(k) > η if wij(k) > 0,

k = 0, 1, 2, · · · .

With Assumption 2, the edge weights in the weight matrix is either zero or greater than

a positive constant η. This assumption shows that if agent i receives information from

agent j, then the edge weight wij is uniformly bounded away from zero. This assumption

guarantees that the influence of agents on others, if any, lasts and does not vanish over

time.

With the above assumptions, we have the following lemma on the product of the

weight matrices:

Lemma 1 [18] Let

Φ(t : s) = W (t)W (t− 1) · · ·W (s). (2.1)
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Then under Assumptions 1 and 2, there exists a constant µ ∈ (0, 1
n) such that for all i, j

and all q, p that q − p ≥ (m̄+ 2)B, Φij(q : p) > µ.

2.2 Convex Optimization

A set C is convex if for all x, y ∈ C, αx + (1 − α)y ∈ C, for all α ∈ [0, 1]. That

is, the line segment is in the set C if the two endpoints are. A function f is convex if its

domain is convex and for all x and y in its domain and for all α ∈ [0, 1], f(αx+(1−α)y) ≤

αf(x) + (1 − α)f(y). A convex function is proper if f(x) < +∞ for at least one x in its

domain and f(x) > −∞ for every x in its domain. In this dissertation, we only consider

proper convex functions. For a proper convex function, it is closed if it is lower semi-

continuous [42]. For a closed proper convex function, we have the following lemma:

Lemma 2 [42] Let f be a closed proper convex function. If the level set {x : f(x) ≤ α} is

non-empty and bounded for one α, it is bounded for every α.

An optimization problem

minimize f(x)

subject to x ∈ X

is a convex optimization problem if the objective function f(x) is a convex function and the

constraint set X is a convex set.

A vector g is a subgradient of a convex function f at the point x0 if for all x in

the domain of f ,

f(x)− f(x0) ≥ gT (x− x0). (2.2)
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We denote the set of subgradients of f at x0 as ∂f(x0).

For a projection operator onto a closed convex set, we have the following non-

expansiveness property.

Lemma 3 [34] Let X ⊂ Rm be a closed convex set. For any pair of points x and y in Rm,

we have ∥PX(x)− PX(y)∥2 ≤ ∥x− y∥2.

2.3 Affine space

We have the following definitions and lemmas on affine spaces.

Definition 1 [47] Let E be a vector space of dimension n over a field F. An affine space

over E is a set A together with the map

A×E → A

P, v → P + v

such that:

1. P + 0⃗ = P for all P ∈ A, where 0⃗ is the identity element of E;

2. P + (v + w) = (P + v) + w for all P ∈ A and v, w ∈ E;

3. given P,Q ∈ A, there exists a unique v ∈ E such that P + v = Q. Denote v as P⃗Q,

or Q− P .

Here E is called the associated vector space of A. We define dim(A) as dim(E). For each

point P ∈ A and for each vector subspace F of E, define

P + [F ] = {Q ∈ A : Q = P + v, v ∈ F}.
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Definition 2 [47] A subset B of an affine space A is an affine subspace of A, with associated

vector space being a vector subspace F of E, if

1. for all P ∈ B and for all v ∈ F , one has P + v ∈ B. Moreover, the map

B× F → B

P, v → P + v

satisfies

2. P + 0⃗ = P for all P ∈ B, 0⃗ ∈ F ;

3. P + (v + w) = (P + v) + w for all P ∈ B and v, w ∈ F ;

4. for each pair of points P,Q ∈ B, P⃗Q ∈ F .

If B is an affine subspace of A, with associated vector space F , and P ∈ B, then B = P +[F ]

[47]. If B = P + [F ], we say that B is a plane through P directed by F , and F is the

direction of B. If F is 1-dimensional, we say that B is a straight line, or simply a line.

Definition 3 [47] Two planes L1 = P1 + [F1] and L2 = P2 + [F2] are parallel if F1 ⊂ F2

or F2 ⊂ F1.

Definition 4 [47] A Euclidean affine space is an affine space A such that the associated

vector space E is a Euclidean vector space.

Definition 5 [47] An affine frame in an affine space A is a set R = {P ; (e1, · · · , en)}

formed by a point P ∈ A and a basis (e1, · · · , en) of the associated vector space E. The

point P is called the origin of the affine frame.
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For any point Q ∈ A, if P⃗Q =
n∑

i=1
qiei, qi ∈ F, we say that Q has affine coordinates,

or simply coordinates (q1, · · · , qn). In this dissertation, we suppose that the affine frame

is always fixed with its origin being 0 and do not distinguish the points in A from their

coordinates.

Lemma 4 [15,47] Let L = Q+ [F ] be a plane of dimension r in an affine space A and let

R = {P ; (e1, · · · , en)} be an affine frame. Then the coordinates of the points of L in R are

a solution of a linear system Ax = b, of n unknowns and rank n − r. Conversely, given a

linear system Ax = b and an affine frame R, we can interpret the solutions of this system

as a plane L.

We can see from this lemma that when the affine frame is fixed, the linear equations and

planes in an affine space can be regarded as the same.

Lemma 5 [15] A subset B ⊂ A is an affine subspace, or a plane, if and only if it contains

the straight lines that pass two different points of B.

Definition 6 [47] Let A be a Euclidean affine space. The distance d(P,Q) between the

points P,Q ∈ A is given by

d(P,Q) = ∥P⃗Q∥2.

Definition 7 [47] Two planes L1 = P1 + [F1] and L2 = P2 + [F2] of a Euclidean affine

space A is said to be orthogonal if the vector spaces F1 and F2 are orthogonal.

Lemma 6 [47] [Pythagoras’ Thoerem] If the triangle △PQR is right angled at P , then

d(Q,R)2 = d(P,Q)2 + d(P,R)2.
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Remark 1 From Lemma 6, we know that the minimum distance between any point Q and

a plane B in the affine space A is the distance between Q and its pedal on B.

2.4 M-Fejer Mapping

In this part, we will introduce some knowledge on M -Fejer mappings.

Let T : Rn → Rn be a mapping, and define the set of fixed points of T as Fix(T ) =

{x ∈ Rn : T (x) = x}. Then we have a special class of mappings with a nonempty fixed

point set defined as follows:

Definition 8 [48] A mapping T : Rn → Rn is called M -Fejer, if M = Fix(T ) ̸= ∅ and

∥T (x)− z∥ < ∥x− z∥, ∀x ∈ Rn, x /∈ M, ∀z ∈ M.

In the rest of the dissertation, we use Tx for T (x) for short.

If M in the above definition contains 0, we have the following lemma:

Lemma 7 If T is an M -Fejer mapping and 0 ∈ M , then ∥Tx∥ = ∥x∥ if and only if Tx = x.

Proof. The sufficiency part is obvious.

We now prove the necessity part. For all x /∈ M , i.e. Tx ̸= x, we have that

∥Tx∥ = ∥Tx− 0∥ < ∥x− 0∥ = ∥x∥. Thus, ∥Tx∥ = ∥x∥ implies x ∈ M .

Next, we introduce the mixed vector norms that are used in the distributed algo-

rithm to find a common fixed point of a family of M -Fejer mappings.

Definition 9 [9] Let xi ∈ Rn, i = 1, 2, · · · , m̄, and

x =

(
xT1 · · · xTm̄

)T

. (2.3)
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Then the mixed norm ∥ · ∥p,∞ is defined as ∥x∥p,∞ = max
i

∥xi∥p for 1 < p < ∞.

With the mixed vector norm, we have that

Lemma 8 [9] Let S be a stochastic matrix. Then ∥(S⊗I)x−1m̄⊗y∥p,∞ ≤ ∥x−1m̄⊗y∥p,∞

for any x ∈ Rm̄n and y ∈ Rn.

With the above definition of mixed norms, we introduce the following result on a stack of

M -Fejer mappings.

Lemma 9 [9] Let Ti, i = 1, · · · , m̄ be continuous Mi-Fejer mappings with respect to p-

norm in Rn, 1 < p < ∞, and
m̄∩
i=1

Mi ̸= ∅. Also define T : Rm̄n → Rm̄n as a stack of all

Ti, i = 1, · · · , m̄, i.e.,

Tx =

(
(T1x1)

T · · · (Tm̄xm̄)T

)T

, (2.4)

where x is defined as in (2.3). Let W (1),W (2), · · · ,W (q) be a set of m̄ × m̄ stochastic

matrices. If every entry of the matrix product W (q)W (q − 1) · · ·W (1) is positive, then the

composed map x −→ (W (q)⊗ I)T · · · (W (1)⊗ I)Tx is a continuous M -Fejer mapping with

respect to the mixed vector norm ∥ · ∥p,∞, and its fixed point set is {1m̄ ⊗ y : y ∈
n∩

i=1
Mi}.
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Chapter 3

Distributed Subgradient-based

Multi-agent Optimization with

More General Step Sizes

In this chapter, we will provide a wider choice of step sizes for the distributed

subgradient algorithm to solve multi-agent optimization problems. We will first prove the

convergence of the algorithm. And then we will show that the distributed subgradient

algorithm achieves the fastest convergence rate with the wider selection of step sizes.

3.1 Problem Statement

For a multi-agent system with n agents, we regard each agent as a vertex. There

is an edge (j, i) if agent i receives information from agent j. The corresponding entry wij

in the weight matrix A denotes the weight assigned by agent i to the received information
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from agent j.

For the distributed optimization problems, we will focus on the first category

described in Chapter 1. In this category, each agent has a local objective function and

sometimes a local constraint, both unknown to others, but different agents share the same

optimization variable. Each agent has a private local objective function unknown to the

other agents but shares the same optimization variable. Also it may have its private local

constraint. The goal of the multi-agent system is to cooperatively figure out a minimizer of

the average of all local objective functions in the common part of all local constraints:

minimize f(x) =
1

m̄

m̄∑
i=1

fi(x)

subject to x ∈ X =

m̄∩
i=1

Xi,

(3.1)

where x ∈ Rn is the variable of the multi-agent system, fi, i ∈ V, are the local objective

functions and Xi ⊆ Rn, i ∈ V, are the local constraints. For an unconstrained optimization

problem, we let Xi = Rn, i ∈ V .

One of the distributed ways to solve the convex optimization problem (3.1) is to

use the distributed subgradient method [18,33,34]

xi(k + 1) = PXi(

m̄∑
j=1

wij(k)xj(k)− α(k)gi(k)), (3.2)

where xi(k) is agent i’s estimate of the minimizer of the global objective function f at the

kth iteration, wij(k) is the (i, j)th entry of the weight matrix A(k) at the kth iteration, α(k)

is the step size, gi(k) is the subgradient of the local objective function fi at
m̄∑
j=1

wij(k)xj(k),

and PXi is the projection operator onto Xi.

It is proved in [18, 34] that the algorithm (3.2) can guarantee that the agents’

estimates converge to a minimizer of the global objective function with step sizes α(k)
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satisfying α(k) > 0,
∞∑
k=0

α(k) = +∞ and
∞∑
k=0

α(k)2 < ∞. But this choice of step sizes

excludes an important class of step sizes that is not square summable, which could achieve

better convergence rates. In this chapter, we prove that the algorithm (3.2) can also converge

without the square summable condition:

Assumption 3 The step sizes α(k) are positive, vanishing and non-summable, i.e., α(k) >

0, lim
k→∞

α(k) = 0 and
∞∑
k=0

α(k) = ∞.

Remark 2 The step sizes under Assumption 3 include

α(k) = D/
√
k + 1, (3.3)

which is not square summable, as a special case, where D is a positive constant. This

selection of step sizes is proved to achieve the optimal convergence rate for the central-

ized subgradient algorithm in [36], which might promise a better convergence rate in the

distributed case.

We also have the following assumptions for the distributed optimization problem

(3.1). The assumption on the objective functions is given as follows:

Assumption 4 Each local objective function fi, i ∈ V, is proper convex in its domain.

For the optimal set that we plan to find, we have the following assumption:

Assumption 5 The problem (3.1) has a bounded nonempty set of minimizers, denoted by

X⋆.

For the constraint sets Xi, i ∈ V , we have the following assumption: for the unconstrained

problem Xi = Rn, ∀i ∈ V, and for the constrained problem
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Assumption 6 Each local constraint set Xi, ∀i ∈ V, is bounded, closed and convex if

Xi ̸= Rn. Their intersection X =
m̄∩
i=1

Xi has interior points.

In the rest of the chapter, we only consider the constrained case under Assumption

6. Note that the unconstrained case cannot be treated as a special case of the constraint case

under Assumption 4. For convenience, when we refer to the constrained case, we actually

mean the constrained case under Assumption 4.

As the average of convex functions is also convex, the global objective function f

is convex from Assumption 4. With Assumption 6, the constraint set Xi is convex and so

is the intersection X. Then the problem (3.1) is a convex optimization problem.

For the subgradients of the objective functions, we suppose that they are bounded,

as in the following assumption.

Assumption 7 The subgradients of fi, ∀i ∈ V, are uniformly bounded in Xi, i.e., there

exists G > 0 such that for all g ∈ ∂fi(x), ∥g∥2 ≤ G, ∀x ∈ Xi.

It is easy to see that Assumption 5 is redundant under Assumption 6. But As-

sumption 5 is required for the unconstrained case. Assumption 7 is also redundant under

Assumption 6, because the subgradients of a convex function is uniformly bounded in a

bounded set [2]. But Assumption 7 is required for the unconstrained case. The assumption

of uniformly bounded subgradients can be found in many references [12, 18, 33, 34, 56, 57],

and plays an important role in the consensus and convergence of the distributed subgradient

method.

Remark 3 In the unconstrained case, with Assumption 7, the local objective functions

fi, ∀i ∈ V, are continuous and thus lower semi-continuous and so is the global objective
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function. As a result, in the unconstrained case, the global objective function is closed. In the

constrained case, the local objective functions are also continuous because the subgradients

are also bounded due to Assumption 6.

Remark 4 From Lemma 2, the level sets of a function under Assumptions 4, 5, and 7 are

always bounded, which plays an important role in the convergence analysis of the uncon-

strained case in this chapter.

For the multi-agent network, we suppose that the communication topologies are

balanced as detailed below in addition to the assumption in Chapter 2.

Assumption 8 The communication topology G(k), k = 0, 1, 2, · · · at each time instant is

balanced, i.e.,
m̄∑
j=1

wij(k) =
m̄∑
j=1

wji(k) = 1, k = 0, 1, 2, · · · .

The balanced graph is necessary for the agents’ estimates in the algorithm (3.2) to converge

to the minimizer of the problem (3.1). If the communication topology is not balanced, the

agents’ estimates might not converge to the minimizer of (3.1), as shown in [18].

3.2 Main Results

In this section, we prove that all agents’ estimates of the minimizer of the dis-

tributed optimization problem (3.1) generated by the distributed subgradient algorithm

(3.2) converge to a minimizer of (3.1), with the step sizes in Assumption 3. We also show

that the convergence rate is O( 1√
k
) with the step sizes in (3.3) for the best record of the

function value at the average of the agents’ estimates in the unconstrained case.
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For the consensus of the algorithm (3.2) under the wider selection of step sizes, we

have the following lemma:

Lemma 10 (Lemma 8(a) in [34], Proposition 1 in [18]) For a graph sequence G(k), k =

0, 1, 2, · · · , satisfying Assumptions 1, 2, and 8 and the optimization problem (3.1) satis-

fying Assumptions 4, 5, 7 with Xi = Rn, i ∈ V, or Assumptions 4 and 6, the agent’s

estimates xi, ∀i ∈ V, in the distributed subgradient algorithm (3.2) reach a consensus, i.e.,

lim
k→∞

∥xi(k)− xj(k)∥2 = 0, ∀i, j ∈ V under Assumption 3.

Remark 5 Let

ϕi(k) =PXi [

m̄∑
j=1

wij(k)xj(k)− α(k)gi(k)]− [

m̄∑
j=1

wij(k)xj(k)− α(k)gi(k)]. (3.4)

For the unconstrained optimization problem, we can exploit the proof of Lemma 8(a) in [34]

by replacing ϕi(k) with 0. For the constrained optimization problem, we can exploit the

proof of Proposition 1 in [18] by noting that the condition
∞∑
k=0

α(k)2 < ∞ is only used to

conclude lim
k→∞

α(k) = 0 in the proofs of Lemmas 11, 12 and Proposition 1 in [18]. The proofs

of Lemmas 11 and 12 and Proposition 1 in [18] are hence still valid with
∞∑
k=0

α(k)2 < ∞

replaced with lim
k→∞

α(k) = 0. In summary, the step sizes in Assumption 3 can guarantee the

consensus result in both unconstrained and constrained cases.

However, it is not clear whether the agents’ estimates will converge to the minimizer with

Assumption 3. Next, we will prove the convergence of (3.2) to the minimizer of (3.1) in

both the unconstrained and constrained cases. The rigorous statement is as follows:

Theorem 1 For a graph sequence G(k), k = 0, 1, 2, · · · , satisfying Assumptions 1, 2, and

8 and the optimization problem (3.1) satisfying Assumptions 3, 4, 5, and 7 with Xi =
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Rn, ∀i ∈ V, or Assumptions 3, 4, and 6, the agents’ estimates xi, ∀i ∈ V, in the distributed

subgradient algorithm (3.2) converge to the optimal set X⋆ of (3.1).

