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ABSTRACT 

A high-speed computer program for the kinetmatical analysis of bubble 

chamber events is described, The program treats individual particle inter-

action .or decq.y vertices, subjecting the measured vq.riables to the equations 

of energy and momentum according to the least-squares criterion. This is done 

in four different cases in which the problem is overdetermined, and a fifth 

case is calculated in which the problem is just determined .. The adjusted or 

computed vq.riables corresponding to each particle are obtained in all cases 

as well as the first-order error matrices for each.type of variable, A 

connected chain.of vertices may be processed in sequence, 
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·I. INTRODUCTION 

The analysis of large amounts of data obtained from the observation 

.and .mea.surernent of particle interactions, especially in bubble chambers, may 

be accomplished in roughly three stages. The first stage may consist of an 

analysis of the measurements in order to determine the most probable values 

of the .various quantities-- such as coordinates, space angles, curvature or 

momentum, and energy ot velocity--to be assigned to· each particle both before 

and after the interaction. In addition, the errors to be associated with each of 

these quantities must be determined. Although a mass assignment for each 

particle must be made if the data are to be completely utilized, this first 

stage of analysis is usually kept as independent as possible of any hypothesis 

as to the nature of the interaction in order to preserve its gener?-lity. 

In .the second stage, the output of such a ."one-track" analysis or 

·spatial reconstruction program may be used in conjunction with kinematical 

requirements to interpret the interaction under consideration. Such a 

kinematical analysis may be used in the choice of one of several possible in-

terpretations, as well as to reduce the uncertainties in the kinematical 

variables to be assigned.to each particle. Finally, in the third stage, the 
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results from sepq.rq.te events may, be combined and the usual statisti~al analysis 

performed upon a group of events. 

A possible method for performing the second stage, na,mely the 

kinematical analysis, has been formulated and is described in this article. 

The treatment is sufficiently general that a large part of the computation may 

be applied to almost any kinematical situation, leaving a minimum amount of 

logical control to be conf?tructed for any particular experiment. This 

generality has been achieved by reducing the problem to a consideration of 

one interaction or decay vertex at a time. When the problem has been solved 

at a vertex, the information acquired may be propagated to any connected 

vertex aJ:?;d used in fitting a second interaction or decay. The mathematical 

problem of applying the kinematical equations at a vertex is thus isolated, 

and considerable flexibility is achieved without great complication. 

The single-vertex kinematical analysis program to be described.here 

has been coded under the title GUTS for the IBM 704 computer as a closed 

subroutine approximately 5000 words long, and has been tested unde;r a large 

variety of conditions. This description is limited.to the general principles 

and equations involved. Details of the coding may be obtained from the authors. 

- J • 
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IL NOTATION 

In this article the following notation conventions are used: 

p The total number of outgoing particles plus one (if there is an incoming 

particle); for the program GUTS, 2 ~ P < 7. 

L The number of analytic constraints to be applied at the interaction 

.vertex. Here 0 < L < 4. 

Ir The number of measured variables. I=3P + (L,..4), and, for GUTS, 

2 <I < 21. 

D The distance back from the interaction vertex at which the curvature 

k and the uncertainty in curvature ok are specified for the first 

(incident) particle. 

<Pq_ 'fhe azimuthal angle of the qth particle at the vertex, measured from 

some arbitrary axis. 

tan }., The tangent of the latitude of the s.th. particle at the vertex, measured s 
from the plane in which <j> is measured. 

g 

kg The ''projected curvature" of the s_th particle, defined by 

m 

x. 
1 

q 

k = [ p cos }., ] -l . 
9. q q 

The momentum of the _g_th particle, in Mev/ c. 

The energy of the s.th particle (including rest energy), in Mev. 

The mass of the .q.th particle, in Mev. 

The mass of the target, in Mev. 

Any measured variable (<j> , tan A , k ) . 
q q q 

Any unmeasured variable computed by the program. 
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Subscripts: 

s Refers to a completely measured particle. 

J. For the 3c case, refers to the particle with unmeasured momentum. 

For the 2c case, refers to the first particle with unmeasured 

momentum. 

For the lc case, refers to the completely unmeasured particle. 

For the Oc case, refers to the completely unmeasured particle. 

m For the 2c case, refers to the second particle' with unmeasured 

momentum. 

u For the Oc case, refers to the particle w:iith unmeasured momentum. 

i, j' k, 

~.fl., a' 

Refer to any variable x. 

Refer to the ~th constraint. 

IlL FORMULATION OF THE FITTING PROBLEM 

A. Variables 

For the purposes of the present program, it is assumed that three 

quantities are associated with each track, namely the "curvature 11 or 

momentum, and two space angles. Not all these quantities need be measured. 

Since the further assumption is to be made that the measured variables are 

normally distributed, it is important to pick a set of variables that approxi­

mately fulfill this requirement. The variable tan ~ is chosen here because 

of its convenience, although it is obviously not even approximately normally 

distributed in the limit as ~ --~± 90°. However, the method outlined 

below is applicable to other choices of variable. 

With these considerations in mind, the following variables are used: 

x,l = <j>l;x2 =tan ~1; :x:3 = kl; :x4 = <Pz; xs =tan ~2; ... (III-1) 

- ) . 
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The measured values of these variables are denoted by 
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m 
X · ., where j 

J 
runs 

from 1 to I and it is assumed that the errors on the measured.values are 

.. l. known. With these errors.denoted by oxm., the usual error matrix is then 
J 

given by 

~:: m t:xm. uX . u 
.l , J 

-1 =G .. 
1J 

(III-2) 

and must be supplied to the program. As presently, set up, the program 

assumes that individual particles are not correlated with one another, i.e., 

that G .. -l consists of a. set of matrices on the diagonal, none of which is . 1J . 

larger than 3X,3. However, no assumption is made as to whether or not these 

individual-particle error matrices are diagonal. 

