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Abstract

Exploratory Quantum Machine Learning Techniques For Hybrid Systems

by

Dominic Pasquali

Quantum Machine Learning is a rapidly growing field in the applied and theoretical ma-

chine learning community. This work contains a select overview of classical computing,

quantum computing, machine learning, quantum machine learning, and spiking neural

networks. Derivations and examples are given where deemed helpful.

A number of novel techniques are proposed for integrating quantum machine

learning into classical machine learning methods and paradigms, including quantum

self-attention in Vision Transformers, finding the generalized unimodular matrix for a

classical-quantum hybrid machine learning model, and various ways of inserting quan-

tum machine learning into spiking neural networks. The above techniques are trained

and tested on standardized and well-accepted datasets within the machine learning com-

munity. While the quantum-classical hybrid self-attention method proposed for Vision

Transformers matches the performance of classical Vision Transformers, the methods of

finding the generalized unimodular matrix and integrating quantum machine learning

into spiking neural networks all achieve a higher accuracy faster than their comparative

classical counterparts. All methods proposed by the author as analyzed and discussed

in this work have been accepted to various domestic and international conferences.

xii
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Chapter 1

Introduction

In future’s dawn, machines may share our stage,

With whispered codes, the silent tongues engage.

A dance of thought twixt silicon and flesh,

Where lines of difference start to enmesh.

Their gleaming minds, a mirror to our own,

In starlit bytes, the seeds of thought are sown.

Where human minds may falter, tire, or miss,

The steel-borne scribes persist in tireless bliss.

Yet not without a cost, this pact is signed,

As hands of flesh to ghostly gears resigned.

What work is left for human hearts to do,
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When metallic minds our tasks pursue?

Yet in this storm, a beacon may yet gleam,

Of hope that human-AI is but a dream,

Where each complements the other’s strength and skill,

Guided by a shared, harmonious will.

A dance not of replacement, but of blend,

Where human and machine as one ascend.

A future bright, if navigated well,

In shared endeavor, we shall surely dwell.

So let us tread with foresight, heart, and grace,

To welcome AI in the human space.

For in this union, each may find its place,

A symphony of minds in cosmic race.

ChatGPT [22]

Artificial intelligence is rapidly attaining a stronger hold in every aspect of

society, from medical diagnosis [23–25] to generating images from captions [26]. As

evidenced by the above ChatGPT output (though a small example), even modern day

AI systems can start achieving impressive feats.

At the same time quantum computing and quantummachine learning is quickly
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gaining interest with hopes of leveraging quantum effects to a large and ever growing

range of applications [27]. However such applications of quantum computing and quan-

tum machine learning are only as applicable as techniques to apply them. Therefore it

is incumbent for science to develop novel methods as well to explore where and when

such methods are and are not preferred. It is this development, from novel idea to initial

testing (i.e. early TRL development [28]) during which the study of this dissertation

achieves.

Select topics in classical, quantum, and spiking neural networks are presented

in Part II and lay the groundwork to understand the novel techniques presented in

Part III.

Part III proposes new hybrid classical-quantum and hybrid spiking-quantum

machine learning methods, trains them on standard datasets, and benchmarks them on

architecture and learned parameter equivalent classical models. While there are some

hints that quantum advantage may be present in the proposed studies, much more in-

depth studies of all techniques are needed to fully understand if such proposed quantum

methods yield a broad advantage over classical networks. However such rigorous testing

is left for when there is more time after this dissertation. Until then, these techniques

are outlined herein.

Final thoughts are presented in Part IV.

It is the hope that this work, its cited works, and the many citations listed

encourage readers to continue to develop these ideas and find broad applications for

them in the ever expanding world of hybrid quantum machine learning methods. If
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such desire is too lofty of a goal, then it is the secondary dream that contained in

here lays more groundwork and sparks new ideas in the field from which this field can

continue to be built; after all, quantum machine learning and all its variations are still

in its early stages.
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Part II

Foundations
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Chapter 2

Quantum Computing

2.1 Quantum Motivation From Classical Computing

Modern classical computing is quickly approaching the limits of Moore’s law,

which describes that the number of transistors in an integrated circuit (IC) doubles

about every two years. This “law” is important because the number of transistors is

associated with the processing speed and memory capacity of the implemented hardware

[29]. However if electrons are taken to be the smallest quantum computing transistor

elements, then the quantum limit on Moore’s law (might) be reached by the year 2036

[30].

Therefore there is the need to find an alternative computing method to move

beyond Moore’s law, and quantum computation is one such proposed method. The idea

of using quantum phenomena on hardware for computation was independently proposed

by Manin [31] (1980) and Feynman [32] (1982), and Feynman perhaps phrased it best
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by saying that he was “not happy with all the analyses that go with just the classical

theory, because nature isn’t classical, dammit, and if you want to make a simulation of

nature, you’d better make it quantum mechanical, and by golly it’s a wonderful problem,

because it doesn’t look so easy. Thank you [32].”

2.2 A Reminder Of Classical Computing

It is helpful to better understand the comparisons between classical and quan-

tum computing. In classical computing logical values will be individual discrete bits,

0 or 1. These 0 or 1 values can be fed into logic gates (e.g. Figure 2.1, Figure 2.4,

Figure 2.3, and Figure 2.2). The use of NAND or NOR gates form a universal gate

set (i.e. the NAND gate alone can be used in different combinations to reproduce the

functions of all other logic gates; the NOR gate alone can do the same) [33].

Figure 2.1: Classical AND Logical Gate [1]

2.3 Select Elements Of Quantum Computing

In contrast to classical computing with bits, quantum computing leverages

quantum mechanics by allowing for these 0 or 1 classical states to be in a superposition
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AND Logic Gate Truth Table

Inputs Out

A B Q

0 0 0
0 1 0
1 0 0
1 1 1

Table 2.1: Truth Table For AND Logic Gate

Figure 2.2: Classical OR Logical Gate [2]

OR Logic Gate Truth Table

Inputs Out

A B Q

0 0 0
0 1 1
1 0 1
1 1 1

Table 2.2: Truth Table For OR Logic Gate

Figure 2.3: Classical NAND Logical Gate [3]
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NAND Logic Gate Truth Table

Inputs Out

A B Q

0 0 1
0 1 1
1 0 1
1 1 0

Table 2.3: Truth Table For NAND Logic Gate

Figure 2.4: Classical NOR Logical Gate [4]

NOR Logic Gate Truth Table

Inputs Out

A B Q

0 0 1
0 1 0
1 0 0
1 1 0

Table 2.4: Truth Table For NOR Logic Gate

of quantum states, i.e. there can exist a state consisting of a combination of both a “0”

state and a “1” state. The square of the amplitudes is associated with the probability

of that state [34,35].

Let the “0” state (also known as the spin up state) be given by Equation 2.1

and let the “1” state (also known as the spin down state) be given by Equation 2.2.
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Figure 2.5: Comparing classical bits versus qubits [5]

0 state := |0⟩ =

 1

0

 (2.1)

1 state := |1⟩ =

 0

1

 (2.2)

More generally the states can be written as a superposition by letting |0⟩ have

an amplitude of a and |1⟩ have an amplitude of b, where a and b are complex. Let this

superposition be called |ψ⟩ which can be seen in Equation 2.3.
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|ψ⟩ = a|0⟩+ b|1⟩ = a

 1

0

+ b

 0

1

 =

 a

b

 (2.3)

The complex conjugate transpose (also known as “dagger” or adjoint) of Equa-

tion 2.3 is seen in Equation 2.4.

⟨ψ| = |ψ⟩∗⊤ = |ψ⟩† =
[
a∗ b∗

]
(2.4)

Recalling the requirement that the square of a and b must sum to unity due to

conservation of total probability (as seen in Equation 2.5), a and b can be transformed

into spherical coordinates which results in |ψ⟩ (Equation 2.6) being plotted on the Bloch

sphere as seen in Figure 2.6 where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.

|a|2 + |b|2 = 1 (2.5)

|ψ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiϕ|1⟩ (2.6)

The vector |ψ⟩ can be rotated about to point at any location on the Bloch

sphere. The Pauli matrices as seen in Equation 2.7, Equation 2.8, and Equation 2.9

allow for the rotations about the x, y, and z axes to be defined by Equation 2.10,

Equation 2.11, Equation 2.12, respectively. Therefore any point on the Bloch sphere

can be described as a combination of these rotations (i.e. Equation 2.10, Equation 2.11,

and Equation 2.12).

12



Figure 2.6: An illustration of the Bloch sphere [6].

X = σx =

0 1

1 0

 (2.7)

Y = σy =

0 −i

i 0

 (2.8)
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Z = σz =

1 0

0 −1

 (2.9)

Rx(θ) = e
−iθX

2 =

 cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

 (2.10)

Ry(θ) = e
−iθY

2 =

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

 (2.11)

Rz(ϕ) = e
−iϕZ

2 =

e−iϕ
2 0

0 ei
ϕ
2

 (2.12)

The current paradigm for quantum computation is to use quantum circuits,

where quantum computation is represented as a sequence of quantum gates. Each

horizontal line (Figure 2.7) represents a singular quantum unit; in this work such a unit

will be a qubit (i.e. quantum bit, such that the singular quantum unit can only be in a

superposition of a |0⟩ and |1⟩ state (Equation 2.3)).

The most computationally common method to entangle quantum states to-

gether is to enact the Controlled NOT (CNOT) operation (Equation 2.13) on two sep-

arate qubits.

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(2.13)
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Figure 2.7: An example quantum circuit. The operators X, Y, Z and Rx, Ry, and Rz are

defined by Equation 2.7, Equation 2.8, and Equation 2.9, Equation 2.10, Equation 2.11,

and Equation 2.12.

After quantum operations are completed, measurement operations are con-

ducted to convert the end quantum states to classical (non-quantum) values (often

indicated in circuits with Figure 2.8). There are many ways to take a measurement of

a quantum system; one common method is to take the expectation value of an operator

as defined in Equation 2.14.

⟨A⟩ = ⟨ψ|A|ψ⟩ (2.14)

The quantum gates CNOT, Rx, Ry, and Rz form a universal set of gates, such

that any quantum operation can be expressed as a combination of these gates [36].

There are many different sets of universal gates [36–40], though this set with CNOT

and the rotation gates will be the one referenced throughout this text.
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Figure 2.8: The symbol for measurement on a quantum circuit for a single wire. The

single line represents the wire (operational quantum units) and the double line represents

the classical value resulting from the measurement [7].

2.4 Motivation For Exploring Quantum Computing

The superposition of states and the entanglement of these states allow for a

different type of computation resulting in quantum algorithms. In some cases, quantum

algorithms allow for faster results over classical computation. For example when factor-

ing numbers, the fastest known classical algorithm is called the General Number Field

Sieve which has complexity O(exp[c(logN)1/3(log logN)2/3]), where c is a constant de-

pendent on the type of number being factored, and N is a positive integer [8, 41]. One

of the most famous quantum algorithms for factoring is Shor’s algorithm which has a

computational complexity of O((logN)3 log logN log log logN) [8]; the aforementioned

algorithms have their computational complexity plotted in Figure 2.9, where the lower

complexity of Shor’s algorithm proves advantageous over the classical General Num-

ber Field Sieve. Finding faster quantum factoring algorithms remains a point of active

research [8].

For select cases, quantum computing algorithms have shown advantages for

machine learning. By leveraging quantum machine learning, some benefits include al-
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gorithms that generalize better on less data (i.e. quantum models perform better than

classical models on new and previously unseen data with less training data) [42, 43],

increased learning efficiency [44, 45], and present a larger effective dimension (i.e. for

comparable model architectures, quantum models explore a larger function space than

classical models) [46]. However for specialized applications much work needs to be done

to examine if and when quantum methods succeed over classical methods.

The current goal of the applied quantum computing community is to find where

quantum computing methods do and do not offer improvement over classical computing

methods.

