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ABSTRACT OF THE DISSERTATION

Computational tools and insights to
dynamical networks of an allosteric protein

by

Adam Van Wart

Doctor of Philosophy in Chemistry

University of California, San Diego, 2013

Professor Rommie Amaro, Chair

Molecular dynamics simulations can be used to probe a wide range of bi-

ologically relevant problems. One such problem is the mechanism of allostery.

Allosteric regulation in biological systems is of considerable interest given the vast

number of proteins that exhibit such behavior. Designing a consistent framework

for allostery that can be rapidly quantified could pave the way for synthetic cata-

lysts, allosteric inhibitors, and a more general understanding of protein function.

To this end, this work explores some of the conventional uses of dynamical network

analysis as applied to a model of allostery and shows that dynamical networks are

highly dependent on what constituents of a protein are correlated. The work goes

onto to show that the commonly used α-carbon of an amino acid, although a nexus

xiii



joining the backbone and side-chain, is an inferior handle to use for correlated mo-

tions and does not model side-chain interactions as well as the center of mass of

an amino acid. The α-carbon is shown to be highly correlated to the amino acid’s

backbone center of mass. Other node choices are explored within the framework of

dynamical network analysis and signaling pathways are calculated between the two

stereospecific receptor sites known to exhibit allostery in HisH-HisF Thermotoga

Maritima.

Further work expands around the optimal signaling pathway within HisH-

HisF to include sub-optimal pathways. The Weighted Implementation of Subop-

timal Paths (WISP) is developed as an efficient algorithm and tool for generating

a statistical distribution of pathways between residues known to play in allostery.

For HisH-HisF the degeneracy, or number of times an amino acid participates in

a signaling pathway, shifts between the allosterically active and allosterically in-

active forms (holo-state and apo-state respectively). Furthermore, all of the paths

are tighter and exhibit more correlation for the allosterically active state. This

shows evidence of a loss of entropy along the signaling pathways when the effector

molecule ,PRFAR, is bound.

Lastly, a general approach to solving evolution equations for probability

densities is described using interacting trajectory ensembles. This is done by de-

riving the general equations of motion for the trajectories in the kinematic space

(e.g., configuration or phase space). The time rate of change of the trajectory

members depends on both external forces and on the probability density itself.

The dependence the trajectory has on the probability density lead to interactions

between the ensemble members and a loss of each members independence. The

result is illustrated by a number of numerical examples.

xiv



Chapter 1

Background material

1.1 Modern molecular dynamics

1.1.1 The potential energy surface

In molecular dynamics, the central problem to be solved is the trajectory.

The atomic positions of a molecular dynamics simulation evolve as a function of

time. In order to solve the trajectory of a system of atoms over reasonable time

scales, certain approximations are used. For instance, the atom and force acting

on it are both reduced representations of their true nature. In classical molecular

dynamics the atom does not observe quantum behavior such as excited states or

the formation and breaking of molecular bonds. Instead, the atom is propagated

in time through a potential energy surface that provides the force acting on its

average position of mass at any given time. The force acting on each atom i is

equal and opposite to the gradient of the potential in three dimensional space:

Fi = −∇V (r) (1.1)

The force given by equation 1.1 is a vector field often referred to as the molecular

force field although ions, free of molecular bonds, are also included.

V (r)bonded =
∑

bond i

Kbond
i (ri−r0i)

2+
∑

angle i

Kangle
i (θi−θ0i)

2+
∑

dihedral i

kdihedral
i cos(niφi−γi)

(1.2)

1
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Forces that are due to non-bonded interactions are also included as van der Waals

and electrostatic potential energy terms.

V (r)non-bonded =
∑

van der Waals

εij

[
(
σij
rij

)12 − (
σij
rij

)6

]
+

∑
Coulomb

qiqj
4πε0rij

(1.3)

The bonded and non-bonded terms together form V (r).

V (r) = V (r)bonded + V (r)non−bonded (1.4)

The force field is formed from separable potential energy terms where the bonded

terms are argued to work well under relatively small deviations from equilibrium

bond lengths, bond angles and dihedral angles. Since the non-bonded terms are

pairwise among all atoms of a system, it is often not feasible to calculate all pairwise

interactions and instead a cutoff distance is used for which non-bonded forces are

turned off. Simulations that use periodic boundary conditions employ a particle-

mesh Ewald summation[1, 2, 3, 4] to model long-range electrostatic interactions

in conjunction with the van der Walls forces, Coulomb forces, and artificial cutoff

distance.

Further approximations are numerical in nature. For instance, the use of

a numerically stable symplectic integrator[5, 6] in the form of a velocity-Verlet

algorithm[7] may be used to provide stability to the system being simulated at the

expense of cumulative errors for long simulation times. Time steps depend on bond

resonance times and are usually one to two femtoseconds.[8] A highly accurate

trajectory may not be solved for long time scales, however important dynamic

properties such as energy, momentum, time-reversibility, and symplecticness are

conserved. This is useful for simulating the (NVE) ensemble. Using a symplectic

integrator is believed to provide the best sampling of phase space in accordance

to the Liouville theorem which requires a conservation of the phase space volume

along the trajectory. In this way, the simulation of a molecule models the time

evolution of a strict Hamiltonian system[5, 6].

Certain fluctuations may be added to the atoms to simulate the stochastic

nature of bath dynamics. Langevin friction is used to dampen motion proportional

to an atoms velocity and random energy terms, following a Boltzmann distribu-

tion, are redistributed among atoms to preserve energy. This process follows the
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Langevin equation and is useful for modeling molecular statistics in the cononical

(NVT) ensemble.

Mv̇ = F (r)− γv +

√
2γkbT

M
R(t) (1.5)

Here M is the mass of the atom and v is the velocity of the atom at position

r. The term F (r) is the force which is modified by a dissipative term γv and

a perturbative term
√

(2γkbT )/(M)R(t) where γ is a friction coefficient, kB is

the Bolzmann constant, T is the temperature, and R(t) is a univariate Gaussian

random process.

The Langevin-piston method[9] and Hoover’s method[10, 11, 12] for con-

stant pressure simulations inspire tools for the (NPT) ensemble.[13] All of these

methods play a part in the modern approach to solving molecular trajectories.

Only a small sample of what has been done is touched upon here and the whole

breadth of tools at our disposal is beyond the scope of this work. Software pack-

ages such as NAMD[14] are routinely used to provide solutions to the molecular

trajectory. However, these methods still approximate the molecular trajectory and

a natural question arises as to how well the trajectory performs as compared to

available experiments.

1.1.2 The conformational ensemble

Equilibrium constraints confine a simulated molecule to a range of possible

conformations often referred to as the conformational ensemble. If the molecular

trajectory has sampled sufficient conformational space it is said to be Ergodic.

Ergodicity requires that the fractional population assigned to each conformation

has converged. Other more stringent requirements can be invoked on the fractional

probabilities that a given conformation moves to another have also converged.

Simply put, a system is Ergodic over a given length of time when all of the statistics

of the system is completely defined such that repeating the trajectory again gives

no new information.

Nature already computes the trajectories of molecules perfectly. It should

not matter if the system is in the (NVE), (NVT), or (NPT) ensemble representa-
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tion. Nature provides a range of possible conformations for a molecule consistent

with the degrees of freedom and energy available to it.

Nuclear Magnetic Resonance is one of the most powerful experimental tools

available to probe natures quantum trajectories in situ. Although limitations exist

in what signals are available, experiments are routinely done in combination with

molecular dynamics simulations.[15, 16, 17] The results of a computer simulation

and natural experiment continue to converge in close agreement making molec-

ular dynamic simulations a powerful tool for predicting the natural behavior of

molecules.

The force field parameters have evolved to better capture statistical dis-

tributions of conformations for small molecules. The results have been accumu-

lated into software packages such as AMBER[18] and CHARMM27[19, 20]. Larger

molecules have also made great strides at the level of large scale motions such as

protein folding. Capturing accurate large scale motions is a hallmark feature of

modern molecular dynamics. As the field matures, the attempt to model large cell

structures accurately will undoubtedly take place. However, verifying the exact

accuracy of the simulated molecular dynamics trajectory is still a fundamental

open ended problem. In many cases it is powerfully sufficient enough that the

trajectory correlates well with experiment.

1.1.3 Computational benchmarks

Large strides have been made since the first molecular dynamics simulation

of a simplified biological folding process in 1975.[21] Super computers have been

purchased, leased, and even designed explicitly for molecular dynamics simula-

tions. Within the last five years, simulations of protein structures have gone from

nanoseconds of simulation time per week to microseconds per week as routinely

accessible to the broader scientific community.[22]

In the area of protein folding, millisecond timescales have been reported for

folding dynamics of lambda repressor in explicit solvent.[23] With the invention of

the supercomputer, ANTON, single trajectories of millisecond length were acquired

for the first time toward the end of 2010.[24] This makes it possible to predict
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folding on time scales approaching 100 microseconds from a single trajectory.

1.2 Biology and the allosteric protein

1.2.1 General allostery

Within the study of proteins, allostery is broadly used to describe a phe-

nomena where an effector molecule binds to a protein affecting the dynamics, or

conformational landscape at another site of the protein that is often distant to the

effector binding site. The word allostery has root words ”allos” meaning other and

”stereos” meaning solid or body. Allosteric phenomena is particularly noticeable

when the effector molecule up-regulates or down-regulates protein activity.

The effector molecule takes on the abstract form of a signal and modulates

protein activity. A few categories are given in the current literature outlining the

mechanism of an allosteric signal via an effector molecule. The effector molecule

may induce a concerted motion effecting the protein’s conformation such as that

outlined in the MWC model.[25] The effector molecule could propagate conforma-

tional changes upon binding such as the sequential KNF model.[26] Lastly, the

conformation may not significantly change at all and instead the effector molecule

induces subtle shifts in the dynamics.[27]

Metabolic processes are closely regulated through a network of interactions

as a living organism would otherwise be susceptible to all manner of metabolic

failure. Organisms have most likely evolved to build diverse process control mech-

anisms where the creation or destruction of proteins, metabolites, etc. are an

everyday occurrence aimed at the organisms preservation. Having feedback loops

in the form of molecular signals is believed to be evolutionarily pressured and

therefore structural elements among homologous proteins exhibiting allostery have

been evolutionarily conserved.[28]



6

1.2.2 Allostery in HisH-HisF

The protein HisH-HisF exhibits classic allosteric behavior. This protein is

expressed in the hyperthermophilic, bacteria Thermotoga Maritima and is involved

in the fifth step of a nine step biosynthetic pathway resulting in the essential amino

acid, Histidine. HisH-HisF has two receptor sites. The receptor site (effector site)

is located at the base of HisF near the C-terminal cyclase domain. The other site

is located in HisH roughly 30 Å away.[29]

The effector molecule is the metabolite N1-[(5’-phosphoribulosyl)-formimino]-

5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR) which up-regulates the

turnover of glutamine to glutamate by a factor of roughly 4900.[30]

It should be possible to study the signaling effect of PRFAR on the system

HisH-HisF using a molecular dynamics simulaiton. Central to understanding how

this might be done is understanding what signaling mechanism may take place.

The HisH-HisF protein does not change very much in conformation between the

PRFAR-bound and PRFAR-unbound (holo and apo-states respectively). IT may

be a good approximation to consider small changes in dynamics as a way of com-

paring the active and inactive forms of the protein dimer.

1.3 Allostery and rational drug design

1.3.1 Central lethality in protein networks

Proteins may act as catalysts, signaling molecules, or building blocks in cells

and microorganisms. This view often looks at the protein’s individual attributes.

However, a protein often affects another protein’s function. Protein networks that

form a measure of protein interdependence have become a useful tool when quan-

tifying the centrality of a protein’s role within an organism. Recent work in yeast

(Saccharomyces cerevisiae) has shown a correlation between a protein’s centrality

and the lethal consequences to the organism if the protein is deleted (not ex-

pressed) in the protein network.[31, 32] In rational drug design, a small molecule

would negate protein function.
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1.3.2 Disrupting the allosteric state

If a protein is central to the organisms survival, then it is a candidate to

be targeted. If the protein is also exhibits allostery, then targeting it is equivalent

to impeding function by locking it in either its active or inactive form. It may

be possible to compete with the natural signal induced by the effector molecule.

An understanding of the protein’s dynamics would most likely be necessary. Com-

peting with the natural signal is a strategy that could be used in many beneficial

circumstances such as anti-fungal, anti-microbial, and general anti-biotics.

1.3.3 Dynamical networks as a plausible strategy

Developing insight to changes induced by an effector molecule likely comes

from the overall conformational change and the change in dynamics due to local

shifts in dynamics. Finding dynamical correlations among protein components

would allow for a comparison between an allosterically active and inactive pro-

tein. Any molecular dynamics simulation comparing these states would need to

be performed at equilibrium as it may be highly problematic to simulate the non-

equilibirum shift from the apo-state to the holo-state (allosterically active).



Chapter 2

Exploring residue component

contributions to dynamical

network models of allostery

2.1 Abstract

Allosteric regulation in biological systems is of considerable interest given

the vast number of proteins that exhibit such behavior. Network models obtained

from molecular dynamics simulations have been shown to be powerful tools for the

analysis of allostery. In this work, different coarse-grain residue representations

(nodes) are used together with a dynamical network model to investigate models

of allosteric regulation. This model assumes that allosteric signals are dependent

on positional correlations of protein substituents, as determined through molecular

dynamics simulations, and uses correlated motion to generate a signaling weight

between two given nodes. We examine four types of network models using different

node representations in Cartesian coordinates: the (i) residue α-carbons, (ii) the

side chain center of mass, (iii) the backbone center of mass, and the entire (iv)

residue center of mass. All correlations are filtered by a dynamic contact map that

defines the allowable interactions between nodes based on physical proximity. We

apply the four models to imidazole glycerol phosphate synthase (IGPS), which pro-

8



9

vides a well-studied experimental framework in which allosteric communication is

known to persist across disparate protein domains (e.g., a protein dimer interface).

IGPS is modeled as a network of nodes and weighted edges. Optimal allosteric

pathways are traced using the Floyd Warshall algorithm for weighted networks,

and community analysis (a form of hierarchical clustering) is performed using the

Girvan-Newman algorithm. Our results show that dynamical information encoded

in the residue center of mass must be included in order to detect residues that

are experimentally known to play a role in allosteric communication for IGPS.