Theorem 1 shows the convergence of the distributed subgradient algorithm (3.2) under the

wider selections of step sizes. Moreover, the fastest convergence rate can be achieved with

a special form of the step sizes in Assumption 3, as stated in the following theorem.

Theorem 2 Let

eN = min
M≤k≤N

f(y(k))− f(x⋆), (3.5)

where M = ⌊N2 ⌋, f is defined in (3.1), x⋆ ∈ X⋆, and

y(k) =
1

m̄

m̄∑
i=1

xi(k). (3.6)

Then under Assumptions 4, 5, 7, 1, 8, and 2 and Xi = Rn, eN = O( 1√
N
) with α(k) selected

in (3.3).

Remark 6 The convergence rate in Theorem 2 is the same as the optimal one in the

centralized case in [36], which implies that Theorem 2 might also provide the best convergence

rate in the distributed case.

Next, we will prove Theorem 1 for the unconstrained case in Section 3.2.1, for the

constrained case in Section 3.2.2, and Theorem 2 in Section 3.2.3.

3.2.1 Proof of Convergence for Unconstrained Case

In this part we will first provide some necessary lemmas and then prove Theorem

1 for the unconstrained case.
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Let x⋆ be some point in the optimal set X⋆, and y(k) be as in (3.6), and

vi(k) =

m̄∑
j=1

wij(k)xj(k) (3.7)

be the local weighted average of the estimates of agent i’s neighbors. Then we have the

following lemma on the change of the distance from y(k) to x⋆.

Lemma 11 Let y(k) be as in (3.6), vi(k) be as in (3.7), and xi(k) be generated by (3.2).

Under Assumptions 4, 5, 7, and 8, we have that

∥y(k + 1)− x⋆∥22 ≤∥y(k)− x⋆∥22 + 4α(k)
m̄∑
j=1

1

m̄
G∥y(k)− vj(k)∥2

+ α(k)2G2 − 2α(k)[f(y(k))− f(x⋆)],

(3.8)

where f is defined in (3.1).

Proof. we have

y(k + 1) =
1

m̄

m̄∑
i=1

xi(k + 1)

=
1

m̄

m̄∑
i=1

(
m̄∑
j=1

wij(k)xj(k)− α(k)gi(k))

=
1

m̄

m̄∑
j=1

(

m̄∑
i=1

wij(k))xj(k)− α(k)
1

m̄

m̄∑
i=1

gi(k)

=
1

m̄

m̄∑
j=1

xj(k)− α(k)
1

m̄

m̄∑
i=1

gi(k)

= y(k)− α(k)
1

m̄

m̄∑
i=1

gi(k),

where we use Assumption 8 to obtain the fourth equality.

Then the distance between the global weighted average y(k) and the point x⋆ in
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the optimal set evolves as follows

∥y(k + 1)− x⋆∥2 = ∥y(k)− α(k)
1

m̄

m̄∑
j=1

gj(k)− x⋆∥2

= ∥y(k)− x⋆∥2 + α(k)2∥ 1

m̄

m̄∑
j=1

gj(k)∥2 − 2α(k)
1

m̄

m̄∑
j=1

gTj (k)(y(k)− x⋆).

According to Assumption 7, ∥gj(k)∥ ≤ G. Note that gTj (k)(y(k)−vj(k)) ≥ −∥gj(k)∥∥y(k)−

vj(k)∥ ≥ −G∥y(k) − vj(k)∥ and fj(vj(k)) − fj(y(k)) ≥ gTj (y(k))(vj(k) − y(k)) from the

definition of subgradients in (2.2), we have

1

m̄

m̄∑
j=1

gTj (k)(y(k)− x⋆)

=
1

m̄

m̄∑
j=1

gTj (k)(y(k)− vj(k)) +
1

m̄

m̄∑
j=1

gTj (k)(vj(k)− x⋆)

≥− 1

m̄

m̄∑
j=1

G∥y(k)− vj(k)∥+
1

m̄

m̄∑
j=1

(fj(vj(k))− fj(x
⋆))

=− 1

m̄

m̄∑
j=1

G∥y(k)− vj(k)∥+
1

m̄

m̄∑
j=1

(fj(vj(k))− fj(y(k))) +
1

m̄

m̄∑
j=1

(fj(y(k))− fj(x
⋆))

≥− 1

m̄

m̄∑
j=1

G∥y(k)− vj(k)∥+
1

m̄

m̄∑
j=1

gTj (y(k))(vj(k)− y(k)) +
1

m̄

m̄∑
j=1

(fj(y(k))− fj(x
⋆))

≥− 2G
1

m̄

m̄∑
j=1

∥y(k)− vj(k)∥+
1

m̄

m̄∑
j=1

(fj(y(k))− fj(x
⋆)).

Combining with the fact that ∥ 1
m̄

m̄∑
j=1

gj(k)∥2 ≤ 1
m̄

m̄∑
j=1

∥gj(k)∥2 ≤ G2, we have

∥y(k + 1)− x⋆∥2 ≤∥y(k)− x⋆∥2 + α(k)2G2 + 4α(k)
1

m̄

m̄∑
j=1

G∥y(k)− vj(k)∥

− 2α(k)
1

m̄

m̄∑
j=1

(fj(y(k))− fj(x
⋆)).

Using Lemma 11, we can obtain the following lemma:
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Lemma 12 Under Assumptions 1, 2, 3, 4, 5, 7, and 8, there exists a subsequence {y(kp)}

of {y(k)}, such that lim
kp→∞

f(y(kp)) = f(x⋆), where f(·) is defined in (3.1).

Proof. We first prove by contradiction that

lim inf
k→∞

f(y(k))− f(x⋆) ≤ 0.

Suppose not. Then there exist ϵ > 0 and Kϵ ∈ N+, such that for all k > Kϵ,

f(y(k))− f(x⋆) ≥ ϵ. (3.9)

Then

∥y(k + 1)− x⋆∥22

≤∥y(k)− x⋆∥22 + α(k)2G2 + 4
1

m̄
Gα(k)

m̄∑
j=1

∥y(k)− vj(k)∥2 − 2α(k)ϵ

=∥y(k)− x⋆∥22 − α(k)ϵ+G2[α(k)2 +
1

G2
(4

1

m̄
G

m̄∑
j=1

∥y(k)− vj(k)∥2 − ϵ)α(k)].

Under Assumptions 1, 2, 3, 4, 7, and 8, it follows from Lemma 10 that lim
k→∞

∥xi(k) −

xj(k)∥2 = 0 and thus

lim
k→∞

∥vi(k)− y(k)∥2 = 0. (3.10)

It follows that there exists Kc ∈ N+, such that for all k > Kc,

1

m̄

m̄∑
j=1

∥y(k)− vj(k)∥2 ≤
ϵ

8G
.

Then we have

∥y(k + 1)− x⋆∥22 ≤ ∥y(k)− x⋆∥22 − α(k)ϵ+G2(α(k)2 − ϵ

2G2
α(k)).
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As α(k) vanishes from Assumption 3, there exists Kα ∈ N+, such that for all k > Kα,

α(k) ≤ ϵ
2G2 and hence α(k)2 − ϵ

2G2α(k) ≤ 0. Denote K0 = max{Kϵ,Kc,Kα}. Then for all

k > K0, (3.9) holds and it follows that

∥y(k + 1)− x⋆∥22 ≤ ∥y(k)− x⋆∥22 − α(k)ϵ. (3.11)

It then follows that

∥y(K0 +m)− x⋆∥22 ≤ ∥y(K0 + 1)− x⋆∥22 − ϵ

K0+m−1∑
t=K0+1

α(t).

As
∞∑
k=1

α(k) = ∞ from Assumption 3,

∥y(K0 +m)− x⋆∥22 ≤ ∥y(K0 + 1)− x⋆∥22 − ϵ

K0+m−1∑
t=K0+1

α(t) < 0

when m is sufficiently large. This contradicts with the fact that ∥y(K0+m)−x⋆∥22 ≥ 0. So

lim inf
k→∞

f(y(k))− f(x⋆) ≤ 0.

Note that f(y(k)) − f(x⋆) ≥ 0 because x⋆ is in the optimal set X⋆. As a result,

lim inf
k→∞

f(y(k))− f(x⋆) = 0.

We can also know that f is continuous form Assumption 7 (see Remark 3). So

there exists a subsequence {y(kp)} of {y(k)} such that

lim
kp→∞

f(y(kp)) = f(x⋆). (3.12)

Then we have the following lemma on the convergence of {y(kp)} itself:

Lemma 13 Under Assumptions 1, 2, 3, 4, 5, 7, and 8, there exists a subsequence {y(kq)}

of {y(kp)}, such that {y(kq)} converges to some point in X⋆, where {y(k)} is defined in

(3.6) and {y(kp)} is the subsequence in Lemma 12.
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Proof. If {y(kp)} is bounded or has a bounded subsequence, the existence of a convergent

subsequence is obvious.

If ∥y(kp)∥ → ∞, let kp = N for some N and ϵN = f(y(N)) − f(x⋆). Define

UϵN = {x : f(x) = f(x⋆)+ ϵN}. Note that UϵN is bounded from Remark 4, which is a result

from Lemma 2, Assumptions 4, 5, and 7. As ∥y(kp)∥ → ∞ and lim
kp→∞

f(y(kp)) = f(x⋆) from

(3.12) under Assumptions 1, 2, 3, 4, 5, 7, and 8, we can find kp = N1 for some sufficiently

large N1 such that y(kp) is outside the level curve UϵN and f(ykp) < f(x⋆) + ϵN . Consider

the intersection point xints of UϵN and the line segment between x⋆ and y(N1). Here xints

can be expressed as a convex combination of x⋆ and y(N1), that is, there exists 0 < α < 1

such that xints = αx⋆ + (1 − α)y(N1). Also we have f(xints) = f(y(N)) > f(y(N1)) and

f(xints) > f(x⋆). Then

f(xints) = f(αx⋆ + (1− α)y(N1)) > αf(x⋆) + (1− α)f(y(N1)),

which contradicts the convexity of f(x). So {y(kp)} has a bounded subsequence, and thus

a convergent subsequence denoted as {y(kq)}. From the continuity of f , {y(kq)} converges

to some point in X⋆.

Without loss of generality, we suppose that the convergent subsequence {y(kq)} is

{y(kp)} itself.

Also, we have the following lemma on the level curve of f :

Lemma 14 Define Uδ = {y : f(y) − f(x⋆) = δ} as the level curve of the global objective

function, where f(·) is defined in (3.1). Let

d(δ) = max
y∈Uδ

min
p∈X⋆

∥y − p∥2 (3.13)
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be the maximum distance from the level curve Uδ to the optimal set X⋆. Under Assumptions

4 and 5, lim
δ→0

d(δ) = 0.

Proof. We prove by contradiction. Suppose that lim
δ→0

d(δ) = 0 does not hold. Then

there exists a sequence δk → 0 and a constant ϵ > 0 such that d(δk) ≥ ϵ. Let x⋆δk ∈ X⋆

and yδk ∈ Uδk be the points such that ∥yδk − x⋆δk∥ = d(δk). As Uδk is bounded from

Remark 4, which is obtained from Lemma 2 and Assumptions 4, 5, and 7, the sequence

{yδk} is also bounded and thus has a convergent subsequence. Without loss of generality,

suppose that this convergent subsequence is {yδk} itself and its limit point is y⋆. Then we

have d(y⋆, X⋆) ≥ ϵ. By the continuity of the function f , we know f(y⋆) = lim
k→∞

f(yδk).

With f(x⋆) < f(yδk) = f(x⋆) + δk, we have that f(y⋆) = f(x⋆). Then the level set

{y : f(y) ≤ f(x⋆)} is not connected and thus not convex. This leads to a contradiction with

the convexity of f in Assumption 4. It is hence concluded that lim
δ→0

d(δ) = 0.

Remark 7 From the proofs of Lemmas 13 and 14, we can see that Assumption 5 on bounded

optimal set together with Assumption 7 on bounded subgradients plays an important role in

the analysis of the unconstrained case.

Proof of Theorem 1 for unconstrained case Next, we will show that if kp is sufficiently

large, then for all k ≥ kp, y(k) stays either inside Uδ or outside but close to Uδ.

From Assumption 3, there exists K
′
α ∈ N+ such that for all k > K

′
α, α(k) ≤ δ

2G2 .

From (3.10), there exists K
′
c ∈ N+ such that for all k > K

′
c,

1
m̄

m̄∑
j=1

∥y(k) − vj(k)∥2 ≤ δ
8G .

Then we consider two cases.

1) If f(y(k)) − f(x⋆) < δ at any iteration k, then min
p∈X⋆

∥y(k) − p∥2 ≤ d(δ) at the
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iteration k. It follows that

min
p∈X⋆

∥y(k + 1)− p∥2 = min
p∈X⋆

∥y(k)− 1

m̄
α(k)

m̄∑
i=1

gi(k)− p∥2

≤ min
p∈X⋆

∥y(k)− p∥2 + α(k)∥ 1

m̄

m̄∑
j=1

gj(k)∥2

≤ d(δ) + α(k)∥ 1

m̄

m̄∑
j=1

gj(k)∥2 ≤ d(δ) + α(k)G

at the iteration k.

2) If f(y(k))− f(x⋆) ≥ δ at any iteration k, it follows from (3.11) that when the

iteration k is greater than max{K ′
α,K

′
c},

min
p∈X⋆

∥y(k + 1)− p∥22 ≤ min
p∈X⋆

∥y(k)− p∥22 − α(k)δ ≤ min
p∈X⋆

∥y(k)− p∥22

at the iteration k.

Remark 8 In the proof of Lemma 12 in the appendix, a contradiction is obtained from

(3.11) under the assumption that (3.9) holds for all k larger than some K0 ∈ N+. But in

Case 2 above, we only consider the case when f(y(k)) − f(x⋆) ≥ δ holds at one iteration

k, which is greater than max{K ′
α,K

′
c}. So Case 2 above does not conflict with the proof of

Lemma 12 and would not lead to a contradiction.

From (3.12), for any δ > 0, there exists Kp,δ ∈ N+ such that for all kp > Kp,δ,

f(y(kp)) − f(x⋆) < δ. Then from the two cases considered above, we have that for all

k > max{K ′
α,K

′
c,Kp,δ},

min
p∈X⋆

∥y(k + 1)− p∥2 ≤ min
p∈X⋆

∥y(k)− p∥2 + max
k>max{K′

α,K
′
c}
{α(k)}G

≤ d(δ) +
δ

2G
.
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Under Assumptions 4 and 5, it follows from Lemma 14 that lim
δ→0

min
p∈X⋆

∥y(k)−p∥2 = 0, which

means that y(k) converges to some point in the optimal set X⋆. Finally under Assumptions

1, 2, 3, 4, 5, 7, and 8, it follows from Lemma 10 that

lim
k→∞

min
p∈X⋆

m̄∑
i=1

∥xi(k)− p∥2 ≤ lim
k→∞

min
p∈X⋆

m̄∑
i=1

(∥y(k)− p∥2 + ∥xi(k)− y(k)∥2) = 0,

which means that the estimates of all agents converge to X⋆.

3.2.2 Proof of Convergence for Constrained Case

In this part we will first provide some necessary lemmas and then prove Theorem

1 for the constrained case.

Let x⋆ be some point in the optimal set X⋆ of the problem (3.1) in the constrained

case. Let vi(k) be defined in (3.7) and

y(k) = PX(
1

m̄

m̄∑
i=1

xi(k)). (3.14)

Then for the distance between agents’ estimates and x⋆, we have the following

lemma:

Lemma 15 Let xi(k) be generated by (3.2) and y(k) be as in (3.14). Under Assumptions

4, 6, and 8, we have that

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥22

≤ 1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥22 + α(k)2G2 +
2

m̄
α(k)

m̄∑
i=1

∥vi(k)− y(k)∥2

− 2α(k)[f(y(k))− f(x⋆)],

(3.15)

where G denotes the upper bound of the subgradients of fi in Assumption 6.
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Proof. Let x⋆ be some point in the optimal set X⋆ of the problem (3.1). Let vi(k) be

defined in (3.7). Then we have

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥2

=
1

m̄

m̄∑
i=1

∥PXi(

m̄∑
j=1

wij(k)xj(k)− α(k)gi(k))− x⋆∥2

≤ 1

m̄

m̄∑
i=1

∥
m̄∑
j=1

wij(k)xj(k)− α(k)gi(k)− x⋆∥2

=
1

m̄

m̄∑
i=1

∥
m̄∑
j=1

wij(k)xj(k)− x⋆∥2 + α(k)2
1

m̄

m̄∑
i=1

∥gi(k)∥2 − 2α(k)
m̄∑
j=1

qjg
T
j (k)(vj(k)− x⋆),

where the inequality is obtained from Lemma 3. As ∥ · ∥2 is convex, we have

1

m̄

m̄∑
i=1

∥
m̄∑
j=1

wij(k)xj(k)− x⋆∥2 ≤ 1

m̄

m̄∑
i=1

m̄∑
j=1

wij(k)∥xj(k)− x⋆∥2

=

m̄∑
j=1

(
1

m̄

m̄∑
i=1

wij(k))∥xj(k)− x⋆∥2

=
1

m̄

m̄∑
j=1

∥xj(k)− x⋆∥2,

where we use Assumption 8 to obtain the first equality. Because ∥gi(k)∥ ≤ G under As-

sumption 7, it follows that

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥2 ≤ 1

m̄

m̄∑
i=1

∥xj(k)− x⋆∥2 + α(k)2G2 − 2α(k)
1

m̄

m̄∑
j=1

gTj (k)(vj(k)− x⋆)

As fj , j ∈ V, are convex, fj(vj(k))−f(x⋆) ≤ gTj (k)(vj(k)−x⋆), where gj(k) is a subgradient

of fj at vj(k). We thus have

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥2

≤ 1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥2 + α(k)2G2 − 2α(k)
1

m̄

m̄∑
j=1

(fj(vj(k))− fj(x
⋆)).