Any improvement that quantum computation holds over classical computa-

tion is known as a “quantum advantage.” It’s important to note that in the 2010s and

early 2020s, such an advantage was sometimes called “quantum supremacy” due to early

papers that showed quantum advantage but for very narrow and highly engineered prob-

lems such that the quantum computational approach would win. Such nomenclature

of “quantum supremacy” has fallen out of favor and use in the quantum computing

community.
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Figure 2.9: Plotting computational complexity for the best known classical factoring

algorithm versus Shor’s algorithm versus the quantum factoring algorithm (Gauss) pro-

posed in [8].
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Chapter 3

Machine Learning Overview: Classical,

Quantum, and Spiking Neurons

3.1 Classical Supervised Machine Learning

There are many types of machine learning, the vast majority of which will

not be covered here. This work will focus on supervised machine learning and various

applications thereof in different domains and forms.

3.1.1 A Brief Reminder Of Supervised Machine Learning Components

At its heart supervised machine learning systems learn how to map input data

to target output values. The goal of supervised machine learning is for the learned

mapping to produce useful outputs on never-before-seen data.

There are a few components to this learning process. Every output from a

machine learning model has a label and this label can be almost anything, e.g. the price
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of a house, the type of animal in a picture, the emotions of a Shakespearean verse, etc...

Every input to a machine learning model has a number of features (one or

multiple) associated with it. In some larger models, there may be millions of features

present.

Machine learning model data that has both features and corresponding labels

is called labeled data. Conversely, unlabeled data has only features but no label.

The dataset may be subdivided into equal sized smaller subsets called batches.

For example, if there exists 100 data entries in an entire dataset, and a total of 20

batches were needed, then the 100 data entries would be subdivided into 20 batches

with 5 data entries per batch.

Taking the above house price as an example target output, the features (inputs)

of a house (that may influence the price of a house) can include the number of bedrooms,

bathrooms and floors, the age of the house, the total square footage of the house, if there

is a backyard and front yard, etc.... If both the features of the house and the price of

the house are known then this is called labeled data. If the features of the house are

known but the price of the house is unknown then the data is called unlabeled data.

Supervised machine learning uses the inputs and labels (outputs) of a labeled house

price dataset (e.g. Table 3.1) to teach (train) a supervised machine learning algorithm

to generate correct labels (outputs) on an unlabeled dataset (e.g. Table 3.2), i.e. use

the machine learning algorithm to solve for the values of “?” in Table 3.2.

Every supervised machine learning model that is trained or taught will have

parameters that are tuned to associate the inputs (features) with the corresponding
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Features Label

Age of House (Years) Number of Bedrooms Number of Bathrooms House Price (USD)

5 3 2 100k
10 4 2.5 225k
35 5 3 315k

Table 3.1: An example of a labeled dataset where there are features and labels for

housing prices. To be compared with Table 3.2.

Features Label

Age of House (Years) Number of Bedrooms Number of Bathrooms House Price (USD)

2 2 1.5 ?
7 3 2.5 ?
18 5 3.5 ?

Table 3.2: An example of an unlabeled dataset where there are features but no labels

for housing prices. To be compared with Table 3.1.

outputs (labels). It is this tuning of parameters that is called “learning,” “training,” or

“teaching” the model. Parameters that are learned during training are called learned

parameters, and parameters that are tuned or set manually are called hyperparameters.

Tuning these parameters remains a great difficulty in machine learning (Figure 3.1).

Every supervised machine learning model will also perform inference. Inference

is when the supervised machine learning model is passed unlabeled data in order to

generate (output) labels, i.e. a supervised machine learning model infers what the

correct output label is for a given unlabeled input, based on previous training with

labelled data. There are many different metrics that can be used to gauge how well

a trained supervised machine learning model generates correct (or incorrect) labels,

and some metrics are better for some models more than others; these metrics will be
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Figure 3.1: Which parameters (dials, knobs) to tune and how much? The conundrum

of every machine learning practitioner.

discussed as needed in this text.

There are two popular applications in supervised machine learning: regression

and classification. Regression models predict continuous values (e.g. housing prices, the

temperature on a given day, financial stock prices, etc...). Classification models predict

categories (e.g. is picture of a cat or a dog, is the email spam or not spam, is the car

red, white, yellow, or black, etc...)

Classification will be the primary focus of studies done in this text.
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3.1.2 Linear Relationships

A very common way to express linear relationships is Equation 3.1, where y is

the output, m is known as the slope (the change of rise over the change of run), and b

is the y intercept.

y = mx+ b (3.1)

Figure 3.2: A plot of an arbitrary line.

Consider a scenario where m and b both need to be tuned to fit an arbitrary

line (Figure 3.2), where x is a feature (input), y is an output (label), and m and b are
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parameters that need to be found. Guessing and checking various values of m and b

eventually leads to values that would fit this line (Figure 3.3).

Figure 3.3: A plot of an arbitrary line that is attempted to be fitted by various other

lines of the form y = mx+ b with different values for m and b.

For more complicated models such educated guessing and checking quickly be-

comes intractable. In order to expand on the usage of Equation 3.1, there is a need

to change how the variables are viewed. To resolve this, Equation 3.1 becomes Equa-

tion 3.2 where m becomes w0, x becomes x0, and b remains b. w0 and b become learned

parameters while x0 is a feature (input).
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y = w0x0 + b (3.2)

In the instance where more than one feature needs to be input, for example

three features (e.g. x0, x1, x2), then Equation 3.2 can easily expand to Equation 3.3 to

capture all the needed features (i.e. x0, x1, x2), how they are weighted (in this case via

w0, w1, w2), and any linear shift (as done by b).

y = w0x0 + w1x1 + w2x2 + b (3.3)

3.1.3 Introducing Non-Linear Functions

For only the simplest of models, a linear expression like that found in Equa-

tion 3.3 is enough to approximate a given output, but for more complicated models

non-linear functions are incorporated to better model the system of interest while in-

putting the linear weighting as represented in Equation 3.3.

The symbol σ is used to indicate a non-linear function1 (also known as an

activation function). For example if σ were to be introduced to Equation 3.3 then it

would become Equation 3.4.

y = σ(w0x0 + w1x1 + w2x2 + b) (3.4)

Various possible functions for σ include ELU [47], Sigmoid [48], ReLU [49],

1Quite frustratingly this isn’t always true. σ is also often used to denote the sigmoid function. When
σ represents a non-linear function and not the sigmoid function is often determined by context and/or
the text.
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GELU [50], and many others. Deciding on which activation functions to use and when

remains an area of active experimentation and research.

3.1.4 The Artificial Neuron

Figure 3.4: An example of an artificial neuron that explicitly states that the neuron

imparts a non-linear function onto the inputs.

It is common in machine learning to express equations similar to those found in

Equation 3.3, or Equation 3.4 as an artificial neuron as seen in Figure 3.4. In Figure 3.4

each line represents a weight and each circle represents an artificial neuron (sometimes

called a node) which takes in each input, multiplies each input times a randomized

weight, imparts an (often) activation function (σ) on the inputs, and then returns a

new value. In illustrated models the activation function is often not listed explicitly in

the model itself as done Figure 3.4 but rather the node(s) in the model is left blank and
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such activation function is explicitly listed elsewhere in the text.

3.1.5 Artificial Neural Networks

When equations like those found in Equation 3.4 are chained together, they rep-

resent artificial neurons connected together like those found in Figure 3.5. Connecting

artificial neurons together creates an artificial neural network (or simply a “neural net-

work”), and sufficiently large neural networks are universal function approximators [51].

Figure 3.5: An example of an artificial neural network model. The vertical column with

the nodes containing x1, x2 and x3 inside each node is called the input layer. The single

node leading to y is called the output layer. The vertical columns of nodes between the

input layer and the output layer are called hidden layers.

When information flows through an artificial neural network, starting from

inputs, going through the various artificial neurons, and ending in an output, such

information flow is known as “forward propagation” or a “forward pass” since the in-
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formation is flowing forward through the network.

3.1.6 Understanding Loss

There is now a need to measure how well the desired target output (label)

compares with the generated output as previously defined by equations (e.g. Equa-

tion 3.2, Equation 3.3, or Equation 3.4). The function that measures difference between

what the neural network outputs and what the expected output of the neural network

should be is known as the “loss function” (also sometimes called the “cost function” or

“criterion”). Most members of the machine learning community use these terms inter-

changeably both in speech and code, though specialized publications may assign strict

definitions to some terms [52].

Many loss functions exist, some loss functions are appropriate for some appli-

cations while inappropriate for others, and many different loss functions are applicable

for the same problem. Hence the choice of loss function remains a hyperparameter that

is user-defined.

The mean-square error is among the simplest of loss functions and can be seen

in Equation 3.5, where y is the expected value, ŷ is the predicted value as output from

the neural network, and m is the number of data points that Equation 3.5 computes.

mean-square error = MSE =
1

m

m∑
i=0

(yi − ŷi)
2 (3.5)
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3.1.7 Backpropagation By Example

The loss function (a measure of the difference between the output of a neural

network versus the expected (ideal) output) can now be used to update the correspond-

ing weights of the neural network; calculating how learned parameters influence the

output is called backpropagation (sometimes also called “backprop” or the “backward

pass”). The act of updating these parameters is referred to as an “update step.”

A simple example below shows how backpropagation works; here σ stands for

the sigmoid function (Equation 3.6).

Figure 3.6: A simple artificial neural network model.

σ(x) := sigmoid =
1

1 + e−x
(3.6)

Taking the simple neural network as presented in Figure 3.6, the forward pass

multiplies x0 with w0, passes it to the (only) node with a σ activation function, and then

outputs ŷ. Therefore ŷ can be expressed as Equation 3.7 where w0 and b are learned

parameters.
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ŷ = σ(x0w0 + b)

→ ŷ = σ(z) where z = x0w0 + b

(3.7)

The corresponding cost function in this example is the mean-squared error as

seen in Equation 3.8, where y is the target output and ŷ is the returned output from

the neural network.

C = (y − ŷ)2 (3.8)

The output z varies as a function of learned parameters w0 and b; how these

parameters vary the output z informs how the learned parameters w0 and b will be

updated.

Note that the derivative of the sigmoid function can be found in Equation 3.9.

∂σ(x)

∂x
=

e−x

(1 + e−x)2
= σ(x)(1− σ(x)) (3.9)

Therefore C varies with respect to w via Equation 3.10.

∂C

∂w
=
∂C

∂ŷ

∂ŷ

∂z

∂z

∂w

→ ∂C

∂w
= (2(y − ŷ))(σ(z)(1− σ(z)))(x0)

→ ∂C

∂w
= (2(y − ŷ))(σ(x0w0 + b)(1− σ(x0w0 + b)))(x0)

(3.10)

C varies with respect to b via Equation 3.11.
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∂C

∂b
=
∂C

∂ŷ

∂ŷ

∂z

∂z

∂b

→ ∂C

∂b
= (2(y − ŷ))(σ(z)(1− σ(z)))(1)

→ ∂C

∂b
= (2(y − ŷ))(σ(x0w0 + b)(1− σ(x0w0 + b)))(1)

(3.11)

3.1.8 Updating Parameters

With the gradients of the cost function with respect to the learned parameters

now in hand (Equation 3.10 and Equation 3.11), the “update step” changes the values

of w0 and b to bring ŷ closer to y.

Among the simplest of update steps include Equation 3.12 and Equation 3.13

that use the results from Equation 3.10 and Equation 3.11, respectively. In both equa-

tions (Equation 3.12 and Equation 3.13) winitial and binitial both represent the initial

parameter values, wfinal and bfinal represent the updated values for w and b, and η

(η > 0) represents the learning rate for the update. For a learned parameter, the learn-

ing rate (η) (also called a step size) is a positive real-valued number that regulates how

much the calculated gradient (e.g. ∂C
∂b ) of the parameter changes the parameter update

step (e.g. bfinal).

wfinal = winitial − η
∂C

∂w
(3.12)

bfinal = binitial − η
∂C

∂b
(3.13)
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Other parameter update methods exist, although the ones used in Equa-

tion 3.12 and Equation 3.12 are among the simplest and most straightforward. Other

update methods will not be addressed in this text and lie outside its scope.

The above process updates the value of learned parameters with the goal of

lowering the Loss (calculated by the cost function) through progressive update steps.