B. Method 

A tentative interpretation of the vertex is then.made consisting of a 

decision-as to !f:he number of tracks associated-with the vertex and a mass 

assignment for each track. The assumption of normally distributed variables 

then leads to the usual principle of least squares, i. e. , the optimum s.e~ of 

variables x. is that set which minimizes the function 
1 

2 
X 

I 
= ~ 

i= 1 
j=l 

m m (x.-x .) G .. (x.-x .), 
1 J lJ J J 

(III- 3) 

subject to whatever constraints are required to satisfy energy and momentum 

conservation, 
1 

Let these constraints be denoted by 

F>..(xi) = 0 for >-= 1,2, ... L, (III-4) 

where >.. runs fr()m 1 to L. Two procedures --ax:e available. The equations of 

constraint may be used to eliminate L variables from the function 

2 
X (x

1
, x 2 , .. xi) and the I-L minimizing equations may be solved, or L 

Lagrange multipliers a>.. may be introduced and the problem may be reduced 
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to finding the stationary value of the function 

I L 
m m 

M=L: (x.-x .) G .. (x.-x .) + 2 L; aX.FX.(x). 
i = 1 1 1 lJ J J X.= 1 

j=l 

UCRL-9097 

(III-5) 

Since it can be shown that if the constraint functions are linear the latter 

procedure involves the solution of only L rather than I-L simultaneous 

equations, it seems reasonable to· expect that the latter procedure is superior 

at least over regions of variation of x sufficiently small that the F X. (x) may 

be considered to be approximately linear . 

. Using the variables listed above, one can write the u~ual equations of 

constraint in the following form: 

p 

Fl = L; (±) cos cj> /k = 0 
q=l q q q 

(III- 6a) 

p 

F2 = L; (±) sin cj>q/kq = 0 '. 
q=l q 

(III-6b) 

p 

F3 - L; (±) tan X. /k = 0, 
q=l 

q q q 
(III-6c) 

p 

F4 = L; (±) E - m = 0 ' 
q=l 

q q T (III-6d) 

where (±) is +1 if particle q is outgoing and -1 if particle q is incom­
q 

ing. These equations then represent the conservation of momentum along 

three mutually perpendicular axes in t.he chamber and the conservation of 

energy. A vertex at which all quantities are measured is subject to all four 

constraints and may be classified as a 4c vertex. If the momentum of one 

particle is not measured, Eq. (III-6d) may be used to solve for this momentum, 

and since only three constraints remain to be satisfied, this may be classif<ied 

as a 3c vertex. .Similar· procedures are used for 2c and lc vertices, 
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and a least-squares fit may. be performed in each case. If. four variables are 

unmeasured, the number of constraint equations is just sufficient to calculate 

the missing variables and no least- squares fit can be made. If more than 

four variables are unmeasured, the problem is und.etermined. 

In the above cases in which fitting or calculation is possible, the 

program GUTS finds the optimum values for the measured variables x. and 
1 

computes the corresponding missing variables y . GUTS also computes the 
(l 

three error matrices OX. OX., OX. oy , and oy By A • 
1 J 1 (l '(l .t-' 

All these quantities 

are evaluated at the interaction vertex. In each of the five cases, however, 

only certain variables are allowed to be missing. These restrictions have 

been made on the grounds of physical plausibility. We list each case, describe 

what variables are allowed to be missing, and give one example of each, as 

follows. 

Case 

4c: 

3c: 

2c: 

lc: 

All variables for all tracks .are measured. 

Example is a n-p scattering in which all 

tracks are measurable. 

One momentum is unmeasurable. Example 

a A decay when the direction of the A is 

known. 

Two momenta are unmeasurable. Example 

is an associated-production vertex for which 

both the A and the k 0 direction are known. 

All variables corresponding to one particle are 

unmeasurable. · Example is a A decay for which 

the direction of the A is not known. 

Example 

( 
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Oc: All variables corresponding to one 

particle are unmeasurable and the momentum ; : 

of a second particle is unmeasurable. Example 

is the reaction K- + p --~ A + n° for which 

the A direction is known. 

TT 
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-r A 0 
TT 

I 
/ 

I 

~p 

The problem of finding a stationary value for the function may be 

solved by a simple iteration. The equations to be solved are 

{ 

I 
aM= 2 .,!; 

ax. j= 1 
1 

L 
m 

G .. (x.-x .) + ,!; 
1 J J J A= 1 

aM = 2F A (x). = 0 for A = 1, 2,.. . L , 
aaA 

where we us.e the notation 

1, 2, ... I, 

(IV -1) 

(IV- 2) 

(IV- 3) 

and (IV- 2) .is of course just the constraint conditions. The problem is now 

reducedto solvingthe I+L equations (IV-1) and (IV-2) for the I+L variables 

xi and a A. Equation (IV -1) may be rewritten 

where 

L 
m 

xi = x i ,!; E. , ci. ~. fo.r: i ;:: 1, 2, ... I , 
A= r~ 1 

f\_, 1\ 

I 
= ,!; 

j=l 

.,1 
G .. 