(3.16)
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Also, we have that

fj(vj(k))− fj(x
⋆) = fj(vj(k))− fj(y(k)) + fj(y(k))− fj(x

⋆)

≥ −G∥vj(k)− y(k)∥+ fj(y(k))− fj(x
⋆).

(3.17)

Combining (3.16) and (3.17), we obtain that

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥2 ≤ 1

m̄

m̄∑
i=1

∥xj(k)− x⋆∥2 + α(k)2G2 +
2

m̄
α(k)

m̄∑
i=1

∥vi(k)− y(k)∥2

− 2α(k)[f(y(k))− f(x⋆)].

Then similar to Lemma 12, we have the following lemma:

Lemma 16 Under Assumptions 1, 2, 3, 4, 6, and 8, there exists a subsequence {y(kp)} of

{y(k)}, such that lim
kp→∞

f(y(kp))− f(x⋆) = 0, where y(k) is defined in (3.14).

Proof. We first prove that lim inf
k→∞

f(y(k))− f(x⋆) ≤ 0 by contradiction. If not, there exist

ϵ > 0 and Kϵ ∈ N+, such that ∀k > Kϵ, f(y(k))− f(x⋆) > ϵ. Then we have

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥2 ≤ 1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥2 + α(k)2G2 − 2α(k)ϵ

=
1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥2 − α(k)ϵ+ (α(k)2G2 − α(k)ϵ).

As lim
k→∞

α(k) = 0, there exists Kα ∈ N+, such that for allk > Kα, 0 < α(k) < ϵ
G2 , which

implies that α(k)2G2 − α(k)ϵ < 0. Hence for all k > K = max(Kϵ,Kα), we have

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥2 ≤ 1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥2 − α(k)ϵ. (3.18)

Because
∞∑
k=1

α(k) = ∞, it follows that when k0 is sufficiently large

1

m̄

m̄∑
i=1

∥xi(K + 1 + k0)− x⋆∥2 ≤ 1

m̄

m̄∑
i=1

∥xi(K + 1)− x⋆∥2 −
K+k0∑
t=K+1

α(t)ϵ < 0.
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This contradicts with 1
m̄

m̄∑
i=1

∥xi(k+1)−x⋆∥2 ≥ 0. It can thus be concluded that lim inf
k→∞

f(y(k))−

f(x⋆) ≤ 0.

We can also know that f is continuous form Assumption 7 (see Remark 3). There-

fore, there exists a subsequence {y(kp)} of {y(k)}, such that lim
kp→∞

f(y(kp)) − f(x⋆) = 0.

Proof of Theorem 1 for constrained case As {y(kp)} ∈ X is uniformly bounded from

Assumption 6, {y(kp)} has a convergent subsequence. Without loss of generality, suppose

that the convergent subsequence is {y(kp)} itself, with y∞ being its limit point. We also

know that y∞ ∈ X⋆ from (16) and Remark 3. Without loss of generality, let x⋆ = y∞.

Then we get from Lemma 10 that

lim
kp→∞

∥xi(kp)− x⋆∥2 ≤ lim
kp→∞

(∥xi(kp)− y(kp)∥2 + ∥y(kp)− x⋆∥2) = 0. (3.19)

So the subsequence {xi(kp)}, ∀i ∈ V, converge to the optimal set X⋆.

Remark 9 In the constrained case, the convergence of {y(kp)} results directly from As-

sumption 6. But in the unconstrained case, we have to impose the bounded optimal set

in Assumption 5 and bounded subgradients in Assumption 7 to prove the convergence of

{y(kp)} in Lemma 13.

We then prove the convergence of the estimates {xi(k)}, ∀i ∈ V, to X⋆. Define

Uδ = {y ∈ X : f(y) − f(x⋆) ≤ δ} and d(δ) = max
y∈Uδ

min
x⋆∈X⋆

∥y − x⋆∥2. Then we have that

lim
δ→0

d(δ) = 0 with a similar proof to that of Lemma 14 under Assumptions 4 and 6. There

exists K
′
α ∈ N+ and K

′
c ∈ N+, such that for all k > K

′
α, α(k) ≤ δ

2G2 under Assumption 3,
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and for all k > K
′
c,

1
m̄

m̄∑
j=1

∥y(k)− vj(k)∥2 ≤ δ
4G from Lemma 10. For the difference between

∥y(k)− x⋆∥ and ∥xi(k)− x⋆∥, we have that

|∥y(k)− x⋆∥22 − ∥xi(k)− x⋆∥22|

=|∥y(k)− x⋆∥2 − ∥xi(k)− x⋆∥2|(∥y(k)− x⋆∥2 + ∥xi(k)− x⋆∥2)

≤∥y(k)− xi(k)∥2(∥y(k)− x⋆∥2 + ∥xi(k)− x⋆∥2)

≤∥y(k)− xi(k)∥2(max
p,q∈X

∥p− q∥2 + max
u,v∈Xi

∥u− v∥2),

where the first inequality is obtained from the triangle inequality. Notice that the terms

after the last inequality are irrespective of x⋆ and bounded under Assumption 6, there exists

K
′′
c ∈ N+ such that for all k > K

′′
c ,

|∥y(k)− x⋆∥22 −
1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥22| ≤
δ2

4
, ∀x⋆ ∈ X⋆ (3.20)

from Lemma 10. Then we consider two cases.

1) If f(y(k)) < f(x⋆) + δ, then

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥22 =
1

m̄

m̄∑
i=1

∥
m̄∑
j=1

wij(k)xj(k)− α(k)gi(k)− x⋆∥22

≤ 2(
1

m̄

m̄∑
i=1

∥
m̄∑
j=1

wij(k)xj(k)− x⋆∥22 + α(k)2G2)

≤ 2(
1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥22 + α(k)2G2),

where the first inequality is obtained from the fact that ∥a+ b∥22 ≤ 2(∥a∥22 + ∥b∥22) and the
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second inequality from the convexity of ∥ · ∥22 and Assumption 8. So when k > K
′′
c ,

min
x⋆∈X⋆

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥22 ≤ min
x⋆∈X⋆

2(
1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥22 + α(k)2G2)

≤ 2 min
x⋆∈X⋆

(∥y(k)− x⋆∥22 +
δ2

4
+ α(k)2G2)

≤ 2(d(δ)2 +
δ2

4
+ α(k)2G2),

where (3.20) is used to obtain the second inequality.

Remark 10 In Case 1) above, we make use of (3.20), which results from Assumption 6.

As a result, the analysis of Case 1) above cannot to applied to the unconstrained case where

Xi = Rn.

2) If f(y(k)) ≥ f(x⋆) + δ, it follows from (3.18) that when k > max{K ′
α,K

′
c},

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥22 ≤
1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥22 − α(k)δ

<
1

m̄

m̄∑
i=1

∥xi(k)− x⋆∥22.

Then we have that min
x⋆∈X⋆

1
m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥22 ≤ min
x⋆∈X⋆

1
m̄

m̄∑
i=1

∥xi(k)− x⋆∥22.

From (16), for arbitrary δ > 0, there exists Kp,δ ∈ N+ such that for all kp > Kp,δ,

f(x(kp)) − f(x⋆) < δ. Then taking into consideration of the two cases above, when

k > max{K ′
α,K

′
c,K

′′
c ,Kp,δ}, we have that

min
x⋆∈X⋆

1

m̄

m̄∑
i=1

∥xi(k + 1)− x⋆∥22 ≤ 2(d(δ)2 +
δ2

4
+ max

k>max{K′
α,K

′
c,K

′′
c }

α(k)2G2)

≤ 2(d(δ)2 +
δ2

4
+

δ2

4G2
).

Notice that lim
δ→0

d(δ) = 0. Then we can conclude that lim
k→∞

min
x⋆∈X⋆

m̄∑
i=1

∥xi(k)−x⋆∥2 = 0, ∀i ∈

V. So all agents’ estimates {xi(k)}, ∀i ∈ V, converge to the optimal set X⋆.
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3.2.3 Analysis of Convergence Rate when α(k) = D√
k+1

From (3.8), we have that

2α(k)[f(y(k))− f(x⋆)]

≤∥y(k)− x⋆∥22 − ∥y(k + 1)− x⋆∥22 + α(k)2G2 + 4
1

m̄
Gα(k)

m̄∑
j=1

∥y(k)− vj(k)∥2.

From the proof of Lemma 8(a) in [34] and by replacing ϕi(k) in (3.4) with 0, we have that

∥vi(k)− y(k)∥2 ≤ C1β
k−1 + C2

k−2∑
t=0

βk−tα(t) + 2α(k)G,

where 0 < β < 1, C1 and C2 are some constants. So

2α(k)[f(y(k))− f(x⋆)] ≤∥y(k)− x⋆∥22 − ∥y(k + 1)− x⋆∥22 + α(k)2G2

+ 4α(k)G(C1β
k−1 + C2

k−2∑
t=0

βk−tα(t) + 2α(k)G).

Let eN be as in (3.5). Then we have that

2

N∑
k=M

α(k)eN ≤∥y(M)− x⋆∥22 − ∥y(N + 1)− x⋆∥22 +
N∑

k=M

G2α(k)2

+ 4α(k)G

N∑
k=M

(C1β
k−1 + C2

k−2∑
t=0

βk−tα(t) + 2α(k)G)

≤∥y(M)− x⋆∥22 + 9G2
N∑

k=M

α(k)2 + 4GC1

N∑
k=M

α(k)βk−1

+ 4GC2

N∑
k=M

α(k)

k−2∑
t=0

βk−tα(t).
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As a result,

eN ≤
∥y(M)− x⋆∥22 + 9G2

N∑
k=M

α(k)2

2
N∑

k=M

α(k)

+

4GC1

N∑
k=M

βk−1α(k) + 4GC2

N∑
k=M

α(k)
k−2∑
t=0

βk−tα(t)

2
N∑

k=M

α(k)

(3.21)

For the denominator of (3.21), as α(k) = D√
k+1

, we have that

N∑
k=M

α(k) =

N∑
k=M

D√
k + 1

= O(
√
N),

which can be verified by calculating
∫ N
M

1√
t+1

dt. For the numerator of (3.21), ∥y(M)−x⋆∥22

is O(1) because it is bounded. For the second term, we have that

N∑
k=M

α(k)2 =
N∑

k=M

D2

k + 1
= O(1), (3.22)

which can be verified by calculating
∫ N
M

1
t+1dt. For the third term, as βk−1α(k) ≤ βk−1 D√

M+1
,

we have that
N∑

k=M

βk−1α(k) ≤ 1

1− β

D√
M + 1

= O(
1√
N

), (3.23)

because M = ⌊N2 ⌋.

For the last term in the numerator of (3.21), we substitute α(k) and obtain

that
N∑

k=M

α(k)
k−2∑
t=0

βk−tα(t) = D2
N∑

k=M

1√
k+1

k−2∑
t=0

βk−t 1√
t+1

. First, we consider the factor

k−2∑
t=0

βk−t 1√
t+1

and obtain that

k−2∑
t=0

βk−t 1√
t+ 1

= β2
k−2∑
t=0

βk−2−t 1√
t+ 1

= β2
p∑

t=0

βp−t 1√
t+ 1

= β2[

⌊p/2⌋∑
t=0

βp−t 1√
t+ 1

+

p∑
t=⌊p/2⌋+1

βp−t 1√
t+ 1

],
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where p = k − 2. For the term
⌊p/2⌋∑
t=0

βp−t 1√
t+1

, we have that

⌊p/2⌋∑
t=0

βp−t 1√
t+ 1

≤ βp−⌊p/2⌋
⌊p/2⌋∑
t=0

1√
t+ 1

≤ βp/2

∫ ⌊p/2⌋

0

1√
t+ 1

dt = 2βp/2(
√

⌊p/2⌋ − 1).

It is easy to verify that for any 1 > β1 >
√
β, lim

p→∞
βp/2(

√
⌊p/2⌋−1)

βp
1

= 0. We thus have

that
⌊p/2⌋∑
t=0

βp−t 1√
t+1

≤ 2Cβ1β
p
1 , where Cβ1 is a constant. Next, we consider the term

p∑
t=⌊p/2⌋+1

βp−t 1√
t+1

. We have that

p∑
t=⌊p/2⌋+1

βp−t 1√
t+ 1

≤ 1√
⌊p/2⌋+ 2

p∑
t=⌊p/2⌋+1

βp−t =
1√

⌊p/2⌋+ 2
β2⌊p/2⌋−p+2 1− βp−⌊p/2⌋

1− β
.

As 1 ≤ 2⌊p/2⌋ − p + 2 ≤ 2 and 1−βp−⌊p/2⌋

1−β ≤ 1
1−β , there exists a constant Cβ such that

p∑
t=⌊p/2⌋+1

βp−t 1√
t+1

≤ Cβ
1√

⌊p/2⌋+2
. Noticing p = k − 2, we have that

N∑
k=M

α(k)

k−2∑
t=0

βk−tα(t) ≤2Cβ1

N∑
k=M

1√
k + 1

β
(k−2)
1 + Cβ

N∑
k=M

1√
k + 1

1√
(k + 3)/2

≤2Cβ1

N∑
k=M

1√
k + 1

β
(k−2)
1 +

√
2Cβ

N∑
k=M

1

k + 1
,

where the first term is O( 1√
N
) as analyzed in (3.22) and the second O(1) as analyzed in

(3.23).

Taking into consideration all the terms in numerator and denominator, we hence

have that eN =
O(1)+O(1)+O( 1√

N
)+O( 1√

N
)+O(1)

O(
√
N)

= O( 1√
N
).

3.3 Simulations

In this section, we illustrate the effectiveness of the positive, vanishing and non-

summable step sizes via a simulation example.
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The multi-agent system is composed of seven agents, and the topology of the

network is an undirected ring. The weights in the weight matrix are selected as wij = 1
3

if there is an edge (j, i) and wij = 0 otherwise. We choose f1(x) = ∥x − 3∥1, f2(x) =

∥x−2∥1, f3(x) = ∥x−1∥1, f4(x) = ∥x∥1, f5(x) = ∥x+1∥1, f6(x) = ∥x+2∥1, f7(x) = ∥x+3∥1.

Here, fi, i = 1, 2, · · · , 7 are selected as non-differentiable. The step sizes are selected as

α(k) = 1√
k+1

, k = 0, 1, 2, · · · , which is positive, vanishing, non-summable but not square

summable, i.e.,
∞∑
k=1

α(k)2 = ∞. The initial estimates of the agents are generated randomly.

3.3.1 Convergence Result

In this part, we show the convergence result of the simulation example in the

constrained case. We select the constraint sets as X1 = [−1, 5], X2 = [−0.5, 3], X3 =

[−4, 2], X4 = [−3.7, 4], X5 = [−7, 0.5], X6 = [−5, 1.7], X7 = [−8, 0.9], which satisfy Assump-

tion 6.

The simulation result is shown in Fig. 3.1. From Fig. 3.1, we can see that the

norms of the errors, i.e., the distances between the agents’ estimates and the optimizer, di-

minish to zero for all agents. This simulation example shows that when the step sizes are not

square summable but positive, vanishing and non-summable, the distributed subgradient

algorithm (3.2) can make the agents’ estimates converge to a common minimizer.

3.3.2 Convergence Rate Comparison

In this part, we compare the convergence rate of eN defined in (3.5) for the uncon-

strained case between α(k) = 1√
k+1

and α(k) = 1
k+1 , which is square summable as required
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Figure 3.1: Norm of estimate errors
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Figure 3.2: Comparison of convergence rates with different selections of step sizes
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in the literature. In this case, we select the constraints Xi = R in accord with the analysis

in Section 3.2.3. The comparison is shown in Fig. 3.2. From Fig. 3.2, we can see that eN

converges much faster when α(k) = 1√
k+1

than when α(k) = 1
k+1 .