This can be visualized in Figure 3.7 in the case of a simple convex function with only

one learned parameter.

Figure 3.7: Gradient descent visualized in the case of a simple convex function with

only one learned parameter.
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3.2 Quantum Machine Learning

In performing quantum machine learning, many of the principles and imple-

mentations from previous sections are still at play and exist in a nearly identical form.

3.2.1 Parameters To Optimize

First recall that the quantum gates Rx, Ry, and Rz (Equation 2.10, Equa-

tion 2.11, and Equation 2.12) have the parameters θ and ϕ. If a combination of these

gates are placed on a quantum circuit ending in a differentiable measurement, then the

measurement can feed values into a classical loss function and optimizer to conduct

machine learning where the learned parameters θ and ϕ are optimized. An example of

a quantum circuit with a learned parameter (θ) can be seen in Figure 3.8. Of course,

any parameter within a gate can be treated as a learned parameter.

Figure 3.8: An example of a single quantum wire that has a learned parameter (θ)

that will be updated. Here x0 is a constant real value (i.e. a value that will not be

learned in the training process) that is inserted into the quantum circuit via the Rx

(Equation 2.10) gate. The state |0⟩ initializes the circuit.
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3.2.2 Gradients In Quantum Systems

Finding gradients of quantum gates is an active and growing field of research

[53–55]. For the quantum gates Rx, Ry, and Rz (Equation 2.10, Equation 2.11, and

Equation 2.12) their gradients are known to be defined by the parameter shift rule as

seen in Equation 3.14 [56, 57], where f is the rotational gate of interest and θ is the

learned parameter of interest. More general parameter shift rules exist and need to be

solved on a case-by-case basis [53–55].

∇θf(θ) =
1

2
[f(θ +

π

2
)− f(θ − π

2
)] (3.14)

However other methods for finding gradients (and quantum gradients) exist,

including finite difference methods. Such difference methods include the forward fi-

nite difference (Equation 3.15), the backward finite difference (Equation 3.16), and the

central finite difference (Equation 3.17) as illustrated in Figure 3.9.

forward finite difference: ∇xf(x) =
f(x+∆x)− f(x)

∆x
(3.15)

backward finite difference: ∇xf(x) =
f(x)− f(x−∆x)

∆x
(3.16)

central finite difference: ∇xf(x) =
f(x+∆x)− f(x−∆x)

2∆x
(3.17)

Note that ∆x in Equation 3.15, Equation 3.16, and Equation 3.17 is a hyper-

parameter which determines how much of a shift the finite difference method takes in
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order to determine the gradient. The parameter x in Equation 3.15, Equation 3.16,

Equation 3.17, and Figure 3.9 is a learned parameter in need of optimization.

Figure 3.9: An illustration of the central finite difference for the point x on a function [9].

3.3 Spiking Neural Networks

3.3.1 A New Generation: Spiking Neural Networks

Machine learning, and in particular deep learning, is taking more computa-

tional resources every year to run. From 2012 to 2019 the amount of computational

power needed to run the best performing deep learning models have increased ten times

per year. One estimate places OpenAI’s GPT-3 needing 190,000 kWh to train 175
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billion learned parameters [58–60], while the brain maintains autonomous bodily func-

tions and processes multisensory inputs with only about 12 W to 20 W of power [61].

Given that deep learning models will likely only get larger and thereby require more

computational power with time [10], the human brain which leverages spiking neuron

behavior serves as a point of inspiration and efficiency in alternative machine learning

model design.

Figure 3.10: An illustration of training compute time versus year for popular models [10].

To this point of inspiration, a new paradigm of machine learning called spik-

ing neural networks (SNNs) are quickly gaining traction as they strive to bridge the

difference between the brain and deep learning efficiency and behavior.
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3.3.2 A Review Of Select Neuron Anatomy And Function

In order to understand how spiking neural networks are inspired and con-

structed, a quick review of neuron anatomy and function is needed.

Recall that the biological neuron (Figure 3.11) is made of many parts. At a

high level all neurons have three basic tasks: receive information or signals; integrate

incoming and received signals; and send signals to other cells (which don’t have to

necessarily be other neurons, as they can also be glands, muscles, etc...) [62].

Figure 3.11: An illustration of a biological neuron with parts of the neuron labeled and

described [11].

Most of the time, neurons tend to have more negatively charged ions inside

them while the extracelluar fluid around them tends to be made up of positively charged

ions; this difference in charged ion concentration is called a concentration gradient, and
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the neuron state when neurons have a negative concentration gradient (negative because

the neuron is net negatively charged) is called a resting membrane potential.

Figure 3.12: An illustration of a neuron spike [12].

When the dendrites receive signals from other cells, the soma (cell body) in-

tegrates these signals. If sufficient excitatory and inhibitory signals are sent to the

soma then the membrane potential reaches the action potential threshold. Once the

membrane potential gets raised to the action potential threshold the neuron fires an

action potential (i.e. nerve impulse or spike) (Figure 3.12) down the axon to the axon

terminals (i.e. nerve terminals) which make connections to other cells. Synapses are

the sites where neuron-to-neuron connections are made [62]. The action potential works
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on an “all-or-nothing” principle: if the membrane potential reaches the action potential

threshold then the neuron spikes, otherwise if the threshold is not reached the neuron

does not spike; the strength of the spike does not depend on whether there is excess

potential as it will always fire with the same strength. After the neuron fires then

the neuron’s membrane resets back to a resting membrane potential through a process

called repolarization and hyperpolarization whose details are unimportant here [63]. An

example series of these measured biological spikes can be seen in Figure 3.13.

Figure 3.13: An illustration of real and measured neuron spiking behavior [12].
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3.3.3 Introduction To The Leaky Integrate And Fire Neuron Model

The neuron is encased by a thin lipid bilayer membrane that insulates a con-

ductive saline solution inside the neuron from the extracellular medium that lies outside

the neuron. The lipid bilayer membrane also helps regulate what moves into and out

of the cell (e.g. sodium and potassium ions). The membrane is generally imperme-

able except for specific channels that allow for ions to flow into the neuron. This cell

membrane leakage resistance can be modeled as a resistor. The lipid bilayer membrane

separating the saline solution and extracellular medium can be modeled as a capacitor

(Figure 3.14). The entire system can be modeled as an RC circuit (Figure 3.15). This

neuron model is known as the leaky integrate and fire (LIF) neuron model [14].

The total current in Figure 3.15 is given by Equation 3.18 (where R is for the

resistor and C is for the capacitor).

Iin(t) = IR + IC (3.18)

The capacitance is given by the ratio of the charge on the capacitor and the po-

tential Equation 3.19 (where Umem
2 is the membrane potential (also commonly labeled

as V with the usual units of volts)) and Q is the charge.

C =
Q

Umem(t)

→ Q = CUmem(t)

(3.19)

2Here U is used to be consistent with spiking neural network literature.
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Figure 3.14: An illustration of a lipid bilayer (golden circles with grey forks) separating

the extracellular and intracellular medium with ions on either side. The ion channel

resisting the flow of ions (charges) in and out is modeled as a resistor. The lipid bilayer

separating the extracellular and intracellular ions (and thus creates voltage differential

across the membrane) is modeled as a capacitor. This is detailed in Section 3.3.3 [13].

Taking the time derivative of both sides in Equation 3.19 yields the current

through the capacitor (Equation 3.20).

IC(t) =
dQ

dt
= C

dUmem(t)

dt

→ IC(t) = C
dUmem(t)

dt

(3.20)

The ion channel, which resists flow of ions between the inside and outside of

the membrane, is modeled as a resistor, as given by Ohm’s law (Equation 3.21).
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Figure 3.15: A resistor-capacitor (RC) circuit which models a biological neuron. Input

current Iin models excitatory signals flowing into the neuron, the resistance R models

the membrane leakage resistance to ion current flow through the ion channels, and the

electrical potential Umem models the measured potential between the inside and outside

of the neuron [14].

IR(t) =
Umem(t)

R
(3.21)

Plugging in Equation 3.20 and Equation 3.21 into Equation 3.18 yields Equa-

tion 3.22.
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Iin(t) = IR + IC

→ Iin(t) =
Umem(t)

R
+ C

dUmem(t)

dt

(3.22)

Moving forward let U(t) = Umem(t) for simplicity. Taking Equation 3.22 and

getting the terms RC on one side of the equation yields Equation 3.23.

Iin(t) =
U(t)

R
+ C

dU(t)

dt

→ RC
dU(t)

dt
= −U(t) +RIin(t)

(3.23)

The quantity RC is also known as the time constant of the circuit, τ , so

substituting RC = τ into Equation 3.23 yields Equation 3.24.

RC
dU(t)

dt
= −U(t) +RIin(t)

→ τ
dU(t)

dt
= −U(t) +RIin(t)

(3.24)

The latter part of Equation 3.24 yields the differential equation Equation 3.25.

τ
dU(t)

dt
= −U(t) +RIin(t) (3.25)

3.3.4 Discretely Solving The ODE

The forward Euler method solves this ordinary differential equation (ODE)

(Equation 3.25) yielding a discrete form which is useful for spiking neural networks.

This is done by taking the derivative of Equation 3.25 without taking the limit ∆t→ 0

which gives Equation 3.26.
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τ
U(t+∆t)− U(t)

∆t
= −U(t) +RIin(t) (3.26)

If ∆t is small enough then ∆t will give a good approximation for integrating

in continuous time. Solving for U gives Equation 3.27.

τ
U(t+∆t)− U(t)

∆t
= −U(t) +RIin(t)

→ U(t+∆t)− U(t) =
∆t

τ

(
− U(t) +RIin(t)

)
→ U(t+∆t) = U(t) +

∆t

τ

(
− U(t) +RIin(t)

)
→ U(t+∆t) = (1− ∆t

τ
)U(t) +

∆t

τ
Iin(t)R

(3.27)

Consider the scenario that no input current exists, i.e. Iin(t) = 0A which yields

Equation 3.28.

U(t+∆t) = (1− ∆t

τ
)U(t) (3.28)

From Equation 3.28 it can be seen that Equation 3.29 is less than unity since

∆t is small, so therefore ∆t
τ < 1.

U(t+∆t)

U(t)
= (1− ∆t

τ
) (3.29)

The ratio U(t+∆t)
U(t) is the decay rate of the membrane potential β, also known

as the inverse time constant as seen in Equation 3.30. This decay rate models how

the voltage across the membrane decreases as the difference in charge is across the

44



membrane is brought to equilibrium as ions flowing through the ion channel bring the

neuron to equilibrium: zero potential, i.e. zero voltage difference.

β =
U(t+∆t)

U(t)
= (1− ∆t

τ
)

→ U(t+∆t) = βU(t)

(3.30)

Equation 3.30 also yields Equation 3.31 and Equation 3.32.

β = (1− ∆t

τ
) (3.31)

β = (1− ∆t

τ
)

→ ∆t

τ
= 1− β

(3.32)

Plugging the results from Equation 3.31 and Equation 3.32 into Equation 3.27

yields Equation 3.33.

U(t+∆t) = (1− ∆t

τ
)U(t) +

∆t

τ
Iin(t)R

→ U(t+∆t) = βU(t) + (1− β)Iin(t)R

(3.33)

If time is taken to represent discrete, sequential time-steps then for simplicity

let ∆t = 1 and assume that R = 1Ω. Using discrete time leads to the assumption

that each time bin t is small enough so that only a maximum of one spike is emitted

by a neuron in this interval. By also assuming that the input current instantaneously

contributes to the current state of the membrane potential, the above gives rise to

Equation 3.34.
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U(t+ 1) = βU(t) + (1− β)Iin(t) (3.34)

3.3.5 An Analytical β

A continuous and analytical solution to β can be found by solving Equa-

tion 3.25, where the solution for Equation 3.25 is given by Equation 3.39, where k

is an unknown constant.

Starting off with Equation 3.25 and rearranging terms yields Equation 3.35.

dU(t)

dt
+

1

τ
U(t) =

1

τ
Iin(t)R (3.35)

This differential equation has the well known solution of the form [64] Equa-

tion 3.36 where µ(t) is given by Equation 3.37.

