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Abstract 

Plasma-Based Accelerating Structures 

by 

Carl Bernhardt Schroeder 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Jonathan S. Wurtele, Chair 

1 

Plasma-based accelerators have the ability to sustain extremely large accel

erating gradients, with possible high-energy physics applications. This dissertation 

further develops the theory of plasma-based accelerators by addressing three topics: 

the performance of a hollow plasma channel as an accelerating structure, the genera

tion of ultrashort electron bunches, and the propagation of laser pulses in underdense 

plasmas. 

The excitation of plasma waves in a hollow plasma channel by a laser pulse 

or relativistic charged particle beam is analyzed. The mode frequencies and loss 

factors of the excited channel modes are calculated. The effects of non-ideal hollow 

plasma channels are discussed. Particle beam stability in a hollow plasma channel 

is examined. The dipole wakefield couples to the transverse displacement of the 

particle beam, which results in beam breakup. Single-bunch beam breakup growth 

lengths are derived for particle beam propagation in the weak-focusing and strong

focusing regimes. The effects of longitudinal wakefields on the beam energy spread is 

examined. Multi-bunch beam breakup js discussed and methods for reducing beam 

breakup are proposed and evaluated. 

The production of ultrashort electron bunches by dephasing and trapping 
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background plasma electrons undergoing fluid oscillations in a plasma wave is studied. 

The plasma electrons are dephased by colliding two counter-propagating laser pulses 

which generate a slow phase velocity beat wave. The threshold laser pulse amplitudes, 

the optimal injection phase for trapping, and the trapping volume are calculated. The 

dynamics and quality of the generated electron bunches are examined. The analysis 

indicates that this optical injection scheme has the capability to produce' relativistic 

femtosecond electron bunches with fractional energy spread of a few percent and 

normalized transverse emittance less than 1 mm mrad using 1 terawatt injection 

laser pulses. 

The propagation of ultrashort high-power laser pulses in underdense plas

mas is studied. Envelope equations are derived for optical beam parameters which 

include finite-radius and finite pulse length effects. Solutions of the envelope equa

tions are presented for an adiabatic plasma response. For the general non-adiabatic 

plasma response, laser-plasma instabilities are examined and asymptotic instability 

growth rates are derived. 
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Chapter 1 

Introduction 

The reach of high-energy physics is limited by its instruments, accelerators, 

which are currently passive conducting structures attaining large accelerating fields 

by resonant excitation. At present, testing of new theories in high-energy physics 

requires the development of particle accelerators capable of producing particle beams 

with multi-TeV energies. In conventional accelerators based on radio-frequency tech

nology, the size of the accelerating fields is limited by breakdown of the structure 

media. Breakdown occurs when the electric field is sufficiently large to allow emission 

of electrons from the walls of the accelerator cavity. Breakdown limits the maximum 

accelerating gradient of conventional accelerating structures to less than roughly 100 

MV 1m. In order to achieve TeV-energy particle beams in future colliders, without 

making the machine prohibitively large in size, a large accelerating gradient beyond 

what is achievable in conventional accelerating structures is required. Plasma-based 

accelerators are not limited by electrical breakdown. For two decades, the use of 

plasma as an accelerating medium has been investigated for the next generation of 

accelerators [1, 2, 3]. 

The basic idea behind plasma-based accelerators is to excite a longitudinal 

wave in a plasma with phase velocity near the speed of light. Injected charged 

particles cal! then gain energy from the large longitudinal electric field of the plasma 
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wave. The availability of radiation sources allows one to consider the excitation of 

plasma waves by a laser pulse. The plasma can act as a transformer, generating a 

large longitudinal electric field for acceleration from the large transverse field of a 

laser pulse. 

In this chapter, an overview of the basic plasma-based accelerator concepts 

is presented. The mechanisms for plasma wave generation are reviewed, and the 

limitations of such accelerators are discussed. This will provide the motivation for 

the subsequent chapters and the theoretical work presented in this dissertation. 

1.1 Overview of Plasma-Based Accelerator Concepts 

The use of plasma as an accelerating medium requires the generation of an 

intense longitudinal plasma oscillation with phase velocity near the speed of light. 

Several schemes have been proposed for generating intense plasma waves for accel

eration purposes. At present, the laser wakefield accelerator (LWFA), the plasma 

beat wave accelerator (PBWA), the self-modulated laser wakefield accelerator (SM

LWFA), and the plasma wakefield accelerator (PWFA) are the most widely investi

gated methods of plasma wave generation. 

The LWFA excitation method, first proposed by Tajima and Dawson in 

1979 [4], uses a single extremely intense (.2:: 1018 W /cm2) short (on the order of a 

plasma period, e.g., ;S 1 ps) laser pulse which travels through an underdense plasma 

(w~/w2 « 1, where wp is the plasma frequency and W the laser frequency). The 

ponderomotive force (radiation pressure) associated with the laser pulse envelope 

expels electrons from the region of the laser pulse. If the laser pulse length is of 

order the plasma wavelength, the ponderomotive force of the laser will excite a large 

amplitude plasma wave with phase velocity Vcp approximately equal to the group 

velocity of the laser pulse Vg :::: c(l - w~/w2)1/2, which is near the speed of light for 

an underdense plasma. The LWFA plasma wave excitation mechanism is illustrated 

in Fig. 1.1. Recently, the measurement of plasma wave generation in a LWFA was 
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Figure 1.1: Schematic of LWFA (or PWFA), in which a short laser pulse (or charged 
particle beam) drives a plasma wave (dotted curve). 

reported by researchers at Ecole Poly technique [5], as well as acceleration of injected 

electrons [6]. 

The availability of compact terawatt laser systems, which has made it possi

ble to produce the high-intensity short-duration laser pulses needed for experimental 

studies of the LWFA, was due to the development of chirped-pulse amplification 

(CPA) [7]. The technique of CPA, first demonstrated in 1988 [8], allows the gener

ation of ultra-intense (~ 1018 W jcm2) subpicosecond laser pulses. In CPA, a low

energy (e.g., rv mJ) ultrashort pulse is temporally stretched by a pair of gratings. 

The stretched pulse is amplified and then recompressed by a second pair of matched 

gratings. The chirped long-duration pulse avoids undesirable high-field effects, such 

as nonlinear modification of the index of refraction (which can lead to self-focusing 

in the amplifying medium). The stretched pulse can therefore reach high energies 

(up to kJ) in the solid-state amplifiers. CPA can efficiently amplify subpicosecond 

pulses in solid-state media (e.g., ND:glass and Ti:sapphire) and has enabled laser 

systems to reach petawatt powers [9]. Multi-terawatt laser systems are now available 

in many laboratories. 

The PBWA was proposed as an alternative to the LWFA and first studied 

experimentally for plasma wave excitation because the laser technology capable of 

producing high-intensity ultrashort pulses was not available in the early 1980's. In 

, . 
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the PBWA, two long pulse length, co-propagating lasers beams of frequencies WI and 

W2 are focused in a plasma. The lasers beat against each other with a beat frequency 

close to the plasma frequency wp ::: WI-W2, thereby resonantly driving a plasma wave. 

The phase velocity of the plasma wave Vcp ~ 1 - w~/(2wIW2) is approximately equal 

to the group velocity of the incident lasers in the limits w~/wf « 1 and w~/w~ « l. 

The ability of laser pulses to excite plasma waves with high gradients and with phase 

velocities near the speed of light was first shown in PBWA experiments by Clayton 

et. at. [10j. Subsequent PBWA experiments have observed acceleration of electrons 

from the background plasma [l1J and injected into the plasma wave [12, 13J. There 

are several disadvantages of the PBWA excitation mechanism. The requirement of 

uniformity imposed on the plasma density in order to satisfy the resonance condition 

is difficult to achieve experimentally. Another disadvantage is saturation of the 

plasma wave amplitude. As the plasma wave grows, nonlinear effects will cause 

resonant detuning of the plasma wave from the beat wave leading to saturation and 

limiting the amplitude of the plasma wave [14J. 

The SM-LWFA relies on a laser-plasma instability to excite plasma waves. 

The SM-LWFA uses a high-intensity laser pulse propagating through a high-density 

plasma such that the laser pulse length is long compared to the plasma wavelength. 

The laser power is typically somewhat larger than the critical power for relativistic 

self-focusing P > Pcrit ::: 17(wlwp)2 GW such that the laser can modify the index 

of refraction of the plasma to overcome diffraction [15J. In this high-density plasma 

regime, the laser pulse undergoes a self-modulation instability which causes the pulse 

to become axially modulated at the plasma period. The modulated laser pulse pro

duces a large amplitude resonantly-driven plasma wave. Evidence of plasma wave 

generation in the high-density self-modulated regime was first detected by Coverdale 

et. al. [16J. The trapping and acceleration of electrons from the background plasma 

has also been demonstrated experimentally in SM-LWFA experiments at several lab

oratories [17, 18, 19, 20j. Accelerating gradients as large as 100 GV 1m have been 

produced at the Rutherford AppletonLaboratory in the self-modulated regime [18j. 
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J TL A no D., Ez 
[W/cm2

] [ps] [JLm] [cm3] [MeV] [GV/m] 

LWFA: 
KEK (Japan) [23] 1017 1.0 1.05 1015 5 0.7 
LULl (France) [6] 4 x 1017 0.4 1.05 2 x 1016 1.6 1.5 

PBWA: 
ILE (Japan) [11] 1013 1000 9.6, 10.6 1017 10 1.5 
UCLA (USA) [12] 1014 300 10.3, 10.6 1016 28 2.8 
LULl (France) [13] 1017 90 1.05, 1.06 1017 1.4 0.6 

SM-LWFA: 
LLNL (USA) [16] 1018 0.6 1.05 1019 2 
KEK (Japan) [17] 1017 1.0 1.05 1019 17 30 
RAL (UK) [18] 1019 0.8 1.05 1019 44 100 
CUOS (USA) [19] 4 x 1018 0.4 1.05 3.6 x 1019 >1 
NRL (USA) [20] 5 x 1018 0.4 1.05 1.4 x 1019 >1 

Table 1.1: Parameters and results for laser-driven plasma-based accelerator exper-
iments. The laser intensity J, laser pulse duration TL, laser wavelength A, plasma 
density no, energy gain of the accelerated particles D." and accelerating gradient Ez 
are listed for each experiment. 

Although the SM-LWFA has the advantage of enhanced accelerating gradients re

sulting from operation at higher plasma densities, it is subject to various instabilities 

(e.g., Raman scattering [21] and hose-modulation instability [22]) owing to the long 

laser pulse length. In addition, relativistic self-focusing will not be effective in the 

leading portion of the long-duration laser pulse due to the finite response time of 

the plasma, which is of the order of the plasma period", w;l. This leads to erosion 

and diffraction of the leading edge of the laser pulse which will limit the acceleration 

length and therefore the energy gain of accelerated particles. 

Table 1.1 summarizes the parameters and results for laser-driven plasma

based accelerator experiments. The laser pulse length used in the LWFA is short, 

and therefore laser-plasma instabilities detrimental to the propagation of long pulses 

(e.g., SM-LWFA) will be reduced. In addition, since the LWFA.does not excite the 
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,drive qdrive CTb nO f':::., Ez 
[MeV] [nC] [mm] [cm-3] [MeV] [MV/m] 

ANL (USA) [25] 21. 4.0 2.1 1012 0.2 5.0 
KEK (Japan) [26] 500 10 3.0 1012 30 30 
KhFTI (Ukraine) [27] 2 0.4 17 1011 0.5 0.25 
SLAC (USA) [31] 3 x 104 3.2 0.6 lOi5 

Table l.2: Parameters and results for beam-driven plasma-based accelerator exper
iments. The drive beam energy ,drive, drive beam charge qdrive, drive beam length 
CTb, plasma density no, energy gain of the accelerated particles f':::." and accelerating 
field Ez are listed for each experiment. 

plasma wave resonantly, it does not require the stringent tolerances on plasma non

uniformity, nor does it suffer from saturation, as in the PBWA. Therefore the LWFA 

is considered the most promising laser-driven plasma-based accelerator scheme. 

Plasma-based accelerators in which the plasma wave is driven by charged 

particle beams are referred to as plasma wakefield accelerators. In the PWFA, the 

space-charge forces associated with a relativistic electron beam will displace plasma 

electrons and excite a plasma wave provided the beam terminates in a time shorter 

than the plasma period. PWFA experiments have been carried out demonstrat

ing plasma wave generation and electron acceleration [24, 25, 26, 27]. Beam-driven 

plasma-based accelerator experiments are summarized in Table 1.2. In the PWFA, 

primary drive beam propagation through the plasma is of particular importance. 

Electron drive beams are subject to the two-stream instability [28] and the electron

hose instability [29]. Energy gain in the linear regime of the PWFA is also limited 

by the transformer ratio [30], which describes the self-induced decelerating field ex

perienced by the drive beam as it propagates through the plasma. 
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1.1.1 Basic Equations for Plasma Wave Generation 

This section describes the basic equations which model plasma wave gen

eration. It is convenient to model the plasma as a fluid by taking moments of the 

Vlasov equation [32]. For a cold collisionless fluid, the electron plasma current is 

J;, = -eneciih, where -e is the electron charge and c is the speed of light. The 

electron plasma number density ne and electron fluid momentum mecii, where me is 

the electron rest mass, satisfy the continuity equation 

(1.1) 

and the fluid momentum equation 

( 
0 1 _ ) _ " '" oii 1 _ (" _) ot + :yu . c'V u = c v 'I' + ot - :yu x c v x a , (1.2) 

where , = (1 + u2 ) 1/2 is the relativistic factor. Here ¢ = eif! / (mec2 ) and ii = 

eA/(mec2 ) are the normalized scalar if! and vector A potentials of the electromagnetic 

fields in the plasma. Equation (1.2) can be rewritten as 

(fft ,-~ii x c'Vx) (ii - ii) = c'V (¢ -I) , (1.3) 

where the first term on the right-hand side represents the space-charge force Fsc = 

-mec2'V ¢, and the second term is the generalized ponderomotive force 

F. - _ 2" pm - meC v,. (1.4) 

The electric E and magnetic B fields in the plasma can be represented by 

the vector and scalar potentials: E = - 'V if! - c-10tA and B = 'V x A. In the 

Coulomb gauge 'V . A = 0, the Maxwell equations [33] can be combined to yield 

( 
2,,2 0

2 
) -

C v - ot2 a (1.5) 

c2 'V2¢ (1.6) 
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where no is the equilibrium number density of the plasma and wp = (41fe2no/me)I/2 

is the plasma frequency. In Eqs. (1.5) and (1.6), the effects of an external electron 

beam with density nb and velocity Vb are included. 

Throughout this work, it is assumed that the ions remain stationary, since 

the ion response time [i.e., rv w;/ = (41fe2ni/Mi )-1/2, where Mi is the mass of the 

ions and ni is the number density of the ions] is typically much greater than the 

driver duration. In addition, collisions and thermal effects are neglected throughout 

this work since the collision time is typically much greater than the driver duration, 

and the thermal velocity is typically much less than the quiver velocity of an electron 

in the fields. 

For a laser pulse driver (0, -=I 0 and nb = 0) propagating in an initially 

homogeneous plasma V'no = 0, Eqs. (1.1), (1.2), (1.5), and (1.6) can be solved in the 

linear regime a2 « 1 by a perturbation expansion of the fluid quantities in powers 

of the normalized vector potential of the laser field (Le., I = L, In, where I is any 

fluid quantity and In rv an). The zeroth-order equations describe the equilibrium 

plasma: ne = no, 'Yo = 1, and <Po = iio = O. The first-order response of the plasma 

is the electron quiver motion in the laser field: iiI = 0, and nl = <PI = 'YI = O. To 

second-order, Eqs. (1.1), (1.2) and (1.6) can be combined to yield 

(1.7) 

The right-hand side of Eq. (1.7) represents the second-order ponderomotive force of 

the laser pulse Ppm ~ -mec2V' a2 /2. The electric field generated by the second-order 

density perturbation given by Eq. (1.7) is 

E(r, t) = - m ec
2 

Wp rt dtl sin [wp(t - td] ~ V'a2(r, tl) . 
e 10 2 

(1.8) 

Equation (1.8) implies that plasma waves are generated at the plasma frequency, and 

that the radial extent of the plasma wave is of order the transverse size of the laser 

(e.g., the laser spot size). 
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For the PWFA (ii = 0 and nb i= 0), Eqs. (1.1), (1.2) and (1.6) can be 

combined in the linear regime nb « no, assuming an initially homogeneous plasma, 

to yield 

( 
[p 2) n2 2nb [}t2 + Wp nO =-Wp no ... (1.9) 

Equation (1.9) describes plasma wave generation by the space-charge forces of an 

electron beam. Assuming an ultra-relativistic IVbI ~ c azimuthally-symmetric drive 

beam, the axial electric field of the plasma wave behind the drive beam is [34] 

41l'e 2 rC, roo [Wp .] (Wp ) (Wp) ) 
Ez(r,() = -;;2wp Jood(1 J

o 
drlrlcos ~((-(1) 10 ~r< Ko ~r> nb((I,rl , 

(1.10) 

where ( = z - ct, 10 and Ko are the zeroth-order modified Bessel functions of the 

second kind, and r < and r> denote the smaller and larger of rand rl respectively. 

For the PWFA, plasma waves are generated at the plasma frequency and the radial 

extent is approximately given by the larger of the beam radius and the plasma skin 

depth clwp . 

From Eqs. (1.8) and (1.10), one can see that the accelerating gradient 

generated by the plaSma wave will be of the order 

(1.11) 

This field can be enormous compared to accelerating gradients found in conventional 

accelerators. For example, if a 10% plasma density perturbation is excited (n2lno ~ 

0.1) in a plasma with density no = 1018 cm -3, then Ez ~ 10 GV 1m. This field is 

two orders of magnitude larger than what is achievable in conventional accelerators. 

1.1.2 Limitations of Plasma-Based Accelerators 

There are a number of mechanisms which limit the interaction length, and 

therefore the final energy of accelerated particles, that can be achieved using laser

plasma acceleration schemes. One such limitation is laser diffraction. In vacuum, 
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a laser undergoes Rayleigh diffraction [35] and the spot size evolves as Ts = To[l + 
(z / Z R)2P/2, where TO is the laser spot size at focus and Z R = 7rT5I A is the Rayleigh 

length. Therefore, without some form of optical guiding, the laser-plasma interaction 

distance will be limited to a few Rayleigh lengths. 

Another limit on the acceleration length comes from dephasing. Since the 

phase velocity of the excited plasma wave is somewhat smaller than the speed of 

light, velocity mismatch between the plasma wave and the accelerated particles will 

cause slippage, and the particles will eventually move out of phase with respect to 

the accelerating field of the plasma wave. Assuming the accelerating particles are 

moving with speed c and the phase velocity of the plasma wave is equal to the group 

velocity of the laser pulse, vtp ::::= Vg ::::= 1 - w~/(2w2), the distance for the particle to 

slip 7r in phase (i.e., to slip from an accelerating region to a decelerating region) is 

Ldephase ::::= Ap(W/wp)2, where Apis the plasma wavelength. 

Driver depletion can also limit the interaction length. As the drive laser 

pulse propagates through the plasma, it leaves behind· a plasma wave. The energy 

of the plasma wave is provided by the driver, which is depleted. Driver depletion 

becomes more severe as the intensity of the laser increases owing to the fact that 

the amplitude of the generated longitudinal field is proportional to the power of the 

drive laser pulse, and therefore the energy in the plasma wave is proportional to a4 . 

Since the total energy in the driver is proportional to a2 , the depletion distance is 

inversely proportional to the laser pulse power. For a weakly relativistic pulse of 

size Ap , the depletion length scales as Ldeplete rv Ap(W/wp )2/a 2 = L<lephase/a2. As 

this scaling indicates, for small a, the driver depletion length should be secondary to 

dephasing. 

For typical parameters of laser-plasma accelerator experiments (e.g., Table 

1.1), ZR « Ldephase < Ldeplete and the weakening of the laser pulse intensity due to 

d1ffraction, which scales as the Rayleigh range ZR, is the most severe limitation on 

the interaction length. To overcome this limitation, the use of a preformed plasma 

density channel to provide optical guiding has been proposed [36, 37]. 
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1.2 Summary and Outline 

Plasma-based accelerators have the ability to support large accelerating gra

dients. The laser wakefield accelerator is the most promising laser-driven mechanism 

for plasma wave generation. The most severe limitation to this plasma-based accel

erator scheme is diffraction of the laser pulse. Therefore a successful plasma-based 

accelerator which utilizes a laser driver will require some form of optical guiding. A 

hollow plasma channel can provide guiding of the laser pulse, thereby extending the 

accelerator length and the energy gain of the accelerated particle beam. Chapter 

2 of this dissertation examines the performance of a hollow plasma channel as an 

accelerating structure. 

The use of a plasma channel will allow one to overcome diffraction. With 

optical guiding provided by a plasma channel, the accelerator length will be limited 

by the transverse stability of the accelerated beam. Chapter 3 addresses this is

sue by computing the characteristic growth lengths of the transverse beam breakup 

instability in various regimes for a particle beam propagating in a hollow plasma 

channel. 