1J 

(IV ... 4) 

(IV- 5) 

• 4 
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Equation:,(IV -4) may then be used to define an iterative procedure. We 

·1..expand the constraint equations around some approximate solution 
~ 

X. 
1 

where the super scripts refer to the order of the iteration, getting from 

(IV- 2) and (IV- 4) 

and 

I 
F v + ~ 
~ j=1 

(x~+l 
J 

v v 
x . ) F. , = 0 for 

J J 1\ 

~ = 1, 2, ... L 

vt1 m 
X. =X. 

1 1 

L v vt1 
~ Ei ~ a~ for i = 1, 2, ... I , 
~=1 

where we use the notation 

v 
,. E "" = ]I\ 

(IV -6) 

(IV- 7) 

(IV- 8 ) 

vt1 
We may now eliminate x. from Eqs. (IV-6) and (IV-7) and solve for 

1 

and 

we find 

Defining for convenience 

bv 
~ 

v 
- F~ 

I 
~ 

j= 1 

L 
= ~ 

f.!=l 

+ 
I 
~ 

j=1 

m 
(x . -x. 

J J 

v 
Fj~ for ~=1, 2, ... L 

(E v)T Fv 
~j j f.! ' 

b v for ~ = 1, 2, ... L . 
jJ. 

(IV- 9) 

(IV -10) 

(IV -11) 

This solution for the Lagrange multipliers may then be used in conjunction 

with Eq. (IV -7} to solve for the entire set of x. v +l 
1 

T h . . 0 m d 0 o start t e 1terahon, we use x. = x . an a, = 
1 1 1\ 

the iteration until a "fit r:r is found. At every step we have 

(x~v+l= 
I 
~ 

i= 1 
j=l 

(x.v+1 - xm.} G .. (xv.+l -x~ ) 
1 1 1J J J 

0 , and we continue 

(IV -12) 
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Substituting into (IV- 12) gives 

(~x2) ~~ +1 
I ~ {a v +I = ~ 

i= 1 ~=1 ~ 
j=l f.J..=l 

-12-

av + 1 for i = 1 , 2, . . . I . 
x 

(Ev) T G.: E~ a v +I} 
M 1J J fJ. fJ. 

~ {a v +I [~I 
I 

. (Ell) T_ Fv a v +1]} = ~ 
~=1 ~ i= 1 

. ~1 . 1f.J.. fJ. 

L 
E 11+l 11+l 

= ~ Hll 0. 

~= 1 
~ ~f.J.. fJ. 

f.J..= 1 

UCRL-9097 

(IV- 7a) 

(IV-13) 

Thus, using the definition of 1/>-?Eq. (IV- 9), at every step we have the 

algebraic identity 

(x2):+1 
I 

(x~ +1 G ('v+l_ 
L 

i,JI, + 1 ( 2) v+ 1 ~ 
m m 

~ 
v 

= - X. ) .. X .. X . ) = a~ b~ = ·X b , 
1 1 lJ : J J -

i= 1 ~=1 
j= 1 (IV-14) 

which is independent of the linearity assumption. The program GUTS uses 

this identity to check the rounding errors inherent in so much numerical work. 

We insist that, on each step, 

2 
11+! 

(X ) 
a 

(IV -15) 

This fails to be satisfied only if bad rounding errors creep in or if the matrix 

H~f.J.. is very badly conditioned. 

" . 



. ' 

IV. B The Fit -13- UCRL-9097 

·B. The Fit; Definition of Cqnvergence 

Each step of the iteration yields an approximate s.olution to the problem 

and it is necessary to set criteria that determine at what step the c;tpproximation 

is good enough, i.e. , to define a· "fit 11• 

It is important to note here and in the following sections that in reducing 

expressions involving statistical averages we assume that the constraint 

functions are linear over the regions of interest. Thus all equations involving 

these averages c;re only approximate. 

Since a .minimum value of x2 
subject to the kinematical constraints 

will have been reached when (a) all the constraint functions. which are the 

derivatives of M(x, a.) with respect to the Lagrc;nge multipliers, and .(b) all 

the derivatives of M(x, a.) with. respect to the variables xi are vanishingly 

small, it is .only necessary to find. reasonable criteria which these functions 

are to satisfy. For the first set of derivatives we introduce the function 

F '"'V-jT { ~ 
= X.= 1 

f.l=l 

8M v+l 

aa. v+l 
f.l 

Using the linearity assumption and.(IV-9), we find 
I 

and 

o b,~ = :!:: oxmJ. FJ. ~ 
j=l 

where we have used (IV-10) and (IV-5). 

and 

Similarly, using (IV -11) and (IV -18.). we have 

t: v +1 
ua~ = 

00. v +1 = 
f.l 

(IV -16) 

(IV-17) 

(IV-18) 

(IV -19) 

(IV- 20) 
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One may now use this result to show 

r Fvtl F v+l (Hv) -1 v+l} = 2 A:l x· F . (IV- 21) 
X f.! f.! ' 

f.L=l 

Thus F v+l is a positive definite function of the constraints. In the linear 

approximation to the problem, where only one step is necessary to arrive at the 

solution, it is easily shown that this function evaluated at the measured values 

m 2 
x is equal to X and hence has the expectation value L as shown in 

Section IVC. If the constraints are to be satisfied much better than at 

x=xm it seems reasonable to demand that Fv+l be small compared with L. 

We therefore require 

. v+l 
F < E 2' (IV-22) 

where e 2 is to be chosen << L. 

For the second set of derivatives we define a positive definite function 

1 fl aMv+l - .~ (-
4 i=l ax. ytl 

. l 1 J= ' 

m 
ox . ) 

1 

8Mv+l 
( --v+l 
ax. 

