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Abstract

Stochastic Models of Geodynamo Simulations

by

William Davis

Doctor of Philosophy in Earth and Planetary Science

University of California, Berkeley

Professor Bruce Buffett, Chair

The Earth’s magnetic field originates primarily in the interior of the planet, and represents
one of the few signals through which processes of the deep Earth are expressed at the surface.
Observations and paleomagnetic measurements of the geomagnetic field therefore provide a
valuable means of investigating the state and dynamics of the Earth’s core. Fluctuations
in the geomagnetic field occur on a wide range of timescales; however, the inaccessibility
of the deep Earth means that these fluctuations are poorly understood. To investigate
how external magnetic field variability relates to processes in the core, recent studies have
constructed stochastic models from direct numerical simulations of the geodynamo. If these
stochastic models reflect the underlying dynamics, then they may be used to characterize
the paleomagnetic record and investigate the state of the Earth’s core. In this thesis, I use
geodynamo simulations in conjunction with stochastic models to investigate the expression
of internal core processes on external field fluctuations. I examine how changes in the style
and vigor of convection are reflected in stochastic models of axial dipole field variability. I
find that the magnitude of variability is linked to dipole field generation, whereas the average
regression to the mean is associated with turbulently enhanced magnetic diffusion. I also
construct a stochastic model from a reversing geodynamo simulation, and find that stochastic
models can approximately reproduce the statistics of polarity reversals. Finally, I develop a
set of statistical techniques to fit stochastic processes to irregularly sampled time-series data,
which are common in paleomagnetic measurements. The overall goal is to investigate the
use of stochastic models as a means to relate external magnetic field variability to internal
mechanisms in planetary dynamos.
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Chapter 1

Introduction

The Earth has a global magnetic field, which originates in the interior of the planet and
extends into space. This field is primarily generated in the liquid iron outer core, passing
through 3000 kilometers of silicate mantle before reaching the Earth’s surface (see Fig. 1.1).
Fluctuations of the geomagnetic field have been recorded throughout history, and this vari-
ability is governed by complex dynamics within the core. Fluid motions and the magnetic
field interact in a self-exciting manner, resulting in a complex interplay of forces, fluxes, and
processes that are collectively referred to as the geodynamo. Although the detailed state of
the core is inaccessible, some of the generated magnetic field can be observed at the Earth’s
surface. Direct observations of this geomagnetic field have been possible for the past few
centuries. Further back in time, certain conditions permit some geological (and archaeo-
logical) materials to record a snapshot of the local field at the time of their formation, as
internal remanent magnetization. From the compilations of these indirect measurements, we
can piece together a record of field behavior extending back billions of years though Earth’s
history, with higher resolution for the recent field and sparser inferences further back in time.
These paleomagnetic records indicate that the geomagnetic field exhibits a staggering range
of variability. The morphology and intensity of the surface field change over millennia. On
longer timescales, the dominantly dipolar field has reversed polarity hundreds of times, with
a frequency that is tremendously variable. These variabilities likely reflect changes in the
style and vigor of convection, which are ultimately governed by the state of the core and the
bounding effects of the mantle. However, the inaccessibility of the deep Earth leaves these
relations poorly understood.

One approach to investigating the internal dynamics of the core is through direct numeri-
cal simulation of the magnetohydrodynamic action within the core, also known as geodynamo
simulations (Christensen and Wicht, 2015). The goal is to produce simulations that repro-
duce the dynamic properties of the observable field, with the benefit of having the details of
internal field and fluid motions directly accessible. Although numerical limitations prevent
simulations from being conducted at Earth-like conditions, many properties of the external
field can be reproduced (Wicht and Sanchez, 2019).

Another method of investigating field variability is through statistical models. An exam-
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Figure 1.1: Cutaway view showing the main layers of the Earth. Adapted from Roberts and
King (2013).

ple is given by Constable and Parker (1988), where the authors derive statistical descriptions
of the components of a spherical harmonic expansion of the field. This model and further
extensions are able to reproduce variabilities of the magnetic field; they are also able to repro-
duce comparable variability from dynamo simulations (Bouligand et al., 2005). While these
models provide convenient representations of statistical properties, physical interpretations
of parameters within these statistical models have not been directly established.

An alternative statistical approach is to use stochastic models to represent geomagnetic
field variability. Studies have generally described the variability of axial dipole intensity
as a stochastic processes (Brendel et al., 2007). These include a deterministic and a ran-
dom component, known as the drift and noise terms, respectively. These models were able
to reproduce the variability of the recent geomagnetic field, estimated from paleomagnetic
models (Buffett et al., 2013). Recently, Buffett et al. (2014) applied this approach to the
output from a geodynamo simulation, enabling an investigation of the links between the ex-
ternal field and internal field generation mechanisms. However, these connections were only
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made for a single dynamo simulation, and how these connections respond to changes in the
boundary conditions or the vigor and style of convection were not investigated. The main
aim of this thesis is to explore connecting these stochastic models to underlying physical
processes. This entails investigating how drift and noise functions change across a range of
dynamo simulations, and whether these functions continue to reflect internal core processes.
The overarching goal is to investigate the use stochastic models as a tool to link external
field variability to internal mechanisms in fluid dynamos.

One first-order property of geomagnetic field variations inferred from paleomagnetic
records is the presence of polarity reversals. As such, the presence and frequency of po-
larity reversals in numerical geodynamo simulations are often quantities of interest (Sprain
et al., 2019). Although numerous studies have been able to produce dynamo simulations
that reverse, accurate estimates of statistics such as reversal rates commonly requires long,
costly simulations (Lhuillier et al., 2013), that are rarely conducted. If stochastic models are
able to reproduce the statistics of stable-polarity dynamo simulations, then it is possible that
might also be able to reproduce the statistics—specifically the reversal rates—of reversing
simulations. Although stochastic models have been previously explored in the context of
reversing dynamo simulations (Meduri and Wicht, 2016), their capacity to reproduce rever-
sal rates was not investigated. If stochastic models can accurately reproduce the statistics
of reversals, then perhaps they can be used to predict asymptotic statistics whilst being
built from high-resolution simulations of a short length. This would greatly aid systematic
searches for Earth-like geodynamo simulations (e.g., Kutzner and Christensen, 2002; Chris-
tensen and Aubert, 2006; Christensen, 2011). Hence another goal of this thesis is to explore:
(1) whether stochastic models can reproduce reversal statistics of numerical simulations, and
(2) whether the reversal rates be estimated from stochastic models built from short lengths
of data.

A final consideration is how stochastic models might be fitted from paleomagnetic records.
Fitting stochastic models to empirical data requires the careful application of appropriate
statistical methods (Friedrich et al., 2011). However many of these methods encounter
difficulties with paleomagnetic records, due to complications of geological sampling (Buffett
and Puranam, 2017). In particular, the irregular sampling of some records renders many
methods impracticable. In order to enable future analysis of paleomagnetic records, another
goal of this thesis is to develop a set of techniques enabling the fitting of stochastic models
to irregularly sampled data.

This thesis aims to explore each of these topics, and attempts to integrate them together
in the context of stochastic models of the geodynamo and geomagnetic field. I begin by
providing a brief review of the necessary fundamentals of the geodynamo in Chapter 2.
In Chapter 3, I give an extensive literature review of previous work concerning stochastic
models of the geodynamo. In Chapter 4, I address the main focus of this thesis and use
stochastic models to investigate the internal field generation mechanisms of a set of numerical
geodynamo simulations. Work appearing in this chapter has subsequently been published
in Davis and Buffett (2021). In Chapter 5, I extend the previous analysis to a numerical
geodynamo simulation that exhibits polarity reversals, with specific attention paid to the
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statistics of reversals. In Chapter 6, I develop a set of statistical methods for fitting stochastic
models to irregularly sampled data, such as paleomagnetic records. Work appearing in this
chapter has subsequently been published in Davis and Buffett (2022). Finally, Chapter 7
concludes with a summary of this work, and an outlook for future directions of this research.
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Chapter 2

Principles of the Geodynamo

The Earth’s magnetic field, and the internal geodynamo process which generates it, have
both been areas of interest since the early beginnings of the field of geophysics. In this
chapter, I provide a short summary of the basic principles that are relevant to this thesis.
More extensive reviews can be found in Roberts and King (2013) and Olson (2015), while
the mathematical fundamentals are rigorously covered in Braginsky and Roberts (1995). I
begin with a brief account of historical developments, which gives context for the study of
the geodynamo. I then summarize some common methods of quantitatively representing
the field. These are used to give a short summary of the observed and inferred phenomena
of the field, for both recent history as well as through geologic time. I then give a short
summary of the mathematical formulation of the governing equations for the geodynamo.
Finally, I outline the requirements for numerical geodynamo simulations, as well as recent
investigations on how “Earth-like” these simulations are.

2.1 Introduction

Before the geodynamo was studied as an entity to itself, initial work mainly was concerned
with the geomagnetic field present at the surface of the Earth. This was largely motivated
by the need for reliable nautical navigational methods. Early observations showed that a
magnetic compass needle would point almost, but not exactly, in a northerly direction. This
discrepancy, with respect to “true North,” was termed “declination,” and denoted by D.
Another observation was that a suspended compass needle would orient itself steeply rela-
tive to the horizontal plane. This angle was termed “inclination,” and denoted by I. Global
variations in declination and inclination were useful for locally determining longitude, and
were used in ocean navigation. One of the first hypotheses for the origins of the geomagnetic
field came from William Gilbert, who, in his 1600 Treatise De Magnete, proposed that the
source of this field was internal to the Earth. However, further investigation into this hy-
pothesis made little progress for the next few hundred years (Chapman and Bartels, 1940),
as the necessary tools were only available after the development of the field of electrodynam-
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ics in the 19th Century. This, together with sound mathematical descriptions of the field
(provided by Gauss in 1838) initiated the field of geomagnetism.

Following from Gilbert’s initial work, the source of the geomagnetic field was originally
thought to be a permanent magnet in the interior of the Earth. However, later experiments
showed that magnetic minerals lose their permanent magnetization when heated beyond
their Curie temperatures. This excluded the possibility of a permanent magnet as the origin
for the Earth’s field, except for small-scale fields originating from the top few kilometers of
the crust. An alternative explanation for the geomagnetic field was through electrodynamics,
which relied on free electric currents rather than permanent magnetization. This idea was
proposed in 1919 by Joseph Larmor, with reference to both the Earth and the Sun. This
“dynamo hypothesis,” supposed that electric currents and magnetic fields in the centers of
astrophysical objects interacted in a self-sustaining way, requiring no permanent magnetism.
This perspective eventually led to the development of the theory of magnetohydrodynamics
(MHD) (Elsasser, 1946, 1950; Bullard and Gellman, 1954), which is now widely accepted as
the mode of magnetic field generation in the Earth.

The field of geomagnetism has developed in parallel to other areas of Earth sciences, and
a large amount of complementary knowledge has come from seismology and mineral physics.
From the study of seismic waves that penetrate the deep Earth, we now know that the
Earth is distinctly segregated radially, comprising a metallic core and an overlying silicate
mantle (Oldham, 1906). Furthermore, the core is itself separated into a liquid outer shell and
a solid center (Lehmann, 1936). The composition of the core is thought to be an iron-nickel
alloy, as inferred from meteoritic evidence, seismic observations, and experimental mineral
physics (Birch, 1952; Bullen, 1954; Birch, 1964). The outer core has long been understood
to be slightly less dense than a Fe-Ni alloy, indicating a small component of lighter elements.
Oxygen, sulfur, silicon, hydrogen, and carbon are the most likely candidates, though their
precise relative abundance remains poorly understood and the subject of much ongoing
research (e.g., Poirier, 1994; McDonough, 2003). These light elements are important, as
they might provide a buoyancy source for fluid motions and the overall energetics of the
core (see Nimmo, 2015, for an extensive review).

Description of the Geomagnetic Field

In order to quantitatively describe the geomagnetic field, an adequate mathematical repre-
sentation is necessary. The description, in terms of potential theory, dates back to the early
work of Gauss in 1838. It involves a decomposition of the magnetic field exterior to the
Earth’s surface onto a sphere. As the atmosphere at the Earth’s surface has very low elec-
trical conductivity, one can assume a negligible current flow in this region. Then Amperè’s
law and the lack of magnetic monopoles gives a magnetic field B with

∇×B = 0, and ∇ ·B = 0. (2.1.1)
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This leads to a magnetic field that is conservative, and can be represented by a “geopotential”
field V , with

B = −∇V, (2.1.2)

which obeys Laplace’s equation

∇2V = 0. (2.1.3)

Given this, the field at a point can be expressed in spherical coordinates (r, θ, φ), where θ is
the colatitude, φ is the longitude, r is in the radial direction, and the origin is at the center
of the Earth. Hence:

Br = −∂V
∂r

, (2.1.4)

Bθ = −1

r

∂V

∂θ
, (2.1.5)

Bφ = − 1

r sin θ

∂V

∂φ
. (2.1.6)

From this, declination, inclination, and field intensity F can be represented as

D = tan−1

(
Bφ

−Bθ

)
, (2.1.7)

I = tan−1

 −Br√
B2
θ +B2

φ

 , (2.1.8)

F =
√
B2
r +B2

θ +B2
φ. (2.1.9)

This potential is typically partitioned into sections concerning the field interior and exterior
to the core. Assuming negligible external magnetic sources, a general solution for the external
potential Vext can be expanded as (e.g., Backus et al., 1996),

Vext(r, θ, φ, t) = a

∞∑
`=1

(r
a

)`
×
∑̀
m=0

[gm` (t) cosmφ+ hm` (t) sinmφ]Pm
` (θ) (2.1.10)

where a is the radius of Earth’s surface, Pm
` (θ) is the Schmidt normalized Legendre function

with degree ` and order m, and a is the radius of the Earth. In this expansion, the terms gm`
and hm` are called the Gauss coefficients. The term g0

1 represents the axial dipole, which
combines with g1

1 and h1
1 to give the full dipole field. The Gauss coefficients have the

units of teslas, so scaling by 4πa3/µ0 gives the dipole moment in units of Am2, where
µ0 = 4π × 10−7 Hm−1 is the permittivity of free space. This decomposition enables for a
convenient, concise description of the external magnetic field.
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Figure 2.1: The spectrum of the modern geomagnetic field at Earth’s surface as a function
of spherical harmonic degree (2.2.1). Gauss coefficients are taken from a combination of
satellite observations and ground-based observations between 1999 and 2007 (Olsen and
Mandea, 2008). The shading illustrates the field that is thought to be generated by crustal
magnetism. Modified from Roberts and King (2013).

2.2 Observations of the Geomagnetic Field

The modern external magnetic field can be analyzed through recent observations. Here,
“modern” refers to the field during the last few hundred years. This field may be considered
separately to the paleofield, as direct data from ground-based observatories and ship logs
are available. More recently, observations from satellite missions have also become available
(e.g., Swarm, CHAMP, and Ørsted). These enable high-resolution inversions of the external
magnetic field (e.g., see Olsen et al., 2006, and subsequent studies). Together, these allow for
the accurate estimation of Gauss coefficients up to high spherical harmonic degrees (Olsen
et al., 2007).

The modern field is mostly dipolar, with a tilt of about 9◦ relative to Earth’s rotation
axis (Gubbins and Herrero-Bervera, 2007). In addition to the dipole field, the full field shows
a wide range of spatial complexities. One way of expressing this is through the spatial power
spectrum (Mauersberger, 1956; Lowes, 1966). This spectrum, defined as

R`(r, t) =
(a
r

)2`+4

(`+ 1)
∑̀
m=0

[
(gm` (t))2 + (hm` (t))2] , (2.2.1)

is a function of harmonic degree `, radius r, and time t, is shown for Earth’s surface field
in Fig. 2.1. The field is dominated by the dipole (` = 1), which comprises more than 90%
of the amplitude. The power of the other degrees decreases steadily until about ` ∼ 13,
after which the spectrum flattens. This has been interpreted to reflect the large scale fields
produced in the core being obscured by crustal magnetism (Olsen and Mandea, 2008).