As the calculations presented in Sec. 1.1.1 indicate [ef. Eqs. (1.7) and 

(1.9)] the wavelength of the excited plasma wave scales as the plasma wavelength 

Ap = 21fc/wp. Therefore the usefulness of plasma-based accelerators depends on a 

method for producing electron bunches much shorter than the plasma wavelength. 

Chapter 4 examines a method of producing ultrashort electron bunches by dephasing 

and trapping background plasma electrons undergoing fluid oscillations in an excited 

plasma wave. 

The self-consistent propagation of a laser pulse through a plasma is of par

ticular importance to laser-driven acceleration schemes. For ultrashort laser pulses, 

such as those used in the LWFA scheme, finite pulse length effects will significantly 

influence the laser pulse propagation. In Chapter 5, the evolution of a laser pulse in 

an underdense plasma is presented including finite pulse length effects and the effects 
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of nonlinear plasma wave excitation. In addition· to the limitations of laser-driven 

plasma-based accelerators discussed in Sec. 1.1.2, laser-plasma instabilities can signif

icantly degrade the laser pulse driver and limit the interaction length. Laser-plasma 

instabilities are examined in Chapter 5. 

The theoretical work presented in this dissertation is summarized in Chap

ter 6. Conclusions and prospects for future theoretical and computational work are 

offered. Possible experimental applications of the results of this work are discussed. 
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Chapter 2 

Plasma Wave Excitation in a 

Hollow Plasma Channel 

In this chapter, a hollow plasma channel is examined as an accelerating 

structure. The excitation of plasma waves in an externally preformed hollow plasma 

channel by a laser pulse or relativistic particle beam is analyzed in Sec. 2.2. The 

loss factors for the channel modes, which quantify the energetics of excitation, are 

calculated in Sec. 2.3. Section 2.4 discusses the effects of non-ideal hollow plasma 

channels, which includes sensitivity to errors in channel radius and plasma density. 

The hollow plasma channel is characterized in terms of the fundamental accelerator 

parameters: mode frequencies and loss factors. This characterization allows for the 

analysis of beam propagation and stability presented in Chapter 3. 

2.1 Introduction 

As was discussed in Chapter 1, diffraction is the most severe limitation for 

laser-driven plasma-based accelerators. Therefore, a successful design of a plasma

based accelerator which utilizes a laser driver must include some form of optical 

guiding. Two schemes for optical guiding are being explored for overcoming diffrac- . 
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tion: relativistic self-focusing [15, 38] and plasma channel guiding [36, 39]. 

The mechanism for relativistic self-focusing relies on the energy dependence 

of the plasma frequency. The electron momentum will be larger where the laser 

pulse is more intense (i1 ~ a ex /1/2, where / is the laser intensity) due to the quiver 

motion of the plasma electrons in the presence of the laser field. Therefore the plasma 

frequency will be lower in regions of intense laser fields owing to the relativistic mass 

increase. The result of this effect will be that the laser pulse will generate a nonlinear 

index of refraction 
. 1 w2 

1 · p 
'rJ~ --2 2' 

'YW 
(2.1) 

where 'Y ~ (1 + a2 ) 1/2. The index of refraction will be larger at the center of the pulse 

than at the pulse edges and therefore can guide a laser pulse. Analysis has shown that 

in steady-state, relativistic self-focusing can focus the laser pulse whenever the total 

laser pulse power is greater than the critical power [15] given by Pcrit ~ 17(w/wp )2 

GW. 

Relativistically self-focused long laser pulses (i.e., pulse lengths much longer 

than the plasma wavelength) suffer from Raman forward and sidescatter instabilities 

[21]. These instabilities lead to break up of the pulse into small pulses of order the 

plasma wavelength and therefore limit the propagation distance of the laser pulse. 

For short laser pulses (i.e., pulse lengths of order the plasma wavelength), such as 

those used in the standard laser wakefield accelerator, relativistic self-focusing is sub

stantially reduced. This is due to the generation of a plasma density perturbation 

by the ponderomotive force of the laser. For 'short pulses, the plasma frequency 

decrease from relativistic effects is balanced by this density perturbation [36]. Con

sequently, the index of refraction will have no transverse variation and the plasma 

cannot optically guide the short laser pulse. 

An alternate method for overcoming laser diffraction, which has received a 

large amount of experimental effort [40,41,42,43]' is to use a plasma density channel 

to guide the laser pulse. This method uses a plasma channel that has a higher plasma 



15 

density outside the channel than inside the channel, one/or> 0, giving the plasma 

channel an index of refraction which decreases from the channel axis 01J/or < 0. A 

fixed plasma channel is analogous to an optical fiber and its guiding properties can 

be similarly analyzed. Plasma channels can be used to guide short pulses and have 

been studied analytically using axisymmetric models for a parabolic plasma density 

variation [36] and for hollow plasma channels [37]. 

Calculations show that a hollow plasma channel, in addition to optically 

guiding the laser pulse, supports a plasma wave with attractive properties for particle 

acceleration. The driver excites a surface mode in the plasma which extends into 

the channel. Unlike in a homogeneous plasma or parabolic channel, the transverse 

profile of the driver is decoupled from the transverse profile of the accelerating mode. 

Therefore, for a relativistic driver, the accelerating gradient of the fundamental mode 

is uniform and the focusing fields are linear [37]. In addition, the excited fields in a 

hollow plasma channel are fully electromagnetic, unlike the electrostatic fields excited 

in a homogeneous plasma. These properties make a hollow plasma channel well-suited 

as a structure for both particle beam and laser-driven wakefield accelerators. 

Since the original demonstration of the guiding of a low-intensity laser pulse 

in a plasma channel at the University of Maryland [39], several research groups 

are examining experimental methods of plasma channel formation and guiding of 

high-intensity lasers [40, 41, 42, 43]. Methods of forming a plasma channel include: 

inverse bremsstrahlung heating of the plasma by a precursor laser pulse resulting in 

hydrodynamic expansion and channel formation [40, 42] and discharge ionization of 

a preformed capillary tube [44, 43]. Table 2.1 summarizes t,he parameters and results 

of plasma channel laser guiding experiments. 

In this Chapter, an externally formed hollow plasma channel is character

ized as an accelerating structure, independent of the structure excitation mechanism 

(laser or particle beam). The results provide the basic scalings for the plasma chan

nel accelerator, including current limiting higher-order mode couplings. Instabilities 

which result from the beam-plasma coupling are discussed in Chapter 3. 
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I TL A no reh Lguided 

[W/cm2
] [fs] [J.Lm] [cm3] [J.Lm] [cm] 

UMCP (USA) [40] 5 x 1015 500 0.565 7 x 1018 30 2 (45 ZR) 
LBNL (USA) [42] 5 x 1017 75 0.8 7 x 1O!8 5 0.1 (8 ZR) 
NRL (USA) [43] 1017 400 1.05 1018 500 2 (22 ZR) 

Table 2.1: Parameters and results for plasma channel laser guiding experiments. 
The laser intensity I, the laser pulse duration TL, the laser wavelength A, the plasma 
density no, the characteristic radius of the plasma channel reh, and the propagation 
length of the guided laser pulse Lguided (measured in centimeters and number of 
Rayleigh lengths) are listed for each experiment. 

2.2 Mode Structure of the Hollow Plasma Channel 

In this section, the excited fields in the hollow plasma channel are derived. 

This analysis assumes that the driver (beam current or laser pulse) remains unaltered 

during the evolution of the fields. To model the excitation of the hollow plasma 

channel, consider an equilibrium electron plasma density ne(r) = no8(r - rw ), where 

8 is the Heaviside step function, rw is the radius of the channel wall, and no is 

the number density of the plasma outside the channel. The ion plasma density is 

assumed to be equal to the equilibrium electron plasma density ni = ne' The ions 

are also assumed to remain motionless since the drive pulse duration is taken to be 

much shorter than the response time of the ions. 

The wave equation for the electric field E can be obtained from the Maxwell 

equations, 

(
22 (P)- 0- 2 

c \l - {)t2 E = 411" ot J + 411"c \l P . (2.2) 

The current j and charge density p source terms in Eq. (2.2) can be separated into 

the contribution from the external driver and the contribution due to the plasma: 

j = fext + J~ and p = Pext + pp. Linearizing the fluid equations for a cold collisionless 

plasma [Eqs. (1.1) and (1.2)] provides an equation for the plasma response (assuming 
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a static equilibrium plasma density), 

(2.3) 

By separating the source terms and using the fluid equation for the plasma current, 

Eq. (2.2) can be rewritten as 

(2.4) 

The magnetic field is obtained from Faraday's law c\1 x E = -atB, 

( 2 2 a2 2) - -c \1 - 8t2 - Wp B = -47rc\1 x Jext . (2.5) 

For a hollow plasma channel, \1 Pp = a in all regions, and the wave equations 

Eqs. (2.4) and (2.5) become 

(2.6) 

-47rc\1 x !ext. (2.7) 

Note that if the term \1 Pp is nonvanishing, then resonant absorption [45] is possible in 

the plasma channel walls and the excited fields can mode convert into an electrostatic 

Langmuir wave. This energy exchange between the electromagnetic fields in the 

channel and an electrostatic Langmuir wave in the plasma will damp the channel 

fields and lead to an effective quality factor of the plasma channel [46]. 

The source terms in the wave equations are determined by the external 

driver. For beam-driven excitation of the plasma channel, !ext = VbPb, where Pb 

is the beam charge density and Vb is the beam velocity. For excitation by a laser 

pulse, the current source is driven, to lowest-order, by the ponderomotive force of 

the laser pulse envelope (i.e., the gradient of the radiation pressure). The general 

ponderomotive force is given by Eq. (1.4). In the limit a « 1, the leading-order 

electron motion is the quiver velocity. To second-order, expansion of the momentum 
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equation Eq. (1.3) yields (l(u2 = C\!(<P2 - a2/2). Therefore, the current source driven 

by the ponderomotive force of the laser pulse, to second-order in the normalized 

vector potential of the laser, is 

(2.8) 

For the linear analysis presented in this chapter to be valid, surface plasma 

density perturbations should be small compared to the channel radius. This implies 

a laser pulse driver must satisfy a2 « 1 (assuming the laser spot size }s of order 

the channel radius ro rv rw and the laser pulse duration is of order the plasma 

period WpTL rv 1), and a particle drive beam must satisfy Nb « (wp/c)r~/re, where 

re = e2 /(mec2 ) is the classical electron radius and Nb is the number of electrons per 

bunch. For illustration, if r w = 20 /-Lm and no = 7 x 1016 cm -3, then the linear 

theory will be valid for beams with Nb « 7 x 109 electrons. 

2.2.1 Channel Modes 

In this section, the modes of the plasma channel synchronous with the 

driver are derived. The driver is assumed to be nonevolving and propagating axially 

with group velocity near the speed of light c{3 ~ c. Explicity, the "frozen-field" 

approximation, axial variation at a fixed position is small and the modes are functions 

of the co-moving coordinate T = t - z/({3c), is valid. In this analysis, the fields 

are decomposed into discrete azimuthal modes with mode index m and a Fourier 

transform in the co-moving coordinate T is made such that solutions are of the form 

exp( -iWmT + im(}) , with the mode frequencies Wm. The boundary conditions across 

the channel wall are: continuity of the electric and magnetic field components EmE. f, 

E x f, and B, where Em = 1 - w~(r)/w'!n is the dielectric function of the plasma

vacuum structure. 

To study the excited channel modes synchronous with the driver, let E = 

Am~(r,(})exp(-iwmT) and B = Ambm(r, (}) exp(-iwmT), where Am are constants 
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determined by the excitation mechanism. With these definitions, the equation for 

the plasma wave electric field behind the drive pulse is 

(2.9) 

where '\1.1 is the transverse Laplacian. Note that only transverse modes (i.e., '\1. E = 

0) exist in the channel, and since there are no linear surface currents, the continuity 

of '\1 x E requires the mode in the plasma to also be transverse. 

For the fundamental mode m = 0, the solutions to the homogeneous wave 

equation Eq. (2.9) are 

in the channel T < Tw , and 

boo 

eoz 

ikl c{3 Io( kIT) 
Wo h(klTw) 

Il(klT) 
II (klTw) 

= (3 I 1(klT) 
Il(klTw) 

ik2c{3 Ko( k2T) 
= - -- -~----':.,-

WOEO Kl(k2Tw) 
1 K1(k2T) 

EO Kl(k2Tw) 
eOr = 

boo = 
(3 Kl(k2T) 

Kl(k2Tw) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

in the plasma T > Tw , where 1m and Km are mth-order modified Bessel functions of 

the second kind and 

Wm (-2 ) 1/2 - {3 -1 
c 

W; ({3-2 _ 1 + W~/W~) 1/2 

(2.16) 

(2.17) 

Note that in the limit of an ultra-relativistic driver ({3 ~ 1), kl ~ 0 and k2 ~ wp/c. 

The fundamental mode m = 0 frequency (eigenvalue equation) is 

n [k2h(klTw)Ko(k2Tw)]-1/2 
~=~a~=~l+ , 

kl IO(klTw)Kl(k2Tw) 
(2.18) 



where Om = wm/wp is the normalized frequency of the mth mode. 

The higher-order modes m > 0 of the excited plasma wave are 

in the channel T < T w , and 

= k2c{3 Km(k2T) f(mO) 
Wm Km(k2Tw) 

= k2c{3y Km(k2T) g(mO) 
Wm Km(k2Tw) 
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(2.19) 

(2.20) 

(2.21) 

(2.22) 

in the plasma T > T w , where f(mO) = cos(mO) and g(mO) - sin(mO) for even 

modes or f(mO) = sin(mO) and g(mO) = cos(mO) for odd modes. In Eqs. (2.20) and 

(2.22), Y is. 

The transverse fields for the higher-order modes can be computed directly from the 

axial components Eqs. (2.19)-(2.22) using the relations 

. {32 
(~c (32) [z X '\1 .l..bmz - {3-1'\1 .l..emz] 

Wm 1- Em 
. 2 

-ic{3 [~ -1] 
( (32) EmZ X '\1 .l.. emz + {3 '\1 .l..bmz 

Wm 1- Em 

The eigenvalue equation for the higher-order modes is 

4m
2 (k~ - ki)2 

7f2 Ta kik1 

[
Im+1(k1TW) + Im-1(k1Tw) + 

klTw1m(k1Tw) 

{
Im+l(k1TW) + Im-l(k1Tw) + 

klTwlm(klrw) 

The solutions of Eq. (2.26) provide the higher-order mode frequencies W m . 

(2.24) 

(2.25) 
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Figure 2.1: . Normalized mode frequencies, Om = wm/wp , for m = 0,1,2 versus 
normalized channel radius R = WpTw/C in the ultra-relativistic limit. 

, 

2.2.2 Ultra-Relativistic Limit 

In the ultra-relativistic limit ({3 -+ 1), the linearly excited mode frequencies 

of the hollow plasma channel Eqs. (2.18) and (2.26) become [47] 

[ 
(1 + omO)(m + 1)Km+1(R) ] 1/2 

Wm = WpOm = Wp 2(m + 1)Km+1(R) + RKm(R) , (2.27) 

where R = WpTw/C is the normalized channel radius and omO = 1 for m = 0 and 

zero otherwise. The three lowest-order mode frequencies plotted versus normalized 

channel radius are shown in Fig. 2.1. 

The forces on a beam due to the excited fields have attractive properties 

for particle acceleration. The excited fundamental mode fields in the channel Eqs. 

(2.10)-(2.12) provide the axial and transverse forces 

-eAO cos (WOT) , 
Wo . 

eAo (1 - (3z(3) TT sm (WOT) 

(2.28) 

(2.29) 

where Ao is a constant determined by the excitation mechanism and c{3z is the 

axial velocity of a witness charged particle beam. Inside the channel, in the ultra-
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relativistic limit, the axial (accelerating) field is uniform with respect to transverse 

position as indicated by Eq. (2.28). Therefore electrons at different radii gain energy 

at the same rate, minimizing the energy spread due to the transverse extent of 

the beam. The transverse fields are linear with respect to the radial position as 

indicated by Eq. (2.29), which implies the root-mean-squared transverse normalized 

emittance will be conserved for any beam slice [48]. Note that the focusing due to 

the excited fundamental mode fields is typically small in the ultra-relativistic limit 

{i.e., IFr I Fz I rv 1 - (3z{3 « 1). In addition, there is a 1r I 4 phase region where the 

fundamental channel mode both focuses transversely and accelerates longitudinally. 

These properties make the hollow plasma channel well-suited for an accelerating 

structure independent of excitation mechanism. 

2.3 Energetics 

The interaction of the beam with the accelerator environment can be quan

tified by a calculation of the loss factors [49]. The loss factor per unit length /'i, relates 

the accelerating gradient to the energy stored per unit length in the structure U by 

/'i, = E;/4U. The loss factor /'i, is related to the'more familiar quantity [RIQl (the 

shunt impedance per unit length divided by the quality factor) by /'i, = w[RIQl/4. It 

is a purely geometrical factor of the structure independent of excitation mechanism. 

Since the loss factor is independent of the means of energy deposition, it is a figure 

of merit for comparisons of accelerating structures. 

For an ultra-relativistic driver, the conserved electromagnetic energy den

sity, from the Poynting equation, averaged over plasma wave phase is 

(2.30) 

Using the fluid equation Eq. (2.3), the energy density stored in the plasma fluid 

motion can be expressed in terms of the fields as 

(2.31 ) 
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Performing the integral over the transverse coordinates of the field and fluid energy 

densities Eqs. (2.30) and (2.31) yields the total energy per unit length stored in the 

structure due to the excitation of the mth mode 

roo 2- c2 2 R2m+1Km+1(R) 
Um = 10 dr.l(Ufield+Ufluid)=wt~(1+8mo) 8n~Km(R) . (2.32) 

Here Am are constants determined by the excitation mechanism, and AmRm is the 

peak axial electric field of the mth mode at the channel radius. The energy stored in 

the fundamental mode Uo is a lower bound on the amount of energy per unit length 

that must be deposited in the structure to produce a desired accelerating gradient 

Ao in the channel. 

Using Eq. (2.32), the loss factor per unit length for the mth mode [47] is 

_ w; [ Km(R) ] [1' RKm(R) ]-1 
"'m - -;;J: RKm+1(R) + 2(m + 1)Km+1(R) , 

(2.33) 

where the axial electric fields of the higher-order modes have been evaluated at the 

channel radius. The [RIQ] for the hollow plasma channel structure is 

[
R] = Zo [no 2Ko(R) ] 
Q 0 >'p RK1(R) 

(2.34) 

for the fundamental mode, and 

[
R] Z [ 4K (R) ] [ RK (R) ]-1/2 
Q m = >.; RKm:1(R) 2 + (m + 1);'m+1(R) 

(2.35) 

for the higher-order m > 0 modes, where Zo = 47r/c = 1207r ohms is the impedance 

of free space. 

For comparison, the fundamental mode of a scaled disk-loaded copper SLC 

structure [49] has a loss factor of "'0 ~ 2.1 x 103>.-2(cm) V/(pC m), while the 

fundamental mode loss factor in a hollow plasma channel is 

3 -2 [ Ko(R)] V 
KG = 3.6 x 10 >'0 (cm) RK 1(R) (pC m) , (2.36) 

where >'0 = nr;127rcjwp is the accelerating wavelength. For a normalized channel 

radius of R = 1, the fundamental mode loss factor is "'0 = 2.5 X 103 >.r;2( cm) V j (pC 

" 
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m), somewhat larger than the conventional resonantly-excited conducting structure, 

which implies stronger beam loading and smaller stored energy per unit length for a 

given accelerating gradient. Note that a larger loss factor results not only in greater 

energy deposition, but also in larger wakefield excitation. The latter could result in 

instabilities and lead to greater energy spread, as studied in Chapter 3. 

To further appreciate the implications of Eq. (2.33), consider a numerical 

example where, for simplicity, only the fundamental mode, with a wavelength AO = 

nc/27rclwp ~ 146 pm, is excited. For a channel radius rw ~ 20 pm, R ~ 1 and the 

loss factor is KO ~ 12 MV l(pC m). If a 10 GV 1m accelerating gradient is desired, the 

energy stored in the structure is Uo = AU 4Ko ~ 2 Jim. Assuming the drive pulse is 

fed once per meter, one sees that the drive pulse energy must exceed 2 J, accounting 

for losses due to coupling to the accelerating mode. 

The energy stored in the plasma structure Um is equal to the energy de

posited by the driver, 
1 J 3-- .... Um = -;; d r'Jext · Em. (2.37) 

For an ultra-relativistic charge q at a radius rb, with rb < r w , the total energy 

deposited in the plasma structure by the charge can be written as 

U = L Um = L Km(rblrw)2mq2 . (2.38) 
m m 

This is the total energy loss in the sense that, unlike a conventional structure, there 

are no other synchronous modes supported by the structure. Furthermore, the 

relation f32f.m < 1 will always be satisfied for the plasma-vacuum structure since 

Em = 1 - w~(r)lw~ ~ 1 and f3 is the driver group velocity. Therefore no energy will 

be lost radially in the hollow plasma channel through Cherenkov radiation [33]. 

