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ABSTRACT
A high—speed computer program for the kinetmatical analysis of bubble
chamber events is described. The program treats individual particle inter-
action or decay vertices, subjecting the measured variables to the equations
of energy and momentum according to the least-squares criterion. This is done
in four different cases in which the problem is overdetermined, and a fifth

case is calculated in which the problem is just determined. . The adjusted.or

.computed variables corresponding to each particle are obtained in all cases

as well as the first-order error matrices for each type of variable. A

connected chain.of vertices may be processed in sequence.
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-I. INTRODUCTION

The analysis of large amounts of data obtained from the observation
-and .measurement of particle interactions, eépecially in bubble chambers, may
be accomplished in roughly three stages. The first stage may consist of an
analysis of the measurements in order to determine the most probable values
of the various éuantities-‘-sﬁch as coordinates, space angles, curvat;n'e or
momentum, and energy o¥ velocity--to be assigned to-each particle both before
~and after the interaction. In addition, the errors to be associated with each of
these quantities must be determined. Al_thou.gh a mass assignment for each
particle must be made if the data are to be completely utilized, this first
stage of analysis is usually kept as independent as possible of any hypothesis
aé to the nature of the interaction in order to preserve its generality.

In the second stage, the output of such a.''one-track' analysis or
‘spatial reconstruction program may be used in conjunction with kinematical
requirements to interpret the interaction under consideration. Such a
kinematical analysis may be ﬁsed.in the choice of one of several possible in-

terpretations, as well as to reduce the uncertainties in the kinematical

variables to be assigned.to each particle. Finally, in the third stage, the
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results from separate events may be combined and the usual statistical analysis
performed upon a group of events.

A possible method for performing the second stage, namely the
kinematical analysis, has been formulated and is described in this article.
The treatment is sufficiently general that a large part of the computation may
be applied to alrnpst any kinematical situation, leaving a minimum amount of
logical control to be constructed for any particular experiment. This
generaiity-has been .achieved by reducing the problem to a consideration of
one interaction or decay vertex at a time. . When the problem has been solved
at a vertex, the information acquired may be propagated to any connected
vertex and used in fitting a second interaction or decay. The mathematical
problem of applying the kinematical equations at a vertex is thus isolated,
and considerable ﬂexib.ility is achieved without great complication.

The single-vertex kinematical analysis program to be described here
has been coded under the title GUTS for the IBM 704 computer as a closed
subroutine aﬁproximately 5000 words long, and has been tested under a large
variety of conditions. This description is limited to the general principles

and .equations involved. Details of the coding may be obtained from the authors.
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II. NOTATION
In this article the following notation conventions are used:
The total number of outgoing particles plus.one (if there is an incoming
particle); for the program GUTS, 2 < P < 7.

The number of analytic constraints to be applied at the interaction

vertex. Here 0_< L_E_4.

The number of measured variables. I=3P + (L-4), and, for GUTS,

2 <1 <21,

The distance back from the interaction vertex at which theAcurvature

k and the uncertainty in curvature &k are specified for the first

(incident) particle.
The azimuthal angle of the qth particle at the vertex, measured from

some arbitrary axis.

-The tangent of the latitude of the gth particle at the vertex, measured

from the plane in which ¢g_ is measured.

The "projected curvature!' of the gth particle, defined by
k = [P_cos \ ]_1.,

q q q
The momentum of the gth particle, in Mev/c.

The energy of the gth particle (including rest energy), in Mev.

‘"The mass of the gth particle, in Mev.

The mass of the target, in Mev.
Any measured variable (¢ , tan- A, k ).
q Q 4q

Any unmeasured variable computed by the program.
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Subscripts:
5 Refers to a completely measured particle.
4 For the 3c case, refers to the particle with unmeasured momentum.

For the 2c case, refers to the first particle with unmeasured
momentum.
For the 1lc case, refers to the completely unmeasured particle.

For the 0Oc case, refers to the completely unmeasured particle.

m For the 2c case, refers to the second particle  with unmeasured
momentum.

u For the 0c case, refers to the particle with unmeasured momentum.

i, .k, ... Refer to any variable x.

N,M, 0, ... Refer tothe MAh constraint.

III. FORMULATION OF THE FITTING PROBLEM
A. Variables

For the purposes of the present program, it is assumed that three
quantities are associated with each track, namely- the "curvature' or
momentum, and two space angles. Not all these quantities need be measured.
Since the further assumption is to be made that the measured variables are
normally distributed, it is important to pick a set of variables that approxi-
mately fulfill this requirement. The variable tan A is chosen here because
of its convenience, although it is obviously not even approximately normally
distributed in the limit as N ———— 900. However, the method outlined
below is applicable to other choices of variable,

With these considerations in mind, the following variables are used:

X = ¢1;x12 = tan )\1; X3 :kl; X4 = ¢2; Xg = tan )\2; (I1I-1)
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Fitting Problem

The measured values of these variables are denoted by xmj, where j runs
from 1 to I and it is assumed that the errors on the measured.values are

known. . With these errors.denoted by ,'6xmj, the usual error matrix is then

given by

§x™ =G (I1I-2)

m
. s ,

o6x .
i) 1)

and must be supplied to the program. As presently set up, the progrand

assumes that individual particles are not correlated with one another, i.e.,

‘that Gij-l consists of a.set of matrices on the diagonal, none of which is

larger than 3X3. However, no assumption is made as to whether or not these

individual-particle error matrices are diagonal.