Variations in the geomagnetic field are referred to as “secular variation” or “paeleomag-
netic secular variation,” for the historical or geologic field, respectively. Satellite observations
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reveal small changes in the modern field, which have been attributed to fluid flows and waves
at the very top of the core (e.g., Holme and Olsen, 2006; Finlay et al., 2010a; Chi-Durán et
al., 2021). In addition, historical records from observatories and maritime logbooks indicate
a small, westward drift of magnetic features (Jackson et al., 2000). Rapid changes in the
derivative of secular variation, commonly referred to as “geomagnetic jerks” (Backus, 1983;
Courtillot and Le Mouël, 1984; Mandea et al., 2010), have also been observed.

On timescales beyond historical records, estimates of the geomagnetic field can be gath-
ered from archaeomagnetism. This is the study of archaeological objects that have a rema-
nent magnetization—for example, recorded in iron-rich clay pottery or bricks as they cool
through their Curie point (e.g., Gubbins and Herrero-Bervera, 2007).

The Paleomagnetic Field

Beyond human records, we have no direct observations of the geomagnetic field. Instead,
the paleofield is inferred through measurements of various geologic materials, which have
preserved a natural remanent magnetization at the time of their formation. These remanent
magnetizations may be measured in laboratory settings through various demagnetization
techniques (see Tauxe, 2010; Dunlop and Özdemir, 2015, for extensive reviews). These
paleomagnetic measurements have been invaluable for the study of the Earth through deep
geological time, and were key in the development of the theory of plate tectonics (McElhinny
and McFadden, 1999).

Magnetism of igneous rocks is one source of paleomagnetic data. These rocks often
contain (anti)ferrimagnetic minerals such as magnetite, hematite, or other Fe-Ti variants. As
these minerals cool through their Curie temperature, a remanent magnetization is recorded.
This is called thermal remanent magnetization (TRM) (Merrill et al., 1998). Extrusive
igneous rocks often cool rapidly, and essentially provide point measurements of the magnetic
field at a specific time and location. Multiple episodic volcanic events may record an irregular,
discrete sampling of the field. Intrusive igneous rocks, by contrast, cool slowly and therefore
record averaged magnetic fields. It must be noted, however, that reheating events may create
complications such as secondary magnetization and overprinting the original records.

Another type of remanent magnetization is found in sedimentary rocks. Magnetic grains
that can rotate freely will orient themselves in the direction of the local magnetic field. This
is known as detrital (or depositional) remanent magnetization (DRM) (Merrill et al., 1998).
As opposed to extrusive igneous rocks, these records provide continuous records of local
magnetism, although absolute intensities are not easily attained (Tauxe, 2010). However,
post-depositional geological, geochemical, and biological processes can transform or otherwise
distort this remanent magnetization. TRM and DRM are often used in complementary
settings, with deep-sea ocean cores providing long, continuous DRM measurements, which
are calibrated against TRM point measurements (e.g., Ziegler et al., 2011).

Paleomagnetic observations indicate that the Earth’s external magnetic field varies on
geologic timescales. This is commonly referred to as “paleomagnetic secular variation,” or
“paleosecular variation.” Numerous reviews describe this in detail (e.g., see Merrill et al.,
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1998; Gubbins and Herrero-Bervera, 2007; Kono, 2015). Paleomagnetic observations taken
from a single site are often interpreted as resulting from a single geocentric dipole field.
The point where the axis of this dipole meets the Earth’s surface is called the virtual ge-
omagnetic pole (VGP). If intensity measurements are possible, then the magnitude of the
inferred dipole field is referred to as the virtual dipole moment (VDM). These are “virtual,”
because non-dipole field components are not considered. This is based the assumption that,
over timescales of 103 years, the non-dipole field averages to zero (see Constable and Korte,
2015, for details). On longer timescales of 104–105 years, VGPs are averaged to produce
“paleomagnetic poles.” Compilations of paleomagnetic poles suggest that the field is pre-
dominantly aligned with the Earth’s rotation axis. This is referred to as the geocentric axial
dipole (GAD) hypothesis, under which the averaged dipole field intensity is represented by
a virtual axial dipole moment (VADM).

Paleomagnetic studies often indicate small fluctuations in VGP positions and VDMs, on
timescales of ∼ 104 years. These typically constitute fluctuations in intensity of the dipole
moment by about 50% of its average value (Gubbins and Herrero-Bervera, 2007; Tauxe and
Yamazaki, 2015). Occasionally these small fluctuations appear to become larger, reflecting a
VGP diverging from axial alignment (Roberts, 2008). VGP fluctuations that are larger, but
do not cross the equator, are called “excursions.” Some authors define excursions as times
when a VGP appears to move within 45◦ of the equator (e.g., Laj and Channell, 2015).
These events are often associated with a weakening of the dipole field.

Occasionally, a paleomagnetic pole will cross the equator and become anti-parallel with
its original orientation. These events are referred to as “polarity reversals,” and are widely
accepted to have happened many times throughout geologic history (Merrill et al., 1998).
For example, over the last ten million years, the field is estimated to have reversed 47
times (Cande and Kent, 1995). If a paleomagnetic pole is in the same predominant direction
as the present field for a period of time, that period is referred to as a “normal” polarity
state. Otherwise, that period is referred to as a “reversed” polarity state. If the paleo-
magnetic pole remains within one polarity state for 106–107 years, that period of time is
referred to as a “polarity epoch,” or “chron.” Shorter polarity durations of 105–106 years
are referred to as “sub-chrons,” and polarity durations on the edge of detectability are called
“cryptochrons” (Laj and Channell, 2015). The geological history of dipole polarity inferred
from paleomagnetic records is commonly referred to as the geomagnetic polarity time series
(GPTS). For the most recently updated version of this compilation, see Ogg (2020). Transi-
tions between polarity states are not instantaneous; the duration of reversals is estimated to
be 103–104 years, however this is a debated topic (e.g., Clement, 2004; Valet et al., 2012).
Another observation is that VGP paths appear to have preferred longitudinal paths during
reversals (Clement, 1991; Valet et al., 2012).

Polarity reversals occur non-periodically, seemingly randomly, but with a mean rate that
appears to change over geologic history (Constable, 2000; Lowrie and Kent, 2004). Within
stationary intervals, the distribution of chron durations appears to follow an exponential
distribution (Cox, 1968, 1969), however this is strongly debated (Naidu, 1971; McFadden
and Merrill, 1984; Marzocchi, 1997; Carbone et al., 2006). Rarely, a period of stable polarity
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Figure 2.2: Paleomagnetic models of virtual axial dipole moment through geologic time. The
top panel shows estimates of the VADM for the last ten thousand years, from the paleo-
magnetic model CALS10k.2 (Constable et al., 2016). The middle panel shows estimates of
the VADM for the last two million years, from the paleomagnetic model CALS10k.2 (Ziegler
et al., 2011). The bottom panel shows a compilation of paleomagnetic estimates of VADM,
spanning the last 170 million years (Biggin et al., 2010). Triangles and circles indicate mea-
surements made from single crystals and whole rocks, respectively. The lowermost edge
shows the axial dipole polarity, from the GPTS (Ogg, 2020). Normal and reversed polarities
are marked in black and white, respectively.

endured for an unusually long period of time, approximately 107–108 years. These events are
called “superchrons.” Examples include the Cretaceous normal and Permo-Carboniferous
reversed superchrons, lasting approximately 38 and 50 million years, respectively. There is
also evidence for an increase in the overall field strength during these superchrons (Prévot
et al., 1990; Tarduno and Cottrell, 2005; Biggin et al., 2012).

Paleomagnetic studies have indicated that the Earth’s magnetic field has been present
for much of Earth’s history (Merrill et al., 1998). These records, along with modern observa-
tions, indicate that the field has exhibited spatial and temporal variability. An illustration of
different scales of variations inferred from various paleomagnetic models is shown in Fig. 2.2.
Investigation into the origin of the Earth’s magnetic field, as well as the source of its varia-
tions, motivates the study of the geodynamo.
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2.3 The Geodynamo

Today, it is widely-accepted that the geomagnetic field originates from the magnetic field
that accompanies the flow of electric current created by a self-excited dynamo operating
within the Earth. Following early work by Elsasser, Bullard and Gellman, two varieties of
geodynamo theory were developed: kinematic, and magnetohydrodynamic. In kinematic
theory, the velocity field is prescribed. The magnetic field responds in reaction to it, and
there is no allowance for the fluid flow responding to the magnetic field. This framework
has largely been superseded by magnetohydrodynamic theory, which accounts for the full
interactions between flows of electrically conducting fluids and magnetic fields. As evidence
from seismology and mineral physics suggests that the Earth’s outer core is a liquid iron
alloy, we can reasonably conclude that magnetohydrodynamics is the mechanism for the
geodynamo. Details of the development of this theory can be found in Roberts and King
(2013) and Roberts (2015), and the mathematical fundamentals are covered in Braginsky
and Roberts (1995).

Magnetohydrodynamics describes the interaction between magnetic fields and an elec-
trically conducting fluid. This defines the dominant forces for magnetic field generation in
the geodynamo. Thermal and/or compositional convection is thought to be the most likely
mechanism driving fluid flow in the Earth’s core (Olson, 2015). These convective motions
of the electrically conducting fluid induce magnetic fields, which are twisted and stretched
such that the original field is reinforced. The magnetic field also exerts a Lorentz force back
on the fluid flow, and the generation of magnetic field is counteracted by ohmic dissipation,
which removes power due to electrical resistance.

The full complexity of these interacting components makes the dynamo difficult to study.
Therefore, a number of simplifications are commonly made for components that are not
thought to play primary roles (Roberts, 2015). The most reasonable approximation is that
of non-relativistic fluid flow. Another common assumption is the Boussinesq approximation.
This assumes that density changes due to temperature and/or compositional variations are
only considered through a buoyancy term in the momentum equation. This also implies an
incompressible flow, and uniformity of properties such as thermal and electrical conductivi-
ties. Through these simplifications, the governing equations of MHD and thermal convection
for fluid flow u, magnetic field B, and temperature T , can be derived (Roberts and King,
2013).1 The first governing equation is for fluid flow u, and is the Navier-Stokes equation in
a rotating reference frame:

∂u

∂t
+ u · ∇u + 2Ω (ẑ × u) +∇Π = ν∇2u + αTg(ro)

r

ro
+

1

ρ
J×B, (2.3.1)

where Ω is the angular velocity about the ẑ rotation axis, Π is the non-hydrostatic pressure,
ν is the kinematic viscosity, α is the coefficient of thermal expansion, g(r) is acceleration due

1Here the source of buoyancy is assumed to be purely thermal, for simplicity. This restriction can be
relaxed, giving equations for thermo-chemical convection, (e.g., Glatzmaier and Roberts, 1996).
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to gravity at radius r, ro is the radius of the outer core, ρ is the fluid density, and J is the
current density. The presence of rotation gives rise to a Coriolis force 2Ω (ẑ × u), as well as
a centrifugal acceleration which is absorbed into the pressure term Π. The first term on the
right-hand side describes viscous dissipation forces. The next term represents the effect of
thermal buoyancy force per unit mass. Finally, the Lorentz force J ×B gives the force per
unit volume exerted on the fluid by the magnetic field.

Next, the evolution of the magnetic field B is governed by the induction equation:

∂B

∂t
= ∇× (u×B) + η∇2B, (2.3.2)

where η is the magnetic diffusivity. The first term on the right-hand side represents electro-
magnetic induction, whereas the second term represents ohmic dissipation. The evolution of
temperature is governed by the transport equation:

∂T

∂t
+ u · ∇T = κ∇2T +

q

ρCp
, (2.3.3)

where κ is the kinematic viscosity, q is the heat source, and the quantity ρCp is the volumetric
heat capacity. Finally, fluid flow is assumed to be incompressible, and magnetic continuity
gives

∇ · u = 0, and ∇ ·B = 0. (2.3.4)

From the two equations (2.3.1)–(2.3.2), one can see that the magnetic field and velocity com-
ponents are not independent. The flow, magnetic field, and temperature are also influenced
by boundary conditions, imposed by the overlying mantle and underlying inner core. For the
magnetic field, all components are continuous across the boundary. For the velocity field, a
common requirement is no flux across the boundaries of the fluid shell,

u · r = 0. (2.3.5)

A second condition usually imposed is either a no-slip or (viscous) stress-free boundary
condition. In the no-slip case, all the components of the velocity vanish at the boundary,
representing viscous coupling. On the other hand, stress-free conditions only require the
tangential components of stress to vanish at the boundary, assuming the viscous boundary
layer is thin (Kuang and Bloxham, 1999). Finally, boundary conditions on the temperature
are typically either set at fixed values or fixed flux.

Toroidal-Poloidal Decomposition

A useful tool for analyzing the internal magnetic field is the toroidal-poloidal decomposi-
tion, pioneered by Bullard and Gellman (1954).2 It provides a framework for representing

2Sometimes referred to as the “torpol” or “Mie” representation (Backus, 1986; Backus et al., 1996;
Roberts and King, 2013).
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divergenceless fields such as the magnetic field (or an incompressible velocity field). This
formalism is widely used in dynamo studies. It consists of separating the field into two
components,

B = BT + BS , (2.3.6)

where BT and BS are the toroidal and poloidal fields, respectively. The toroidal field is
defined as

BT = ∇× (T r), (2.3.7)

where T (r, θ, φ, t) is the toroidal scalar field. Likewise, the poloidal field is defined as

BS = ∇×∇× (Sr), (2.3.8)

where S(r, θ, φ, t) is the poloidal scalar field. The toroidal and poloidal scalar fields can be
further decomposed by spherical harmonic order and degree,

T (r, θ, φ, t) =
∞∑
`=1

∑̀
m=−`

T `m(r, t)Y m
` (θ, φ), (2.3.9)

S(r, θ, φ, t) =
∞∑
`=1

∑̀
m=−`

S`m(r, t)Y m
` (θ, φ), (2.3.10)

where Y m
` are the spherical harmonics of degree ` and order m, and T `m and S`m are scalar

functions of r. The toroidal field does not possess a component in the radial direction,
whereas the poloidal field lines circulate in meridional planes. This decomposition is useful
because the toroidal and poloidal parts are orthogonal to each other on integration over the
sphere’s volume (see Backus et al. (1996) for an in-depth description).

Field Generation Mechanisms

One area of interest in dynamo theory concerns the mechanisms by which the magnetic field
is generated. An inspection of the induction equation

∂B

∂t
= ∇× (u×B) + η∇2B, (2.3.11)

reveals that a constant B = 0 field is always a valid solution. Therefore, the generation
of magnetic field can only be possible when this solution becomes unstable. Furthermore,
dynamo action can only be maintained when the inductive effects of ∇× (u×B) are larger
than diffusive effects. The relative importance of these effects is typically measured by the
magnetic Reynolds number
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Figure 2.3: A schematic illustration of magnetic induction due to helical convection. Helical
flow lifts (left) and twists (right) an initial magnetic field B to produce a loop of magnetic
field with both positive and negative Bz components.

Rm =
UL

η
, (2.3.12)

where L and U are the characteristic length and flow velocity scales, respectively. The value
of the magnetic Reynolds number where the magnetic field starts to self-sustain is called the
“dynamo onset.”

The non-linearities in the induction equation (2.3.11) often preclude direct analysis. One
alternate option is to consider the typical mechanisms of magnetic field generation arising
from (2.3.11). Induction mechanisms are often described in the context of the frozen flux
theorem, where field lines are swept along with the flow, and reconnect where field gradients
are large (Gubbins and Herrero-Bervera, 2007). One example of a magnetic field generation
mechanism is the α-effect. Originally investigated by Parker (1955), and further explored
in the context of mean field electrodynamics (e.g., Moffatt, 1978), it describes the response
of magnetic field lines to localized helical fluid motions. As an eddy with helicity—both a
velocity and vorticity—approaches a magnetic field line, both the velocity and the vorticity
act to induce a new magnetic field. The fluid motion lifts the flux line, which is fixed to the
surrounding fluid, creating a region of increased curvature. At the same time, the vorticity
of the eddy applies a twisting motion to the flux line. This process is illustrated in Fig. 2.3.
Large field gradients at the point of intersection cause the flux loop to detach and become
independent of the original field line. This loop creates a current J that is anti-parallel to
the original mean magnetic field B. On average, this current has a strength of

J = αB, (2.3.13)

with a constant of proportionality of α (Steenbeck et al., 1966). Overall this process involves
a transfer of kinetic energy—required to bend and rotate the flux line—into the magnetic
energy of the loop.
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Figure 2.4: A schematic illustration of magnetic induction due to shear flow. Spatially
varying flow interacts with a magnetic field line (left). As a result of shearing, the field line
is bent (right), inducing a net magnetic field in the direction of mean flow.