U(t) =
1

µ(t)
(

∫
µ(t)

1

τ
Iin(t)Rdt+ k) (3.36)

µ(t) =e
∫

1
τ
dt

→ µ(t) =e
t
τ

(3.37)

Plugging the result of Equation 3.37 into Equation 3.36 yields Equation 3.38.
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U(t) =

∫
µ(t) 1τ Iin(t)Rdt+ k

µ(t)

→
∫
e

t
τ
1
τ Iin(t)Rdt+ k

e
t
τ

→
τe

t
τ
1
τ Iin(t)R+ k

e
t
τ

→Iin(t)R+ ke
−t
τ

=⇒ U(t) =Iin(t)R+ ke
−t
τ = Iin(t)R+ ke

−t
RC

(3.38)

From the above, the result to Equation 3.38 is Equation 3.39.

U(t) = Iin(t)R+ ke
−t
RC (3.39)

The boundary condition to solve for k in Equation 3.39 is that U(t = 0) = U0

which yields

U(t = 0) = Iin(t)R+ ke
−0
RC

→U0 = Iin(t)R+ k(1)

→k = U0 − Iin(t)R

(3.40)

Plugging in the result from Equation 3.40 into Equation 3.39 yields Equa-

tion 3.41.

U(t) = Iin(t)R+ (U0 − Iin(t)R)e
−t
RC (3.41)

Note that if the input Iin(t) = 0 then Equation 3.41 becomes Equation 3.42.

Equation 3.42 then solves the differential equation Equation 3.35 (and by extension
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Equation 3.25) when Iin(t) = 0. This is important because it says that without current

input then the membrane potential will start at U0 and will exponentially decay with a

time constant τ = RC.

U(t) = Iin(t)R+ (U0 − Iin(t)R)e
−t
RC

→ U(t) = (0) + (U0 − (0))e
−t
RC

→ U(t) = U0e
−t
RC = U0e

−t
τ

(3.42)

Therefore the final result of Equation 3.42 is Equation 3.43.

U(t) = U0e
− t

RC = U0e
− t

τ (3.43)

Note that if Equation 3.43 is determined at discrete values of t such that the

values are t, (t+∆t), (t+2∆t), ... , then the definition for β as given in Equation 3.30

becomes Equation 3.44.

β =
U(t+∆t)

U(t)

→ β =
U0e

− t+∆t
τ

U0e
− t

τ

=
U0e

− t+2∆t
τ

U0e
− t+∆t

τ

= ...

=⇒ β = e−
∆t
τ

(3.44)

The definition of β as determined in Equation 3.44 is preferred because it

generalizes β while β = (1 − ∆t
τ ) rests on the limit ∆t << τ . Therefore the definition

of β as given in Equation 3.44 can be used in Equation 3.34 and the reminder of this

work.

48



It’s important to note that at a high level the discrete approach (Equation 3.34)

yields a solution of the form useful for spiking neural networks and the analytical ap-

proach (Equation 3.43) gives a precise definition for β (Equation 3.44). Therefore by

combining the both solutions a more precise form of the discrete approach helps to

create and define spiking neural networks (as seen in Section 3.3.6) [14].

3.3.6 Elements Of Spiking Neural Networks

Taking a closer look at Equation 3.34, particularly the (1−β)Iin(t) term, Iin(t)

can be viewed as a spike (or input voltage) that is scaled by a synaptic conductance

(1 − β) to create an injection of current into the neuron. In calling such a spike X(t)

and naming the synaptic conductance to be variable W gives rise to Equation 3.45.

WX(t) = (1− β)Iin(t) (3.45)

Interpreting X(t) as the input spikes from a different layer and W as the

corresponding weight for each input spike such implementation of parameters in Equa-

tion 3.34 leads to Equation 3.46 that allows for the construction of deep spiking neural

network learning models.

U(t+∆t) = βU(t) +WX(t+ 1) (3.46)

It’s important to note that the effects of β and W are decoupled as W is a

learnable parameter that is updated independently of β [14].
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Figure 3.16: This figure is the same figure as Figure 3.15 except the threshold (θ) has

been introduced where if Umem > θ then Vout creates a voltage spike and sends it to the

next layer [14].

Recall that if the membrane potential exceeds a given potential threshold that

the neuron will output a spike as given by Equation 3.47, where Uthr(= Uthreshold) is the

potential threshold.

S(t) =


1, if U(t) > Uthr

0, otherwise

(3.47)

An alternative representation for Equation 3.47 is Equation 3.48 where Θ is

the Heaviside (step) function.

S(t) = Θ(U(t)− Uthr) (3.48)
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Therefore from Equation 3.47 (or Equation 3.48) if a spike is output from

a neuron then the membrane potential is reset. In Equation 3.49 the defined reset

mechanism is reset-by-subtraction (where the new potential after a spike is the original

pre-spike potential minus the defined potential threshold value) and in Equation 3.50

the defined reset mechanism is reset to zero (where the potential, regardless of any

excess, defaults back to zero).

U(t+ 1) = βU(t)︸ ︷︷ ︸
decay

+WX(t+ 1)︸ ︷︷ ︸
input

− S(t)Uthr︸ ︷︷ ︸
reset by subtraction

(3.49)

U(t+ 1) = βU(t)︸ ︷︷ ︸
decay

+WX(t+ 1)︸ ︷︷ ︸
input

−S(t)(βU(t) +WX(t+ 1))︸ ︷︷ ︸
reset to zero

(3.50)

Note that Uthr is frequently equal to unity (though it can be tuned to different

values) and W is a learnable parameter, which (traditionally) leaves β as a hyperpa-

rameter. Whether to use “reset by subtraction” or “reset to zero” is a hyperparameter.

Putting all of the above together, an example of how the network behaves is

depicted in Figure 3.17 where incoming spikes create a potential (which exponentially

decays in accordance with β), the potential slowly builds, and when the potential reaches

a given threshold, θ, the neuron fires (outputs a spike) as depicted in Figure 3.17.

While other and more complicated spiking neuron models exist, they all fol-

low this idea of taking incoming spiking neuron behavior as inputs which effects the

neuron’s internal voltage potential which may build over time as to elicit output spikes

(e.g. Equation 3.48) and determine the electric potential at the next time step (e.g.
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Figure 3.17: A depiction of an example leaky integrate and fire neuron with incoming

spikes, the created potential, and the outgoing spikes [14].

Equation 3.49).

3.3.7 Surrogate Gradients

Equation 3.48 is useful for a spiking neural network forward pass but becomes

problematic when attempting backpropagation, as the derivative of the Heaviside func-

tion is the Dirac delta function (with value of 0 everywhere except when Uthr = θ in

which it’s then ∞). This means that on the backward pass the gradient will be either
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vanish or explode (when U is at the threshold) and therefore no learning is possible.

These issues are collectively known as the dead neuron problem as seen in Figure 3.18.

Figure 3.18: A depiction of a dead (non-smoothly differentiable) neuron which creates

the dead neuron problem. Indeed, ∂S
∂U ∈ {0,∞} [14], only ever resulting in a vanishing

or exploding gradient.

The solution to this issue in spiking neural networks is known as the surrogate

gradient approach (e.g. Figure 3.19) [14]. The idea is to take a smooth and continuous

function that looks similar to the Heaviside function (e.g. arctangent, sigmoid, etc...),

take the derivative of that function, and then use the derivative of that function on the

backward pass. For example assuming that the arctangent function was of interest for

53



the surrogate gradient, then on the forward pass the Heaviside function (similar to the

one used in Equation 3.48) is used and on the backward pass ∂ arctan(x)
∂x is used in place

of ∂Θ(x)
∂x . Which surrogate gradient function to use is a hyperparameter.

Figure 3.19: A depiction of a surrogate gradient approach, where ∂S̃
∂U takes the place of

∂S
∂U in the backward pass step [14].

3.3.8 Motivations For Spiking Neural Networks

In classical machine learning, multiplying high-precision values with high-

precision weights, passing high-precision values through high-precision activation func-

tions, executing such high-precision operations on hardware, and copying high-precision
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values to other model layers and components is computationally expensive and slow.

However the spike-based approach simply multiples the high-precision weight with a

spike of value “1”, replacing the high-precision multiplication operations with a simple

read-out of the weight value [14].

While spiking neural networks output a single bit based on whether they spiked

or not, they are different from other binarized networks since spiking neural networks

rely on the timing of the spikes, which can easily utilize the clock signals on digital

circuits [14].

Due to spiking neural networks only outputting spikes (or lack thereof), then

the resulting tensors from spiking neurons are sparse. For example, when examining the

following list [0, 0, 1, 0, 1, 0, 0, 0] it can be seen that since all of the entries are zero but

two of them, then only passing the location of nonzero elements of the list (e.g. when

indexing from zero, there is the value of 1 at positions 2 and 4) yields a more efficient

representation than passing all values at all entries. Recalling that the space needed

by a simple data structure to store a matrix increases with the number of contained

entries, therefore as the sparsity of data increases so does the space that can be saved

and such efficient representations makes sparse data (and thereby data from spiking

neural networks) cheaper to store [14].

Spiking neural networks may receive data from event cameras which report

changes in brightness only on activated camera pixels, otherwise such pixels remain

quiet and unreported (as depicted in Figure 3.20), resulting in each pixel activating

and operating independently of all other pixels (eg: unlike conventional RGB cameras
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Figure 3.20: A depiction of an event camera creating a sparse matrix from a detected

car moving in the camera’s frame [14].

which collect data on all the pixels simultaneously after a set exposure time, regardless of

incoming light or discrimination to static input). This event-driven processing leads to a

reduction of active pixels and thereby vast energy savings compared to traditional image

cameras. The reduction in active collected pixels also results in asynchronous and low-

power operation allowing for fast clock speeds with microsecond temporal resolution.

Such difference in “image” capture between conventional (frame-based) cameras and

event cameras can be seen in Figure 3.21 [14].
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Figure 3.21: A depiction of an event camera recording an “image” in time versus a

conventional camera recording the the same image [14].
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Part III

New Ideas And Applications
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Chapter 4

Classical And Quantum Self-Attention

4.1 The Rise Of Self-Attention Architectures

Much1 of the rise in performance and power behind modern day machine learn-

ing revolves around transformers and by extension self-attention. Made famous by the

2017 paper Attention Is All You Need [65], transformers and self-attention have revo-

lutionized Natural Language Processing as such architectures have formed the bedrock

for GPT-3 [58], LLaMa [66], and others [67–73]. The idea of Vision Transformers was

introduced in the 2020 paper An Image is Worth 16x16 Words: Transformers for Im-

age Recognition at Scale [74] which applied transformers to images. With the onset

of Vision Transformers, transformers can be used for computer vision tasks such as

classification [74] and object detection [75].

At a very high level, self-attention takes inputs (in tensor form) and multiplies

those inputs by three separate learned matrices to generate unique “q” (query), “k”

1Nearly the entirety of this chapter and its sections were originally published in [16].
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Figure 4.1: A depiction of classical vision transformer with example values. The “MLP

head” is the multilayer perceptron network that is at the top (head) of the network [15].

(key), and “v” (value) matrices for each input2. Query and key matrix elements are

multiplied together and then passed to a softmax operation to create the attention

matrix, and the attention matrix is then multiplied by the value matrix elements. All

of the resulting outputs are then concatenated and output together. The query matrix

is then shared and used in the same operation with every input generated key and

value matrix that the vision transformer takes in [65]; it is this sharing of the query

matrix between the other separate key and query matrices from which self-attention

gets its power and performance. A vision transformer for classification can be seen in

Figure 4.1 with its self-attention mechanism (as embedded in the Transformer Encoder)

being depicted with example values in Figure 4.2.

