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Elusive present: Hidden past and future dependency and why we build models

Pooneh M. Ara,* Ryan G. James,† and James P. Crutchfield‡

Complexity Sciences Center and Physics Department, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
(Received 2 July 2015; revised manuscript received 30 January 2016; published 29 February 2016)

Modeling a temporal process as if it is Markovian assumes that the present encodes all of a process’s history.
When this occurs, the present captures all of the dependency between past and future. We recently showed that
if one randomly samples in the space of structured processes, this is almost never the case. So, how does the
Markov failure come about? That is, how do individual measurements fail to encode the past? and How many are
needed to capture dependencies between the past and future? Here, we investigate how much information can
be shared between the past and the future but not reflected in the present. We quantify this elusive information,
give explicit calculational methods, and outline the consequences, the most important of which is that when the
present hides past-future correlation or dependency we must move beyond sequence-based statistics and build
state-based models.

DOI: 10.1103/PhysRevE.93.022143

I. INTRODUCTION

Until the turn of the nineteenth century, temporal processes
were almost exclusively considered to be independently
sampled at each time from the same statistical distribution:
each sample uncorrelated with its predecessor. These studies
were initiated by Jacob Bernoulli in the 1700s [1] and refined
by Simeon Poisson [2] and Pafnuty Chebyshev [3] in the 1800s,
leading to the weak law of large numbers and the central
limit theorem. These powerful results were the first hints at
universal laws in stochastic processes, but they applied only to
independent, identically distributed processes—unstructured
processes with no temporal correlation, no memory. Moreover,
until the turn of the century it was believed that these
laws required independence. It fell to Andrei Andreevich
Markov (1856–1922) to realize that independence is not
necessary. To show this he introduced a new kind of se-
quence or “chain” of dependent random variables, along with
the concepts of transition probabilities, irreducibility, and
stationarity [4,5].

Introducing his “complex chains” in 1907, Markov initiated
the modern study of structured, interdependent, and correlated
processes. Indeed, in the first and now-famous application of
complex chains, he analyzed the pair distribution (2-gram)
in the 20 000 vowels and consonants in Pushkin’s poem
Eugeny Onegin and the 100 000 letters in Aksakov’s novel
The Childhood of Bagrov, the Grandson [6,7]. Since Markov’s
time the study of complex chains has developed into one of the
most powerful mathematical tools, applied far beyond quan-
titative linguistics in physics [8], chemistry [9], biology [10],
finance [11], and even numerical methods of estimation and
optimization [12] and Google’s PageRank algorithm [13].

To study correlation in structured processes, we take
an information-theoretic view of Markov’s concept of
complexity—that arising from temporal interdependency be-
tween observed symbols that are functions of chain states. That
is, individual observation symbols are not themselves the chain
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†rgjames@ucdavis.edu
‡Corresponding author: chaos@ucdavis.edu

states and therefore need not encode all the past. Specifically,
we consider stationary, ergodic processes generated by hidden
Markov chains: introduced in the midtwentieth century, as
a generalization of Markov’s complex chains, to model
processes generated by communication channels [14]. When
are these hidden processes described by finite Markov chains?
When are they not Markovian? What is the informational
signature in this case? and What are “states” in the first place?
Can we discover them from observations of a hidden process?

The following is the first in a series that addresses these
questions: which have been answered, which can be answered,
and which are open. Here, we concentrate on how the present—
a sequence of � consecutive measurements—statistically
shields the past from the future, as a function of �. We introduce
the elusivity σ �

μ as a quantitative measure of the present failing
to encode the past—a quantitative signature of Markov failure.
We show how to calculate it explicitly via a novel construction
and then describe and interpret its behavior through examples.
The methods introduced also lead to compact expressions and
efficient estimation of related measures—ephemeral, bound,
and enigmatic informations—whose behaviors we also ex-
plore. As an application we use the results to reinterpret the per-
sistent mutual information (PMI) introduced in Ref. [15] as a
measure of “emergence” in complex systems. Finally, we note
that the sequel [16] is analytical, giving closed-form solutions
and proving various properties, including several of those used
here.

To address Markov’s notion of complex chains, the next
section reviews the minimal necessary background: measures
of information content and correlation from information
theory [17], their application to stochastic processes via
computational mechanics [18,19], and a recent analysis of
the information content of the single-time-step present within
the context of the past and future [20]. This then sets the stage
for a thorough analysis of Markovian complexity: generalizing
the previous framework so that the present can be an arbitrary
duration. This gives rise to our main new result: expressing
the elusivity in terms of a process’s causal states. Notably, this
result draws on the prior introduction of stochastic process
models—the so-called bimachines—that are agnostic with
respect to the direction of time. We show how this leads to
a simple and efficient expression for the elusive information
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and its companion measures. Those expressions, in turn,
give the basis for further analytical development and for
empirical estimation. With the general theory laid out, we make
the ideas and methods concrete by calculating the elusivity
and related quantities for a number of prototype complex
processes, characterizing the variety of their convergence
behaviors. Finally, we apply the insights gained to evaluate
a proposed information-theoretic measure of emergence. We
close by recapping the results and drawing conclusions for
future applications.