Another proposed mechanism for magnetic induction is the ω-effect.3 This effect de-
scribes zonal shearing motions associated with differential rotation, which drag azimuthal
magnetic fields (Roberts, 2015). The magnetic stress grows as the field lines become increas-
ingly stretched, eventually self-limiting the field amplification. This process is illustrated in
Fig. 2.4.

It is hypothesized that the dipole field in the core is mainly a result of the α-effect,
maintained by helical-flowing axial convection cells (Kageyama and Sato, 1997; Olson et
al., 1999). In these cells, a strong axial vorticity is combined with a secondary axial flow,
inducing a net helicity necessary for the α-effect. This mechanism is illustrated in Fig. 2.5.

2.4 Numerical Simulations

The complexities, non-linearities, and interdependencies of the dynamo equations (2.3.1)–
(2.3.4) present tremendous challenges for direct analysis. As such, the majority of recent
advances in understanding core dynamics have come from numerical simulations of dynamo
processes (Olson et al., 2010). As several theorems prohibit 2D solutions of the dynamo
problem, (Cowling, 1933; Bullard and Gellman, 1954; Braginskii, 1964), the full 3D fluid
motions and magnetic fields in a spherical-shell geometry must be simulated. Extensive
reviews of this approach can be found in Christensen and Wicht (2015) and Matsui et al.
(2016).

Simulation of magnetohydrodynamics in the core starts with a numerical discretiza-
tion of the dynamo equations (2.3.1)–(2.3.4). These equations are usually specified in
non-dimensional form. However, there is no generally accepted standard way to scale the
variables (Kono and Roberts, 2002). To give an example, I show one scaling option for

3Sometimes referred to as the Ω-effect.
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Figure 2.5: Schematic illustrations of the α-effect in the presence of axial convection columns.
Subplots a-c show the generation of the poloidal field from the toroidal field. Subplots d-g
show the generation of the toroidal field from the poloidal field. Magnetic field lines are
shown as yellow ribbons. The primary columnar flows are shown as black arrows, and the
secondary axial flow is shown as green arrows. Reconnection points of the field lines are
indicated with an “R” symbol. Adapted from Roberts and King (2013)

convection-driven dynamos, which will be used for the simulations in Chapter 4. Four char-
acteristic scales are set:

• The characteristic length scale is the thickness of the outer core, L.

• Time is scaled by the viscous diffusion time L2/ν.

• Temperature is scaled by the average temperature difference between the inner and
outer core boundaries, ∆T .

• The magnetic field is scaled by
√
ρµΩη, where µ is the magnetic permeability.

These scaling choices lead to the non-dimensional governing equations:

Ek

(
∂u

∂t
+ u · ∇u

)
+ 2ẑ × u +∇Π = Ek∇2u + Ra

r

ro
T +

1

Pm
(∇×B)×B, (2.4.1)
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∂B

∂t
−∇× (u×B) =

1

Pm
∇2B, (2.4.2)

∂T

∂t
+ u · ∇T =

1

Pr
∇2T + Qt, (2.4.3)

∇ · u = 0, and ∇ ·B = 0, (2.4.4)

where u, B, and T are now dimensionless, and Qt is the volumetric heating rate. Four non-
dimensional control parameters have been introduced. The relative importance of buoyancy
forces to viscous diffusion, and hence the vigor of convection, is specified by the modified
Rayleigh number4

Ra =
αg(ro)∆TL

νΩ
. (2.4.5)

The Ekman number

Ek =
ν

ΩL2
, (2.4.6)

describes the ratio of viscous forces to the leading-order Coriolis force. The Prandtl number

Pr =
ν

κ
, (2.4.7)

describes the ratio of viscous diffusion to thermal diffusion. Finally, the magnetic Prandtl
number

Pm =
ν

η
, (2.4.8)

describes the ratio of viscous diffusion to magnetic diffusion. Typical values for these param-
eters estimated for the Earth and used in typical dynamo simulations are listed in Table 2.1.
Due to computational limitations, numerical dynamo simulations cannot reach Earth-like
parameters. The main challenge is resolving small-scale flows in Ekman boundary layers.

These boundary layers have a thickness of ∼ Ek
1
2 × L, requiring fine grid spacing and small

timesteps for accurate numerical solution. Despite this limitation, many simulations are able
to reproduce magnetic fields similar to that of the Earth (see Section 2.4).

Equations (2.4.1)–(2.4.3) give nine equations with eight unknowns, however there is some
redundancy between (2.4.2) and ∇ ·B = 0. If the initial field satisfies ∇ ·B = 0, then later
solutions ensure that ∇·B = 0 continues to hold. The magnetic field is usually decomposed
into a finite set of poloidal and toroidal components (see Section 2.3). Similar decompositions
are used for the velocity field, allowing for the calculation of some derivatives in the spectral

4This compares with the traditional Rayleigh number, R = αg(ro)∆TL3/κν, which describes the ratio of
thermal diffusion time to viscous buoyant rise time. This definition is less useful for the geodynamo, due to the
strength of the Coriolis force. The traditional and modified Rayleigh numbers are related with Ra = R·Ek/Pr.
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domain. Other derivatives may be calculated locally on grid points with methods such as
finite differences (e.g., Matsui et al., 2014). Time-stepping can be implemented a number of
ways, however a common method is to use the Crank-Nicolson method for the linear diffusive
terms, and the second-order Adam-Bashforth method for the Coriolis force and the other
non-linear terms (Glatzmaier, 2013; Matsui et al., 2014). Time stepping must be done such
that the Courant condition remains valid (Christensen et al., 1999). This limits the time
step to be smaller than advection time between two grid points, and requiring very small
time steps to resolve thin boundary layers resulting from low Ekman numbers.

How Realistic are Simulations?

Ever since the first dynamo simulations of Glatzmaier and Roberts (1995) and Kageyama
et al. (1995), a key question has been: Are these simulations relevant to the Earth? Many
dynamo simulations have been able to reproduce some individual properties of the observ-
able geomagnetic field, such as its strength (e.g., Glatzmaiers and Roberts, 1995), secular
variation timescale (e.g., Christensen and Tilgner, 2004), shape of the power spectrum (e.g.,
Davies and Constable, 2014), westward drift of magnetic structures (e.g., Sakuraba and
Roberts, 2009), and the occasional presence of reversals (e.g., Driscoll and Olson, 2009).
However, other studies have proposed more detailed assessments of geodynamo simula-
tions (e.g., Sprain et al., 2019).

One approach for the assessment of realistic dynamo conditions involves analysis of the
morphology of the simulated magnetic fields. Christensen et al. (2010) introduced a set of
morphology criteria that assessed the similarity between simulation results and the histor-
ical geomagnetic field. Earth-likeness was measured in a quantitative manner, by relying
on well-established structural quantities of the geomagnetic field estimated from historical
observations (Jackson et al., 2000; Finlay et al., 2010b) and paleomagnetic models (Korte
et al., 2005; Khokhlov et al., 2006). The criteria included: dipole dominance, equatorial
symmetry, axial symmetry, and a measure of patchiness of the field. These criteria were
investigated with respect to two identifying parameters. The first parameter described char-
acteristic timescales, indicated by the magnetic Ekman number Ekη = Ek/Pm, which reflect
the ratio of the rotation time scale to magnetic diffusion time scale. The second param-

Table 2.1: Order of magnitude parameters in the core, and typical values used in numerical
dynamo models. Here the Rayleigh number is normalized by a critical value Rac which
defines the onset of convection without a magnetic field. Estimates for Earth values arise
from thermodynamic and transport properties inferred from laboratory experiments, and
observations of the Earth’s field. See Olson (2015) for an extensive summary.

Ra/Rac Ek Pm Pr

Core � 1 10−15–10−14 10−6–10−5 0.1–1

Dynamo models 10–100 10−6–10−3 10−1–103 0.025–103
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eter described the vigor of convection, indicated by the magnetic Reynolds number, Rm.
The compliances of a large number of dynamo simulations were tested by Christensen et al.
(2010), spanning several orders of magnitude in control parameters. Fig. 2.6 shows these
results. Simulations that produced fields agreeing well with the proposed Earth-like criteria
formed a wedge shape, which extended below magnetic Ekman numbers of about ∼ 10−4.
There were a range of magnetic Reynolds numbers that produced Earth-like fields, and this
range changed with magnetic Ekman number. Later studies have continued to find that
simulations in this wedge-shaped region of parameter space yield Earth-like fields (Wicht
and Sanchez, 2019).

The findings of Christensen et al. (2010) show that some dynamo simulations produce
external field morphologies that are similar to the Earth. However these fields may sim-
ply appear correct for the “wrong” reasons. Another indication for Earth-like simulations
comes from analysis of the dominant force balances within the simulations. The goal is
to investigate whether dynamo simulations are operating in a force-balance regime that is
thought to operate in the Earth. In particular, this refers to the balance between terms in
the Navier-Stokes equation. Simulations are mostly restricted by the Ekman number, with
too large Ekman numbers translating to increases in the viscous force, which are in turn
counteracted by stronger convective driving, resulting in excessively large inertial effects.
A small Ekman number in the core suggests that the pressure gradient, Lorentz or Mag-
netic force (M), buoyancy or Archimedean force (A), and Coriolis force (C) are first-order
balanced. This is referred to as the “MAC” force balance, with viscous and inertial con-
tributions being much smaller (Christensen, 2010; Jones, 2011; Roberts and King, 2013).
Davidson (2013) estimated the magnitude of these forces for the vorticity formulation of
the Navier-Stokes equation (2.3.1), and predicted non-dimensional scaling laws for the flow
velocity and magnetic field strength. The scaling for the flow velocity, represented by the
Rossby number

Ro =
U

ΩL
, (2.4.9)

was predicted to scale with the total available power P and dissipated power fOhm. A similar
scaling was predicted for the magnetic field strength, represented by the Lehnert number

Le =
B

ΩL
√
ρµ
, (2.4.10)

where B is the characteristic magnetic field strength. See Davidson (2013) for detailed
descriptions. These proposed scalings were tested against a collection of dynamo simulations
from Christensen et al. (2010). Later analysis in Wicht and Sanchez (2019) also included
simulations from Aubert et al. (2017). Fig. 2.7 shows these hypothesized scalings, and the
empirical scalings apparent in the dynamo simulations.

The dynamo simulations appear to follow the hypothesized scalings, suggesting that the
primary force balance is MAC. This also extrapolates to estimates of values for the Earth
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Figure 2.6: Parameter regimes of Earth-like numerical geodynamo simulations, based on
the field morphology criteria from Christensen et al. (2010). Scattered symbols represent
values taken from numerical geodynamo simulations, with the symbol shapes corresponding
to different Ekman numbers (see legend). The symbol face colors indicate the compliance
of the field morphology based on the criteria from Christensen et al. (2010), with black =
excellent, dark grey = good, light grey = marginal, and white = bad. This includes 155
simulations from Christensen et al. (2010), indicated with black edges. Also included are
two simulations from Schaeffer et al. (2017), indicated with blue edges. The blue rectangle
indicates 17 simulations from Aubert et al. (2017), which range from Ek = 3 × 10−5 to
Ek = 10−8, and all have excellent field morphologies. The Earth-like “wedge” has been
outlined by dashed lines. Modified from Wicht and Sanchez (2019).
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Figure 2.7: Dependence of flow velocity (left) and magnetic field strength (right) on the
dimensionless convective power, expressed in non-dimensional quantities. Scattered symbols
represent values taken from numerical geodynamo simulations, with the symbol shapes cor-
responding to different Ekman numbers (see legends). This includes 133 simulations from
Christensen (2010), with thermal and compositional convection cases indicated with black
and blue edges, respectively. Also included are 17 simulations from Aubert et al. (2017), with
fixed codensity and “coupled Earth” cases indicated with red and green edges, respectively.
The symbol face color indicates the magnetic Prandtl number, ranging from Pm ≥ 10 in
white to Pm ≤ 0.1 in black. The predicted scalings for MAC balance are shown as blue
lines, whereas linear least squares fit scalings from the data are indicated as black lines. The
exponents of these scalings are indicated. Estimates for the power requirement of the Earth’s
geodynamo come from Christensen and Tilgner (2004). Estimates for Earth values for the
magnetic field strength come from surface observations and predicted torsional oscillation
frequencies (Gillet et al., 2010). Estimates for the Earth values for flow velocity come from
the typical secular variation timescale (Gillet et al., 2010). Modified from Wicht and Sanchez
(2019).
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inferred from Gillet et al. (2010) and Christensen and Tilgner (2004), indicating that dynamo
simulations and the Earth are in the same force-balance regime. Recent work also suggests
the MAC balance is expressed in dynamo simulations through a high magnetic to kinetic
energy ratio (Schwaiger et al., 2019). When this ratio is above unity, it indicates that the
Lorentz forces are stronger than inertia or viscosity, suggesting the models are in the regime
for MAC balance.

In summary, scaling behavior and force balance analysis suggests that the primary force
balance in some modern dynamo simulations is indeed Earth-like. Secondary forces are not
as small as they should be, but may nevertheless have only negligible impacts on the dynamo
process.
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Chapter 3

Stochastic Models of the Geomagnetic
Field

With the fundamentals of the geodynamo covered, I now focus on giving a comprehensive
literature review of stochastic models of the geodynamo. I also address their context with
other abstract and statistical models.

3.1 Abstract Models of the Geodynamo and

Geomagnetic Field

As discussed in the previous chapter, the geodynamo is a very complex system. The fluid
motion of the liquid iron alloy interacts with the magnetic field in a self-sustaining way, and
further complexities arise from chemical and physical processes occurring at the interfaces
between the outer core and the mantle and inner core. As a result, analytical modeling
of the magnetic and velocity fields with partial differential equations is challenging. Even
with computational fluid simulations of the full 3D velocity and magnetic fields, linking
observations of the external magnetic field to interior processes is difficult. Many studies
have thus sought to derive simpler “toy” descriptions of the geodynamo. Although these
descriptions are highly idealized, they may provide a path toward understanding the full
nature of the system (Laymon, 1985, 1995).

Some of the first attempts at idealized models of the geodynamo were “disk dynamos.”
Originally proposed by Bullard (1955), this model considers an abstract electrically conduc-
tive disk rotating about a perpendicular axle. A wire attached to the axle is in sliding contact
with the edge of the disk by means of a conductive brush. In the presence of a magnetic
field parallel to the axle, an electric current is induced, which then drives a self-exciting
dynamo. A popular extension of the model was presented in Rikitake (1958), wherein a
configuration of two disks was considered. Critically, this latter setup was able to accom-
modate a magnetic field of either normal or reversed polarity, and was also able to produce
polarity reversals. These early disk dynamos were popular for investigating the geodynamo
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as well as other astrophysical objects (see Jacobs, 1994, for a review), as they were simple
enough to work with, either analytically or computationally, yet also contained sufficient
chaos and complexity to plausibly imitate the dynamics of the geodynamo (e.g., Ito, 1980).
Many modified configurations have since been proposed. One example produced a model
with fast and slow magnetic modes (Nozières, 1978). Other generalizations have consid-
ered N coupled disks arranged in complicated fashions (Shimizu and Honkura, 1985; Ito,
1988). Although these models may be able to reproduce some of the observed features of the
geomagnetic field, they represent extreme idealizations of the magnetohydrodynamic nature
of the core. More recent work has attempted to merge the disk approach with mean field
magnetohydrodynamics, replacing elements of the disk dynamo model with more physically
realistic mechanisms (Ryan and Sarson, 2007).