45



Chapter 4

Distributed Minimum Weighted

Norm Solution to Linear Equations

Associated with Weighted Inner

Product

In this chapter, we will design distributed algorithms to find the solution of a

system of linear equations Ax = b with the minimum norms associated with inner product.

The algorithm make the agents’ estimates converge to the desired solution with appropriate

approximation. What’s more, the algorithm is robust to initialization errors, i.e., the final

convergence error is upper bounded by initialization errors.
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4.1 Problem Formulation

In this section, we find the minimum weighted norm solution of a group of linear

equations in a distributed way, where the weighted norm is associated with a weighted inner

product, and can be expressed as ∥x∥M =
√
xTMx for some symmetric and positive definite

matrix M .

Suppose that we have a group of m̄ agents, and agent i knows a group of linear

equations Aix = bi, where Ai ∈ Rmi×n, x ∈ Rn, and bi ∈ Rmi . Then the global linear

equations that the agents plan to solve cooperatively are Ax = b, where A =


A1

...

Am̄

 ∈

Rm×n, b =


b1

...

bm̄

 ∈ Rm, and m =
m̄∑
i=1

mi. For the global linear equations Ax = b, we have

the following assumption:

Assumption 9 The system of linear equations Ax = b has at least one solution, but 0 is

not a solution of Ax = b, i.e., b ̸= 0.

The algorithm to find the minimum weighted norm solution of Ax = b is proposed

as

xi(k + 1) = xi(k)−
1

|Ni(k)|
PM
i [

∑
j∈Ni(k)

(xi(k)− xj(k))], i ∈ V, (4.1)

where xi is agent i’s estimate of the minimum weighted norm solution of Ax = b, Ni(k) is

the neighbor set of agent i at time k, PM
i = Ki(K

T
i MKi)

−1KT
i M , and the columns of Ki

form a basis of ker(Ai).
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Remark 11 When M = I, (4.1) is the same as the distributed algorithm to solve linear

equations in [29]. So the algorithm in [29] is a special case of the algorithm here in (4.1).

Also in this case, we denote P I
i as Pi for simplicity, and notice that Pi is in fact the

orthogonal projection matrix onto ker(Ai), i.e., span(Ki).

Remark 12 Let K be a matrix whose columns form a basis of ker(A). Then we have that

span(K) ⊆ span(Ki) as AiK = 0.

4.2 Main Results

In this section, we will prove that with special initializations, the algorithm (4.1)

can find the minimum weighted norm solution of the global linear equations Ax = b in a

distributed way. Moreover, if there are bounded errors on the initializations, we will prove

that the final convergence point of (4.1) is also bounded away from the global minimum

weighted norm solution.

Let’s first define the local minimum weighted norm solution of Aix = bi for agent

i, i ∈ V as

x⋆i =arg min
x:Aix=bi

∥x∥2M , (4.2)

and the global minimum weighted norm solution of Ax = b as

x⋆ =arg min
x:Ax=b

∥x∥2M . (4.3)

4.2.1 Minimum two-norm case

In this part, we deal with the special case where M = I, i.e., the norm is two-norm.
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Lemma 17 When M = I, x⋆ in (4.3) is the unique solution of A

KT

x =

b

0

 , (4.4)

where the columns of the matrix K form a basis of ker(A).

Proof. The Lagrangian for the optimization problem in (4.3) with W = I is

L =
1

2
xTx+ λT (Ax− b).

The minimum x⋆ satisfies

∂L(x⋆, λ)

∂x
= x⋆ +ATλ = 0.

Then we have

KTx⋆ = −KTATλ = −(AK)Tλ = 0.

Also as the columns of K form a basis of ker(A), the columns of K and the rows of A

are linearly independent. We have rank(

 A

KT

) = n. It follows that (4.4) has a unique

solution. As a result, x⋆ is the unique solution of (4.4).

Next we show the main result when M = I.

Theorem 3 When M = I, if the agents start from x⋆i , i ∈ V in (4.2), i.e., the minimum

two-norm solution of their local linear equations, then under Assumptions 1 and 9, they will

converge to x⋆ in (4.3), i.e., the minimum two-norm solution of the global linear equations.

Proof. From Lemma 4, we know that there exists a plane ps in the affine space in which

the points are the solutions of the global linear equations Ax = b, i.e.,

ps = {x|Ax = b}. (4.5)
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Note that dim(ps) = n− rank(A). We denote pi = {x|Aix = bi}, i ∈ V the solution plane

of local linear equations Aix = bi. Then we have dim(pi) = n− rank(Ai). Define the plane

p⊥ = {x|KTx = 0}, (4.6)

where the columns of the matrix K form a basis of ker(A). Then we know that dim(p⊥) =

n− dim(ps) = rank(A).

We denote the line passing through the origin and x⋆ as l⋆. From Assumption 9

that x⋆ ̸= 0, l⋆ is unique. Also as the origin does not lie in ps under Assumption 9, we know

from Lemma 5 that the intersection of the line l⋆ and ps is the single point x⋆; otherwise l⋆

would be in ps.

From Lemma 17, we know x⋆ ∈ p⊥. And also 0 ∈ p⊥. Then with Lemma 5, we

know that l⋆ ∈ p⊥. Because p⊥ is perpendicular to span(K), i.e., ker(A), p⊥ is perpendicular

to the space ps0 = {x|Ax = 0}. Also as ps0 is the associated vector space of ps, then it

follows from Definition 7, p⊥ is perpendicular to ps.

Let p⊥i = p⊥
∩

pi. Then we have that x⋆ ∈ p⊥i, that p⊥i is the solution plane of Ai

KT

x =

bi

0

, and that dim(p⊥i) = n− (n− rank(A)+ rank(Ai)) = dim(pi)−dim(ps).

Let l⊥i be the line passing through the origin, intersected with and perpendicular

to p⊥i, and denote the intersection point of l⊥i and p⊥i as xsi , i.e. l⊥i
∩

p⊥i = xsi and

l⊥i ⊥ p⊥i. As 0 ∈ p⊥ and xsi ∈ p⊥i ⊂ p⊥, we have that l⊥i ∈ p⊥ from Lemma 5. Then it

follows that l⊥i ⊥ ps as p⊥ ⊥ ps. So l⊥i is perpendicular to the dim(ps) basis of ps. Since

l⊥i ⊥ p⊥i, l⊥i is perpendicular to the dim(pi) − dim(ps) basis of p⊥i. Also the basis of ps

and that of p⊥i are linearly independent from the fact that they are orthogonal. Then it

follows that l⊥i is perpendicular to dim(pi) linearly independent vectors of pi. So l⊥i is
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perpendicular to pi. Then from Lemma 6 we know that xsi is indeed x⋆i . Also as l⊥i ∈ p⊥,

we have that x⋆i ∈ p⊥. Thus we have known that x⋆ and x⋆i , i ∈ V lie in the plane p⊥.

From the algorithm (4.1), we know that whenM = I, Pi = Ki(K
T
i Ki)

−1KT
i , i ∈ V

is an orthogonal projection matrix onto ker(Ai), i.e., span(Ki). We denote pv,i = {x|Aix =

0}, which is the associated vector subspace of the plane pi. Let pv,⊥i = pv,i
∩

p⊥. With a

similar process to prove l⊥i ⊥ pi in the above paragraph, we can show that for all x ∈ p⊥,

the line passing through x, intersected with and perpendicular to pv,⊥i is orthogonal to pv,i.

Then it follows that Pix ∈ pv,⊥i.

Note that pv,⊥i is indeed the associated vector space of p⊥i. So if for all j ∈ V,

xj(k) lie in P⊥, it follows that xi(k + 1) would be in the plane xi(k) + [pv,⊥i]. If xi(k)

happens to be in p⊥i, then the plane xi(k) + [pv,⊥i] would be p⊥i itself. It follows that

xi(k + 1) is also in p⊥i. As agent i initializes itself at x⋆i ∈ p⊥i ⊂ p⊥, then from induction

we have that xi(k), k = 0, 1, 2, · · · lies in p⊥i, and thus in p⊥. Then it follows that the

sequences generated with the algorithm (4.1) when M = I will be all in p⊥.

We also know that when M = I, the algorithm (4.1) reduces to the algorithm

proposed in [29], and thus the agents reach a consensus at some solution of Ax = b. Also

the solution has to be in p⊥, which is {x|KTx = 0}. Thus, it satisfies both KTx = 0 and

Ax = b. Then from Lemma 17, we know that the solution is x⋆.

Next, we will show that if the agents are initialized bounded away from x⋆i , they

will converge to some solution of Ax = b, and the solution is also bounded away from x⋆.

First, we have the following lemma on the distance between two parallel planes with the

same associated vector space.
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Lemma 18 For two parallel planes p1 = {x|Ax = b} and p2 = {x|Ax = b + δb}, where A

has full row rank, the distance from p1 to p2 is given by d(p1, p2) = ∥δb∥(AAT )−1.

Proof. The problem in Lemma 18 is equivalent to

min
1

2
∥x− y∥22,

subject to Ax = b,

Ay = b+ δb.

Then its Lagrangian is

L =
1

2
∥x− y∥22 + λT

1 (Ax− b) + λT
2 (Ay − (b+ δb)).

Then we have

∂L

∂x
= x− y +ATλ1 = 0,

∂L

∂y
= y − x+ATλ2 = 0.

Together with Ax = b and Ay = b + δb, we have λ1 = −(AAT )−1δb and x − y =

AT (AAT )−1δb. It follows that ∥x− y∥22 = δbT (AAT )−1δb and

d(p1, p2) = ∥x− y∥2 = ∥δb∥(AAT )−1 .

Then we have the following result for the case with inexact initializations:

Theorem 4 If the agents have their initial estimates at x̃⋆i , i ∈ V , which are locally feasible,

i.e., Ax̃⋆i = bi, but inexact, i.e. x̃
⋆
i ̸= x⋆i , then under Assumptions 1 and 9, they will converge

to some solution x̃⋆ of Ax = b located in a neighborhood of x⋆, and d(x̃⋆, x⋆) ≤ max
i∈V

d(x̃⋆i , x
⋆
i ).
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Proof. Let’s first prove that KTPi = KT , i ∈ V . As Pi = Ki(K
T
i Ki)

−1KT
i is the

orthogonal projection matrix onto span(Ki), i.e., for all x ∈ Rn, x − Pix is perpendicular

to span(Ki). As span(Ki) contains span(K) from Remark 12, x−Pix is also perpendicular

to span(K). Then we have KT (x − Pix) = 0. It follows that for all x ∈ Rn, we have

KTx = KTPix, and thus

KT = KTPi.

When M = I in (4.1), it follows from [29] that xi(k), i ∈ V reach a consensus at

some solution x̃⋆ of Ax = b. As KT = KTPi, we have from (4.1) that

KTxi(k + 1) = KTxi(k)−
1

|Ni(k)|
KTPi[

∑
j∈Ni(k)

(xi(k)− xj(k))]

= KTxi(k)−
1

|Ni(k)|
∑

j∈Ni(k)

(KTxi(k)−KTxj(k)),

which is a consensus algorithm for KTx. So KT x̃⋆ is in the convex hull of KT x̃⋆i . From

the convexity of norms, we have that ∥KT x̃⋆∥(KTK)−1 ≤ max
i∈V

∥KT x̃⋆i ∥(KTK)−1 . As ps

in (4.5) and p⊥ in (4.6) are orthogonal and x⋆ and x̃⋆ lie in ps, we have that x̃⋆ − x⋆

is perpendicular to p⊥ and thus d(x̃⋆, p⊥) = d(x̃⋆, x⋆). As d(x̃⋆i , x
⋆
i ) ≥ d(x̃⋆i , p⊥) and

d(x̃⋆i , p⊥) = ∥KT x̃⋆i ∥(KTK)−1 from Lemma 18, we have

d(x̃⋆, x⋆) = d(x̃⋆, p⊥) = ∥KT x̃⋆∥(KTK)−1 ≤ max
i∈V

∥KT x̃⋆i ∥(KTK)−1 ≤ max
i∈V

d(x̃⋆i , x
⋆
i ).

Remark 13 When Assumption 9 does not hold and 0 is among the solutions of Ax = b,

both x⋆i in (4.2) and x⋆ in (4.3) are 0. So the results in Theorem 3 and Theorem 4 still

hold.

53



4.2.2 Minimum weighted norm case

In this part, we will consider the case when M is a general symmetric and positive

definite matrix M .

Theorem 5 When W is symmetric and positive definite, if the agents choose x⋆i , i ∈ V in

(4.2) as their initial values, then the sequences they generated with the algorithm in (4.1)

will finally converge to x⋆ in (4.3) under Assumptions 1 and 9.

Proof. As W is symmetric and positive definite, there exists an invertible matrix C, such

that CTC = W . Let

y = Cx. (4.7)

The problems in (4.2) and (4.3) become, respectively

y⋆i =arg min
x:Ai,W y=bi

∥y∥22,

and

y⋆ =arg min
x:AMy=b

∥y∥22,

where Ai,W = AiC
−1 and AM = AC−1. We denote Ki,W = CKi and KM = CK as the

matrices whose columns form bases of ker(Ai,W ) and ker(AM ), respectively. We have that

x⋆i = C−1y⋆i and x⋆ = C−1y⋆.

Then it follows that the algorithm (4.1) for x becomes the following algorithm for

y:

C−1yi(k + 1) = C−1yi(k)−
1

|Ni(k)|
PM
i [

∑
j∈Ni(k)

C−1(yi(k)− yj(k))].
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Then

yi(k + 1)

=yi(k)−
1

|Ni(k)|
CPM

i [
∑

j∈Ni(k)

C−1(yi(k)− yj(k))]

=yi(k)−
1

|Ni(k)|
CKi(K

T
i MKi)

−1KT
i M [

∑
j∈Ni(k)

C−1(yi(k)− yj(k))]

=yi(k)−
1

|Ni(k)|
Ki,W (KT

i,WKi,W )−1KT
i,W [

∑
j∈Ni(k)

(yi(k)− yj(k))],

(4.8)

which is the algorithm (4.1) for y in the case of M = I. Then from Theorem 3, we know

that if the agents begin with y⋆i and travel along the algorithm (4.8), they will finally reach

y⋆. Accordingly, if they start from x⋆i and travel along (4.1), they will arrive at x⋆.

Remark 14 When f(x) is an increasing function of x, let

x⋆f =arg min
x:Ax=b

f(∥x∥M ),

and

x⋆f,i =arg min
x:Aix=bi

f(∥x∥M ).

Then the algorithm in (4.1) can also be used to find x⋆f when the agents are initialized at

x⋆f,i, because x⋆f = x⋆ and x⋆f,i = x⋆i .

When the agents have locally feasible but inexact initial values, we have the fol-

lowing result for a general symmetric and positive definite M :

Theorem 6 If the agents have initial estimates x̃⋆i , i ∈ V , which are locally feasible, i.e.,

Ax̃⋆i = bi, but inexact, i.e. x̃⋆i ̸= x⋆i , then under Assumptions 1 and 9, they will converge to

some solution x̃⋆ of Ax = b in a neighborhood of x⋆ and ∥x̃⋆ − x⋆∥M ≤ max
i∈V

∥x̃⋆i − x⋆i ∥M .
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Proof. From Theorems 4 and 5, we know that yi, i ∈ V in (4.8) finally converge to some

solution ỹ⋆ of AMy = b and d(ỹ⋆, y⋆) ≤ max
i∈V

d(ỹ⋆i , y
⋆
i ). Then It follows that accordingly

xi, i ∈ V will converge to some solution x̃⋆ = C−1ỹ⋆ of Ax = b and

∥x̃⋆ − x⋆∥M ≤ max
i∈V

∥x̃⋆i − x⋆i ∥M .

4.3 Simulations

In this section, we provide two simulation examples to show the effectiveness of

the proposed algorithm (4.1) in the cases of both the exact initializations and inexact

initializations.

In both examples, to obtain the positive definite matrix M , we first generate a

random orthogonal matrix U and a random diagonal matrix Wd with positive diagonal

elements, and then make W = UTWU . We consider an agent network consisting of 15

agents under the topology of a directed ring, and each agent knows one row of the augmented

matrix [A b], where A ∈ R15×20 and b ∈ R15 are also generated randomly. The topology of

the directed ring.

4.3.1 Exact initialization

In this part, we show with a simulation example that the algorithm in (4.1) makes

all agents converge to the global minimum weighted norm solution if they are initialized at

their local minimum weighted norm solutions. The parameters of the example are generated

in a random way as stated above.
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Figure 4.1: Change of distance from agents estimates and the global minimum weighted
norm solution

The simulation result is shown in Fig. 4.1, from which we can see that the es-

timation errors of all agents on the minimum weighted norm solution of the global linear

equations gradually converge to 0. So we can tell that all agents arrive at the minimum

weighted norm solution of Ax = b at last.