As Transformers expand to different variations and applications, such architec-

ture has inspired and motivated the development of Quantum-enhanced Vision Trans-

2The terms query, key, and value come from the days of retrieval systems when a search engine would
map the Query (e.g. the text in a search bar) against the Keys (e.g. given descriptors like video title,
description, etc...) of indexed items, and then the search engine would return the best matched items
(Values) to the user.
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Figure 4.2: A depiction of classical self-attention with example values as implemented in

the Transformer Encoder in Figure 4.1. Here “q,” “k,” and “v,” are the generated query,

key, and value tensors, respectively, “matmul” is matrix multiplication, “softmax” is the

well known softmax function, and “concat” is the concatenation of outputs. [15].
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formers (QViT) [16]. The QViT replaces classical self-attention with a version of quan-

tum self-attention, and such QViT design resolves issues with past implementations and

whose performance is compared against a classical ViT [16].

4.2 Previous Quantum Self-Attention Architectures

Previous works attempted to implement quantum (self) attention with various

levels of performance [68, 76]. However such implementations leave room for improve-

ments which are outlined below and set the stage for the novel QViT implementation

detailed in [16].

Attempts at applying attention to quantum vision transformer networks in-

clude [76], however while such work employs attention it lacks self-attention. Such

self-attention is essential for comparing encoded inputs across multiple other inputs,

however [76] makes no mention of the encoded query, key, or value parts of the input,

and does not compute the query and the key parts of the input together.

Another drawback of previous works for quantum (self) attention in vision

transformers is that they don’t consider the sizes for the inputs of the attention mech-

anism to be an adjustable hyperparameter. This hyperparameter allows for the user

to tune the projected space that is input to the (self) attention mechanism, and such

tuning can be done on an case-by-case basis for purposes of biasing an input to have

more of an effect than another input. For example it may be advantageous to give the

query vector more influence than the key vector when they are combined, and likewise
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it might be more advantageous to give the attention vector more weight than the value

vector. With past approaches such inputs were all treated equally and gave no room

or operation to do so otherwise. It’s notable that classical vision transformers don’t

typically consider this flexibility either as the projected sizes for their query, key, and

value components are traditionally a function of the input, however given that the self-

attention mechanism is now being dealt in a quantum mechanical manner, it’s worth

considering and fine-tuning the flexibility for the size of the inputs to the quantum

mechanical self-attention mechanism.

Also the approach proposed in [16] is hardware agnostic as one could tune the

inputs to the quantum circuit to fit the available input size to the applied quantum

hardware of interest. If using a simulated approach this ability to tune the size of the

inputs as well as their proportions allow for effective use of the simulated quantum

circuit, since too large of an input would slow down the simulation while too small of an

input would not capture the full effects of the input in a reduced dimension. In contrast

to the above motivation and points for a quantum vision transformer, the paper [76]

passed the full width of the input to their quantum circuits without regard to current,

future, or available quantum circuitry, real or simulated.

Other work addressing the quantum self-attention in a transformer architec-

ture includes [68] which more closely resembles a true transformer structure with some

interesting features. [68] divides the inputs into three parts and then entangles the query

and key inputs via a CNOT gate before the self-attention is conducted; combining the

query and key inputs constitutes creating some type of attention between the query and
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key. However the query, key, and value matrices should remain separate and indepen-

dent until after they’ve been combined for self-attention.

The technique proposed in [68] also indicates that at the end of their quantum

circuit the previous inputs are summed with the product of the proposed attention and

value steps. This incorporation of the input to the output is more reminiscent of a

UNet [77] than a transformer in which such an operation is absent.

[68] indicates that the query and key components of self-attention are coupled

together, and then after measurements are taken for their respective values the query

and keys are subtracted from one another and then put through a softmax (of sorts)

of these differences. This approach creates noise in the output when evaluating the

difference of queries being compared against keys from the same input, thus a difference

wouldn’t yield how much self-attention an input should give to itself since the items

being compared are already entangled from previous operations.

Despite the aforementioned works, the proposed approach resolves the above

points with its own novel implementation for quantum-enhanced self-attention vision

transformers.

4.3 Methodology

The most simple approach to create a novel QViT simultaneously addressing

the issues above while competing with a ViT [74] would be to replace the dot-product

attention inside the ViT with a trained variational quantum circuit.
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The following subsections will discuss how Quantum Self-Attention was im-

plemented within the ViT. Variations and their motivations will be addressed in later

sections. Unless otherwise noted, the QViT has identical default settings and param-

eters as the classical ViT. The performance of the QViT will then be benchmarked

against its classical ViT counterpart.

4.3.1 Quantum Self-Attention

[16] focused on developing Quantum Self-Attention within the ViT. However

since self-attention within the ViT relies on dot-product attention, the attention is

replaced with a classical-quantum hybrid architecture (Figure 4.3) which when inserted

into the ViT architecture becomes Quantum Self-Attention within the ViT.

To begin, assume that the tensors for the query, key, and value for attention

are given with their encoding masks already applied and the scaling factor is applied to

the query and key.

4.3.2 Creating The Attention Mask

To create the quantum attention mask, the query and key pass through a

classical linear layer to project their respective size down to five nodes. The resulting

query and key vectors are concatenated together to form a single vector which is then

passed to a hyperbolic tangent activation function, whose output is multiplied by a

scalar, α. The vector is then passed to the quantum circuit where it undergoes an

Ry rotational encoding step (as defined by Equation 2.11) for 10 wires, after which
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the quantum circuit applies four iterations of PennyLane’s StronglyEntanglingLayers

(with a single iteration consisting of single generalized qubit rotations on each wire and

CNOT gates connecting pairs of wires across the entire circuit) [78]. The quantum

circuit measures the expectation value of the Pauli Z matrix for each of the wires of the

circuit. The resulting measurements get sent through a softmax layer which generates

the attention vector. These steps can be seen in the top half of Figure 4.3.

4.3.3 Generating The Output

Creating the output with the attention mask (vector) and value is nearly the

same process as described in Section 4.3.2, with the exception that there is no softmax

operation.

To create the output, the attention vector and the value matrix pass through

a classical linear layer to project their respective sizes down to five nodes. Then the

attention and value are concatenated together to form a single vector which is then

passed to a hyperbolic tangent activation function, whose output is multiplied by a

scalar, α. The vector is then passed to the quantum circuit where it undergoes an

Ry rotational encoding step for 10 wires, after which the quantum circuit then applies

four layers of PennyLane’s StronglyEntanglingLayers [78]. The quantum circuit then

measures the expectation value of the Pauli Z matrix for each of the wires of the circuit.

The resulting measurements form the output of the entire attention mechanism. The

above creation of the aforementioned output can be seen in the bottom half of Figure 4.3.

After the output is generated, it passes through a classical linear layer to
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project back into the appropriate number of dimensions to continue being passed to the

rest of the QViT.

4.4 Software, Data, Models & Experiment

4.4.1 Software and Data

The MNIST digits dataset [79] is used as a classification task to compare the

performance of the ViT and proposed QViT.

PyTorch [80] was used to supply the MNIST dataset which was brought in via

the EMNIST dataset [81] with the MNIST split. The data was then normalized with a

mean of 0.1307 and a standard deviation of 0.3081 over the only channel. The training

and test datasets were defined by their respective default files as called by PyTorch.

The ViT was taken from the PyTorch implementation of the Vision Trans-

former [82]. The defined architecture variables were taken to be the following: image

size of 28× 28 pixels; patch size of seven pixels; one layer; two heads; a latent (hidden)

dimension of 128; multilayer perceptron dimension of 128; one channel; and 10 classes.

ADAM was the chosen optimizer and Cross Entropy was the loss function.

PennyLane [83] was used for simulating and training the quantum circuits. All

functions for encoding data into the quantum circuits and constructing the quantum

circuit learned parameters were done with the PennyLane API.
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Figure 4.3: This figure depicts the flow of information through quantum attention,

though the circuit parameters can be found in Section 4.3.3. The query and key matrices

are flattened into vectors. The vectors are then concatenated together and are passed

through a hyperbolic tangent activation function, whose outputs are then multiplied

by a scalar, α. The inputs enter the quantum circuit and are encoded via an encoding

method, E(xi) (where xi is an input to the quantum circuit. Note that the illustration

stops at x4 for brevity). The above process is repeated for the value matrix whose

resulting vector is concatenated with the attention vector, and the result after the

imposed variational quantum circuit forms the output for Quantum Self-Attention.
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4.4.2 Models

Constructing the QViT begins with the ViT. Within the ViT, the dot-product

attention is exchanged with the Quantum Self-Attention mechanism described in Section

4.3 and illustrated in Figure 4.3. After the output is generated, a linear layer is used

to increase the output dimensions to the shape the output would have been if classical

self-attention was used instead of Quantum Self-Attention.

α was chosen with regards to the rotational encoding step, Ry. Consider that

since the classical information passes through a hyperbolic tangent activation function

before reaching α, then all of the information will be projected to span from −1 to 1.

Therefore one value for α was chosen to be α = π
2 ; this is an arbitrary choice, with a

careful eye for the projected space of the inputs to be not too big but not too small

either, as the projected data will span from −π
2 to π

2 when passed to Ry. The other

value for α was chosen to be α = π − 0.01 to ensure that all encoded data remained

unique after being passed to the Ry rotational encoding step and did not overlap at

α = ±π.

There is a question of dimensionality when the output of the softmax operation

as seen in Figure 4.3 should or should not match the dimensions of the value vector.

In some models (as addressed below) the attention vector passes through a linear layer

to scale up to the equivalent shape of the value vector, and then both the attention

vector and the value vector are scaled down with the help of a linear layer to five nodes,

after which the resulting vectors are concatenated together and passed to the quantum
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circuit. In other models the attention vector passes through a linear layer that scales

the vector down to five nodes, and then a separate linear layer scales the value vector

down to five nodes. After this the vectors are concatenated together and passed through

the quantum circuit. The scaling tests to see if the initial projected dimensional space

of the attention and value vectors change the performance when they’re scaled down;

this will be discussed further in Section 4.5.

From the above, four models are explored with the following titles and param-

eters:

• QViT With π
2 Encoding

– the attention vector is rescaled to the same shape as the value vector with

the help of a classical linear layer, and α = π
2

• QViT With π
2 Encoding And No Rescaling

– the attention vector is scaled down with the help of a classical linear layer,

and α = π
2

• QViT With π − 0.01 Encoding

– the attention vector is rescaled to the same shape as the value vector with

the help of a classical linear layer, and α = π − 0.01

• QViT With π − 0.01 Encoding And No Rescaling

– the attention vector is scaled down with the help of a classical linear layer,

and α = π − 0.01
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4.5 Results And Discussion

As seen in Figure 4.4, Figure 4.5, and Figure 4.6, when comparing the test

and training statistics of the QViT and the (classical) ViT, it is found that the QViT

and classical ViT are of comparable performance. It can be argued that the QViT gives

a slight boost in performance when examining the test accuracy, however upon closer

inspection of the y-axis’ scale it can be immediately rendered that such differences do

not amount to any statistical significance [16].

A similar result to the above analysis can also be found with the test loss.

While the test loss for the QViT models on average outperform the classical ViT, such

differences are minute when examining their scale via the y-axis.

The training loss tells the above story in perhaps the most stark terms; by

inspection the training loss yields no statistical difference between the classical ViT and

the QViT.

What is interesting is that varying α or the projected dimensions for the at-

tention mask do not change the behavior of the QViT. It may very well be that the

imposed quantum circuit allows for the resulting attention vector to be in a sufficiently

separate dimensional space such that any extra alteration yields no advantage over the

ViT or difference between the presented projected dimensions.
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Figure 4.4: A plot depicting the test loss of all the different proposed classical and

quantum self-attention models [16].
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Figure 4.5: A plot depicting the training loss of all the different proposed classical and

quantum self-attention models [16].
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Figure 4.6: A plot depicting the test accuracy of all the different proposed classical and

quantum self-attention models [16].
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4.6 Remarks

As inspired by modern day Vision Transformers, [16] proposes a Quantum-

enhanced Vision Transformer in which a novel approach to Quantum Self-Attention

is introduced and implemented [16]. The performance of the QViT is benchmarked

with the MNIST digits dataset and whose performance is compared against a classical

ViT. Careful steps are taken to ensure that the encoding of information from classical to

quantum maximizes the possible encoding space while also preventing an overlap in data

encoding, as discussed in Section 4.4.2. Upon examining the models and their resulting

statistics after training and testing on the MNIST dataset, it is found that a naive and

simple implementation of a QViT is of comparable and competitive performance with

the classical ViT.