More broadly, this new method may be useful for predicting pathways of allosteric

communication for any biomolecular system in atomic detail.

2.2 Introduction

Proteins and enzymes act as catalytic waypoints along a natural products

assembly line. They are the molecular machinery of the cell designed to assist

complex biological synthesis and mediate biosynthetic regulation. Allostery is

broadly categorized as the mechanism, or set of mechanisms, for which an event

at a distinct site affects the activity, function, conformational ensemble, or general

attributes at another site within an enzyme or protein.[33] As an example, in

the case of allosteric modulation, the catalytic efficiency of an allosterically active

enzyme or protein is affected through the binding of a metabolite to an allosteric

site. The metabolite is said to be an effector molecule that may propagate an

activation or inhibition signal to a distant catalytic site that in turn regulates

the catalytic activity of the enzyme or protein. Furthermore, a metabolite may

take part in the catalytic reaction itself.[34, 25] In this way, allostery mechanizes

regulation within metabolic pathways as an intrinsic characteristic of a variety of

proteins and enzymes. Further understanding of allostery may lead to advances

in practical applications, such as rational drug design, protein engineering, and

development of synthetic catalysts.

Allosteric regulation usually involves at least two different stereospecific re-

ceptor sites.[34, 25, 35] As metabolic pathways are critical to living organisms,



10

it follows that communication between both receptor sites must be a protected

feature of allosteric modulation. Consequently, homologous proteins often pre-

serve structural elements that conserve communication between receptor sites, the

central theme being that structural elements important to protein function, and

thus allosteric signaling, have been evolutionarily conserved.[28, 36, 37, 30] A no-

table proponent of this theme can be found in Statistical Coupling Analysis first

introduced by Lockless and Ranganathan.[38]

Much effort has been put forth to develop rigorous theories of allosteric

modulation. Some of the early foundations of allostery are proposed in the con-

certed MWC model (Monod, Wyman, and Changeux [25]) and sequential KNF

model (Koshland, Nemethy, and Filmer [26]). These models conceptualize the

mechanism within a protein modulated by an allosteric effector as a conforma-

tional transition that is either concerted or induced sequentially.[39] Since then,

mechanistic details have become rooted in an ensemble view of the protein where

cooperativity between sites is governed by a density of states that is intimately con-

nected to entropy and enthalpy.[27, 40] The accessibility of an allosteric state may

be through an effector substrate inducing a large conformational change within

the protein complex as well as small local conformational changes.[41] However,

allosteric regulation can also occur in the absence of large conformational changes,

as found in works by Cooper and Dryden.[42] In such a situation, an enzyme

or protein would have the propensity to facilitate allosteric signals due to small

vibrations inherent to the protein’s state and not due to a change in shape or fold.

Experimental constructs to explore allostery have included Xray crystallog-

raphy with site-directed mutagenesis, 1H-15N heteronuclear single quantum cor-

relation (HSQC) NMR, kinetic assays with site directed mutagenesis, inhibition

assays, and others.[43] These tests probe a range of questions associated with small

molecule effectors, protein-protein interfaces (hot spots), allosteric pathways, and

general protein functionality. NMR provides increasing potential for a direct view

into the mechanics of allostery. The 1H-15N amide bond vector is an inherent

characteristic of polypeptides and thus has been used to characterize fast back-

bone and side-chain dynamics. In NMR experiments, thermal motions are present
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in all proteins above the glass transition temperature, and there is a direct link

between molecular motions and local magnetic field fluctuations. These dynamics

are commonly associated with the Lipari-Szabo order parameter (S2).[44, 45] It is

generally accepted that picosecond to nanosecond time scales capture allostery in

the absence of large conformational shifts for a majority of proteins (see review

[46]). The parameter S2 is related to the Gibbs free energy through the canonical

partition function and provides a means of deriving conformational entropy from

bond vector fluctuations.[47]

Molecular dynamics seeks to give accurate virtual results that compete

with experiments at a fraction of the cost. With the use of molecular dynamics

simulations,[14, 20] details of conformational changes are sampled to clarify and

categorize mechanisms of allostery that may otherwise be elusive. Quasiharmonic

analysis is a popular analytical tool that has been used in molecular dynamics to

quantify motions in the proteins trajectory ensemble.[48, 49, 50] This approach

aligns trajectories to a reference frame, often the average of the protein, and can

be used to deduce correlations among variables (e.g., dihedral angles, position)

that account for the configurational space. However, harmonic motions may be

an oversimplified assumption for protein dynamics, and the need for an anhar-

monic metric arises. Mutual information methods outlined by Lange and Grub-

muller provide a more generalized framework that captures anharmonic motions

in Cartesian coordinates.[51] Recent works by Killian et al. derive configurational

entropies using internal coordinates for a trajectory ensemble.[52] The mutual in-

formation values are the secondorder terms derived from the entropy expansion

and directly link correlated conformations within the protein to molecular configu-

rational entropy values. This work inspired McClendon and co-workers to develop

an entropy-based approach to harmonic and anharmonic correlations via mutual

information (MutInf) among dihedral angles;[53] this method includes Bayesian

filtering as well as sampling penalties to generate more statistically robust values.

Dynamical network analysis is another method used to explore putative

allosteric communication pathways.[54, 55] Within the realm of biological com-

putation, dynamical network analysis samples correlations among time dependent
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variables for predefined components of a biological system (i.e., protein). These

variables are associated with the trajectory ensemble and provide a distribution

at equilibrium. As examples, a variable could be the position of an atom, center

of mass (c.o.m.) of a residue, or a vector modeling the orientation of a residue.

These variables serve to model the configuration of the protein at a given time. As

developed by Luthey-Schulten and colleagues,[54, 55] the variable was the position

of each α-carbon atom within an aminoacyl-tRNA synthetase system. MD simu-

lations sample the system dynamics, which are used to generate correlation values

among all variables (nodes) of the biological system. The absolute value of a given

correlation is then incorporated into a function that models the signaling between

nodes as a distance. The behavior of nodes that are highly correlated and within

close physical proximity (aggregates) can be analyzed in terms of community be-

havior and structure. Allosteric signaling between community aggregates occurs

through particular node pairs that exhibit a high degree of network degeneracy

(i.e., community cross talk). These critical nodes transfer a relatively large degree

of information across their edge. As critical node pairs carry out intercommunity

cross talk, they may provide favorable sites for signal disruption.

In this work, we extend the dynamical network analysis method and pro-

pose allosteric signaling pathways in imidazole glycerol phosphate synthase (IGPS;

HisH-HisF), which belongs to the glutamine amidotransferase (GAT) family of en-

zymes (Figure 2.1). This multidomain globular protein regulates the fifth step

of the histidine biosynthetic pathway in plants, fungi, and microbes. Histidine is

considered an essential amino acid, as humans do not have a histidine biosynthetic

pathway. In bacteria, HisH-HisF is a protein dimer, whereas in eukaryotes it exists

as one single polypeptide chain, with a ∼40 amino-acid-residue tether connecting

the two domains. The HisH-HisF dimer has two receptor sites: one receptor site

(effector site) is positioned at the C-terminal cyclase domain of HisF, and the other

(allosteric site) is located in HisH (the glutaminase domain) roughly 30 Å away.[29]

The triad GAT subfamily strictly conserves these catalytic residues across all mem-

bers of the set, although the allosteric effector, remote binding site, upregulation,

and allosteric site vary between different enzymes.[56, 57, 58, 59] Another impor-
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tant conserved subfamily structure in GATs is a (β/α)8 barrel which is located in

HisF. The (β/α)8 barrel is believed to assist in transport of the ammonia moiety to

the effector or substrate molecule and may also play a role in allostery.[60, 61, 62]

Attachment of the primary metabolite N1-[(5’-phosphoribulosyl)-formimino]-

5-aminoimidazole-4-carboxamide ribonucleotide (PRFAR, which is also the al-

losteric effector) to the cyclase domain induces several global structural changes in

the protein dimer. A flexible loop on the C-terminal end of the (β/α)8 barrel ap-

pears to modulate access to the PRFAR substrate, and a hinge motion at the dimer

interface changes the HisF and HisH domains by roughly 7.1o to form a tighter

interface.[30] These large scale conformational changes indicate that the PRFAR-

bound (holo) and PRFAR-unbound (apo) states are distinct. Other induced mo-

tions consist of smaller conformational changes in the side chain orientations.[61]

The catalytic turnover of glutamine to glutamate is increased ∼4900 fold when

PRFAR is bound; however, the details of the allosteric mechanism are not com-

pletely understood.[30] All members of the GAT family of enzymes exhibit sim-

ilar allosteric regulation to control the production and utilization of ammonia in

the subsequent catalytic reaction.[63] After the catalytic turnover of glutamine,

nascent ammonia is shuttled across the dimer interface and through the center of

the (β/α)8 barrel along the barrels principal axis to the cyclase domain where PR-

FAR is broken into 5’-(5-aminoimidazole-4-carbox-amide) ribonucleotide (AICAR)

and ImGP (Figure 2.1).[64] Previous studies have also found that AICAR and

ImGP stimulate the glutaminase half reaction, although at a reduction of 45 to

188 times less, respectively, than the PRFAR substrate molecule.[61] Moreover, the

two independent products also stimulate the glutaminase half reaction 15 times less

than PRFAR. These results suggest that AICAR and ImGP both contribute to

allostery, but ImGP may be more involved in the allosteric signaling network. Fur-

thermore, the chemical bond between the AICAR and ImGP moieties is necessary

for enhancement of the allosteric state.

We explore extensions of the original dynamical network analysis to as-

certain new models for allosteric communication, which are benchmarked against

experimental site-directed mutagenesis studies in HisH-HisF. The impact of uti-
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Figure 2.1: (A) The two domains,HisH (glutaminase domain) and HisF (cyclase
domain), are shown colored by secondary structural elements. (B) The catalytic
triad, residues tested experimentally for allostery, and the substrate PRFAR are
presented again in ball and stick representation for clarity with the same orientation
as A, showing the allosteric and effector sites, which are over 30 Åapart. (C) The
overall reaction catalyzed by HisH and HisF produces AICAR and ImGP.
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lizing different residue contributions (i.e., nodal methods) within the dynamical

network analysis framework is investigated using HisH-HisF as a model system.

The Floyd Warshall algorithm determines the shortest (optimal) path between two

nodes in a network,[65, 66] and the Girvan-Newman algorithm,[67] a method with-

out free parameters, generates aggregate nodal clusters, or communities, that opti-

mize intracommunication pathways within the protein. For each nodal method, we

determine the optimal signaling pathways. We then compare and investigate the

corresponding community structures for the α-carbon and residue c.o.m. methods.

Ultimately, we propose novel allosteric communication pathways for HisH-HisF and

show that using the residue c.o.m. provides advantages over other nodal methods

within the dynamical network analysis framework.

2.3 Methods

2.3.1 System Setup

The initial coordinates for the (holo) HisH-HisF were obtained as PDB

1GPW (Thermotoga maritima) from the Protein Data Bank and included resolved

phosphate groups still bound to the active site. Furthermore, the PDB 1GPW

included three states of HisH-HisF categorized by chains A-B, C-D, and E-F. In

order to prepare an accurate residue environment, PROPKA was used to determine

protonation states of titratable residues based on an environment at pH 7.[68] The

δ-nitrogen was protonated for the HisF domain for residues His84, His209, and

His244 and His73, His120, and His141 in HisH. An ε-nitrogen protonation state

was assigned for HisF:His228, and for HisH:His53. Both the δ-nitrogen and ε-

nitrogen of the residue HisF:His151 were protonated.

The crystal structure 1OX5 (from Saccharomyces cerevisiae) included all

PRFAR heavy atoms and was used to build in the PRFAR substrate for 1GPW. Us-

ing the VMD plugin Multi-Seq,[69] the crystal structure chain A 1OX5 was aligned

to 1GPW chains C and D via secondary structures in the HisF domain using the

STAMP structural alignment algorithm.[70, 71] The result was that the PRFAR

substrate aligned correctly to the 1GPW:HisF domain for the holo-state of HisH-
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HisF. This alignment is consistent with other works.[62, 72] The 1GPW:crystal

waters, 1OX5:PRFAR metabolite, 1GPW:HisF, and 1GPW:HisH segments were

processed by PSFGEN to generate psf and pdb files. The parametrization of the

PRFAR substrate followed standards established in the CHARMM protocol22 and

used results from previous works.[73] The formal charge for the protein dimer was

-8.0e, and the formal charge for the primary metabolite, PRFAR, was -5.0e. The

formal charge of the system was -13.0e in total. The system was solvated using

SOLVATE[74] to add explicit TIP3 water molecules to a box with a water pad of

10 Å around the protein. Thirteen sodium counterions were added with the VMD

plugin Autoionize, bringing the overall formal charge of the entire system to zero.

The (apo) HisH-HisF was also derived from 1GPW using chains A and B.

The system setup for the (apo) HisH-HisF followed the exact same procedure as

(holo) HisH-HisF without the addition of the PRFAR ligand.

2.3.2 Molecular Dynamics Simulations

A four-step energy minimization was employed for both apo and holo struc-

tures to ensure maximal retention of experimental structural information. The four

steps constrained heavy atoms for 1000 fs, heavy atoms excluding water for 1000

fs, backbone atoms excluding all other molecular groups for 2500 fs, and finally

a constraintfree motion of all atoms for 5000 fs. Harmonic constraints were in-

duced to allow minimal backbone motion to achieve water equilibration for five

time frames of 25 000 fs each and different backbone constraint constants of 1.0,

0.75, 0.50, 0.25, and 0.0 kcal mol−1 Å.

Molecular dynamics for the holo structure were run for 30 ns (including

an initial 10 ns to ensure the mutual equilibration of PRAFR and HisH-HisF)

with an integration time step of 1 fs using NAMD2.7 and the CHARMM27 force

field.[14, 19] Production molecular dynamics for the (apo) HisH-HisF were run

for 20 ns with an initial 1 ns harmonic constraints equilibration phase. All other

simulation parameters and benchmarks were the same as the (holo) HisH-HisF

simulation. Periodic boundary conditions were used with the NPT ensemble, a

pressure of 1 atm using a Langevin piston, and a temperature set to 310 K. A
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particle mesh Ewald summation was used for the electrostatic approximations.[1]

The long-range van der Waals interactions were given a cutoff distance of 12 Å and

a switching distance at 10 Å. Simulations were performed on the TACC Ranger

cluster using 256 processors. The benchmark for the ?45 000 atom systems were

0.0136156 s/step and 0.157588 days/ns.