4.3.2 Inexact initialization

In this part, we use a simulation example to illustrate the effectiveness of the

algorithm (4.1) in the case of inexact initializations. The parameters W , A and b are
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obtained as mentioned in the second paragraph in this section, and the initialization errors

are first generated randomly and then multiplied by Ki to make sure the initial values are

locally feasible. As the parameters are obtained in a random way, they might be different

from those in the previous case.

The simulation results are presented in Figs. 4.2, 4.3 and 4.4. Fig. 4.2 shows the

change of the maximum distance from the other agents to agent 1, from which we can see

that as the maximum distance vanishes, the agents finally come to the same point. Fig. 4.3

shows that difference Ax1 − b, which indicates that the estimate of agent 1 finally becomes

a solution of the global linear equations Ax = b because the difference tends to 0. Fig.

4.4 shows the change of the average of the norm of all agents estimation errors associated

with W . From it we can know that the agents estimates does not converge to the minimum

weighted norm solution of the global linear equations because of the initial errors, but

they are bounded away from it. We can also know that the final error is bounded by the

maximum of the initial errors. So from all the three figures, we have that with inexact

initializations, different agents will finally converge to the same solution of Ax− b, and the

solution is not exactly the global minimum weighted norm solution but the final error is

bounded by the maximum of the initial errors.
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Figure 4.2: Change of maximum distance from other agents to agent 1
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Figure 4.3: Change of norm of Ax1 − b
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Figure 4.4: Change of the average of norms of difference agents estimation errors
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Chapter 5

Distributed Algorithm to Solve a

System of Linear Equations with

Unique or Multiple Solutions from

Arbitrary Initializations

In this chapter, we will design a distributed algorithm to solve a system of linear

equations Ax = b that allows arbitrary initialization and at the same time is effective when

Ax = b has multiple solutions.
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5.1 Problem Formulation

Suppose that we have a group of m̄ agents, and each agent knows a local system

of linear equations, Aix = bi, i = 1, · · · , m̄, where Ai ∈ Rmi×n, x ∈ Rn, bi ∈ Rmi , and

m̄∑
i=1

mi = m. The goal of all the agents is to find a common solution of all their local

systems of linear equations, or in another way, to solve in a cooperative way the global

system of linear equations Ax = b, where A =


AT

1

...

AT
m̄



T

∈ Rm×n, b =


b1

...

bm̄



T

∈ Rm. The

agents communicate with their neighbors under the topologies in Assumption 1.

We will design a distributed algorithm for the agents to achieve their goal. The

designed algorithm will be proved to find a solution of Ax = b with either unique or multiple

solutions from arbitrary initializations at a geometric rate.

5.2 Main Results

In this section, we design a discrete-time distributed algorithm to solve a system

of linear equations Ax = b. The algorithm allows arbitrary initializations and can converge

at a geometric rate when Ax = b has either unique or multiple solutions. When Ax = b has

a unique solution, the agents’ estimates in the designed algorithm reach a consensus at the

solution of Ax = b. When the system of linear equations Ax = b has multiple solutions,

the agents’ estimates are proved to converge to the solution of Ax = b determined by the

initializations, the communication topologies, and the minimum 2-norm solution of Ax = b.
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5.2.1 Distributed Algorithm to Solve Linear Equations

In this part, we describe the proposed distributed algorithm to solve a system of

linear equations Ax = b. The algorithm we propose is as follows:

vi(k)=

m̄∑
j=1

wij(k)xj(k),

xi(k + 1)=


vi(k)−

γi∥Aivi(k)−bi∥2AT
i (Aivi(k)−bi)

∥AT
i (Aivi(k)−bi)∥2

,Aivi(k) ̸= bi,

vi(k), otherwise,

(5.1)

where xi(k) is agent i’s estimate of the solution of Ax = b at time k, and γi is a constant in

the open interval (0, 1). The algorithm consists of two parts. The first part is a consensus

process driving all agents to a common point, while the second part is trying to solve the

local system of linear equations Aix = bi.

Remark 15 We can recast solving Ax = b as a distributed optimization problem as min
x

m̄∑
i=1

∥Aix−

bi∥22 and use generic distributed optimization algorithms to solve it. But the generic dis-

tributed optimization algorithms are usually of sub-linear convergence. At the same time,

there are some generic distributed optimization algorithms that can converge at a linear rate,

but they may have special requirements. For example, [45] requires a fixed and symmetric

weight matrix associated with an undirected communication graph while [41] and [35] re-

quire more communication efforts, e.g., communicating not only the estimates but also the

gradients. What’s more, when Ax = b has multiple solutions and thus
m̄∑
i=1

∥Aix− bi∥2 would

not be strongly convex, the generic distributed algorithms fail to converge at a linear rate. In

summary, we may recast the problem as a distributed optimization problem, but the generic

distributed optimization algorithms may not work as well as the algorithm in (5.1).
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Remark 16 There might be some similarity in structure in terms of a combination of

consensus and local gradient direction to some generic distributed optimization algorithms,

e.g. [17]. But we make use of the local function values, i.e., ∥Aivi(k)− bi∥22, and the square

of norms of the gradient, i.e., ∥AT
i (Aivi(k)) − bi∥22 in the local gradient direction in the

algorithm (5.1), which is different from the generic algorithms in the literature including

[17].

Remark 17 Although the algorithm in [49] may be shown to work for the case when Ax =

b has multiple solutions with additional efforts, the selection of the parameter matrices

Gi in [49] is not direct and may require additional computation efforts, while the choice

of the parameters γi in (5.1) is direct. Also, the analysis on the convergence of (5.1)

indeed provides a simpler way to analyze the algorithm in [49]. Finally, we show where the

convergence point is for (5.1) when Ax = b has multiple solutions in Proposition 2, which

may be useful to find a solution of Ax = b with special properties, e.g., the solution with

minimum 2-norm.

The convergence of (5.1) is stated in the following theorem:

Theorem 7 The agents’ estimates xi(k), ∀i ∈ V in (5.1) converge to a common solution

of Ax = b at a geometric rate from arbitrary initializations under Assumptions 1 and 2.

When Ax = b has multiple solutions, the limit point of xi(k), ∀i ∈ V can be expressed as

xMN+xNA, where xMN is the solution of Ax = b with the minimum 2-norm and xNA is the

consensus point of the projections of the agents’ initial conditions under the communication

topologies Gk, k = 0, 1, 2, · · · .
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Remark 18 Theorem 7 ensures the geometric convergence rate of (5.1), but it does not

give any quantitative upper bound on the convergence rate. It is generally difficult to obtain

such a bound, but in Sections 5.3.1 and 5.3.2, we provide an analysis on such bounds for

two special cases when A is orthogonal or the communication topology is complete.

We next prove Theorem 7. We prove the case when Ax = b has a unique solution

in Section 5.2.2, and that when Ax = b has multiple solutions in Section 5.2.3.

But first, we show the continuity and the M -Fejer property used in (5.1), which

paves the way for the proof of Theorem 7. Define

Tix =


x− γi[

∥Aix−bi∥22
∥AT

i (Aix−bi)∥22
AT

i (Aix− bi)], Aix ̸= bi,

x, otherwise

,

where γi is a constant in the open interval (0, 1). Then we have that xi(k+ 1) = Tivi(k) in

(5.1).

We then show that Ti is continuous. Let x⋆i be a solution of the local system of

linear equations Aix
⋆
i = bi and e = x− x⋆i . Then when Aix ̸= bi, i.e. Aie ̸= 0,

Tix = x− γi∥Aie∥22AT
i Aie/(∥AT

i Aie∥22).

As σmin(Ai)∥Aie∥2 ≤ ∥AT
i Aie∥2 ≤ σmax(Ai)∥Aie∥2 whenAie ̸= 0, we have that lim

Aie→0,Aie ̸=0
Tix =

x. So we get that Ti is continuous. In the rest of this chapter, we use

Tix = x− γi[
∥Aix− bi∥22

∥AT
i (Aix− bi)∥22

AT
i (Aix− bi)] (5.2)

to represent (5.1) for simplicity and regard the case in which Aix = bi as the limit of (5.2).

We then show the M -Fejer property of (5.2) with the following lemma:
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Lemma 19 [46] Let f be a convex function, and g(x) be its subgradient at the point x.

Also, let f⋆ = inf
x
f(x), c ≥ f⋆, and M(c) = {x : f(x) ≤ c}. Define

T (x) = x−
γf [f(x)− c]

∥g(x)∥22
g(x), 0 < γf < 2. (5.3)

Then T in (5.3) is an M(c)-Fejer mapping.

If we let f(x) = 1
2∥Aix− bi∥22, c = 0, and note that γi =

γf
2 , we can see that (5.2)

is the special case of (5.3). So Ti in (5.2) is a continuous M -Fejer mapping, with M being

the set of solutions of Aix = bi.

The above discussions are summarized in the following lemma:

Lemma 20 Ti in (5.2) is a continuous M -Fejer mapping with M = {x : Aix = bi}.

Remark 19 The distributed algorithm in (5.1) is closely related to a subgradient algorithm

in [46], which is a Fejer-type algorithm. But the subgradient algorithm of Fejer-type in [46]

cannot in general be applied to distributed optimization problems because of the lack of the

knowledge of the optimal value of the global objective function.

5.2.2 Unique Solution Case

In this part, we prove the convergence at a geometric rate of (5.1) when Ax = b

has a unique solution.

Denote the solution of Ax = b as x⋆. Let ei(k) = xi(k)−x⋆ and evi(k) = vi(k)−x⋆.

The convergence of xi(k) to x⋆ is then equivalent to the convergence of ei(k) to 0. So we

focus on proving that ei(k) vanishes at a geometric rate in this part.
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Notice that Aix
⋆ = bi. Then we can get from (5.1) that

evi(k) =
m̄∑
j=1

wij(k)ej(k),

ei(k + 1) = evi(k)− γi
∥Aievi(k)∥22

∥AT
i Aievi(k)∥22

AT
i Aievi(k),

(5.4)

Notice that (5.4) is indeed the algorithm (5.1) when b = 0, and in this case,

Tix = x− γi
∥Aix∥22AT

i Aix

∥AT
i Aix∥22

= (I − γi
∥Aix∥22AT

i Ai

∥AT
i Aix∥22

)x,

(5.5)

which is also an Mi-Fejer mapping, with Mi = {x : Aix = 0}.

We have that Ti in (5.5) is homogeneous, i.e., Ti(λx) = λTix, ∀λ ∈ R, because

Ti(λx) = (I − γi
∥Aiλx∥22AT

i Ai

∥AT
i Aiλx∥22

)λx

= λ(I − γi
∥Aix∥22AT

i Ai

∥AT
i Aix∥22

)x

= λTix

when λ ̸= 0, and when λ = 0, Ti(λx) = λTix = 0. Also, we have that if a mapping T is

homogeneous, T0 = 0. With the homogeneity, we can define the induced norm for Ti:

Definition 10 For a homogeneous mapping T , its induced norm is defined as ∥T∥ =

sup
∥x∦=0

∥Tx∥
∥x∥ = sup

∥x∥=1
∥Tx∥.

We have that ∥Tx∥ ≤ ∥T∥∥x∥ and ∥T2T1∥ ≤ ∥T2∥∥T1∥. We then define the mixed norm of

a vector of such mappings. Let T as in (2.4), and T is homogeneous if Ti, i = 1, 2, · · · , m̄
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are homogeneous. We then define the mixed norm of T as

∥T ∥2,∞ = ∥


∥T1∥2

...

∥Tm̄∥2

 ∥∞ = max
i=1,2,··· ,m̄

∥Ti∥2.

We find that the mixed norms are induced norms defined in Definition 10, as shown

in the following lemma.

Lemma 21 Let T be defined as in (2.4), and Ti, i = 1, 2, · · · , m̄ are homogeneous map-

pings. Then ∥T ∥2,∞ = sup
∥x∥2,∞=1

∥Tx∥2,∞.

Proof. We have that

sup
∥x∥2,∞=1

∥Tx∥2,∞ = sup
∥x∥2,∞=1

max
i=1,2,··· ,m̄

∥Tixi∥2

= max
i=1,2,··· ,m̄

sup
∥x∥2,∞=1

∥Tixi∥2 = max
i=1,2,··· ,m̄

sup
∥xi∥2=1

∥Tixi∥2

= max
i=1,2,··· ,m̄

∥Ti∥2 = ∥T ∥2,∞.

So ∥T ∥2,∞ = sup
∥x∥2,∞=1

∥Tx∥2,∞.

Remark 20 From Lemma 21, we can see that ∥·∥2,∞ is sub-multiplicative, i.e., ∥Tx∥2,∞ ≤

∥T ∥2,∞∥x∥2,∞ and ∥T1T2∥2,∞ ≤ ∥T1∥2,∞∥T2∥2,∞.

With the above discussions, we find that a homogeneous and continuous M -Fejer

mapping is contractive when M has a special structure, as stated in the following lemma.

Lemma 22 If T is a homogeneous and continuous M -Fejer mapping and its fixed point set

M is a linear subspace, then there exists a constant c < 1 such that ∥Tx∥ ≤ c∥x∥, ∀x ∈ M⊥.
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Proof. As M is a linear subspace, 0 ∈ M . Then we have that ∥Tx∥ ≤ ∥x∥. So c ≤ 1.

Next, we prove c < 1.

When x = 0, it is obvious that ∥Tx∥ ≤ c∥x∥, ∀c < 1 when T is homogeneous.

Next we prove by contradiction that c < 1 when x ̸= 0. Suppose not. There

exist sequences {ck} and {xk}, such that ck ≤ 1, ck → 1, xk ∈ M⊥, xk ̸= 0, k = 1, 2, 3, · · ·

and ∥Txk∥ ≥ ck∥xk∥. Let yk = xk
∥xk∥ . Then ∥yk∥ = 1. From the homogeneity of T , we

have that ∥Tyk∥ ≥ ck. As the sequence {yk} is bounded, it has a convergent subsequence.

Without loss of generality, we suppose {yk} itself is convergent to y∞. Then we have that

∥y∞∥ = 1. As M⊥ is closed, y∞ ∈ M⊥. From the continuity of T and norms, we have that

∥Ty∞∥ ≥ 1. As ∥Ty∞∥ ≤ ∥y∞∥ from 0 ∈ M , ∥Ty∞∥ = 1 = ∥y∞∥. From Lemma 7, we have

that Ty∞ = y∞. This contradicts with the fact that y∞ ∈ M⊥ and ∥y∞∥ = 1. So c < 1.

As a result, there exists c < 1 such that ∥Tx∥ ≤ c∥x∥.

From (5.4), we get that evi(k + 1) =
m̄∑
j=1

wij(k + 1)Tjevj (k). Denote ev(k) =
ev1(k)

· · ·

evm̄(k)

 and T as in (2.4), then we have that ev(k + 1) = (W (k + 1) ⊗ I)Tev(k), and

that

ev(t) = (W (t)⊗ I)T (W (t− 1)⊗ I)T · · · (W (s+ 1)⊗ I)Tev(s),

for t > s. Define

ΦT (t : s) = (W (t)⊗ I)T (W (t− 1)⊗ I)T · · · (W (s)⊗ I)T . (5.6)

Then we have that ev(t) = ΦT (t : s+ 1)ev(s).
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Remark 21 ΦT (t : s) can be written as



ΦT,1(t : s)

ΦT,2(t : s)

· · ·

ΦT,m̄(t : s)


, where ΦT,i(t : s) =

m̄∑
j=1

wij(t)Tj(ΦT,j(t−

1 : s)) and ΦT,i(s : s) =
m̄∑
j=1

wij(s)Tj. We can then prove by mathematical induction that

ΦT,i(t : s) is homogeneous if each Ti is homogeneous, and thus that ΦT (t : s) is also homo-

geneous. Hence Lemmas 21 and 22 apply to ΦT (t : s).

With the above results, we next prove Theorem 7 when Ax = b has a unique

solution, which is stated in the following proposition:

Proposition 1 Under Assumptions 1 and 2, the agents’ estimates {xi(k)}, i = 1, 2, · · · , m̄

in the distributed algorithm (5.1) converge to the solution of Ax = b at a geometric rate

when Ax = b has a unique solution.

Proof. Under Assumptions 1 and 2, the product of the weight matrices associated with

the communication topologies Φ(k+(m̄+2)B : k) is positive from Lemma 1. From Lemma

8, ΦT (k+(m̄+2)B : k) is an M -Fejer mapping with M = {1m̄⊗x : x ∈
m̄∩
i=1

{x : Aix = 0}}.

As Ax = b has a unique solution, Ax = 0 has the unique solution 0, and thus M = {0}.