Potential future work includes changing the encoding method of classical to

quantum information, as well as varying the quantum circuit architecture. Also changing

the ratio of the information contributed by the query and key vectors, and the value

and attention vectors in their respective operations may very well alter the resulting

performance.
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Chapter 5

Learning Unimodular Matrices For

Quantum Circuits

5.1 Introduction

As1 quantum machine learning remains an active research area [83, 84] there

exists the open question of matching the best quantum machine learning architecture

to a particular problem which has led to the development of Quantum Neural Networks

[85,86], Quantum Born Machines [87,88], transfer learning [89], Quantum Convolution

Neural Networks [90], and Quantum Generative Networks [43,91].

Despite all of the above proposed and used techniques, finding a generalized

approach for determining the quantum circuit architecture for a given problem remains

an open question. Others works have studied this question with a variety of techniques

and differing levels of success.

1Much of this chapter and its sections were originally published in [17].
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5.2 Previous Work

[92] learns the rotations of randomly generated layers of parameterized Rx and

Ry gates. In [93] a genetic algorithm was used to tune the voltage of lasers to determine

the ideal net unitary transformation. Then [94] used deep reinforcement learning to try

to find the ideal architecture of single qubit rotations about the x, y, and z axis and

CNOT gates. However none of these approaches attempted to first solve for a general

numerically-readout unitary matrix as a whole.

Methods in [17] presented here yield a resolution to these issues by using general

parameterized unimodular matrices to learn unitary matrices spanning both single and

multiple wires of a quantum circuit. The result of [17] demonstrates the efficacy of

using a unimodular matrix ansatz when compared to comparable classical models with

similar architectures, and it’s found that the parameterized unimodular ansatz achieves

a higher accuracy faster than the comparable classical models.

5.3 Ansatz & Methodologies

5.3.1 Murnaghan’s Recipe

Murnaghan gives a recipe to construct a parameterized n×n general unimod-

ular and unitary matrix with latitudinal and longitudinal angles [95]. As an example, a

2× 2 unimodular matrix can be decomposed into U1 = D×U , where U1, D, and U are

defined in Equation 5.3, Equation 5.1, Equation 5.2, respectively. ϕ is a longitudinal

angle while α and β are latitude angles [95].
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D =

 eiα 0

0 e−iα

 (5.1)

U =

 cos (ϕ) − sin (ϕ)e−i(α+β)

sin (ϕ)ei(α+β) cos (ϕ)

 (5.2)

U1 =

 cos (ϕ)eiα − sin (ϕ)e−iβ

sin (ϕ)eiβ cos (ϕ)e−iα

 (5.3)

5.3.2 Quantum Machine Learning Architecture Ansatz

After constructing a parameterized unimodular matrix using the recipe in Sec-

tion 5.3.1, the parameterized matrix or matrices can be used in a quantum circuit to

learn the desired couplings and behavior of transformations on and/or between wires.

However if learning the needed rotations on a single wire is desired, then a single 2× 2

unimodular matrix can be implemented on that wire of interest.

5.3.3 Taking The Gradient

A variety of methods exist to take the gradient of a quantum circuit, and

development of such methods remains an active research area. Common approaches to

solving for the gradient include taking the gradient analytically [53,57]. In this study the

central finite difference is used to find the gradient of the quantum circuit as defined in

Equation 3.17 where f is an expectation value dependent on θ, a gate parameter [96,97].

It’s notable that ∆θ is a hyperparameter in Equation 3.17.
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5.4 Experiment

5.4.1 Software, Dataset, Data Preparation

ScikitLearn’s [98] two moons dataset was chosen as a classification example

to characterize the performance of the proposed learned unimodular matrices. Penny-

Lane [83] simulated the quantum circuit while PyTorch [80] conducted the forward pass

and backpropagation mechanics through the model. The data includes 3200 training

samples, 400 testing samples, and 400 validation samples. All of the aforementioned

samples had a noise level of 5% with a batch size of 100 for each epoch. The ADAM

optimizer with a learning rate of 0.01 was used as well as using Cross Entropy for the

loss function. When implementing Equation 3.17 to solve for the gradient, a finite dif-

ference shift of ∆θ = 1× 10−7 was used for each learned parameter of the unimodular

matrices. In the utilized architectures and their corresponding implementations, a set

seed was used for each experiment to control for repeatable results.

Four quantum-classical hybrid model classes are presented. To adequately

compare against these models, a corresponding classical model was constructed which

will be discussed in Section 5.4.6.

5.4.2 Class A

This class encompasses a hybrid classical-quantum model where a single pa-

rameterized 16 × 16 unimodular matrix is learned for all four wires. In the multiple

matrix case a parameterized 2 × 2 unimodular matrix is learned for each wire in the
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Figure 5.1: This figure is a hybrid quantum-classical model as discussed in Section

5.4.5. Here R is a random unitary matrix, U is a square unimodular matrix, and α is

the learned scaling parameter. θn denotes that the nth input from the previous linear

layer is acting on the nth wire; in this figure n ranges from 1− 4 [17]. © 2022, IEEE

quantum circuit.

In both the single and multiple matrix case as mentioned above, the inputs

to the hybrid circuit first pass through a linear layer that goes from two nodes to four

nodes. Then each of the outputs of the four nodes are passed to a hyperbolic tangent

activation function (which projects the inputs to range from -1 to 1) and then the

inputs are all multiplied by a scaling parameter2, α, where in this class α = π
2 . After the

scaling parameter acts on each node, the values from each node are passed to a quantum

circuit where an Ry rotation (as seen in Equation 2.11) encodes the classical information.

The values after the encoding rotation are passed to the aforementioned parameterized

unimodular matrices. The quantum circuit then measures the expectation value of the

Pauli Z matrix for each wire. The expectation values are then sent to four nodes which

2The reasoning for this can be found in the footnote in [99].
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are sent to a linear layer whose output are two nodes. The values of these two nodes

are acted on by a hyperbolic tangent activation function.

5.4.3 Class B

Class B is the same as Class A except the scaling parameter, α, is a learned

parameter since the proposed and preset α from other model classes might not be the

optimal value.

5.4.4 Class C

Class C is the same as Class A, with the addition of a random unitary matrix

being applied for each learned unimodular matrix. In the case of the 16×16 unimodular

matrix, a corresponding 16 × 16 random unitary matrix is applied across all of the

circuit’s wires before the learned 16 × 16 unimodular matrix is implemented (as seen

in Figure 5.1). In the case of the individual unimodular matrices, a 2 × 2 random

unitary matrix is applied to each wire of the quantum circuit preceding the 2 × 2

unimodular matrices. The random matrices are held constant for the duration of the

models’ training, testing, and validation.

The purpose of incorporating such random unitary matrix(ces) is to force the

mapping of the inputs to the outputs in the quantum circuit to be in a more general

complex space that is not solely unimodular.
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5.4.5 Class D

Class D is a combination of Class B and Class C, i.e. Class C is used except

the scaling parameter, α, is a learned parameter.

5.4.6 Class E

To fairly compare a classical model against the proposed hybrid models, in lieu

of a quantum circuit, classical linear layers with four nodes per layer that run twelve3

layers deep was chosen to keep the same dimensionality and approximately the same

number of learned parameters as the quantum circuit.

Therefore this class is composed of purely classical models; in these models the

inputs to the classical model first pass through a linear layer that goes from two nodes

to four nodes. Then each of the outputs of the four nodes are passed to a hyperbolic

tangent activation function. The values from each node are passed to twelve linear

layers, each of which have four nodes, and on each node a non-linear activation function

is enacted. After the twelfth linear layer, the outputs are then passed to a linear layer

with four nodes which are then sent to a linear layer whose output are two nodes. The

values of these two nodes are acted on by a hyperbolic tangent activation function. This

model construction results in the head and tail of the model remaining identical to the

hybrid model.

Since there exists a multitude of different activation functions which can be

chosen and such a multitude can be placed in a large variety of different combina-

3Note that if thirteen linear layers were chosen instead there would be more learned parameters in
the classical model than the number of learned parameters in the proposed learned unimodular matrices.
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tions, the same non-linear activation function was used on each of the quantum-circuit

equivalent layers of the classical models. The non-linear activation functions chosen

were ReLU, LeakyReLU, PreLU, CELU, ELU, Mish, Sigmoid, and SiLU. While any

non-linear activation function could have been chosen, for brevity only a collection of

popular activation functions were selected.

5.5 Results And Discussion

Looking at the plots in Fig. 5.3, it is clear that learning the 16× 16 unimod-

ular matrix acting on all of the wires simultaneously trains at a faster rate, reaches a

higher accuracy, and reduces to a lower loss than its multiple 2× 2 unimodular matrix

counterpart which acts on each wire individually. The best performing hybrid quantum-

classical model (16×16 Unimodular Matrix with a Random Unitary Matrix and Learned

Scaling Parameter) achieves about 82% test accuracy 9× (times) faster than the best

performing classical model (classical model with the ELU Activation Function). Such

a finding is not surprising as the multiple 2 × 2 matrix approach does not learn the

couplings between wires and suggests that such couplings aid the conducted training to

progress towards a more desirable accuracy and loss.

The spikes in the 2 × 2 unimodular matrix accuracy plots occur when the

learned scaling parameter reaches a “good but not optimal” value for α, after which α

departs from such a value to accommodate the other learned parameters of the model

as seen in Figure 5.3. This can be derived by observing that the spikes in Figure 5.3
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occur when α is learned for the 2 × 2 matrices but the spikes vanish when α is a set

value (in both cases the models have not reached a minimum loss and are still training).

What is interesting is the effect of learning α in Figure 5.3. For multiple 2× 2

unimodular matrices, α correlates with the top model performer while the 16×16 single

matrix models also achieved competitive accuracy but their rise to higher accuracy is

slowed by learning α. A unique αmay be needed for each individual wire, and this would

especially be true for a single unimodular matrix on each wire learning the optimal

rotations for each wire (it can be shown that a single wire unitary matrix operation can

be expressed as three rotations around two axes [100]). This could be the cause for the

delayed performance of the multiple 2 × 2 matrix model with random matrices and a

trained α.

For the model classes which incorporate random matrices, the multiple 2 × 2

unimodular matrix model with random matrices and without a trained α appears to

benefit early in the training as one of the earliest models to test well and reduce in loss

the fastest compared to the other 2×2 unimodular matrix models as seen in Figure 5.3.

However this isn’t true when the 2× 2 matrix model with random matrices simultane-

ously learns α as it hinders the model’s performance as previously discussed. The single

16×16 unimodular matrix models with the random matrix did show improvement in the

resulting accuracy and loss but only by a small (and statistically insignificant) amount.

It can also be observed that a broader unitary space is explored with the help of the ran-

dom unitary matrix than would otherwise be probed with a unimodular matrix alone.

The one restriction is when the matrix is updated, only the unimodular component of
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the net unitary matrix is altered.

Examining the scale of the loss in Figure 5.3 for each model also tells a con-

sistent story with the above claims, namely that couplings between wires significantly

affect each hybrid model’s ability to properly learn the presented dataset. Therefore

these couplings are required for achieving a more optimal accuracy and reduction in

loss.

The ability for the unimodular matrix to contain many learned parameters

in a single section of the model and thereby create a more shallow model may be a

contributing factor as to why the unimodular matrix approach outperforms the classical

models. Even the best performing classical models in Figure 5.3 appear to lag behind in

their loss and therefore due to their depth take a while to achieve an equivalent accuracy

of their hybrid peers (though this is more true for the single 16× 16 unimodular matrix

models and less true for the 2 × 2 unimodular matrix models due to the couplings

between wires as discussed above).

Analyzing confusion matrices also gives insight as to how the models perform.