B. Method
A tentative interpretation of the vertex is then.made consisting of a
decision-aS~to,°che number of tracks ‘associated.with the vertex and a mass
assignment for each track. The assumption of normally distributed variables
then leads to the usual principle of least squares, i.e., the optimum set of

variables X is that set which minimizes the function

1
2 m m
X = 2 (xi-x 1) Gij (xj-x ) (I11-3)

J

=1
j=1

subject to whatever constraints are required to satisfy energy and momentum
conservation. ! Let these constraints be denoted by

F,(x,) = 0 for AN=1,2,... L, (I11-4)

where A runs from 1 to L. Two procedures-a;e available. The equations of

" constraint may be used to eliminate L variables from the function

2
X ’(Xl' Xop eo XI) and the I-L. minimizing equations may be solved, or L

Lagrange multipliers a, may be introduced and the problem may be reduced
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Fitting Problem , ‘

to finding the stationary value of the function

I L ' .
— - m - m -
M = Z.I_ (xi x iJ) Gij' (Xj X J) + 2 Z«: a)\FK(x) . (I11-5)
i=1 - k=1 : :
j=1

Since it can be shown that if the constraint functions are linear the latfer
procedure involves the solution éf only L réther than I-1. simultaneous
equations, it seems reasonable to-expect that the latter procedure is superior '
at least over regions of variation of x sufficiently small that the F)\(X) may
be considered to be approximately linear.

.Using the variables listed above, one can write the usual equations of

constraint in the following form:

P
F,= (:t)q cos ¢q/kq =0, : (II1-6a)
q=1
P
F,= Z (i)q sin <|>q/kq,: 0,. - (III-6Db)
q=1
P
Fy= Z (i)q tan >\q/kq =0, ‘ ' . (I11-6c)
q=1
P
Fy= Z (:l:)q Eq -mp =0, (111-6d)
q=1 |

where -(:i:)q is +1 if particle q is éutgoing and -1 if particle q is incom-
ing.. ‘These equations t'he.n,represe-nt the conservation of momentum along
three mutually perpendiculér axes in the chamber and the conservation of
energy. A vertex at which all quantities ‘are measured is subject to all four
constraints and may be classified as a 4c vertex. If the momentum of one
parfi.cl_e is not measured, Eq.l (III—()d) may be used to solve for this momentum,
and since oniy 'three‘constraints remain to be satisfied, this méy be claséiffied

as a 3c vertex. Similar procedures are used for 2c¢ and lc vertices,
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and a least-squares fit may be performed in each case. If four variables are
unmeasured, the number of constraint equations is just sufficient.to calculate
the missing variables and no least-sguares fit can be made. If more than |
four variables are unmeasured, the problem is undetermined.

In the above cases in which fitting or calculation is possible, the
program GUTS finds the optimum values for the measured variables X, and

computes the corresponding missing variables Yo' GUTS also computes the

three error matrices 6x16xj, §xi6ya, and Syaﬁyﬁ . All these quantitiés

are evaluated at the interaction vertex. In each of the five cases, however,
only certain variables are allowed to be missing. These restrictions have
been made on.the groﬁnds of physical plausibility. We list each case, describe

what variables are allowed to be missing, and give one example of each, as

follows.
Case Example
4c: All variables for all tracks are measured. [

_ Example is a m-p scattering in which all - AP

tracks are measurable.

3c: One momentum is unmeasurable. Example N A _
~
a A decay when the direction of the A is \_(\ P
: -
known.
2c: Two momenta are unmeasurable. Example T ( |
is an associated—productién vertex for which /Ka R A
both the A and the kO direction a‘re known. " 41# T [\’P
lc.: All variables coi‘responding to ohe particle are A
unmeasurable. Example is a A decay for which ‘!T_/\P

the direction of the A 1is not known.
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Oc: All variables corresponding to one ' K
A ( 0

particle are unmeasurable and the momentum :

of a second particle is unmeasurable. Example ' '
m /)
P

> A+ "rro for which

is the reaction K +p

the A direction is known.

IV. SOLUTION OF THE FITTING PROBLEM

A. Iteration Equations

The problem of finding a stationary value for the function may be

solved by a simple iteration. The equations to be solved are

= j j - .
axi j=1 A=1 (IV-1)

- M

= ZF)\(X),z 0 for A=1,2,... L, (IV-2)
da

A
where we use the notation

aF, (x)/8x, = F,,(x), (IV-3)

and (IV-2) is of course just the constraint conditions. The problem is now

reduced to solving the I+L, equations (IV-1) and {IV-2) for the I+L variables

X, and a,. Equation (IV-1) may. be rewritten
m L _
X, =X i—z‘,Ei)\a)\, for, i=1,2,...1, (IV-4)
A=L. v
where
_ s ol -
E.,\(x)= = Gij Fj (x) . {(IV-5)

j=1
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Equation:(IV-4) may then be used to define an iterative procedure. We
~expand the constraint equations around some approximate solut1o_n X

where the superscripts refer to the order of the iteration, getting from

(IV-2) and (IV-4)

. I
FY+ = M ox)FL =0 for A=1,2,... L IV-6)
A j=1 J it TN ‘
and
v+1 ‘ m L % vl
X. =x, - Z E., a for i=1,2,...1, . (Iv-17)
i i =1 iN A

~where we use the notation

v V. . oV v
Fj)\: Fj)\(x_) ;- Ej-)\ = Ej)\(x ). . (Iv-8)

We may now eliminate xiv+1 from Eqs. (iV-6) and (IV-7) and solve for

a )\V-H . Defining for convenience
I
BY - v m v = -
'\ = F)\ + J-Z__)l (x i Xj ) FJ)\ for \21,2,... L (IV-9)
and ' :
H = é (EDE 7Y (IV-10)
A - j=1 )\] K ’
we find
v+1 L v 1 v
ay = X (H )): b for N=1,2,...L. - (IV-11)
n=1 H P _

This solution for the Lagrange multipliers may then be used in conjunction

with Eq. (IV-7) to solve for the entire set of xiv *l .