Then from Remark 21 and Lemma 22, ∥ΦT (k + (m̄ + 2)B : k)∥2,∞ ≤ cW (k) < 1. Here

cW (k) is the upper bound defined in Lemma 22. cW (k) is indeed determined by the entries

in W (k),W (k + 1), · · · ,W (k + (m̄ + 2)B), so cW (k) can be regarded as a function of

wij(t), t = k, k+1, · · · , k+(m̄+2)B. As Ti, i = 1, 2, · · · , m̄, ∥·∥2, and ∥·∥∞ are continuous,

cW (k) is also continuous on wij(t), t = k, k + 1, · · · , k + (m̄ + 2)B. As wij(t), t = k, k +

1, · · · , k + (m̄+ 2)B form a closed bounded set in R(m̄+2)Bn2
and cW (k) < 1 for all wij(t),
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we have that there exists a constant c < 1 such that cW (k) ≤ c < 1. That is to say

∥ΦT (k + (m̄+ 2)B : k)∥2,∞ ≤ c < 1, k = 1, 2, 3, · · · .

Then we have from Remarks 20 and 21 that

∥ev(t(m̄+ 2)B + 1)∥2,∞ ≤∥ΦT (t(m̄+ 2)B + 1 : 2)∥2,∞∥ev(1)∥2,∞

≤ct∥ev(1)∥2,∞,

and ∥ev(k)∥2,∞ ≤ c
⌊ k−1
(m̄+2)B

⌋
max

1≤t≤(m̄+2)B
∥ev(t)∥2,∞.

We have that ∥e(t)∥2,∞ = ∥Tev(t− 1)∥2,∞ ≤ ∥T ∥2,∞∥ev(t− 1)∥2,∞ from Remark

20. As Ti is a homogeneous and continuous Mi-Fejer mapping and 0 is one of its fixed

points, ∥Ti∥2 ≤ 1, and thus ∥T ∥2,∞ ≤ 1. So we have that ∥e(t)∥2,∞ ≤ ∥ev(t−1)∥2,∞. Then

we can conclude that e(t) vanishes at a geometric rate, and as a result, xi(t) converges to

x⋆, the solution of Ax = b, at the same geometric rate.

5.2.3 Multiple Solution Case

In this part, we show the geometric convergence rate of (5.1) when Ax = b has more

than one solutions, and that the final convergence point is determined by the initializations,

communication topologies, and the minimum 2-norm solution of Ax = b. We do this by an

orthogonal decomposition of the agents’ estimates xi(k) onto the row space and null space

of A.

First, we investigate the orthogonal projection onto ker(A). Let K be the matrix

whose columns are a basis of ker(A). The projection matrix onto ker(A) is Pker(A) =
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K(KTK)−1KT . Then

Pker(A)xi(k + 1)

=Pker(A)vi(k)− γi
∥Aivi(k)− bi∥2Pker(A)A

T
i (Aivi(k)− bi)

∥AT
i (Aivi(k)− bi)∥22

]

=

m̄∑
j=1

wij(k)Pker(A)xj(k),

where we have used the facts that Pker(A)A
T
i = 0 and that Pker(A) is linear. So we have

that the dynamics of the orthogonal projections of the agents’ estimates onto ker(A) are

consensus processes. As a result, the orthogonal projections of the agents’ estimates onto

ker(A), Pker(A)xi(k), i = 1, 2, · · · , m̄, converge to the same point, denoted as x⋆NA, at a

geometric rate determined by the communication topologies under Assumption 1.

Then we investigate the projection onto span(AT ), the row space of A. The pro-

jection matrix onto span(AT ) is Pspan(AT ) = AT
B(ABA

T
B)

−1AB, where AB has full row rank

with span(AT
B) = span(AT ). Let x⋆ be a solution of Ax = b, ei(k) = xi(k) − x⋆ and

evi(k) = vi(k)− x⋆. Also, notice that Aix
⋆ = bi. We have that

Pspan(AT )evi(k) = Pspan(AT )(

m̄∑
j=1

wij(k)ej(k))

=
m̄∑
j=1

wij(k)Pspan(AT )ej(k),

Pspan(AT )ei(k + 1) = Pspan(AT )evi(k)−
γi∥AiPspan(AT )evi(k)∥22AT

i AiPspan(AT )evi(k)

∥AT
i AiPspan(AT )evi(k)∥22

,

(5.7)

where we use the fact that Pspan(AT )A
T
i = AT

i because all columns of AT
i are in span(AT ).

Eq. (5.7) forms a special case of (5.1) when b = 0. Noticing that Pspan(AT )evi(k) ∈ span(AT ),

all the limit points of (5.7) also lie in span(AT ). As Ax = 0 has a unique solution x = 0

in span(AT ) and span(AT ) = (
m̄∩
i=1

ker(Ai))
⊥, Lemma 22 applies here. Then repeating the
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proof process of Proposition 1, we can prove that Pspan(AT )ei(k) converges to zero at a

geometric rate. Thus, we have that lim
k→∞

Pspan(AT )(xi(k)− x⋆) = 0.

As span(AT ) = (ker(A))⊥, we have that Pspan(AT ) + Pker(A) = I, and that

xi(k)− x⋆ = Pspan(AT )(xi(k)− x⋆) + Pker(A)(xi(k)− x⋆).

As Pker(A)xi(k) reaches a consensus at some point, x⋆NA, Pker(A)(xi(k) − x⋆) also reach-

es a consensus at x⋆NA − Pker(A)x
⋆. As APker(A) = AK(KTK)−1KT = 0, we have that

Pker(A)(xi(k) − x⋆) is a solution of Ax = 0. Then the consensus point x⋆NA − Pker(A)x
⋆

is also a solution of Ax = 0. Combined with lim
k→∞

Pspan(AT )(xi(k) − x⋆) = 0, xi(k), i =

1, 2, · · · , m̄, converge to (x⋆NA − Pker(A)x
⋆) + x⋆, which is a solution of Ax = b because

A(x⋆NA−Pker(A)x
⋆) = 0 and Ax⋆ = b. As both Pspan(AT )(xi(k)−x⋆) and Pker(A)(xi(k)−x⋆)

converge at geometric rates, xi(k) also converges at a geometric rate.

Next, we specify the limit point (x⋆NA−Pker(A)x
⋆)+x⋆. From Pspan(AT )+Pker(A) =

I, we have that

(x⋆NA − Pker(A)x
⋆) + x⋆ = x⋆NA + (I − Pker(A))x

⋆ = x⋆NA + Pspan(AT )x
⋆.

The first part, x⋆NA, is the consensus point of Pker(A)xi(k), i = 1, 2, · · · , m̄, which is de-

termined by the initializations, the matrix A and communication topologies. We nex-

t show that the second part, Pspan(AT )x
⋆, is indeed the solution of Ax = b with min-

imum 2-norm. As Pspan(AT )x
⋆ ∈ span(AT ), we have that KTPspan(AT )x

⋆ = 0 because

span(K) = ker(A). We also have Pspan(AT )A
T = AT because every row of A is in span(AT ),

and thus APspan(AT )x
⋆ = Ax⋆ = b. From Lemma 17, we obtain that Pspan(AT )x

⋆ is the

minimum 2-norm solution of Ax = b, which is determined by Ax = b itself.

The above discussions are summarized in the following proposition:
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Proposition 2 Under Assumptions 1 and 2, the agents’ estimates in the distributed al-

gorithm (5.1) converge to the same solution of Ax = b at a geometric rate when Ax = b

has multiple solutions. The limit point of xi(k), k = 1, 2, 3, · · · , i = 1, 2, · · · , m̄ can be

expressed as xMN + xNA, where xMN is the solution of Ax = b with minimum 2-norm

and xNA is the consensus point of the projections of the agents’ initializations under the

communication topologies Gt, t = 0, 1, 2, · · · .

Remark 22 The analysis in this part may also be used to analyze the algorithm in [49]

when Ax = b has multiple solutions.

5.2.4 Alternative Proof of Convergence

If we are only interested in the convergence instead of convergence at a geometric

rate, the convergence of the algorithm (5.1) can be proved in a simpler way with an extension

of the results in [9] when the edge weights are selected as the reciprocals of the number of

the agents’ neighbors. In this part, we extend the results in [9] to jointly strongly connected

topologies and then apply it to proving the convergence of (5.1).

Suppose we have m̄ agents, and each agent owns a private continuous Mi-Fejer

mapping Ti, i = 1, · · · , m̄. Also, suppose that they share at least one common fixed point,

i.e.,
m̄∩
i=1

Mi ̸= ∅. We have the following assumption on Ti.

Assumption 10 Ti, i = 1, · · · , m̄ are continuous Mi-Fejer mappings, and
m̄∩
i=1

Mi ̸= ∅.

To find a common fixed point of Ti in a distributed way, the following algorithm is proposed
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in [9]:

xi(k + 1) = Ti(
1

|Ni(k)|
∑

j∈Ni(k)

xj(k)), (5.8)

where xi(k), i = 1, · · · , m̄ are the estimates of the common fixed point by agent i, and Ni(k)

is the neighbor set of agent i at time k. It is proved in [9] that the algorithm (5.8) converges

to a common fixed point of Ti, i = 1, · · · , m̄ when the communication topologies of the

agent network are strongly connected at each time step. But we find that the algorithm

(5.8) can also converge under jointly strongly connected communication topologies.

But first, we need the following lemma on the convergence of the sequence gener-

ated by the mappings.

Lemma 23 [7] 1 Let Tj , j = 1, · · · , p be p M -Fejer mappings with respect to some norm

∥ · ∥ in Rn. Let {ji}∞i=1 be an admissible sequence, i.e. for any 1 ≤ r ≤ p there are infinitely

many integers i such that ji = r, and x(1) ∈ Rn is given. Then the sequence {x(k)}

generated by x(k) = Tjk(x(k − 1)) converges if and only if Tj , j = 1, · · · , p, have a common

fixed point. Moreover, in this case the limit of {x(k)} is one of such common fixed points.

Next, we show that the agents’ estimates in the algorithm in (5.8) converges to a

common fixed point of Fejer type mappings of agents.

Lemma 24 The algorithm (5.8) converges to a common fixed point of Ti, i = 1, · · · , m̄

under Assumptions 1 and 10.

Proof. Similar to the approach adopted in [9], let vi(k) =
1

|Ni(k)|
∑
j∈Ni

xj(k). Then we have

1Continuous M -Fejer mappings are also called paracontracting operators in [7] or paracontractions in [9],
but in this dissertation we use the term M -Fejer mapping to emphasize the fixed point set M .
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that vi(k+1) = 1
|Ni(k+1)|

∑
j∈Ni

Tjvj(k). Let v(k) =


v1(k)

· · ·

vm̄(k)

, andW (k) be the weight matrix

associated with the communication topology at time k with wij(k) =
1

|Ni(k)| if (j, i) ∈ E and

wij(k) = 0 else for algorithm (5.8). Then we have that v(k + q) = ΦT (k + q : k + 1)v(k),

where ΦT is defined in (5.6). From Lemma 1, we have that when q ≥ (m̄− 1)B, all entries

of Φ(k + q : k + 1) are positive. Then applying Lemma 9, we know that ΦT (k + q : k + 1)

is a continuous M -Fejer mapping, with M = {1m̄ ⊗ y : y ∈
m̄∩
i=1

Mi}. As there are only a

finite choice of W (k), there are also only finite choices of ΦT (k + q : k + 1), k = 1, 2, 3, · · · .

Then applying Lemma 23, we have that v(t(m̄− 1)B+1), t = 1, 2, 3, · · · converges to some

point yM in M . From Lemma 8, we know that ∥v(k + 1)− yM∥p,∞ ≤ ∥Tv(k)− yM∥p,∞ ≤

∥v(k) − yM∥p,∞. So we can conclude that the sequence v(k), k = 1, 2, 3, · · · converges to

yM ∈ M . Taking into consideration that M = {1m̄ ⊗ y : y ∈
m̄∩
i=1

Mi}, we can conclude that

vi(k), i = 1, · · · , m̄ reach a consensus at a common fixed point of Ti, i = 1, 2, · · · , m̄. From

(5.8) and the continuity of Ti, i = 1, 2, · · · , m̄, xi(k + 1), i = 1, 2, · · · , m̄ also converge to

the same common fixed point.

Remark 23 Similar results to Lemma 24 are shown in [8, 9], where the communication

topologies are time varying but strongly connected at each time instance. But in Lemma 24,

we suppose that the communication topologies are jointly strongly connected, which is more

general than that in [8,9].

We have shown that Ti in (5.2) is a continuous Mi-Fejer mapping with Mi = {x :

Aix = bi} in Section 5.2.1. Then from Lemma 24, we obtain the convergence of (5.1) when
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wij(k) =
1

|Ni(k)| .

The results of the analysis in this part are summarized in the following proposition:

Proposition 3 Under Assumptions 1 and 10, the agents’ estimates in (5.1) converge to a

solution of Ax = b when wij(k) =
1

|Ni(k)| .

Remark 24 The alternative proof provided in this part, i.e., the proof of Proposition 3 is

simpler than those in Sections 5.2.2 and 5.2.3, but it only guarantees convergence rather

than convergence at a geometric rate, and it does not provide any information on which

point the algorithm converges to when Ax = b has multiple solutions. Also, the weights

of the edges in Proposition 3 can only be selected as the reciprocal of the numbers of the

neighbors of the agents, while in Theorem 7, the edge weights can be chosen arbitrarily under

Assumption 2.

5.3 Convergence Rate Upper Bounds for Special Cases

In this section, we will give an analysis on the upper bound of the convergence

rate with respect to the parameter γi and the condition number of A. As a meaningful

upper bound for the general cases are too complex to be obtained, we consider two special

cases when A is an orthogonal matrix and when the communication graph is complete with

a uniform edge weight. For simplicity, we suppose in this section that b = 0.2 Then the

2The analysis in this part also applies to general b, because the convergence of the agents’ estimates to a
solution of Ax = b is equivalent to the convergence of estimation errors to zero. See Sections 5.2.2 and 5.2.3
for details.

78



algorithm (5.1) becomes

vi(k) =

m̄∑
j=1

wij(k)xj(k),

xi(k + 1) = vi(k)−
γi∥Aivi(k)∥22AT

i Aivi(k)

∥AT
i Aivi(k)∥22

and Tix = x− γi∥Aix∥22AT
i Ai

∥AT
i Aix∥22

x.

5.3.1 Orthogonal Matrix

When A is orthogonal, we have that AiA
T
i is an mith order identity matrix. Then

we have that
∥Aivi(k)∥22

∥AT
i Aivi(k)∥22

= 1. It follows that

v(k + 1) = (W (k + 1)⊗ I)Tv(k),

where T is defined in (2.4), and Ti = I−γiA
T
i Ai, which is linear. It follows that v(k+ s) =

ΦT (k + s : k + 1)v(k), where ΦT is defined in (5.6), which is also linear in this case.

Remark 25 In general, the algorithm in (5.1) is nonlinear while in this part it is linear as

A is orthogonal. So the analysis in this part, e.g., Lemmas 26, 27, and 29, does not apply

to the general case in Thoerem 7.

To make the analysis in this part clearer, we will use the concept of graph com-

positions in [4] which is more closely related to the product of weight matrix than graph

unions. The composition of two graphs G2 and G1, written as G2 ◦ G1, with the same vertex

set V is a graph with the vertex set V , and the edge set E such that (j, i) ∈ E, if there exists

a vertex k such that (j, k) is an edge of G1 and (k, i) is an edge of G2 [4]. Here (j, k), (k, i) is

a route from vertex j to vertex i in G2 ◦G1. The definition of the composition and the route
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can be extended to any finite sequence of graphs G1,G2, · · · ,Gk. We have that W (2)W (1)

is the weight matrix of G2 ◦ G1 [4]. For the communication topologies of the agent network,

we make an assumption that is slightly different from Assumption 1.

Assumption 11 . There exists a positive integer B such taht the compositions of G(k+1)B,

G(k+1)B−2, · · · , GkB+1 are strongly connected for k = 0, 1, 2, · · · .

We will use the following lemma on the composition of a sequence of strongly

connected graphs:

Lemma 25 [4] Let G1,G2, · · · ,Gq be a finite sequence of strongly connected m̄th order

graphs. If q ≥ m̄− 1, then Gq ◦ · · · G1 is complete.

It is easy to verify through matrix product that the entries of ΦT are polynomials of

Ti consisting of many monomials of Ti. Next, we will obtain some results on such monomials.

First, we have the following lemma relating the monomials to the communication topologies.

Lemma 26 Let W (1), · · · ,W (q) be a sequence of weight matrices associated with graphs

G1, · · · ,Gq. If j = i1, · · · , iq+1 = i is a route over G1, · · · ,Gq, then TiqTiq−1 · · ·Ti1 is a

component of the ijth entry of ΦT (q : 1) with coefficient Wiiq(q)Wiqiq−1(q − 1) · · ·Wi2j(1)

when A is orthogonal.

Proof. We prove by induction.

When q = 1, the ijth entry of ΦT (q : 1) is wijTj if there is an edge from j to i.

Suppose that it holds for q − 1. Then ΦT (q : 1) = (Wq ⊗ I)TΦT (q − 1 : 1). As there is a

route j = i1, · · · , iq over G1,G1, · · · ,Gq−1, the iqjth entry of ΦT (q − 1 : 1) has a component
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with Tiq−1 · · ·Ti1 . Then by the matrix product, the ijth entry of ΦT (q : 1) has a component

with TiqTiq−1 · · ·Ti1 .