II. INFORMATION IN COMPLEX PROCESSES

A. Processes

We are interested in a general stochastic process P: the
distribution of all of a system’s behaviors or realizations
{. . . x−2,x−1,x0,x1, . . .} as specified by their joint probabilities
Pr(. . . X−2,X−1,X0,X1, . . .). Xt is a random variable that is
the outcome of the measurement at time t , taking the values
xt from a finite set A of all possible events. We denote a
contiguous chain of random variables X0:� = X0X1 . . . X�−1.
Left indices are inclusive; right indices, exclusive. We suppress
indices that are infinite. We consider only stationary processes
for which Pr(Xt :t+�) = Pr(X0:�) for all t and �.

Our particular emphasis in the following is that a process
Pr(X:0,X0:�,X�:) is a communication channel that transfers
information from the past X:0 = . . . X−3X−2X−1 to the future
X�: = X�X�+1X�+2 . . . by storing parts of it in the present
X0:� = X0X1 . . . X�−1 of length �. Of primary concern is
whether X:0 → X0:� → X�: forms a Markov chain in the sense
of Ref. [21]:

Pr(X−m:0,X0:�,X�:n)

= Pr(X−m:0|X0:�) Pr(X�:n|X0:�) Pr(X0:�)

for all m,n ∈ Z+.

B. Channel information

In analyzing this channel we need to measure a variety of
information metrics, each capturing a different aspect of the
information being communicated. The simplest is the Shannon
entropy [21]:

H[X] = −
∑

x∈X
Pr(x) log2 Pr(x). (1)

Three other information-theoretic measures based on the en-
tropy are employed throughout. First, the conditional entropy,
measuring the amount of information remaining in a variable
X (alphabet X ) once the information in a variable Y (alphabet
Y) is accounted for:

H[X|Y ] = −
∑

x ∈ X
y ∈ Y

Pr(x,y) log2 Pr(x|y). (2)

Second, the deficiency of the conditional entropy relative
to the full entropy is known as the mutual information,
characterizing the information that is contained in both X

and Y :

I[X :Y ] = H[X] − H[X|Y ]

=
∑

x ∈ X
y ∈ Y

Pr(x,y) log2
Pr(x,y)

Pr(x) Pr(y)
. (3)

Finally, we have the conditional mutual information, the mu-
tual information between two variables once the information
in a third (Z with alphabet Z) has been accounted for:

I[X :Y |Z] =
∑

x ∈ X
y ∈ Y
z ∈ Z

Pr(x,y,z) log2
Pr(x,y|z)

Pr(x|z) Pr(y|z)
. (4)

Perhaps the most naı̈ve way of information-theoretically an-
alyzing a process, capturing the randomness and dependencies
in sequences of random variables, is via the block entropies:

H(�) = H[X0:�]. (5)

This quantifies the amount of information in a contiguous
block of observations. Its growth with � gives insight into a
process’s randomness and structure [18,22]:

H(�) ≈ E + hμ�, � � 1. (6)

The asymptotic growth hμ, here, is a process’s rate of
information generation, or the Shannon entropy rate:

hμ = H[X0|X:0], (7)

where the subscript μ denotes the specific probability measure
over bi-infinite strings, defining the process of interest and
its sequence probabilities. Finally, the amount of future
information predictable from the past is the past-future mutual
information or excess entropy:

E = I[X:0 :X0:]

= H[X:0] − H[X:0|X0:]. (8)

The excess entropy naturally arises when considering channels
with a length � = 0 present, where it is effectively the only
direct information quantity over the variables X:0 and X0:. It
is well known that if the excess entropy vanishes, then there is
no information temporally communicated by the channel [18].

Generically, Eq. (8) is of the form ∞ − ∞, which is
meaningless. In such situations one refers to finite sequences
and then takes a limit:

lim
m,n→∞(H[X−m:0] − H[X−m:0|X0:n]).

Here, we generally use the informal infinite variables in
equations for clarity and simplicity unless the details of the
limit are important for the analysis at hand. To be concrete, we
write f (X:0) to mean limm→∞ f (X−m:0) and f (X�:) to mean
limn→∞ f (X�:n).

C. Information atoms

The foregoing setup views a process as a channel that
communicates the past to the future via the present. Our goal,
then, is to analyze the channel’s properties as a function of the
present’s length �. The cases of � = 0 and � = 1 have been
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addressed: � = 0 in Ref. [23] and � = 1 in Ref. [20]. Our
initial development closely mirrors theirs. We borrow notation
but must include a superscript to denote the � dependence
of the quantities. Broadly, our approach is to decompose the
information in a random variable—such as the present—into
components (atoms) associated with other random variables.1

Our immediate concern is that of monitoring the amount
of dependency remaining between the past and the future
if the present is known. We use the mutual information
between the past and the future conditioned on the present to
do so—the elusivity that soon becomes our focus:

σ �
μ = I[X:0 :X�:|X0:�]

= H[X:0|X0:�] + H[X�:|X0:�] − H[X:0,X�:|X0:�]. (9)

Note that σ 0
μ = E.