J 

(IV-23) 

In the same linear approximation discussed above, one may show that at any 

point x for which 

* the difference of the value of . M(x, a) from its minimum value M is given by 

M(x, a) - M* = oMv+l (IV- 24) 

Vfl . 
If a point x is such that oM < < l, then 1ts probability differs by a 

~:c 

negligible amount from that of the "optimum" point x We then require 

vtl oM < e 
3 

, (IV- 2s) 

where e 3 is to be chosen < < l . 

This last requirement may be put into explicit form by considering 
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v+1 LI aM . = 2 ~ G .. (x. v+l -
ax:v+1 "=1 1J' 1 

1 

m L v+1 +1} x . ) + ~ Fi X. a { .• 
J ).;:: 1 

Substituting Eq. (IV -7) into the above, we get 

aMv+1 

-a· .v+1 
X. 

1 

= 

Substituting (IV-27) into (IV-23), we can show 

. oMv+l= { 1ljJ~1G .. -1 ljJ. v+1} 
i= 1 1 1J J 

j=1 

where 

Our requirement then becomes 

I 
~ ·y;. v+l G .. -1ljJ. v+l < e

3 i= 1 1 1J J 

j= l 

C. The Stationary Value of M 

(IV- 26) 

(IV-27) 

(IV -29) 

Equations (IV -13) and (IV- 20) also lead to an expression for the average 

* value of M(x. a) at its stationary value, say M .. Since the constraint functions 

have been brought to zero, this .corresponds to the expected minimized value 

of 
2 

X Since we have· aX.= 0, we have from (IV-20) 

and substituting into (IV- 13) gives 
- L 
M *= ""' a v +1 v+1 ~..v 

4J '" a, l:i.'" •• = L. 
X.= 1 f\ r f\r 

jl.=l 

* Thus the average value of M equals the number of constraints. 

(IV- 30) 

(IV -31) 
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D. Summary 

· ln.the last three sections we have defined an iterative procedure by 

Eqs. (IV-7) and(IV-11). At the end of each step, we check rounding errors 

by computing. ( x 2)a and · (x 2
)b and requiring that Eq. (IV -15-) be satisfied. 

After having taken a step and checked the calculation we ask if the new values 

of the variables xi lead us to acceptable values of the constraints as imposed 

by Eq. (IV- 22}. If so, we ask if a stationary value has been found as de­

termined by Eq. (IV -25). If both these conditions are satisfied, we accept 

the values of x.. If not, we take another step. 
1 

We have been using the .values 

-4 -2 -2 
E l = 10 , E 2 = 10 , E 3 = 10 ([V-28) 

These values are of course adjustable. Experience thus far indicates that 

e 1 is occasionally exceeded, especially if variables with highly displi'oportionate 

errors are used. The value of e 3 seems to impose about as strict a condition 

as does e 2 in .most cases. For fitting the correct hypotheses to a reasonably 

. well-measured event about four iterations seem to be required, on the average. 

To impose some sort of stability restriction on the solution we do not accept 

a fit until all restrictions have been satisfied twtce. 

It should be noted at this point that the method is not guaranteed to 

converge, although we have found that it does converge in the overwhelming 

majority of cases in which the correct interpretation is chosen and even in 

the majority of cases in which the wrong interpretation is used. 

-·-
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V. PROPAGATION OF ERRORS 

v+l 
Denoting the fitted values of the measured variables by x. and 1 . 

. v+l 
the values of the unmeasured vanables comput~d from these by- y a. , we 

. v+l v+l v+l v+l 
wish to compute .the three error matnces ox. ox. ' ox. . oy 

1 J 1 a. 
and o v+l o v+l 

Ya. yj3 On the assumption that the constraint functions are 

linear over the region covered by the errors, we may compute the first of 

these from Eq. (IV -7). This gives us 

ox. v+l 
1 

L 
= ox.m.,... 1: 

1 X. = 1 

Thus we have 

ox. v+l ox. v +l = ox.m ox~ 
1 J 1 J 

L 
!:: 

Ao=l 

.. 
(Vi-1) 

+; E.vEv 0 v+l 0a.v+l 
X.=l lX. JIJ. ~ IJ. 

(V-2) 

jJ.=l 

Equati'ons (TV-5), (IV-17), and (IV-19) may be combined to give 

L 
= l: 

IJ.= 1 

a,nd substituting (V-3) and (IV-20) into (V-2) gives finally 

ox. v +1 ox. v+l = 
1 J 

-1 G .. 
lJ 

(V-3) 

\ (V -4) 

which is the expression for the error matrix of the #tted variables. We see 

that the adjusted variables will in general be correlated even if the measured 

variables are not. One can also prove in general 

L 
.!:: 

X. = 1 
IJ. = 1 

> 0, (V -5) 



V .. Prqpa,gation .:.of Errors -jg- UCRL-9097 

so that the errors in the adjusted variables are all smaller than those in the 

measured variables. ' 

The other two error matrices ox. v+l o v+l and o v +1 o v +1 
1 Ya Ya Y~ 

are constructed by using 

I v+l 
oy = ~ a 

i= 1 
ay ;·a' .a x. 