Protein snapshots were extracted at 500 fs intervals over the 20 ns produc-

tion phases of both the holo-state and apo-state, resulting in two sets of 40 000

structures for subsequent analysis. Each snapshot was aligned via RMSD to the

average position of all atoms within the protein for both systems over the entire

20 ns simulation of production dynamics, in order to remove any rotational or

translational motions.

2.3.3 Dynamical Network Model

We explore the use of different sources of correlation information, also

known as nodal methods, including (i) α-carbon, and the c.o.m. of (ii) the back-

bone, (iii) the side chain, and (iv) whole-residue representations (residue c.o.m.).

In each case, the covariance matrix is normalized, and as a consequence, the po-

sition, and not the mass of the node, is important. In order to model PRFAR as

a set of nodes, the PRFAR substrate is broken into two moieties, which represent

the reaction end products AICAR and ImGP (Figure 2.1). The centers of mass for

both the AICAR and ImGP moieties are defined as separate nodes for the analysis.

Methods are carried out using a similar protocol to that of refs [54] and [55].

A contact map is used to determine Boolean values for node?node interactions. If

a residue is within 4.5 Å of another residue for 75% of the 40 000 frame (20 ns)

trajectory, then the two residues are considered to be in contact with one another

(Supporting Information (SI) Figure 2.1). Nodes that do not fit these requirements

are filtered out. The correlation values are obtained by trajectory data using the

program CARMA.[75] The correlation is defined by eqs 2.1 and 2.2, where Cij

is the correlation value between two nodes over a given simulation time (Figure

2.2). The value of Cij is unity when i = j and satisfies the condition that a node
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Figure 2.2: Entries in the lower right triangle show pairwise correlation values
using the α-carbon atoms; the upper left triangle shows the correlation values using
the c.o.m. of the entire residue.
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correlates completely with itself. In eq 2.2, the position of a given node at time

t is subtracted from the average position of the node over the entire production

dynamics (20 ns) and requires that the average position of the node sampled is

approximately stationary over time. When comparing the motion of one nodal

method to another, eq 2.1 is also used (Figure 2.3); these are correlations among

different nodal methods within the same residue.

Cij =
〈∆~ri(t) ·∆~rj(t)〉

(〈∆~ri(t)2〉〈∆~rj(t)2〉)1/2
(2.1)

and

∆~ri(t) = ~ri(t)− 〈~ri(t)〉 (2.2)

The use of eqs 2.1 and 2.2 as well as interaction criteria determined through the

contact maps generates a filtered correlation matrix.

The edge between a pair of nodes is then given a length in network space by

functionalizing the correlation values. A positive or negative correlation is viewed

equally in that residue interactions are coherent whether they are correlated or

anticorrelated, and so the edge lengths take the value wij in eq 2.3 between node

i and node j:[54, 55]

wij = −log(|Cij|) (2.3)

Although the values of each length have meaning in network diagrams, they can be

mapped to the physical protein space by weighting each edge with a thickness or

cylindrical diameter. Therefore, thick edges between nodes are indicative of edges

close to one another in network space, while thin edges and edges that do not exist

are far or infinitely separated, respectively (Figures 2.4-7). Such edges represent

the signaling strength between nodes.

One aim of our analysis is to identify putative allosteric communication

pathways in proteins, using HisH-HisF as a model system. Evidence of cooperation

between the substrate PRFAR (i.e., the source of allosteric signal) and the catalytic

triad (i.e., where the allosteric signal ends) is captured within this framework. In

this model, we assume that the most likely or biologically relevant pathways are

those that minimize the network distance. Finding a singular optimal path is

equivalent to minimizing the distance traveled between nodes in the network. The
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Figure 2.3: (A) Here, correlation between the α-carbon and the backbone c.o.m.
is shown for each residue. The α-carbon is strongly correlated to the backbone c.o.m.
and not well correlated to the side chain c.o.m. suggesting that information given
by the α-carbon is highly biased toward backbone motion. (B) Next, correlation
between the α-carbon and the c.o.m. for the entire residue is shown. (C) Lastly,
comparisons between the α-carbon and side chain c.o.m. show the lowest correlation
values and greatest spread, which indicates that information from side chain motion
may be lost in an α-carbon representation.
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length of such a path is the sum of the individual path lengths between each node

set i, j (eq 2.4), starting with the source nodes in PRFAR and ending with the

three sink nodes in the catalytic triad:

Dij =
∑
k,l

wk,l (2.4)

All other paths are deemed suboptimal if they fall within an acceptable deviation

from the optimal path. Such pathways are likely to present highly degenerate

signaling along the optimal path. Although it is possible to determine numer-

ous suboptimal pathways within the dynamical network analysis framework, we

do not investigate suboptimal pathways in this work. Yet, we acknowledge that

their analysis may likely lead to further insight into the complexities of allosteric

regulation.

2.3.4 Entropy Calculations

The entropy for both holo and apo states was calculated using CARMA,[75]

which follows the derivation outlined by Andricioaei and Karplus.[76]

The mass weighted covariance matrix was used for the α- carbons, and each

mass was 12.0107 g mol−1. A mass weighted covariance matrix was also used for

the residue c.o.m. method, and each mass varied depending on the selected residue.

The PRFAR molecule was omitted when comparing entropies of the apo and holo-

states in order to maintain identical degrees of freedom between the ligand bound

and ligand free systems.

2.4 Results

2.4.1 Molecular dynamics simulations

The MD simulations for HisH-HisF must be sampled over equilibrium con-

ditions in order to use correlations since the average position of a node is required

to be approximately stationary over time. To assess each nodal method, 30 ns of

MD were run for the holo-state. The RMSD for all 30 ns of molecular dynamics
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was calculated at each frame for the holo-state and indicates system equilibration

after the first 10 ns (SI Figure 2.2); the remaining 20 ns is considered production

dynamics and was utilized in the dynamical network analyses. The RMSD for the

20 ns molecular dynamics of the apo-state also showed convergence. Trajectories

were assessed at 5 ns, 10 ns, 15 ns, and 20 ns to determine the time dependence

and convergence of the optimal paths.

2.4.2 Correlation and Contact Maps

The full correlation matrix, representing both the residue c.o.m. and α-

carbon methods, is presented (Figure 2.2). A contact map indicating which residues

were closely interacting was generated over the production MD phase for the holo-

state. If residues were within 4.5 Å of another residue for 75% of the 40 000 frame

(20 ns) trajectory, the correlation value in the correlation matrix was kept; oth-

erwise the correlation value was set to zero. This contact-map filtering prevents

edges from being drawn between residues that are physically far apart. The same

contact map was used for the holo-state across each time assessment at 5 ns, 10 ns,

15 ns, and 20 ns (SI Figure 2.1). The contact map for the apo-state was generated

from a separate 20 ns trajectory and followed the same criteria as the holo-state.

This contact map was used to assess the apo-state over the entire 20 ns trajectory

for comparison to the holostate.

2.4.3 Correlation of Nodal Methods in Holo HisH-HisF

The correlation of the different nodal methods was analyzed for the holo-

state over 20 ns of production dynamics by determining the positional correlation

between the α-carbon and the c.o.m. of the (a) backbone, (b) side chain, and (c)

entire residue. This analysis indicates that the motion exhibited by the α-carbon is

most highly correlated to the backbone motion as a general trend for same residue

selections (Figure 2.3). The position of the α-carbon correlates strongest with the

position of the backbone c.o.m. and weakest with the position of the c.o.m. of the

side chain. Between these two extremes, the position of the residue c.o.m., which
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represents both the backbone and side chain atoms, exhibits moderate correlation

to the α-carbon position.

2.4.4 Optimal Pathways

Comparison of Different Nodal Methods within the Holo-State

The optimal communication path is the shortest path between the source of

the allosteric signal, in this case PRFAR, and the end-point of the allosteric signal,

or sink, which is the catalytic triad (Figure 2.4). The catalytic triad is comprised

of three residues HisH:Glu180, HisH:His178, and HisH:Cys84 and therefore three

potential sink candidates. Each residue within the triad was thus investigated

in the search for the optimal paths. For simplicity, we focus on the sink residue

HisH:Glu180 (Table 2.1). However, we note differences in the optimal pathways

among all combinations of sources and sinks and provide this additional informa-

tion (SI Table 2.1).

The optimal path between source node ImGP and sink node Glu180 cap-

tured the same residues at 15 and 20 ns for the different nodal methods, and

the optimal path for the residue c.o.m. method was surprisingly the same for all

time assessments (Table 2.1). The pathway between the ImGP moiety and residue

Glu180 yielded similar results to the pathway between the AICAR moiety and

residue Glu180 when using the α-carbon nodal method (SI Table 2.1).

The side chain c.o.m. method gives an optimal path of ImGP, HisF:Leu50,

HisF:Val48, HisF:Thr78, HisF:Lys99, HisF:Asp98, HisH:Lys181, and HisH:Glu180.

The residue c.o.m. method gives an optimal path of ImGP, HisF:Leu50, HisF:Gly80,

HisF:Val79, HisF:Lys99, HisF:Asp98, HisH:Lys181, and HisH:Glu180. In con-

trast, the pathway predicted by the α-carbon method suggests an optimal path-

way connecting the ImGP source through HisF:Leu50, HisF:Phe49, HisF:Phe77,

HisF:Pro76, HisF:Lys181, and HisH:Glu180 (sink). The optimal pathway pre-

dicted by the backbone c.o.m. method traces through ImGP (source), HisF:Leu50,

HisF:Phe49, HisF:Thr78, HisF:Phe77, HisF:Lys181, and HisH:Glu180 (sink).
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Figure 2.4: (A and B) Here, we show the optimal pathway generated from the
Floyd-Warshall algorithm using (A) the α-carbon method (red spheres) and (B) the
residue c.o.m. (orange spheres) method. In both methods, the source is the ImGP
moiety, and the sink is catalytic residue HisH:Glu180. The ellipsoids (blue dots) are
aligned along the principal axes of a given residue to illustrate a residue’s orientation
and spatial displacement. Edges are drawn between nodes, and the edge thickness
is radially proportional to the weight given by eq 3.
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Table 2.1: The optimal path from source ImGP to sink HisH:Glu180 is calculated
on the basis of 20 ns of production dynamics after an initial 10 ns to allow PRFAR
and HisH-HisF to equilibrate. Each entry in the table represents a residue or moiety
of PRFAR. The residue name and dimer superset of each residue is indicated above
the table. Number entries are associated with the crystal structure 1GPW from
the protein data bank. The resulting correlation matrix for each nodal method is
calculated at 5 ns, 10 ns, 15 ns, and 20 ns. However, the same contact map is used
for each and is based on the 20 ns trajectory. For each nodal method shown, the
optimal paths appear to converge to a consistent set of residues. Evolutionarily
conserved (100% sequence identity) residues are both underlined and bold, whereas
partially conserved (greater than 50% sequence identity) residues are just underlined
in reference to previous homology studies.
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Comparison of Holo- and Apo-States Using the Residue Center of Mass

Method

Both the holo-state, with allosteric effector PRFAR bound, and the apo-

state simulations sample equilibrium conformations of the protein and provide a

comparison between the ligand activated holo-state and the basal (inactive) apo-

state. The optimal path for the holo-state is compared to the optimal path of

the apo-state from ImGP (source) to HisH:Glu180 (sink) using the residue c.o.m.

as the preferred nodal method (Table 2.2). The residue c.o.m. method traces

an optimal path for the holo-state as ImGP, HisF:Leu50, HisF:Gly80, HisF:Val79,

HisF:Lys99, HisF:Asp98, HisH:- Lys181, and HisH:Glu180. In contrast, the apo-

state gives an optimal path of HisF:Leu50, HisF:Phe49, HisF:Phe77, HisF:Pro76,

HisH:Lys181, and HisH:Glu180. A noteworthy switch between the two states is

the HisF:Leu50?HisF:Gly80 in the holo-state versus the HisF:Leu50-HisF:Phe49.

The apostate HisF:Leu50-HisF:Phe49 is clearly a backbone dominated correlation

Table 2.2: Here, we show the optimal pathway between ImGP and HisH:Glu180
for both the apo-state and holo-state simulation with only the c.o.m. method being
used (the preferred method for this paper). The apo-state and holo-state of HisH-
HisF is compared here and shows a clear switch between both states. The holo-state
traces out the salt bridge HisF:Asp98-HisH:Lys181 that is verified experimentally
to be part of the allosteric mechanism. The apo-state does not provide this bridge.
The distance values on the right are calculated according to eq 2.4.

where the holo-state HisF:Leu50?HisF:Gly80 suggests a correlation that may de-

pend on side chain interaction. Another important difference is seen at the interface

of the protein dimer, where the apo-state HisH:181Lys-HisF:Pro76 communica-

tion path switches to HisH:181Lys-HisF:Asp98 in the holo-state. The HisF:Asp98

residue is a component of the salt bridge verified by experimental results to be a

contributing residue in the allosteric mechanism of HisH-HisF.[30, 77] Although

the optimal apo-state path has fewer nodes than the holo-state path, in part due to
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the absence of ImGP, it has a longer overall distance. This indicates that the cou-

pled residue?residue motions involved in molecular signaling between the effector

site and the active site are stronger when PRFAR is bound.

2.4.5 Community Structure Analysis

Comparison between Different Nodal Methods (Holo-State)

Community structures depict high regional correlations among nodes within

the protein, and these regions are modeled as node aggregates or communities.

The community subsets may give insights to allosteric signaling, and in particular,

node pairs that perform intercommunity signaling, so-called critical nodes, provide

possible sites for signal disruption. Although similarities between the α-carbon

method and residue c.o.m. were exhibited in the community structures, the residue

c.o.m. method indicated a significant difference regarding the community with

which ImGP was associated. Furthermore, certain communities were drastically

altered (blue in Figure 2.5) between the two methods.