To start the iteration, we use xi0 = xn;1 and a)\o = 0, and we continue

the iteration until a 'fit" is found. At every step we have

I , | _
K3t = PR R AL S (IV-12)
i=1 _ J J J
j=1



-12- UCRL-9097

IV.A Solution of the
Fitting Problem

and, from (IV-7),

VTl ™y 1. (1V-7a)

N ' a
! ’ A=1 ih- N

Substituting into (IV-12) gives

1 L (.

)’z oz -a;:+l &I . E’ oV
21 el ij i e
=1 p=1

[

a

L I _
a;“ [zz p> ._(EV);I\‘._FiV.o.V'H:‘}
1 p=l i=1 oo e

L v v+l | \

= X E H. a (IV-13)
- A A T
H:

Thus, using the definition of BV)\,Eq. (IV-9), at every step we have the

algebraic identity

I L
2w+l v+l m wil m v+l v, 2 vil
R T T T I L S S
= | (IV-14)

e e
[Sray

which is independent of the linearity assumption. The program GUTS uses

this identity to check the rounding errors inherent in so much numerical work.

We insist that, on each step,

(”2) v+l 2 v+1
XJa ") w (IV-15
ZD! ‘1 -15)
(:x )a1

This fails to be satisfied only if bad rounding errors creep in or if the matrix

'H)\M is very badly conditioned.
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'B. . The Fit: Definition of Convergence

Each step of the iteratidn yields an approximate solution.to.the problem
and it is necéssary to set criteria that determine at what step the approximation
is good enough, i.e., to. define a’ "fit",

It is important to n'ote here and in the following sections that in reducing
expressions involving statistical averages we assume that the constraint
_functions are linear over the regions of interest. Thus all equations involving
these averages are only approximate.

Since a minimum value of Xs:z .subject to the kinematical constraints
will-have been . reached when (a) all the constraint functions, which ére,the
derivatives of M(x, a) with respect to the Lagrange multipliers, and .(b) all
the derivatives of M(x, a) with respect to the variables x, are vanishingly
small, it is only necessary to find reasonable criteria which these funqtions

are to satisfy. For the first set of derivatives we introduce the function

vl ‘ Z3w '
sa, "Thy (M sa MhHE . (IV-16)

v+l
A ) vil Tl
A .

: M
F - (==,

Ba da

T rMe

1
1

Using the linearity assumption and . (IV-9), we find

1
v m _, v
sbiy _JEI 6x F{ v
and '
PN VY B _ ‘
6b\ 8%, = HY, . (IV-18)

where we have used (IV-10) and (IV-5).

Similarly, using (IV-11) and (IV-18), we have

L

+1 v,.=-1 v
§a,” " = = H 5bi V-1
a AR (1V-19)
and :
5o, "] o T _ (Hv)_)\lp (IV-20)
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One may now use this result to show

S—— L
o 2 s prtbwhy o pUtS (IV-21)
A A A P
=1
IJ.,.:

Thus Fv+l is a positive definite function of the constraints. In the linear
approximation to the problem, where only one ste.p is necessary to arrive at the
solution, it is easily shown that this function evaluated at the measured values

m . 2 ' .
x 0 is equal to Y and hence has the expectation value 1, as shown in
Section IVC. If the constraints are to be satisfied much better than at

m ' v+l .

X=X it seems reasonable to demand that F be small compared with L.
We therefore require

——

P € o (IV-22)
where €5 is to be. chosen << L. |

For the second set of derivatives we define a positive definite function

v+l

m, ,0M m
—e1 X)) (=4 05
X 0xX.

(IV-23)

In the same linear approximation discussed above, one may show that at any

point x for which

Fy(x) = 0
sk
the difference of the value of . M(x, a) from its minimum value M is given by
*
M(x,a) - M = sm" T} (IV-24)

If a point x is such that 6M° T} < < I, then its probability differs by a

negligible amount from that of the "optimum" point x . We then require
sm”t! < € (IV-25)
where €3 is to be chosen < <1 .