Next, extending Ref. [20], we decompose the length �

present. When considering only the past, the information in
the present separates into two components: ρ�

μ = I[X:0 :X0:�],
the information that can be anticipated from the past; and
h�

μ = H[X0:�|X:0], the random component that cannot be an-
ticipated. Naturally, H[X0:�] = h�

μ + ρ�
μ. Connecting directly

to Ref. [20], our ρ1
μ is their ρμ, and likewise, our h1

μ is their hμ.
If one also accounts for the future’s behavior, then the

random, unanticipated component h�
μ breaks into two kinds

of information: one part, b�
μ = I[X0:� :X�:|X:0], that, while a

degree of randomness, is relevant for predicting the future; and
the remaining part, r�

μ = H[X0:�|X:0,X�:], which is ephemeral,
existing only fleetingly in the present and then dissipating,
leaving no trace on future behavior.

The redundant portion ρ�
μ of H[X0:�] itself splits into two

pieces. The first part, I[X:0 :X0:�|X�:]—also b�
μ when the

process is stationary—is shared between the past and the
current observation, but its relevance stops there. The second
piece, q�

μ = I[X:0 :X0:� :X�:], is anticipated by the past, is
present currently, and also plays a role in future behavior.
Notably, this informational piece can be negative [20,25].

Due to a duality between set-theoretic and information-
theoretic operators, we can graphically represent the relation-
ship between these various pieces of information in a Venn-like
display called an information diagram [26]; see Fig. 1. In
contrast to a Venn diagram, size indicates Shannon entropy
rather than set cardinality and overlaps are not set intersection
but mutual information. Each area on the diagram represents
one or another of Shannon’s information measures.

As mentioned above, the past splits H[X0:�], yielding
two pieces: h�

μ, the part outside the past; and ρ�
μ, the part

inside. This partitioning arises naturally when predicting a
process [20]. To emphasize, Fig. 2(a) displays this decomposi-
tion. If we include the future in the diagram, we obtain a more
detailed understanding of how information is transmitted from

1It is important to note that we are only associating portions of
a random variable’s information with other random variables. It is
generically not possible to actually partition a random variable into
several other random variables, each of which has an entropy equal
to that of the atom of interest [24].

FIG. 1. The process information diagram, which places the
present in its temporal context: the past (X:0) and the future (X�:)
partition the present (X0:�) into four components with quantities r�

μ

and q�
μ and two with b�

μ. Notably, the component σ �
μ, quantifying the

hidden dependency shared by the past and the future, lies outside of
the present and so is not part of it.

the past to the future. The past and the future together divide
the present H[X0:�] into four parts, as shown in Fig. 2(b).

The process information diagram makes it rather transpar-
ent in which sense r�

μ is an amount of ephemeral information:
its information lies outside both the past and the future and so
it exists only in the present moment. It has no repercussions for
the future and is no consequence of the past. It is the amount of
information in the present observation neither communicated
to the future nor from the past. With � = 1, this has been
referred to as the residual entropy rate [27], as it is the amount
of uncertainty that remains in the present even after accounting
for every other variable in the time series. It has also been
studied as the erasure information [28] (there H−), as it is the
information irrecoverably erased in a binary erasure channel.

The bound information b�
μ is the amount of spontaneously

generated information present now, not explained by the past,
but that has consequences for the future. In this sense it hints
at being a measure of structural complexity [20,27], though
we discuss more direct measures of structure shortly.

Due to stationarity, the mutual information I[X0:� :X�:|X:0]
between the present X0:� and the future X�: conditioned
on the past X:0 is the same as the mutual information
I[X0:� :X:0|X�:] between the present X0:� and the past X:0

FIG. 2. Alternative decompositions of the present information
H[X0:�]. (a) Decomposition due to the past, (b) decomposition due to
the past and the future.
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conditioned on the future X�:. Therefore they are both of size
b�

μ, as shown in Fig. 1. This lends a symmetry to the process
information diagram that need not exist for nonstationary
processes.

D. Elusivity

Two components remain in the process information dia-
gram: two that have not been significantly analyzed previously.
The first is q�

μ = I[X:0 :X0:� :X�:]—the three-way mutual in-
formation (or co-information [25]) shared by the past, present,
and future. Notably, unlike Shannon entropies and two-way
mutual information, q�

μ (and co-information in general), can
be negative. The other component, σ �

μ = I[X:0 :X�:|X0:�], the
quantity of primary interest here (shaded in Fig. 1), is the
information shared between the past and the future that
does not exist in the present. Since it measures dependency
hidden from the present, we call it the elusive information,
or elusivity for short. Generally, it indicates that a process
has hidden structures that are not appropriately captured by
the present—that is, by finite random-variable blocks. In this
case, and as we discuss at length towards the end, one must
build models whose elements, which we call “states” below,
represent how a process’s internal mechanism is organized.

A process’s internal organization somehow must store all
the information from the past that is relevant for generating the
future behavior. Only when the observed process is Markovian
is it sufficient to keep track of just the current observable or
block of observables. For the general case of non-Markovian
processes, though, information relevant for prediction is spread
arbitrarily far back in the process’s history and so cannot
be captured by the present regardless of its duration. This
fact is reflected in the existence of σ �

μ. When σ �
μ > 0 for

all �, the description of the process requires determining its
internal organization. This is one reason to build a model of
the mechanism that generates sequences rather than simply
describing a process as a list of sequences.