2.4 Error Sensitivity 

The promise of the hollow plasma channel depends on the ability to form 

such a structure. A realistic channel will have errors in the mode frequencies and 
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Figure 2.2: Fractional fundamental mode detuning normalized to fractional channel 
radius, versus normalized channel radius. 

loss factors due to many effects, for example: variation in the plasma density, a finite 

plasma density in the channel n c , or finite thickness of the plasma walls. Equation 

(2.27) implies that fractional errors in wp produces equal fractional errors in Wm due 

to the leading wp term and a frequency error due to the variation in R. Errors in the 

channel radius also produce errors in. R. The ratio of the fractional error in frequency 

8nm /nm to the fractional error in channel radius 8R/ R (assuming no fluctuations 

in plasma density) is 

[00,0,::] [ORR] -1 = B2 [ RK (R) ]-1 1+ m 
4(m + 1) 2(m + l)Km+1(R) 

(2.39) 

Figure 2.2 shows the ratio of fractional error in fundamental mode frequency to the 

fractional error in channel radius. As the figure indicates, operating at a smaller 

channel radius yields tighter tolerances of frequency to errors in channel radius. 

A finite plasma density inside the channel nc will shift the mode frequencies. 

For the mth mode, the mode frequency shift bowm = wm(nc > 0) - wm(nc = 0) is 

bowm = nc [(1 -OmO)(m + 1)Km+l(R) + RKm(R)] . 
Wm no 2(1 + OmO)(m + 1)Km+1(R) 

(2.40) 

Furthermore, an undesirable electrostatic mode may also be excited by the drive 



26 

pulse in a partially filled channel. This electrostatic mode will be a source of energy 

loss in the system. Nonlinear effects, such as self-trapping, become important at a 

lower field amplitude in a partially filled plasma channel. Self-trapping of electrons 

from the accelerator viewpoint is one source of "dark-current" [50] (electrons emitted 

from the structure), and may set a limit on the peak gradient. 

The important problem of finite wall thickness leads to a quality factor of 

the plasma structure [46J. In our model, this figure is infinite. Numerical simulations 

which include finite wall thickness [51] suggest that the quality fact()r of the channel 

can be small due to resonant absorption in the walls of the channel. 

2.5 Summary 

In summary, the hollow plasma channel has been characterized in terms of 

the fundamental accelerator parameters: mode frequencies (eigenvalues) and loss fac

tors (eigenfunctions) of the electromagnetic channel modes. With these results, one 

can quantify for the first time the performance of a high-energy machine based on this 

plasma structure. In order to reach TeV-energies, such a plasma-based accelerator 

would consist of many stages. With optical guiding provided by the plasma channel, 

the length of a single stage based on a hollow plasma channel structure would be 

fundamentally limited by the shorter of the the dephasing length and the driver de

pletion length, as discussed in Chapter 1. In practice, the length of a plasma-based 

accelerator may be limited by beam-plasma instabilities. 

Plasmas provide strong coupling for acceleration of particle beams, quan

tified in the loss factors calculated in this chapter. At the same time this strong 

coupling extends to strong deflection and breakup of the beam. The barrier to a 

compact TeV-energy accelerator based on the hollow plasma channel structure will 

be transverse beam stability. Using the results derived in this chapter, beam-plasma 

instabilities in the hollow plasma channel are examined Chapter 3. 
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Chapter 3 

Particle Beam Dynamics in a 

Hollow Plasma Channel 

In this chapter, the stability of a charged particle beam propagating in a 

hollow plasma channel is examined using the results derived in Chapter 2. Section 

3.2 addresses the coupling of the dipole wakefield excited in the plasma channel to the 

transverse displacement of the beam. Single-bunch beam breakup growth lengths are 

derived for beam propagation in in the weak-focusing and strong-focusing regimes. 

The effects of longitudinal wakefields on the beam energy spread are examined in Sec. 

3.3. Multi-bunch beam breakup is discussed in Sec. 3.4, and methods for reducing 

beam breakup are proposed. 

3.1 Introduction 

As a charged particle beam travels through the plasma structure, it excites 

wakefield modes, and the modes in turn influence the beam propagation .. Higher

order moments of the drive pulse distribution, present due to drive pulse shape or 

misalignment, will excite higher-order modes in addition to the fundamental (accel

erating) mode. These higher-order modes can cause beam instabilities, limiting the 
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beam current. 

The results presented in Chapter 2 can be used to model particle beam 

dynamics in a hollow plasma channel. The longitudinal and transverse forces on 

an ultra-relativistic beam due to its interaction with the plasma can be calculated 

from the convolution of the charge distribution of the beam with the wakefields 

W = E+z x B produced by all proceeding charges. The wakefields can be determined 

from the excited fields and using Eq. (2.37) to determine the field amplitude excited 

for a given source fext. The wake fields excited inside the hollow plasma channel by 

a ultra-relativistic point charge q, passing through the channel at radius rb, with 

rb < r w , and azimuthal angle () = 0 are 

(3.1) 
m 

q I)V.lm(T)rm-1rr[rcos(m()) - esin(m())] , (3.2) 
m 

with the wakefunctions, 

(3.3) 

(3.4) 

Here Om and Km the mode frequencies and loss factors given by Eqs. (2.27) and (2.33) 

respectively. Note that the Laplace transform of the wakefunctions Eqs. (3.3) and 

(3.4) yields the inipedance of the plasma structure. These point charge wakefields 

Eqs. (3.1) and (3.2) can be used as Green functions to compute the longitudinal 

and transverse forces produced by an arbitrary beam charge distribution Pb, through 

a convolution of the distribution over the point charge response. The longitudinal 

wakefields will tend to cause energy spread within a beam, and the transverse wake

fields will tend to cause beam breakup instabilities. Note that if the charge is near 

the axis of the channel, rb « r w , then the longitudinal wakefield is dominated by the 

fundamental m = 0 mode and the transverse wakefield by the dipole m· = 1 mode. 
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3.2 Transverse Instabilities 

It is well-known in accelerator physics that interaction of the beam with 

the structure geometry can result in transverse instabilities coupled to the off-axis 

displacement of the beam centroid, or beam breakup instabilities [52, 53]. This 

section discusses beam breakup instabilities in a hollow plasma channel. A relativistic 

charged particle beam propagating off-axis with respect to the beamline will have a 

dipole moment. The axial current associated with this dipole moment will couple 

to the electric fields of the structure along the beamline. The associated transverse 

Lorentz force will give a kick to beam stices in the rear of the bunch, displacing them 

farther off-axis. In this way, an instability is obtained. 

Consider the effect of a perturbation in the form of a small displacement of 

the beam centroid X(z, T) in the transverse direction. The transverse displacement is 

expressed as a function of two variables: the propagation distance z and the distance 

from the head of the beam T. The variable T = t - Z/Vb indexes beam slices where 

Vb ~ c is the axial beam velocity. The beam extends from T = 0 (the beam head) to 

T = Tb (the beam tail). Beam electrons remain approximately at a fixed T, as they 

advance in z along the length of the accelerator. 

From the Lorentz force equation, assuming the beam is monoenergetic, the 

evolution of the transverse displacement of the beam due to the dipole transverse 

wakefield is 

(3.5) 

where f( T) is the beam current and fo = m ec3 / e ~ 17 kA is the Alfven constant. The 

transverse dipole wakefunction WJ..1 is given by Eq. (3.4) with m = 1 and determines 

the Lorentz force on an electron at T as it arrives at z due to the fields generated 

by the beam segment at <: < T. The right-hand side of Eq. (3.5) is the cumulative 

force due to the transverse dipole wakefields of the proceeding charges in the beam. 

The transverse focusing force in the channel from a plasma wave (created by a drive 
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pulse) and from any external magnets can be described, in the linear approximation, 

by the betatron wavenumber k{3(z). This model [i.e., Eq. (3.5)] is valid in the ultra

relativistic limit of the beam velocity, where phase slippage between particles in the 

bunch is small. Equation (3.5) can be solved in a variety of limits to study the 

single-bunch beam breakup instability [53]. 

3.2.1 Single-Bunch Beam Breakup 

In this section, the asymptotic growth of the beam centroid is calculated 

for the case of a bunch much shorter than the natural periods of the wakefield (i.e., 

Wprb « 1). Assuming the beam density, which is proportional to the beam current, 

remains constant, Eq. (3.5) can be rewritten as 

[:z ,(z) :z + ,(Z)k~{Z)] X{z, r) = foT d(G(r - ()X(z, () , (3.6) 

where the Green function G is given by the excited wakefield, 

(3.7) 

In the limit of a short bunch, the wakefield response is approximately linear G{r) ~ 

{G1wl)r. 

If the growth length of the instability is much less than k-pl (i.e., the weak

focusing regime), then the term due to transverse focusing on the left-hand side of 

Eq. (3.6) can be neglected. This will typically be valid for ultra-relativistic beams 

propagating in hollow plasma channels without external focusing since the transverse 

focusing forces in the channel due to the excited fundamental mode fields will be small 

in the ultra-relativistic limit, as indicated by Eq. (2.29) with (1 - f3z(3) ~ O. 

The growth of the transverse beam displacement can be solved by applying 

the Laplace transform of r to both sides of Eq. (3.6), 

[8 8] - --
8z ,(z) 8z X(z, s) = G{s)X{z, s) , (3.8) 
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where the tilde denotes the Laplace transform j(s) =£[J(r)] = fooo f(r) exp[-sr]dr 

for any functiop. f. Assuming that the growth will be slow on the scale of the 

plasma period, an eikonal approximation can be applied to X such that X(z, s) = 

Xe(z, s) exp[i<pe(z, s)J, where the amplitude Xe(z, s) is slowly varying. With this 

definition, Eq. (3.8) yields the equations 

,Xe + 'YXe - ,Xe <P; 

2'YXe<Pe + ,~eXe + i'Xe<Pe 0, 

(3.9) 

(3.10) 

where the dots indicate partial differentiation with respect to z. Assuming the energy 

changes slowly during the period of the accelerating field and the eikonal approxima

tion IXel « l<PeXel such that ,Xe and i'Xe are higher-order terms, then the solutions 

to Eqs. (3.9) and (3.10) are 

<pe(Z, s) = ±iC1/2 foz dzn-l/2(zd , (3.11) 

Xe(Z, s) = 
_ (,o<Po) 1/2 __ ('0) 1/4 

Xo -.- -Xo - , 
,<I>e , 

(3.12) 

where ,0 = ,(z = 0) is the initial beam energy, <Po = <i>e(Z = 0, s), and Xo = X(z = 
0, s) is the Laplace transform of the initial displacement. Using Eqs. (3.11) and 

(3.12), the Laplace transform of the transverse displacement of the beam centroid is 

(3.13) 

Assuming an uniform initial transverse perturbation of the beam off axis Xo 

such that the initial condition is X(z = 0, r) = X08(r), where 8(r) is the Heaviside 

step function, the Laplace transform of the initial displacement is Xo = X(z = 

O,s) =£[X(z = O,r)] = Xo/s. Inverting the Laplace transform of the transverse 

beam centroid displacement X(z, r) =£-I[X(z, s)J, Eq. (3.13) becomes 

('0) 1/4 1 fioo 1 [ JG1W1' r 1 X(z, r) = Xo --:y 21fi. dS:; exp sr ± s 10 dzn-1/2(Z1) 
-too 

(3.14) 
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In deriving Eq. (3.14),6(8) :::::L:[G(T)] ~ G1w1L:[T] = G1wI/82 was used. Applying 

the method of steepest descents [54] to the integral in Eq. (3.14), one finds 

X( ) ,...., X (,0) 1/4 exp(Aw) 
Z,T,...., 0 ~, 

, y87fAw 
(3.15) 

with the exponent 

(3.16) 

For an ultra-relativistic beam, the beam remains at approximately fixed T. 

With fixed T and WpTb « 1, the axial force Eq. (2.28) is constant along the beam 

and the energy growth is linear. Assuming linear energy growth, = ,0 + gz, where 

,0 is the initial energy and 9 is a constant accelerating gradient in beam energy, the 

exponent is . 1/4 
A _ 23/2 (G1Wl T2) (1/2 _ 1/2) 1/2 

w - 2 "0 . 
9 

(3.17) 

Asymptotically (for large z), the exponent Eq. (3.17) becomes 

(3.18) 

with the characteristic growth length 

( 
6 2)-1 _710 gR2 

Lw = 9 2 G1W1T = 2 7/q(WpT)2' (3.19) 

This growth length will impose an upper bound on the accelerator length for a given 

1 T? product. For example, in a plasma channel with plasma wavelength of 125 {Lm, 

channel radius of 20 {Lm, and accelerating gradient of 10 GV jm, a3 fs beam with a 

charge of 1 pC will have an instability growth length of Lw ;::j 5 mm. As Eq. (3.19) 

indicates the instability growth length can be increased by increasing R, which in 

turn will lower the loss factor of the structure for fixed plasma density. 

The asymptotic growth of the transverse displacement of the beam centroid 

can also be determined for a particle beam which is traveling through an unexcited 
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hollow plasma channel and is therefore not accelerating (Le., a coasting beam or drive 

beam). For a beam traveling through an unexcited structure (9 = 0), the exponent 

Eq. (3.17) becomes 

( 

2)1/4 1/2 
Aw = 2 G1

W
1

T 
zl/2 = (~) , ,0 Lwu 

(3.20) 

with the characteristic growth length 

(3.21) 

As one can see from comparison of the growth lengths Eqs. (3.19) and (3.21), accel

eration has a salubrious effect on the stability of the beam. 

3.2.2 Single-Bunch Beam Breakup with External Focusing 

For high-energy applications One may prefer not to operate in the weak

focusing regime kfjLw « 1; yet the transverse focusing in the hollow plasma channel 

due to the accelerating (fundamental) wakefield is weak for relativistic beams. In 

contrast, if external focusing (e.g., magnetic quadrupole lens) is applied in the plasma 

structure, the asymptotic growth of the transverse beam displacement is much re

duced. 

The asymptotic growth of the transverse centroid displacement of an accel

erated and strongly focused beam can be determined by applying an eikonal approx

imation to Eq. (3.6), assuming the growth will be slow on the scale of a betatron 

period. Consider the slowly varying amplitude of the transverse centroid displace

ment X(z, T) such that 

( 

.) 1/2 ,000 . X(z, T) = -. X(z, T) exp[tOfj(z)] , 
,Ofj 

(3.22) 

with the betatron phase 

(3.23) 
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and iJo = iJ(3(z = 0). Substituting Eq. (3.22) into Eq. (3.6), assuming the eikonal 

approximation such that Ii'I « lTiJ(31 and Ixl « IXiJ(31, and taking a Laplace transform 

in T yields 

~ X(z,s) = ~x(z,s), 
uZ 22/{}(3 

(3.24) 

which has the solution 

x(Z,s) = xoexp [G2~)foZ /(Zl~;~(Zl)] , (3.25) 

where xo = X(z = 0, s). Inverting the Laplace transform, the solution for the 

amplitude of the beam centroid is 

x(z, T) = XO.jiOO ds exp [ST + G(~) r. d~l ], 
27r'/, -ioo S 22 10 /(Zt}{}(3(Zl) 

(3.26) 

where the initial condition X(z = 0, T) = X08( T) is assumed. The integral in Eq. 

(3.26) may be computed approximately by the method of steepest descents [54]. 

Using this method, one finds the transverse beam displacement is 

. 31/ 4 (/oiJo) 1/2 exp(As) ( As 7f ) 
X(z, T) ~ X023/27f1/2 /iJ(3 A~/2 cos {}(3 - J3 + 12 ' (3.27) 

with the exponent 

A - 3
3
/
2 

[GIWI T2 (Z dZ1 ]1/3 (3.28) 
s - 4 10 /(Zl)iJ(3(ZI) . 

In deriving Eq: (3.27), a short bunch was assumed Wp7Q« 1 such that G(T) ~ GIW1T. 

Considering linear energy growth /( z) = /0 + 9 z and assuming the betatron 

wavenumber has an energy dependence such that k(3(z) = iJ(3 = iJobo/'Y)Ot, the 

transverse beam displacement of a short bunch becomes 

X(Z,T) '" 31
/
4 (/0)(1-Ot)/2 exP(As) ( As 7f) 

Xo '" 23/27fl/2 -:y A~/2 cos {}(3 - 31/2 + 12 ' (3.29) 

with the betatron phase 

{} _ /gko (I-Ot I-Ot) 
(3- g(l-a) / -/0 (3.30) 
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and exponent 

33/2 [I /q(WpT)2 0< 0< ]1/3 
As = 25/ 3 10 ag'YokoR2 b - 'Yo ) , (3.31) 

where ko = k{3(z = 0) is the initial betatron wavenumber at injection. Asymptoti

cally, As --t (z/Ls )0</3, with the instability growth length 

(3.32) 

For example, if a = 1/2 (e.g., magnetic quadrupole lens), then the growth rate scales 

as Ls ex (I/Io)-2(wpT)-4, which is a more favorable scaling than Eq. (3.19). 

For a coasting or drive beam [i.e., no acceleration (g = O)J traveling through 

an unexcited hollow plasma channel structure with strong external focusing, 'Y(z) = 

'Yo, f)(z) = k{3z, and 

_ 33/2 (G1W1T2z) 1/3 _ (..!.-) 1/3 
As - 25/3 2k - L ' (3'Yo su 

(3.33) 

where the characteristic growth length is 

(3.34) 

3.3 Longitudinal Instabilities 

A beam loses energy when it traverses the hollow plasma channel acceler

ating structure owing to wakefields. This energy loss is called beam loading. Since 

the energy lost by a particle in the beam depends on its longitudinal position, the 

longitudinal wakefields Eq. (3.1) will cause an energy spread a-y within the beam. 

Energy spread constraints will therefore limit the beam current. 

The energy change of an ultra-relativistic electron bunch propagating along 

the axis of the hollow plasma channel is described by the equation 

8'Y 1 r 1 ~ 
8z = cI;; E(T) - J

o 
cI;; I(()Wjlo(T - ()d( , (3.35) 
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where Wllo is the longitudinal fundamental mode wakefunction given by Eq. (3.3). 

Here E(r) = Aocos(wor - 'Pinj) is the accelerating gradient, with Ao the peak ax

ial electric field of an excited plasma wave (created by a drive pulse) and 'Pinj the 

injection phase of the head of the bunch with respect to the plasma wave. For a 

delta function bunch I(r) = q8(r) (Le., a bunch much shorter than the period of the 

accelerating field Wprb « 1), one finds 

0', qWllo(O) qKo 
-:y ~ 2E(0) = E(O) . (3.36) 

For illustration, if an energy spread of order 0.1% is required in a plasma structure 

with rw = 20 /-Lm, R = 1, and an accelerating gradient of 10 GV jm, then the beam-. 

induced gradient should be held to 2Koq ~ 20 MV jm. The single-bunch charge q is 

then limited to 0.9 pC or 5 x 106 particles. In principle, the energy spread within a 

single bunch can be minimized and the charge limits increased by shaping the charge 

distribution of the bunch [55], although this may be difficult to achieve in practice. 

3.4 Multi-bunch Beam Breakup 

The longitudinal wakefields (beam loading) and transverse wakefields (beam 

breakup) constrain the charge in a single bunch. Therefore, to improve luminosity, 

a high-energy collider must operate with multiple bunches. The passage of intense 

bunches through the hollow plasma channel will leave behind wake fields which will 

influence subsequent bunches in a train. Each bunch in the train will experience 

the transverse dipole wakefield produced in the hollow plasma channel when the 

proceeding bunches are off axis. The evolution of the transverse position for the nth 

bunch Xn in a bunch train is 

( 
d d 2 ) n-l A • 

dz "( dz + "(k(Jn Xn = Nbre.r; Wn ((n - J )l) Xj(z) , (3.37) 

where Nb is the number of electrons per bunch, l is the bunch spacing, re = e2 j(mec2 ) 

is the classical electron radius, Xj is the displacement of the yth bunch, and W.Ll 
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Figure 3.1: Ratio of dipole mode wavelength to fundamental mode wavelength 00/01 
versus plasma density for constant accelerating mode wavelengths >'0 = 75 J.Lm, 100 
J.Lm, and 125 J.Lm. 

is the transverse dipole wakefunction Eq. (3.4). Considering a two bunch model, 

the growth of the transverse position due to the trailing bunch coupling with the 

transverse wakefield of the head bunch in an excited hollow plasma channel (g > 0) 

without external focusing (k{3 ~ 0), scales as X2 rv (z/ Lm ), with the character

istic growth length Lm = g[NreWJ.1(l)t1. If external focusing is applied such 

that k{3(z) = ko(ro/,)a, then the growth of the transverse displacement of the sec

ond bunch scales as X2 rv (z/ Lmd3a- 1)/2, with the characteristic growth length 

Lmf = (ro/g){2akog/[NreWH (I)]}2/(3a-1). 

One possible method to reduce multi-bunch beam breakup growth is to 

tune the transverse dipole mode to place the bunches at the zero crossings [56] of 

the wakefunction Eq. (3.4). In other words, choose the bunch spacing I such that 

WH ex: sin(Olwpl/c) = O. This will be possible if the ratio of the accelerating mode 

frequency to dipole mode frequency is tuned such that qOo = 2p01, where p and q 

are integers. Figure 3.1 shows the ratio of 00/01 versus plasma density for several 
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Figure 3.2: Channel radius as a function of plasma density which maintains constant 
accelerating frequency for fundamental mode wavelengths AO = 75 pm, 100 pm, and 
125 pm. 

fixed values of the accelerating wavelength Ao = Or;121rcjwp . 