The α-carbon method indicated an intercommunity connection between

AICAR and ImGP, and the AICAR moiety was associated with a portion of the

(β/α)8 barrel (green in Figure 2.6A). The α-carbon method suggested AICAR

and ImGP to be constituents of two separate communities (orange and green in

Figure 2.6A) and composed of proportional parts of the (β/α)8 barrel. In the α-

carbon method, an intracommunity connection was exhibited between ImGP and

HisF:Cys9, HisF:Gly202, HisF:Gly203, HisF:Leu222, HisF:Ala223, HisF:Ala224,

and HisF:Ser225. Intracommunity connections were also detected between AICAR

and HisF:Gly82, and HisF:Gly81, which was similar to the c.o.m. method.

In the residue c.o.m. method, the ImGP moiety is predicted to belong

to the nodal community comprised of a loop near the C-terminus (black in Fig-

ure 2.6B) with intracommunity connections to HisF:Lys19 and HisF:Asp11. The

AICAR moiety for the c.o.m. method belonged to the nodal community composed

of a portion of the (β/α)8 barrel (green in Figure 2.6B) with intracommunity con-

nections to HisF:Gly82, HisF:Gly81, and HisF:Leu50. Although the α-carbon and

residue c.o.m. methods differ in important details of the community partitioning,
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Figure 2.5: (A and B) The optimal communities for communication among
residues are depicted, grouped via the Girvan-Newman algorithm. Note the sig-
nificant change in community structure between the two methods: residue α-carbon
(A) and residue c.o.m. (B). There are seven communities in the protein dimers:
three for HisH (silver, ochre, and blue) and four for HisF (black, orange, green, and
ice blue). The edges that attach critical nodes between communities are shown as
red lines and depict high levels of degenerate signaling between community struc-
tures. Edge thickness is radially proportional to the weight given by eq 3.
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Figure 2.6: (A and B) The change in community structure for connections between
PRFAR and other immediate residues is depicted. The α-carbon method (A) shows
ImGP (blue) as a member of the orange community and AICAR (blue) as a member
of the green community. Both the green and orange communities largely include two
halves of the (β/α)8 barrel in HisF. The residue c.o.m. method (B) shifts the ImGP
moiety (blue) into the black community comprising the loop at the C-terminal end
of the (β/α)8 barrel.
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both show a split between the ImGP and AICAR moieties of PRFAR in agreement

with the catalytic mechanism of HisF.

Community Structure Comparison between the Apo- and Holo-States

The residue c.o.m. method was used to derive community structures for

both the apo and holo conformational ensembles. Considerable shifts in community

aggregates are seen in the HisH domain (Figure 2.7A and B, blue regions). The set

of community aggregates also rearranged themselves in the HisF domain between

apo and holo states (Figure 2.7A and B, black regions). Both the apo- and holo-

states provided seven community aggregates: three community aggregates in the

HisH domain and four in HisF. However, differences in community crossover at the

dimer interface are present.

The black community in both the apo- and holo-states contains the flexible

loop at the C-terminal end of the (β/α)8 barrel. The black community is clearly

altered between the apo and holo-states (Figure 2.7). The residues that both

states have in common are HisF:Asp11 thru HisF:Glu34 and residue HisF:Ile52.

Root mean squared deviation (RMSD) analysis was used to quantify the structural

differences for this set of common residues between both states over the course of

the trajectories (SI Figures 2.3 and 2.4). The average RMSD for the holo-state

is 2.166 Å with a standard deviation of 0.412 Å and for the apo-state is 1.416

Å with a standard deviation of 0.322 Å. The addition of PRFAR at the effector

site (holo-state) increased the RMSD as well as the fluctuations about the average

protein structure of the loop. This corresponds to a decrease in correlations within

the black community and provides a distinct shift to the holo-state as seen by the

extension of the green community into regions occupied by the black community

in the apo-state (Figure 2.7A and B).

Critical Node Comparison between the Apo- and Holo-States

Critical nodes represent strong signaling conduits between communities.

Critical nodes were analyzed for both the apo-state and holo-state simulations (Ta-

ble 3). Four critical nodes were the same across both the apo-state and holo-state



31

Figure 2.7: (A and B) The optimal communities for communication among
residues are depicted for both the apo-state and holo-state using the residue c.o.m.
method. There are seven communities in the protein dimers for both the apo-state
and holo-state: three largely associated with HisH (silver, ochre, and blue) and four
associated with HisF (black, orange, green, and ice blue). However, these commu-
nities do extend across the dimer interface. The edges that attach critical nodes
between communities are shown as red lines. The black community in the apo-state
(A) is larger than that in the holo-state (B). The ImGP moiety is a member of
the black community for the holo-state, and this may be the direct cause of the
community shift from the larger black community associated with the apo-state to
the smaller black community in the holo-state.
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in HisF. These nodes were HisF:Arg5, HisF:Glu46, HisF:Lys99, and HisF:Val127.

All of these nodes are evolutionarily conserved, except for HisF:Val127, which is

partially conserved.[30] For the HisH domain, six critical nodes were the same.

Table 2.3: The critical nodes in a community structure present high signal degen-
eracy between community aggregates. Here, we compare the critical nodes calcu-
lated for the apo-state and holo-state. The preservation of critical nodes across both
states (grey columns) may be important to protein structure and function. Residues
that are evolutionarily conserved are both bold and underlined, while partial con-
servation is indicated by just an underline. Residues that are not evolutionarily
conserved are written in the column headers as plain text.

The evolutionarily conserved node is HisH:Tyr138. The partially conserved nodes

are HisH:Val51, HisH:Tyr143, and HisH:Val193.[30] The two nodes that did not

show conservation are HisH:Arg18 and HisH:Leu189. subsectionEntropy Calcu-

lations between Apo and Holo-States The entropies of the apo- and holo-states

were calculated for both the α-carbon and c.o.m. methods using a quasiharmonic

approximation.[76] The α-carbon method provided entropy values of 13,192.54 J

mol−1 K−1 and 13,664.46 J mol−1 K−1 for the respective apo- and holo-states.

Whereas the residue c.o.m. method provided entropy values of 27,540.41 J mol−1

K−1 and 27,905.33 J mol−1 K−1. These results show a positive entropy gain, upon

PRFAR binding, with values ∆Sαc = 471.92 J mol−1 K−1 and ∆Scom= 364.92 J

mol−1 K−1 for the α-carbon and c.o.m. methods, respectively.
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2.5 Discussion

In this work, we have examined four types of networks by varying node

representations in Cartesian coordinates: the (i) residue α-carbons, (ii) the side

chain c.o.m., (iii) the backbone c.o.m., and the entire (iv) residue c.o.m. We

applied these to imidazole glycerol phosphate synthase (IGPS) in order to test for

allosteric signaling pathways within the framework of dynamical network analysis.

The analysis was carried out at equilibrium conditions, and the resulting pathways

were sensitive to which node representation was used.

In our results, the α-carbon method failed to indicate interplay between

HisH:Lys181 and HisF:Asp98 for the holostate optimal path ImGP to HisH:Glu180,

whereas the residue c.o.m. and side chain c.o.m. methods succeeded in showing

this particular interaction at the interface (Table 2.1). Detecting HisH:Lys181

and HisF:Asp98 is a promising feature of the residue c.o.m. methodology because

this salt bridge has been experimentally validated to participate in allostery for

the cyclase half reaction.[30, 77] Furthermore, HisH:Lys181 and HisF:Asp98 are

coupled to the active site of the catalytic triad through close physical proximity

and strong correlations. The holo-state of HisH:Lys181 and HisF:Asp98 forms a

longlasting contact across the dimer interface, confirmed by our simulations (data

not shown), and both residues are directly adjacent to the glutaminase active site.

Mutations of HisF:Thr104 and HisF:Lys19, assessed in previous works,[30,

77] affected the glutaminase half reaction and may be attributed to destroying

the functionality of the receptor site where PRFAR binds. In our simulation,

the residue HisF:Lys19 is adjacent to the ImGP moiety of PRFAR and the Gir-

van?Newman algorithm clusters both into the same community when based on the

residue c.o.m. methodology (black, Figure 2.7). Trajectories are distinct between

the apostate, where HisF:Lys19 is not linked to PRFAR, and the holostate, where

HisF:Lys19 is directly linked to the ImGP moiety of PRFAR and indirectly to the

(β/α)8 barrel (green and orange, Figure 2.7). When analyzing the RMSD for both

the apostate and holo-state (SI Figures 2.3 and 2.4), the variations are more sta-

tionary for the apo-state and less so for the holo-state over the 20 ns trajectory. The

holo-state may comprise specific harmonic and anharmonic motions between the
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loop structure and components of the (β/α)8 barrel that is mediated by the ImGP

moiety of PRAFR. This would imply that HisF:Lys19 plays a role, for the holo-

state, via signaling attributes of the loop structure by channeling motion through

a direct connection into the optimal path from ImGP to HisH:Glu180. The apo-

and holo-state RMSD time series are consistent with previous NMR studies for this

loop structure and may indicate signaling attributes enveloped on the millisecond

time scale.[78]

Comparison of the different nodal methods indicates that the α-carbon

and backbone c.o.m. methods are strongly correlated (Figure 2.3). This analysis

suggests a clear bias of the α-carbon to detect the same signals as the residue

backbone.

Moreover, using the covariance matrix to calculate quasiharmonic entropy

values gives notably different results when using the α-carbon versus the residue

c.o.m. method. Collectively, these results suggest that biologically relevant in-

formation may be lost if side chain substituents are not taken into account and

emphasize the importance of accounting for side chain dynamics in allosteric signal-

ing captured through the use of the residue c.o.m. Including side chain information

in dynamical network models may be essential to providing an accurate analysis

of allosteric pathways as well as hierarchical clustering of dynamical networks.

2.5.1 Evolved Interdependence of the Two Domains

Interdependence between HisH and HisF exists as a result of protein func-

tion. Elegant biochemical kinetic experiments for HisH-HisF have decoupled the

two enzyme reactions in vitro. Constructs in bacteria, where the two domains

are encoded on separate polypeptide chains, have shown that the cyclase reaction

can occur via HisF under nonbiological conditions (50 mM Tris-acetate buffer, pH

8.5, at 25 C), whereas the glutaminase reaction of isolated HisH has no detectable

activity.[79] Consequently, residues that form a foundation for the dependence of

the two domains may be highly conserved due to evolutionary pressures. Some of

these residues are likely along the signaling pathway.

Every residue along the optimal path determined with our residue c.o.m.
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analysis, from ImGP to HisH:Glu180, is known to be evolutionarily conserved.[30]

This result is in contrast to the α-carbon method, which also included a noncon-

served residue HisF:Thr78 in its optimal path (Table 2.1). Furthermore, many

residues along the (β/α)8 barrel were highly selected for in both the apo-state

and holo-state along the optimal paths for all methods. This result is consistent

with the conserved nature of the barrel structure across the sub-family of GAT en-

zymes and is a quantitative argument against possible circuitous routes via other

secondary structural elements of the protein. The pathway comparison between

the apo- and holo-states (Table 2.2) may also provide insights to basal turnover as

HisH-HisF produces low levels of glutamate in the half reaction when PRFAR is

not bound.

2.5.2 Community Structure as an Allosteric Descriptor

Overall community structure is a function of intracommunication among

a set of residues and consequently provides a coarse grained intercommunication

between a set of communities. The community results are derived from different

nodal methods and indicate that the choice used to determine the correlation

matrices is important (Figures 2.5-7). When using the residue c.o.m. method, a

clear shift among community structures is seen between the apo- and holo-states.

The loop structure at the base of the (β/α)8 barrel directly influences the ImGP

moiety of PRFAR as previously mentioned. However, other shifts in community

structure may be more relevant. At the dimer interface, clear changes exist between

the apo- and holo-state (Figure 2.7).

Critical nodes at the interface of the communities may be adequate de-

scriptors of a proteins state. Even though critical nodes may not be part of the

optimal pathway, they are assumed to be important to the configurational ensem-

ble. For example, a critical node may represent a pharmaceutically relevant site

for allosteric inhibition. The critical nodes between apo- and holo-states also shift

(Table 2.3). However, some residues preserve this critical node quality between

both apo and holo-states. For instance, HisF:Lys99 is evolutionarily conserved

and quantified as critical for both states. Whereas, HisF:Asp98 and HisH:Lys181
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are also conserved but are only critical nodes for the apo-state. The allosteric

importace of HisF:Asp98 and HisH:Lys181 has already been established, and their

split into separate communities is a feature of the apo state that quantifies the

separation and extent of influence between the two residues.

From the community analysis, ImGP is also considered a critical node

and carries information from the black community to both the green and orange

communities, which are commensurate halves of the (β/α)8 barrel. Furthermore,

AICAR is also a critical node, and this reflects the flexible characteristics of the

PRFAR metabolite as both moieties correlate with different communities (Figure

2.6B).

2.5.3 Limitations of the Model

The optimal pathways for allosteric signaling were based on a contact-map-

dependent methodology defined previously.[54, 55] Residues within a particular

distance of another residue for some percentage of the simulation are assumed to

influence the communication pathway directly, and residues that do not satisfy

these constraints are removed from consideration. However, other methods for

generating a contact map may improve definitive connections within the protein

network. For example, a reasonable alternative contact map may use values that

are not Boolean, instead relying on a continuous function that varies depending

on the distance between nodes. Alternate methods for defining contacts among

residues is beyond the scope of this paper, though we note such efforts may impact

results and should be considered for future dynamical network models.

The available high-resolution crystal structures of the glutaminase domain

have shown that the oxyanion hole required for glutaminase activity is not properly

formed in the absence of the cyclase domain or the effector molecule.[29, 80, 81, 82]

In fact, the rearrangement of the active site to a catalytically competent conforma-

tion is a hallmark feature of the regulation of nitrogen metabolism across the entire

family of glutamine amidotransferases. The energy barrier required to overcome

this oxyanion strand rearrangement in HisH-HisF has been estimated at over 20

kcal/mol.[78] Notably, these crystal structures, as well as the simulations presented
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here, did not contain the glutamine substrate at the active site of HisH. Our work

assesses the effects of PRFAR alone. Further studies are warranted in order to

determine whether the inclusion of glutamine within the active site of HisH-HisF,

either covalently bound to the active site, cysteine, or simply present locally, would

affect the networks and community structures determined from the PRFAR-bound

state.

Using a network approach to allostery is both intuitive and instructive for

garnering information as to what residues may play crucial roles in an allosteric

mechanism. However, there are limitations on how our correlation metrics may

provide insight. Not all correlations are taken into account, as there may be

correlations that exist but are computationally orthogonal to one another due

to bond constraints. Furthermore, the covariance matrix assumes fluctuations

about an average structure, but the structural average may not be adequate for

anharmonic type motions.