1 

ox. v+l 

v+l 
1 

X.= X. 
1 1 

We define for convenience 

u. v+l 
1a = aya/axi vtl 

X. :::X. 
1 1 

and then 
I 
.!: -U. v+l (ox.vtl ox.v+l) 

Ja 1 J ·· 
j=l 

v+l · v+l .ox 5y = 
i a 

0 v+l 0 v+l = 
Ya yl3 (ox. vtl OX. vtl) UJ.Avtl 

1 J . 1-' 

(V -6) 

(V -7) 

(V -8) 

.(V -9) 

We may further produce a set of very useful test functions with our 

t t C 'd th 1 f h · ( +l - x.m). U · E
1
' ou pu . ons1 er e rms va ue o t e quantity. xi 1 s1ng qs. 

(IV-7) and (IV-30), we find 

.m) 
X. = 

J 
( v+l m vtl 
x. -x. ) (x. 

1 1 J 

It is then clear that the normalized adjustment (or "stretch") in xi, 

v+l m 
X. -X. 

S. (x) = 
1 

1 1 

(X. v+l m) 
1 - xi 

rms 

= (x. v+l 
1 

v v -1 v T 
E'. iX. (H ) AfJ. (E ) fJ. 

(V-10) 

J
-l/2 

(V -ll) 
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should be normally distributed about zero with a standard deviation of 1. The 

program GUTS computes this set of quantities and they may be used, to­

gether with the value of x 2 , to calibrate the empirical errors assigned to each 

variable as well a,s to test for systematic effects. Thus a sample of events may 

be run through the program several times, adjusting the e.rrors until the proper 

X 
2 

distribution is obtained and the distribution of each S. (x~ has the correct 
1 

width. An asymmetric distribution for any of the s·i (x) may indicate the 

presence of a systematic error in the measurement of the corresponding 

variable. It should be noted, however, that such asymmetries may also occur 

because ·the input variables are not normally distributed or the constraint 

functions are not linear over the range of the variables considered. 

VI. ADDITIONAL FEATURES 

A. Range Energy 

In using the program GUTS as presently written, a quantity. D must 

be supplied. This quantity is the distance upstream from the interaction 

vertex at which the quantities k and ok are considered to have been measured 

for the first particle, All other quantities must always be specified at the 

interaction vertex. This feature is included in GUTS to take care of the fact 

that for very slow tracks the error in k::::: 1/p is very skew. , Specifying k 

and ok a distance D in front of the vertex places the iteration variable in 

a region where the assigned errors are more nea,rly Gaussian. 

Using this feature, one may analyze connected vertices in succession, 

propagating errors through the range-energy relation, as described in Paper 

IV of this series. 

For D = 0, the range-energy feature is not used and all variables a,nd 

errors are taken .to be at the vertex. In any case, even for nfo, the output 



VI. Additional Features -20- UCRL.-::9097 

variables and error matrices are all evaluated at the inte.raction .vertex. If 

the range-energy feature is used, a distinction must be made between k 1, 

the measured curvature variable of the incident particle, and k , the value 
vl 

of this quantity at the vertex. 

The constraint functions FA. and their derivatives Fi A. are first 

evaluated at the vertex and then the Fi A.' which refer to the true iteration 

variable, are modified according to the formula 

ax. 
1 

ax. 
1 

(VI-1) 

Similarly, the output error matrices are first computed in terms of the 

iteration variable k
1

, and are then modified to apply to the vertex according 

to the formula 

Ox. = 
1 

I 
~ 

j=l ax. 
J 

ox. ox. ' J 1 

Since k is a function only of k
1 

and 
vl 

of the form ak /ax. are akv /akl 
vl 1 .. 1 

(VI- 2) 

tan >-..
1

, the only nonvanishing terms 

and ak /atan >-..
1 

. Thes.e may be 
vl 

evaluated .on the assumption that over the length of track under consideration 

a range-momentum relation of the form 

(VI- 3) 

is sufficiently accurate, where p
1 

is the momentum and R
1 

the residual 

range of the particle, and p
0 

and a. are constants in.the region considered. 

Using the definitions of the varie1bles, one may then compute 

ak I a tan Al = - ( _Q__ ) tan Al 
vl R k p 2 

vl vl vl 

(VI-4) 

and 

(VI- 5) 
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In neither of these expressions .does a. ·or p
0 

appear, so that no reference 

to thes.e constants need be made in the program. It should be noted .that the 

approximation (YI-3) is used only to calculate the derivatives of kv
1

, the actual 

range-momentum calculation being a,ccomplished by a table-look-up operation 

on R/m vers.us pjm. 

B. Nonanalytic Constraints 

To achieve some degree of control over the fitting process, we apply 

anumber of nonanalytic constraints. Most of these are imposed by inquiring, 

after a step has been taken, whether the new variables x. v+l lie in an 
1 

unphysical or undesirable region. If they do then the new variables are 

modified according to the equation 
v+l v 

X. - X. 
X. V + 1 1 

1 f 

v+l 
---)X. 

1 

where f is an adjustable factor which is at present set equal to 2. 

(VI-6) 

This step-

cutting procedure is repeated until the new variables are acceptable, a con-

clition that will always be achieved if the previous step lies in an acceptable 

region. The specific situations in which this cutting-down procedure is used 

are the following: 

l. The input variables k are ordinarily specified as positive. If 
q i 

\ 
one of the. input k is given as negative, this is not interpreted as indicating 

q 

that the corresponding. particle was negative,. but rather as indicating that the 

curvature of this. particle was measured as having the opposite sign from the 

charge of the particle. The measured value of this k is then left with a 
q 

negative sign but a small positive value is. inserted for the starting value of 

. the fitting procedure. If we start with positive .k , at no time during the 
q 

fitting process are any. of the. k allowed to pass through zero and become 
q 
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negative, and if a step is taken such that any. k become negative, the 
. q 

cutting-down procedure described above is used to force the k to be 
q 

positive. Note that if any one of the km are negative, the adjusted value 
; q 

can never agree with the measured value and a large value of X 
2 

may re-· 

sult. This procedure essentially imposes .conservation of charge on the 

kinematic analysis. 