It is easy to verify from matrix product that the corresponding coefficient is

WiiqWiqiq−1 · · ·Wi2j .

Then after a long enough time, we can see from the following lemma that every

entry of ΦT contains a monomial that is composed of all possible Ti.

Lemma 27 Under Assumption 11, each entry of ΦT (q : 1) in (5.6) has a component com-

posed of the product of all Ti, i = 1, · · · , m̄ when q ≥ (m̄− 1)2B + 1 if A is orthogonal.

Proof. Let Φ(t : s) be defined as in (2.1). From Assumption 11, we have that the products

Φ(B, 1), Φ(2B : B+1), · · · , Φ((m̄−1)B : (m̄−2)B+1) are all associated with strongly con-

nected graphs. Denote the corresponding graphs as GΦ1:B
,GΦB+1:2B

, · · · ,GΦ(m̄−2)B+1:(m̄−1)B
,

which are composition of graphs GB ◦ GB−1 · · · G1, G2B ◦ G2B−1 · · · GB+1, · · · , G(m̄−1)B ◦

G(m̄−1)B−1 · · · G(m̄−2)B+1. Then from Lemma 1, we know that the composition graph of

GΦ1:B
,GΦB+1:2B

, · · · ,GΦ(m̄−2)B+1:(m̄−1)B
, denoted as G1:(m̄−1)B, is complete. Then for arbi-

trary i1, i2 = 1, · · · , m̄, there is an edge from i1 to i2 in G1:(m̄−1)B. Then we can find a

route j = i1, i2, · · · , im̄ = i, where i1, i2, · · · , im̄ are distinct vertices, such that there is a

route from j = i1 to i2 over GΦ1:(m̄−1)B
, that from i2 to i3 over GΦ(m̄−1)B+1:2(m̄−1)B

, · · · , and

that from im̄−1 to im̄ = i over GΦ(m̄−2)(m̄−1)B+1:(m̄−1)2B
. And also we can find a route from i

to i from G(m̄−1)2B to G(m̄−1)2B+1 because of self edges. We can conclude from Lemma 26

that the ijth entry of ΦT (q : 1) has a component with all possible Ti, i = 1, 2, · · · , m̄ when

q ≥ (m̄− 1)2B + 1.
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Next, we will give an estimation on the upper bound of ΦT (q : 1). To do that, we

need the following lemma to show the Fejer-type property of the component mentioned in

Lemma 26.

Lemma 28 [48] Let Tj , j = 1, · · · , m̄ be Mj-Fejer type mappings, and M =
m̄∩
j=1

Mj ̸= ∅,

then T = Tm̄Tm̄−1 · · ·T1 is an M -Fejer type mapping.

With the above results, we then estimate the upper bound of the convergence rate in the

following lemma:

Lemma 29 If A is orthogonal, ∥ΦT (q : 1)∥2,∞ ≤ 1 − (1 − c)ηq under Assumptions 2 and

11, where 0 < c < 1.

Proof. From Lemma 27, every entry in ΦT (q : 1) has a component consisting of all possible

Ti, denoted by c
(a)
i P

(a)
T,i , where the coefficient c

(a)
i is the product of the edge weights in the

corresponding routes, and P
(a)
T,i is the product of all possible Ti. As Ax = 0 admits a unique

solution due to the orthogonality of A, we have that the intersection of Mi = Fix(Ti) = {x :

Aix = 0}, i = 1, 2, · · · , m̄ is {0}, and its orthogonal complement is Rn. From Lemma 28,

P
(a)
T,i is an M -Fejer mapping with M = {0}. Also, as Ti, i = 1, 2, · · · , m̄ are homogeneous,

P
(a)
T,i is also homogeneous. Then from Lemma 22, we know that there exists a positive

constant c < 1 such that ∥P (a)
T,i ∥2 ≤ c.

We denote the other monomials in the ith entry of ΦT (q : 1) as c
(na,1)
i P

(na,1)
T,i ,

c
(na,2)
i P

(na,2)
T,i , · · · , c(na,f)i P

(na,f)
T,i , where f is the number of these monomials, P

(na,k)
T,i , k =

1, 2, · · · , f are products of some of Tj , j = 1, 2, · · · , m̄, and c
(na,k)
i are the coefficients.

As at least one Tj , j = 1, 2, · · · , m̄ is missing in P
(na,k)
T,i , k = 1, 2, · · · , f , the fixed point
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sets of P
(na,k)
T,i , k = 1, 2, · · · , f are linear subspaces containing nonzero element. Hence,

∥P (na,k)
T,i ∥2 = 1, k = 1, 2, · · · , f .

We can see that ∥ · ∥2 of the ith entry of ΦT (q : 1) is no greater than c
(a)
i ∥P (a)

T,i ∥2+
f∑

k=1

c
(na,k)
i ∥P (na,k)

T,i ∥2, and thus no greater than c
(a)
i c+

f∑
k=1

c
(na,k)
i = (c

(a)
i +

f∑
k=1

c
(na,k)
i )− (1−

c)c
(a)
i . Note that c

(a)
i +

f∑
k=1

c
(na,k)
i is in fact the summation of all entries in th ith row of

Φ(q : 1) and thus is one. Hence ∥ · ∥2 of the ith entry of ΦT (q : 1) is no greater than

1− (1− c)c
(a)
i . Thus ∥ΦT (q : 1)∥2,∞ ≤ 1− (1− c)min

i
c
(a)
i . Note that c

(a)
i is the product of

q edge weights. From Assumption 2, there exists η > 0 such that wij(t) ≥ η if wij(t) > 0,

we have that c
(a)
i ≥ ηq and min

i
c
(a)
i ≥ ηq, so ∥ΦT (q : 1)∥2,∞ ≤ 1− (1− c)ηq.

Then, we will use the above lemmas to obtain an upper bound of the convergence

rate of the algorithm (5.1) for an orthogonal matrix A. From Lemma 27, we know that every

entry of ΦT (k(m̄−1)2)B+1 : k+1) has a monomial in the form of λ
∏
j
(I−γjA

T
j Aj), where

it contains all possible j = 1, 2, · · · , m̄ and may have repetitive items. As A is orthogonal,

it follows that AiA
T
j = 0, i ̸= j. Then we have that for i ̸= j,

(I − γiA
T
i Ai)(I − γjA

T
j Aj) =I − γiA

T
i Ai − γjA

T
j Aj +

γiγj
4

AT
i AiA

T
j Aj

=I − γiA
T
i Ai − γjA

T
j Aj

=(I − γjA
T
j Aj)(I − γiA

T
i Ai).

Then by re-ordering the items in the monomial, we have that
∏
j
(I − γjA

T
j Aj) =

m̄∏
i=1

(I −

γiA
T
i Ai)

qi , where qi is the number of occurrence of I − γiA
T
i Ai. Note that AT

i Ai is idem-

potent because

(AT
i Ai)

p = AT
i AiA

T
i Ai · · ·AT

i Ai = AT
i Ai,
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where we have used the fact that A is orthogonal and AiA
T
i = I. Then we have that

(I − γiA
T
i Ai)

ki =

qi∑
k=0

(
qi
k

)
(−γiA

T
i Ai)

k

= I − γiA
T
i Ai + (

∑
k≥2

(
qi
k

)
(−γi)

k)AT
i Ai,

where we denote (−γiA
T
i Ai)

0 = I for simplicity. Denote Ri = (
∑
k≥2

(
qi
k

)
)(−γi)

k)AT
i Ai.

Because A is orthogonal, AiA
T
j = 0. It follows that RiA

T
j = 0 and RiRj = 0. Then we have

that

m̄∏
i=1

(I − γiA
T
i Ai)

qi =

m̄∏
i

(I − γiA
T
i Ai +Ri)

= I − (

m̄∑
i=1

γiA
T
i Ai) +

m̄∑
i=1

Ri.

As
∑
k≥2

(
qi
k

)
(−γi)

k = (1 − γi)
qi − (1 − γi) < 0 when γi ∈ (0, 1), Ri is negative semi-definite.

It follows that

m̄∏
i=1

(I − γiA
T
i Ai)

qi ≤ I − (
m̄∑
i=1

γiA
T
i Ai)

= I −ATDiag(γi)A

≤ I −min
i∈V

{γi}ATA

= I −min
i∈V

{γi}I,

where Diag(γi) is a diagonal matrix of which the diagonal entries are γi and the off-diagonal

ones are zero. Then it follows from Lemma 29 that

∥ΦT (k(m̄− 1)2)B + 1 : k + 1)∥2,∞ < 1−min
i∈V

{γi}η(m̄−1)2B+1.

The above discussion is summarized in the following proposition:
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Proposition 4 Suppose A is orthogonal. Then under Assumptions 2 and 11, ∥ΦT (k(m̄−

1)2)B + 1 : k + 1)∥2,∞ < 1 − min
i∈V

{γi}η(m̄−1)2B+1, where m̄ is the number of agents, γi is

a parameter of the algorithm in (5.1), B is defined in Assumption 11, and η is defined in

Assumption 2.

Remark 26 From Theorem 4, we can see that a larger min
i∈V

{γi} will help to accelerate

the convergence of the algorithm (5.1) when A is orthogonal. A smaller B and a bigger

η, which are used to characterize the connectivity of the agent network, also contribute to

faster convergence.

5.3.2 Complete Graph with Uniform Edge Weight

In the previous subsection, we obtain an upper bound unrelated to A because A

is assumed to be orthogonal. In this subsection, we will consider another special case and

show that the matrix A indeed has an influence on the convergence rate.

In this part, we assume that the communication topology of the agent network is

complete and the weight of the edges is 1
m̄ . Then the weight matrix W = 1

m̄1m̄1Tm̄, and

v(k + 1) = 1
m̄1m̄1Tm̄Tv(k). Then we have that

vi(k + 1) =
1

m̄

m̄∑
j=1

(I −
γj∥Ajvj(k)∥22AT

j Aj

∥AT
j Ajvj(k)∥22

)vj(k)

=
1

m̄
[

m̄∑
j=1

(I −
γj∥Ajvj(k)∥22AT

j Aj

∥AT
j Ajvj(k)∥22

)]vi(k),

where we have used the fact that vi(k) = vj(k) in the second equality. As ∥AT
j Ajvj(k)∥22 ≤

σ2
max(Ai)∥Ajvj(k)∥22, we have that

I −
γj∥Ajvj(k)∥22AT

j Aj

∥AT
j Ajvj(k)∥22

≤ I − γj
σ2
max(Aj)

AT
j Aj .
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As AT
j Aj ≤

m̄∑
i=1

AT
i Ai = ATA, σ2

max(Aj) ≤ σ2
max(A). It follows that

I −
γj∥Ajvj(k)∥22AT

j Aj

∥AT
j Ajvj(k)∥22

≤ I − γj
σ2
max(A)

AT
j Aj ,

and

1

m̄

m̄∑
j=1

(I −
γj∥Ajvj(k)∥22AT

j Aj

∥AT
j Ajvj(k)∥22

) ≤ 1

m̄

m̄∑
j=1

(I − γj
σ2
max(A)

AT
j Aj)

≤I −
min
i∈V

{γi}

m̄σ2
max(A)

m̄∑
j=1

AT
j Aj

=I −
min
i∈V

{γi}ATA

m̄σ2
max(A)

≤(1−
min
i∈V

{γi}σ2
min(A)

m̄σ2
max(A)

)I.

The above discussion in this part is summarized in the following proposition:

Proposition 5 When the communication topology of the agent network is complete and

the edge weight are chosen as the reciprocal of the number of agents, the convergence rate

of (5.1) is upper bounded by (1−
min
i∈V

{γi}σ2
min(A)

m̄σ2
max(A)

), where m̄ is the number of agents, σmin(A)

and σmax(A) are the smallest and largest singular values of A, respectively.

Remark 27 From Theorem 5, we can see that the condition number of A, which is σmax(A)
σmin(A) ,

plays a role in the convergence rate of the algorithm (5.1). The larger the condition number

is, the slower the convergence rate is in this case. A larger min{γi} also helps to accelerate

the convergence, which is the same as in Remark 26.
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5.4 Simulations

In this section, we provide some simulation examples to show the effectiveness of

the algorithm proposed in this chapter. First we show the convergence of the algorithm (5.1)

for Ax = b with general A and b. Then we illustrate the influence of γi on the convergence

rate when A is orthogonal with a simulation example. For simplicity, we make all γi, i ∈ V

equal, i.e., γi = γ and thus min
i

γi = γ. Finally, we do simulations on different matrices A

with different condition numbers.

5.4.1 General Matrix A

We consider an agent network consisting of 50 agents under the topology of a

directed ring. Here each agent knows one row of the augmented matrix

[
A b

]
, where

A ∈ R50×70 and b ∈ R15 are both generated randomly. From Fig. 5.1, for all three cases of

γ = 0.25, 0.5, 0.75, the estimation errors tend to zero. Also, we can see from the two figures

that γ has an influence on the performance of the algorithm in general cases. Though the

results in the example seem to support a larger γ for faster convergence in general cases,

but the rigorous theoretic analysis is left blank.

5.4.2 Orthogonal Matrix A

We consider an agent network consisting of 70 agents under the topology of a

directed ring, and each agent knows one row of the augmented matrix

[
A b

]
, where A ∈

R70×70 is an orthogonal matrix and b ∈ R15 is generated randomly.

We select γ to be 0.25, 0.5, and 0.75 and show the simulation results in Fig. 5.2.
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Figure 5.1: ∥ · ∥2,∞ of estimation errors
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Figure 5.2: ∥ · ∥2,∞ of estimation errors
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Figure 5.3: Change of ∥ · ∥2,∞ of Estimation Errors

From Fig. 5.2, we can see that a larger γ makes the algorithm converge faster, which

coincides the analysis in Section 5.3.1.

5.4.3 Complete Graph

We consider an agent network consisting of 70 agents under the topology of a

complete graph and each agent knows one row of the augmented matrix

[
A b

]
, where

b ∈ R15 is generated randomly and A is generated three times with condition number being

1, 10, 100, respectively. Here γ is set to be 0.5.
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The simulation results are shown in Fig. 5.3. From it, we can find that the larger

the condition number of A is, the slower the agents converge, which is consistent with the

result in Section 5.3.2.
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Chapter 6

Communication-Efficient

Distributed Algorithm to Solve

Ax = b with Sparse A

In the previous section, we proposed a distributed algorithm to solve a system of

linear equations Ax = b. The algorithm requires agents to transmit the states of all agents,

i.e., the whole vector x, to all its neighbors. But in many applications, especially when

A is sparse with many zero entries or blocks, it is unnecessary and perhaps impossible for

the agents to know the whole vector. For example, in power systems, the Ybus is usually

sparse because each bus is physically connected to only a few buses. The buses might not be

able to obtain the states of all buses in the system due to various restrictions, e.g.,limited

storage and limited communication. So it is important to design distributed algorithms

requires less communication for sparse matrix. In this chapter, we propose a distributed
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algorithm to solve Ax = b for sparse A with special structure. The proposed algorithm

reduces communication burden among agents, because it allows agents to share through a

communication link their own states and the states of one of their neighbors instead of the

states of all agents.

6.1 Preliminary

In this part, we consider that the matrix A has the follow sparsity structure:

Definition 11 (Laplacian sparsity) A matrix A has the Laplacian sparsity structure of

a graph G if aij ̸= 0 only if i and j are connected in G, where aij is the (i, j)th entry of

matrix A. A block matrix A has the Laplacian sparsity structure of a graph G if Aij ̸= 0

only if i and j are connected in G, where Aij is the (i, j)th block of matrix A.

Example 1 The Ybus of a power system has Laplacian sparsity structure if the communi-

cation topology is the same as the physical one.

For the graph G, we further assume that

Assumption 12 The communication topology of the agent network is fixed, undirected,

and connected.
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6.2 Problem Formulation

We can regard solving Ax = b as an optimization problem to minimize 1
2∥Ax−b∥2,

and equivalently,

min
1

2

∑
i∈V

∥Aixi − bi∥2

subject to xi = xj , ∀i, j ∈ V

(6.1)

with Assumption 12, where Ai is the rows of matrix A owned by agent i.

Next, we will make use of the Laplacian sparsity structure of A. Let A
(i)
i be a

row of block matrix whose blocks are those nonzero ones in Ai and x(i) the corresponding

entries in x. For example,

Example 2 We consider a network composed of four nodes and the Laplacian of the net-

work is L =



−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1


. Then A =



1 3.4 0 0

0.8 5 −9 0

0 −6.23 −3 6

0 0 −5 −0.96


is a matrix

with Laplacian sparsity structure and each block of A is a scalar. If each agent owns one

row of A, then A
(1)
1 =

(
1 3.4

)
, A

(2)
2 =

(
0.8 5 −9

)
, A

(3)
3 =

(
−6.23 −3 6

)
, and

A
(4)
4 =

(
−5 −0.96

)
. Correspondingly, x(1) =

x1

x2

, x(2) =


x1

x2

x3

, x(3) =


x2

x3

x4

, and

x(4) =

x3

x4

.