2.6 Conclusions

In this work, two of five residues (HisH:Lys181 and HisF:Asp98), experi-

mentally found to facilitate allostery in HisH-HisF, were determined to be along

the optimal pathway of our network model when using correlation information de-

termined from the residue c.o.m. method. The other three residues appear to be

related to the disruption of the allosteric state, for which we find strong qualita-

tive and quantitative arguments that HisF:Lys19 is a crucial link between ImGP

and the loop structure at the base of the (β/α)8 barrel. This loop structure is

distinctly different for the apo-state and holo-state and is arguably a feature of

the allostery exhibited in HisH? HisF. The α-carbon method was clearly similar to

the backbone c.o.m. method and traced out an optimal pathway that did not em-

phasize the dimer side chain interactions for ImGP (source) through HisH:Glu180

(sink). Using the covariance matrix to calculate quasiharmonic entropy values

gives notably different results when using the α-carbon versus the residue c.o.m.

method. In principal, quasiharmonic vibrational energies are also dependent on
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this choice and may lead to inadequate values for properties of the system, such as

heat capacity. As the residue c.o.m. is a composite set of the backbone and side

chain groups, our works suggest that this method provides superior information in

contrast to the popular α-carbon approach.
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Chapter 3

Weighted Implementation of

Suboptimal Paths (WISP): An

optimized algorithm and tool for

dynamical network analysis

3.1 Abstract

Allostery can occur by way of subtle cooperation among protein residues

(e.g., amino acids) even in the absence of large conformational shifts. Dynamical

network analysis has been used to model this cooperation, helping to computa-

tionally explain how binding to an allosteric site can impact the behavior of a

primary site many angstroms away. Traditionally, computational efforts have fo-

cused on the most optimal path of correlated motions leading from the allosteric

to the primary active site. We present a program called Weighted Implementation

of Suboptimal Paths (WISP) capable of rapidly identifying additional suboptimal

pathways that may also play important roles in the transmission of allosteric sig-

nals. Aside from providing signal redundancy, suboptimal paths traverse residues

that, if disrupted through pharmacological or mutational means, could modulate

the allosteric regulation of important drug targets.

39



40

To demonstrate the utility of our program, we present a case study describ-

ing the allostery of HisH-HisF, an amidotransferase from T. maritima thermotiga.

WISP and its VMD-based graphical user interface (GUI) can be downloaded from

http://www.nbcr.net/wisp.

3.2 Introduction

Allosteric regulation is a key mechanism whereby proteins respond to envi-

ronmental stimuli that modulate their activity.[83, 84, 85, 86, 87]. Classic models

of allostery (e.g., the MWC[25] and KNF[26] models) suggest that a binding event

at an allosteric site induces substantial conformational changes in the primary

catalytic site. However, allostery has since been observed in the absence of large-

scale conformational changes,[42, 27] suggesting that subtle alterations in protein

dynamics can induce a population shift in the conformational ensemble without

substantially changing the mean conformation of the protein. This subtle form of

allosteric communication can be modeled by dynamical network analysis.

Recent advances in both correlated-residue clustering and dynamical net-

work analysis have helped computationally quantify allosteric states. [88, 89, 54,

90, 91, 92, 93, 94, 95, 96] Dynamical network models of allostery often focus on

the single most direct path of residues leading from the allosteric to the primary

active site. However, few researchers have considered the state changes of slightly

longer (suboptimal) allosteric pathways. The statistical distribution of these ad-

ditional pathways may be useful for locating accessible residues that, if disrupted

via pharmacological or mutational means, could modulate the allosteric regulation

of important drug targets.

In this paper, we introduce Weighted Implementation of Suboptimal Paths

(WISP), a tool that compliments current dynamical network models of allostery

by rapidly calculating the primary communicating path between two residues as

well as the slightly longer suboptimal paths. To facilitate use, we have also created

a WISP plugin for the popular Visual Molecular Dynamics (VMD) package[97].

WISP has been specifically tested on several operating systems, using several ver-
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sions of Python, NumPy, SciPy, and NetworkX (Table 1).[98, 99, 100, 101, 102, 103]

The program is open source and can be downloaded from http://www.nbcr.net/wisp.

3.3 Materials and methods

3.3.1 Molecular-Dynamics trajectory input

As input, WISP accepts an aligned molecular dynamics trajectory in the

common multi-frame PDB format[104]. Trajectory post-processing is necessary

prior to WISP analysis, as most trajectories are not initially aligned or PDB for-

matted. We often use the freely available Visual Molecular Dynamics (VMD)

software package[97] to perform the necessary alignment and conversion.

3.3.2 Generating the correlation matrix

WISP, similar to other dynamical network analysis tools[55], is based on

the dynamic interdependence among protein constituents (e.g., amino acids). A

protein system is first simplified by representing each constituent as a single node.

For example, depending on user-specified WISP parameters, an amino acid can

be represented by a node positioned at the residue center of mass, the side-chain

center of mass, the backbone center of mass, or the alpha-carbon. As a default,

the residue center of mass is used.

The interdependence among nodes is represented as a connecting edge with

an associated numeric value that reflects its strength. There are numerous methods

for describing the interdependence among nodes in a protein network. Typically,

this interdependence is represented by a matrix C with values corresponding to the

weights of each edge. By default, WISP generates a N2 matrix C by calculating

the correlated motion among node-node pairs as shown in equations 1 and 2:

cij =
〈∆~ri(t) ·∆~rj(t)〉

(〈∆~ri(t)2〉〈∆~rj(t)2〉)1/2
(3.1)

∆~ri(t) = ~ri(t)− 〈~ri(t)〉 (3.2)
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where N is the number of nodes, i and j are indices corresponding to individual

nodes, ~ri(t) is the location of node i at time t, and cij is the matrix element at

position (i, j).

The absolute value of cij is larger when the motions of two nodes are highly

correlated or anticorrelated. In order to compute signaling pathways, it is useful

to construct a matrix where the opposite is true, i.e., where small values indicate

highly correlated or anti-correlated motions. Consequently, the correlation matrix

is functionalized according to eq. 3, as outlined in previous works.[54, 90]

wij = −log (|cij|) (3.3)

As a point of clarification, each wij can be thought of as a distance in func-

tionalized correlation space. Throughout the remainder of this paper, concepts like

length and distance will refer to spans in this space, unless specifically described

as Cartesian or physical. We further note that, while WISPs default functional-

ized correlation matrix is generally useful, any user-specified matrix that defines

signaling strength as inversely proportional to edge length can be used.

3.3.3 Reducing the complexity of the functionalized corre-

lation matrix

In order to improve the speed of subsequent path-finding steps, the com-

plexity of the functionalized correlation matrix W must be reduced. To this end,

two techniques are used. First, a contact-map matrix M contact identifies entries in

W that represent physically distant residues that are unlikely to be truly corre-

lated. By default, M contact is constructed using pcutoff, a user-specified Cartesian

cutoff distance. The average location of each atom over the course of the aligned

molecular dynamics trajectory is first calculated, followed by a pairwise Cartesian

distance comparison. Two nodes are considered to be in physical contact if the

average locations of any of their associated residue atoms come within pcutoff of

one another. M contact entries are set to zero for all node-node pairs that are not
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in physical contact. A simplified, functionalized correlation matrix W simp is then

constructed by multiplying W and M contact element-wise. The entries of W simp

that equal zero represent node-node interactions that are subsequently ignored.

Alternatively, users can provide their own M contact if desired.

Second, to further reduce the complexity of the functionalized correlation

matrix W , a pruning algorithm identifies nodes that only participate in pathways

having lengths in network space that are greater than another user-defined cutoff

(dcutoff). As the ultimate goal is to identify suboptimal paths with lengths less than

dcutoff, these nodes can be effectively discarded as well. To identify these nodes,

we first generate the set of all forced-node paths (FNPs). An FNP is the optimal

pathway between two user specified nodes na and nb that is forced to pass through

a given third node ni. For any two fixed nodes na and nb, each third node ni is

associated with a single FNP. The set of all FNPs can therefore be generated by

iterating over all the nodes, ni, of the system.

To calculate an FNP, Dijkstra’s algorithm, included in NetworkX[98]21 is

first used to identify the optimal paths between na → ni, and nb → ni, respectively.

The FNP has a length equal to the sum of these two constituent paths. Any path

between na and nb that passes through ni must have a length equal to or greater

than that of the associated FNP. Consequently, if the length of the FNP is greater

than dcutoff, all entries in W simp associated with ni are set to zero, so that ni is

effectively ignored.

3.3.4 Calculating suboptimal pathways

Having generated W simp, we are now ready to search for both the single

optimal and multiple suboptimal paths between na and nb. Fortunately, the op-

timal path is fairly easy to identify using Dijkstra’s algorithm, mentioned above.

In contrast, identifying all suboptimal paths is difficult because the number of

possible pathways between na and nb grows rapidly as the total number of nodes

increases.

To identify suboptimal paths, a recursive, bidirectional approach is em-

ployed. Simultaneous searches start from na and nb (Fig. 3.1, in blue and red,
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na nb*

Figure 3.1: Simultaneous searches start from na and nb (blue and red, respec-
tively) and recursively traverse the nodes of the dynamical network. Connec-
tions/correlations between nodes that are physically distant are ignored (grey lines).
Nodes eliminated using the FNP technique are also ignored (grey circles). As soon
as any of the lengthening paths grows too long, that branch of the recursion is killed
(red X). At each recursive step, all branches originating from na and nb are com-
pared for common nodes (asterisk). If a common node exists, the two paths are
joined. If the length of this composite path is sufficiently short, a suboptimal path
has been identified.
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respectively) and recursively traverse the nodes of the dynamical network. The

recursive algorithm ignores the connections/correlations between nodes that are

physically distant (Fig. 3.1, grey lines). Additionally, nodes eliminated using the

FNP technique described above are likewise ignored (Fig. 3.1, grey circles). As

soon as any of the lengthening paths grows longer than dcutoff, that branch of the

recursion is killed (Fig. 3.1, red X). At each recursive step, all branches originating

from na and nb are compared for common nodes (Fig. 3.1, the node marked with

an asterisk). If a common node exists, the two paths are joined at this node. If

the length of this composite path is less than dcutoff, a suboptimal path has been

identified. As WISP has been developed to take advantage of multiple processors,

running the program on a multi-core system can lead to further speedups beyond

the software optimizations described above.

3.3.5 Program output

The program output is a directory containing multiple files, including the

specific W and M contact matrices used. The primary output file is a TCL script

that, when loaded into VMD, draws three-dimensional splines representative of the

optimal and suboptimal paths. User defined parameters control the relationship

between spline thickness, color, opacity and path length. Useful information is

also given as comments in the TCL file, including path lengths and participating

protein residues.

3.3.6 Graphical user interface

In addition to the command-line program, we have also developed a Visual

Molecular Dynamics[97] (VMD) plugin and Tcl-based GUI for easy preparation

and visualization of WISP results. The plugin can be accessed through the VMD

Extensions menu. The main window of the WISP GUI (Fig. 3.2) allows the user to

specify the molecular trajectory and the allosteric-signal source and sink residues.

Several additional window interfaces allow the user to modify more advanced pro-

gram options if needed. All options available through the WISP command-line
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interface are available to users of the GUI.

Figure 3.2: In this demonstration, the GUI is used to visualize the allosteric path-
ways between Leu50:HisF and Glu180:HisH. In the main window (top left), the user
selects the relevant molecule, and which residues to use as the source and sink. The
user may also select to load the visualization into VMD upon job completion. The
setting option windows (left and bottom right) allow the user to specify additional
WISP arguments.

Once satisfied with the run specifications, the user may click the Run WISP

button at the bottom of the WISP main window to execute the job. The plugin

loads the visualization of the allosteric pathways into the main VMD window,

where the appearance can be further modified according to the users preferences.
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3.3.7 HisH-HisF Details

The molecular dynamics simulations of HisH-HisF used in the current study

have been described previously.[90] In brief, a model of the HisH-HisF apo dimer

was prepared from the 1GPW[80] crystal structure (Thermotoga maritima). To

generate the corresponding holo structure, the 1OX5[64] crystal structure (Sac-

charomyces cerevisiae), which contains a co-crystallized PRFAR allosteric effector

molecule, was aligned to the apo model, effectively positioning PRFAR within the

1GPW:HisF allosteric site. The aligned 1OX5 PRFAR was then merged with the

1GPW-based apo model to yield the corresponding holo structure. Following sol-

vation and equilibration, 20 ns of production dynamics were run for both the apo

and holo systems using NAMD[14], the CHARMM27 force field[20], and the same

PRFAR parameterization used previously.[73]

3.4 Results/Discussion

Allosteric regulation is crucial to many biological processes. Consequently,

one natural strategy for rational drug design is to impede or agonize protein func-

tion via allosteric modulation. Classic views of allostery suggest that the binding

of an effector molecule at an allosteric site induces large conformational shifts that

alter the activity of the primary site. However, as allostery is not necessarily lim-

ited to large shifts, this reasoning does not explain some examples of regulation at

a distance. For instance, Chung-Jung Tsai et al.[27] recently showed that signifi-

cant backbone deformations are not required for an allosteric effect; rather, in the

absence of large conformational changes, subtle shifts in local dynamics driven by

entropic effects[42] govern certain types of allostery.

Quasi-harmonic analysis (e.g., like that used by software packages such as

CARMA[76, 75] to calculate entropy) is commonly used to build dynamical net-

work models that quantify signaling pathways among protein constituents. Op-

timal and suboptimal pathways are calculated that connect protein constituents

believed to be important for allostery (i.e., sources and sinks). An optimal path-

way is the shortest distance traversed between source and sink along weighted
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edges (e.g., as determined by correlated motions), and suboptimal pathways are

those closest in length to, but not including, the optimal path. Existing tools can

compute optimal and suboptimal pathways between residues [55]36; however, these

programs lack the speed required to compute more than fifty suboptimal pathways

within a reasonable amount of time (several hours or days). As statistics related

to suboptimal pathways may provide important insights that cannot be gleaned

from the single optimal pathway, faster algorithmic advances must be made.