This last requirement may be put into explicit form by considering
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V41 I L oal-
_al‘fﬂ =20z G, " -+ 2 F V:l ayttyo (IV -26)
8x; j=1 Y ) =1t
Substituting Eq. (IV-7) into the above, we g‘et
v+l L :
oM o v+l v v+l -
—p1 = 2 E AF, T o Fp)ey (IvV-27)
3xi A=1
Substituting (IV-27) into (IV-23), we can show
vl | Lown o1 vnl
M T = Z Y.TG.. Y, y
.. i i) j
i=1
j=1
where
.2 3 (F.5tP o FY)a, v
YT in T F) o
A=1
Our requirement then becomes
v+l S vl -1 v+l :
oM = X xpi Gij qu < ey (Iv-29)

i=1
j=1

C. The Stationary Value of M

Equations (IV-13) and (IV-20) also lead to an expression for the average
*
.value of M(x, a) at its stationary value, say -M . .Since the constraint functions
have,been..brought to zero, vthis}cofresponds to the expected minimized value

of x £, Since we have ’EX = 0, we have from (IV-20)

v+l v+l _ v+l o vl vi-1 ,
ay aI~JL = 6‘0)\ 601L = (H ))\H , | (IV-30)
and substituting into (IV—i3) gives
= L v+l v+l 4
M=Z a " a H, = L. (IV-31)
A M Ap
A=1
p=1 '

A
Thus the average value of M equals the number of constraints.
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D. Summary
In.the last three sections we have definedva_n iterative procédure by
. Egs. (IV-7) and (IV-11). At the end of each step, wé check roundiné errors
by computing ( x Z)a and - (x ,Z)b and requiring that Eq. (IV-15) be satisfiéd.
After having taken a step and checked the calculation we ask if the new values
of the variables %, lead us to acceptable values of the constraints as imposed
by Eq. (IV-22). If so, we ask if a stationary value has been found as de-
termined by Eq. (IV-25). If both these con.dit‘ions are satisfied, we acéept
the values of X, . If not, we take another step.

We have been using the values
e, =107% ¢, =107% ¢, =102, : (IV-28)
These values are of course adjustable. Experience thus far indicates that

€1

errors are used. The value of €5 seems to impose about as strict a condition

is occasionally exceeded, especially if variables with highly disproportionate

as does €5 in most cases. For fitting the correct hypotheses to a reasonably
. well-measured event about four iterations seem to be required, on the average.
To impose some sort of stability restriction on.the solution we do not accept
a fit until all restrictions have been satisfied twice.
It should be noted at this point that the method is not guaranteed to
converge, although we have found. that it does converge in the overwhelming
majority of cases in.whi»ch,th“e correct interpretation is chosen and even in

‘the majority of cases in which the wrong interpretation is used.
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V. PROPAGATION OF ERRORS

Denoting the fitted values of the measured variables by 'xiv+1 and

the values of the unmeasured variables computed from these by Yv+1 , we

wish to compute the three error matrices 6xiv+1' 6x.v+1, ox. vl oy v+l

j i a
and 6yav+1 oy V+1, On .the assumption that the constraint functions are

P

linear over the region covered by the errors, we may compute the first of

these from Eq. (IV-7). This gives us

L | | .
sx. T2 6x™- 5 EY sa’t! (V-1)
1 1 1)\ K
=1
Thus we have
L L.

5%, Hlox "t o sx ™™ - = E o o )\‘”’1 -z E/ 6% " e
L |
A=l M IR
p=1

Equations (IV-5), (IV-17), and (IV-19) may be combined to give

m v+l L Y v,-1
ox. Gax = Z E. (H) , : (V-3)
i =l ip BN ,

and substituting (V-3) and (IV-20) into . (V-2) gives finally

L :
6"11}'“‘5"3' vl _ G-ijl R Z B )\(H M )}'fj ) \ (V-4)
=1
' x 1

which is the expression for the error matrix of the fitted variables. We see
thét the adjusted variables will in general be correlated even if the measured

variables are not. One can also prove in general

5 E Lo EnT > o (V-5
N =1 AT — )
po=1
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so that the errors in the adjusted variables are all smaller than those in the

“

measured variables.
The other two error matrices Bxi vl Gyav'+l and. 6yav *l 6yﬁu+l
are constructed by using
| I
vtl v+l :
oy =Z 8y &x. . (V-6)
@ o1 e/ vl 1
X, = X,
1 1
-~ We define for convenience
u, "t g V-1
ia = %Ya/bx. ’ (V-17)
. i _ v+l
X, =X,
1 1
and then
, 1 . .
sx "oy Yo oz oy VL ekt e VYY) (V-8)
i a j=1 J@ j
oy "t gu VHI _ ; (T (g Ty vy vl (V-9)
Yo 8Yg =t ai (8% i U - V-
=1

We may further produce a set of very useful test functions with our

)
1 x_.lm),. Using Egs.

output. Consider the rms value of the quantity , (xi

(IV-7) and (IV-30), we find

L §———
Vi m vl m, _ v v+l v4l, v, T
(Xi - X, ) (XJ - Xj ) = )\Z—:lE A& (E") M
pi=1
3 m (YT . (V-10)
v )\:lv iX Ap pjio
H=1
It is then clear that the normalized adjustment (or ‘'stretch") in X
>¥.+l- Xim v+l m L v v -1 v. T /e
S.(x)= ——1 = (x -x ) T OEC G (H), (ET) .
1 vel m 1 1 A=1 1 M N8
b= (V-11)

rms
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-should be normally dis,tributed about..zerd with a standard deviation of 1. The
program GUTS computes this set of quantities and they may be used, to-
gether with the value of Y 2, .to calibrate the empiricai errors.assigned to each
variable as well as to test for systematic effects. Thus .a sample of events may
‘be run through the program several times, adjusting the errors until the proper
X 2 distribution is obtained and the distributioﬁ 6f each 'Si(xo has the corrgct
width. -An asymmetric distribution for‘any of the. S’i(x) may indicate the
presence of a systematic error in the measurement of the corresponding
variable. It should be noted, however, that such asymmetries may also occur
‘because the input variables are not normally distributed or the constraint

functions are not linear over the range of the variables considered.