To simplify analysis, we further assume that
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Assumption 13 Each agent has local indices for its neighbors.

Assumption 13 is not necessary for implementation of the distributed algorithm to be de-

signed, but it simplifies the analysis.

Example 3 In Example 2, if agent 4 owns the fourth row of A, then k
(4)
3 = 1, k

(4)
4 = 2,

e
(4)
k3

=

(
1 0

)T

, and e
(4)
k4

=

(
0 1

)T

.

Then we can transform (6.1) to an optimization problem dependent on A
(i)
i and

x
(i)
i as stated below:

Lemma 30 Under Assumption 12 and the Laplacian sparsity of A, solving Ax = b is

equivalent to solving

min f =
1

2

∑
i∈V

∥A(i)
i x(i) − bi∥2

subject to x
(i)
i = x

(j)
i , x

(j)
j = x

(i)
j , (i, j) ∈ E,

(6.2)

where x
(i)
j is the local estimate on xj by agent i.

Proof. If x⋆ is a solution of Ax = b, it is obvious that x⋆ is also an optimal solution to (6.2)

with x(i) =

(
x⋆j

)
j∈Ni

, which is a collector of the entries in x⋆ corresponds the neighbors of

agent i.

If x(1), x(2), · · · , x(m̄) form a solution of (6.2), denote x⋆ =



x
(1)
1

x
(2)
2

...

x
(m̄)
m̄


. For any agent

i, we have x⋆j = x
(j)
j = x

(i)
j , ∀j ∈ Ni. Notice that A has Laplacian sparsity structure, so

x(i) =

(
x⋆j

)
j∈Ni

and thus Aix
⋆ = A

(i)
i x(i) = bi.
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Lemma 31 Let

fp =
1

2
[
∑
i∈V

∥A(i)
i x(i) − bi∥2 +

∑
(i,j)∈E

(∥x(i)i − x
(j)
i ∥2 + ∥x(j)j − x

(i)
j ∥2)]

=
1

2

∑
i∈V

[∥A(i)
i x(i) − bi∥2 +

1

2

∑
j∈Ni

(∥x(i)i − x
(j)
i ∥2 + ∥x(j)j − x

(i)
j ∥2)].

(6.3)

If Ax = b has solutions, (6.2) is equivalent to

min fp. (6.4)

Proof. If Ax = b has solutions, we can see that the solutions of (6.2) and (6.4) are those

satisfying that A
(i)
i x(i) = bi, ∀i ∈ V and x

(i)
i = x

(j)
i , x

(j)
j = x

(i)
j , (i, j) ∈ E.

Remark 28 We can also put some weights in front of the consensus terms in (6.3) and

obtain that

fp =
1

2

∑
i∈V

[∥A(i)
i x(i) − bi∥2 +

qi
2

∑
j∈Ni

(∥x(i)i − x
(j)
i ∥2 + ∥x(j)j − x

(i)
j ∥2)],

where qi > 0 are the weights. This might be helpful to accelerate the convergence, but it does

not give rise to any more difficulty in analysis. So in the rest part, we still stick to (6.3).

6.3 Main Results

In this part, we propose the communication-efficient distributed algorithm to solve

Ax = b based on gradient descent method with constant step size.

We apply gradient descent method with constant step size α to (6.4). Let x =
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x(1)

x(2)

...

x(m̄)


and ∇f(x) =



∂fp
∂x(1)

∂fp
∂x(2)

...

∂fp
∂x(m̄)


, then we have that

x(k + 1) = x(k)− α∇f(x).

For the gradient of f , we have that

∂fp

∂x(i)
= A

(i)T
i (A

(i)
i x(i) − bi) +

∑
j∈Ni

[(x
(i)
i − x

(j)
i )⊗ e

(i)

k
(i)
i

+ (x
(i)
j − x

(j)
j )⊗ e

(i)

k
(i)
j

], (6.5)

where e
(i)

k
(i)
j

=


1, k

(i)
j is the local index of agent j by agent i,

0, else

, and dim(e
(i)

k
(i)
p

) =
∑
j∈Ni

dim(x
(i)
j ).

We obtain that for agent i,

x(i)(k + 1) =x(i)(k)− αA
(i)T
i (A

(i)
i x(i)(k)− bi)

− α{
∑
j∈Ni

[(x
(i)
i (k)− x

(j)
i (k))⊗ e

(i)

k
(i)
i

+ (x
(i)
j (k)− x

(j)
j (k))⊗ e

(i)

k
(i)
j

]}.
(6.6)

Remark 29 The communications from agent j to agent i are only the estimate of states of

agent i, e.g. x
(j)
i , and agent j, x

(j)
j , by agent j rather than the states of all agents, so (6.6)

reduces a lot of communications compared to the algorithm in Chapter 5. Also, compared

with [28], (6.6) does not require sharing estimates of the states of their common neighbors.

As a result, (6.6) needs less communication between agents than [28].

The convergence of (6.6) is shown below.

Theorem 8 If Ax = b has solutions, (6.6) converges to a solution of Ax = b in finite time

or at a linear rate provided that 0 < α < 2
λmax(∇2fp)

, where fp is defined in (6.4) and ∇2fp

is the Hessian of fp.
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Before proving Theorem 8 when Ax = b has multiple solutions, we need the

following lemmas as preparations.

Lemma 32 Let M positive semi-definite and thus symmetric. Let U =

(
U1 U2

)
be the

orthogonal matrix and Λ =

Λ1

0

 be the diagonal matrix such that M = UΛUT =

U1Λ1U
T
1 , where Λ1 is a positive definite diagonal matrix. Let y = UTx, then the following

statements are equivalent:

1) Mx = 0,

2) U1Λ1U
T
1 x = 0,

3) Λy = 0.

Proof. As M = U1Λ1U
T
1 , 1) and 2) are equivalent.

Mx = UΛUTx = UΛy. As U is orthogonal and thus invertible, Mx = 0 is

equivalent to Λy = 0 and thus 1) and 3) are equivalent.

As a result, 1), 2), and 3) are equivalent.

Lemma 33 Let v be the projection of x0 onto the hyper-plane {x|Cx = d} and C be row full

rank. Then v = x0−CT (CCT )−1(Cx0−d), and ∥v−x0∥22 = (Cx0−d)T (CCT )−1(Cx0−d).

Proof. It is easy to see that v = arg min
{x:Cx=d}

1
2∥x− x0∥2. Then we consider its Lagrangian:

L = 1
2∥x− x0∥2 + λT (Cx− d). Then we have that v is the solution of

∂L

∂x
= x− x0 + CTλ = 0,

∂L

∂x
= Cx− d = 0.

We have that x = x0 − CT (CCT )−1(Cx0 − d), λ = (CCT )−1(Cx0 − d).
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As a result,

v = x = x0 − CT (CCT )−1(Cx0 − d)

and

∥v − x0∥22 = (v − x0)
T (v − x0) = (Cx0 − d)T (CCT )−1(CCT )(CCT )−1(Cx0 − d)

= (Cx0 − d)T (CCT )−1(Cx0 − d).

Then we have the follows lemma.

Lemma 34 Let M be a nonzero positive semi-definite matrix and f(x) = 1
2x

TMx. Let

X⋆ = argmin f(x) = {x⋆ : Mx⋆ = 0} be the optimal set of f(x). Then the gradient descent

method x(k + 1) = x(k) − α∇f(x(k)) = x(k) − αMx(k) converges to X⋆ in finite time or

at a linear rate provided that 0 < α < 2
λmax(M) , where λmax(M) is the maximum eigenvalue

of M .

Proof. Denote x⋆(k) = arg min
x⋆∈X⋆

∥x(k)−x⋆∥2 as the closest optimal point to x(k).

As X⋆ = {x⋆ : Mx⋆ = 0} = {x⋆ : U1Λ1U
T
1 x

⋆ = 0}, where U1 is defined in Lemma 32, we

can see that from Lemmas 32 and 33

∥x(k)− x⋆(k)∥22 = (x(k)− x⋆(k))TU1Λ1U
T
1 (U1Λ

2
1U

T
1 )

−1U1Λ1U
T
1 (x(k)− x⋆(k))

= (x(k)− x⋆(k))TU1U
T
1 (x(k)− x⋆(k)).

(6.7)

Then we have that

∥x(k + 1)− x⋆(k + 1)∥22 ≤ ∥x(k + 1)− x⋆(k)∥22

= ∥x(k)− αMx(k)− x⋆(k)∥22

= ∥x(k)− x⋆(k)∥22 + α2x(k)TMTMx(k)− 2(x(k)− x⋆(k))TMx(k).
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As Mx⋆(k) = 0,

x(k)TMTMx(k) = (x(k)− x⋆(k))TMTM(x(k)− x⋆(k))

and

(x(k)− x⋆(k))TMx(k) = (x(k)− x⋆(k))TM(x(k)− x⋆(k)).

So we have that

∥x(k + 1)− x⋆(k + 1)∥22

≤∥x(k)− x⋆(k)∥22 + α2(x(k)− x⋆(k))TMTM(x(k)− x⋆(k))− 2(x(k)− x⋆(k))TM(x(k)− x⋆(k)).

Let y and Λ be defined as in Lemma 32. Then we have that

∥x(k + 1)− x⋆(k + 1)∥22

≤∥x(k)− x⋆(k)∥22 + α2(y(k)− y⋆(k))TΛ2(y(k)− y⋆(k))− 2α(y(k)− y⋆(k))TΛ(y(k)− y⋆(k))

=∥x(k)− x⋆(k)∥22 + (y(k)− y⋆(k))T (α2Λ2 − 2αΛ)(y(k)− y⋆(k)).

Next, we consider two cases.

1) If Λ(y(k) − y⋆(k)) = 0, then M(x(k) − x⋆(k)) = 0 from Lemma 32. We can

then obtain that Mx(k) = 0 from the fact that Mx⋆ = 0. In this case, x(k) ∈ X⋆ and (6.6)

converges in finite time.

2) If Λ(y(k)− y⋆(k)) ̸= 0, then M(x(k)− x⋆(k)) ̸= 0 from Lemma 32. As

y(k)− y⋆(k) = UT (x(k)− x⋆(k)) =

UT
1 (x(k)− x⋆(k))

UT
2 (x(k)− x⋆(k))

 ,

we have that

(y(k)−y⋆(k))T (α2Λ2−2αΛ)(y(k)−y⋆(k)) = [UT
1 (x(k)−x⋆(k))]T (α2Λ2

1−2αΛ1)[U
T
1 (x(k)−x⋆(k))].
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As 0 < α < 2
λmax(M) =

2
λmax(Λ1)

and λmax(Λ1) > 0, we have that 0 < αλmax(Λ1) < 2 and thus

αλmax(Λ1))
2 − 2(αλmax(Λ1) < 0. Similarly, we have that αλmin(Λ1))

2 − 2(αλmin(Λ1) < 0.

Let λ(Λ1) be any eigenvalue of Λ1. We can obtain that

α2λ(Λ1)
2 − 2αλ(Λ1) = (αλ(Λ1))

2 − 2(αλ(Λ1))

≤ max{(αλmin(Λ1))
2 − 2(αλmin(Λ1)), (αλmax(Λ1))

2 − 2(αλmax(Λ1))}

< 0.

Denote

λ̄ = max{(αλmin(Λ1))
2 − 2(αλmin(Λ1)), (αλmax(Λ1))

2 − 2(αλmax(Λ1))}.

Then we have that

(y(k)− y⋆(k))T (α2Λ2 − 2αΛ)(y(k)− y⋆(k)) ≤ λ̄[UT
1 (x(k)− x⋆(k))]T [UT

1 (x(k)− x⋆(k))]

= λ̄∥x(k)− x⋆(k)∥22,

where the last equality results from (6.7).

Thus,

∥x(k + 1)− x⋆(k + 1)∥22 ≤ |x(k)− x⋆(k)∥22 + λ̄∥x(k)− x⋆(k)∥22 ≤ [1 + λ̄]∥x(k)− x⋆(k)∥22.

Notice that λ̄ < 0, {x(k)} converges to X⋆ at a linear rate.

As a result, (6.6) converges to X⋆ in finite time or at a linear rate.

Proof of Theorem 8 : Notice that fp in (6.4) is quadratic. When Ax = b has a unique

solution, fp is strongly convex and the convergence at a linear rate of (6.6) is a direct result

of Theorem 2.1.14 in [37]. When Ax = b has multiple solutions, Theorem 8 is a direct result

of Lemma 34.
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Remark 30 (Distributed Selections of Step Sizes) In (6.6), different agents use a

common step size α. But in many applications, consensus on the step size might be d-

ifficult for the agent network. So in this part, we will provide a way to select the step size

in a distributed way.

Note that under the assumptions of Lemma 30, (6.2) is also equivalent to

min fp,β =
1

2

∑
i∈V

βi[∥A(i)
i x(i) − bi∥22 +

1

2

∑
j∈Ni

(∥x(i)i − x
(j)
i ∥22 + ∥x(j)j − x

(i)
j ∥22)], (6.8)

if βi > 0, ∀i ∈ V . If we apply the gradient method with constant step size α to (6.8), we

can see that by choosing their own βi, agents can select αβi in a distributed way.

6.4 Simulations

In this part, we provide a simulation example to show the effectiveness of the

distributed algorithm in (6.6).

The example is from the Newton-Raphson method to solve the power flow problem

for the IEEE 13 Node Test Feeder. The power flow problem is nonlinear itself, but in

every step of the Newton-Raphson method, we need to solve a system of linear equations

−J

∆VR

∆VI

 =

∆P

∆Q

, where J =

J11 J12

J21 J22

 is the Jocobian of the power flow equations

with respect to VR and VI , VR is the real part of the voltages, VI is the imaginary part of

the voltages, and ∆P and ∆Q are the mismatches between the calculated and specified

active and reactive powers.

For this example, we suppose the communication graph shares the topology with

physical system. All four blocks J11, J12, J21, J22 of the Jacobian have Laplacian sparsity
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structure. So the Jacobian J is more complex than defined in Definition 11. However, we

can still apply (6.6) to solve it in a distributed way because the four blocks have Laplacian

sparsity structure. We only carry out the simulation to solve the system of linear equations

appeared in the first iteration in Newton Raphson method.

The simulation result is shown in Fig. 6.1. It shows the distance between



x
(1)
1

x
(2)
2

...

x
(12)
12


and the exact solution. From Fig. 6.1, we can see that the agents’ estimates finally converges

to the accurate solution of −Jx = b.
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Figure 6.1: Norms of Errors between x
(i)
i (k) and Accurate Solutions
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

We relaxed the condition of step sizes by removing the square summable require-

ment for the distributed subgradient algorithm and showed that the positive, vanishing and

non-summable step sizes were sufficient for the convergence of the distributed subgradient

algorithm to a minimizer of the global objective function when the topologies were bal-

anced. We also showed that the fastest convergence rate is consistent with the centralized

case when the step sizes are selected in a special form that is non-square summable in the

unconstrained case.

We then proposed a discrete-time distributed algorithm to find the solution with

minimum weighted norm associated with the weighted inner product of a system of solvable

linear equations Ax = b. It was shown that if the agents started from the minimum weighted

norm solution of their local linear equations and updated their estimates of the solution by

the proposed algorithm, they would finally converge to the minimum weighted norm solution
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of the global linear equations. It was also proved that if there were bounded initialization

errors, the agents would converge to some solution of Ax = b in a neighborhood of the

global minimum weighted norm solution bounded by the initialization errors.

A discrete-time distributed algorithm was also proposed to solve a system of linear

equations Ax = b. It was proved that the algorithm converged to a solution of Ax = b at

a geometric rate from arbitrary initializations when Ax = b has either unique or multiple

solutions. The common limit point of different agents was determined by the initializations,

communication topologies, and the minimum 2-norm solution of Ax = b. The upper bounds

of the convergence rate for two special cases were also derived related to the parameter γi

and condition number of A.

A communication efficient distribution algorithm to solve Ax = b with Lapla-

cian sparsity structure was proposed. Only the states of two connected agents was shared

connected by a communication link, which reduces the communication burden of all com-

munication links. The algorithm was proved to converge at a linear rate or in finite time

when Ax = b has solutions.

7.2 Future Works

There are some future works we can push for. First, distributed algorithms to

find the minimum 1-norm solution of a system of linear equations Ax = b is an interesting

topic as such a solution can be found in many applications such as compressed sensing

and signal and image processing. We are also interested in accelerating the distributed

algorithms to solve Ax = b with dense or sparse matrix especially when A is ill-conditioned,
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i.e., with large condition numbers. Then, we may work on distributed solutions to linear

programming problems by solving linear equations and linear inequalities in a distributed

way. Beyond these topics, the influence of time delay, noise, and asynchronous update is

appealing topic worth researching, which may occur in real applications. Last but not the

least, the combination of theoretic results and different application domains, e.g., power

systems, transportation networks, and manufacture networks, are attractive.
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