Another approach is to model local regions in the core as distinct but interacting sub-
systems (e.g., Mazaud and Laj, 1989; Seki and Ito, 1993; Dias et al., 2008). These nu-
merical models are analogous to the Ising model of ferromagnetism used in statistical me-
chanics (Ising, 1924). These models partition the outer core into a number of regions, and
each unit is assigned a scalar state of either +1 or −1. These elementary units are typically
assumed to be point dipoles aligned either parallel or antiparallel with the Earth’s rotation
axis (Mazaud and Laj, 1989). The probability of any one unit switching to the opposite
state is influenced by the combined states of all the other units with which it interacts. The
combined behavior of these units gives rise to an emergent, time-varying magnetic field. The
field also exhibits transitions between different states of behavior (e.g., from a frequently-
reversing state to a stable-polarity state) depending on how strongly the elemental units
interact with each other. Some studies have modified this approach by producing dynamo
models which combine elements of the disk and Ising models (Seki and Ito, 1999). Others
have permitted the dipole units to deviate from a binary parallel or antiparallel orientation
(Nakamichi et al., 2012; Mori et al., 2013), or attempted to model the effects of interacting
fluid vortices in these regions (Narteau et al., 2000). These “Ising-like” models are capable of
reproducing some of the reversal statistics in the paleomagnetic record (Seki and Ito, 1993;
Dias et al., 2008). However, these models represent deliberate distortions of geodynamo
mechanisms. It has yet to be shown whether these highly idealized models represent any
physical processes or governing forces in the core.

A final class of toy models of the geodynamo are simple deterministic systems. These
models are composed of a small number of non-linear ordinary differential equations, inspired
by classic chaotic systems such as the Lorenz 63 model (Lorenz, 1963). These models typi-
cally postulate that the typical dynamics of the full magnetic field can be partitioned into a
small number of modes (Pétrélis et al., 2009), or alternatively, magnetic modes that interact
with particular components of velocity fields (Gissinger et al., 2010; Gissinger, 2012). Al-
though these models quantitatively reproduce some observed properties of the geomagnetic
field (e.g., Gwirtz et al., 2021a), the simplifications bring any physical interpretations into
question. On the other hand, some deterministic models do not aim to reflect any physical
processes in the core (e.g., Gwirtz et al., 2021b). Such examples only seek to be “proxy
models” that behave like the geomagnetic field, and are used for testing field forecasting
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techniques.
Although many of these abstract models have been successful at mimicking the behavior

of the geodynamo, and may in some cases reproduce certain features of the field, they are
often difficult to link to conventional magnetohydrodynamic theory. It may be argued that
many of these models are simply phenomenological, as they are independent of theory (e.g.,
McMullin, 1968); however, these models demonstrate more serious flaws when they predict
unrealistic field behavior. In such a case, the model “floats” untethered to either theory or
observation (Redhead, 1980). This motivates finding more credible frameworks for modeling
the geodynamo, that: (1) accurately and reliably reproduce empirical observations; and
(2) have firm grounding in realistic magnetohydrodynamic theory. If these two goals are
met, then it may be possible to connect observations and underlying processes in meaningful
ways.

3.2 Statistical Models of the Geomagnetic Field

Statistical models are widely employed in many areas of geophysics, including the study of the
geomagnetic field (Stark, 2004). Such models aim only to represent statistical properties of
the field, rather than individual empirical observations. Often only broad-scale statistics—
such as means, variances, or covariances—of the field are considered. The goal of such
models is to represent or reproduce statistical quantities of the external magnetic field, with
the acknowledgement that these may or may not reflect physical properties or processes of
the geodynamo.

One of the simplest statistical models of the geomagnetic field describes the polarity as
a two-state stochastic variable: either normal or reversed. This approach is motivated by
the geomagnetic polarity timescale (GPTS), which is a frequently-updated compilation of
paleomagnetic observations (for the most recent iteration, see Ogg, 2020). Early studies
posited that the frequency of polarity reversals follows a Poisson distribution (Cox, 1968,
1969). This hypothesizes that reversals are random events with a constant rate and an
exponential waiting time. This model lacks any memory, meaning that the probability of
a reversal in a given time span is independent of previous history. Extensions of these
models have been used to investigate possible polarity biases between normal and reversed
states (Cox, 1981), although no consensus has yet been reached as to whether a bias is
present. Early models described reversals occurring at a single unchanging rate, which is not
compatible with the paleomagnetic record; the GPTS shows drastic changes in reversal rates
over geologic time(e.g., McFadden and Merrill, 1984; Constable, 2000). To better match
the paleomagnetic record, extensions of the Poisson model have been made, for example, by
varying the mean reversal rate throughout the history of the Earth (e.g., Merrill et al., 1998;
Lowrie and Kent, 2004).

For the variability of the geomagnetic field on shorter timescales, a popular statistical
model is that of Constable and Parker (1988). This model, referred to as a “Giant Gaussian
Process” (GGP), describes variations of the spherical harmonic components of the field over
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the past five million years. The amplitude of the spherical harmonic components were mod-
eled as zero mean Gaussian distributions for non-dipole components, and a pair of Gaussian
distributions at opposite polarities for the axial dipole. The model provides complete de-
scriptions of the probability distributions of magnetic field directions and intensities at any
point on the Earth’s surface. This model has proved to be incredibly useful for interpreting
paleomagnetic measurements. Many refinements of the original model have been proposed,
including: updates to the original dataset (e.g., Quidelleur and Courtillot, 1996; Bono et al.,
2020); refined covariance descriptions of the non-dipole components (Constable and Johnson,
1999); and symmetry based considerations (Hulot and Bouligand, 2005). GGPs have also
been fitted to external magnetic fields which were generated by numerical geodynamo sim-
ulations (Bouligand et al., 2005). For a comprehensive review of GGPs, their applications,
and an updated model for the recent geomagnetic field, see Bono et al. (2020).

Although GGPs provide useful descriptions of the time-averaged field, they are stationary.
To introduce nonstationarity into the GGP framework, Constable (1990) added autoregres-
sive temporal structure to the first few spherical harmonic components of the field. Specif-
ically, the discrete evolution of the field components was set by a first-order autoregressive
process

gm` (ti) = a · gm` (ti−1) + ε(ti), (3.2.1)

where gm` (ti) is the Gauss coefficient with degree ` and order m at time ti, a is a constant
that controls the characteristic timescale of the process, and ε(ti) is Gaussian white noise.
The value of a was fit to observations, to reflect the natural temporal variability of the
field. Furthermore, it was found that if the axial dipole component was forced to transition
through a polarity reversal, the model was able to reproduce the qualitative features of global
paleomagnetic measurements. A similar approach to temporal variability was taken by Hulot
and Le Mouël (1994), where the field components were modeled as a Gaussian process. There,
a “two scale” treatment was proposed, in which a nearly stationary axial dipole field was
combined with a secular field that varied faster and had characteristic timescales described
by the Gaussian processes. Further refinements to this model have been made, both for the
simulated fields created by numerical geodynamo models (Lhuillier et al., 2011), as well as
the more recent field from 1840–2010, revealed through observatory and satellite data (Gillet
et al., 2013).

While these models provide convenient representations of statistical properties of the ge-
omagnetic field, their main utility is description and prediction. Possible links between these
statistical representations and physical mechanisms in the core have not been established.

3.3 Stochastic Models of the Geomagnetic Field

Stochastic models of the geomagnetic field attempt to describe the changes in the field within
a specific statistical framework. They establish a probability model for coefficients of the
geomagnetic field, with specified constraints on the form of time dependence. The stochastic
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models in the geomagnetic literature mainly take the form of stochastic differential equations
(SDEs). The fundamentals of SDEs are covered in Pavliotis (2014), and their applications
in the physical sciences are covered in Gardiner (1985), Van Kampen (1992), and Risken
(1996). As these models are built from differential equations, they are more amenable to
interpretation and may more accurately reflect physical processes in the core.

One justification for the stochastic differential equation perspective comes from the field
of complex dynamical systems and the study of self-organization (Haken, 1989, 2006, 2013,
2020). Complex systems often have a large number of interacting modes, or components,
with different characteristic timescales. However, the phenomenon of self-organization can
sometimes give rise to slow dynamics of “order parameters” that control the dynamics of
faster-scale subsystems.1 This separation of time scales between the slow and fast dynamics
can lead to a dramatic reduction of the relevant degrees of freedom in the system (Majda
et al., 2005). The behavior of complex systems which comprise a large number of degrees of
freedom can thus often be described by low-dimensional stochastic equations (Van Kampen,
1992), and in some cases a Fokker-Planck equation (Risken, 1996). The interpretation is that
the stochastic component is not just an external forcing; rather, that it is an intrinsic part
of the dynamics of the system. Analyzing a complex system such as the geodynamo in this
manner can be approached in two ways. In some cases it is possible to start by considering
the interactions of subsystems, and deduce the governing equations for the macroscopic
order parameters (e.g., Haken, 1985). Alternatively, one can construct a phenomenological
model for macroscopic observables by calculating specific averages from experimental or
observational data (e.g., Haken et al., 1985; Haken, 2006; Peinke et al., 2019). These two
strategies describe “bottom-up” and “top-down” approaches, respectively. The bottom-up
approach has previously been popular in physics and chemistry (e.g., Van Kampen, 1992),
and in astrophysics (see, e.g., Chandrasekhar, 1943; Knobloch, 1980, for reviews). The top-
down approach, motivated by the original work of Haken (Borland and Haken, 1992a,b,c,
1993), did not find popularity until later work by Siegert et al. (1998). Since then, the
top-down approach has been applied to many areas in physical sciences (see Friedrich et al.,
2011, for a comprehensive review).

For stochastic models of the geomagnetic field, as with GGPs, the purpose of the model
depends on the kind of observation upon which it is based. Models constructed from nu-
merical simulations provide an opportunity to connect the emergent stochastic properties
to internal physical mechanisms. On the other hand, models constructed from geomagnetic
field observations provide simple statistical descriptions of the variability of the geomagnetic
field. If both of these points of connection can be made, then quantitative links between
geomagnetic observations and physical processes in the geodynamo might be possible. If a
model can achieve both, then stochastic models of geomagnetic field variations may have
the potential to go beyond the phenomenological toy models, and provide a route towards

1In the original literature, Haken and others refer to this structure as the “slaving principle”, between
the “Master modes” and the “enslaved modes”. In order to adopt more conscientious and inclusive naming
practices, I will use alternate terminology (Graur, 2021; I.N.I., 2022).
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estimating core processes through geological time.
Stochastic models that have been presented in the literature can be broadly divided into

two classes—deductive models and inductive models—reviewed in this section.

Deductive Stochastic Models

One way of building a stochastic model of the geodynamo is to start from an existing theoret-
ical deterministic model, and through the use of domain knowledge, intuition, or experience,
extend it with a stochastic component. This deductive approach must be validated through
testing hypotheses (usually in the form of statistical predictions) against empirical data
(either paleomagnetic measurements, geodynamo simulations, or both). In the past, this ap-
proach has been particularly popular in astrophysics (e.g., Chandrasekhar, 1943; Knobloch,
1980). However, only recently has this been applied to the Earth’s geodynamo.

One of the first examples of this approach is presented in Hoyng et al. (2001). There,
the authors approach began with a 1D αω-type mean field dynamo model (Schmitt and
Schüssler, 1989), which was extended by considering a randomly fluctuating efficiency of
the α-effect. Taking averages over fast-scale fluctuations of overtone modes resulted in a
equation for the evolution of the transition probability of the amplitude of the dipole mode,
p(a, t), of the form

∂p

∂t
= − ∂

∂a
S(a)p+

1

2

∂2

∂a2
D(a)p. (3.3.1)

This follows the form of a Fokker-Planck equation, where S(a) is the drift term and D(a)
is the noise term (Risken, 1996).2 Furthermore, the drift and noise functions follow the
structure

S(a) ≈ Λ(1− a2)a, (3.3.2)

and

D(a) ≈ ∆0a
2 + ∆1, (3.3.3)

respectively, where Λ, ∆0, and ∆1 are constants determined by parameters of the mean field
model. These theoretical predictions for the drift term, the steady state distribution, and
other statistics were compared against empirical results obtained from numerical simulation
of the mean field model, and a good agreement was found.

Analysis of this specific stochastic mean field model was continued in Schmitt et al.
(2001), where the effect of control parameters on the fitted drift and noise functions (3.3.2)–
(3.3.3) was investigated. The drift function was interpreted to be linked to the linear growth
of the dipole mode (most present at low dipole amplitudes), and balanced by quadratic

2This implicitly assumes a Lanegvin-type model for variations in the dipole, with almost surely continuous
sample paths.
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α-quenching at higher amplitudes. This started to link externally observable statistics to
internal physical properties of the geodynamo.

To make the desired connection to the geodynamo, Hoyng et al. (2002) analyzed the
Sint-800 model, a paleomagnetic record of virtual axial dipole moment (VADM) for the last
800 thousand years (Guyodo and Valet, 1999). This record was interpreted in the stochastic
mean field framework (Hoyng et al., 2001; Schmitt et al., 2001), under the presumption that
the connection from external stochastic representation to internal physics is valid for the
Earth. From this analysis, the authors inferred fluctuations in the amplitude of the α-effect
in the core on the order of 250%, and a ratio of turbulent to molecular diffusion on the order
of 20–30. However, despite multiple attempts at forward modeling, the stochastic model of
VADM fluctuations could not be completely aligned with all the observed statistics from
the Sint-800 record, calling into question either the validity of the theoretical mean field
mechanisms, or the analysis and interpretation of the paleomagnetic record.

A similar attempt to use a stochastic model to investigate physical processes in the geody-
namo was conducted by Brendel et al. (2007). The authors studied a longer palaeomagnetic
model—Sint-2000, a record of VADM variations over the past two million years (Valet et al.,
2005)—in the context of the mean field interpretation (Hoyng et al., 2001). Critically, rather
than presuming the stochastic model of (3.3.2)–(3.3.3), a non-parametric fit for the drift and
noise functions was employed.3 The fitted drift function agreed fairly well with the mean
field prediction of (3.3.2), and a linear growth rate of ∼ 20 kyr was determined (Schmitt
et al., 2001). However, fits for the noise function from Sint-2000 did not follow the quadratic
prediction (3.3.3) from the mean field theory. Instead, the amplitude noise was found to
be approximately constant for most high VADM values, but increasing by a factor of three
below dipole amplitudes of about ∼ 2×1022 Am2. The authors were unable to reconcile this
observation with the mean field framework, reducing the plausibility of proposed physical
links.

A subsequent study built up from the mean field framework of Hoyng et al. (2001) came
from Kuipers et al. (2009). There, a set of 3D magnetohydrodynamic geodynamo simulations
were analyzed in order to investigate the validity of a stochastic mean field framework. Three
simulations taken from Wicht et al. (2009) were considered, representing characteristic end-
members of typical dynamo dynamics:

1. A strongly dipolar field, exhibiting no reversals,

2. A strongly dipolar field, exhibiting rare reversals, and

3. A weakly dipolar, rapidly-reversing field.

3The Fokker-Plank equation was explicitly discretized, and the unknown coefficients of the drift and
noise functions were found through optimization against a numerical estimate of the transition probability
distribution, at a small but finite lag time. This was under the assumption that the process is driven by
white noise, and is therefore Markov. This method was successfully verified on the simplified mean field
model of Hoyng and Duistermaat (2004).
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The drift and noise functions were fitted using the methods developed in Brendel et al.
(2007), and are reproduced here in Fig. 3.1.

Figure 3.1: Fitted drift (top) and noise (bottom) functions, here v(x) and D(x), respectively,
from three numerical geodynamo simulations (Wicht et al., 2009). The left, middle, and right
plots show results for the strong non-reversing dynamo, the strong reversing dynamo, and
the weak rapidly-reversing dynamo, respectively. Adapted from Kuipers et al. (2009).