Control of beam breakup can also be achieved by stagger-tuning [57, 58]. 

These results indicate a path to stagger-tuning for the plasma channel accelerator. 

The mode frequencies are functions of two independent experimental parameters: 

the channel radius and the plasma frequency. Therefore these two parameters can 

be varied such that the higher-order mode frequencies vary over the length of the 

accelerator while maintaining a constant fundamental (accelerating) mode frequency~ 

This variation of the higher-order mode frequencies will avoid resonance with the 

dipole mode, which is responsible for beam breakup growth. Shown in Fig. 3.2 

is the channel radius as a functidn of plasma density which maintains a constant 

accelerating frequency. 
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I Regime Exponent Growth Length 

Weak-focusing (i;f/4 Lw = 2-7f gR
2 

2 in excited channel /q(WpT) 
Weak-focusing 

( z f/2 . [ 2 f/2 L - 2-5/2 ~ loR 
in unexcited channel Lwu wu - I,q(wvT)2 

Strong-focusing (tr/3 _ 25/a. [I Q:/okoR2 ] 1/a. 
in excited channel Ls - 39/2a. T ga.-I~1(WpT)2 
Strong-focusing 

( z f/3 L - 25 I kf3l0R2 
in unexcited channel ~ su - 39/2 T ~1(WpT)2 

Table 3.1: Exponents and growth lengths for single-bunch transverse beam breakup 
instabilities of a particle beam in a hollow plasma channel. Growth lengths are given 
for beam propagation in an excited channel (for an accelerating or witness beam) and 
in an unexcited channel (for a coasting or drive beam) in the weak-focusing (without· 
external focusing) and strong-focusing (with external focusing) regimes. 

3.5 Summary 

In this chapter, the stability of a particle beam propagating in a hollow 

plasma channel was examined. Section 3.2 addressed the coupling of the dipole 

wakefield excited in the plasma channel to the transverse displacement of the beam. 

Single-bunch beam breakup was analyzed for accelerating and coasting beam propa

gation in a hollow plasma channel in the weak-focusing and strong-focusing regimes. 

The effects of longitudinal wakefields on energy spread (beam loading) were exam

ined'in Sec. 3.3. Multi-bunch transverse beam breakup was discussed in Sec. 3.4, 

and methods for reducing the multi-bunch beam breakup were proposed. 

The exponents and characteristic growth lengths of the transverse beam 

centroid displacement due to single-bunch beam breakup instabilities are reviewed 

in Table 3.1. The table presents results for beam propagation in an excited hollow 

plasma channel (for an accelerating or witness beam) and in an unexcited hollow 

plasma channel (for a coasting or drive beam) in both the weak-focusing (without 
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external focusing) and strong-focusing (with external focusing) regimes. One can see 

from Table 3.1 that the most favorable scalings can be achieved for beams propagat

ing in an excited hollow plasma channel in the strong-focusing regime. 

With diffraction overcome by a plasma channel, the most severe limitation 

to the length of a single accelerator stage based on the hollow plasma channel struc

ture is the transverse stability of the particle beam (i.e., Lw < Ldephase < Ldeplete 

for typical parameters of plasma-based accelerator experiments). Such a plasma 

structure (a hollow plasma channel of length'" Lw) would be an extremely compact 

accelerator producing Ge V-energy particle beams. 
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Chapter 4 

Ultrashort Electron Bunch 

Generation 

In this chapter, a laser-plasma-based relativistic electron source which uses 

laser-triggered injection of electrons is examined. The source generates ultrashort 

electron bunches by dephasing and trapping background plasma electrons undergo

ing fluid oscillations in an excited plasma wave. The plasma electrons are dephased 

by colliding two counter-propagating laser pulses which generate a slow phase veloc

ity beat wave. In Sec. 4.2 the threshold laser pulse amplitudes, the optimal injection 

phase for trapping, and the trapping volume are calculated using a Hamiltonian ap

proach. In Sec. 4.3 numerical simulation results from a three-dimensional particle 

transport code are presented which verify the analytic predictions and characterize 

the dynamics and quality of the generated electron bunches. This analysis indicates 

that the colliding laser pulse injection scheme has the capability to produce rela

tivistic femtosecond electron bunches with fractional energy spread of order a few 

percent and normalized transverse emittance less than 1 mm mrad using 1 terawatt 

injection laser pulses. 
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4.1 Introduction 

The characteristic scale length of the accelerating field (plasma wave) in 

a plasma-based accelerator is the plasma wavelength Ap(m)= 27rc/wp ~ 3.3 X 104 

n;1/2(cm-3). In such short wavelength accelerators (typically Ap ;S 100 /km), pro

duction of electron beams with low momentum spread and good pulse-to-pulse en

ergy stability requires femtosecond electron bunches to be injected with femtosecond 

synchronization with respect to the plasma wave. Although conventional electron 

sources (photocathode or thermionic guns) have achieved sub picosecond electron 

bunches [59, 60, 61]' the requirements for injection into plasma-based accelerators 

are currently beyond the performance of these conventional electron sources. 

Optical injection schemes which rely on laser-triggered injection of plasma 

electrons into a plasma wave have been proposed [62, 63J to generate the required 

femtosecond electron bunches. One method [62, 64J utilizes two laser pulses which 

propagate perpendicular to one another. One (injection) laser pulse intersects the 

plasma wave generated by the other (drive) laser pulse. The ponderomotive force due 

to the transverse gradient in the laser intensity of the injection laser pulse accelerates 

a fraction of the plasma electrons and allows them to be trapped by the plasma wave. 

One disadvantage of this method of dephasing background electrons is the high laser 

intensities (> 1018 W /cm2 ) required in the two laser pulses. Consequently, large 

space-charge waves are excited by the injection laser pulse which further complicates 

the injection pr~cess [64J. 

In this Chapter, an optical injection scheme [63, 65, 66] which uses three 

short laser pulses is examined. In this scheme, two low-intensity injection laser pulses 

are utilized as well as a pump laser pulse for plasma wave excitation. The pump laser 

pulse generates a plasma wave through its ponderomotive force, as in the standard 

laser wakefield accelerator. The two injection laser pulses, one pulse propagating 

in the forward direction behind the pump laser pulse and the other pulse counter

propagating to the pump laser pulse, collide at a predetermined phase of the plasma 
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wave. During this collision, the beating of the injection laser pulses generates a 

beat wave that interacts with a subset of the background plasma electrons. Under 

appropriate conditions, described in this chapter, some of the background plasma 

electrons attain sufficient momentum and phase-shift to be trapped by the plasma 

wave. 

The trapping mechanism of this colliding laser pulse scheme is somewhat 

analogous to the self-trapping process that can occur in the self-modulated laser 

wakefield accelerator [67]. Self-trapped electrons with energies as high as 100 MeV 

have been observed in self-modulated laser wakefield accelerator experiments [17, 

18, 68]. In addition to producing a large plasma wave via self-modulation, a long 

pulse length laser (L > Ap , where L is the laser pulse length) decays into Raman 

backscattered light and a plasma wave. The backscattered light can beat with the 

pump pulse, generating a slow phase velocity beat wave, and accelerating background 

plasma electrons to sufficient energies so as to be trapped by the plasma wave [67, 69]. 

The drawback of using self-modulation of the pump laser pulse as an electron source 

is that it produces electron bunches with near 100% energy spread [17, 18, 68]. This 

is the case since the slow beat wave is not localized with respect to the phase of the 

plasma wave (i.e., the beat wave extends over distances much larger than the plasma 

wavelength). Furthermore, self-modulation relies on instabilities, i.e., trapping and 

acceleration occur in an uncontrolled manner. 

In contrast to other optical injection schemes, the colliding laser pulse 

scheme has the potential to produce femtosecond electron bunches with low fractional 

energy spreads (rv 1%) using relatively low injection laser pulse intensities compared 

to the pump laser pulse a.rnj « a.~ump rv 1. Furthermore since L :s Ap for the three 

laser pulses considered in this scheme, Raman instabilities will be suppressed. The 

colliding pulse concept also offers detailed control of the injection process. The in

jection phase is determined by the relative timing between the forward propagating 

injection laser pulse and the pump laser pulse. The beat wave phase velocity is ad

justed by varying the frequency detuning between the injection laser pulses, and the 
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Figure 4.1: Normalized axial potential profiles of the pump laser pulse aQ, the plasma 
wave ¢, the forward injection laser pulse aI, and the backward injection laser pulse 
a2· 

number of trapped electrons can be controlled by the injection laser pulse intensities 

and durations. 

4.2 Phase Space Analysis 

The colliding laser pulse optical injection scheme employs three short laser 

pulses as illustrated in Fig. 4.1: an intense (aij ;S 1) laser pulse (denoted by subscript 

0) for plasma wave generation, a forward propagating injection laser pulse (subscript 

1), and a backward propagating injection laser pulse (subscript 2). The pump laser 

pulse generates a plasma wave with phase velocity near the speed of light v<p ~ c. 

The injection laser pulses collide some distance behind the pump laser pulse. When 

the injection laser pulses collide, they generate a beat wave with a phase velocity 
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Vb = b.w / b.k c::: b.w /2ko, where the frequency difference of the injection laser pulses 
• 

is b.w = WI - W2 and the wavenumber difference is b.k = kl - k2 c::: 2ko with 

kl c::: Ik21 c::: ko. During the time when the two injection laser pulses overlap, the slow 

beat wave injects plasma electrons into the fast plasma wave for acceleration to high 

energies. Note that the polarizations of the injection laser pulses can be chosen to 

be orthogonal to the pump laser pulse such that there is no interaction between ·the 

pump laser pulse and the backward propagating injection laser pulse. 

An example of the colliding laser pulse injection process is shown in Fig. 4.2, 

which presents simulation results of the evolution in longitudinal phase space of an 

initially uniform segment of electrons as they interact with the plasma wave and the 

beating injection laser pulses. This figure was generated using a particle transport 

code described in Sec. 4.3. Also shown is the separatrix (solid line) between the 

trapped and untrapped orbits of the plasma wave Hamiltonian. Figure 4.2 shows 

the electron distribution (a) before the collision of the injection laser pulses (in an 

untrapped orbit of the plasma wave), (b) during the collision of the injection laser 

pulses (crossing the plasma wave separatrix), (c) just after the collision (0.07 mm of 

propagation after the collision), and (d) the resulting energetic electron bunch (0.7 

mm of propagation after the collision). 

4.2.1 Plasma Wave Hamiltonian 

The colliding laser pulse injection mechanism can be studied using a Hamil

tonian approach. The electron motion in a one-dimensional plasma wave is described 

by the Hamiltonian 

( 
2) 1/2 H(uz , 'Ij;) = 1 + U z - (J<pu z - e/>('Ij;) , (4.1) 

with the corresponding Hamilton equations 

d'lj; 8H = U z _ (J<p 
di 

= 
8uz }1 + u~ 

(4.2) 

duz 8H 8e/> 
di 

= 81/; , 81/) 
(4.3) 
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(b) During Collision 
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Figure 4.2: Electron distribution in longitudinal phase space ('Ij;, u z ) (a) before the 
collision of injection laser pulses (wpt = 36), (b) during the collision of injection 
laser pulses (wpt = 39), (c) just after the collision (wpt = 50), and (d) an energetic 
electron beam (wpt = 150). The separatrix between trapped and untrapped plasma 
wave orbits (solid line) is shown. 
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where 'Uzmec is the electron axial momentum and c!3ep is the plasma wave phase 

velocity, which is near the group velocity of the pump laser pulse v9 ~ c!3ep. Here the 

independent variable i = !3;lwpt has been used. The scalar potential of the plasma 

wave is assumed to have the form ¢( 'l/J) = ¢o cos 'l/J, where the plasma wave phase 

is 'l/J = wp(z - !3epct)/(c!3ep) and the normalized plasma wave potential amplitude is 

¢o = eifJo/meC2. The amplitude of the plasma wave potential is determined by the 

pump laser pulse amplitude and shape. The normalized axial momentum in an orbit 

of the plasma wave (H = constant) is 

( 4.4) 

where lep = (1 - !3~)-1/2. Assuming the plasma is initially cold,. the background 

electron fluid motion in the plasma wave is defined by the orbit H = l. 

The boundary between trapped and untrapped orbits is given by the sep

aratrix orbit H = H('Uz = lep!3ep, 'l/J = 71") = 1;1 +¢o. The maximum momentum Of 

an electron in a trapped orbit of the plasma wave 'Umax is given by the maximum 

momentum of the separatrix H('Umax , 271") = Hbep!3ep, 71"), 

(4.5) 

In the limits lep¢O » 1 and I~ » 1, the maximum energy of an electron in a trapped 

orbit is Imax ~ 4,~¢o. 

The one-dimensional Hamiltonian Eq. (4.1) neglects the effects of transverse 

focusing. A three-dimensional plasma wave will have a periodic radial field which is 

71" /2 out of phase with the accelerating field. Therefore, there exists a 71"/4 region in 

phase where the fields due to the plasma wave are both focusing and accelerating. 

For an electron to be trapped and remain in this region where the transverse electric 

field due to the plasma wave will provide a focusing force, it must be in an orbit with 

H ~ H( 11,z = lep!3ep, '1/) = 71"/2) = 1;1. 
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4.2.2 Beat Wave Hamiltonian 

The colliding injection laser pulses lead to the formation of a beat wave 

with phase space buckets (separatrices) of width 27r / t::..k ::::: >"0/2 (much shorter than 

those of the plasma wave field >"P' i.e., >"0 « >"p is assumed). The motion of the 

electron in the beat wave is described by the beat wave Hamiltonian 

(4.6) 

with the corresponding Hamilton equations 

d'lj;b OHb Uz (4.7) 
dh 

= = hI + u~)1/2 - /3b oUz 

duz OHb 1 lOll 
(4.8) 

dtb o'lj;b 
- hI + u~)1/2"2 o'IjJb ' 

where (3b = t::..w/ct::..k ::::: (>"2 - >"1)/(>"2 + >"1) is the beat wave phase velocity, 'lj;b = 

t::..k(z - (3bct) is the beat wave phase, and the independent variable tb = t::..kct has 

been used. Here ,I('Ij;b) = 1 + at + a~ + 2ala2cos'lj;b with at and a~ the slowly 

varying amplitudes of the forward and backward injection laser pulses averaged over 

the rapid phase oscillations. The separatrix orbit in phase space of the beat wave 

Hamiltonian has the value Hb = Hb(Uz = Ib(3bl.l.(O), 'lj;b = 0) = 1.1. (Ohb1 , where 

Ib = (1- (3~)-1/2. The maximum (+) and minimum (-) normalized axial momenta 

of an electron in a beat wave orbit (extrema of the separatrix) are 

(4.9) 

The beat wave amplitude parameter (0,10,2)1/2 (the geometrical mean of the nor

malized vector potential amplitudes of the two injection laser pulses) is a critical 

parameter in the injection process. For 0,1 = 0,2 = ainj the beat wave amplitude 

parameter (iha2)1/2 = ainj = eEinj/(meCWinj) is the normalized root-mean-squared 

(rms), averaged over a laser period, electric field amplitude of the injection laser 

pulses. 
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From the beat wave Hamiltonian, it can be shown that the bounce period 

for an electron deeply trapped in the beat wave is given by 

_ ( 27r ) 'Yl'YJ.(7r) 
7"b - cb..k vala2' (4.10) 

This bounce time is typically much shorter than the transit time rv Ap/C of a plasma 

electron through a single period of the plasma wave. Since the transit time of an 

untrapped electron through a beat wave orbit rv Ao/(2c) and the bounce time of a 

deeply trapped electron in a beat wave orbit Tb are both much shorter than a plasma 

wave period, a separation of time scales is possible. This difference in time scales is 

due to the extremely small spatial scale Ao/2 of the beat wave orbits in comparison 

to the plasma wave orbit Ap. Therefore, on the time scale in which a single electron 

interacts with a beat wave orbit, it can be assumed that the electron experiences a 

constant electric field from the plasma wave. The effect of the plasma wave electric 

field on the phase space orbits is to distort the beat wave orbits. 

Within a single period of the beat wave, the plasma wave electric field 

Ez = -(mec2 /e)ozeP can be approximated as a constant. That is, for small phase 

excursions 1b..1/J1 «27r about 1/Jo, Ez(1/J) ~ Ez(1/Jo), where 1/Jo is the local plasma wave 

phase position of the beat wave bucket and Ez(1/Jo) is the local value of the plasma 

wave axial electric field. The modification of the beat wave Hamiltonian Eq. (4.6) to 

include the presence of the plasma wave Ez can then be written as 

( 4.11) 

where E = eEz (1/Jo) / (mec2 b..k) is constant. 

Equation (4.11) describes the distortion of the (V,z,1/Jb) phase space from 

symmetric islands (E = 0) to "fish-shaped" islands (E f. 0) as shown in Fig. 4.3. 

When E = 0, the separatrix is symmetric in 1/Jb about the stable fixed point, e.g., 

located at 1/Jb = -7r, with unstable fixed points located at 1/Jb = 0, -27r. When 

E f. 0, the separatrix is fish-shaped and the enclosed region of phase space is reduced 

(compared with E = 0) and lies inside the region -27r < 1/Jb < O. For example, when 
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Figure 4.3: Distortion of the beat wave orbits in phase space ('Ij;b, uz) due to the 
presence of the plasma wave E = eEz('Ij;o)j(mec2!1k). With E < 0, the buckets open 
to the right. 
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f. < 0, the "fish-tail" of the separatrix opens to the right, i.e., the unstable fixed 

point lies to the left of 'ljJb = 0. In the limit 7rIEl!bI.t{0)/(2o'oo'1) < 1, the maximum 

and minimum axial momenta for an electron on the separatrix are 

[ () I I] ( ~ ~ )1/2 [ 7r iEI1bl1-(0)] 1/2 
Ubeat ~ {3b1b 11- ° -7r E Ib ± 2/b aOa1 1 - 20,00,1 (4.12) 

Both the width and height of the separatrix decrease with increasing lEI (i.e., increas-

ing plasma wave amplitude). 

The electron fluid momentum in the plasma wave is given by Eq. (4.4) with 

H = 1. For I~ » 1, the normalized electron fluid momentum is 

CPocos('IjJ) [ CPo· ] 
v'z ~ - [1 + CPo cos('IjJ)] 1 + 2 cos('Ij)) . (4.13) 

Trapping may occur by the following method. In the region -7r /2 < 'IjJ < 0, the 

plasma electrons are flowing backward (uz < 0) and the electric field is accelerating 

(Ez < 0). If Ez < 0, then E < 0 and the beat wave orbits open to the right, as shown 

in Fig. 4.3. Consider an electron initially flowing backward, as it would in the region 

-7r /2 < 'IjJ < 0, thus initially residing below the beat wave separatrix. As Fig. 4.3 

indicates, the orbits are open and can take an electron from below to above the beat 

wave separatrix. Such an electron would acquire a positive axial momentum which is 

sufficiently high to be trapped and accelerated by the plasma wave. The open phase 

space orbits provide a possible path by which the ponderomotive beat wave can lead 

to trapping of electrons in the plasma wave. 

4.2.3 Trapping Threshold 

The threshold injection laser pulse intensities required for trapping of back

ground plasma electrons into the plasma wave can be estimated by considering the 

effects of the plasma wave and the beat wave individually and requiring resonance 

overlap (illustrated in Fig. 4.4). Specifically, that the maximum momentum of the 

beat wave separatrix exceeds the minimum momentum of the plasma wave separa

trix and the minimum momentum of the beat wave separatrix is less than the fluid 
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Figure 4.4: Phase space ('Ij;, u z ) showing the beat wave separatrices, an untrapped 
plasma wave orbit (solid line), a trapped plasma wave orbit (dotted line), and a 
trapped arid focused plasma wave orbit (dashed line). 

momentum of electrons in the plasma wave. With these requirements, the necessary 

conditions for trapping are 

(Ubeat)min < Uuntrap' 

(4.14) 

(4.15) 

The maximum and minimum momenta of an electron in a beat wave orbit are given 

in Eq. (4.9). The momentum of a plasma electron in an untrapped orbit of the 

plasma wave Uuntrap is given by Eq. (4.4) with H = 1 (Le., the background plasma 

fluid electrons). The momentum of an electron in a trapped orbit of the plasma wave 

Utrap is given by Eq. (4.4) with H ~ ,;1 + ¢o. For an electron in a trapped and 

focused orbit, Utrap is given by Eq. (4.4) with H ~ ,;1. 