WISP was designed to facilitate the calculation of hundreds of suboptimal

pathways in minutes, thereby permitting fast and robust statistical analysis of bi-

ological systems modeled as dynamical networks. For example, using a modern

workstation with 24 cores, we recently used a 20,000-frame trajectory to identify

750 pathways. WISP loaded and analyzed the trajectory, generated the functional-

ized correlation matrix, and identified the 750 pathways in 21 min and 52 seconds.

When the calculation was repeated using a copy of the functionalized correlation

matrix saved from the first run, the 750 pathways were identified in only 5 minutes

and 44 seconds.

To demonstrate the utility of the WISP algorithm, we used it to study HisH-

HisF, a multidomain globular protein known to exhibit allostery. The activity of

HisH-HisF, which regulates the fifth step of the histidine biosynthetic pathway in

plants, fungi, and microbes, is substantially altered by the allosteric effector N1-

[(5’-phosphoribulosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide

(PRFAR).[63] Guided by previous work,[90] we investigated the suboptimal path-

ways between residues Leu50:HisF and Glu180:HisH using 20-ns molecular dy-

namics simulations of both apo and holo HisH-HisF. A total of 700 pathways (Fig.

3.3) between Leu50:HisF and Glu180:HisH were calculated using WISPs default

correlation (eqs. 1-3) and contact-map matrices, described in the Materials and

Methods. Had only the two optimal pathways (apo vs. holo) been considered,

we would have concluded that communication between the allosteric and primary

site is fundamentally different in the presence and absence of the PRFAR effector

molecule (Fig. 3,4). The optimal pathway between Leu50:HisF and Glu180:HisH

in the apo state was LEU50:HisF→ PHE49:HisF→ PHE77:HisF→ PRO76:HisF
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→ LYS181:HisH → GLU180:HisH. In contrast, the optimal pathway with PR-

FAR bound was LEU50:HisF → GLY80:HisF → VAL79:HisF → LYS99:HisF →
ASP98:HisF → LYS181:HisH → GLU180:HisH.

A) Glu180:HisH

Leu50:HisF

B) Glu180:HisH

Leu50:HisF

Figure 3.3: The 700 shortest paths between Leu50:HisF and Glu180:HisH, shown
as red splines, derived from A) the apo trajectory, and B) the holo trajectory. Wisp
allows the user to choose between a number of graphical settings to better visualize
signaling among nodes.

However, when multiple suboptimal paths were considered, it became ap-

parent that the allosteric mechanism is in fact far more intricate. The optimal path

in the apo simulation is the shortest suboptimal path in the holo simulation (top

0.3%), and the optimal path in the holo simulation is the 13th shortest suboptimal

path in the apo simulation (top 2.0%). In light of this multi-pathway analysis, the

idea that PRFAR binding fundamentally alters a solitary line of communication

between the allosteric and primary site becomes less tenable. Rather, the binding

of the effector molecule likely has small effects on multiple pathways, both optimal

and suboptimal, that when taken together yield a substantial allosteric effect.

We next sought to characterize the strength of the allosteric effect. The

lengths of the two optimal pathways did not differ substantially (apo: 2.97; holo:
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Figure 3.4: A histogram of the 700 path lengths associated with the apo and
holo trajectories are shown. The optimal paths are denoted ”Shortest Path”. The
path distribution is largely shifted to the left for the holo (allosteric) state. This
shift likely results from a more coherent signal in the holo simulation, indicating a
possible decrease in the entropy along the pathways due to PRFAR binding.
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2.84). Consequently, had only these two pathways been considered, some might

have mistakenly concluded that the allosteric consequences of PRFAR binding are

minor. In contrast, when hundreds of suboptimal paths were also considered, a

large PRFAR-dependent shift in communication between the allosteric and pri-

mary site became apparent. To demonstrate this shift, we generated a histogram

of all path lengths for both the holo and apo simulations (Fig. 3.4). The distribu-

tion derived from the holo trajectory is substantially skewed towards shorter path

lengths, suggesting that the motions of the residues connecting the allosteric and

primary sites are more tightly correlated when PRFAR is bound. A loss of entropy

along the pathways may therefore explain the allosteric signal.

To identify protein residues critical for allosteric transmission, we counted

the number of times each residue appeared in any of the 700 paths associated

with the apo and holo trajectories, respectively (i.e., the degeneracy of each node,

Fig. 3.5). Importantly, a number of residues had large effector-molecule dependent

shifts in degeneracy (i.e., HisF LEU47, VAL48, ILE75, THR78, and ALA97 from

the apo trajectory; and HisF VAL48, ILE73, ILE75, and THR78 from the holo

trajectory; see Fig. 5C). Importantly, these residues, which may be crucial for the

regulation of protein activity, did not all appear in the optimal apo and holo paths

and so would not have been identified had the suboptimal paths been ignored.

Compounds that target these residues may serve as useful precursors to future

allosteric modulating drugs.

3.5 Conclusion

We present WISP, a program that rapidly calculates both optimal and sub-

optimal communication pathways between distinct protein residues. The program

is available as a VMD plugin or a standalone command-line script. WISP outputs

path members and lengths that can be subsequently used in the analysis of path

distributions, node degeneracy, etc.

To demonstrate the utility of our program, we presented a dynamical anal-

ysis of the HisH-HisF protein. Allosteric modulation in our test case was likely
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Figure 3.5: The total number of times a given residue participates in any of the
700 paths (i.e., node degeneracy) is shown in A) HisF and B) HisH. Green indicates
the holo state, blue indicates the apo state, and cyan indicates an overlap. Note that
Leu50:HisF and Glu180:HisH are in all 700 paths. C) A numerical representation of
the same data. The comparison between the apo and holo states shows that certain
residues are more sensitive to the allosteric effector PRFAR than others (shaded
columns).
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the result of subtle changes in multiple suboptimal pathways, rather than large

changes in a single optimal path. Additionally, we showed that PRFAR binding

causes a large shift towards shorter path lengths (i.e., more correlated motions)

in 700 communication pathways between residues HisF:Leu50 and HisH:Glu180,

explaining the strong allosteric effects of this modulator (Fig. 4.4). The multiple

suboptimal pathways are dominated by a few select residues, as indicated by the

shift in node degeneracy between the apo and holo states (Fig. 4.5).

Table 3.1: WISP has been tested on a number of operating systems, using various
versions of NumPy, SciPy, and NetworkX. We note that installation under Windows
was difficult; however, the command-line version of the program was successfully exe-
cuted after installing the appropriate dependencies using the ActivePython software
package.

Operating System Python NumPy SciPy NetworkX
Scientific Linux 6.4 2.6 1.7 0.9.0 1.7
Mac OSX 10.6 2.7.2 1.6.1 0.9.0 1.8.1
Ubuntu 12.04 2.7.5 1.7.1 0.12.0 1.8.1
Windows XP 2.7.3 1.7.0rc1 0.11.0 1.8.1

WISP has been successfully tested on a number of platforms (Table 3.1).

We are hopeful that the program will be a useful tool for the computational-biology

community.
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Chapter 4

Solving evolution equations using

interacting trajectory ensembles

4.1 Abstract

In this paper, we describe a general approach to solving evolution equations

for probability densities using interacting trajectory ensembles. Assuming the ex-

istence of a positive definite (probabilistic) description of the state of the system,

we derive general equations of motion for the trajectories in the kinematic space

(e.g., configuration or phase space). The vector field describing the time rate of

change of the trajectory ensemble members depends, in general, on both external

forces and on the probability density itself. The dependence of the equations of

motion on the probability density lead to interactions between the ensemble mem-

bers and a loss of their statistical independence. The formalism is illustrated by

a number of numerical examples. For multidimensional systems, a gauge-like free-

dom exists in the choice of the underlying vector field, which leaves the evolution

of the probability density invariant.

55
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4.2 introduction

The trajectory is a central object in the theoretical description of the time

evolution of particles. In classical mechanics [105], the position x of a particle of

mass m evolves with time under the forces defining the dynamical system. The

function x(t) then traces out the trajectory of the particle in the configuration

space in the Newtonian or Lagrangian formulations of dynamics, while the time

derivative v(t) = ẋ(t) defines the instantaneous velocity. In Hamiltonian dynamics,

the corresponding trajectory x(t) = (q(t), p(t)) moves in the systems phase space,

with the functions q(t) and p(t) solving Hamiltons equations [105],

q̇ =
∂H

∂p
, (4.1)

ṗ = −∂H
∂q

, (4.2)

where H(q, p) is the Hamiltonian of the system.

The classical mechanics of deterministic systems can be generalized to in-

corporate the effect of many external bath degrees of freedom in the form of friction

and random forces; an example is the Langevin equation [106, 107, 108]

mẍ = −U ′(x)−mγ0ẋ+ f(t), (4.3)

where U ′(x) is the derivative of the potential energy, γ0 is the friction constant,

and f(t) is a random force. The force and friction are related by the second

fluctuation-dissipation theorem:

〈f(0)f(t)〉 = 2kBTγ0δ(t), (4.4)

where kB is Boltzmanns constant, and the average on the left is over realizations of

the random force. In this case, the correlation function of the force is a δ-function,

indicating Markovian (memoryless) stochastic dynamics; this can be generalized

to include finite memory effects. The trajectory x(t) that solves Eq. (3) is itself a

random function of time. In Ref. [109], Pollak describes the connection between

infinite dimensional Hamiltonian systems and reduced stochastic descriptions, such

as the generalized Langevin equation (see also [110]).
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In classical mechanics, an alternative view of the dynamics of a system is

given by considering statistical distributions in the systems configuration or phase

space, consistent with constraints on the system. These distributions connect with

the trajectory description as representations of ensembles of trajectories evolving

in time with their initial conditions sampled from the initial distribution. This

viewpoint is important for describing the equilibrium or non-equilibrium statisti-

cal mechanics of many-body systems, where the number of degrees of freedom is

much higher than the measurable and controllable macroscopic parameters, such as

temperature and volume [106, 107, 108]. A single trajectory in such cases contains

too much microscopic detail and is statistically insignificant, so the distribution

itself is the central quantity.

For classical deterministic systems, the dynamics are determined by the

classical Liouville equation [106]

∂ρ

∂t
= {H, ρ}, (4.5)

where ρ(q, p, t) is the probability density in phase space, H(q, p) is the system

Hamiltonian, and {H, ρ} is the Poisson bracket

{H, ρ} =
∂H

∂q

∂ρ

∂p
− ∂ρ

∂q

∂H

∂p
. (4.6)

For a classical system in contact with a thermal environment, the generaliza-

tion analogous to the Langevin equation (3) is the Kramers equation [106, 107, 108],

∂ρ

∂t
= {H, ρ}+ γ0

∂

∂p

(
p+mkBT

∂

∂ρ

)
ρ. (4.7)

The stochastic force appearing in the trajectory representation, Eq. (3), is here

replaced by a diffusive but deterministic term.

The state of a quantum mechanical system is described by its wave function

ψ(x, t) whose absolute square |ψ(x, t)|2 gives the configuration space probability

density, or by the density operator ρ̂(t), whose diagonal element 〈x|ρ̂|x〉 gives the

same quantity, even for statistical mixed states [111]. The density operator obeys

the quantum Liouville equation,

i~
dρ̂

dt
= [Ĥ, ρ̂], (4.8)
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where Ĥ is the Hamiltonian operator, [Ĥ, ρ̂] is the commutator of the two opera-

tors, and ~ is Plancks constant divided by 2π. In phase space, quantum systems

can be described by the Wigner function [112, 113, 114, 115],

ρw(q, p, t) =
1

2π~

∫ ∞
−∞
〈q − y

2
|ρ̂(t)|q +

y

2
〉eipy/~dy. (4.9)

This function is always real, and is analogous to the classical phase space density

that solves the classical Liouville equation. The Wigner function is not a true

probability density, however, as it can assume negative values.

For quantum mechanical systems, the uncertainty principle complicates the

concept of trajectory, as a system cannot have both a definite position x(t) and

velocity ẋ(t). In phase space, the state of a system cannot be localized beyond the

limit ∆q∆p = ~/2. Despite this, formulations of quantum mechanics in terms of

trajectories can be constructed. The path integral formulation expresses the propa-

gator 〈x, t|exp(−iĤ(t−t0)/~)|x0, t0〉 in terms of a sum over all paths connecting the

points (x, t) and (x0, t0) in spacetime [116]. Classical Lagrangian mechanics then

emerges from the asymptotic stationary phase limit of the path integral expres-

sion. A quantum formulation built explicitly on configuration space trajectories

is given by so-called Bohmian dynamics [117, 118, 119, 120], where classical-like

trajectories evolve under the influence of a force derived from the sum of the clas-

sical potential U(x) and a quantum potential UQ(x, t) that depends on the wave

function of the system:

UQ(x, t) = − ~2

2m

∇2ψ(x, t)

ψ(x, t)
. (4.10)

Treating quantum systems with classical or classical-like trajectories has been pur-

sued since the early days of quantum theory as both a method for solving problems

and as a tool for interpretation. In chemical physics, this remains an active area of

research, where quantum and semiclassical methods are developed that are based

on using classical molecular dynamics to solve the corresponding quantum equa-

tions of motion [117, 121, 122, 123, 124, 125].

In a recent series of papers, we proposed and developed a trajectory- based

method for solving the quantum mechanical equations of motion for the Wigner
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function [126, 126, 127, 128, 129]. The quantum Liouville equation is solved nu-

merically by representing iton averageas a positive continuous distribution function

approximated by an ensemble of phase space trajectories. Equations of motion for

these trajectories are derived from the exact equation of motion of the Wigner func-

tion. The nonclassical nonlocality of quantum mechanics leads to a breakdown of

the statistical independence of the trajectories in the ensemble. The motion of

the quantum trajectories are entangled with each other through interactions that

model quantum nonlocality, and the ensemble must be propagated as a unified

whole. The method can be used to simulate the dynamics of model quantum sys-

tems with good accuracy. In addition, it provides insight into the nonlocal nature

of quantum dynamics and a classical mechanical perspective on the nonclassical

phenomena underlying quantum processes.

The nonlocality of quantum mechanics leads to interactions between the

trajectories in the method, and this provides an appealing perspective on the un-

certainty principle and quantum entanglement as manifested in phase space rep-

resentations. However, this effect is more general than one due to the nonclassical

components of quantum mechanics. Any evolution equations in phase space that

incorporate additional terms beyond the Poisson bracket structure of Eq. (5) will

lead to nonlocal interactions between ensemble members. Indeed, we illustrated

these effects and proposed a corresponding numerical methodology in the context

of diffusion equations in phase space, such as Eq. (7), in Ref. [127].