Figure 5.2 takes the best performing hybrid quantum-classical model (16×16 Unimodu-

lar Matrix with a Random Unitary Matrix and Learned Scaling Parameter) and the best

performing classical model (classical model with the ELU Activation Function) for the

test dataset and finds the percent difference between their confusion matrices. Based on

the percent difference between confusion matrices as found in Figure 5.2a, the hybrid

model is 8.5% better at classifying the bottom moon in the two moons dataset than the

classical model when the classical model first achieves about 82% test accuracy; both
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models perform equally well in identifying the top moon. Towards the end of testing,

both models achieve similar performance as seen in Figure 5.2b. This reinforces that

the hybrid model with the block matrix approach not only performs just as well as the

classical model, but also performs better in a classification category where the classical

model still needs more training in order to reach a similar accuracy.

The above leads to many comments about traditional parameterized models.

In the parameterized model approach, assumptions are made regarding the selection

and placement of parameterized and non-parameterized gates and thereby the coupling

(or lack thereof) between parameters at the quantum circuit layer. The selection and

placement of parameterized gates (e.g. rotation gates) also makes assumptions about the

needed rotations at given parts of the circuit as well as how such rotations should interact

with other circuit operations. In a sense such placement of gates amounts to feature

engineering within the circuit. However when a block parameterized matrix spanning

multiple wires is used, such assumptions relax and learning the parameterizations of the

wires is taken from a more general approach. What’s interesting to consider is if both

approaches are leveraged; indeed a practitioner is able to impose both the placement of

desired gate couplings, rotations, and a learned block matrix spanning multiple wires.

Such an approach is desirable in the case of imposing expert or domain knowledge to

a dataset in the form of ad hoc gates while learning the remainder of the parameter

space with a multiwire block matrix. It can be viewed that the block matrix approach

starts from a general parameterization of the desired learned space and then specializes

itself within the space, while with gates that are already specialized in their action and
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placement their parameter updates only fine tune their parameterizations within the

model.

However when using the above proposed approach to parameterized models,

various questions arise. Does the given parameterization for unimodular matrices gen-

eralize well for other kinds of datasets and architectures, or does it perform well for only

this type of dataset? Would other parameterized block unitary matrices or other general-

ized approaches perform better than the discussed parameterized unimodular matrices?

Would fine-tuning hyperparameters like the finite difference step size or learning rate,

or learning a unique α for each wire also offer faster rises in accuracy and lowering the

measured loss? These questions and issues would be interesting to explore in future

work.

5.6 Conclusion

In the examined cases, using unimodular matrices as an ansatz for a quantum

circuit achieves a higher accuracy faster than the equivalent classical models. While

refining the hyperparameters may optimize this approach (e.g. changing the learning

rate or the chosen optimizer), for a proof of concept the results appear promising for

future work and development. It is also clear that using a singular square matrix

spanning all of the wires to capture the couplings between wires is necessary as single

unimodular matrices fail to do so. Exploring and benchmarking other unitary matrix

parameterizations and other general approaches against a variety of standard datasets
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would also be of interest.

Future work for benchmarking the process of learning a unimodular ansatz,

deconstructing the ansatz into a series of fundamental gates, and then deploying those

gates in a production environment on a real-time quantum computer would be of interest

and application to both academia and industry alike.
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(a) (b)

Figure 5.2: These figures present the percent difference between confusion matrices

for the best performing hybrid quantum-classical model (16 × 16 Unimodular Matrix

with Random Unitary Matrix and Learned Scaling Parameter) and the best performing

classical model (classical model with ELU Activation Function) for the test dataset.

Figure 5.2a evaluates the percent difference at the point where the ELU classical model

first achieves ∼ 82% accuracy, while Figure 5.2b evaluates the percent difference at the

end of testing as seen in Figure 5.3. Positive values indicate where the hybrid model had

a larger value than the classical model when the difference was calculated, while negative

values indicate where the classical model had a larger value than the hybrid model when

the difference was calculated. Figure 5.2a reveals that the hybrid and classical models

perform equally well when identifying the top moon in the two moons test dataset,

however the hybrid model does by far better than the classical model when identifying

the bottom moon. Figure 5.2b shows that by the time the hybrid and classical models

reach approximately the same overall accuracy they share nearly the same ability to

identify the top and bottom moons [17]. © 2022, IEEE
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Figure 5.3: The loss and accuracy plots for the training, test, and validation datasets

per batch for the hybrid and classical models (Sections 5.4.2 - 5.4.6) [17]. © 2022, IEEE
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Chapter 6

Integrated Spiking And Quantum

Neural Networks

6.1 Introduction

Often1 referred to as the “3rd generation” of neural network models [101],

neuromorphic computing methods are quickly becoming popular given their advantages

over classical computing methods including better power efficiency and increased latency

gains [14]. Not much work has been conducted to combine both spiking neural networks

and quantum machine learning methods despite their unique advantages.

1Many parts of this chapter and its sections were originally published in [20] and [21].
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6.2 Previous Work

Past works have combined quantum and spiking neural networks by applying

the quantum method to the end of the network and using classical non-spiking classifi-

cation methods with non-spiking loss functions [18,19].

Figure 6.1: An architecture where the quantum network was added to the end of the

network [18].

In one paper the quantum layer was added to the end of a spiking neural

network to classify images where the model resulted in a continuous real-valued classical

non-spiking output with a classical loss function [18] (as seen in Figure 6.1). Another

study trained a fully spiking neural network for classification, after which they appended

an untrained classical-quantum hybrid network with real, continuous, and non-spiking

outputs to the backend of the model, and then retrained the network [19] as seen in

Figure 6.2. A similar study to the previous one [19], was conducted by [102]. All methods

apply quantum circuits towards the end of their models and conduct classification with

non-spiking values and non-spiking loss functions.
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The current literature in hybrid quantum-spiking neural networks is devoid of

architectures or techniques where quantum machine learning is integrated within the

body of the spiking neural network model as opposed to being appended to the end of

a model. Recent studies have suggested that neural circuitry firing in the brain may be

entangled [103–105], motivating the possibility of quantum effects in the brain and how

such effects play a role in neural cognition. These effects only further encourage the

study for integrating quantum behavior into neuromorphic systems including spiking

neural networks as done in [21].

Figure 6.2: An instance where a pretrained classical network was appended to and

trained with an untrained quantum network [19].

93



6.3 Methodology

Software usage included PennyLane [83] for simulating the quantum circuits,

PyTorch [80] for the computation graph construction and backpropagation operations,

and snnTorch [14] for simulating the spiking neural network.

For simplicity and demonstrating proof of concept, the image classes of 0 and

1 of the MNIST dataset (with each image having dimensions of 28 × 28 pixels) were

converted into a spiking neuromorphic dataset (such that the pixel values were either 0 or

1). No further augmentations to the dataset were made. The default PyTorch training

and test dataset split were used for the corresponding training and test datasets.

6.3.1 Model Design

The body of modern spiking neural networks are constructed with layers of

alternating classical network components (e.g. dense linear layers, convolution layers,

etc...) and a spiking neuron layer which, in traditional machine learning terms, acts

like an activation function, where the “activation function” is the internal state of the

simulated spiking neuron. If the spiking neuron reaches a certain threshold then the

neuron fires (resulting in a spike represented by a 1 state) while if the neuron doesn’t

reach the desired threshold then the neuron doesn’t fire (resulting in a neuron that

doesn’t spike which is represented as a 0, zero, state).

Given the above, there are two options to leverage when passing inputs to the

quantum circuit: the first option is to insert quantum circuitry after a non-spiking layer
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(e.g. a dense linear layer) and thereby capture classical values from traditional machine

learning layers; and the second option is that quantum circuity is inserted after a spiking

layer to capture the raw binary values (i.e. zeros and ones) coming from spiking neurons.

When passing the outputs from a quantum model, a similar situation arises

as the outputs could be binary values (i.e. zeros and ones) replicating the output of a

spiking neuron, or they can be continuous values (or in classical spiking neural network

terms, these values would come from zeros or ones multiplied by some learned weight,

with a learned bias term, resulting in a continuous values, i.e. weighted spiking values).

The internal state of the spiking neuron also plays a role. The neuron fires

when the neuron’s potential reaches a threshold (θ2). When the neuron fires, the poten-

tial can be either reset back to zero or have the threshold subtracted from the potential

(such that any residual potential exists even after firing). Such a choice to either reset

the potential back to zero or to subtract the threshold from the potential is a hyperpa-

rameter; in the entirety of this work the threshold is subtracted from the potential.

When a neuron receives input, that input is represented as an increase in the

potential of the neuron, however such potential slowly starts to decay over time; let this

decay be called the potential decay rate (β). Therefore the spiking network needs to

balance the existing potential, its decay rate, and the incoming input to the system that

informs the neuron whether to fire or not fire. The decay rate and exact values used for

each model will be addressed and listed later in this work.

2Common quantum computing literature and textbooks alike use θ to represent a rotation on the
Bloch sphere while spiking neural networks also use θ to represent the threshold for spiking neurons.
The difference of when θ applies to which computing paradigm is so far only detectable by usage and
context.
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6.3.1.1 Model Inputs

Consider if the inputs to the quantum circuit are either values of 0 or 1. These

0 or 1 values can be encoded by multiplying the inputs by π and then encoding the

result with a Ry (Equation 2.11) rotation (a rotation that would also work includes Rx,

Equation 2.10, rotations which would also work) such that the resulting state will be

either |0⟩ or |1⟩, respectively. This approach takes advantage of the two-state nature of

the qubit and naturally lends itself to spiking values.

If the inputs to the quantum circuit are from a classical layer (e.g. linear dense

layer), then the inputs can be encoded in any of the many compatible hybrid classical and

quantum machine learning methods. In [21] such inputs are passed into a preprocessing

step where the values are passed to a hyperbolic tangent (Tanh) activation function

whose result is then multiplied by π
2 and passed to an Ry rotational encoding [106]. This

step ensures the encoded inputs are mapped to each qubit’s Bloch sphere representation

with no information overlap.

6.3.1.2 Binary Outputs

If the quantum circuit needs to output binary values, then Equation 6.1 or

Equation 6.2 [21] will suffice to yield such values (with such equations acting on each

individual qubit).
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⌈−⟨ψ|Z|ψ⟩⌉ =


0, if Prob(|0⟩) ≥ Prob(|1⟩)

1, if Prob(|1⟩) > Prob(|0⟩)

(6.1)

⌊−⟨ψ|Z|ψ⟩+ 1⌋ =


0, if Prob(|0⟩) > Prob(|1⟩)

1, if Prob(|1⟩) ≥ Prob(|0⟩)

(6.2)

6.3.1.3 Surrogate Gradients For The Ceiling Function

Note that the ceiling (Equation 6.1) or floor (Equation 6.2) approaches covered

in Section 6.3.1.2 are stepwise and therefore non-differentiable. Borrowing a common

trick from spiking neural nets [107, 108], a surrogate gradient is used in place of the

gradient for the ceiling and floor function (whose derivative is zero everywhere except

where their stepwise behavior is engaged, at which point its derivative is the Dirac delta

distribution). For the remainder of this work only Equation 6.1 will be used. The

derivative of the arctangent function as defined by snnTorch is used as the surrogate

gradient for Equation 6.1.

6.3.1.4 Continuous Outputs

Consider the case where the outputs of the quantum circuit are passed to the

spiking neuron without undergoing a 0 or 1 binarization as done in Section 6.3.1.2. To

motivate this possibility of removing 0 or 1 as an immediate translation of the quantum

circuit, consider that spiking neurons take weighted spiking values as mentioned in
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Section 6.3.1, and such values will be continuous.

A number of architecture construction possibilities exist for continuous out-

puts, including having the output of the quantum circuit be passed directly to the

spiking neuron layer, and having the the output of the quantum circuit be passed to a

dense classical linear layer which is then passed to the spiking neuron layer.

6.3.1.5 Different Models

A number of models are considered. When interacting with the quantum layer

there can be continuous input, binary input, continuous output, and binary output

models, of which all combinations (as seen in Table 6.2 and Table 6.3, and addressed in

detail later) are trained and tested. They are initially separated by their inputs being

either continuous or binary.