2. If the range-energy feature is invoked for the incident particle, then 

at no time is the measured length D allowed to be longer than the residual 

range of the particle calculated from the range-energy relation by using the 

. momentum of the particle at a distance D back from the vertex. If a .step 

is taken which violates this condition, the cutting-down procedure is used. 

If this condition is violated by the measured values themselves, the starting 

value of the momentum of the incident particle is. set to give a small positive 

residual range at the vertex, and the fitting proceeds as before. Again, the 

measured value of the momentum is untouched and will contribute to the final 

2 
value of X . 

3. It may occur that during the fitting process a step is. taken such 

that in the 3c case E
1 

, the .energy of the particle whose momentum was 

not measured, or in the 2c case k
1 

or k , the two unmeas.ured curvatures, 
m 

become negative or imaginary. In such cases, the cutting-down procedure 

is used. 

4. It is found that the convergence of the iterC!-tion is in general 

accelerated if one also imposes the condition that the quantity ... ;v+T defined 

by (IV -16) after each step be smaller than the same quantity. Fv+l calculated 

from the previous step. Again the cutting-down. procedure is used to impose 

h . d' . . H h' d' . . . d . f Fv+l t 1s con 1tlon. owever, t 1s con 1hon 1s not 1mpose 1. · satisfies 

the inequality (IV-22), since when Fv+l becomes very small, rounding errors 

may make it unreasonable to insist on further improvement. 
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In all the above cases involving nonanalytic constraints, it may happen 

that the mathematical stationary value of M lies in a region that is forbidden. 

In this case, it is clearly unreasonable to impose the condition (IV-25) although 

the condition (IV- 22) may still in general be met. Thus, if a large number of 

cut-downs are required, indicating that the sought-for stationary value lies in 

a forbidden region, the condition (IV- 25) is by-pas sed by the program. In 

any case, a maximum number of iterations as well as cut-downs is allowed· 

and if either of these numbers is exceeded, the event is rejected. 

VII. EQUATIONS GOVERNING THE PARTICULAR CASES 

We have five particular cases, corresponding to L equal to 4, 3, 2, 1, or 

0. In each of these cases, we have a different set of constraint functions 

FA as well as a different set of constraint derivative matrices FiA" O,nce 

we have computed the FA' FiA' y a. and Uia. the calculation proceeds 

identically for all cases except the L=O case. We shall thus give only the 

expressions for these quantities below. 

In the case in which the range-energy feature is used, the FiA 

corresponding to the first (incident) particle (i = 1, 2, 3) must be modified, 

since the FiA as givenare vvith respect to the variables at the vertex and must 

be adjusted to refer to the true variables of iteration. This modification has 

been described in Section IV A. The FA are always comput~d by using the 

variables at the vertex and need not be modified. 

We use the symbols 

iT = .I; (±)s cos ¢'s/Jss (VIl-la) 
X s: 

iT = .I; (±) sin 4> /k , (VII-1 b) 
y s s s 

s 
iT = .I; (±) tan A /k (VIl-le) 

z s s s s 
E = ~ (±) E - mT' (VII-ld) 

s s s 
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the Particular Cases 

where 2: denotes the sum over all completely measured particles, (±) is 
s :.:;s . 

+1 if particle s is outgoing and -1 if particle s is incoming, and mT is 

the mass of the target. Note that the following two special cases ~re allowed: 

(a) No incoming particle. This corresponds .to assuming that the 

incident particle stopped. and mT should be set equal to the target ~ass plus 

the. mass of the stopped incident particle. Thus if a K- meson is. absorbed 

in.deuterium, for example, a correct treatment of the 'kinematics will be ob-

tained if mT is set equal to the mass of the deuteron plus that of the K-

meson, and the incoming particle is otherwise ignored. 

(b) mT = 0 .. This corresponds to a decay. 

In addition to using the subscript i, we. shall use the subscripts 

s, 1, m, and u as defined in Section II. We shall also use the notation 

Fj ~ (S), with j = 1, 2, or 3, to indicate one of the constraint derivatives for 

particle s. Thus 

F l ~ (S) 
aF~ aF~ 

= = 
ax3s-2 a <Ps 

(VII- 2a) 

F 2 ~(S) 
aF~ aF~ 

= = 
ax3s -1 a tan ~ s 

(VII- Zb) 

F 3 ~ (S) 
a FA. a FA. 

= = 
ax3s ak 

s 

(VII-2c) 

and so on. If the particle referred to is not completely measured--i.e. 

particle f. or m- -we replace s by f. or m as required. 
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All the variables are measured and we make use of all four constraint 

equations. We have 

Fl = ~ (±) cos <I> /k = TI 
x' s s s s 

F2 = ~ (±) sin <1> /k = TI , s s s y s 

F - ~ (±) tan },_ /k = TI 3 - s s s z 
s 

F 4 = ~ (±)s Es - mT = e , 
s 

For the . Fi}.. we have 

sincp 
s 

k s 

F 14 (S)=O; F 21 (S)=O; F 22 (S)=O 

cos ,!,. 
"'s 

k 
s 

tan }.. 
s 

E k 2 
·s (5 

cos <I> 
s 

; F31 (S) =- (±)s kEr 2 

'--
tan }..s 

(±)_ 2 
::; k 

s 

p 2 -
F34(S) = - (±) _s_ 

s E k 
s s 

(VII- 3a) 

(VII- 3b) 

(VII- 3c) 

(VII- 3d) 

= - (±) s 
sin <1> ..... s 
k 2 

s 

There are P such blocks, since s runs from 1 to P. For D:f 0, this matrix 

must be modified as described in Section IV A. 