There are two basic properties that indicate the elusivity’s
importance. The first is that σ �

μ decreases monotonically as a
function of the present’s length �. That is, dependency cannot
increase if we interpolate more random variables between the
past and the future.

Proposition 1. For k > 0, σ �
μ � σ �+k

μ .
Proof.

σ �
μ = I[X:0 :X�:|X0:�]

= I[X:0 : (X�:�+k,X�+k:)|X0:�]

= I[X:0 :X�:�+k|X0:�] + I[X:0 :X�+k:|X0:�,X�:�+k]

= I[X:0 :X�:�+k|X0:�] + σ �+k
μ ,

and by the non-negativity of conditional mutual informa-
tions [17], σ �

μ � σ �+k
μ .

The second property is that σ �
μ indicates how poorly the

present X0:� shields the past X:0 and future X�:. When it does,
they are conditionally independent, given the present, and σ �

μ

vanishes. Due to this, it can be used to detect a process’s
Markov order R: the smallest R for which Pr(X0:|X:0) =
Pr(X0:|X−R:0).

Proposition 2. σ �
μ = 0 ⇔ � � R.

Proof. By the definition of the Markov order R, a length-R
block is a sufficient statistic [29] for X:0 about X0::

Pr(X0:|X−R:0) = Pr(X0:|X:0,X−R:0),

and therefore also obeys [17]:

I[X:0 :X0:] = I[X−R:0 :X0:].

Hence:

I[X:0 :X0:] = I[(X:−R,X−R:0) :X0:]

= I[X−R:0 :X0:] + I[X:−R :X0:|X−R:0]

implies:

I[X:−R :X0:|X−R:0] = σR
μ = 0,

due to stationarity.
To calculate σ �

μ, recall its definition as a conditional mutual
information:

σ �
μ = I[X:0 :X�:|X0:�]

=
∑

x:0 ∈X:0
x0:� ∈X0:�
x�: ∈X�:

Pr(x:) log2
Pr(x:0,x�:|x0:�)

Pr(x:0|x0:�) Pr(x�:|x0:�)
,

where we have used the notational shorthand for the bi-infinite
joint distribution Pr(x:) = Pr(x:0,x0:�,x�:).

Note that for an order-R Markov process, if � � R the
past and the future are independent over range R [22] and
so Pr(X:0,X�:|X0:�) = Pr(X:0|X0:�) Pr(X�:|X0:�). With this, it
is clear that σ �

μ vanishes in such cases. This property has been
discussed in prior literature as well [30].

Anticipating the needs of our calculations later, we replace
conditional distributions with joint ones, Pr(x:0,x�:|x0:�) =
Pr(x:)/ Pr(x0:�) and Pr(x:0|x0:�) = Pr(x:0,x0:�)/ Pr(x0:�), ob-
taining:

σ �
μ =

∑

x:0 ∈ X:0
x0:� ∈ X0:�
x�: ∈ X�:

Pr(x:) log2
Pr(x0:�) Pr(x:)

Pr(x:0,x0:�) Pr(x0:�,x�:)
. (10)

Notably, all the terms needed to compute σ �
μ are either

Pr(x:0,x0:�,x�:) or marginals thereof. Our next goal, therefore,
is to develop the theoretical infrastructure necessary to com-
pute that distribution in closed form.

Similar expressions, which we use later but do not record
here, can be developed for the other information measures,
h�

μ, r�
μ, b�

μ, and q�
μ.

III. STRUCTURAL COMPLEXITY

To analytically calculate the elusive information σ �
μ and

related measures we must go beyond the information theory of
sequences and introduce computational mechanics, the theory
of process structure [19]. The representation it uses for a given
process is a form of the hidden Markov model (HMM) [31]:
the ε-machine, which consists of a set S of causal states, with
associated random variable S, and a transition dynamic T .
ε-Machines satisfy three conditions: irreducibility, unifilarity,
and probabilistically distinct states [32]. Irreducibility implies
that the associated state-transition graph is strongly connected.
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Unifilarity, perhaps the most distinguishing feature, means
that for each state σ ∈ S and each observed symbol x there
is at most one outgoing transition from σ labeled x ∈ A.
Critically, unifilarity enables one to directly calculate various
process quantities, such as conditional mutual information,
using properties of the hidden (causal) states. Notably, many
of these quantities cannot be directly calculated using the
states of general (nonunifilar) HMMs. Finally, an HMM has
probabilistically distinct states when, for every pair of states
σ and σ ′, there exists a word w such that the probability of
observing w from each state is distinct: Pr(w|σ ) 	= Pr(w|σ ′).
An irreducible, unifilar model with probabilistically distinct
states is minimal in the sense that no model with fewer states
or transitions generates the process. An HMM satisfying these
three properties is an ε-machine.