VI. ADDITIONAL FEATURES

A. Range Energy

In using the program GUTS as presently written, a quantity ;D must
be supplied. This quantity is the distance upstream from the interaction
vertex at which the quantities k and &k are considered to have been measured
for the first particle. All other quantities must always be specified at the
interaction vertex, This feature is included in GUTS to take care of the fact
that for very slow tracks the error in k= 1/p is very skew. | Specifying k
and 6k .a distance D in front of the vertex places the iteration variable in
a region where the assigned errbrs are more -nearivaa_.ussian.

Using this feature, one may analyze connected vertices in succeésion,
propagating errors fhrough the range-energy relation, as described in Paper
IV of this series.

For .D = 0, the range-energy feature is not used .and all variables and

errors are taken.to be at the vertex. In any case, even for D#0, the output
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variables and error matrices are all evaluated at the interaction .vertex. If
the range-er-xergy.feaitture is used, a distinction must be made bgtween kl’
the measured curvature variable of th¢ ingident particlei,v and .kvl ) the value
of this quantity at the vertex.

The cﬂonstraintk functiéns F)\ and their derivatives Fik are fifst
evaiuated-at the vertex and the‘n‘the . Fix, which refer to the trﬁe iteration
variable, are rﬁdd_ified vaccording to the formula - |

F,, (x) = S S N T (VI-1)

ox. ok ox.
-1 . .Vl 1

Similarly, the output error matrices are first computed in terms of the
iteration variable kl’ and are then modified to apply to the vertex according

to the formula

I Oky
5k ox. = =T — 1 Fx bx. . (VI-2)
vi 1 L) g i
j= X,
| J
Since k is a function only of kl and tan')\_l, the only nonvanishing terms

v

1

of the form 8k_ /8x. are 8k_ /8k, and 8k_/8tan N\, . These may be
vy i V3 1 vy 1

evaluated .on the assumption that over the length of track under consideration

-a range-momentum relation of the form
= poR;* (VI-3)
Py ® Po™ }

is sufficiently accurate, where P, is the momentum and R1 the residual
range of the pafticle, and ’po and a are constants in the region considered.

Using the definitions of the variables, one may then compute
ek /e tan ) = () BB M

V1 R k p
i 1)

(VI-4)

2

‘and

8k‘v1/8kl = R;p,/Rvy pv, (VI-5)
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In neither of these expressions does .a ‘or Py appear, so that no reference

to these constants need be made in the program. It should be noted that the
approximation (VI-3) is used only to calculate the derivatives of k'v:l,‘ the actual
range-momentum calculatién being a_ccomplished..by a table-look-up operation

on R/m versus p/m.

B. Nonanalytic Constraints

To achieve some degree of control over the fitting process, we apply

a number of nonanalytic constraints. Most of these are imposed by inquiring,

v+l

after a stép has been taken, whethér the new variables X lie in-an

unphysiéal or undesirable region. If they do then the new variables are

modified according to the equativon
% v+1 % v

x|+ — 1 NAGLE C(VI-6)
.‘ f X

where f is an.adjustable factor which is at present set equal to 2. This step-
cutting procedure is repeated until the new variables are acceptable, a con-
dition that will always be achieved if the previous step lies in an acceptable
region. The specific situations in which this cutting-down procedure isvusedb
are the following:

1. The input variables kq "are ordinarily specified as positive. If
one of the input kq is given-as ‘negative, this is not interpréted as indicating
‘that the corresponding particle was negative,. but rather as indicating that the
curvature of this particle was measured as having the opposite sign from the
charge of the partiéle, The measured value of this k.q .is then left with a
negative sign but a small positive value is inserted for the starting value of

-the fitting procedure. If we start with positive .kq, at no time during the

fitting process are any. of the. .kq- allowed to pass through zero and become
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negative, and if a step is taken such that any _kq become negative, the
cutting-dox.avn proc;edure described above is used to force the kq to be
positive. Note that if any one of the kmq are negative, the adjusted value
can never agree with the measured value and a large value of 5(2 may re-
sult. This proéedure essentially imposes .conservation of charge on the
kinematic analysis.

2. 1If the range-energy feature is invoked for the incident particle, then
at no time is the measured length D allowed to be longer than the residual
range of the particle calculated fxlom the range-energy relation by using the

.momentum of the particle at a distance .D back from the vertex. If a step
is taken which violates this condition, the cutting-down prvocedure is used.

If this condition is violated by the measured values themselves, the starting
value of the momentum of the incident particle is set to give a small positive
residual range at the vertex, and the fitting proceed.s as-before. Again, the
measured value of the momentum is untouched and will contribute to the final
value of ¥

3. It may occur that during the fitting process a step is taken such
that in the 3c .case E

i

.not measured, or in the 2c case 'kl or km, the two unmeasured curvatures,

become negative or imaginary. - In such cases, the cutting-down procedure

, the energy of the particle whose momentum was

is'used.
4. It is found that the convergence of the iteration is in general
accelerated if one also imposes the condition that the quantity ,V,Fv+1 defined

by (IV-16) after each step be smaller than the same quantity Ul calculated

from the previous step. Again the cutting-down procedure is used to impose

. . - - . - - - . v I
this condition. However, this condition is not imposed if F +

satisfies
the ineéuality-(IV-ZZ), since when wal becomes very small, rounding errors

may make it unreasonable to insist on further improvement.

fws



VI. B. Nonanalytic Constraints -23- UCRL-9097

In all the _above‘ cases involving nonanalytic cqnstraints, it may happen
that the mathematical stationary value of M lies in a region that is forbidden.
In this case, it is clearly unreasonable to impose the condition (IV-25) although
the condition (IV-22) may still in general be met. Thus, if a large number of
cut-downs are required, i:ndicating that the sought-for stationary value lies in
a forbidden region, the condition (IV-ZS})_ is by-passed by the program. In

any case, a maximum number of iterations as well as cut-downs is allowed"

and if either of these numbers is exceeded, the event is rejected.