The previous drift prediction of equation (3.3.2) was found to apply well only to the
strong reversing dynamo. The noise functions were all found to be approximately constant,
similar to fits from paleomagnetic records in Brendel et al. (2007), and contrary to the pre-
diction of equation (3.3.3). Together, these discrepancies implied that the particular mean
field model of Hoyng et al. (2001) was not readily applicable to these non-reversing or weak
simulations. In an attempt to reconcile this finding with the quadratic noise predicted by
Hoyng et al. (2001), the authors suggested that variations in the field are suppressed by a
magnetic quenching of the convective flow. An important aspect of this study, however, is
that the numerical nature of the geodynamo models allowed for a direct inspection of the
internal processes. All three simulations showed that, on average, the root mean squared
velocity field was anti-correlated with the magnetic field. The authors hypothesised that,
with stronger fields, the amplitude of variations in convective turbulence becomes smaller
by some quenching process, and that this decrease is just sufficient to balance the increase
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in noise from turbulent diffusion. Alternatively—or additionally—they posit that this phe-
nomenon could be attributed to changes in the correlation time of the velocity field. This
conclusion seems questionable, since it rests upon a particular balance between amplification
and quenching across a large span of control parameters and three end-member regimes of
behavior. An alternative conclusion is that the particular assumptions of the mean field
model in Hoyng et al. (2001) are not applicable. This argument also extends to the Earth,
calling the conclusions of Brendel et al. (2007) into question.

These studies feature stochastic models of the geodynamo that are deduced from an ex-
isting idealized theoretical model, namely, mean field dynamo theory (Moffatt, 1978; Krause
and Raedler, 1980). While both numerical simulations and paleomagnetic observations were
demonstrated to be expressible in a Fokker-Planck interpretation, links to physical processes
were possible only for mean field simulations (Hoyng et al., 2001; Hoyng and Duistermaat,
2004; Brendel et al., 2007). Nevertheless, the authors note that the general stochastic in-
terpretation is worthwhile, and propose that a similar analysis could be readily applied to
more complicated dynamo models (Hoyng et al., 2001; Hoyng, 2009). Perhaps without
the restriction of the mean field interpretation of Hoyng et al. (2001), a stochastic model
and underlying physical properties can be reconciled, allowing quantitative insights into the
geodynamo from geomagnetic records.

One other study that should be mentioned in the context of deductive reasoning is
Scullard and Buffett (2018). Rather than appealing to mean field theory, the authors con-
sider a more general case of augmenting the induction equation with random sources. The
thought is that the large scale poloidal and toroidal fields are forced by the fast-scale, high-
order harmonics imposed by convective fluctuations. When considering a combination of
Gaussian white noise and weak Poisson distributed jumps, the probabilistic dynamics of
the fields could be interpreted as a Fokker-Planck equation. This analysis found the drift
function to reflect the balance between ohmic dissipation and the average contribution of
convective events. This framework has so far been underutilized in the literature; however, it
has great potential for analyzing empirical observations, and deserves further investigation.

Inductive Stochastic Models

An alternative approach to constructing a stochastic model of the geodynamo is to start
from observations, rather than an existing theory. If a set of observations—either from a
simulation or an empirical geomagnetic dataset—appears to have “stochastic” behavior, a
tentative hypothesis to account for this behavior can be constructed. For this hypothesis
to be accepted, it must be verified that the stochastic model is a representative model; i.e.,
that it both reproduces statistical properties of the original data and generalizes well to other
observations. Although this approach requires an element of pattern recognition—and hence
the initial search may suffer from confirmation of bias (e.g., Nickerson, 1998)—it allows for
a top-down approach to complexity (Peinke et al., 2019).

One of the first examples of this “empirical first” approach to constructing stochastic
models of the geomagnetic field appears in Buffett et al. (2013). The paleomagnetic models
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of PADM2M (Ziegler et al., 2011) and Sint-2000 (Valet et al., 2005) were considered, but
without an a priori physical framework. These records were presumed to be well-represented
by a stochastic differential equations, and the drift and noise functions of this assumed model
were fitted to the empirical observations. This was accomplished through calculation of
conditional moments, see Fig. 3.2.

Figure 3.2: Scaled conditional moments calculated from the time-series PADM2M model of
Ziegler et al. (2011). The scaled first and second moments are shown as a range of τ values in
the left and right plots, respectively. Each colored line represents a different x-conditioning,
which is accomplished by binning. The bin centers for each x-condition are indicated on the
right of each line. Similar moments where also found for the Sint-2000 model of Valet et al.
(2005). Adapted from Buffett et al. (2013).

To connect these moments to the drift and noise functions, the authors employed the
“direct estimation” technique of Siegert et al. (1998). Similar results were found for both
PADM2M and Sint-2000. The drift function was determined to be approximately linear,
crossing zero approximately at the mean VADM state of ∼ 5 × 1022 Am2. The noise term
was found to be approximately constant above dipole amplitudes of about ∼ 4× 1022 Am2,
with a factor of two increase for lower dipole amplitudes (see Fig. 3.3).

To validate the stochastic model, the authors calculated the steady state distribution and
reversal rate of the VADM, and found a good agreement with the original data. Finally,
a hypothesis was proposed for the physical origins of the drift and noise functions. To
link the full magnetohydrodynamic action of the core to the observable axial dipole field,
the authors analyzed the total magnetic field projected onto the n = 1 term of the vector
spherical harmonic expansion, B, (e.g., Chandrasekhar, 1981). The induction equation for B
is written as
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Figure 3.3: Fitted drift and noise functions, here ve(x) and D(x), respectively, from the
PADM2M model of Ziegler et al. (2011). Fits from binning for the drift function and noise
function are shown as blue stars and green plusses, respectively. Smooth spline fits are
indicated for each function with solid lines. The ordinate amplitudes are 1022 Am2 Myr−1

and 1044 A2m4 Myr−1 for the drift and noise functions, respectively. Similar fits where also
found for the Sint-2000 model of Valet et al. (2005). Adapted from Buffett et al. (2013).

dB

dt
=

Induction︷ ︸︸ ︷
∇× (v ×B) +

Diffusion︷ ︸︸ ︷
η∇2B . (3.3.4)

When averaged over the whole core, this expression reflects changes in the axial dipole
moment (ADM) (e.g., Jackson, 1998; Davidson, 2013). Changes to the ADM are then
partitioned into slow, average balances and fast, non-equilibrium imbalances. The result-
ing expression that describes the rate of change of the ADM is analogous to a stochastic
differential equation,

dx

dt
= − 1

τd

(
x(t)− 〈x〉

)
+ ∆S(t), (3.3.5)

where x is the ADM, τd is the characteristic time-scale of relaxation, and ∆S(t) represents
variations in induction that are not balanced by ohmic dissipation over short timescales.
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This conceptual model thus allowed linking the fitted drift and noise functions to physical
properties of the geodynamo. The authors suggested that the gradient of the drift reflects the
dipole diffusion time, allowing for a prediction of the electrical conductivity of the core, and
that the noise reflects the effect of fast-scale helical convective fluctuations that contribute
to the dipole field (Moffatt, 1970). However, without a comparison to the internal details of
the core, these hypotheses remained untested.

To substantiate the proposed physical mechanisms of Buffett et al. (2013), Buffett et al.
(2014) analyzed the output of a numerical geodynamo simulation. The simulation, per-
formed using the 3D implementation “Calypso” from Matsui et al. (2014), produced a stable
but time-varying, non-reversing, dominantly dipolar field. It was assumed that the ADM
variations could be modeled by an SDE, and the drift and noise functions were fitted to
the ADM time-series data from the simulation. These functions indicated a linear drift and
constant noise, following a similar form to that of the paleofield from Buffett et al. (2013),
except without an increase in the noise at low dipole amplitudes. As the internal details of
the fluid flow and magnetic field could be directly accessed in the simulation, the hypothe-
sized physical mechanisms of Buffett et al. (2013) could be investigated. For the drift term,
the authors found that the corresponding characteristic timescale (i.e., the gradient of the
drift) was shorter that the slowest dipole decay mode. This was surprising, because the
time-averaged poloidal field closely matched that of the slowest decay mode. The authors
interpreted this faster-than-expected decay rate as a consequence of fluctuations of the first
few non-fundamental decay modes, which would augment the average relaxation. The noise
term was interpreted to be the manifestation of variations in fast-scale convective action
that contribute to magnetic induction. This mechanism, previously invoked in Buffett et al.
(2013), was quantified as

v ×B ≈ εBφV
2

rmsl/η, (3.3.6)

where l is the length scale of a convective column, Bφ is the azimuthal magnetic field, Vrms is
average fluid velocity, and η is the magnetic diffusivity. Variations in the quantities on the
right-hand side of (3.3.6) were extracted directly from the simulation, and compared with
the fitted amplitude of the noise ∆S(t) in (3.3.5). The amplitude of the noise term predicted
fluctuations in Vrms of about ∼ 5%, which was consistent with the measured variations
of Vrms. This empirical verification supported the hypothesized links from the stochastic
model to internal core processes. Together with the fits of the drift and noise functions from
paleomagnetic models (Buffett et al., 2013), this enabled a quantitative investigation of core
processes. Although no direct connection between the drift and a particular mechanism in the
core was made, a few interpretations were possible. The characteristic timescale of the drift
implied either a low electrical conductivity of the core, diffusion involving the interaction of
many decay modes, or alternatively a contribution from turbulent diffusion. As for the noise
term, the fitted average amplitude implied velocity variations of approximately 70%, with
the hypothesis that these large variations must be necessary for driving polarity reversals.
Although the study only analyzed a single numerical geodynamo simulation, it was a key step



CHAPTER 3. STOCHASTIC MODELS OF THE GEOMAGNETIC FIELD 36

towards the investigation of physical processes in the geodynamo using stochastic models.
Validation of the conceptual SDE model of ADM variations was explored in Buffett and

Matsui (2015), through analysis of the power spectrum. The authors considered a simplified
stochastic model similar to those found in Buffett et al. (2013) and Buffett et al. (2014), i.e.,
a linear drift and constant noise

dx

dt
= −γ

(
x(t)− µ) +

√
DΓ(t), (3.3.7)

where γ is the slope of the drift function (which relates to the characteristic timescale of
the process), µ is the zero crossing of the drift (corresponding to the time-average for non-
reversing dynamos), D defines the amplitude of noise variations, and Γ(t) is Gaussian white
noise. This process has a spectrum (after removing the time average) of

Sx(f) =
2D

(γ2 + 4π2f 2)
, (3.3.8)

where f is the frequency. Although this form agreed well with numerical spectra calculated
from a sample geodynamo simulation at low frequencies, a discrepancy was found at high fre-
quencies; see Fig. 3.4. Replacing the Gaussian white noise Γ(t) with exponentially correlated
noise gave a spectrum of

SCx (f) =
2Dα2

(γ2 + 4π2f 2)(α2 + 4π2f 2)
, (3.3.9)

where 1/α is the correlation time of the new, exponentially correlated noise. This resulted in
a more accurate representation of the calculated spectra; see Fig. 3.4. In these examples, the
stochastic models were fitted from information on short timescales, i.e., conditional moments
with a very short time difference. Despite this, the long-scale power spectra were predicted
very well. This indicates that the stochastic models are able to reproduce features of the
data which were not explicitly used to construct the model.

The validation of the power spectrum reinforced the idea that SDEs are able to adequately
reproduce the behavior of axial dipole field variations. Similar comparisons were made
between the observed spectrum of the paleofield (e.g., Constable and Johnson, 2005), and
the corresponding stochastic models (e.g., Buffett et al., 2013). Buffett and Matsui (2015)
also illustrated the necessity of correlated noise to ensure the validity of the model at short
time intervals.4 This SDE perspective for the power spectra has been extended further for the
dipole (Sadhasivan and Constable, 2022), as well as for non-dipole field components (Gillet
et al., 2013; Bouligand et al., 2016). The addition of correlated noise increased the scope
of the stochastic model, allowing for a wider range of situations to which it is applicable.
However a physical mechanism for the correlated noise was not investigated.

4The presence of correlated noise in both paleomagnetic observations and numerical simulations was also
apparent in the calculated conditional moments (e.g., Fig. 3.2, as well as the fact that one expects the rate
of change of the ADM to be well-defined at all times.)
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Figure 3.4: Power spectra of axial dipole moments. The numerical spectrum calculated
from a sample geodynamo simulation is shown in green. The theoretical spectra for a white
noise process and a correlated process are shown as thin and thick black lines, respectively.
Adapted from Buffett and Matsui (2015).

Another consideration regarding the connection of stochastic models and paleomagnetic
models was considered in Buffett and Puranam (2017). There, two paleomagnetic models
covering a range of timescales were considered. These included a record of VADM over the
last two million years, PADM2M (Ziegler et al., 2011), and a shorter but finer-resolution
record over the last ten thousand years, CALS10k.2 (Constable et al., 2016). The nature
of magnetic acquisition in the records was investigated, revealing that the slow processes of
sedimentation effectively smoothed out fast-scale variations, adversely impacting the drift
and noise functions fitted to the paleomagnetic models. This effect was taken into account
in the comprehensive study of Morzfeld and Buffett (2019), where multiple paleomagnetic
data sources were used to construct a composite stochastic model for ADM variations. In
the future, effort should be made to investigate the use of more diverse paleomagnetic (and
archeomagnetic) data sources, especially irregularly sampled observations, in stochastic mod-
els.

One other inductive investigation into stochastic models of dipole variations came from
Meduri and Wicht (2016). There, the authors extended a set of numerical geodynamo
simulations from Kuipers et al. (2009) to investigate the physical origins of the drift and
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noise functions. These functions were fitted to the output ADM for each simulation, as in
previous studies (e.g., Buffett et al., 2013, 2014). The drift functions were found to be similar
to the results from previous numerical simulations Kuipers et al. (2009). However the authors
found evidence of increases in the amplitudes of the noise functions at high ADM values.
To investigate the physical causes, contributions towards induction and diffusion (governed
by the induction equation) were extracted directly from the simulations. The mean action
of induction was found to increase linearly at low dipole amplitudes, eventually reaching a
quadratic turnover, and decline at larger amplitudes. This form was qualitatively similar to
the proposed quenching model of Brendel et al. (2007). This proposed mechanism for the
drift term suggested a qualitative behavior of dipole variations aligned similarly to the mean
field interpretation of Hoyng et al. (2001). However, a corresponding physical explanation
for the amplitude of the noise term was not explored.

These outlined studies illustrate the deductive approach towards constructing stochastic
models of the geomagnetic field, for both numerical simulations and paleomagnetic models.
Stochastic models are fitted to empirical time-series geomagnetic data, and may be verified
through comparison with statistics of the original data that were not used to construct the
stochastic model. If the stochastic models are found to reflect the underlying dynamics in
simulations, then they may be used to characterize the paleomagnetic record and investigate
the state of the Earth’s core. Further work should test whether stochastic models generalize
to other numerical geodynamo settings and regimes. This is important both for the validity
of SDEs as accurate statistical descriptions of field variations, but also for the testing of
proposed physical interpretations of the form of the drift and noise functions. Additionally,
when attempting to interpret paleomagnetic records, one should bear in mind that these
records are not perfect reflections of the geomagnetic field. Further studies should continue
to consider the effects of measurement errors, and the physical nature of paleomagnetic
recording processes on the fitted stochastic models. Finally, the nature of temporal uncer-
tainty and the effects of smoothing and regularization in paleomagnetic records should be
considered carefully.

3.4 Applications of Stochastic Geomagnetic Models

If stochastic models are able to accurately describe statistical variations of geomagnetic field,
they may be used to test various hypotheses.

As variations in the dipole field effectively behave like a bistable oscillator (Hoyng et
al., 2001), stochastic models provide a method of investigating the properties of reversals.
For example, the durations of reversals were considered in Buffett (2015). A stochastic
model was able to reproduce the statistics of reversal duration and recovery time, but this
model also suggested a change in the efficiency of dipole field generation during reversals.
Following from this, Buffett and Avery (2019) considered the effects of temporal resolution
in geomagnetic measurements from marine magnetic anomalies (Gee and Kent, 2007; Ogg,
2020). Similar polarity duration statistics were found when the resolution of the stochastic
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model was lowered to that of the marine magnetic anomalies. This suggests that many short
polarity intervals may be concealed by the effects of slow acquisition. Alternatively, this
might reflect the detection limits of ship-tow magnetic surveys.