B. The 3 c Case 

In this case k_e is unmeasured. We solve the energy equation 

E =- (±)_e E,e (VII-4) 

for k,e , getting 1/ 2 

_ {1 + tan

2

>1J k,e -
. 2 2 
e - m 1 

(VII-S) 

and use this value of k1 in the remaining constraint equations, 
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F = 1 lTX + (±)1 cos cp1/k1 ' (VII-6a) 

F2 = ny+(±)1 sin cp1 jk1 , (VII-6b) 

F3 = nz .+ (±)1 tan "A.1 jk1 • (VII-6c) 

To write the Fi"A. for this case and following cases, we define for convenience 

(VII~ 7) 

These are simply the Uia defined by (V -7) but with an additional sign con­

vention in order to simplify the formulae that follow. Here J= 1, 2, or 3 

refers to the·measured variables of particle s and 13=1, 2, or 3 refers to 

the unmeasured variables. The index s may be .replaced by 1 or m and 

the index 1 may be replaced by . m when the corresponding particles are re-

fer red to. Since kJ is the only unmeasured variable in .the 3c case, we have 

P-1 blocks of the form 

v
11

(s,1) = (±)s(±)1 a k 1 I a cps = o , 

v 21 (s,1) = (±)s(±)1 
8k1 

= 
tan~s 

a tan )._ E k 2 
s s s -

ak1 
p.2·· 

v
31

(s,1) (±)s (±)1 
s 

= - -
8k E k 

s s s 

and one block of the form 

~ 
p1 

k 1 E 1 . 

p1 
2 

(VII-Sa) 

(VII- 8b) 

(VII- 8c) 

(VII- 9a) 

(VII- 9b) 

We may now write the constraint derivative matrix as . P= 1 blocks of the form 

F 11 (s) = - (±) 
s 

sincp 
s 

k 
s 

(±) 
s 

cos cp 
s 

k 
s 

., 
~ 
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tos$ 
F3l(s) =- (±) s k 2 s + 

s 

[sin$ 
F 32 (s) = (±) s + 

s k 2 
- s 

[ tanA 
F33(s) =- (±) s + s k 2 

s 

and one block of the form 

sin cj>£ 

tan).£ 

k 2 
£ 

-27- UCRL-9097 

cos cl>.e 

V 31 (s, £J ; 
k 2 

£ 

sin cj>£ :l v3l(s,£~ k 2 
£ 

tan 'A£ 
v3l(s,£)J k 2 

£ 

cos cl>.e 

For Df= 0, this matrix must be modified as described in Section VIA. 

C. The 2 c Case 

Here k£ and km are unmeasured. We solve for these by using the 

two constraint equations 
cos cl>.e 

+ (±) 
m 

+ (±) 
m 

getting 

cos cj> 
m 

k 
m 

sin cj> 
m 

k 
m 

sin(cj> -cj> ) 
m s 

~(±) 
s s k 

s 

= 0 ' (VII-lOa) 

= 0 ' (VII-lOb) 

(VII-11) 
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k = (±) 
m m sin(<j>1 -<j>s) 

~( ±) s -...;.,k,.-----
s .S 

UCRL-9097 

(VII-12) 

these two values are used in the two remaining constraint equations, 

+ (±) 
m 

tan X. 
m 

k 

Using the notation of the previous 

= 

= 

m 

sections, we have 

kn 
2 

cos(<j> -<j> ) 
x. m s 
~ sin(<j>1 -<j>m) 

k n 
2 

sin ( <j> - <j> ) 
x. m s 

F sin(<j>P. -<j>m) 
s 

k 2 
.m 

k 2 
s 

sin(<j>P. -<j>s) 

sin ( <j> m- <j> P. ) 

(VII-13a) 

(VII-13b) 

P- 2 blocks of the form 

ak 
one block of the form 

ak.R. 
V 11 (P.,P.) = B<PP. = k.R. cot (<j>P.-<Pm) v 12(1.' m) = (±)P. (±)m a<j>r; 

k 2 
m 1 

= k"1 
ak.R. ak 

V2I(P.,i) = atanX.P. = O; V22(i,m) = (:t;:):t(±)m -a~~-an-.-=-x.-1 - = O; and 

one blockofthe form k2 a k 1 P. 
V ll (m, P.) = (±)m (±)P. -ar = ~ 

m .m 

8k 1 m: 
sin(<j>P.-<Pm); vl2(m,m)= aq;in 

= k cot (<P -<Pn); m m x. 

8k ak.R. 
V 21 (m, P.) = (±)m (±)P. atanX 

m 
= 0; V 22 (m, m) = m 

----=0. 
a tan X. 

m 

... 
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The .constraint derivative matrix may then be written as P-2 blocks of the 

form 

F (s) = -
31 

(±) s eanA 
s k 2 

s [p 2 
(±) . s 

s E k 
s s 

one block of the form 

ranA1 
F 11 (P.) = - (±) P. 

k 2 
- P. 