VII. EQUATIONS GOVERNING THE PARTICULAR CASES

We have five particular cases, corresponding to L equalto 4,3,2,1, or
0. In each of these cases, we have a different sét of constraint functions
F, as well as a different set of constrgint derivative matrices Fi)\" Once
we have computed the F)\, Fi)\’ Yq and Uia the calculation proceeds
identically for all cases except the 'L=0 case. We shall thus give only the
expressions for these ciuantities below.

In the case in which the range-energy feature is used, the Fi)\
corresponding to the first (incident) particle (i = 1, 2, 3) must be modified,
since the F”\ as givenare with respect to the variables at the vertex and must
be adjusted to refer to the true variables of iteration. This modification has

been described in Section IV A. The F, are always computed by using the

A

variables at the vertex and need not be modified.

We use the symbols

nx = i (:t)s cos ¢\:s-/;k;ss , (VII-1a)
L ? (£), sin ¢S/ks , (VII-1D)
m= 3 (#), tan )‘s /kS , v | (VII-1c¢)

¢ =S () E_- m (VII-1d)

s T
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the Particular Cases :

where Z denotes the sum over all completely measured particles, (:I:)S is
o8 .

+1 if particle s is outgoing and -1 if particle s is incoming, a'md'mT is

‘the mass of the target. Note that the following two'special cases are allowed:
(a) No incoming particle. This corresponds to assunding that the

incident particle stopped, and m,, should be set equal to the target mass plus

T
the mass of the stopiaed incident particle. Thus if a K meson is absorbed
in.deuterium, for example, a correct tlreatment of the kinematics will be ob-
tained if mq is. set equal to the mass of the deuteron plu's that of the K~
meson, and the incoming particle is otherwise ignored.

(b) mqy = 0. .vThis corfesponds to a decay.

In addition to using the subscript i, we. shall use the subscripts
s, 1,m, and u as defined in Section II. We shall also use the notation

Fj X(S)’ with j = 1,2, or 3, to indicate one of the constraint derivatvi‘ves,for

particle s. Thus

oF, o F

F ,\(S) = A M . (VII-2a)
ax3s-2 .a¢s
.‘ aF 9 F.
F,yi8) = —> - A (VII-2b)
' 9x 8 tan A\
3s-1 s
oF oF
Fos)= —> = —% , (VII-2¢)
6x3 ok
. S S

and so on. If the particle referred to is not completely measured--i. e.

particle f or m--we replace s by { or m as required.
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All the variables are measured and we make use of all four constraint

equations. We have

Fl = ? (:i:)s cos ¢s/ks =T : (VII-3a)
F, = ? (%), sin ¢$/ks = 'ny , (VII-3b)
F,= f(:t)s tan N\ /k = T _, ‘ - (VII-3c)
F4 = 4:_‘, (i)s‘Es -mqg = € . (.VII-3d)
For the F. we have
TN
. sin¢S cos cb_s
Fll(s) = - (i)s 5 F]_Z(S) = (i)S _— F13(S) =0 >
k k
s . s
L
tan )\s ' cos ¢S S . sind
F24-(S.) =-("'=)s Tksz ; F31(S) = - (:t)s ) ; F32(S) = - (i)s - e ;
.ooaTE T - S
o s o (m fR0As i P’
33( ) - = ( )ﬁ_ ’ F34(S) - = (:t)S
' ks Esks

There are P such blocks, since s runs from 1l to P. For D#0, this matrix

must be modified as described in Section IV A.

B. The 3 ¢ Case

In this case k;, is unmeasured. We solve the energy equatidn

/

€ =- (%) E, ' (VII-4)
for kl » getting 5 1/2
1 + tan" N\, ‘
k, = (——% -~ (VII-5)
-62 e m 2 _
£

and use this value of kﬁ in the remaining constraint equations,
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Fl_: ot (:{:)l cos ¢£/k.£ ) | | v “(VII-()a) >
Fp= mot (), sin ¢,/k, , | | (VII-6Db)
Fy= 7 .+ (%),tan )\l/kz . (VII-6¢)

To write the Fj, for this case and following cases, we define for convenience

Vig (s.0) = (£)(2),  8yg/0x, . | (VII-7)

These are simply the Uia defined by (V-7) but with an additional sign con-
vention in order to simplify the formulae that follow. Her.-e .J=1, 2, or 3
refers to the measured variables of particle s and B=1, 2, or 3 refers to

the unmeasured variables. The index s may be ;replaced‘by £ or m and
the index £ may be replaced by m when the corresponding particles are re-
ferred to. Since kl is the only unmeas-ured variable in the 3c case,i we have'