A. Constructing the ε-Machine

Given a process, how does one construct its ε-machine?
First, the set of a process’s forward causal states:

S+ = X:/∼+
ε , (11)

is the partition defined via the causal equivalence relation:

x:t∼+
ε x ′

:t ⇔ Pr(Xt :|X:t = x:t ) = Pr(Xt :|X:t = x ′
:t ). (12)

That is, each causal state σ+ ∈ S+ is an element of the coarsest
partition of a process’s pasts such that every x:0 ∈ σ+ makes
the same prediction Pr(X0:|·). In fact, the causal states are the
minimal sufficient statistic of the past to predict the future. We
define the reverse causal states:

S− = X:/∼−
ε , (13)

by similarly partitioning the process’s futures:

xt :∼−
ε x ′

t : ⇔ Pr(X:t |Xt : = xt :) = Pr(X:t |Xt : = x ′
t :). (14)

Second, the causal equivalence relation provides a natural
unifilar dynamic over the states. For each state σ and next
symbol x, either there is a successor state σ ′ such that the
updated past x:t+1 = x:t x ∈ σ ′, for all x:t ∈ σ , or x:t+1 does
not occur. Due to causal-state equivalence, every past within a
state collectively either can or cannot be followed by a given
symbol. Moreover, since the causal states form a partition of
all pasts, there is at most one causal state to which each past
can advance.

For a general HMM with states ρ ∈ R, its symbol-labeled
transition matrix T (x) has elements that give the probability of
going from state ρ to state ρ ′ and generating the symbol x:

T
(x)
ρρ ′ ≡ Pr(Xt = x,Rt+1 = ρ ′|Rt = ρ). (15)

Furthermore, the internal-state dynamics are governed by the
stochastic matrix T = ∑

x T (x). Its unique left eigenvector
π , associated with eigenvalue 1, gives the asymptotic state
probability Pr(ρ). By extension, the transition matrix giving
the probability of a word w = x0x1 . . . x�−1 of length � is the
product of transition matrices of each symbol in w:

T (w) ≡
∏

xi∈w

T (xi )

= T (x0)T (x1) · · · T (x�−1). (16)

FIG. 3. The mutual information I[X:0 : X0:�] between the past
and the present (shaded) is equivalent to the mutual information
I[S+

0 : X0:�] between the forward causal state and the present.

B. Rendering σ �
μ finitely computable

We can put the forward and reverse causal states to use since
they are proxies for a process’s semi-infinite pasts and futures,
respectively. See, e.g., Fig. 3. In this way, we transform Eq. (9)
into a form containing only finite sets of random variables. We
calculate directly:

σ �
μ = I[X:0 : X�:|X0:�]

= I[X:0 : (X0:�,X�:)] − I[X:0 : X0:�]

= I[X:0 : X0:] − I[X:0 : X0:�]

(a)= I[S+
0 : S−

0 ] − I[S+
0 : X0:�]

= I[S+
0 : S−

0 ] − (I[S+
0 : X0:� : S−

0 ] + I[S+
0 : X0:�|S−

0 ])

(b)= I[S+
0 : S−

0 ] − I[S+
0 : X0:� : S−

0 ]

= I[S+
0 : S−

0 |X0:�]

= I[S+
0 : S−

0 : S−
� |X0:�] + I[S+

0 : S−
0 |X0:�,S−

� ]

(c)= I[S+
0 : S−

0 : S−
� |X0:�]

= I[S+
0 : S−

� |X0:�] − I[S+
0 : S−

� |X0:�,S−
0 ]

= I[S+
0 : S−

� |X0:�] − (H[S+
0 |X0:�,S−

0 ]

− H[S+
0 |S−

0 ,X0:�,S−
� ])

(d)= I[S+
0 : S−

� |X0:�]. (17)

Above, (a) is true due to Eqs. (11) to (14) and Ref. [33], (b) is
true due to Eqs. (13) and (14), (c) is true due to Eq. (14) and
unifilarity, and, finally, (d) is true due to both entropy terms’
being equal to H[S+

0 |S−
0 ] by Eqs. (13) and (14). That is, S−

0
informationally subsumes both X0:� and S−

� when it comes
to X:0 and, therefore, also when it comes to S+

0 . All other
equalities are basic information identities found in Ref. [21].

In this way, Eq. (17) says that Eq. (10) becomes, in terms
of causal states, a new expression for elusivity:

σ �
μ =

∑

σ+
0 ∈ S+

0
x0:� ∈ X0:�

σ−
� ∈ S−

�

Pr(σ+
0 ,x0:�,σ

−
� ) log2

Pr(x0:�) Pr(σ+
0 ,x0:�,σ

−
� )

Pr(σ+
0 ,x0:�) Pr(x0:�,σ

−
� )

.

(18)
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We transformed the key distribution Pr(x:0,x0:�,x�:) over
random variables X:0 and X�: with cardinality of the continuum
to Pr(σ+

0 ,x0:�,σ
−
� ) over S+

0 and S−
� with typically smaller

cardinality. When the causal states are finite or countably
infinite, the benefit is substantial. We now turn our attention to
computing this joint distribution.