Stochastic models have also been employed to investigate field phenomena during peri-
ods of stable dipole polarity. Buffett et al. (2022) investigated paleomagnetic records that
indicated slow, gradual decreases in dipole amplitude punctuated with infrequent, intense
periods of amplification, e.g., Fig. 3.5, (Ziegler and Constable, 2011; Avery et al., 2017).
It was found that a Langevin-type SDE could not reproduce these asymmetries. However,
this feature could be replicated by extending the stochastic model to include discontinuous
jumps—or equivalently, noise with non-zero skewness. This skewness was hypothesized to
reflect the recurrence statistics of helical convective events (Buffett et al., 2014; Scullard and
Buffett, 2018).

Figure 3.5: The time dependence of axial dipole moment from a section of the PADM2M
model (Ziegler et al., 2011). Abrupt increases in VADM (red arrows) are often followed by
slower decreases (blue arrows) when averaged over short-period fluctuations. Adapted from
Buffett et al. (2022).

As stochastic models give a statistical description of field evolution, they can be used
to forecast future states of the geomagnetic field (e.g., Morzfeld et al., 2017; Gwirtz et al.,
2021a). One area of interest is an assessment of the likelihood of the next geomagnetic rever-
sal (Constable and Korte, 2006; De Santis et al., 2013; Laj and Kissel, 2015). An example
of this appears in Buffett and Davis (2018). From the stochastic model of ADM fitted in
Buffett et al. (2013), the evolution of the transition probability backwards in time was in-



CHAPTER 3. STOCHASTIC MODELS OF THE GEOMAGNETIC FIELD 40

vestigated using an adjoint Fokker-Planck equation. In particular, the evolution towards a
target set of final conditions was considered. This target set comprised all ADM states of the
opposite polarity, i.e., for some unknown initial condition, the final condition corresponds to
the ADM being in the target set (reversed). The probability distribution of initial conditions
was determined through a numerical solution of the adjoint Fokker-Planck equation. In the
context of the modern field, the initial condition is known: the current axial dipole moment
is X = 7.6 × 1022 Am2. With this initial condition, the probability of ending in a reversed
polarity after a specified amount of time could be calculated. Considering 20 000 years in
the future, this probability was calculated to be very low: a little less than 2%. Extending
this interval to 50 000 years increased the likelihood to ∼ 11%. These results indicated that
an imminent magnetic reversal is unlikely.

The likelihood of reversals was also explored in Buffett et al. (2019), with regard to the
variability of the dipole field. In particular, this study investigated the likelihood of sus-
taining ADM extreme trends. Using the procedure of Nijsse et al. (2019) and considering
a stochastic process with a given window length, the expected variance of the slope of that
processes was expressed as a function of the window length (Nijsse et al., 2019). This proce-
dure only holds true for a certain class of stochastic processes, namely, Ornstein-Uhlenbeck
processes (Uhlenbeck and Ornstein, 1930). At high dipole intensities, ADM variations ap-
proximately follow this form; however, at low dipole intensities the drift function drops in
amplitude and this model becomes less accurate (Buffett et al., 2013). These differences were
determined to be negligible, as the predicted variance compared well with calculations from
the paleomagnetic record CALS10k.2 (Constable et al., 2016), a record that was not used in
Buffett et al. (2013) to determine the stochastic model. See Fig. 3.6 for an illustration. This
analysis allowed for the calculation of the likelihood of the dipole sustaining or exceeding
trends of a given slope for a fixed length of time. This was used to assess the historical
trend in dipole strength, which has been decreasing since 1840 CE (Malin, 1987). It was
determined that the chance of sustaining this trend, given the dipole variations over the last
two million years, corresponds to a 2.1σ event—or approximately ∼ 3.6%. Extending this
trend 1.66 kyr to let it cross into the opposite polarity corresponds to a 6.7σ event—a van-
ishingly small probability. This suggested that the historical trend is a uncommon but not
particularly rare event. Additionally, the chance that this trend might progress unimpeded
into a reversal was argued to be very unlikely.

Overall, stochastic models representing variations in the geomagnetic field have been
useful tools for testing hypotheses. This is due to the simple, interpretable, and versatile
nature of stochastic models. However, their validity as statistical representations of field
variations relies on their ability to accurately reproduce observations. So far, numerical
and observational studies have indicated that stochastic models are able to reproduce field
statistics—regardless of the validity of proposed links to physical mechanisms. This emula-
tive power has been shown both qualitatively and quantitatively (e.g., Buffett et al., 2013;
Buffett and Matsui, 2015; Bouligand et al., 2016; Buffett et al., 2022), and long-time-scale
statistics are reproduced well even when only short increments are used to construct the
model.
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Figure 3.6: Theoretical predictions for the standard deviation of trends, as a function of
window length. The analytical prediction and calculated values from a stochastic realization
are shown by solid orange and blue dashed lines, respectively. Calculations from several
paleomagnetic models (CALS10k.2, PADM2M and Sint-2000) are also included for compari-
son (Constable et al., 2016; Ziegler et al., 2011; Valet et al., 2005). The historical trend over
the last 170 years is shown with a blue star. Extending this trend by 1.66 kyr is indicated
by the black arrow. Adapted from Buffett et al. (2019).

3.5 Summary and Proposed Extensions

Stochastic models have been useful for both describing and interpreting geomagnetic field
variations. They have been employed as extensions to prior statistical models, and have been
used to describe averaged properties of the magnetic field (Gillet et al., 2013; Bouligand
et al., 2016). Links from these models to processes in the core have been be proposed
and investigated, hypothesizing physical interpretations of external field variations. In the
literature, stochastic models have been constructed deductively from mean field dynamo
theory (e.g., Hoyng et al., 2001, and subsequent studies), as well as magnetohydrodynamic
theory (Scullard and Buffett, 2018). Alternatively, they have been fitted inductively from
empirical observations (e.g., Buffett et al., 2013), and links to physical processes have been
hypothesized though comparisons with numerical simulations (e.g., Buffett et al., 2014, and
subsequent studies). The validity of these models has been investigated though comparisons
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with independent statistics (e.g., Buffett and Matsui, 2015). As such, stochastic models
attempt to go beyond “toy models” of the geodynamo, providing an interpretable framework
with testable, plausible physical foundations.

Although simple SDE models can reproduce many of the statistics of geomagnetic field
variations, there is scope for these models to be improved. The majority of examples have
been scalar Langevin models, driven by Gaussian white noise. One problem with white
noise models is that they do not reproduce the behavior of conditional moments at low time-
lags (e.g., Friedrich et al., 2002). To account for the correlation of the noise, the Gaussian
white noise may be replaced with a correlated noise source; for example, an exponentially
correlated noise (Lehle and Peinke, 2018). Further extensions include the possibility of non-
Gaussian noise, which has been proposed by Buffett et al. (2022). The justification of the
scalar nature of the stochastic models relies on a separation of timescales between the slow
and fast modes in physical systems (Haken, 2013). For the geodynamo, this translates to
the idea that the slowest mode of the magnetic field, the fundamental poloidal mode, is a
representative “order parameter” which dominates the other, faster fluctuating field com-
ponents. The validity of this perspective relies on the relative timescales of the magnetic
decay modes in the core. Although the timescales for the individual poloidal and toroidal
modes both fall off quickly after the fundamental, the ratio between the slowest toroidal
and poloidal modes is only ∼ 1/3 (Gubbins and Roberts, 1987), calling the validity of
single-variable Langevin models into question. One option is to extend the dimensions of
the stochastic model to explicitly include the toroidal component (e.g., Scullard and Buf-
fett, 2018). Although the toroidal magnetic field cannot exit the core and must be inferred
from weak electrical currents (Elsasser, 1947; Roberts and Lowes, 1961), this direction may
be promising for the analysis of numerical simulations. Alternatively, another option is to
consider the interaction of spatially distinct regions of (or events in) the core (e.g., Narteau
et al., 2000; Molina-Card́ın et al., 2021). Such an approach represents conceptual or analog-
ical simplifications of processes in the geodynamo. As such, care should be taken to avoid
deliberately introducing unrealistic distortions to the model (McMullin, 1985). Adding suf-
ficient complexity to a model can often enable a good fit to empirical observations; however,
more complicated stochastic models with additional dimensions or free parameters may not
necessarily lead to a better understanding of the underlying mechanisms. As such, future
research should continue to verify the physical validity of links between stochastic models
of the external field and interior core processes. One way of exploring this is to extend
numerical studies, such as Buffett et al. (2014), to wider ranges of geodynamo parameters.
If stochastic models can continue to be useful over a wide range of geodynamo regimes, then
this gives hope for interpretations of the Earth’s paleofield.

Another utility of stochastic models is their capacity to reproduce the statistics of field
variations. This has been investigated in the context of numerical simulations (Kuipers et
al., 2009; Buffett et al., 2014; Buffett and Matsui, 2015; Meduri and Wicht, 2016; Bouligand
et al., 2016) as well as the Earth’s magnetic field (Buffett et al., 2013; Gillet et al., 2013).
If stochastic models are able to accurately reflect the statistics of field variations, then such
models might be useful in predictive settings (Buffett and Davis, 2018; Buffett et al., 2019).
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One possibility is to use stochastic models built from short numerical dynamo simulations
to predict asymptotic statistical quantities. This might enable the estimation of quantities
of interest, such as reversal rates, from high-resolution simulations without excessive compu-
tational cost, greatly aiding systematic searches for Earth-like geodynamo simulations (e.g.,
Kutzner and Christensen, 2002; Christensen and Aubert, 2006; Christensen, 2011).

Finally, with regard to analysis of the Earth’s magnetic field, a range of paleomagnetic
records have been studied through the use of stochastic models. The timescales in these
records range from thousands of years (e.g., Constable et al., 2016), millions of years (e.g.,
Ziegler et al., 2011; Valet et al., 2005), to tens of millions of years (e.g., Ogg, 2020). Fu-
ture work should attempt to bridge these with records of intermediate ranges of about
∼ 105 years (e.g., Panovska et al., 2018). Records from both paleomagnetic and archaeo-
magnetic measurements should continue to be studied (Panovska et al., 2019). Particular
effort should be made to investigate the effects of averaging that result from slow magnetic
acquisition in sedimentary records (Buffett and Puranam, 2017). Related to this, the ef-
fects of measurement noise and temporal uncertainty should also be investigated carefully.
Methods should also be developed to fit stochastic models from unevenly sampled records.
Such methods would also help the integration of multiple diverse sets of data together into
comprehensive models (e.g., Morzfeld and Buffett, 2019).
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Chapter 4

Inferring Core Processes Using
Stochastic Models of the Geodynamo

Foreward

In this chapter, I address the main focus of this thesis and investigate stochastic models of
the geodynamo. I fit stochastic models to a set of numerical geodynamo simulations, and in-
vestigate how the underlying physical processes are represented in elements of the stochastic
models. As the major work of this thesis, this chapter aims to lay the foundations for both
the fitting of stochastic models of the geodynamo, the validation of such models, as well as
the physical interpretations.

This work has been previously published in:
W. Davis and B. Buffett (2021). “Inferring core processes using stochastic models of the

geodynamo”. Geophysical Journal International 228.3, pp. 1478–1493, doi: 10.1093/gji/-
ggab412.
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Summary

Recent studies have represented time variations in the Earth’s axial magnetic dipole field as
a stochastic process, which comprises both deterministic and random elements. To explore
how these elements are affected by the style and vigour of convection in the core, as well as
the core-mantle boundary conditions, we fit stochastic models to a set of numerical dynamo
simulations at low Ekman numbers. The deterministic part of the stochastic model, the drift
term, characterises the slow relaxation of the dipole back to its time-average. We find that
these variations are predominantly accommodated by the slowest decay mode, enhanced by
turbulent diffusion to enable a faster relaxation. The random part—the noise term—is set by
the amplitude and timescale of variations in dipole field generation, including contributions
from both velocity and internal magnetic field variations. Applying these interpretations to
the paleomagnetic field suggest that reversal rates are very sensitive to rms variations in
the field generation. Less than a 50 per cent reduction in rms field generation variations is
sufficient to prevent reversals for the recent magnetic field.

4.1 Introduction

The geodynamo is a complex and chaotic system. Its dynamics are governed by the equa-
tions of magnetohydrodynamics; the interplay between fluid motions in the liquid core and
an existing magnetic field generate a self-sustaining magnetic field (Roberts and King, 2013).
Paleomagnetic evidence shows this field has existed for most of Earth’s history, whilst also
exhibiting variations over a broad range of timescales. Linking variations in the field to core
processes can give us insights into the state of the interior of the Earth throughout geolog-
ical history. On these long timescales, compilations of paleomagnetic and archeomagnetic
observations are insufficient in spatial and temporal resolution to reconstruct the full field.
Instead, observations of magnetic direction and intensity are translated to virtual geomag-
netic poles (VGPs) and the virtual axial dipole moments (VADMs) under the assumption
that the geomagnetic field is represented as a time-averaged geocentric axial dipole (Valet
et al., 2005; Ziegler et al., 2011). Furthermore, complete polarity reversals of the dipole
field have occurred, and the rate of reversal frequency has been shown to change throughout
geological time (Johnson et al., 1995). These reversal rates, along with variations in VGPs
and VADMs, record valuable information about the interior of the core. However, direct
links to physical processes are unclear.

One method of investigating field variations is through statistical models. Constable
and Parker (1988) explored variations of the spherical harmonic components of the field
through time. These components are described by Gaussian distributions with zero means
for non-dipole components, and a bimodal distribution for the axial dipole. Refinements
of this approach have been proposed (e.g., Quidelleur and Courtillot, 1996; Constable and
Johnson, 1999; Bono et al., 2020, and references therein), however physical interpretations
of the distributions and correlations between components has not been directly established.
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Another approach interprets the changing VADM as a stochastic process (Brendel et al.,
2007; Buffett et al., 2013; Morzfeld and Buffett, 2019). Stochastic models are commonly used
to describe changes to a small set of variables in large and complex physical systems, including
chemical reactions (Van Kampen, 1992; Haken, 2013), turbulent fluid flows (Renner et al.,
2001), electrical systems (Friedrich et al., 2000), wind variability (Sura and Gille, 2003), and
climate dynamics (Nicolis and Nicolis, 1981). For comprehensive review of applications, the
reader is referred to Friedrich et al. (2011). Specifically, previous studies have interpreted
VADM variations as the result of a stochastic differential equation (SDE). These SDEs
have two main components. The first is an expression that governs the slow deterministic
adjustment towards equilibrium states, often referred to as the drift term. The second
expression governs the amplitude of random fast-scale fluctuations, and is called the noise
term. Speculations that the physical causes of changes in VADM can be partitioned into
these two components are motivated by the goals of finding a simple model of dynamics and
to attach physical meaning to this model.

Insights into the physical significance of stochastic models of VADM variations can be
gained by examining results from numerical dynamo models (Kuipers et al., 2009; Buffett
et al., 2014; Meduri and Wicht, 2016). For numerical models—unlike the paleomagnetic
record—we can directly access the details of the flow and magnetic field within the core.
This information can be used to draw inferences as to how stochastic models link to physical
processes in the geodynamo.

In this study, we examine the time variations in axial dipole moment (ADM) for a suite
of numerical geodynamo simulations with different control parameters and boundary condi-
tions. Specifically, we investigate two end-member cases: (1) dynamos driven by buoyancy at
both the core-mantle boundary (CMB) and the inner core boundary (ICB); and (2) dynamos
solely driven from the ICB. From these simulations we fit stochastic models, which are then
compared with outputs of the internal dynamics of the geodynamo models, in the aim of de-
veloping tools to quantitatively interpret variations in the paleomagnetic record. Section 4.2
begins with a description of the numerical geodynamo model and outlines the set of regimes
and parameters investigated. We use these data in Section 4.3 to fit stochastic models fol-
lowing a new method (Lehle and Peinke, 2018) that explicitly accounts for correlated noise.
Results for the fitted stochastic models are presented in Section 4.4. Detailed outputs from
the numerical models are then used to investigate the physical significance of the stochastic
models in Section 4.5. We explore the implications for interpreting the paleomagnetic record
in Section 4.6, and conclude in Section 4.7 with a summary of our findings.