Solving for the minimum (0,10,2)1/2 which satisfies the conditions Eqs. (4.14) 

and (4.15) yields the threshold beat wave amplitude parameter for trapping plasma 

I 



53 

electrons, 

(4.16) 

and the optimal plasma wave phase for injection [plasma wave phase location where 

the threshold beat wave amplitude parameter Eq. (4.16) allows for trapping] 

(4.17) 

Here H = ,;1 + <Po for injection into a trapped plasma wave orbit and H = ,;1 
for injection into a trapped and focused plasma wave orbit. In the limits ,~ » 1, 

f3b « 1, and a; « 1, Eqs. (4.16) and (4.17) reduce to 

2<po cos 7/Jopt 

(1 + f3b)(l - H) 

1 - 2f3b - H , 

(4.18) 

( 4.19) 

with H ::::: <Po for a trapped orbit and H ::::: o for a trapped and focused orbit. As 

an example, the parameters f3b = -0.2, ''I' = 50, and <Po = 0.7 give a threshold 

of (a1a2)~~2 ::::: 0.2 and an optimal injection phase of 7/Jopt ::::: 0 for injection into a 

trapped and focused orbit. Figure 4.5(a) shows the threshold beat wave amplitude 

parameter for trapping [Eq. (4.16) with H = ,;1 + <Pol and Fig. 4.5(b) shows the 

optimal plasma wave phase for injection versus the beat wave phase velocity f3b for 

several plasma wave potential amplitudes. From Fig. 4.5(a) one sees that the larger 

the plasma wave, the smaller the injection laser pulse intensity required for trapping 

plasma electrons. The threshold for injection into a trapped and focused orbit is 

independent of plasma wave amplitude as indicated by Eq. (4.16) with H = ,;1. In 

the limit ,~ » 1, the threshold beat wave amplitude parameter for a trapped and 

focused orbit is (a1a2)~~2 ::::: 1/[4,b(1 - f3b)] ~ 0.25 for f3b ~ O. Figure 4.5(a) also 

shows the threshold slightly decreases for decreasing f3b. Note that the estimate of 

the trapping threshold Eq. (4.16) will not be valid when the separation in time scales 

no longer applies, i.e., when lf3bl is large enough such that Tb rv Ap/e, where Tb is 

given by Eq. (4.10). Furthermore, validityofEq. (4.17) requires Icos7/Joptl < 1. 
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Figure 4.5: (a) The threshold beat wave amplitude parameter (ala2)~~2 for trapping 
at the optimal injection phase versus beat wave phase velocity (for cPo = 0.5, 0.6, and 
0.7). (b) The optimal plasma wave phase for injection 'lj;opt versus beat wave phase 
velocity (for cPo = 0.5, 0.6, and 0.7). 
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Minimizing the injection pulse amplitudes [operating near the threshold 

amplitude given by Eq. (4.16)] will minimize the laser power Pi :::: 43(i],ird).i)2 GW 

required for trapping and is therefore important for the experimental realization of 

this optical injection scheme. For illustration, if the injection laser pulses have a 

wavelength of 0.8 f.Lm and a spot size of 15 f.Lm, then the injection laser pulse power 

required for trapping is Pi ::; 1 TW for o'i ::; 0.26. 

4.2.4 Trapping Volume 

The region where trapping is possible (i.e., the plasma volume where the 

injection laser pulse amplitudes are greater than the threshold for moving an electron 

from an untrapped to a trapped orbit) can also be determined by examining the 

resonant overlap of phase space separatricies. Consider (0,10,2)1/2 > (o'1o'2);C, where 

(o'1o'2);C is defined by Eq. (4.16), such that the beat wave separatrix overlaps well 

both the untrapped plasma fluid orbit and the plasma wave separatrix. From Eq. 

( 4.1), the momentum of trapped and untrapped electrons in the plasma wave satisfies 

the relations 

[ 
2] 1/2 H + ¢ = 1 + U trap - !3<pUtrap 

1 + A, = [ 2 ] 1/2 'I' 1 + Uuntrap - !3<p Uuntrap , 

(4.20) 

(4.21) 

where H ::; ¢o+,;l for a trapped orbit and H ::; ,;1 for a trapped and focused orbit. 

To determine the region in plasma wave phase 'Ij; where trapping is possible, consider 

the phase 'lj;t1, where the maximum beat wave momentum equals the momentum of 

the plasma wave separatrix, 

(4.22) 

and the phase 'lj;t2, where the minimum beat wave momentum equals the fluid mo-

mentum, 

(4.23) 
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The maximum and minimum momenta of the beat wave separatrix 'U.beat are given 

by Eq. (4.9). Applying these conditions Eqs. (4.22) and (4.23) to the plasma wave 

Hamiltonian relations Eqs. (4.20) and (4.21) yields 

H + <p(1/Jt1) 

1 + <p( VJt2) 

Solving for 1/Jt1 and 1/Jt2 yields 

(4.24) 

(4.25) 

cos 1/Jt1 <p;;1 [,b'Y.dO)(l - i3",i3b) - 2,b(i3", ~ i3b)(a1a2)1/2 - H] (4.26) 

cos1/Jt2 = <p;;1 [2,b(i3", - i3b)(a'la2)1/2 + ,bI.L(O)(l - i3",i3b) - 1] . (4.27) 

Note that l1/Jt21 ~ l1/Jtll and 1/Jt1 = 1/Jt2 = 1/Jopt when' (0,10,2)1/2 = (a1 a2):C· 

If the right-hand side (RHS) of Eq. (4.27) satisfies IRHSI < 1, then the 

plasma wave phase regions where trapping is possible are -11/Jt11 ~ 1/J ~ -IV)t21 and 

11/Jt21 ~ 1/J ~ 11/Jt1I. If solutions to Eq. (4.27) do not exist [i.e., the RHS of Eq. (4.27) 

satisfies IRHSI > 1], then the minimum beat wave momentum is less than the fluid 

momentum for all plasma wave phases ('U.beadmin < 'U.untrap(O), and the plasma wave 

phase region where trapping is possible is -11/Jtll ~ 1/J ~ l1/Jtll. These regions are 

correct for injection into a trapped orbit H = <Po + ,;1 [where solutions to Eq. 

(4.27) exist for typical parameters] and for injection into a trapped and focused orbit 

H = ,;1 [where the RHS of Eq. (4.27) satisfies IRHSI > 1 for typical parameters]. 

Assuming kpri > 1, where ri are the minimum spot sizes of the laser pulses, 

such that the radial motion of the electrons in the plasma wave remains small, the 

above one-dimensional Hamiltonian theory can be used to estimate the initial trap

ping volume. The plasma wave phase region where trapping is possible is a func

tion of the radial position of the electrons via Eqs. (4.26) and (4.27) and the gen

eralizations ai(r) = aieXp(_r2jrT) and <po(r) = <poexp(-2r2jrZ). Here we have 

assumed Gaussian radial profiles of the laser pulses. Figure 4.6 shows the region 

(1/J, r( 1/J)) where trapping of plasma electrons is possible for the parameters given in 
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Figure 4.6: Region in (1/J, r) where trapping of plasma electrons is allowed for para
meters in Table 4.1. 

Table 4.1. In Fig. 4.6, the maximum radial position where trapping is possible rmax 

is rmax = 4.2 /-Lm, and the length of the phase region where trapping is possible 

L trap = w;lc(211/Jt1(0)1) is L trap = 7.9 /-Lm. The volume where trapping is allowed 

can be calculated by 

(4.28) 

The trapping volume for t'he case illustrated in Fig. 4.6 is vtrap ~ 3.0 X 10-10 cm-3 . 

With the trapping region known, one can choose the injection laser pulse 

lengths to be greater than th~ phase region where trapping is possible, Li > L trap , 

thereby maximizing the number of electrons trapped. Figure 4.7 shows the length 

of the plasma wave phase region L trap (solid line) and the maximum radial position 

rmax (dashed line) versus beat wave amplitude parameter for the parameters in Table 

4.1. 
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Figure 4.7: The length of the plasma wave phase region Ltrap (solid line) and the 
maximum radial position rmax (dashed line) where trapping is possible versus beat 
wave amplitude parameter (iho'2)1/2. 

Plasma wavelength Ap 
Pump laser strength 0,0 

Plasma wave potential <Po 
Pump pulse length Lo = Ap 
Pump pulse wavelength AO 
Laser spot size ro = rl = r2 
Injection laser pulse strength 0,1 = 0,2 

Injection pulse length Ll = L2 = Ap /2 
Injection pulse (forward) wavelength Al 
Injection pulse (backward) wavelength A2 

40/-Lm 
0.94 
0.7 

40/-Lm 
0.8/-Lm 
15 /-Lm 

0.4 
20 /-Lm 

0.83/-Lm 
0.80/-Lm 

Table 4.1: Colliding pulse optical injection parameters used in the numerical simu-
lations presented in Sec. 4.3. ' 
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4.3 Numerical Studies 

To further evaluate the colliding laser pulse optical injection scheme and to 

test the analytic predictions for the trapping thresholds presented in Sec. 4.2, the 

motion of test particles in the combined plasma wave and laser fields was simulated 

by numerically solving the equations of motion for the electrons. In the numeri

cal simulations, we assume the laser pulses are linearly polarized with fundamental 

Gaussian radial profiles and half-period cosine longitudinal envelopes. In the paraxial 

approximation (>'i « Ti, where Aiis the laser wavelength and Ti is the minimum laser 

spot size) the normalized vector potential of the laser pulses isai = e.Lial.i + ezazi 

where el.i and ez are unit vectors and the vector potential components are given by 

[70] 

inA Ti (_ 2/ 2 ) al.i = v 2ai-e r rs; COS'l/Ji 
Tsi 

(4.29) 

inA (x. el.dTi (_r2/r2) ( . Z ) 
azi = 2v2ai .3 e s; sm'l/Ji - -. cos'l/Ji 

k,Tsi ZRt 
(4.30) 

Here Wi = 27rc/ Ai is the laser frequency, Tsi(Z) = Ti(l + Z2/Zki )1/2 is the laser spot 

size, ZRi =kiTt /2 is the Rayleigh length, and 'l/Ji = ki(z - {3<pict) + ZT2/(T;iZRi) + 

Z/ZRi -tan-1(z/ZRd+'Pi is the phase with 'Pi a constant. The phase velocity c{3<pi = 

wdki and group velocity c{3gi are given by {3;l = {3gi = ±[1-w~/wt-4c2/{Tiwi)2P/2. 

The positive sign is taken for the pump laser pulse and forward propagating injection 

laser pulse, and the negative sign is taken for the backward propagating injection laser 

pulse. The longitudinal profile of the pump pulse is assumed to have the form 0,0 = 

-aoII((2'l/J -7r)/47r) cos[(2'l/J -7r)/4J, where II(s) is a step function such that II(s) = 1 

for lsi < 1/2 and zero otherwise. The injection laser pulses are assumed to have 

longitudinal profiles of the form ai = aiII(si) cos(7rsd, where Si = (z - {3gict - zi)Li1 

with Li the length of the injection laser pulses and Zi a constant. 

The polarizations of the laser pulses are chosen to be el.O = i: and e1.1 = 
e1.2 Y such that 0,0 . 0,2 :::::: 0 and thus there is no beating (no slow plasma 

wave generation) from the interaction of the pump laser pulse and the counter-
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propagating injection laser pulse. The ponderomotive potential due to the beating 

of the injection laser pulses (averaged over the fast phase oscillations) is al . a2 = 

o'I + o,~ + 20,10,2 COS('ljJ1 - 'ljJ2). The plasma waves produced by the injection laser 

pulses can be neglected (<PI rv <P2 « CPO) since the injection laser pulse amplitudes 

required for trapping are much less than the pump laser pulse amplitude and the 

pulse lengths of the injection laser pulses can be chosen to provide poor coupling 

between the plasma response and the injection laser pulses. 

Assuming a5 < 1, the plasma wave potential <P excited by the ponderomo

tive force generated by the pump laser pulse (to lowest-order in pump laser pulse 

amplitude) near the waist of the pump laser pulse (z « ZRO) satisfies 

cP = ~5 e( -2r2 /r5) [1 + sin'ljJ + (3; - t) cos 'ljJ] (4.31) 

inside the pump laser pulse, and 

7(0,
2
0 ( 2 2/ 2) <P = -e - r ro cos'ljJ 

4 . (4.32) 

after the pump laser pulse. The axial and radial components of the electric field due 

to the plasma wave potential after the pump laser pulse are 

2 

Ez 
meC Wp cP (-2r2 /r2) . 'ljJ (4.33) = --- oe 0 sm 

e C 

Er 
m ec

2 
4r cP (_2r2/r2) 'ljJ ( 4.34) - --- oe 0 cos 

e r2 ' 0 

where CPo = 7(0,5/4. The radial electric field will provide a focusing force for an 

electron at a plasma wave phase of cos'ljJ > 0 and a defocusing force for cos'ljJ < 0, 

as noted in Sec. 4.2.1. 

The equations of motion for the plasma electrons (relativistic Lorentz equa

tion for each electron) in the combined three-dimensional fields of the three lasers 

and the plasma wave were numerically integrated using an adaptive step-size Runge

Kutta method [71]. The plasma was assumed to be initially homogeneous and cold 

such that the test particles were loaded uniformly with no initial momentum. Unless 
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Figure 4.8: Phase space (1jJ, uz ) orbit of test electron without the beating injection 
laser pulses (dashed line) and with the beating injection laser pulses (solid line). 
The separatrix between trapped and untrapped plasma wave orbits (dotted line) is 
shown. 

otherwise stated, the parameters used in the numerical simulations are listed in Table 

4.1. 

4.3.1 Simulation Results 

The orbit of a single test electron in longitudinal phase space (1jJ, u z ) inter

acting with the combined fields of the lasers and the plasma wave is shown in Fig. 

4.8. The dotted line shows the separatrix between trapped and untrapped orbits 

of the plasma wave Hamiltonian Eq. (4.1), the dashed line shows the orbit of the 

test electron without the beating injection laser pulses (an untrapped plasma wave 

orbit), and the solid line shows the orbit of the test electron interacting with the 

beating injection laser pulses. Figure 4.8 illustrates the phase-shift and momentum 

gain from the beating injection laser pulses allowing the test electron to move from 

an untrapped to a trapped plasma wave orbit. 
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Figure 4.9: Threshold beat wave amplitude parameter for trapping (0,10,2)1/2 versus 
plasma wave potential amplitude. Solid line is Eq. (4.16) with <Po = 0.7 and f3b = 

-0.2. Points are numerical simulation results. 

The particle transport code was used to test the analytic predictions made 

by the Hamiltonian analysis of the motion of electrons in the beat wave and the 

plasma wave presented in Sec. 4.2. The minimum injection laser pulse amplitude for 

injection of plasma electrons into a trapped orbit of the plasma wave is shown in Fig. 

4.9. In Fig. 4.9, the solid line is the analytic estimation [Eq. (4.16), with H = i;;;l+<po 

and f3cp = -0.2]' and the points correspond to simulation results. A somewhat higher 

('" 10%) laser pulse amplitude is needed for trapping in the simulation results than 

predicted by the analytic estimation. This is due to the nonconstant laser pulse 

profiles (longitudinal and transverse) used in the numerical simulations, i.e., the 

electrons experience a lower (0,10,2)1/2 before and after the collision of the maxima of 

the injection laser pulses and when the particles move off axis due to the transverse 

fields of the plasma wave. 

To determine the optimal injection phase which minimizes the injection 

laser pulse amplitude required for trapping of background plasma electrons, the frac-

'-
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Figure 4.10: Fraction of loaded test electrons !trap which become trapped and focused 
(dashed line) and the fraction of loaded test electrons which become trapped and 
defocused (solid line) after the colliding laser pulses versus plasma wave injection 
phase'ljJinj. 

tion of loaded test electrons which become trapped !trap as a result of the' colliding 

injection laser pulses was examined as a function of the injection phase 'ljJinj (the 

plasma wave phase where the maxima of the injection laser pulses collide). Fig

ure 4.10 shows the fraction of loaded electrons which become trapped and focused' 

(dashed line) and the fraction which become trapped and defocused (solid line) ver

sus the injection phase 'ljJinj. In Fig. 4.10, !trap is defined as the fraction of electrons 

that become trapped which were loaded uniformly in a region of length 1f /2 in phase 

about 'ljJinj and r :::; 2 /Lm (simulations show electrons loaded with r > 2 /Lm do not 

become trapped). The trapping fraction is peaked at 'ljJopt -:= ±1.0 which agrees well 

with the analytic predictions [Eq. (4.17) with {3b = -0.2 and <Po = 0.7]. The asym

metry in the trapping fraction shown in Fig. 4.10 is due to the distortion of the beat 

wave buckets from the presence of the plasma wave as described in Sec. 4.2.2. Signif

icant trapping of electrons occurs in an injection phase region of -1.5 ;S 'l/Jinj ;S 1.5. 
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This indicates that the two colliding injection laser pulses must be synchronized to 

the plasma wave with an accuracy of rv 10 fs, which is not a serious timing constraint 

for current laser technology. 

4.3.2 Electron Bunch Dynamics 

To further characterize the performance of an injector based on this collid

ing laser pulse concept, the dynamics of the trapped electron bunches were studied 

analytically and numerically. Figure 4.11 shows an example of simulation results of 

the evolution of a typical trapped and focused electron bunch generated by colliding 

the injection laser pulses at a plasma wave phase of 'ljJinj = O. 

The mean phase ('ljJ) (dashed line) and mean energy b) (solid line) of a 

trapped electron bunch versus interaction length are shown in Fig. 4.11(a). The 

interaction length Lint considered in these simulations is much less than the dephasing 

length Lint « Ldephase rv ),P'~ (i.e., interaction times much shorter than the bounce 

time in a trapped plasma wave orbit) and less than the Rayleigh length Lint < ZRO' 

The figure shows the reduction of phase slippage as the bunch becomes relativistic 

and the linear growth of the mean energy of the bunch in this regime. . 

The rms phase spread a.,p (dashed line) and the rms energy spread a'Y (solid 

line) of the trapped electron bunch versus interaction length are plotted in Fig. 

4.11(b). Figure 4.11(b) shows growth of the rms energy spread; while the rms phase 

spread (or bunch duration, which is defined as w;la.,p) is constant once the bllnch 

becomes relativistic. This is due to the absence of phase slippage for the interaction 

lengths considered [i.e., 8'ljJ = (f3z - f3<p )wp8t ~ 0 for cbt « ),p'~l. 
These simulations can be understood by considering the longitudinal equa

tions of motion for the electron bunch in the ultra-relativistic limit 

d, c - a¢ 
(4.35) 

dt 
-13' a-::::= -¢osin'ljJ, 
wp x 

d'ljJ 
f3z - f3<p ::::= 0 , (4.36) 

di 
= 
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Figure 4.11: Longitudinal dynamics of trapped electron bunch: (a) mean phase ('ljJ) 
(dashed line) and mean energy b) (solid line), (b) rms phase spread (T1jJ (dashed line) 
and rms energy spread (T-y (solid line), and (c) fractional energy spread (T-y/ b) (solid 
line) and longitudinal rms emittance Gil (10-9 eV sec) (dashed line). 
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where i = wpt. Since the interaction lengths are much shorter than the dephasing 

length, the phase slippage can be taken to be zero d'ljJ / dt ~ O. With these assump

tions, Eqs. (4.35) and (4.36) have solutions 

,0 - 4>oi sin '1f;0, 

'1f;0· 

( 4.37) 

( 4.38) 

With zero (or constant) phase slippage, the rms phase spreadO'~ = ('ljJ2) - ('ljJ)2 is 

constant, 

dO'i: = ~ [('ljJ d~) _ ('ljJ) (d~)] = 0 . 
dt 0'1/1 dt dt 

(4.39) 

If a Gaussian distribution in plasma wave phase of the trapped electrons is assumed, 

dN = 1 exp [- ('ljJo - ; 'ljJo) ) 2] , 
d'ljJo vl2~0'~ 20'1/1 

where the expectation value of an arbitrary function f('lj;o) is 

JdN 
(f('1f;0)) = d'1f;of('1f;o)d'ljJo, 

then, from Eq. (4.37), the mean energy of the electron bunch is 

(r) = (ro) - 4>oie-(1~/2 sin ('1f;0) . 

( 4.40) 

(4.41) 

(4.42) 

Assuming the initial conditions,o and '1f;0 are uncorrelated (statistically independent) 

such that (ro'1f;o) = (,0) ('1f;0), the rms energy spread O'~ = (,2) - (r)2 is 

(4.43) 

Equations (4.42) and (4.43) predict the linear growth in mean energy and the non

conservation of the rms energy spread of the electron bunch· that is shown in Fig. 

4.11. 

Using Eqs. (4.42) and (4.43), the fractional energy spread of the trapped 

electron bunch is 

± O'~o + ~4>6i2 ( 1 - e -(1~) (1 + e -(1~ cos[2 ('1f;(j) l) 
(ro) - 4>oie -(1~/2 sin ('1f;0) 

( 4.44) 
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with the asymptotic value (for large i) 

(77 J~ (1-e-0"~) (1 +e-0"~cos[2('ljJO)]) 
- ---+ 2' 
(r) e -0"",/2 sin No) 

( 4.45) 

Figure 4.11 (C) shows that the fractional energy spread of the trapped electron bunch 

asymptotes to a constant value as indicated by Eq. (4.45). For (7'1/) « 1, Eq. (4.45) 

simplifies to 

( 4.46) 

The asymptotic form of the fractional energy spread Eq. (4.45) has a minimum 

value at a phase of ('ljJo) = -1f/2 (at the crest of the plasma wave), [(77/ (r)]min = 

.;2 sinh( (7~/2) ::= (7~/.;2. As Eq. (4.45) indicates, the asymptotic fractional energy 

spread is independent of the wave amplitude, and is just a function of the phase 

and the rms phase spread, which is constant assuming zero (or constant) phase 

slippage. As shown in the numerical simulation Fig. 4.11, once the bunch becomes 

highly relativistic, ('IjJ) ::= -13.9 and (7"" ::= 0.17. With these values, the asymptotic 

fractional energy spread predicted by Eq. (4.46) is (77/ (r) ::= 0.04, in good agreement 

with Fig. 4.11(c). 