Since the distribution is over both forward and reverse
causal states, we must track both simultaneously. The key
tool for this is Ref. [34]’s bidirectional machine or bimachine.
We refer the reader there for details regarding its construction
and properties. One feature we need immediately, though, is
that bimachine states ρt = (σ+

t ,σ−
t ) are pairs of forward and

reverse causal states.
Generally, given an HMM with states ρ ∈ R, we can

construct the distribution of interest if we can find a way to
build distributions of the form Pr(ρi,w,ρj ): the probability of
being in state ρi , generating the word w, and ending in state
ρj . The word transition matrix [Eq. (16)] gives exactly this
and allows us to build the distribution directly:

Pr(ρi,w,ρj ) = (π ◦ 1i)T
(w)1ᵀ

j , (19)

where ρi and ρj are the states of an arbitrary HMM, a ◦ b is
the Hadamard (elementwise) product of vectors a and b, and
1i is the row vector with all its elements 0 except for the ith,
which is 1.

Applying Eq. (19) to the bimachine, we arrive at the distri-
bution Pr((S+

0 ,S−
0 ), X0:�, (S+

� ,S−
� )), which can be marginal-

ized to Pr(S+
0 ,X0:�,S−

� ), the distribution needed to compute
Eq. (18). Figure 4 illustrates this distribution for a present of
length � = 3 in the setting of the process’s random variable
lattice and the forward and reverse causal-state processes.

C. Companion atomic measures

Causal-state expressions for h�
μ, r�

μ, b�
μ, and q�

μ that we use
in the following are:

h�
μ = H[X0:�|S+

0 ],

r�
μ = H[X0:�|S+

0 : S−
� ],

b�
μ = I[X0:� : S+

0 |S−
� ], and

q�
μ = I[S+

0 : X0:� : S−
� ].

These are derived in ways paralleling that above for σ �
μ and

so we do not give details. They, too, also depend on the joint
distribution above in Eq. (19) and its marginals.

FIG. 4. Random variable lattice illustrating the relationship
among forward causal states S+

t , observed symbols Xt , and reverse
causal states S−

t . Variables in the distribution Pr(S+
−1,X−1:2,S−

2 ) are
highlighted. In particular, the elusivity σ 3

μ is the mutual information
between the two shaded cells (S+

−1 andS−
2 ) conditioned on the hatched

cells (X−1:2 = X−1X0X1).

IV. EXAMPLES

Let us consider several example processes, to illustrate
calculation methods and to examine the behavior of σ �

μ and
companion measures.

A. Golden Mean process

As the first example we analyze the Golden Mean (GM)
process, whose ε-machines and bimachine state-transition
diagrams are given in Fig. 5. The GM process consists of
all bi-infinite strings such that no consecutive 1s occur, with
probabilities such that either symbol is equally likely following
a 0. A stochastic generalization of subshifts of finite type [35],
this process can be described by a Markov chain with order
R = 1. Due to Proposition 2 we expect σ 1

μ = 0. To verify
this, we compute each term in Eq. (18) using the edges of

FIG. 5. The several faces of the Golden Mean process. (a)
Forward ε-machine, (b) reverse ε-machine, (c) bimachine. Each
representation consists of states (labeled circles) and transitions
(arrows) labeled “symbol:probability”. The bimachine is effectively
the Cartesian product of the forward and reverse machines, though
constructed here for forward-time generation, and therefore is gener-
ically nonunifilar. For example, state B:C means that the machine is
in the superposition of forward state B and reverse state C. Going
forward (rightward in Fig. 4) we know that state B must output a
0 and transition to state A. Being in reverse state C we must have
transitioned there on a 0 coming from either state C or state D. Thus,
we have transitions from B:C to both A:C and A:D on a 0.
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the bimachine [Fig. 5(c)] and the invariant state distribution
π = (1/3,1/3,1/3):

Pr(0) Pr(A,0,C)

Pr(A,0) Pr(0,C)
=

2/3 · 1/6

1/3 · 1/3
= 1,

Pr(0) Pr(A,0,D)

Pr(A,0) Pr(0,D)
=

2/3 · 1/6

1/3 · 1/3
= 1,

Pr(0) Pr(B,0,C)

Pr(B,0) Pr(0,C)
=

2/3 · 1/6

1/3 · 1/3
= 1,

Pr(0) Pr(B,0,D)

Pr(B,0) Pr(0,D)
=

2/3 · 1/6

1/3 · 1/3
= 1, and

Pr(1) Pr(A,1,C)

Pr(A,1) Pr(1,C)
=

1/3 · 1/3

1/3 · 1/3
= 1.

We see that the argument of each log2 in Eq. (18) is 1,
confirming that σ 1

μ = 0.

B. Information measures versus present length

We now investigate the behavior of σ �
μ and its companions

q�
μ, b�

μ, and r�
μ for several example processes: the aforemen-

tioned GM, the Even, the Noisy Period 3 (NP3), and the Noisy
Random Phase-Slip (NRPS) processes. The ε-machines for the
latter are shown in Fig. 6. Each exhibits different convergence
behaviors with � for the differing measures; see the graphs in
Fig. 7. We now characterize each of them.

We first consider σ �
μ, shown in the upper-left panel in Fig. 7.

While for each process σ �
μ vanishes with increasing �, the

convergence behaviors differ. The GM process is identically 0
at all lengths due to its order 1 Markov nature, just noted. The
NRPS process, with a Markov order of R = 5, has nonzero σ �

μ

for � < 5 and zero σ �
μ = 0 beyond. Finally, both the Even and

the Nemo processes are infinite-order Markov and so their σ �
μ

never exactly vanishes, though they converge exponentially
rapidly. (See Figs. 8 and 9.) The next section (Sec. IV C)
analyzes exponential convergence in more detail.