~p 2 

F 12 (P.) = - (.±)£ l-·J._ 
E P. kP. 

and one block of the form 

tan>.. P. 
+ 

k 2 
P. 

+ 
p 2 

P. 

E 1 k 1 

v 11 (£' £) + 

v 11 (£' P.) + 

tan>.. 
m 

p 2 ~ 
m vl2(s,m) 

E k 
mm 

tan>.. . s 

E k ·2 
s s 

tan>.. 
·V31(s,£) + _k_m,.2_ 

m 

tan A. 
vl2(l,mj; 

m 

k 
2 

m 

p 2 

V 12 (l, m)] 
m 

E k 
mm 

V 11 (m, £) + 
tan A. 

m 

k 2 
_m 

V 12(m,m)J 

vl2(m, mj V 
11 

(m, £) + 
p 2 

m 

E k 
m m 

For D =I 0, this matrix must be modified as described in Section VIA . 
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D. The 1 c Case 

In this case q,1 , tanA.
1 and k.€ are all unmeasured. We may solve 

· the three momentum equatiqns 

for the missing variables, getting 

-1 I <Pn = tari (TT ' TT ) , 
..t:. • y X 

The remaining constraint equation fs 

We have P-1 blocks of the form 

tanq,1 cos<j> 
V 

11 
(s, 1) = v 13 (s,1) + (±)£-

s 

k1 TT k 
X S 

k 3 
1 

vl3(s,1) = (±)£ ~ sin~ TT cos 
k 

s 
X · S y 

sin <j> 
s 

V33(s,1)- (±),t TT k 

X S 

(VII-14a) 

(VII-14b) 

(VII-14c) 

(VII-15a) 

(VII-l5b) 

(VII-15c) 

(VII-16) 

tan A.1 
; vl2(s,1) = V 

13 
(s, 1) 

k1 

~~; 

., 

... 

-. 
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k tanA. 
v33~(s, .. q + i. k 2 s 

s 

[
TT sin <j> + TT cos. <j> l 

y S X SJ 

UCRL-9097 

The constraint derivative matrix is then P= l blocks of the form 

(±)s { -

p2 tan A. i. 
V 12 (s, l)} F 11 (s) = 1 

vl3(s,i.J + 2 
E i. ki. E 1 k

1 

F 21 (s) (±) . 
{tank s 

tanA. 1 vzz<•.l)}. = + 2 . s 
E k 

2 
E 1 k1 s. s 

-

(±)s{-

p 2 p 2 tanA. £ 
v32(s,l)} . F 31 (s) 

s £ 
v33(s,£)+ = - --

E k E 1k1 
2 

s s E1 ki. 

For · D =/= 0, this matrix must be modified as described in Section VIA. 

E. The 0 c Case 

In thiS case ku as well as <!>;_ , tan 'A.£, and k;_ is unmeasured. Note 

that the k. belongs to the second-to-last outgoing particle whose momentum 
,u 

is unknown but whose anglevariables are known. We write the four constraint 

equations in the form 

cos cpu 
TT + (±) 

X U 
k 

= 0 , (VII-l6a) 

u 

(±) 
sin<14 

+ (±) £ 
sin <!>;_ 

.= 0 • TT + y u 
k k£ :u 

(VII-l6b) 

tan7o.. tan 'l 
+ (±)u 

1.1 + (±)£ =0, TT 
z 

k k·,e u 

(VII-l6c) 

(VII-l6d) 
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. Eliminating <l>.,e , tan A£ , and k£ from these equations, we get a quadratic 

equation for kq.. 

where 

2 22 2 2 2 2 
(a - e m u> k~ + 2abku +b - e (1 +tan Au) = 0, 

2 
- E 

2 
rn.u + m~J 

(VII-1 7a) 

(VII-1 7b) 

(VII-17 c) 

The quadratic equation (VII-1 7a) may be immediately solved for k,u once 

the ambiguity in the choice of roots has been decided. This ambiguity is 

fundam.ental to the Oc case, and the sign of the radicand in the solution for 

ku must be supplied to the program. Once k:u, has been computed, this 

second-to-last particle may be treated formally as a .measured particle and 

the formulae of the lc case are used to compute the reamining unmeasured 

variables of the last particle. 

The derivatives of k are found by differentiating Eq. (VII-17a) and . 11 

solving the resultant linear equation, 

ak 
____£... = 
ax. 

1 

ae 1 ax. 
1 

(VII-18) 

The detailed derivatives a a/ 8x. and ab/ ax. are somewhat complicated but 
1 1 

may easily be computed by straightforward differentiation. The remaining 

derivatives required in order to compute the errors involving the computed 

variables according to Eq,s .(V -8) and . (V- 9) are obtained by considering 

particle u to be completely measured and again using the formalism of the 

lc case. These derivatives are then modified according to the formula 

., 

. ' 

.. 



4. 

' . 

• 

'·..,; 

• 

VII. D. The 1 c Case -33-

ak /ax. 
f.L 1 
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(VII-19) 

and Eqs. (V-8) and (V-9) are usedto compute the appropriate error matrices. 

VIII. CONCLUSION 

Further vertex types, such as a different lc type in which the momenta 

of three particles are unknown, may easily be included in the above formalism 

and such inclusions will be made in the near future. In addition, attempts 

will be made to reduce the percentage of rejected events by finding better 

starting values and by other methods. 
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FOOTNOTE 

1. The general method of least squares with constraints was first developed 

by Gauss, see, e. g., William E. Deming, Statistical Adjustment of Data 

(John Wiley and Sons, Inc., New York, 1943), 1st ed . 
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