The longitudinal rms emittance of the trapped electron bunch is ell (e V 

sec) = meC2W;1((7~(7~ - (7~",,)1/2, where (77"" = (r'IjJ) - (r) ('IjJ). With the assumptions 

(7"" « 1 and a Gaussian distribution in phase Eq. (4.40), the normalized longitudinal 

rms emittance is 

m ec
2 

[2 2 1 2 L2 6 . ( )] 1/2 
ell = -:;; (770(7"" + '2¢ot (7"" sm 'ljJo . (4.47) 

Equation (4.47) indicates the longitudinal rms emittance of the trapped electron 

bunch ell grows linearly for large i. This non-conservation of longitudinal rms emit

tance is shown in the numerical simulation Fig. 4.11(c). The emittance growth is 

due to the fact that the bunch becomes relativistic at a plasma wave phase where the 

axial electric field, and therefore the energy gain, is a nonlinear function of plasma 

wave phase. 
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Near the axis r/To < 1, the radial electric field of the plasma wave Eq. (4.34) 

is, to lowest-order, linear with respect to the radial coordinate. If the electron bunch 

is injected into the focusing region (cos 1/J > 0), the radial electric field will provide 

a focusing force with a focusing strength k; = eEr/{rmec2r) ~ [44>o/{rrfi)] cos1/J. In 

this regime, the evolution of the rms radius of the electron bunch will be described 

by the envelope equation [72] 

d2ar ~ d'Ydar 2k2 _ 2c2(IjIA) clc2 

dt2 + dt dt + c r a r - 2 + 2 3 ' 'Y 'Y ar 'Y ar 
(4.48) 

where ar = [(r2) - (r)2j1/2 is the rms radius of the electron bunch, I is the beam 

current, IA = (mec3/e)/3'Y is the Alfven current, and C-L = 'Y(a;a;1 - a;rl )1/2 is 

the normalized transverse rms emittance where a;1 = «(c-1dtr)2) - (c- 1dt r)2 and 

arr, = (rc- 1dt r) - (r) (c- 1dtr). With linear focusing, the normalized transverse rms 

emittance is conserved for a monoenergetic beam. Figure 4.12 shows the transverse 

phase space (wpx/c, 'Y/3x) of the trapped and focused electron bunch presented in 

Fig. 4.2(c) just after the collision of the injection laser pulses (after 0.07 mm of 

propagation) and Fig. 4.2(d) after 0.7 mm of propagation. The slight increase in 

normalized transverse rms emittance shown in these figures is due to the nonlinear 

focusing force provided by the plasma wave. In principle, a collimator may be used 

to spatially filter the trapped bunch and reduce the transverse emittance. 

The effects of space-charge within the trapped electron bunch were not 

included in these simulations. This omission can be justified by considering the ratio 

of space-charge to emittance terms in the beam envelope equation Eq. (4.48), 

2~ cl . 
IA a; (4.49) 

~or the electron bunches described in Sec. 4.3.3, I rv 0.4 kA and the ratio of the 

space-charge term to the emittance term Eq. (4.49) is rv 10-3 . Therefore the bunch 

is emittance dominated while the bunch remains in the plasma. 

Space-charge forces should not be a concern longitudinally if the electric 

field due to space-charge forces within the bunch is much less than the axial electric 
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Figure 4.12: 'Iransverse phase space distribution (wpx/c, ,i3x) of a trapped and fo
cused electron bunch (a) just after the collision of the injection laser pulses (after 
0.07 mm of propagation) and (b) after 0.7 mm of propagation. 
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field due to the plasma wave [73]. This will be satisfied when the ratio of beam 

density nb to the plasma density ne is nb/ne «Q,5/CT1/J. For the parameters under 

consideration in this Chapter, this condition is satisfied, and the longitudinal space

charge effects are small while the bunch remains in the plasma. Space-charge effects· 

can become quite significant after the bunch leaves the plasma. 

4.3.3 Electron Bunch Quality 

The quality of the electron bunch can be examined as the beat wave ampli

tude parameter (o'llh)I/2 is increased beyond the threshold value for injection into 

a trapped and focused orbit [Eq. (4.16), with H s:: ,;1]. Figure 4.13(a) shows the 

fraction of loaded test electrons which become trapped and focused (solid line) as a 

result of colliding the injection laser pulses at a plasma wave phase of 'l/Jinj = 0 versus 

the beat wave amplitude parameter. The fraction of loaded test electrons is defined 

as in Sec. 4.3.1. The maximum value shown on Fig. 4.13(a) corresponds to a bunch 

number of Nb ~ 0.5 X 107 electrons for a plasma density of ne = 7 x 1017 cm-3. 

As shown in Sec. 4.3.2, the rms phase spread (bunch duration) is constant 

for a highly relativistic bunch, the fractional energy spread is asymptotic, and the 

transverse normalized rms emittance is conserved for large pump laser spot size. 

Therefore, these measures of bunch quality were examined versus increasing beat 

wave amplitude parameter. Figure 4.13(a) shows the bunch duration of the trapped 

electron bunch (dashed line) versus the beat wave amplitude parameter. The as

ymptotic fractional energy spread CT'Y/ ({) (solid line) and the normalized transverse 

rms emittance E.l (dashed line) after 0.5 mm of propagation versus the beat wave 

amplitude parameter are shown in Fig. 4.13(b). These figures indicate the produc

tion of rv 1 fs election bunches with rv 1 % fractional energy spread and rv 1 mm mrad 

normalized transverse rms emittance. 

A dramatic example of the colliding pulse injection process is shown in Fig. 

4.2 for Ll = L2 = 10 /-Lm and 0,1 = 0,2 =0.32 with 'l/Jinj = 0 (other parameters as in 
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Figure 4.13: (a) Fraction of loaded test electrons which become trapped and fo
cused after the colliding laser pulses (solid line) and bunch duration (fs) of trapped 
electron bunch (dashed line) versus beat wave amplitude parameter. (b) Asymptotic 
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Figure 4.14: Number of trapped and focused electrons Nb versus spot size of laser 
pulses (TO = T1 = T2)' 

Table 4.1). Figure 4.2 shows longitudinal phase space (1/J, u z ) of the test electrons. As 

shown in Fig. 4.2(d), the results are dramatic: a 1 fs electron bunch with energy 39 

MeV, fractional energy spread of 0.2%, and normalized transverse emittance ~ 0.9 

mm mrad. The bunch number is Nb ~ 2.6 X 106 electrons for a plasma density of 

ne = 7 x 1017 cm-3 . 

The number of trapped electrons can be increased by increasing the injection 

laser spot size (i.e., increasing the injection laser pulse. power). Figure 4.14 shows 

that the number of trapped and focused electrons increases for increasing spot size 

of the laser pulses (other parameters the same as Fig. 4.2). For TO = T1 = T2 = 30 

/-Lm (PI = P2 ~ 6 TW), the' number of trapped electrons increases to Nb ~ 14.5 X 106 

electrons. 
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4.4 Summary 

In this Chapter, we have explored the generation of ultrashort electron 

bunches by using colliding laser pulses to de phase background plasma electrons un

dergoing fluid oscillations in a plasma wave. A variation of this scheme, which relies 

on the same trapping mechanism, is to remove the forward propagating injection 

laser pulse and to beat the pump laser pulse with the backward propagating in

jection laser pulse. Near the back of the pump pulse, a sufficiently large plasma 

wave will be generated to allow trapping of plasma electrons dephased by the slow 

wave created by the beating of the pump laser pulse and the backward propagating 

injection laser pulse. Alternatively, colliding pulse injection could be done using sev

eral forward propagating injection pulses (which are properly phased) and a single 

counter-propagating injection pulse so that several adjacent plasma wave buckets 

could be filled with ultrashort electron bunches. Other variations on the colliding 

pulse injection concept can be readily envisioned. 

In summary, the colliding laser pulse injection scheme investigated in this 

Chapter has the ability to produce relativistic femtosecond electron bunches with 

low fractional energy spread ("" 1 %) and low normalized transverse emittance (IV 1 

mm mrad). The colliding laser pulse scheme requires relatively low laser power 

compared to the pump laser pulse ar '" a~ « a6, and allows for detailed control of 

the injection process through the injection phase (position of the forward injection 

laser pulse), the injection time (injection laser pulse lengths), the beat wave velocity 

(frequencies of the injection laser pulses), and the beat wave amplitude parameter 

(injection laser pulse intensities). These capabilities are critical for the experimental 

realization of laser-triggered injection and subsequently compact laser-plasma-based 

particle accelerators. 
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In this chapter, the non-paraxial propagation of ultrashort high-power laser 

pulses in underdense plasmas is examined. Envelope equations are derived for optical 

beam parameters which include finite-radius and finite laser pulse length effects. So

lutions of the envelope equations are presented for an adiabatic plasma response. For 

an adiabatic plasma response, pulse energy conservation is shown and the nonlinear 

group velocity is calculated. In the low-power adiabatic limit, the effects of betatron 

oscillation damping, laser pulse self-steepening, and self-phase modulation are ana

lyzed. Laser-plasma instabilities are examined for the general non-adiabatic plasma 

response. The coupling of forward Raman scattering and self-modulation instabilities 

are studied and the asymptotic growth rates of the instabilities are derived. 
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5.1 Introduction 

As discussed in Chapter 1, advances in laser technology have produced 

compact ultrashort laser pulses with extremely high ilJ.tensities. These high-intensity 

laser pulses are capable of generating plasma waves and have applications to laser

driven plasma-based accelerators (e.g., the laser wakefield accelerator). In addition 

to plasma-based accelerators, intense laser pulses have applications in areas such as 

harmonic generation [74, 75], short wavelength radiation sources [76, 77], and laser

fusion schemes [78]. These ultrashort high-intensity pulses can have durations of 

only a few optical cycles. In this regime, finite laser pulse length effects will influence 

the laser pulse propagation dynamics. 

A laser pulse propagating in a plasma can. be described by the Maxwell 

equations and the cold, collisionless fluid equations modeling the plasma [45]. Com

bining the Maxwell equations and the fluid equations, the wave equation for the 

transverse component of the normalized vector potential of the laser field al.. in the 

Coulomb gauge \7 . 5: = 0 is 

(5.1) 

where k~ = w~/c2 = 47re2no/(mec2) , oil, is the nonlinear plasma density perturba

tion due to plasma wave generation and relativistic effects, and it = n(r)/no is the 

contribution owing to any plasma inhomogeneities. For example, if the laser pulse 

is propagating in a preformed transversely-parabolic plasma density channel, then it 

can be expressed as 

~n (r)2 it(r) = 1 + - - , 
no rc' 

(5.2) 

where ~n is the plasma channel depth and r c is a length characteristic of the plasma 

channel radius. 

The nonlinear plasma density perturbation to second-order in the normal-
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2 
On = n2 _ aJ.. , 

no 2 
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(5.3) 

where n2/no is the plasma density perturbation owing to plasma wave generation 

and -aJj2 is the effect of the relativistic energy increase of the plasma electrons in 

the presence of the laser field (cf. Sec. 1.1.1). In the limits ai « 1 and kprc » 1, 

the nonlinear plasma density perturbation due to plasma wave generation n2/no is 

described by the equation 

(~ 2k2) n2 = 2n2 ai 
):l2+ c p c v 2. 
ut no 

(5.4) 

The right-hand side of Eq. (5.4) represents the normalized transverse current in the 

plasma driven by the pondero~otive force of the laser pulse. In the limits k~r5 « 1, 

wherero is the minimum laser spot size (i.e., ro rv rc), and the laser group velocity 

is near the speed of light /3g0 ~ 1, Eq. (5.4) can be rewritten as 

(:;2 +k~) On= _k;a} , (5.5) 

where ~ = z - /3goct. The solution to Eq. (5.5) is 

·r€ 1 2 
On = -kp 10 ~1 sin [kp (~- 6)] "2 aJ..(6) . (5.6) 

For long pulse length lasers, Eq. (5.6) reduces to On ~ -ai/2. 
The propagation dynamics of long pulse length laser pulses (long compared 

to the laser wavelength) is adequately described by the well-known paraxial wave 

equation whose solutions are Laguerre-Gaussian functions [35]. If aJ.. = aexp(ik~), 

with the assumptions /3g0 = 1, lozal « Ikal, and IOtal « Ickal, then the left-hand 

side of Eq. (5.1) reduces to the paraxial wave equation operator 

(\7i + 2ik :z) a = k; (n';' Oil,) a. (5.7) 

In the paraxial approximation, the lowest-order diffraction effects are contained, 

but finite pulse length effects and higher-order diffraction effects are neglected. In 
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addition, the paraxial approximation assumes a fixed group velocity and is not ca

pable of describing phenomena which require axial transport of laser energy and 

axial modulation of the laser power (e.g., forward Raman scattering). Conventional 

theories [79, 80] of intense finite-radius laser pulse propagation in plasmas assume 

the paraxial approximation. In this chapter, a nonlinear theory of non-paraxial 

laser pulse propagation is presented which is valid for ultrashort high-power [for 

P ::; Pcrit :::= 17(w /Wp )2] laser pulses in underdense plasmas. 

5.2 Non-Paraxial Wave Equation 

The wave equation Eq. (5.1) can be rewritten in terms of the independent 

variables: phase (or laser beam slice) ~ = z - /3goct and propagation distance z. With 

the coordinate transformation (z, t) -- (z, ~), the wave equation Eq. (5.1) becomes 

[VI +28~;Z + (1-/3;0) :;2 + :z~] a1- = k~(n+8n)a1-' (5.8) 

Let /3go be the lihear group velocity of a matched fundamental mode Gaussian pulse 

[81] such that "i;r} = 1 - /3;0 == w;/w2 + 4c2/(r5w2). Introducing a slowly-varying 

envelope a such that a1- = aexp(ikz - iwt) , where w is the central frequency and k 

is the central wavenumber, the wave equation Eq. (5.8) becomes 

[
\12 2 ('k 8) 8 -2 8

2 
8

2
]- K2-

v 1- + z + 8~ 8z + IgO 8~2 + 8z2 a = a , (5.9) 

where K2 = k;(n + 8ft) - y;r}w2/c2. 

For short laser pulse length propagation, the operators on the left-hand side 

of Eq. (5.9) scale as: \71- r-.J rol, 8z ,...., ZRI, and 8t;. ,...., L -1, where L is the laser pulse 

length and ZR = kr5/2 is the Rayleigh length. The last term on the left-hand side 

of Eq. (5.9) 8;a is small provided L «2ZR. This is valid in the parameter regime 

of interest, and therefore the term 8;0. will be neglected in the following analysis. 

For an under dense plasma, y;r} « 1 and the dispersive term y;r}8la can also be 
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neglected. This approximation will be valid when 2L/ZR » [1 + 4/(kro)2](kp/k)2 is 

satisfied. Neglecting the dispersive term will also limit the validity of the results to a 

propagation length less than the characteristic dispersion length for pulse broadening, 

or z « Zdisp, where Zdisp = ,iokL2/2 is the characteristic dispersion length [81]. 

With these assumptions (Le., for the parameter regime k2r6/4 » kL » 
k~r6!4 > 1), the wave equation Eq. (5.9) reduces to 

(5.10) 

This equation contains the first-order diffraction represented by the paraxial opera

tor (Vi + 2ik{)z). Finite laser pulse length effects are represented by the operator 

(2{)tz) , which is the leading-order correction to the paraxial wave equation. In this 

analysis, the operator {)z in the leading-order correction to the paraxial operator will 

be approximated by the paraxial expression for the operator {)z ::::: (K2 - V'J..)/(2ik). 

With this approximation, Eq. (5.10) becomes 

(5.11) 

where S can be interpreted as the source terms of the paraxial wave equation. Equa

tion (5.11) can be analyzed using the Source Dependent Expansion method. 

5.2.1 Source Dependent Expansion 

The Source Dependent Expansion (SDE) method [82] is a general method 

for solving the paraxial wave equation with nonlinear source terms [e.g., Eq. (5.11)]. 

In the SDE method, the laser field is expanded in a complete set of source-dependent 

orthogonal Laguerre-Gaussian functions 

(5.12) 

where Lm,(X) are Laguerre polynomials of order m, X = 2r2 /r;, and am, are the 

complex mode amplitudes. Let (1.0 = G.r exp(iO), where G.r and 0 are real. These 
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Laguerre-Gaussian functions are implicit functions of the propagation distance z and 

the slice of the pulse ~ through the laser field parameters: spot size r s, wavefront 

curvature 0:, amplitude ar , and phase e. Note that the radius of curvature of the 

laser phase fronts Rc is given by the relation Rc = kr;j(20:). 

Substituting Eq. (5.12) into Eq. (5.11), performing the differential opera

tions, multiplying both sides by Lm exp[-(l + iO:)X/2], and integrating over X from 

o to 00 results in the equation [82] 

(:z + Am) Q'm - imBam-l - i(m + l)B*am+l = -iFm , (5.13) 

where 

(5.14) 

(5.15) 

and 

Fm = 2~ 10
00 

dXLm(X) exp [-(1 + iO:)~] S. (5.16) 

Here j = at /az denotes partial differentiation with respect to z for any function 

t(z, ~). 
Although the SDE method is capable of describing an arbitrary laser field 

composed of an arbitrary number of source-dependent modes, the results in the 

following sections assume that the laser field is adequately described by a single 

source-dependent Laguerre-Gaussian mode. This approximation will not be valid 

when the laser power greatly exceeds the critical power PCrit for relativistic self

focusing since the laser beam is expected to filament into many higher order modes 

in this overcritical regime [83, 84]. 

To derive expressions describing the evolution of the laser field parameters 

of the m = 0 SDE mode, it is assumed that the coupling to, as well as the amplitude 

of, the higher-order m > 0 SDE modes are small. Note that a single source-dependent 

. , 

'. 
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mode is a superposition of many vacuum Laguerre-Gaussian modes. Assuming 10,01 » 
laml for m ~ 1, Eq. (5.13) with m = 1 yields 

and Eq. (5.13) with m = 0 yields 

B= FI 
0,0 

(:z + Ao) 0,0 = -iFo· 

(5.17) 

(5.18) 

Equations (5.17) and (5.18) completely determine the evolution of the fundamental 

Gaussian SDE mode. 

5.2.2 Envelope Equations 

Using the SDE method, envelope equations for the laser field parameters 

can be derived which describe the laser pulse evolution. Substituting Eqs. (5.14) and 

(5.15) into Eqs. (5.17) and (5.18) yields the envelope equations 

Ts = 2a _ ~[H] (5.19) 
Ts kT; 
ar 2a 

(5.20) = - k 2 + ~[G] + ~[H] 
ar Ts 

Q = 2 (1k+2a
2
) + 2R[H]- 2a~[H] (5.21) 

Ts 

iJ 
2 

(5.22) = -k2 -R[G]-R[H] , 
Ts 

where R[j] and ~[j] denote the real and imaginary parts respectively of any function 

f. Here G and H are the m = 0 and m = 1 solutions of Eq. (5.16) respectively 

Fo 1 fnoo -G = -~ = 2k~ dXe xS (5.23) 
ao ao 0 

FI 1 fnoo -H = -~ = -~ dX (1 - X) e xS. 
ao 2kao 0 . 

(5.24) 

The envelope equations Eqs. (5.19) and (5.20) can be combined to provide an evolu

tion equation for the laser pulse power 

8 ~ ~ 
8z P = 2P~[Gl , (5.25) 
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where P = P/ Pcrit = k~a;r;/16 is the laser pulse power normalized to the critical 

power for relativistic self-focusing. 

In computing C and H it is assumed that the plasma inhomogeneity ft is 

given by Eq. (5.2) (i.e., a transversely-parabolic plasma density channel) and that 

the nonlinear plasma response 8ft is given by Eq. (5.5) (i.e., the nonlinear plasma 

density perturbation to second-order in the normalized vector potential of the laser 

field). Performing the integrals Eqs. (5.23) and (5.24) yields the functions 

C(l) = 21 2 [(2 -.6.c r;) (el 
- k - i a~) + (1 -.6.c r~) (c/ -2{~ -2C/~)] (5.26) 

krc rc ar rc rs rs 

(5.27) 

1 [ (r' a' )] C(2) = 22' (i - a) aa' + (1 + a 2) 2a""! - e' + i...!.. 
k rs rs ar 

(5.28) 

with C = C(l) + C(2) + C(3) and H = H(l) + H(2) + H(3). Here the primes indicate 

partial differentiation with respect to phase ~ and .6.c = .6.n/ .6.nc is the plasma chan

nel depth normalized to the critical plasma density channel depth b.nc = (7frer~)-l, 
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where re = e2 j(mec2) is the classical electron radius. Physically, the critical plasma 

density channel depth is the plasma channel depth required for optical guiding of 

a matched laser pulse, as discussed in Sec. 5.2.3. The notation rs l = rs (z,6) and 

as l = as(z, 6) was used in Eqs. (5.30) and (5.31). 