4.2 Geodynamo Simulations using Calypso

Numerical geodynamo models are important tools for exploring the processes of convection
and magnetic-field generation in the Earth’s core. While these models operate at conditions
far from those of the Earth, much of the underlying dynamics is thought to be represen-
tative (e.g., Aubert, 2019). Using the geodynamo model Calypso (Matsui et al., 2014) we
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consider two end-member model configurations, which extend the boundary conditions and
styles of convection explored in Buffett et al. (2014). In the first configuration, convection
is driven by maintaining a fixed temperature difference, ∆T , across a spherical shell with
thickness L. Buoyancy is generated at both boundaries, driving convection from above and
below. The second configuration has convection driven solely by buoyancy at the lower
boundary, and the heat flow is sustained across the lower boundary by using volumetric heat
sink, Qt, in combination with a no-heat-flow condition at the top boundary.

Solutions are specified using five dimensionless parameters. The vigour of convection is
specified by a modified Rayleigh number

Ra =
αg(rcmb)∆TL

νΩ
, (4.2.1)

where α is the coefficient of thermal expansion, g(r) is the radially dependent gravity, ν is
the kinematic viscosity, and Ω is the angular velocity about the ẑ axis. The Ekman number

Ek =
ν

ΩL2
, (4.2.2)

defines the relative importance of viscous forces to the leading-order Coriolis force. The
Prandtl number

Pr =
ν

κ
, (4.2.3)

and magnetic Prandtl number

Pm =
ν

η
, (4.2.4)

define the ratio of viscosity to thermal κ and magnetic η diffusivities, respectively. The final
dimensionless parameter is the heat sink, Qt, which controls the style of convection (e.g.,
Kutzner and Christensen, 2002). Setting Qt = 0 causes the heat flow at the top and
bottom boundaries to be equal. Increasing the heat sink lowers the heat flow at the top
boundary under constant temperature boundary conditions. Combining a heat sink with a
no heat-flux condition at the top boundary ensures that convection is driven entirely from
below. In this case the amplitude of the heat flow at the lower boundary is set by Qt.
The mantle and inner core are assumed to be electrically insulating. In all experiments
we let Ek = 5 × 10−5, Pr = 1, and Pm = 1. Two different values of Ra are investigated
for each configuration. The configuration is selected by the value of Qt and the choice of
boundary conditions. Setting Qt = 0 with constant temperature conditions defines the top
and bottom-driven configuration. In the basal-driven configuration we set Qt to the value
needed to reproduce the basal heat flow in the top and bottom-driven configuration. This
choice facilitates comparisons between the two configurations.

Simulation time is scaled by the viscous diffusion time, L2/ν. Conversion to physical
time is accomplished by setting a realistic magnetic diffusivity η = 0.8 m2 s−1, which gives
ν = η · Pm = 0.8 m2 s−1 and a viscous diffusion time of 202 kyr. The magnetic field is
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Table 4.1: Dynamo model control parameters

Run name ∂T
∂r

∣∣
rcmb

Ra Qt ∆t tmax

TB0 -1.8 1000 0 2× 10−4 2.11

TB00 -1.8 1000 0 2× 10−4 2.01

TB1 -2.2 1200 0 2× 10−4 2.22

B2 0 1100 -3.66 5× 10−4 8.53

B3 0 1300 -4.32 2.5× 10−4 4.06

converted to physical units using the magnetic scale
√
ρµηΩ, where ρ is the fluid density,

µ is the permeability of free space, and Ω is the rotation rate. Setting ρ = 104 kg m−3,
µ = 4π × 10−7 H m−1, and Ω = 0.73× 10−4 s−1, gives a magnetic scale of 0.86 mT.

We run five dynamo simulations with different sets of control parameters (see Table 4.1).
Cases with the prefix “TB” represent the first configuration, where convection is driven from
the top and bottom boundaries. Cases with the prefix “B” represent the second configuration,
where convection is driven from the bottom boundary. The numbers in each case distinguish
between different values for Ra. The cases TB0, TB00 and B2 represent the lower value
of Ra and are referred to as “low Ra states”, whereas cases TB1 and B3 are run at higher
Ra, and are referred to as “high Ra states”. Cases TB0 and TB00 share the same control
parameters but are initialized from a different starting conditions. We use these results to
confirm that these stochastic models can be fitted from independent numerical solutions.

A fixed dimensionless time step δt is used for the calculations. A summary output is
recorded every ∆t = 1000 × δt. Each solution is run until equilibrated and subsequently
recorded after transients for at least 2 viscous diffusion times, indicated as tmax in Table 4.1.
We found that 2 diffusion times was sufficient for the convergence of the system for the top
and bottom driven dynamos, whereas the bottom driven cases required longer simulation
time to achieve stable results.

All dynamo solutions produce a stable non-reversing but time-varying dominantly dipole
field. We record the Gauss coefficient g0

1(r, t) at the Earth’s surface r = a and convert to
ADM using

X(t) =
4π

µ
g0

1(a, t)a3. (4.2.5)

Fig. 4.1 shows the axial dipole moment for all simulations in this study. Diagnostic
parameters are shown in Table 4.2. Although these dynamo models produce flows that
are slow compared to the Earth, they are still in a realistic regime as there is a significant
separation of timescales between slow magnetic diffusion and fast turbulent fluctuations.
Furthermore, the ratios of magnetic to kinetic energies in the models spans the range ∼ 3–
7. These are higher than unity, indicating that Lorentz forces are stronger than inertia or
viscosity, suggesting that the models are in the suitable Magneto-Coriolis-Archimedes (MAC)
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Table 4.2: Dynamo model diagnostic parameters. Here X is the ADM, Vrms is the volume
averaged root mean squared (rms) velocity, V p

rms is the volume averaged rms poloidal velocity,
Brms is the volume averaged rms magnetic field, T (rcmb) is the temperature at the CMB,
∂T
∂r

∣∣
ricb

is radial temperature gradient at the ICB. The ADM has units of 1022Am2, and all
other values are non-dimensional. Mean values are reported, with standard deviations in
brackets. Reported units are 1022 A m2 for ADM, and non-dimensional for the rest.

Run name X Vrms V p
rms Brms T (rcmb) ∂T

∂r

∣∣
ricb

TB0 14.12(0.69) 135.3(7.8) 73.6(4.9) 2.45(0.10) -0.13 -14.8

TB00 14.36(0.74) 133.8(8.1) 72.4(5.0) 2.47(0.14) -0.14 -14.7

TB1 14.35(0.84) 164.9(9.2) 91.6(5.8) 2.57(0.15) -0.19 -18.0

B2 8.77(0.37) 129.2(6.8) 65.1(4.0) 1.719(0.088) 0.029 -14.7

B3 9.60(0.45) 150.2(7.8) 78.7(4.7) 1.853(0.093) 0.010 -17.3

force balance regime (Schwaiger et al., 2019; Aubert, 2019). We use these simulations in the
next section to fit stochastic models.

4.3 Stochastic Model for Dipole Fluctuations

Stochastic models can be fitted to simulations of the underlying process by using statistical
methods. We outline the basic methods in this section, explicitly accounting for correlated
noise in the description of the stochastic model. We account for this complication in the
methodology used to fit the parameters of a stochastic model.

Overview of Stochastic Models

Time evolution of the ADM, X(t), is modeled by the stochastic differential equation

d

dt
X = v(X) + g(X)ζ(t), (4.3.1)

where v(x) and g(x) are the drift and noise functions, respectively. The drift and noise
functions are independent of time, reflecting the fact that the simulations have no long-term
secular evolution or forcing. The ζ(t) term is the noise that drives the system; it is defined
to have a vanishing time average

〈ζ(t)〉 = 0. (4.3.2)

The autocorrelation of the noise, 〈ζ(t)ζ(t′)〉, defines the duration of fast-scale fluctuations.
It is common to assume that the system is driven by white noise, where the correlation
becomes δ(t − t′). A more realistic description of the noise term for a geodynamo model
allows for a short but finite duration fluctuation, where the autocorrelation of ζ(t) is set by
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Figure 4.1: Axial dipole moment (in units 1022Am2) for all simulations in this study. The last
two panels on the bottom right show a sketch of how moments (4.3.7)–(4.3.8) are estimated
from the time-series data. The sketch illustrates calculations for conditioning on x = 10,
indicated by a dashed line. The left panel shows the kernel used to weight the increments,
equation (A.0.3). The right panel shows an example of increments ∆X that are subsequently
weighted by the kernel and then averaged. The difference between mean, indicated by the
blue arrow and line, is caused by the drift. The spread of the increments, indicated by the
green arrows, is caused by the noise. The offset and spread of the increments has been
exaggerated here for visual purposes.
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〈ζ(t)ζ(t′)〉 =
1

2θ
e−|t−t

′|/θ, (4.3.3)

where θ defines the correlation time. In the limit θ → 0, the white noise model is recovered.
Use of correlated noise gives (4.3.1) the desirable property of well defined time derivatives,
and gives the appropriate high-frequency spectra (Buffett and Matsui, 2015; Bouligand et
al., 2016). The time dependence of ζ(t) is given by (Jazwinski, 2007)

d

dt
ζ = −1

θ
ζ +

1

θ
ξ(t), (4.3.4)

where ξ(t) is Gaussian white noise with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t− t′).
A simulation of the stochastic model for dipole fluctuations is obtained by numerically

integrating (4.3.1) and (4.3.4) using a random realization of the white noise ξ(t). The inverse
problem fits v(x), g(x), and θ to time series of {X(tj)} j = 1, . . . , N , where N denotes the
number of data points, from the dynamo model.

Fitting Method

To fit drift and noise terms of ADM or VADM variations, many previous studies (e.g., Buffett
et al., 2013, 2014; Buffett and Matsui, 2015; Meduri and Wicht, 2016) have used a method
known as “direct estimation” (Siegert et al., 1998). However it is known that this method
systematically underestimates the drift and noise terms in the presence of correlated noise in
synthetic tests (Friedrich et al., 2002). Therefore we seek to investigate this problem using
a robust non-parametric method that intrinsically accounts for correlated noise. We apply
the method of Lehle and Peinke (2018) to fit the stochastic model. Sample increments in
the time series are calculated using

∆X(t;x, τ) ≡ bX(t+ τ)−X(t)cX(t)=x (4.3.5)

where τ defines the chosen sampling interval. We refer to ∆X as a conditional increment
because it depends on the condition that X(t) = x. Statistical averages of these conditional
increments will be governed by the drift and noise functions. To the first order, the means
and variances of ∆X evaluated at a condition x are “directly” equal to the values of drift
and noise functions at that condition, respectively (Siegert et al., 1998). For our purposes,
a more robust alternative is to find optimal drift and noise functions by comparing averages
of increments from data with theoretical expectations (Honisch and Friedrich, 2011; Lehle
and Peinke, 2018). In practice the increments are grouped together when X(t) lies within
a prescribed bin (say x− < X(t) < x+). Each ∆X in the bin is usually assigned equal
weight. Alternatively, we can compute sample increments using kernels that weight incre-
ments according to the difference between X(t) and the condition X(t) = x (Lamouroux
and Lehnertz, 2009). In this case the increment is given by

∆X(t;x, τ, h) = W (X(t);x, h)[X(t+ τ)−X(t)], (4.3.6)
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where the weight, W (X(t);x, h), depends on the difference in x and X(t), as well as the
kernel bandwidth h (see Appendix A for details). The sample mean and variance of these
conditional increments represent estimates of the first two moments

M̂ (1)(x, τ ;h) =
〈
∆X(t;x, τ, h)

〉
, (4.3.7)

M̂ (2)(x, τ ;h) =
〈
[∆X(t;x, τ, h)− M̂ (1)(x, τ ;h)]2

〉
, (4.3.8)

where the hat indicates these are estimates depending on time series X(t) and kernel prop-
erties, and 〈. . . 〉 indicates time averaging. The bottom right two panels of Fig. 4.1 give an
illustration of how these moments are calculated. In the direct estimation method, these
moments are directly related to the drift and noise functions, by

v(x) = lim
τ→0

1

τ
M̂ (1)(x, τ ;h), (4.3.9)

g(x) =

√
lim
τ→0

1

τ
M̂ (2)(x, τ ;h), (4.3.10)

and the limit is approximated by evaluating the moments at some small evaluation time τ .
However in the presence of correlated noise, the above method fails since moments (4.3.7-
4.3.8) vanish as τ → 0 (see Fig. 4.2). Instead, Lehle and Peinke (2018) used a stochastic
Itô-Taylor series expansion (Kloeden and Platen, 2013) of X(t+τ) to show that the expected
value of the first two moments M (k)(x, τ) of an arbitrary SDE defined by (4.3.1) and (4.3.4)
can be represented in the form

M (k)(x, τ) ≈
3∑
i=1

λ
(k)
i (x)ri(τ ; θ), k = 1, 2, (4.3.11)

where terms O(τ 4) and higher are omitted. Functions ri are prescribed basis functions

r1(τ ; θ) =τ − θ(1− e−τ/θ),
r2(τ ; θ) =τ 2/2− θr1(τ ; θ),

r3(τ ; θ) =τ 3/6− θr2(τ ; θ),

(4.3.12)

and λ
(k)
i (x) are the corresponding coefficients. A linear combination of these three basis func-

tions approximate the first and second moments when the sampling interval is small. Note
that basis function r1(τ, θ) depends linearly on the small time scales τ and θ, whereas r2(τ, θ)
depends on τ 2, as well as τθ and θ2. We can think of the basis functions in (4.3.12) as terms

of a power series expansion in these two small timescales. The coefficients λ
(k)
i (x) define

the amplitude of the moments at different values for x. The goal is to recover estimates
for λ

(k)
i (x) when the moments are computed at discrete values for x and τ .
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A separate estimation for θ is based on autocorrelation of X(t). The procedure of Lehle
and Peinke (2018) relies on an expansion of the autocorrelation function in terms of the same
three basis functions (4.3.12). Details are deferred to Appendix B so we proceed with the

estimation of the coefficients λ
(k)
i (x) assuming that θ is known. When referring to a specific

estimate of the correlation time, the symbol θ̂ will be used.
We compare the expected value of the moments in (4.3.11) against estimates (4.3.7-4.3.8)

using a set of evaluation points in x and τ . Let the discrete vector of evaluation points in x
be denoted by the vector

X = (xmin, . . . , xmax). (4.3.13)

These evaluation points are analogous to bin centers. Similarly, we consider a discrete vector
of sampling intervals, τ , starting with τ = ∆t. We denote the set of sampling times by

T = (∆t, 2∆t, . . . , τmax) (4.3.14)

where τmax should be large enough to separate the τ 1, τ 2 and τ 3 terms in the power series
expansion of M (k)(x, τ), but small enough to justify the neglection of O(τ 4) and higher-order
terms in (4.3.11).

Discrete values for estimates of the first two moments are computed from the time series
using (4.3.7- 4.3.8) and are represented in matrix form by the symbol M

(k)
ij , which is defined

by equation (C.0.1) in Appendix C. Similar notation is used for basis functions (4.3.12),

Ril, and corresponding coefficients, λ
(k)
lj , which are defined by equations (C.0.2) and (C.0.3),

respectively. This allows for (4.3.11) to be written in matrix form

M
(k)
ij = Rilλ

(k)
lj (4.3.15)

where summation over the repeated index l = 1, 2, 3 refers to the three basis functions. Now
the linear equations in (4.3.15) can be solved for coefficients λ

(k)
lj using the method of least

squares, e.g.,

λ
(k)
lj =

(
RliRil

)−1
RliM

(k)
ij . (4.3.16)

The final step is to relate the coefficients λ
(k)
lj to the terms in the SDE. Lehle and Peinke

(2018) showed that the l = 1 coefficients are related to the drift and noise functions by

v(x) =λ
(1)
1 (x)− 1

2
g(x)g′(x)− 1

2
θ
(
v′(x)g(x)g′(x)− v(x)g′(x)2

)
,

g(x) =

√
λ

(2)
1 (x)− θ

(
v′(x)g(x)2 − v(x)g(x)g′(x)

)
.