" P-1 blocks of the form

V(8. 2) = (#),(#), 9k, /8¢ =0, | (VII-8a)
aky tan\ k) E
V,, (s, 4) = (£)_(&) = = —L§ ) : (VII-8b)
AL st giany Ek 2 P, - o
s s's 2
EIN p.2 k,E
V3__I(S,f) = (:I;)s(:l:)z - = = 3 4 g , ’ ’ (VII-8c)
89k E k P
s s s 4

and one block of the form

V8. 8) = 8k, /8¢, =0, | (VII-9a)
tan)\l

Vo, W) = 8k£/3tan)\_£ = —_— . (VII-9b)
ky Py )

‘We -may now write the constraint derivative matrix as -P=1 blocks of the form

sinq)s .cos ¢s
Fll(s) = - (i)s —_— F]_Z(s) = (d:)s —_— F]‘:?’(S) = 0 3
k k
s : s
cos. ¢, 4 © ’sin ¢£ ' .
Fa18) = - By —== Vo (8005 Fpple) = - (), —z— Valh:

L9 J
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tan\

1
F23(S) = (i)s l:k

s

k

£
= 2 VZl(s’ﬁ)J’
_ JJ

UCRL-9097

’—cos b cos ¢,
F31(S)=‘ (i)st 3 + N > V31(S:£) H
s y)
" sin ¢ sin ¢ "]
-— s £ .
F3o8) = - B ) —7—+ — V31(S'“_J ;
- s J
[~ tan\ , tan)\l
F33(S) = - (i)s 2 + 2 V31(S,£) 3
k k
and one block of the form
sin ¢£ A v cos ¢£ o
F ) = - (), ; Fi,) = (), ; Fia) =05
k k
£ )
cos ¢, sin ¢, .

Fall)=-, —

1
Fygl) = (), | —
23 £ [ka

£
tan)\l

i Vm“’“}
'}

£

VZl(l,ﬁ); FZZ.(E) = - (#), __._1;_2_V21

(£,12);

For D#_' 0, this matrix must be modified as described in Section VIA.

C. The 2c Case

Here kﬂ and km are unmeasured. We solve forthese by using the

two constraint equations

cos ¢ cos ¢
n 4 (%), Lo — 2 -0,
k : mook
L ‘m
) . sin ¢ sin ¢
T () ' + (%) —m -9,
'y £ m
Tk k
: m
getting
sin (¢£'¢ )
_ m
k, = (#), ,

Z(#)_
'S

sin(cpm..q)s)

k
s

(VII-10a)

(VII-10b)

(VII-11)



VII. C. The 2c¢c Case -28- UCRL-9097
Sin(‘bm'q)i)
Km = ) sin(¢,-¢ ) ; (Vi-12)
B, —p
s s

these two values are used in the two remaining constraint equations,

tan\ s

. F

5 =€+ (i)l Eg + (:l:)m Em .

tan\

.A. m . .

(VII-13b)

Using the notation of the previous sections, ‘we have P-2 blocks of the form

3k£

2
ky

cos(¢_-b.)

- Vll(sff) = (i)s(i)f a¢s = ks

ok
m

sin(e, -6, )

k_% cos(é,-9,)

VIZ(S’ m) = (i)s(i)m a¢s

k,s Sin((bm-d)l) ;

ok

ok
: - 4 -0 - m = 0-
VZl(s:‘e) = (i)s(;’:)l Jtan )\s =0; sz(s!m) = (:k)s(i:).m 9 tan )\s = 0;
ok k 2 i
9k, ¢ sinld, -0 )

,V31(S,1) = (i)s(i)ﬁ 3ks =

ak
m

7 g, o)

2 sin(¢,-4,)

V32(S,m) = (i)s(:t)m aks =

one block of the form
.ak

x 2 Sl _-¢,) ;

ak

Vll(z,zj " a9, k, cot (¢,-¢_); V ,(t,m) = (&),() }_ng_l_

2
- km» 1 .
k, sin (¢m-¢£ ’
dk, ok
VZl(f,f) = a_ta_n—)\! = 0; sz(f,m) = (i)f (i)m ————-——-————-———a tan,)\ﬁ = 0; and
one block ofthe form 9k kZ 5k
V.o (m, 2) = (&) (F), - = . ; V., (m,m)z
11 m ‘L 3¢m km 51n(¢1—¢m) 12 ‘ 8¢m
= km cot (¢m'¢’£);
ok, ok__
Varleo ) = B8 gamn_ =0 Vaplmoml = ———— = 0.

dtanh
m
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. The constraint derivative matrix may then be written as P-2 blocks of the

form

‘tan)\ﬂ tanhm : g
‘ A m
Pp,2 ' p 2
Fo(s)=-() | 2— V. (s,0)+ B v (s,m)]| ;
e s K, U E k_ 4 ]
El ) mm
tan)\s
FZ].(S) = (i)sl/ks s FZZ(S) = (:h)s > 3
E k
ss
tan A tan)\z tan)\m
. _ k k k
'S 4 m
P _2 P,2 p_*2
-F32(S) = - (&) s + £ V31(s,f_) + = V32(s,mﬂ ;
*LE X E k E k
172 m m

one block of the form

: tan)\z tan)\m

2
|k, k_
Flz(‘e)z - (i)l L—{— Vll(‘e)‘e)+ . = Vlz(zsm) 3
E k E k

272 m m
- . - 2 .