The envelope equations Eqs. (5.19)-(5.22) with source terms Eqs. (5.26)

(5.31) can be solved for the evolution of the laser field parameters of a laser pulse in 

a homogeneous plasma (b.c = 0) or a parabolic plasma density channel (b. c i= 0). 

5.2.3 Paraxial Limit 

In the long laser pulse length limit, the partial derivatives with respect to 

~ can be neglected (since 8~ "" L -1) in Eqs. (5.26)-(5.31). In this limit, the envelope 

equations Eqs. (5.19) and (5.21) can be combined to yield 

.. 4 [ (rs)4 A] k~ lo~ 8 a;lr;1 rs= k2 3 1-b.c - -p +rSk2 d6cos[kp(~-6)]8C 22' 
rs rc 0 <,1 (r; + rsl) 

(5.32) 

This equation can be derived directly from the paraxial wave equation and describes 

the propagation of a long laser pulse in an underdense plasma [79J. The first and 

second terms on the right-hand side of Eq. (5.32) represent the vacuum diffraction and 

channel guiding respectively; while the third term on the right-hand side -41' j(k2r;) 

represents relativistic self-focusing due to the index of refraction change caused by 

the relativistic energy increase of the electrons in presence of the laser pulse. The 

integral on the right-hand side of Eq. (5.32) represents the nonlinear coupling of the 

laser envelope to a plasma wave. 

For long axially uniform laser pulses, plasma wave generation can be ne

glected, and Eq. (5.32) indicates that the condition for matched beam propagation 

(i.e., propagation with constant spot size) is 

(5.33) 

In a homogeneous plasma (~c = 0), guiding requires the power be equal to the critical 

power P = 1, which is the condition for relativistic self-focusing [15]. As discussed 
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in Chapter 2, relativistic self-focused long laser pulses are subject to leading-edge 

erosion and self-modulation. For low laser power? « 1, guiding of a matched laser 

pulse r s = r c can be achieved by a plasma density channel with depth equal to the 

critical plasma density channel depth ~c = 1 or ~n = ~nc = (7rTer~)-l [36J. 

For short laser pulses (L < k; 1 ), the integral on the right-hand side of Eq. 

(5.32) reduces to ~ 4? /(k2r~), and therefore the plasma wave response will tend to 

cancel the relativistic self-focusing term. Consequently, relativistic self-focusing is 

ineffective in preventing diffraction in short pulses [36J. 

For propagation in vacuum (kp = 0, ? = 0, and ~c = 0), the solution to 

Eq. (5.32) yields the conventional vacuum mode rs = ro[l + (Z/ZR)2j1/2 (assuming 

the initial conditions rs = ro and 1-s = 0 at z = 0), which is the first order diffraction 

of a laser pulse in vacuum [35J. 

5.2.4 Adiabatic Plasma Response 

In the regime where the plasma responds adiabatically (i.e., the pulse length 

is long compared to the plasma wavelength L » k;l), the plasma response Eq. (5.6) 

reduces to On ~ -0,2/2 such that the wave equation Eq. (5.11) contains a cubic 

nonlinearity and coupling of the laser pulse to the plasma wave is neglected (e.g., 

forward Raman scattering is neglected). In this limit, Eqs. (5.30) and (5.31) reduce 

to 

2? [, ci . r~ a~] = 22 () - k + - - (a + 3'/,) - - 3i-
k rs 4 2rs ar 

(5.34) 

? I 
H(3) = - (()I _ k _ 3i ar ) . (5.35) 

k2r2 a s r 

Inserting the imaginary part of G into the laser power envelope equation Eq. (5.25) 

yields 

(5.36) 

where 

(5.37) 
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Therefore the local group velocity of the laser pulse is /3g ~ /3go + ti/3g(z, O. Note 

that in the linear limit Ia.rl « 1, the group velocity for a matched pulse (rs = re, 

a = 0, and ~e = 1) reduces to /3g ~ /3go, The power conservation equation Eq. (5.36) 

implies the total pulse energy is conserved, 

(5.38) 

For the general non-adiabatic case, pulse energy is not conserved since the pulse 

energy is converted into plasma wave energy. 

5.2.5 Low-Power Adiabatic Limit 

Solutions to the envelope equations for the evolution of the laser field pa

rameters in the low-power P « 1 adiabatic regime can be examined by perturb

ing about the zero-power matched-pulse equilibrium: ~e = 1 and ro = re. Let 

rs = ro + tirs, a = tia, ar = arO(~) + tiar, and 8 = ti8, where til / I f'V P « 1 for any 

laser field parameter I. 

Betatron Oscillation Damping 

The envelope equations Eqs. (5.20) and (5.21) can be linearized and com

bined to yield an equation for the evolution of the spot size perturbation 

[( 
a 4) 2 16] tir 4 ~ -a - k2 2 + k2 4 aro - ~ - k2 4 P a.rO , z rO rO rO rO 

(5.39) 

where P = p(O = k~r5a;o(~)/16 is the unperturbed initial axial power profile. 

Assuming the initial conditions tir(z = 0) = tiro and tir'(z = 0) = 0, Eq. (5.39) has 

the solution 

(5.40) 
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where a = ~ + 4z/(k2r8). For a Gaussian axial laser pulse power profile P = 
Po exp( -2e / L2) with peak laser power Po, Eq. (5.40) becomes 

8rs 
= {

8r
o exp [- (2Z~ + !:.-)] + P exp [-'-3 (2Z~ + !:.-)] } cos (k(3z) _ P , 

ro ro Zf3L Z$ 4 Zf3L Z$ 4 
(5.41) 

where Z(3 = kLZR/2 = k2r8L/4 is the betatron damping distance, and k(3 = 2/ZR = 
4/(kr8) is the betatron wavenumber. 

In the linear limit (P ~ 0), Eq. (5.41) describes the damping of betatron 

oscillations for a laser pulse mismatched (8ro i= 0) in the plasma channel [81]. Asymp

totically, these oscillations damp 8rs rv exp( -z2 /Z$) for fixed laser beam slice~, with 

a head-tail asymmetry. For finite powers, betatron oscillations arise even with no 

initial displacement 8ro = 0, with the enhanced damping rate 8rs rv exp( -3z2 /Z$). 

This is the case since a pulse with P > 0 is no longer matched when ro = rc in a 

channel with b.c = 1. For large z, Eq. (5.41) reduces to rs/ro ~ 1-P/4. Recall that· 

paraxial theory predicts that the local condition for matching a laser pulse within a 

plasma channel is given by Eq. (5.33), Le., a matched radius of rs = rc[b.;1(1-PW/4. 

In the limit P « 1 near equilibrium (b.c = 1 and ro = rc), the matched radius re

duces to rs/ro ~ 1 - P /4, which is the asymptotic behavior (z » Z(3) given by Eq. 

(5.41). 

The physical mechanism for the damping present in Eq. (5.41) is phase

mixing. A finite pulse length will introduce a spread in laser wavenumber. Since 

the betatron wavenumber depends on the wavenumber spectrum of the laser pulse, 

a spread in wavenumber will lead to a spread in k(3 (i.e., different frequencies will 

undergo betatron oscillations in the channel with different periods), and this will 

lead to phase-mixing and decoherence damping of the betatron oscillations. 
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Pulse Self-Steepening 

For a matched pulse in the low-power adiabatic limit, Eq. (5.37) reduces to 

8{3g ~ 3P /(krO)2 and the laser power evolution Eq. (5.36) is 

(5.42) 

Equation 5.42 has the solution P = Pi(~ - 6Pz/(krO)2), where Pi is the initial 

distribution in laser power [e.g., Pi(O = Po exp( -2e / L2) for an initial Gaussian 

distribution with peak laser power Po]. Physically, Eq. (5.42) describes the distortion 

of the laser pulse power profile (pulse self-steepening) owing to the fact that the local 

group velocity is dependent on the local power (i.e., the higher the local power, the 

higher the local group velocity, and the power is shifted forward within the laser 

pulse). In the absence of the dispersive pulse broadening due to the term ,;o2ala 

in Eq. (5.9), pulse steepening continues until a shock is formed (Le., af,P -t 00). 

This puts a limit on the validity of this theory to the propagation distance of shock 

formation. Shock formation occurs after a distance z = Zs, where Zs is the shock 

formation length [e.g., Zs = (e1/ 2 /6)kLZR/ Po for a Gaussian axial laser pulse power 

distribution]. 

Self-Phase Modulation 

Self-phase modulation (phase distortions) will also develop in the laser 

pulse. For a matched pulse in the low-power adiabatic limit, the envelope equa

tion Eq. (5.22) reduces to 

~8() ~ ~ ( 8r
s _ ~p) , 

az kr5 ro 4 
(5.43) 

which results in local frequency shifts 8w/w = 8()' /k. Asymptotically (z » Zj3), Eq. 

(5.43) reduces to 8e ~ -2P /ZR [recall from Eq. (5.41), 8rs /ro ~ -P /4 for z» Zj3], 

which implies the asymptotic local frequency shifts 8w/w ~ (2/3) In[P/P(z:::; 0)]. 
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5.2.6 Laser-Plasma Instabilities 

Laser-plasma instabilities can limit the laser pulse propagation distance 

and degrade the performance of a laser-driven plasma-based accelerators. These 

instabilities for finite pulse length and finite-radius laser pulses can be examined by 

perturbing the full envelope equations Eqs. (5.19)-(5.22) about an optically-guided 

matched-pulse equilibrium: 1 = P + D.c , rs = ro = rc , ar = ao, 8 = 0, and a = 0, 

where ao and ro are constants (i.e., a flat-top axial laser pulse profile). Assuming 

a perturbation from equilibrium such that rs = ro + 8r, ar = ao + 8a, 8 = 88, and 

a = 8a, Eqs. (5.19)-(5.21) can be linearized and combined to yield 

[ ( 
[) 4.0.c [}) 2 

[}z - k2r~ [}~ + 

and 

(5.44) 

2.Po [}] 8r + k 2 2!'l -, (5.45) 
ro u~ ro 

where Po = k~a6r6!16 is the initial normalized laser pulse power. 

Considering modes resonant with the plasma wave such that the perturbed 

quantities have a phase dependence 8r = 8f exp( ikp~) and 8a = 80, exp( ikp~), with 

the eikonal approximations I[}f/[}~I « Ikp8fl and I[}o'/[}~I « Ikp8o'l, Eqs. (5.44) and 

(5.45) become 

(5.46) 

and 

(5.47) 

where k~ = 2(1 + b..c)/Z'k is the generalized betatron wavenumber. In the one

dimensional limit (i.e., the limit of infinite spot size, ro ~ 00), Eq. (5.47) reduces 
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to 

(5.48) 

where rR = aok~/(2vf2k) is the well-known growth rate for Raman scattering in 

the four-wave regime [45]. Equation (5.48) describes conventional forward Raman 

scattering and has the solution [85] 

(5.49) 

where 10 is the zeroth-order modified Bessel function of the second kind and 00,0 is 

the initial condition. In the two-dimensional paraxial limit, Eq. (5.47) reduces to 

oa/ao ~ -Of/ro (i.e., the laser power is conserved in the paraxial limit), and Eq. 

(5.46) reduces to 

[ 8 (82 2) . ~ kp 1 ~ 8~ 8z2 + k{3 + 'LP Z'k Or = 0 . (5.50) 

Equation (5.50) describes the conventional self-modulation instability [79, 86]. In 

the self-modulation instability, modulation of the laser pulse is produced through 

radial transport of laser energy; whereas, in the forward Raman scattering instability, 

laser modulation is produced via axial transport of laser energy. Therefore forward 

Raman scattering will dominate in the one-dimensional limit, i.e., when kpTo » k/kp 

is satisfied. 

For the general case, Eqs. (5.46) and (5.47) can be combined to yield 

(5.51) 

with the normalized quantities: ~ = kp~, z = Z/ZR, kp = kp/k, and k~ = 2(1 + ~c). 
Equation (5.51) describes the nonlinear coupling of the two laser-plasma instabili

ties: forward Raman scattering [21, 85] and self-modula.tion [79, 86]. Asymptotic 

expressions for the exponentiation in various spatial-temporal regimes can be solved 

using Eq. (5.51). Table 5.1 shows the asymptotic expressions for the number of e

folds Ne , where Or rv exp(Ne ). The table lists the growth rates of forward Raman 
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I Instability I Regime Ne = number of e-folds 

S-SMI p/(2kf3) « Itl/2« 2k~/p (2PltI2/kf3 ) 1/2 

I-SMI k~/(2P) « Itl/2« 1/(2Pk~) (1 + i3-1/2)33/22-5/2(PltI22)1/3 

L-SMI l/(pk~) « Itl/2 (1 + i3-1/2)33/22-5/2(PltI22/2)1/3 

S-FRS kpp « It I / 2 « kpk~/ P ( 4kpPltI2)1/2 

I-FRS 2kpk~/p« Itl/2« 2/(pk~) (2kpPltI2) 1/2 

L-FRS l/(Pk~) « Itl/2 (4kpPltI2)1/2 

Table 5.1: Asymptotic growth rates for forward Raman scattering (FRS) and self
modulation instability (SMI) in the short (S), intermediate (I), and long (L) laser 
pulse length regimes. 

scattering (FRS) and the self-modulation instability (SMI) in the short pulse length 

(S), intermediate (I), and long pulse length (L) regimes. Reduced growth rates are 

found in the long pulse length regime of the self-modulation instability and in the 

intermediate pulse regime of the forward Raman scattering instability. As Table 5.1 

indicates, the self-modulation instability dominates the forward Raman scattering 

instability in the intermediate and short pulse length regimes assuming kf3kp < 1/2. 

The forward Raman scattering instability dominates the self-modulation instability 

in the long pulse regime, although growth is significant only in the tail of the long 
A A2 A 

pulse, i.e., for I~I » 1/(2kp P). 

5.3 Summary 

In summary, a nonlinear theory of finite-radius laser pulse propagation has 

been developed which includes finite pulse length and nonlinear effects. The results 
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presented in this chapter are valid for laser pulse propagation in parabolic plasma 

density channels as well as in homogeneous plasmas (b. c = 0). Coupled laser enve

lope equations Eqs. (5.19)-(5.22) have been derived for the laser pulse parameters, 

and solutions indicate that finite pulse length effects can significantly modify the 

propagation of the laser field in an underdense plasma. 

For an adiabatic plasma response, pulse energy conservation was shown and 

the nonlinear laser pulse group velocity calculated. In the low-power adiabatic limit, 

the effects of damped betatron oscillations due to phase-mixing, laser pulse self

steepening owing to nonlinear group velocity effects, and self-phase modulation were 

analyzed. For the general non-adiabatic plasma response, the nonlinear coupling of 

forward Raman scattering and the self-modulation instability was studied and the 

asymptotic growth rates were derived in various spatial-temporal regimes. 
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Chapter 6 

Conclusions 

In this chapter, the theoretical results presented in this dissertation are sum

marized. Possible future theoretical and computational work is considered. Practical 

applications and future experimental tests of the results presented in this work are 

discussed. 

6.1 Summary 

This dissertation essentially answers three questions: 

1. What is the performance of an accelerating structure based on a hollow plasma 

channel? 

2. Under what conditions is trapping of background plasma electrons in a plasma 

wave by a beat wave possible, and what is the quality of the resulting electron 

bunch? 

3. What are the dynamics of ultrashort high-power laser pulses propagating in 

underdense plasmas? 

The answer to Question 1 is quantified in the calculation of the mode fre

quencies (eigenvalues) and loss factors (eigenfunctions) of the electromagnetic modes 
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excited in the hollow plasma channel presented in Chapter 2. These accelerator 

parameters quantify the beam-structure interaction. The dynamics of charged par

ticle beams propagating through a hollow plasma channel structure were analyzed 

in Chapter 3. Transverse beam breakup instability growth rates were calculated in 

the weak-focusing and strong-focusing regimes for both witness and drive particle 

beams. 

Question 2 is answered in the Hamiltonian analysis and numerical simu

lations presented in Chapter 4. The laser-plasma parameters required for trapping 

background plasma electrons oscillating in a plasma wave using colliding laser pulses 

were derived. Numerical simulations were used to study the quality and dynamics 

of the generated electron bunches. This analysis indicates that the colliding laser 

pulse injection scheme has the capability to produce relativistic femtosecond elec

tron bunches with fractional energy spread of order a few percent and normalized 

transverse emittance less than 1 mm mrad using 1 terawatt injection laser pulses. 

The answer to Question 3 lies in the formulae of Chapter 5. In Chapter 5, 

a non-paraxial theory of laser pulse propagation is presented which includes finite 

pulse length and nonlinear effects. Finite pulse length effects become significant for 

the ultrashort laser pulses used in the laser wakefield accelerator. The evolution of 

the laser pulse was described by envelope equations for the laser pulse parameters. In 

the adiabatic plasma response regime, nonlinear group velocity corrections, betatron 

oscillation damping, pulse-steepening, and self-phase modulation were studied. For 

the general non-adiabatic plasma response, laser-plasma instabilities were examined, 

and growth rates for the forward Raman scattering and self-modulation instabilities 

were calculated. 

6.2 Future Directions 

This dissertation advances the theory of plasma-based accelerators as sum

marized in Sec. 6.1. Much further theoretical work can be done of course. In 
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particular, non-symmetric fully electromagnetic three-dimensional (or at least two

dimensional) particle-in-cell simulations of the interaction between the particle beam 

and the plasma channel can be done to further verify the analytical results of Chap

ters 2 and 3. 

In the analysis of the generation of ultrashort electron bunches using collid

ing laser pulses presented in Chapter 4, the plasma wave was derived to first-order 

in laser intensity. For high-intensity laser pulses (a .2: 1) this approximation is no 

longer valid, and nonlinear effects (e.g., quasistatic magnetic field generation [87]) 

will modify the plasma wave fields Eqs. (4.33) and (4.34). For large plasma waves, 

the transverse fields may blow-out a large fraction of plasma electrons. Therefore, 

incorporation of the ionic space-charge forces into the analysis will also be necessary 

in the high laser intensity regime. 

The non-paraxial theory of laser pulse propagation presented in Chapter 5 is 

valid for the parameter regime of typical laser wakefield accelerator experiments. In 

particular, the theory is restricted to laser pulse propagation in underdense plasmas 

within the shock formation length. It is possible to extend the theory and relax 

these constraints by inclusion of the dispersive term '-(;C}&la as an additional source 

term in the paraxial wave equation Eq. (5.11). Numerical solution of the exact wave 

equation Eq. (5.1) can also be done, allowing comparisons with the analytic results 

presented in Chapter 5. 

6.3 Prospects 

To some extent the usefulness of this theoretical work is in laying the 

groundwork for proposing and planning practical experiments. Given the availability 

of terawatt lasers and the recent experimental advances in plasma channel produc

tion and laser guiding, particularly the experiments with plasma channels produced 

by capillary discharge [44, 43], there is every reason to proceed with practical ex

periments of an accelerator based on the hollow plasma channel structure. With 
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laser diffraction overcome through optical guiding provided by the plasma channel, 

the transverse stability of the accelerated particle beam may limit the length of an 

accelerator based on the hollow plasma channel structure. Such a plasma structure 

would be an extremely compact accelerator producing GeV-energy particle beams. 

A hollow plasma channel accelerating structure might also be envisioned as a single 

stage at the end of a conventional linear accelerator. 

Plans to experimentally test and implement the optical injection method of 

ultrashort electron bunch generation described in Chapter 4 are currently underway 

at Lawrence Berkeley National Laboratory [88J. Such femtosecond electron bunches, 

injected into a plasma-based accelerator, could be used for high-energy physics ap

plications. There are other possible applications for femtosecond electron bunches. 

Generation of femtosecond duration x-ray pulses can be done through Thomson scat

tering a high-intensity laser beam off such femtosecond relativistic electron beams 

[89J. Femtosecond x-ray pulses could have important applications to atomic and 

condensed matter research. 

Laser technology advances, producing shorter laser pulse durations and 

higher laser intensities, have allowed for the experimental realization of laser-driven 

plasma-based accelerators such as the laser wakefield accelerator. Indeed ultrashort 

high-intensity laser pulses have many applications, in addition to plasma-based ac

celerators, for which the understanding of the physics of ultrashort laser pulse propa

gation in plasmas becomes critical. Some of these applications include harmonic gen

eration [74, 75], short wavelength radiation sources [76, 77], and laser-fusion schemes 

[78J. Chapter 5 presents a theory of finite-radius laser pulse propagation in under

dense plasmas that includes finite pulse length effects, which become significant in 

such ultrashort laser-plasma interactions. 

In reviewing the work published on plasma-based accelerators in the last 

twenty years since the paper by Tajima and Dawson [4], one realizes the large amount 

of experimental and theoretical progress that has occured in this field. Although the 

challenges are still great, plasma-based accelerators hold the promise for the next 
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generation accelerators and for ever higher energy particle beams. 



96 

Bibliography 

[1] J. S. Wurtele. "The role of plasma in advanced accelerators". Phys. Fluids B, 

5(7):2363-2369, 1993. 

[2] J. S. Wurtele. "Advanced accelerator concepts". Phys. Today, 47(7):33-40, July 

1994. 

[3] E. Esarey, P. Sprangle, J. Krall, and A. Ting. "Overview of Plasma-Based 

Accelerator Concepts". IEEE Trans. Plasma Sci., PS-24(2):252-288, 1996. 