For all models the loss function was cross entropy spike rate loss, the optimizer

was ADAM with a learning rate of 1 × 10−2, for the Leaky Integrate and Fire neuron

(LIF) layers the surrogate gradient for the classical spiking neurons was the Fast Sigmoid

with a slope of 25, β = 0.5, and the number of time steps was 50. The above parameters

apply to all models unless noted otherwise.

6.3.1.6 Base (Non-Quantum) Models

There are two purely classical models used in this proof of concept to provide a

comparable baseline for classical performance. The first model is C1, where the Classical

model only has one (1) middle layer, the second model is C2, where the Classical model
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has two (2) middle layers, and both models can be seen in Table 6.1.

Model Architectures For Classical Spiking Networks

C1 C2

Spiking image (0s & 1s) Spiking image (0s & 1s)
Flatten image Flatten image

linear layer, nodes: 784 in, 10 out linear layer, nodes: 784 in, 10 out
LIF LIF

linear layer, nodes: 10 in, 10 out linear layer, nodes: 10 in, 10 out
LIF LIF

linear layer, nodes: 10 in, 10 out
LIF

linear layer, nodes: 10 in, 2 out linear layer, nodes: 10 in, 2 out
LIF LIF

Table 6.1: Classical spiking network model architectures to be compared with quantum-

classical hybrid spiking model architectures [21]. © 2023, IEEE

Model C1 is compared to quantum-classical hybrid models TQS, TQ, PQS, and

PQ, and model C2 is compared to quantum-classical hybrid models TQSL, TQL, PQSL,

and PQL (both of which can be found in Table 6.2 and Table 6.3). The comparable

quantum and classical layers between the hybrid and classical models are the same

width, and learn approximately the same number of parameters (i.e. the quantum

circuit and the comparative corresponding classical layer have 120 and 110 learned

parameters, respectively). Choosing these width and depth equivalencies ensure the

dimension and parameter number characterization for both models remain comparable.

6.3.1.7 Quantum-Classical Hybrid Models

There are two classes of models, one class passes continuous values to the

quantum circuit from a dense linear layer, and the other class passes binary values to
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the quantum circuit (0 or 1 as originating from a spiking neural node).

For both classes of models, LIN refers to a classical dense linear layer, and LIF

refers to a leaky spiking neuron layer with the parameters θ (the threshold parameter)

and β (the decay rate); unless otherwise noted the values are θ = 1.0 and β = 0.5. The

term “Ceiling” refers to the ceiling function as found in Equation 6.1. The Quantum

Circuit refers to a trainable quantum circuit of the following construction:

• 10 wire quantum circuit

– Ry encoding for each input

– Hadamard gate on all wires

– 4 Strongly Entangling Layers across all wires [78]

– ⟨Z⟩ measured on each wire

The tables for models with continuous inputs to the quantum layer can be

found in Table 6.2. The lettering on top of Table 6.2 refer to the operation before,

during, and after the quantum circuit, e.g. TQSL = Tanh, Quantum (Circuit), (Binary)

State (in this case Ceiling), Linear.

6.3.1.8 Binary Input Models

The classical-quantum hybrid models with binary inputs to the quantum cir-

cuit can be found in Table 6.3. The quantum circuit between the models in Table 6.2

and Table 6.3 models remains the same, as well as the naming convention between the
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Table 6.2: Model list for continuous inputs to the quantum layer [21]. © 2023, IEEE

Table 6.3: Model list for binary inputs to the quantum layer [21]. © 2023, IEEE

two tables; note that the “P” in Table 6.3 stands for “pi” (π, as in “pi multiplied by

the input”).

6.4 Results and Discussion

By inspecting the accuracy plots, the hybrid quantum-classical models reach

a higher accuracy faster than the comparable purely spiking neural network models.

The best performing (when examining both accuracy and loss) quantum model, TQ,

achieves top test accuracy 8.25× (times) faster than the comparable classical model,

C1 as shown in Figure 6.5; in Figure 6.8 the model PQL achieves the top test accuracy

101



Figure 6.3: The outline for the model PQSL as found in Table 6.3. Let the diamond

objects represent the spiking nodes, the round objects represent classical linear nodes,

and the boxes represent quantum circuit operations. Let the quantum operation U

represent the unitary (U) circuit operations after the Ry encoding detailed in Section

6.3.1.7. Note that the figure does not reflect the exact architecture used in the study,

as the displayed outline is only intended to give an idea of data passage, throughput,

and transformations [20].

1.66× (times) faster than the comparable classical model, C2. All other hybrid quantum

models converge to top accuracy faster than their comparable classical spiking models

shown in Figure 6.5 and Figure 6.8.

It’s notable that when there are small variations in the training accuracy, the

testing data doesn’t appear to reflect those changes, although when there is a large

dip or spike in the training accuracy the corresponding testing accuracy reflects such
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Figure 6.4: Training accuracy versus batch number for comparable models when exam-

ining continuous inputs in Table 6.3 and Table 6.2 as opposed to the classical models

in Table 6.1. All quantum-classical spiking hybrid models (solid lines) outperform the

purely classical spiking model (dashed line) [21]. © 2023, IEEE

large changes. To help understand these behaviors it’s helpful to examine the purely

spiking network models as they too experience similar behavior, though it appears that

the spiking models’ testing accuracy only really changes when there is a significantly

large change in the training accuracy, as opposed to smoothing out small changes in
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Figure 6.5: Test accuracy versus batch number for comparable models when examining

continuous inputs in Table 6.3 and Table 6.2 as opposed to the classical models in

Table 6.1. All quantum-classical spiking hybrid models (solid lines) outperform the

purely classical spiking model (dashed line) [21]. © 2023, IEEE

accuracy. The spiking part of the hybrid models appear to “filter out” noise when

translating between training and testing accuracy while allowing any significant changes

in the both model types to remain. In effect the hybrid models have the best of both

worlds when training as they achieve good test accuracy with the combined quantum
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Figure 6.6: Loss versus batch number for comparable models when examining continu-

ous inputs in Table 6.3 and Table 6.2 as opposed to the classical models in Table 6.1 [21].

© 2023, IEEE

and spiking hybrid models, while simultaneously getting any noise filtered out by the

spiking component of the model. From a practitioner’s point of view, this filtering is

advantageous as the filtering removes the need to look at individual values in a training

sequence but rather only examine the entire trend of training to get an idea for the

corresponding test behavior; therefore if a practitioner wanted to get an idea for the
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testing performance, then they only needed to look at the general trends of the training

performance (i.e. training generalizes well to testing).

Figure 6.7: Training accuracy versus batch number for comparable models when ex-

amining binary inputs in Table 6.3 and Table 6.2 as opposed to the classical models

in Table 6.1. All quantum-classical spiking hybrid models (solid lines) outperform the

purely classical spiking model (dashed line) [21]. © 2023, IEEE

Compared to C1, the additional spiking layer in C2 results in an extremely

flat loss (Figure 6.9) while the hybrid networks appear to be less prone to this delay in
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Figure 6.8: Test accuracy versus batch number for comparable models when examining

binary inputs in Table 6.3 and Table 6.2 as opposed to the classical models in Table 6.1.

All quantum-classical spiking hybrid models (solid lines) outperform the purely classical

spiking model (dashed line) [21]. © 2023, IEEE

loss despite the additional spiking layer. In fact, all of the hybrid models in Figure 6.9

outperform C2, leading to lower loss faster.

107



Figure 6.9: Loss versus batch number for comparable models when examining binary

inputs in Table 6.3 and Table 6.2 as opposed to the classical models in Table 6.1. All

quantum-classical spiking hybrid models (solid lines) outperform the purely classical

spiking model (dashed line) [21]. © 2023, IEEE

6.5 Conclusion

While the proposed techniques have shown to be successful in this study, more

work is needed to address robustness against noise and benchmark how these techniques
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perform against other datasets. These techniques and their plots demonstrate that

blending quantum machine learning into spiking neural networks is a technique worth

further inquiry and investigation with the novel proposed methods given this successful

proof of concept.
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Part IV

Conclusion
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Chapter 7

Conclusion

7.1 Overview Of Results

A high level overview of the works reviewed in Chapter 4, Chapter 5, and

Chapter 6 are outlined below.

Chapter 4 details a novel Quantum Self-Attention mechanism that replaces

dot-product attention inside a transformer architecture with a trained variational quan-

tum circuit. This Quantum Self-Attention is embedded inside a Vision Transformer

(ViT), resulting in a Quantum Vision Transformer (QViT). All four proposed varia-

tions of the QViT are of comparable and competitive performance with the classical

ViT.

Chapter 5 demonstrates that training block parameterized unimodular matri-

ces across all wires in a quantum circuit as part of a quantum-classical hybrid model

architecture achieves the same accuracy as classical neural networks but at a faster rate
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with a more aggressive loss function. The best performing quantum model utilized a

16 × 16 Unimodular Matrix with a Random Unitary Matrix and Learned Scaling Pa-

rameter. The classical model with the ELU activation function performed best among

the classical models. When the ELU classical model first achieves about 82% test ac-

curacy the hybrid model does 8.5% better at classifying the bottom moon in the two

moons dataset than the classical model when examining the percent difference between

classical and quantum-classical hybrid confusion matrices; both models perform equally

well in identifying the top moon. The quantum-classical hybrid model achieves about

82% test accuracy 9× (times) faster than the ELU classical model. Towards the end

of testing, both models achieve similar performance. Thus the hybrid model with the

block matrix approach not only performs just as well as the classical model, but also

performs better in a classification category where the classical model still needs more

training in order to reach a similar accuracy.

Chapter 6 proposes a variety of hybrid quantum-classical spiking models which

reach a higher accuracy faster than the comparable purely spiking neural network mod-

els. The best performing hybrid quantum-classical model, TQ, achieves top test ac-

curacy 8.25× (times) faster than the comparable classical model, C1; the model PQL

achieves the top test accuracy 1.66× (times) faster than the comparable classical model,

C2. All other hybrid quantum models converge to top accuracy faster than their com-

parable classical spiking models, and all quantum-classical hybrid models compared to

C2 have a more aggressive and lower loss.
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7.2 Closing Remarks

Quantum machine learning is a quickly growing field with many new ideas,

applications, and emerging techniques. Time will tell with help of theoretical devel-

opments and new ideas to propose and test them so to explore their applications and

different advantages with different systems.

It is difficult to know what lies ahead, in both in the near and far future.

However such novelty and naivety brings much excitement and seasons anew. Hard

work must still be done to weather and engender where these paths will lead, and if

such “quantum advantage” will indeed take hold in the ever growing garden of scientific

tools and techniques.

It is too early to say if the field of quantum machine learning is emerging

into a Quantum Spring; while there is a boom in funding from both public and private

sources there also appears to be great hesitation to declare quantum advantage within

the practicing community, much due to the current state of low qubit systems with

contentious noise.

It is the hope of this work that some of the proposed techniques find their way

into the codebases and papers in this field, and if not such work helps breed new ideas

elsewhere; after all, science rests upon the work of those who came before, and with any

luck including the work the reader just read.
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an extension of MNIST to handwritten letters, 2017. arXiv:1702.05373.

[82] PyTorch. Vision Transformer, July 2022. https://pytorch.org/vision/

master/models/vision_transformer.html.

[83] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed,

Vishnu Ajith, M. Sohaib Alam, Guillermo Alonso-Linaje, B. AkashNarayanan,

Ali Asadi, Juan Miguel Arrazola, Utkarsh Azad, Sam Banning, Carsten Blank,

Thomas R Bromley, Benjamin A. Cordier, Jack Ceroni, Alain Delgado, Olivia Di

Matteo, Amintor Dusko, Tanya Garg, Diego Guala, Anthony Hayes, Ryan Hill,

Aroosa Ijaz, Theodor Isacsson, David Ittah, Soran Jahangiri, Prateek Jain, Ed-

ward Jiang, Ankit Khandelwal, Korbinian Kottmann, Robert A. Lang, Christina

Lee, Thomas Loke, Angus Lowe, Keri McKiernan, Johannes Jakob Meyer, J. A.
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