In this paper, we describe a general approach to solving evolution equations

for probability densities using interacting trajectory ensembles. Assuming the

existence of a positive definite (probabilistic) description of the state of the system,

we derive general equations of motion for the trajectories in the kinematic space

(e.g., configuration or phase space). The equations of motion for the ensemble

members depend, in general, on both external forces and on the probability density

itself. This second part then leads to interaction terms between the ensemble

members.

The organization of the rest of the paper is as follows. In Section 4.3,

we describe the general formalism for the case of distributions in one dimension.
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The equations of motion for a continuous distribution are derived, and a varia-

tional approach is implemented to derive the equations for a finite sampling of

the underlying distribution by a trajectory ensemble. In Section 4.4, the approach

is applied to modeling a solution of the one- and two-dimensional Smoluchowski

equations describing diffusion under the influence of time-independent and time-

dependent potentials. The results are compared with the results of conventional

Brownian dynamics simulations. In Section 4.5, we discuss trajectory representa-

tion of evolution equations in higher dimensions related to a gauge-like freedom in

the choice of the resulting vector field. The general principles are illustrated with

several examples. Finally, a summary and discussion are given in Section 4.6.

4.3 Formalism

We start with a general evolution equation in one space coordinate x and

time t (the generalization to higher dimensions is given below):

∂ρ

∂t
= L̂ρ. (4.11)

Here, ρ(x, t) is a positive probability distribution and L̂ is a linear operator. The

solution ρ(x, t) can be expressed trivially as the convolution of itself with a delta

function:

ρ(x, t) =

∫
δ(x− ξ)ρ(ξ, t)dξ. (4.12)

We now assume that the solution at time t can be written in the form

ρ(x, t) =

∫
δ(x−X(ξ, t))ρ(ξ, 0)dξ, (4.13)

where δ(x − X(ξ, t)) is a propagator that evolves initial density from point ξ at

t = 0 to point x at time t. X(ξ, t) satisfies the initial condition X(ξ, 0) = ξ. This

form preserves the normalization of the density:∫
ρ(x, t)dx =

∫
ρx, 0dx. (4.14)

We take Eq. (13) as our ansatz, recognizing that the equations of motion for the

function X(ξ, t) will be complicated, depending in general on the entire history of

the evolution of ρ(x, t).
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We now derive these equations of motion. From Eq. (13), the time deriva-

tive of the density becomes

∂ρ(x, t)

∂t
= −

∫
Ẋ(ξ, t)δ′(x−X(ξ, t))ρ(ξ, 0)dξ, (4.15)

where δ′(x − X) = (∂/∂x)δ(x − X). The derivative with respect to x acting on

the delta function can come out from under the integral, giving

∂ρ(x, t)

∂t
= − ∂

∂x

∫
Ẋ(ξ, t)δ(x−X(ξ, t))ρ(ξ, 0)dξ, (4.16)

The quantity Ẋ(ξ, t) is the velocity of the point X(ξ, t), which is the point that

evolves from ξ as time increases from 0 to t. We can thus write Ẋ(ξ, t) =

Ẋ(X(ξ, t)) ≡ Ẋ(X, t). (Note that with this definition of notation we do not

mean to imply that X = ξ. Rather, we express the vector field as a function of

the current position X and time t, rather than as a function of the initial position

ξ and t.) The delta function allows us to write Ẋ(X, t) = Ẋ(x, t) and the integral

then yields
∂ρ(x, t)

∂t
= − ∂

∂x
[Ẋ(x, t)ρ(x, t)], (4.17)

or in terms of the current j(x, t) = Ẋ(x, t)ρ(x, t),

∂ρ(x, t)

∂t
+
∂j(x, t)

∂x
= 0, (4.18)

This is just the equation of continuity. It allows us to cast the evolution equation

in the form

− ∂

∂x
[Ẋ(x, t)ρ(x, t)] = L̂ρ(x, t). (4.19)

The vector field as a function of x at time t then becomes, by integration

Ẋ(x, t) ≡ V (x, t) = − 1

ρ(x, t)

∫ x

L̂ρ(y, t)dy, (4.20)

These equations of motion are then integrated to propagate the density using Eq.

(13).

As a check on our results, consider an infinitesimal time propagation of the

density. Under the evolution equation, an infinitesimal propagation is

ρ(x, t+ ε) ' ρ(x, t) + εL̂ρ(x, t), (4.21)
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which becomes, in terms of our ansatz,

ρ(x, t+ ε) '
∫
δ(x− ξ − εẊ(ξ, 0))ρ(ξ, t)dξ, (4.22)

where we have used the short time expression

X(ξ, t+ ε) ' ξ + εẊ(ξ, t) (4.23)

for the trajectory evolution. Expanding the delta function gives

δ(x− ξ − εẊ(ξ, t)) ' δ(x− ξ)− εẊ(ε, t)δ′(x− ξ), (4.24)

where δ′(x− ξ) = (∂/∂x)δ(x− ξ). Inserting this gives

ρ(x, t+ ε) ' ρ(x, t)− ε
∫
Ẋ(ξ, t)δ′(x− ξ)ρ(ξ, t)dξ. (4.25)

Then, using

Ẋ(ξ, t) = − 1

ρ(ξ, t)

∫ ξ

L̂ρ(y, t)dy, (4.26)

we obtain

ρ(x, t+ ε) ' ρ(x, t) + ε

∫ [∫ ξ

L̂ρ(y, t)dy

]
δ′(x− ξ)dξ. (4.27)

We now note that (∂/∂x)δ(x− ξ) = −(∂/∂ξ)δ(x− ξ), and integrate by parts with

respect to ξ. This gives

ρ(x, t+ ε) ' ρ(x, t) + ε

∫
L̂ρ(ξ, t)δ(x− ξ)dξ. (4.28)

Finally, performing the integral reproduces Eq. (21), as it should. Numerical

implementation involves sampling the density with a finite number of points,

ρ(x, t) =
1

N

N∑
j=1

δ(x− xj(t)), (4.29)

0 and then propagating the points using

ẋj(t) = V (xj(t), t), (4.30)

where V (x, t) is given by Eq. (20). The function ρ and its derivatives must be

estimated at each point xj from the evolving ensemble.
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In practice, a finite ensemble of N trajectories is employed to represent the

evolving probability distribution. In addition, smoothing functions φ(x) must be

used for interpolating the solution between ensemble members, allowing derivatives

to be computed. Here we assume for simplicity the same smoothing function for

each member of the ensemble; this can be generalized in numerical implementation.

We now derive the equations of motion for a finite smoothed ensemble using

a variational approach, and investigate its equivalence to the analysis given above

in the continuum limit. We take an ansatz for the density in terms of an ensemble

of trajectories:

ρ(x, t) =
1

N

N∑
j=1

φ(x− xj(t)) (4.31)

where φ(x) is the smoothing function (in practice, a Gaussian). Inserting Eq. (31)

into the evolution equation, Eq. (11), gives

∂ρ

∂t
= − 1

N

N∑
j=1

ẋjφ
′(x− xj(t)), (4.32)

where φ′(x) = dφ(x)/dx. We now define an error function ε(ẋ1, ẋ2, ..., ẋN) as

ε =

∫ (
∂ρ

∂t
− L̂ρ

)2

dx. (4.33)

This becomes

ε(ẋ1, ẋ2, ..., ẋN) =

∫ [ N∑
j=1

ẋjφ
′(x− xj) + L̂φ(x− xj)

]2

dx. (4.34)

This error is to be minimized with respect to the velocities ẋk. This gives

∂ε

∂ẋk
= 2

∫
φ′(x− xj)

[
N∑
j=1

ẋjφ
′(x− xj) + L̂φ(x− xj)

]
dx = 0. (4.35)

Thus, a system of linear equations for the velocities ẋk results:

N∑
j=1

(∆kjẋj + Λkj) = 0, (4.36)

where

∆kj =

∫
φ′(x− xk)φ′(x− xj)dx, (4.37)



64

Λkj =

∫
φ′(x− xk)L̂φ(x− xj)dx. (4.38)

Defining the vector λ with components

λk =
N∑
j=1

Λkj (4.39)

we can write Eq. (36) as

∆ẋ = −λ, (4.40)

which gives the formal solution for ẋ as

ẋ = −∆−1λ. (4.41)

It is instructive to derive these quantities explicitly for a simple case: the

diffusion equation in one dimension. Here, the operator L̂ is given by

L̂ = D
∂2

∂x2
. (4.42)

We take the smoothing function to be a Gaussian: φ(x) = exp(−ax2). Then, the

elements of the matrices ∆ and Λ can be computed analytically. We find

∆kj = a

√
π

2a

[
1− a(xk − xj)2

]
e−

1
2
a(xk−xj)2 , (4.43)

Λkj = −Da2

√
π

2a

[
3(xk − xj)− a(xk − xj)3

]
e−

1
2
a(xk−xj)2 . (4.44)

We can compare the predictions of this variational approach with the results

obtained previously by taking the continuum limit of the former. The first term

of Eq. (36) becomes∑
j

∆kjẋj →
∫
ρ(ξ, t)

[∫
φ′(y − x)φ′(y − ξ)dy

]
ẋ(ξ, t)dξ, (4.45)

where xj → x and the sum over j becomes an integral over ξ with the weight-

ing factor of the instantaneous density ρ(ξ, t). We can further let the smoothing

functions φ(x− y)→ δ(x− y), yielding∑
j

∆kjẋj →
∫
ρ(ξ, t)

[∫
δ′(y − x)δ′(y − ξ)dy

]
ẋ(ξ, t)dξ. (4.46)
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Noting that

δ′(x− ξ) =
∂

∂x
δ(x− ξ) = − ∂

∂x
δ(x− ξ), (4.47)

we can integrate by parts to find∫
ρ(ξ, t)

[∫
δ′(y − x)δ′(y − ξ)dy

]
ẋ(ξ, t)dξ

=

∫ ∫ (
∂

∂x
[ẋ(ξ, t)ρ(ξ, t)]

)
δ′(y − x)δ(y − ξ)dydξ (4.48)

and evaluating the integral over ξ gives∑
j

∆kjẋj →
∫ (

∂

∂y
[ẋ(y, t)ρ(y, t)]

)
δ′(y − x)dy (4.49)

or, following a second integration by parts, we obtain finally,∑
j

∆kjẋj → −
∂2

∂x2
[ẋ(x, t)ρ(x, t)] . (4.50)

For self-adjoint operators L̂ , a similar analysis yields∑
j

Λkj → −
∂

∂x

[
L̂ρ(x, t)

]
. (4.51)

Putting the pieces together yields

∂2

∂x2
[ẋ(x)ρ(x)] = − ∂

∂x

[
L̂ρ(x)

]
. (4.52)

This is the derivative with respect to x of the continuity equation form of the

evolution equation.

−∂j(x, t)
∂x

= − ∂

∂x
[ẋ(x, t)ρ(x, t)] = L̂ρ(x, t). (4.53)

Integrating Eq. (52) with respect to x twice (and setting integration constants

equal to zero) then gives the same result as the equations of motion derivation:

ẋ(x, t) = − 1

ρ(x, t)

∫ x

L̂ρ(y, t)dy. (4.54)

The one-dimensional analysis given above can be generalized to multidi-

mensional systems. Considering an N dimensional space spanned by Cartesian

coordinates = (x1, x2, ..., xN), we have the continuity equation

∂ρ(x, t)

∂t
+∇ · j(x, t) = 0 (4.55)
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and the relation between the vector field and the evolution equation

−∇ ·
[
Ẋ(x, t)ρ(x, t)

]
= L̂ρ(x, t). (4.56)

In the multidimensional case, there is considerable freedom in the integration of

this partial differential equation. In general, we can decompose the operator L̂

into N terms, as

L̂ =
N∑
j=1

λ̂j (4.57)

(some of the terms can be chosen to equal zero). Each of these terms can be paired

with one term of the divergence ∇ ·
[
Ẋ(x, t)ρ(x, t)

]
on the left side of Eq. (56),

yielding a set of N partial differential equations:

∂

∂xj
(Ẋj(x, t))ρ(x, t) = −λ̂jρ(x, t) (4.58)

for j = 1, 2, ..., N . The components of the vector field as functions of x at time t

then become, by integration,

Ẋj(x, t) ≡ Vj(x, t) = − 1

ρ(x, t)

∫ xj

λ̂jρ(xa, x2, ..., yj, ..., xn, t)dyj (4.59)

(j = 1, 2, ..., N).

There is great freedom in the partition given in Eq. (57). For a separable

operator L̂ =
∑

j L̂j(xj) , it is natural (but not necessary) to associate each λ̂j =

L̂j(xj). Alternatively, each λ̂j can be assigned to a fraction of L̂ itself:

λ̂j = αjL̂, (4.60)

where the sum
∑

j αj = 1. Many other decompositions can be contem-

plated.

4.4 Numerical examples

We now illustrate the general formalism described above by showing the

results of numerical solution of evolution equations using the interacting trajectory
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method, and compare the results with the standard method of Brownian dynamics.

We treat evolution equations of the form

∂ρ(x, t)

∂t
= D

∂

∂x

(
1

kbT

∂U(x, t)

∂x
+

∂

∂x

)
ρ(x, t) (4.61)

in one dimension, or

∂ρ(x, t)

∂t
= D∇ ·

(
1

kbT
∇U(x, t) +∇

)
ρ(x, t) (4.62)

in multiple dimensions, where D = kBT/mγ. These correspond to diffusion in

overdamped systems, as described by the Smoluchowski equation [107].

For the one-dimensional case, the interacting trajectory vector field becomes

Ẋ(x, t) = − D

kBT

∂U(x, t)

∂x
− D

ρ(x, t)

∂ρ(x, t)

∂x
. (4.63)

In higher dimensions this generalizes to

Ẋ(x, t) = − D

kBT
∇U(x, t)− D

ρ(x, t)
∇ρ(x, t). (4.64)

The corresponding Langevin equation describing the Brownian motion of the sys-

tem is

ẋ(t) = − D

kBT

∂U(x, t)

∂x
+

1

mγ
R(t), (4.65)

where R(t) is a random force. The generalization to higher dimensions is

ẋ(t) = − D

kBT
∇U(x, t) +

1

mγ
R(t). (4.66)

We compare numerical solutions of the equations of motion for the interacting

trajectory ensembles with an ensemble of trajectories evolving under the stochas-

tic Langevin equation. We consider two one-dimensional potentials and a two-

dimensional system.