[4] T. Tajima and J. Dawson. "Laser Electron Accelerator". Phys. Rev. Lett., 

43(4):267-270, 1979. 

[5] J. R. Marques, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, J. P. 

Geindre, A. Antonetti, T. M. Antonsen, P. Chessa, and P. Mora. "Laser wake

field: Experimental study of nonlinear radial electron oscillations". Phys. Plas

mas, 5(4):1162-1177, 1998. 

[6] F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, 

F. Jacquet, V. MaIka, J. R. Marques, G. Matthieussent, P. Mine, A. Mod

ena, P. Mora, J. Morillo, and Z. Najmudin. "Observation of Laser Wakefield 

Acceleration of Electrons". Phys. Rev. Lett., 81(5):995-998, 1998. 

[7] D. Strickland and G. Mourou. "Compression of amplified chirped optical pulses". 

9pt. Commun., 56(3):219-221, 1985. 



97 

[8J P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou. "Generation of 

. ultrahigh peak power pulses by chirped-pulse amplification". IEEE J. Quantum 

Electron., QE-24(2):398-403, 1988. 

[9J M. D. Perry and G. Mourou. "Terawatt to petawatt subpicosecond lasers". Sci., 

264(5161):917-924, 1994. 

[10J C. E. Clayton, C. Joshi, C. Darrow, and D. Umstadter. "Relativistic plasma 

wave excitation by collinear optical mixing". Phys. Rev. Lett., 54(21):2343-2346, 

1985. 

[l1J Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K Matsuo, K Mirna, 

K Nishihara, H. Azechi, K. A. Tanaka, H. Takabe, and S. Nakai. "Beat-wave 

excitation of plasma wave and observation of accelerated electrons". Phys. Rev. 

Lett., 68(1):48-51, 1992. 

[12J C. E. Clayton, M. J. Everett, A. Lal, D. Gordon, K A. Marsh, and C. Joshi. 

"Acceleration and scattering of injected electrons in plasma beatwave accelerator 

experiments". Phys. Plasmas, 1(5):1753-1760, 1994. 

[13J F. Amiranoff, D. Bernard, B. Cros, F. Jacquet, G. Matthieussent, P. Mine, 

P. Mora, J. Morillo, F. Moulin, A. E. Specka, and C. Stenz. "Electron accelera

tion in Nd-laser plasma beat-wave experiments". Phys. Rev. Lett., 74(26):5220-

5223, 1995. 

[14J M. N. Rosenbluth and C. S. Liu. "Excitation of Plasma Waves by Two Laser 

Beams". Phys. Rev. Lett., 29(11):701-705, 1972. 

[15J G.-Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar. "Self-focusing of short intense 

pulses in plasmas". Phys. Fluids, 30(2):526-532, 1987. 

[16J C. Coverdale, C. B. Darrow, C. D. Decker, W. B. Mori, K-C. Tzeng, K A. 

Marsh, C. E. Clayton, and C. Joshi. "Propagation of intense subpicosecond 



98 

laser pulses through underdense plasmas". Phys. Rev. Lett., 74(23):4659-4662, 

1995. 

[17J K. Nakajima, D. Fisher, T. Kawakubo, H. Nakanishi, A. Ogata, Y. Kato, 

Y. Kitagawa, R. Kodama, K. Mirna, H .. Shiraga, K. Suzuki, K. Yamakawa, 

T. Zhang, Y. Sakawa, T. Shoji, Y. Nishida, N. Yugami, M. Downer, and 

T. Tajima. "Observation of ultrahigh gradient electron acceleration by a self

modulated intense short laser pulse". Phys. Rev. Lett., 74(22):4428-4431, 1995. 

[18J A. Modena, Z. Najmudin, A. E. Dangor, C. E. Clayton, K. A. Marsh, C. Joshi, 

V. MaIka, C. B. Darrow, and C. Danson. "Observation of Raman Forward 

Scattering and Electron Acceleration in the Relativistic Regime". IEEE Trans. 

Plasma Sci., PS-24(2):289-295, 1996. 

[19J R. Wagner, S. Y. Chen, A. Maksimchuk, and D. Umstadter. "Electron Accel

eration by a Laser Wakefield in a Relativistically Self-Guided Channel". Phys. 

Rev. Lett., 78(16):3125-3128, 1997. 

[20J A. Ting, C. I. Moore, K. Krushelnick, C. Manka, E. Esarey, P. Sprangle, R. Hub

bard, H. R. Burris, R. Fischer, and M. Baine. "Plasma wakefield generation and 

electron acceleration in a self-modulated laser wakefield accelerator experiment". 

Phys. Plasmas, 4(5):1889-1899, 1997. 

[21J T. M. Antonsen and P. Mora. "Self-focusing and Raman scattering of laser 

pulses in tenuous plasmas". Phys. Fluids B, 5(5):1440-1452, 1993. 

[22J P. Sprangle, J. Krall, and E. Esarey. "Hose-Modulation Instability of Laser 

Pulses in Plasmas". Phys. Rev. Lett., 73(26):3544-3547, 1994. 
1 

[23J K. Nakajima, M. Kando, H. Ahn, H. Kotaki, T.Watanabe, T. Ueda, M. Ue

saka, H. Nakanishi, A. Ogata, T. Kawakubo, and K. Tani. "Recent Results of 

Laser Wakefield Acceleration in KEK/U. Tokyo/ JAERI". In S. Chattopadhyay, 



99 

J. McCullough, and P. Dahl, editors, Advanced Accelerator Concepts: Seventh 

Workshop, pages 83-95, New York, 1996. AlP. 

[24] J. B. Rosenzweig, D. B.. Cline, B. Cole, H. Figueroa, W. Gai, R. Konecny, 

J. Norem, P. Schoessow, and J. Simpson. "Experimental observation of plasma 

wakefield acceleration". Phys. Rev. Lett., 61(1):98-101, 1988. 

[25] J. B. Rosenzweig, P. Schoessow, B. Cole, W. Gai, R. Konecny, J. Norem, and 

J. Simpson. "Experimental measurement of nonlinear plasma wakefields". Phys. 

Rev. A, 39(3):1586-1589, 1989. 

[26] H. Nakanishi, A. Enomoto, A. Ogata, K. Nakajima, D. Whittum, Y. Yoshida, 

T: Veda, T. Kobayashi, H. Shibata, S. Tagawa, N. Yugami, and Y. Nishida. 

"Wakefield accelerator using twin linacs". Nucl. Instrum. Meth., A328(3):596-

598, 1993. 

[27] A. K. Berezin, Ya. B. Fainberg, V. A. Kiselev, A. F. Linnik, V. V. Uskov, V. A. 

Balakirev, 1. N. Onishchenko, G. L. Sidel'nikov, and G. V. Sotnikov. "Wake field 

excitation in plasma by a relativistic electron pulse with a controlled number of 

short bunches". Plasma Phys. Rep., 20(7):569-602, 1994. 

[28] D. H. Whittum. "Transverse two-stream instability of a beam with a Bennett 

profile". Phys. Plasmas, 4(4):1154-1159, 1997. 

[29] D. H. Whittum, W. M. Sharp, S. S. Yu, M. Lampe, and G. Joyce. "Electron-hose 

instability in the ion-focused regime". Phys. Rev. Lett., 67(8):991-994, 1991. 

[30] R. D. Ruth, A.W. Chao, P. L. Morton, and P. B. Wilson. "A plasma wakefield 

accelerator". Part. Accel., 17(3):171-189, 1985. 

[31] R. Assmann, P. Chen, F.-J. Decker, R. Iverson, M. J. Hogan, S. Rokni, R. H. 

Siemann, D. Walz, D. H. Whittum, P. Catravas, S. Chattopadhyay, E. Esarey, 

W. P. Leemans, P. Volfbeyn, C. Clayton, R. Hemker, C. Joshi, K. Marsh, W. B. 



100 

Mori, S. Wang, T. Katsouleas, S. Lee, and P. Muggli. "Progress toward E-157: A 

1 GeV plasma wakefield accelerator". In Proceedings of the Particle Accelerator 

Conference, pages 330-332, New York, 1999. IEEE . 

. [32] D. R. Nicholson. Introduction to Plasma Theory; Krieger Publishing Co., 1992. 

[33] J. D. Jackson. Classical Electrondynamics. Wiley, 1975. 

[34] R. Keinings and M. E. Jones. "Two-dimensional dynamics of the plasma wake

field accelerator". Phys. Fluids, 30(1):252-263, 1987. 

[35] A. E. Siegman. Lasers. University Science Books, 1986. 

[36] P. Sprangle, E. Esarey, J. Krall, and G. Joyce. "Propagation and guiding of 

intense laser pulses in plasmas". Phys. Rev. Lett., 69(15):2200-2203, 1992. 

[37] T. C. Chiou, T. Katsouleas, C. Decker, W. B. Mori, J. S. Wurtele, G. Shvets, 

and J. J. Suo "Laser wake-field acceleration and optical guiding in a hollow 

plasma channel". Phys. Plasmas, 2(1):310-318, 1995. 

[38] K. Krushelnick, A. Ting, C. 1. Moore, H. R. Burris, E. Esarey, P. Sprangle, 

and M. Baine. "Plasma Channel Formation and Guiding during High Intensity 

Short Pulse Laser Plasma Experiments". Phys. Rev. Lett., 78(21):4047-4050, 

1997. 

[39] C. G. Durfee III and H. M . Milchberg. "Light pipe for high intensity laser 

pulses". Phys. Rev. Lett., 71 (15):2409-2411, 1993. 

[40] C. G. Durfee III, J. Lynch, and H. M . Milchberg. "Development of a plasma 

waveguide for high-intensity laser pulses". Phys. Rev. E, 51(3):2368-2388, 1995. 

[41] E. W. Gaul, S. P. Le Blanc, and M. C. Downer. "Efficient Excitation and 

Measurement of Plasma Channels". In W. Lawson, C. Bellamy, and D. F. 

Brosius, editors, Advanced Accelerator Concepts: Eighth Workshop, pages 377-

383, New York, 1998. AlP. 
1 ' 



101 

[42] P. Volfbeyn, E. Esarey, and W. P. Leemans. "Guiding of laser pulses in plasma 

channels created by the ignitor-heater technique". Phys. Plasmas, 6(5):2269-

2277, 1999. 

[43] D. Kaganovich, A. Ting, C. 1. Moore, A. Zigler, H. R. Burns, Y. Ehrlich, R. Hub

bard, and P. Sprangle. "High efficiency guiding of terawatt subpicosecond laser 

pulses in a capillary discharge plasma channel". Phys. Rev. E, 59(5):R4769-

R4772 , 1999. 

[44] Y. Ehrlich, C. Cohen, A. Zigler, J. Krall, P. Sprangle, and E. Esarey. "Guiding 

of High Intensity Laser Pulses in Straight and Curved Plasma Channel Experi

ments". Phys. Rev. Lett., 77(20):4186-4189, 1996. 

[45] W. Kruer; The Physics of Laser Plasma Interactions. Addison-Wesley, 1988. 

[46] G. Shvets, J. S. Wurtele, T. C. Chiou, and T. C. Katsouleas. "Excitation of 

Accelerating Wakefields in Inhomogeneous Plasmas". IEEE Trans. Plasma Sci., 

PS-24(2):351-362, 1996. 

[47] C. B. Schroeder, D. H. Whittum, and J. S. Wurtele. "Multimode Analysis of the 

Hollow Plasma Channel Wakefield Accelerator". Phys. Rev. Lett., 82( 6): 1177-

1180, 1999. 

[48] M. Reiser. Theory and Design of Charged Particle Beams. Wiley, 1994. 

[49] P. Wilson. "Linear Accelerators for TeV Colliders". In C. Joshi and T. Kat

souleas, editors, Laser Acceleration of Particles, pages 560--597, New York, 1985. 

AlP. 

[50] R. Assmann, F. J. Decker, M. Seidel, R. H. Siemann, and D. H. Whittum. 

"Observation of dark-current signals from the S-band structures of the SLAC 

LINAC". In Proceedings of the Particle Accelerator Conference, New York, 1997. 

IEEE. 



102 

[51] B. A. Shadwick and J. S. Wurtele. "Numerical Studies of Wake Excitation in 

Plasma Channels". In Proceedings of the European Particle Accelerator Confer

ence, pages 827-829, Bristol, 1998. lOP. -

[52] A. Chao. Physics of Collective Beam Instabilities in High Energy Accelerators. 

Wiley, 1993. 

[53] Y. Y. Lau. "Classification of Beam Breakup Instabilities in Linear Accelerators" . 

Phys. Rev. Lett., 63(11):1141-1144, 1989. 

[54] G. Arfken. Mathematical Methods for Physicists. Academic Press, 1985. 

[55] G. A. Loew and J. W. Wang. "Minimizing the energy spread within a sin

gle bunch by shaping its charge distribution". IEEE Trans. Nucl. Sci., NS-

32(5):3228-3230, 1985. 

[56] K. A. Thompson and R. D. Ruth. "Controlling transverse multibunch insta

bilities in linacs of high-energy linear colliders". Phys. Rev. D, 41(3):964-977, 

1990. 

[57] D. G. Colombant and Y. Y. Lau. "Effects of frequency spreads on beam breakup 

instabilities in linear accelerators". Appl. Phys. Lett., 55(1):27-29, 1989. 

[58] N. M. Kroll,R. M. Jones, C. Adolphsen, K. L. F. Bane, W. R. Fowkes, K. Ko, 

R. H. Miller, R. D. Ruth, M. Seidel, and J. W. Wang. "Recent Results & Plans 

for the Future on SLAC Damped Detuned Structures (DDS)". In Advanced 

Accelerator Concepts: Seventh Workshop, pages 455-464, New York, 1996. AlP. 

[59] P. Kung, H.-C. Lihn, H. Wiedemann, and D. Bocek. "Generation and measure

ment of 50-fs(rms) electron pulses". Phys. Rev. Lett., 73(7):967-970, 1994. 

[60] B. E. Carlsten and S. J. Russel. "Subpicosecond compression of 0.1-1 nc electron 

bunches with a magnetic chicane at 8 MeV". Phys. Rev. E,53(3):R2072-R2075, 

1996. 



103 

[61] X. J. Wang, X. Qui, and 1. Ben-Zvi. "Experimental observation of high

brightness microbunching in a photocathode rf electron gun". Phys. Rev. E, 

54{4}:R3121-R3124, 1996. 

[62] D. Umstadter, J. K. Kim, and E. Dodd. "Laser Injection of Ultrashourt Electron 

Pulses into Wakefield Plasma Waves". Phys. Rev. Lett., 76{12}:2073-2076, 1996. 

[63] E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and P. Sprangle. "Electron 

Injection into Plasma Wake Fields by Colliding Laser Pulses". Phys. Rev. Lett., 

79{14}:2682-2685, 1997. 

[64] R. G. Hemker, K.-C. Tzeng, W. B. Mori, C. E. Clayton, and T. Katsouleas. 

"Computer simulation of cathodeless, high-brightness electron-beam production 

by multiple laser beams in plasmas". Phys. Rev. E, 57{5}:5920-5928, 1998. 

[65] C. B. Schroeder, P. B. Lee, J. S. Wurtele, E. Esarey, and W. P. Leemans. 

"Generation of ultrashort electron bunches by colliding laser pulses". Phys. 

Rev. E, 59{5}:6037-6047, 1999. 

[66] E. Esarey, C. B. Schroeder, W. P. Leemans, and B. Hafizi. "Laser-induced 

electron trapping in plasma-based accelerators". Phys. Plasmas, 6{5}:2262-2268, 

1999. 

[67] E. Esarey, B. Hafizi, R. Hubbard, and A. Ting. "Trapping and Acceleration in 

Self-Modulated Laser Wakefields". Phys. Rev. Lett., 80{25}:5552-5555, 1998. 

[68] C.1. Moore, A. Ting, K. Krushelnick, E. Esarey, H. F. Hubbard, B. Hafizi, H. R. 

Burris, C. Manka, and P. Sprangle. "Electron Trapping in Self-Modulated Laser 

Wakefields by Raman Backscatter". Phys. Rev. Lett., 79(20}:3909-3912, 1997. 

[69] P. Bertrand, A. Ghizzo, S. J. Karttunen, T. J. H. Pattikangas amd R. R. E. Sa

lomaa, and M. Shoucri. "Two-stage electron acceleration by simultaneous stimu

lated Raman backward and forward scattering". Phys. Plasmas,2{8}:3115-3129, 

1995. 

i ,. 



104 

[70J A. Yariv. Quantum Electronics. Wiley, 1989. 

[71J W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. R. Vetterling. Numerical 

Recipes: The Art of Scientific Computing. Cambridge University Press, 1986 .. 

[72J E. P. Lee and R. K. Cooper. "General envelope equation of cylindrically sym

metric charged-particle beams". Part. Accel., 7(2):83-95, 1976. 

[73J T. Katsouleas, S. Wilks, P. Chen, J. M. Dawson, and J. J. Suo "Beam Loading 

in Plasma Accelerators". Part. Accel., 22(1):81-99, 1987. 

[74J E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu. "Nonlinear Analysis 

of Relativistic Harmonic Generation by Intense Lasers in Plasmas" . IEEE Trans. 

Plasma Sci., PS-21(1):95-104, 1993. 

[75J H. M. Milchberg, C. G. Durfee III, and T. J. McIlrath. "High-order frequency 

conversion in the plasma waveguide". Phys. Rev. Lett., 75(13):2494-2497, 1995. 

[76J D. C. Eder, P. Amendt, L. B. DaSilva, R. A. London, B. J. MacGowan, D. L. 

Matthews, B. M. Penetrante, M. D. Rosen, S. C. Wilks, T. D. Donnelly, R. W. 

Falcone, and G. L. Strobel. "Tabletop x-ray lasers". Phys. Plasmas, 1(5):1744-

1752, 1994. 

[77J B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris. 

"Demonstration of a lO-Hz, femtosecond-pulse-driven XUV laser at 41.8 nm in 

Xe IX". Phys. Rev. Lett., 74(9):1574-1577, 1995. 

[78J M. Tabak, J. Hammer, M. E. Glinsky, W. 1. Kruer, S. C. Wilds, J. Woodworth, 

E. M. Campbell, M. C. Perry, and R. J. Mason. "Ignition and high gain with 

ultrapowerfullasers". Phys. Plasmas, 1(5):1626-1634, 1994. 

[79J E. Esarey, J. Krall, and P. Sprangle. "Envelope analysis of intense laser pulse 

self-modulation in plasmas". Phys. Rev. Lett., 72(18):2887-2890, 1994. 



105 

[80] G. Shvets and J. S. Wurtele. "Instabilities of Short-Pulse Laser Propagation 

through Plasma Channels". Phys. Rev. Lett., 73(26):3540-3543, 1994. 

[81] E. Esarey and W. P. Leemans. "Nonparaxial propagation of ultrashort pulses 

in plasma channels". Phys. Rev. E, 59(1): 1082-1095, 1999. 

[82] P. Sprangle, A. Ting, and C. M. Tang. "Analysis of radiation focusing and steer

ing in the free-electron laser by use of a source-dependent expansion technique" . 

Phys. Rev. A, 36(6):2773-2781, 1987. 

[83] P. E. Young and P. R. Bolton. "Propagation of Subpicosecond Laser Pulses 

through a Fully Ionized Plasma". Phys. Rev. Lett., 77(22):4556-4559, 1996. 

[84] T. W. Johnston, F. Vidal, and D. Frechette. "Laser-plasma filamentation and 

the spatially periodic nonlinear schrodinger equation approximation". Phys. 

Plasmas, 4(5):1582-1588, 1997. 

[85] C. D. Decker, W. B. Mori, T. Katsouleas, arid D. E. Hinkel. "Spatial temporal 

theory of Raman forward scattering". Phys. Plasmas, 3(4):1360-1372, 1996. 

[86] N. E. Andreev, V. 1. Kirsanov, and L. M. Gorbunov. "Stimulated processes and 

self-modulation of a short intense laser pulse in the laser wake-field accelerator". 

Phys. Plasmas, 2(6):2573-2582, 1995. 

[87] L. Gorbunov, P. Mora, and T. M. Antonsen. "Magnetic field of a plasma wake 

driven by a laser pulse". Phys. Rev. Lett., 76(14):2495-2498, 1996. 

[88] W. P. Leemans, P. Volfbeyn, K.-Z. Guo, S. Chattopadhyay, C. B. Schroeder, 

B. A. Shadwick, P. B. Lee, J. S. Wurtele, and E. Esarey. "Laser-driven plasma

based accelerators: Wakefield excitation, channel guiding, and laser triggered 

particle injection". Phys. Plasmas, 5(5):1615-1623, 1998. 

[89] W. P. Leemans, C. B. Schroeder, P. B. Lee, J. S. Wurtele, and E. Esarey. 

"Ultrashort x-ray pulse generation using laser driven accelerators". In Time 



106 

Structure of X-Ray Sources and Its Applications, volume 3451, pages 41-5l. 

SPIE, 1998. 



@I.J~I~:Jij' ~ ~.J#iI~I"§!: €l#il.J:(iI#ilY3\i' ~ ~ 

®Ii ~ ~ '; @l#lltJfiYW/o ~DIFJ~IVA M~ 

ABT846 

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
LBL Libraries 

, . 

.. 

6 
Q 

I 