and one block of the form

tanv)\l tan)\‘m B
.Fll(m)z_(:!:)rn.—2 Vll(m,£)+ — Vlz(m,m) B
kg k

. m —
. ‘ ['Plz ' : PmZ -
_E,k E_k ]
274 m m
2

F, (m) = (3)_ 1/k_; F,,(m) = tanxm/Emk'm

For D # 0, this matrix must be modified as described in Section> VIA.
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D. The 1c¢c Case

In this case ¢ , tan)\i » and k) are all unmeasured. = We may solve

".the three momentum equ‘a,tiéhs P
et &y cos ¢y /ky =0, | (VII-14a)
Tyt (#), sin ¢,/k, =0, (VII-14b)
M, (#), tank,/k, =0  (VII-14c)

for the missing variables, getting

-1
¢, = tan -Y(Try‘”/ﬂ <) | | (VII-15a)
tan\, = - (¥),k, =, (VII-15b)
K, = tn %4 n 2 /2 | | (VII-15¢)
g fo . .'l'l'Y ..n | - C

‘The remaining constraint equation is

We have P-1 blocks of the form

tang, 4 cos_ tan)\_ﬁ '

k . T k k

- 4 X s {
V13.(s,£) = '(d;)ﬂ k_ m_ sin b - 'rrY cos q)s:l ; )
.8 -
V(s £) =05 Vouleit) = - ky/k 5 Vyals,4) = 0 ;

tan ¢£ sin¢s

V31(s,[) = T V33‘S:z_).“‘ (i)'ﬁ-"—-—-——- ;

J3 _ XS - - .



tan X,  k, tank
Vaplsd) = Vs, d) +
kﬂ kS

. k 3
_ £ . :
_ V33(s,£)v=..(:,g)£ ?_ l:'rrY sin ¢s.+,1rx cos, ¢s] .
'S

- The constraint derivative matrix is then - P=1 blocks of the form
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I}Z tan)\_l ,
Fll(s) = ('i)s = - V13(S:1) + ——2_ Vlz(ssl) f)
E, k, E ,
1774 277 - .
vtan)\s -tan)\l ‘ '
F (S) = (i) : - + v _(S,f) s
21 s E k 2 E k 2. 22
S s 274 _
o PS2 P‘e2 ta.n)\ﬁ
F,, (s) = (&) §- - Vaas, £) 4+ —— Vo, (s, L)y .~
31 sl E x E k 33 E k 2 32
. 5.8 274 274

For ‘D # 0, this matrix must be modified as described in Section VIA.

E. The 0c Case

In this case k_u,‘as well as v'¢£ , tan ?\_.2, and kz is unmeasured. Note

that.the k_ belongs to the second-to-last outgoing particle whose momentum
a B

is unknown but whose angle variables are known. A We write the four constraint

equations in the form

cos¢ cosq?e
u , _
Mot (&) —2 (&), ——— =0,
: ' k
u £
sin sin ¢
), t(2), ——=0,
y u ‘ k
u y
: tank tan
M+ (%) =+ (), LAY
z u X
u W

¢ +(#), E, +(#), E, =0.

(VII-16a)
(VII-16b)
(VII-16¢)

(VII-16d)
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v

.Eliminating 432 , tan. )\2 , and kl from these equations, we get a quadratic

equation for ku' ) !

'y
2 2 2 2 2 2 2 , T
(2~ - € 'm u.) k‘.l + Zabku + b7 - € (1l +.tan )\_u') =0, (VII-17a)
where
2 2 2 2 2 2 ’ '
.a—1/2 nx+1'ry+1rz-e 'm;u+ mz_] , (VII-17h)
b .= (':h)fu m cos ¢!u + TTY sin q;u + TTZ tan)\u ] . ,(VII-}?C)

The quadratic equation (VII-17a) may be immediately solved for k , once
the ambiguity in the choice of roots_hasbbeen decided. This ambiguity is
fundamental to the Oc case, and the sign of the radicand in ‘the solution for
k, must be supplied to the program. Once ku- has been computed, this
second-to-last particle may be treated formally as a . measured particle and
the formulae of the lc case are used to compute the reamining unmeasured
variables of the last particle. _ 7

The derivatives of ku are found by differentiating Eq. (VII-172a) and

solving the resultant linear equation,

| da | 8b 2. >
Ok, Kylakgb) gE 4 @k, #b) g2 - e (ltmy K2 tanz)\u_l) e /0x,
ax. 2 2 2

i . (a” - € m;u ) kp + ab

(VII-18)
The detailed derivatives <')a/<‘3xi and ¢')b/¢‘9xi are somewhat complicated but
may easily be computed by straightforward differentiation. The remaining
derivatives required in order to compute the errors involving the compﬁted
| variables according to Eqs.(V-8) and . (V-9) are obtained by considering
particle 1 to be completely measured and again using the formalism of the

lc case. These derivatives are then modified according to the formula
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_8y£/3xi+ ayl/akH akPL /axi —> dy, /ax_i, (VII-19)

and Eqs. (V-8) and (V-9) are used to compute the appropriate error matrices.

VIII. CONCLUSION
Further vertex types, such as a different lc type in which the momenta
of three particles are unknown, may easily be included in the above formalism
and such inclusions will be made .in the near future. In addition, attempts
will be made to reduce the percentage of rejected events by finding better

starting values and by other methods.
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FOOTNOTE
1. The general method of least squares with constraints was first developed

by Gauss, see, e.g., William E. Deming, Statistical Adjustment of Data

(John.Wiley and Sons, Inc., New York, 1943),. 1st ed.
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