The first one-dimensional model consists of a linear plus cosine potential,

given by

U(x) = 1− 0.15x− cos(0.6x). (4.67)

The evolving density ρ(x, t) is approximated by an ensemble of N trajecto-

ries xj(t)(j = 1, 2, ..., N) and smoothed using

ρ(x, t) =
1

N

N∑
j=1

φ(x− xj(t)) (4.68)
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with the smoothing functions φ(x) = (1/
√

2πh)exp(−x2/2h2). The widths h of

the smoothing functions are given by h = [4/N(d + 2)]1/(d+4), where d = 1 is the

dimension of the system [130]. We take m = 1, γ = 1, and kBT = 3.0 in our sim-

ulations. Both the interacting trajectory and Brownian dynamics simulations are

performed using 1000 trajectories with initial conditions sampled from a Gaussian

distribution centered at x = 0 with a standard deviation σ = 1. The interacting

trajectory equations of motion are solved using a RungeKutta RK4 algorithm [131]

with timestep of ∆t = 0.02. The stochastic Langevin equation is integrated using

the method of Ermak, as described in Ref. [132].

The results of the simulations are shown in Fig. 4.1. Four snapshots of

the evolving density ρ(t) for the interacting trajectory method are shown as solid

curves. These are compared with the Brownian dynamics simulation, shown as

dashed curves. The two results are nearly superimposable. Also depicted in the

figure is the potential U(x). The system starts initially (t = 0) in one well of the

metastable system. The system undergoes diffusion and directed transport from

left to right, down the energy stairway, as time increases.

The second one-dimensional model is a time-dependent sawtooth potential

U(x, t) = u(x)g(t) modeling the operation of a Brownian ratchet [133, 134]. The

spatial part is periodic in space with period L : u(x + L) = u(x). Between x = 0

and x = L it is given by

u(x) =

a(x/xs), 0 < x < xs,

a(1− (x− xs)/xL), xs < x < L,
(4.69)

where xs + xL = L. In our calculations xs = 2 and xL = 10. The function

g(t+ τ) = g(t) switches periodically between 1 and 0. The period τ is taken to be

13.5, and during (0,τ) the function is given by

g(t) =

1, 0 < t < 10.0,

0, 10.0 < t < 13.5.
(4.70)

The barrier height a = 8kBT , and we take kBT = 2.0. Other parameters are the

same as for Fig. 4.1.



69

Figure 4.1: Comparison of interacting trajectory ensemble simulation and Brow-
nian dynamics simulation for the linear plus cosine potential, Eq. (4.67). Four
snapshots of the evolving probability distributions are shown. The interacting tra-
jectory method is shown as solid curves. These are compared with the Brownian
dynamics simulation, shown as dashed curves. (a) t = 0. (b) t = 25. (c) t = 50. (d)
t = 75.
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The results of this model are shown in Fig. 4.2. Initially, the system is

localized in one minimum of the sawtooth potential. At t = 10.0, the potential

switches to zero, and the system undergoes diffusion. At t = 13.5, the potential

turns back on, and its asymmetric shape causes a net transport of the ensemble

from left to right. The convention for the plot is the same as in Fig. 4.1, and, again,

close agreement between interacting trajectory and Brownian dynamics results is

observed.

Figure 4.2: Comparison of interacting trajectory ensemble simulation and Brow-
nian dynamics simulation for the time-dependent Brownian ratchet potential. Four
snapshots of the evolving probability distributions are shown. The interacting tra-
jectory method is shown as a solid curve, and compared to the Brownian dynamics
simulation, shown as a dashed curve. (a) t = 0. (b) t = 25. (c) t = 50. (d) t = 75.

We now consider a two-dimensional model, constructed by adding a har-

monic term in y to the one-dimensional linear plus cosine system. The frequency

of the harmonic oscillator depends on x.

U(x, y) =
1

2
(1.15− 0.03x)y2 + (1− 0.15x− cos(0.6x)). (4.71)
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The same parameters and method are employed to solve the equations, but with

N = 2000 trajectories for the interacting ensemble method. We find that to get

smooth results, 5000 trajectories are required for the Brownian simulations.

The two-dimensional results are shown in Fig. 4.3. Net motion down the

energy stairway, from left to right, is observed, as in the one-dimensional case of

Fig. 4.1. In addition, spreading in the y direction is observed, consistent with the

weakening of the harmonic restoring force in y as x increases. Excellent agreement

between the two methods is again obtained.

4.5 Gauge freedom in multidimensional systems

We now return to the issue of ambiguity in defining a trajectory repre-

sentation for evolution equations in higher dimensions. The freedom associated

with decomposing the equations of motion is reminiscent of the freedom associ-

ated with the choice of gauge in electromagnetic theory [135]. In particular, we

can transform the vector field V (x, t) governing the trajectory representation by

a gauge-like transformation

v(x, t)→ V ′(x, t) = V (x, t) + W (x, t) (4.72)

where W (x, t) can be any vector field that satisfies the condition

∇ ·W (x, t)ρ(x, t)) = 0 (4.73)

Thus, there are infinitely many trajectory representations of a given evolution

equation, all related by transformations of the form Eqs. (72) and (73).

We illustrate this general principle with a concrete example, consisting of

isotropic diffusion in two dimensions. The operator L̂ is then given by

L̂ = D

(
∂2

∂x2
+

∂2

∂y2

)
(4.74)

We decompose the operator using its separability: λ̂x = D∂2/∂x2 and λ̂y =

D∂2/∂y2. Eq. (20) then gives the vector field

Ẋ(x, y, t) = − D

ρ(x, y, t)

∂ρ(x, y, t)

∂x
, (4.75)
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Ẏ (x, y, t) = − D

ρ(x, y, t)

∂ρ(x, y, t)

∂y
, (4.76)

A gauge-like transformation can be performed on this vector field by adding a

two-dimensional vector (Wx.Wy) that obeys ∇ · (W ρ) = 0. Many such vectors are

possible; here we consider a family of vectors given by

Wx(x, y, t) =
δ

ρ(x, y, t)

∂ρ(x, y, t)

∂y
(4.77)

Wy(x, y, t) = − δ

ρ(x, y, t)

∂ρ(x, y, t)

∂x
(4.78)

where δ is a variable parameter with the same units as the diffusion constant D.

It is easy to check that the divergence of W ρ is indeed zero.

In Fig. 4.4, we show a comparison of two interacting ensemble simulations.

The first, represented by solid lines in the contour plots, is identical to the results

of Fig. 4.3, while the dashed contours show the results of including gauge terms in

the vector field. Vector fields of the form given in Eqs. (77) and (78) are employed,

with δ = 1. All other parameters are as before. It is apparent that the evolving

functions are virtually identical, although analysis of individual trajectories in the

ensembles show their motion is quite different between the two simulations.

As a further example of gauge freedom in trajectory methods, we consider

standard Hamiltonian dynamics. Here, the vector field in phase space is simply

that given by Hamiltons equations, and is independent of the density ρ(q,p, t).

Still, there are infinite possible vector fields which yield the same evolution of q.

The classical Liouville equation is

∂ρ

∂t
= L̂ρ = {H, ρ}, (4.79)

where ρ(q,p, t) is a density in phase space x = (q,p), H(q,p) is the Hamiltonian,

and {A,B} is the Poisson bracket of A and B:

{A,B} =
N∑
k=1

∂A

∂qk

∂B

∂pk
− ∂B

∂qk

∂A

∂pk
= ∇A · J · ∇B. (4.80)

where J is the symplectic matrix:

J =

(
0 1

−1 0

)
(4.81)



73

Figure 4.3: Comparison of interacting trajectory ensemble simulation and Brow-
nian dynamics simulation for the two-dimensional potential, Eq. (71). Four snap-
shots of the evolving probability distributions are shown. The interacting trajectory
method is shown as solid contour lines, and compared to the Brownian dynamics
simulation, shown as dashed contours. (a) t = 0. (b) t = 25. (c) t = 50. (d) t = 75.
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Figure 4.4: Comparison of two interacting trajectory ensemble simulations for
the two-dimensional system with potential U(x, y) given by Eq. (4.71). Four snap-
shots of the evolving probability distributions are shown. The interacting trajectory
method is shown as a solid contour lines, and compared to an interacting trajectory
simulation modified by addition of the gauge-like terms to the vector field, given by
Eqs. (4.77) and (4.78) with δ = 1, shown as dashed contours. (a) t = 0. (b) t = 25.
(c) t = 50. (d) t = 75.
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and ∇ is the gradient in phase space:

∇ =

(
∂
∂q

∂
∂p

)
. (4.82)

The Liouville equation then becomes

∂ρ

∂t
= ∇H · J · ∇ρ. (4.83)

We can write the Liouville equation as a continuity equation

∂ρ

∂t
+∇ · j = 0, (4.84)

where j = ẋρ. For classical Hamiltonian dynamics the flow in phase space is

incompressible: (∇ · ẋ) = 0. In this case the Liouville equation becomes

∂ρ

∂t
= −(ẋ · ∇)ρ. (4.85)

By noting that JT = −J , we can then identify the equation for the vector field ẋ

as

ẋ = J · ∇H, (4.86)

which are just the usual Hamiltons equations:

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q

. (4.87)

We now consider a gauge-like transformation, of the form

ẋ→ ẋ + w, (4.88)

where the invariance of the evolution equation requires

∇ · (wρ) = 0. (4.89)

If we further require the vector field to itself have a zero divergence, we have the

condition

∇ ·w = 0. (4.90)
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Together, these give the gauge condition

w · ∇ρ. (4.91)

The result makes sense, physically: the modification to the vector field must be

everywhere orthogonal to the direction of change of ρ if the transformation is to

leave the evolution of ρ invariant.

We now consider a simple but important example: an invariant distribution

given as a function of the Hamiltonian, ρ = f(H). Then,

w · ∇ρ = (w · ∇H)f ′(H) = 0 (4.92)

or

w · ∇H = 0. (4.93)

One solution to this is

w = −J · ∇H. (4.94)

This transforms the vector field as follows:

ẋ→ 0. (4.95)

The result again makes sense: if we sample an invariant distribution with trajecto-

ries and then do not let them move, the distribution does not change. In general,

we can consider the family of transformations w(α) = αj · ∇H, where α is an ad-

justable parameter. This transformation yields Hamilton-like equations that differ

from the usual ones in that the rate of change of the phase space coordinates can be

tuned by α. For the special case of α = −1, we have the case of time standing still,

as described above, although all values of α yield the correct invariant behavior

for ρ.

We now briefly consider the implications for trajectory-based approaches to

quantum mechanics. The quantum Liouville equation in the Wigner representation

is given by [112, 113, 114, 115]

∂ρw
∂t

= − p

m

∂ρw
∂q

+ V ′(q)
∂ρw
∂p
− ~2

24
V ′′′(q)

∂3ρw
∂p3

+ · · · . (4.96)
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For simplicity, we will ignore the higher order terms in what follows. Following

our previous work [126, 126, 127, 128, 129], we identify the right hand side as (the

negative of) the divergence of a quantum flux written in a classical form jw = ẋρw,

so
∂ρw
∂t

+∇ · jw = 0 (4.97)

giving
∂

∂q
(q̇ρw) =

∂

∂q

( p
m
ρw + θqρw

)
,

∂

∂p
(ṗρw) =

∂

∂p
(−V ′(q)ρw + θpρw) , (4.98)

which defines the quantum vector field θ = (θq, θp). We then consider the equation

of motion condition

∇ · (θρw) =
~2

24
V ′′′(q)

∂3ρw
∂p3

. (4.99)

If we want incompressible phase space flow, we should also impose the divergence

condition

∇ · θ = 0. (4.100)

If the incompressibility condition is ignored and the choice θq = 0, the equation of

motion condition can be integrated to yield

θp =
~2

24
V ′′′(q)

1

ρw

∂2ρw
∂p2

. (4.101)

This leads to the method described in Refs. [126, 126, 127, 128, 129]. Other choices

are possible, however. For instance, one can choose θp = 0, which then yields

θq =
~2

24

1

ρw

∫ q

V ′′′(q′)
∂3ρw(q′, p)

∂p3
dq′. (4.102)

This defines an alternative (and untested) quantum trajectory method. Many

other divisions of the quantum vector field between its q and p components are

possible, which all lead to the same quantum Liouville equation.

It would be of interest to consider general solutions to this problem which

also incorporate the incompressibility condition ∇ · θ = 0.
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4.6 Summary

In this paper,we have described a general formal method for solving evolu-

tion equations for probability distributions using trajectory ensembles. For systems

described by a positive definite distribution function, we derived the general equa-

tions of motion for the trajectories. We showed that the vector field describing the

time rate of change of the trajectory ensemble members depends, in general, on

both external forces and on the probability density itself. The dependence of the

equations of motion on the probability density lead to interactions between the

ensemble members and a loss of their statistical independence. The formalism was

illustrated by a number of numerical examples consisting of diffusion on poten-

tial energy surfaces. Excellent agreement between the numerical implementation

of the interacting trajectory formalism and conventional Brownian dynamics was

obtained. For multidimensional systems, a gauge-like freedom exists in the choice

of the underlying vector field, which leaves the evolution of the probability density

invariant. We illustrated this point with several examples.

When taken as a mathematical approach to solving partial differential equa-

tions using trajectory ensembles, we have shown that no unique set of trajectories

result. Rather, there are infinite possibilities that are related by families of gauge

transformations. Thus, trajectories lose their realistic interpretation, and become

just constructs in the solution of the underlying partial differential equation for

the probability distribution. This observation has relevance to more philosophical

analyses of the foundations and interpretation of quantum mechanics, the corre-

spondence principle, hidden variable theories, and other contexts where particle

trajectories are postulated in quantum mechanical systems.

From a practical standpoint, such transformations may be useful in molec-

ular dynamics or stochastic sampling of statistical mechanical ensembles. There

may be particular gauge choices corresponding to modified dynamics that are more

efficient in practice than standard classical mechanics or Langevin dynamics. This

will be investigated in future publications.
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