Next, consider q�
μ and b�

μ, which are closely associated, as
it turns out. To see why, first examine the large-� limit:

lim
�→∞

I[X0:� : X�:] = E

= q∞
μ + b∞

μ .

Furthermore, we can characterize q∞
μ as remembering the

“phase” of a process:

q∞
μ = log2 per(ε-machine),

where per(ε-machine) is the graph period of the ε-machine;
the greatest common divisor of all the graph’s cycles. The GM,
Even, and NRPS processes each contain state self-loops and
so their period is 1. For these processes, b∞

μ = E. All cycles
in the NP3 process are of length 3, and so its period is 3. And,
in this instance, E = log2 3 and so b∞

μ = 0.
We see these behaviors play out in the upper-right and

lower-left panels of Fig. 7. At the upper right, q�
μ converges

to 0 for the GM, Even, and NRPS processes, while the NP3
process limits to the logarithm of its period, log2 3 = E. At
the lower left, the b�

μ curves for the GM, Even, and NRPS
processes limit to their respective excess entropies, while NP3
has b�

μ = 0 for all �.

FIG. 6. ε-Machines for the example processes: (a) The Even
process, (b) the Noisy Period Three (NP3) process, (c) the Noisy
Random Phase-slip (NRPS) process.

Finally, the ephemeral information r�
μ, plotted in the lower-

right panel in Fig. 7, also depends on the ε-machine’s period.
For � � 1:

H(�) = E + �hμ

= q�
μ + 2b�

μ + r�
μ

=⇒ r�
μ = �hμ − b�

μ,

where the subextensive part −b�
μ ranges from 0 (processes

whose ε-machine is a “noisy” cycle (like the NP3 process) to
−E (processes with a graph period of 1).

C. Exponential convergence of σ �
μ

One way to classify processes is according to whether or
not an observer can determine the causal state a process is in
from finite or infinite sequence measurements. If so, then the
process is synchronizable. All of the previous examples are
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FIG. 7. Information measures as a function of the present’s length
�. Since the examples are stationary, finite processes, both σ �

μ and q�
μ

converge to 0 with increasing � and b�
μ converges to a constant value

of E. And so, the growth of H(�) is entirely captured in r�
μ, and it

grows linearly with �.

synchronizable. References [36] and [37] proved that for any
synchronizable process described by a finite-state HMM, there
exist constants K > 0 and 0 < α < 1 such that:

hμ(�) − hμ � Kα� for all � ∈ N, (20)

where:

hμ(�) = H(�) − H(� − 1).

Note that hμ(1) − hμ = ρ1
μ. One well-known identity [18] is

that the sum of the hμ(�) terms is the excess entropy:

E =
∞∑

k=1

(hμ(k) − hμ) (21)

= ρ1
μ +

∞∑

k=2

(hμ(k) − hμ). (22)

FIG. 8. σ �
μ (solid line) and its asymptote (dashed line) for (a) the

Nemo process with K = 0.6 and α = 0.64 and (b) the even process
with K = 1 and α = 0.71.

FIG. 9. The Nemo process.

This provides a new identity [16]:

σ 1
μ =

∞∑

k=2

(hμ(k) − hμ), (23)

which can be generalized to:

σ �
μ =

∞∑

k=�+1

(hμ(k) − hμ). (24)

Applying the bound from Eq. (20) to each term, we find:
∞∑

k=�+1

(hμ(k) − hμ) �
∞∑

k=�+1

Kαk.

The right-hand side, being a convergent geometric series,
yields:

σ �
μ � Kα�+1

1 − α

or simply:

σ �
μ � K ′α�. (25)

We now drop the prime, simplifying the notation. Thus,
the elusive information vanishes exponentially rapidly for
synchronizable processes.

Figure 8 compares σ �
μ with its best-fit exponential bound

for two processes: the Nemo process, shown in Fig. 9, and the
Even process. For each, the solid line represents σ �

μ and the
dashed line is the fit. Estimated values for the Nemo process
are K = 0.6 and α = 0.64. The fit parameters for the Even
process are K = 1.0 and α = 0.71. They were estimated in
accordance with the conditions stated for Eq. (20). The fits
validate the convergence in Eq. (25).

V. MEASURES OF EMERGENCE?

The elusive information σ �
μ is conditioned on a present of

length �. What if we do not condition it, simply ignoring the
present? It becomes the persistent mutual information [15,38]:

PMI(�) = I[X:0 : X�:]. (26)
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FIG. 10. Persistent mutual information PMI(∞), elusivity σ∞
μ ,

and multivariate mutual information q∞
μ of the Logistic Map symbolic

dynamics as a function of the map control parameter r . Recall that
the symbolic dynamics does not see period doubling until r is above
the appearance of the associated superstable periodic orbit. This
discrepancy in the appearance of periodicity as a function of r does
not occur when the map is chaotic. (Compare Fig. 1 in Ref. [15].)

Notably, PMI(∞) was offered up as a measure of “emergence”
in general complex systems. Our preceding analysis, though,
gives a more nuanced view of this interpretation, especially
when emergence is considered in light of structural criteria
introduced previously [39,40]. Our framework reveals that
PMI(�) is not an atomic measure; rather it consists of two
now-familiar components:

PMI(�) = q�
μ + σ �

μ. (27)

Which component is most important? Are both? Which is
associated with emergence? Are both?

Section IV C showed that synchronizable processes have
σ �

μ → 0. So, for this broad class at least, PMI(∞) = q∞
μ . Based

on extensive process surveys that we do not report on here,
we conjecture that σ∞

μ = 0 holds even more generally. And
so, it appears that PMI(∞) generally is dominated by the
multivariate mutual information q∞

μ . Moreover, recalling the
analysis of q�

μ for the Noisy Period 3 process shown in the
upper-right panel in Fig. 7, it appears that PMI(∞) is only
sensitive to state-phase preservation, giving log2 p where p is
the period of the ε-machine graph.

As a test of our conjecture that the elusive information
vanishes and that PMI(∞) is dominated by q∞

μ , we applied
our information-measure estimation methods to the symbolic
dynamics generated by the Logistic Map of the unit interval
as a function of its control parameter r . Figure 10 plots the
results. Indeed, the elusive information does vanish. Thus, we
conclude that PMI(∞) is a property of q∞

μ .
In addition, our simulation results reproduced those in the

PMI(∞) analysis of the Logistic Map in Ref. [15], though
their estimation method for PMI(∞) differs markedly. Here,
we calculate via the Logistic Map symbolic dynamics; there,

joint distributions over the continuous unit-interval domain
were used. Both investigations lead to the conclusion that
PMI(∞) is equal to (the logarithm of) the number of chaotic
“bands” cyclically permuted or the period of the periodic orbit
at a given parameter value. In short, PMI(∞) is a measure of
nonmixing dynamics.

The status of the excess entropy as a measure of emergence
has been criticized in the past due to its sensitivity to
periodic processes. Here, we showed in Sec. IV B that this
sensitivity to periodic behaviors can be naturally factored out.
However, it is exactly this “undesirable” periodic component
that PMI(∞) captures. Furthermore, if I[(X:0,X0:�) : X�:]
is viewed through the lens of the partial information de-
composition [41]—decomposing the mutual information into
nonnegative redundant, unique, and synergistic components—
we get further insight, if somewhat dire for the PMI. In
that framework, X:0 and X0:� are considered “inputs” to a
function with X�: as the “output”. Here, σ �

μ is equal to the
information uniquely transmitted from X:0 to X�: plus what
is synergistically provided by both X:0 and X0:�. Similarly,
b�

μ is the information uniquely provided by X0:� plus what is
synergistically provided by both X:0 and X0:�. Finally, q�

μ is
equal to what is redundantly provided by both X:0 and X0:�,
minus what those two synergistically provide. Since σ∞

μ = 0,
the synergistic effects must vanish. This means that q∞

μ (and
so PMI(∞)) is exactly the information redundantly provided
by both X:0 and X0:�. While emergence is in many ways still
under active debate, it is clear that it is not redundancy.

Given the restricted form of structure (periodicity) to which
it is sensitive, PMI(∞) cannot be taken as a general measure
for detecting the emergence of organization in complex
systems. No matter; though a quarter of a century old, the
statistical complexity [42]—a direct measure of the structural
organization and stored information—continues to fill the
role of detecting emergent organization quite well. Moreover,
computational mechanics’ ε-machines directly show what the
emergent organization is.

VI. CONCLUSION

We first defined the elusive information and developed
a closed-form analytic expression to calculate it from a
process’s hidden Markov model. The sequel [16] shows how to
use spectral methods [43] to develop alternative closed-form
expressions for the elusive information and its companions,
giving exact expressions and a direct understanding of the
origin of their convergence behaviors.

Investigating how the present shields the past and future is
essentially a study of what Markov order means for structured
processes. It gives much insight into the endeavor of model
building and even into general concerns about the emergence
of organization in complex systems. First, this study of
Markovian complexity gives a common ground on which
to contrast structural inference and emergence, showing that
we should not conflate these two distinct questions. Second,
and perhaps most constructively, though, it sheds light on the
challenges of inference for complex systems. In particular,
when σ �

μ > 0 sequence statistics are inadequate for modeling
and so we must employ state-based models to properly, finitely
represent a process’s internal organization.
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The results show rather directly how present observables
typically do not contain all of the information that correlates
the past and the future. One consequence is that instanta-
neous measurements are not enough. This means, exactly,
that Markov chain models of complex physical systems
are fundamentally inadequate, though eminently helpful and
simplifying when they are appropriate representations. When
predicting the behavior and structure of complex systems, the
larger consequence is that we must build state-based models
and not use mere lookup tables or sequence histograms. That
said, states are little more than a conditional coarse-graining of
sequences into subsets that are more compactly predictive than
sequences alone. And this implies, in turn, that monitoring only

prediction performance is inadequate. We must also monitor
model complexity, not as an antidote to overfitting, but as
a fundamental goal for both predicting and understanding
hidden mechanisms. This, we believe, most fully respects
Markov’s contribution to the sciences.
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