(4.3.17)

These expressions are accurate to the order of the series expansion in (4.3.11). We solve the
two differential algebraic equations in (4.3.17) for v(x) and g(x) using a fixed point iteration
scheme. Spatial derivatives are evaluated using finite differences.
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This fitting method has the advantage of intrinsically accounting for the correlation of the
noise. This is in contrast to direct estimation method, where one can attempt to minimise
the effects of correlation by selecting (a posteriori) a single evaluation time τ that is large
compared to the correlation time. However, if the correlation time is not sufficiently small
compared with the slow relaxation time the direct estimate will always underestimate the true
values in synthetic tests (Friedrich et al., 2002). In the geodynamo models the correlation
times are typically a few percent of the slow relaxation time, large enough to cause substantial
discrepancies in the fitted stochastic model. It is important to note that the fitting method
of Lehle and Peinke (2018) does not provide advantages regarding measurement noise or
temporal averaging associated with paleomagnetic observations. For such data, methods
tailored to be preferentially sensitive to longer period features (e.g., time-averaged mean,
variance, power spectra, reversal rate, etc. . . ) as opposed to small time increments are
more suitable (Buffett and Puranam, 2017; Morzfeld and Buffett, 2019). However, a key
advantage of the new method is that sampling over a range of time-lags greatly increases the
amount of information used to determine outputs (Honisch and Friedrich, 2011). Lehle and
Peinke (2018) showed that this method accurately recovers the drift and noise functions, as
well as the correlation time, with typical mean relative errors of about 10−4 for numerically
simulated SDEs. This method is now applied to the data from our dynamo simulations.

Application of Fitting Method

We apply the method described in the previous section to each ADM time-series from our
dynamo simulations. Each calculation requires a choice for the bandwidth, h, and the
maximum time-shift, τmax. Values are reported in Table 4.3. Bandwidth h is selected using
equation (A.0.7). The maximum time-shift τmax is chosen to be large enough to separate
the τ 1, τ 2 and τ 3 terms in the power series expansion of M (k)(x, τ), but small enough to
justify the neglection ofO(τ 4) and higher-order terms in (4.3.11). The fitted stochastic model
is not overly sensitive to the choice of h and τmax. It suffices to round h to 2 significant figures
and τmax to the nearest multiple of 50∆t. For all cases, we choose the sampling of X as 50
evenly spaced points between xmin and xmax, which are set by 2.5th and 97.5th percentiles
of the time series, respectively. When comparing this method with the direct estimation
method, we choose evaluation times τ in the range [0, τmax] that give maximal values for the
resulting drift and noise functions.

Fig. 4.2 shows the sample moments for case B3 superimposed on the functional fit
from (4.3.11), as well as the sample autocorrelation of B3 against the functional fit. Similar
plots for the other simulations are available in the supplementary material (Figs D.1-D.3).
For all cases the fit is excellent, having an average mean error comparable to the calcula-
tions of Lehle and Peinke (2018). In the next section the drift and noise functions will be

determined from functional fits of λ
(k)
i (x).
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Table 4.3: SDE fit parameters

Run name Bandwidth, h τmax

TB0/TB00 0.38 400∆t

TB1 0.54 300∆t

B2 0.16 300∆t

B3 0.24 300∆t
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Figure 4.2: First (left) and second (right) moments for dynamo case B3. Colored circles
indicate calculated moments from equations (4.3.7-4.3.8), and black lines indicate the model
best fit by equation (4.3.11). The color of the circles in both plots corresponds to the
evaluation point x for the moment calculation, and is indicated by the colorbar in the left
plot. For plotting clarity, moment data from every 5th X evaluation point and every 15th T
evaluation point are plotted. The inset in the right plot shows the sample autocorrelation
increments calculated from equation (B.0.2) and the model best fit by equation (B.0.3), as
black circles and a red line, respectively. Data from every 15th T evaluation point is plotted.
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Figure 4.3: Drift (left) and noise (right) functions fitted from case B3. Solid colored lines indi-
cate the fitted functions, and dashed colored lines enclosing shaded areas indicate 95% confi-
dence intervals, estimated with a block bootstrap algorithm using 10 000 resamples (Kunsch,
1989). Dotted grey lines indicate results calculated from the direct estimation method.

4.4 Results

Broadly similar stochastic models are found for each dynamo simulation. We show the
drift and noise for case B3 as a representative example (see Fig. 4.3). Similar plots for
the other simulation are available in the supplementary material (Figs D.4-D.6). Separate
analysis of the shorter TB0 and TB00 cases produced results that were consistent within the
uncertainties. Consequently, we combined these cases and analyzed them together.

These results here can be compared with fits using the direct estimation method (Buffett
et al., 2013, 2014; Buffett and Matsui, 2015; Meduri and Wicht, 2016). Since the correla-
tion times are not small, the direct estimation predicts drift and noise functions that are
at all points absolutely lower than the fits derived from the method of Lehle and Peinke
(2018). For the drift term, these fits are usually within the 95% bootstrapped confidence
intervals (Kunsch, 1989). On the other hand, fits for the noise term are often outside the
confidence intervals. Similar results are observed when using the average between pairs of
fits (Stanton, 1997), as in Buffett et al. (2013).

All cases are well approximated by a linear drift term and a constant noise term. A finite
correlation time is found for the noise source, which confirms that a white noise approxima-
tion is not suitable at these short sampling intervals. The form of the drift and noise terms
suggest a parameterised model for the variations in ADM

d

dt
X = −γ(X(t)− X̄) + ḡζ(t), (4.4.1)

with four model parameters: γ, the gradient of the drift term; X̄, the x-intercept; ḡ, the
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Table 4.4: SDE model fit parameters. Sub/superscripts indicate estimated 95% confidence
intervals based on 10 000 bootstrap resample models (Kunsch, 1989). The R2 value refers
to the linear fit of the drift term and the normalised root mean squared errors (NRMSE)
corresponds to the fit of the constant noise term.

Run name γ, Myr−1 ḡ2, ×1044

A2 m4 Myr−1
θ̂, kyr ḡ2 NRMSE % γ R2 %

TB0/TB00 74+30
−28 109+25

−27 0.51+0.13
−0.11 4.5 98

TB1 99+42
−35 226+83

−54 0.69+0.21
−0.14 6.0 94

B2 26+18
−10 10.0+1.9

−2.0 0.43+0.12
−0.10 3.2 95

B3 38+31
−19 20.5+5.9

−4.2 0.58+0.15
−0.10 2.5 98

average noise amplitude; and θ, the characteristic timescale of correlated noise ζ(t) in (4.3.4).
Table 4.4 lists the best fit model parameters for each case. In this table and henceforth, noise
amplitude ḡ is squared to have more physically meaningful units, as well as being comparable
to different definitions of the noise term D(x) from previous studies, ḡ2 ≡ 2D (e.g., Buffett
et al., 2014).

In the dynamo solutions with top and bottom-driven convection we observe high values
for the gradient of the drift, γ, compared with the values for bottom-driven case. A larger γ
corresponds to shorter timescales for the dipole to relax back to the time-averaged state. Fits
for the squared noise amplitude ḡ2, are an order of magnitude larger in the top and bottom
driven dynamos than the bottom driven dynamos. In contrast, fitted noise correlation times θ̂
are similar in magnitude for the four cases, relative to the uncertainties. The bottom driven
cases have a slightly lower correlation time, although this effect is marginal (about 15%). A
small change to γ is observed in the dynamo solutions when changing Ra from the initial
values to the higher values. For example, the change from case B2 to B3 increases γ by 46%.
A smaller increase is observed for cases TB0/TB00 and TB1. Furthermore, the high Ra
cases show a roughly doubled noise amplitude compared to their low Ra case counterparts.
The uncertainties in ḡ2 also increase with increasing amplitude. The high Ra dynamos also
have a 20-35% longer correlation time compared to the low Ra cases.

Power Spectra

Calculations of the power spectra affords a useful test of the stochastic models because no
information on timescales longer than τmax are used in fitting the stochastic models. This
means that the long-period part of the power spectra is an independent check on the fitted
model. The form of the stochastic model in (4.4.1) permits an analytical solution for the
power spectrum (e.g., Buffett and Matsui, 2015)

SX(f) =
2ḡ2/θ2

(γ2 + 4π2f 2)(1/θ2 + 4π2f 2)
, (4.4.2)
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where f is frequency. Since the spectrum is symmetric about f = 0, a factor of two is included
in the theory to allow direct comparisons to numerical calculations, which assume positive
frequencies when the signals are real. For each solution, we compare this prediction with
the power spectrum computed numerically from the ADM time series using a multi-taper
technique (Constable and Johnson, 2005). A comparison between calculated and predicted
power spectrum for case B3 is shown in Fig. 4.4. Similar plots for other cases are available
in the supplementary materials (Figs D.7–D.9).

There is a close match between the calculated and theoretical power spectra, despite
the fact that the time increments used to fit model (4.4.1) are restricted to τ ≤ τmax. In
particular the corner frequencies—where the power changes from ∝ f 0 to f−2 (set by γ/2π),
and from ∝ f−2 to f−4 (set by 1/2πθ)—are matched well. This suggests that the stochastic
model (4.4.1) is a suitable description of ADM variations in quasi-steady dynamo models
on a wide range of timescales. In the next section we interpret the drift gradient and noise
amplitudes for each case, and relate changes between models to physical features in the
geodynamo.

4.5 Interpretation: Links to Physical Processes in the

Core

Only four parameters are needed to specify the stochastic model in (4.4.1), yet this simple
representation is sufficient to predict power spectra that are in good agreement with those
computed from the output of the dynamo simulations. An important question is whether
these four parameters can be related to physical processes in the geodynamo. To facilitate
comparisons we use B to denote the dipole field, which is obtained by projecting the total
magnetic field onto the l = 1, m = 0 poloidal part of the vector spherical harmonic expansion.
Now we seek to find an equivalent stochastic representation of dipole variations, in a similar
manner to Buffett et al. (2014). The time evolution of B can then be expressed as

∂

∂t
B = ∇× (V ×B) + η∇2B, (4.5.1)

where ẑ is the unit vector in the direction of the axis of the Earth. The first term on
the right-hand side represents the generation of the dipole field by convection, whereas the
second terms describes the influence of magnetic diffusion. The ADM can be expressed as
an integral over the volume of the core, Vc, (e.g., Davidson, 2013)

X(t) =
3

2µ

∫
Vc

ẑ ·B(t) dVc, (4.5.2)

so the rate of change of the ADM can be partitioned to sources due to fluid motion, S(t),
and losses due to diffusion, Φ(t),

d

dt
X(t) = S(t)− Φ(t), (4.5.3)
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Figure 4.4: Power spectrum for the axial dipole moment from case B3. The black line
indicates the calculated ADM power spectrum, with grey shaded region indicating 95% con-
fidence intervals. The solid red line indicates the theoretical spectrum from equation (4.4.2),
with red dashed lines indicating 95% confidence intervals. The left and right vertical red
lines indicate corner frequencies relating to the drift gradient γ and the correlation time θ,
respectively, and shaded red vertical bars indicate 95% confidence intervals. The right grey
shaded box indicates the frequencies that corresponds to a sampling interval times τ ≤ τmax

(see Table 4.3).

where

S(t) =
3

2µ

∫
Vc

ẑ · ∇ × (V ×B) dVc, (4.5.4)

Φ(t) = − 3

2µ

∫
Vc

ẑ · η∇2B dVc. (4.5.5)

We separate the source in (4.5.3) into average and complimentary parts

S(t) = 〈S〉+ ∆S(t), such that 〈∆S〉 = 0, (4.5.6)

which gives
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d

dt
X(t) = 〈S〉 − Φ(t) + ∆S(t). (4.5.7)

When the dipole is represented as a linear combination of decay modes (Gubbins and Roberts,
1987) the diffusion term can be approximated by

−η∇2B ≈ B/τeff, (4.5.8)

where τeff is the effective decay timescale; see Section 4.5 for details. Using (4.5.2) and (4.5.8)
in (4.5.5) gives

Φ(t) ≈ 3

2µ

∫
Vc

ẑ · B

τeff

dVc =
X(t)

τeff

, (4.5.9)

which allows us to write the time dependence of X(t) as

d

dt
X(t) = 〈S〉 − X(t)

τeff

+ ∆S(t). (4.5.10)

Taking the time average of (4.5.10) yields a steady-state balance between the source and
sink,

〈S〉 = 〈X〉/τeff. (4.5.11)

Combining (4.5.11) and (4.5.10) gives

d

dt
X(t) = − 1

τeff

(
X(t)− 〈X〉

)
+ ∆S(t), (4.5.12)

which is the starting point for interpreting the SDE in (4.4.1).
The first term in (4.5.12) has the same form as the drift term in (4.4.1). The time

average 〈X〉 must coincide with drift x-intercept X̄ to ensure that the slow relaxation rate
vanish at the same value of X, but the relationship between τeff and γ is not immediately
clear. Similarly, a correspondence between ∆S(t) and the noise term in the SDE is plausible,
but not yet demonstrated. To clarify these connections, we use the results of the dynamo
simulations to assess the physical significance of the terms in (4.4.1). This analysis is a new
framework, based on Buffett et al. (2014), that encompasses a wider range of conditions in
the style and vigour of convection in our dynamo models. We show that each term in the
SDE can be quantitatively evaluated using the output of the dynamo simulations.

Noise Amplitude: Turbulent Fluctuations

Short-term ADM fluctuations are represented by the noise term in the stochastic model (4.4.1),
and by departures in source S(t) from the time average 〈S〉 in the physical model (4.5.12).
To relate the statistics of source fluctuations ∆S(t) to the amplitude of the noise term
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in (4.4.1), we need to establish how these terms contribute to fluctuations in ADM. A typi-
cal fluctuation in ADM occurs over a short timescale relative to the characteristic timescale
of relaxation. We denote this short timescale by τf . When τf � τeff we can safely neglect
the contribution from the drift term and express the fluctuation solely in terms of ∆S(t) as

∆X(τf ) =

∫ τf

0

∆S(t) dt. (4.5.13)

For small τf the variance of ADM fluctuations can be approximated as

〈∆X(τf )
2〉 ≈ τ 2

f 〈∆S2〉. (4.5.14)

We can now compare the typical fluctuation in (4.5.13) with the fluctuation due to the
noise term in (4.4.1),

∆X(τf ) =

∫ τf

0

ḡζ(t) dt, (4.5.15)

where ζ(t) is correlated noise (4.3.4). The variance of this process for arbitrary τf is (e.g.,
Uhlenbeck and Ornstein, 1930)

〈∆X(τf )
2〉 = ḡ2τf +

ḡ2θ

2

(
4e−τf/θ − e−2τf/θ − 3

)
. (4.5.16)

Comparing (4.5.14) and (4.5.16) suggests that the variance of the source fluctuation is

〈∆S2〉 ≈ ḡ2

τfθ
, where τfθ = τf

/(
1 +

1

2

θ

τf

(
4e−τf/θ − e−2τf/θ − 3

))
, (4.5.17)

which reduces to expression (42) given in Buffett et al. (2014) when θ � τf . Here τfθ can
be interpreted as a “correlation corrected” timescale. We take τf as short as possible to
ensure the accuracy of (4.5.14), but require θ < τf to average over the correlations in ∆S(t).
A natural choice for τf is the convective overturn time, which is approximately 4θ for all
dynamo simulations. We adopt this value below, but varying τf in the range [3θ, 5θ] makes
little difference for the results presented below.

A direct calculation of S(t) from the numerical simulation is not possible because the in-
tegral for S(t) in (4.5.4) vanishes when the flow satisfies no-slip conditions at the core-mantle
boundary. This outcome can be confirmed by direct calculation, and it is not altered by re-
moving a thin viscous boundary layer from the volume integral of S(t). Instead, we quantify
the statistics of S(t) using a physical model for the generation of the dipole field (Buffett
et al., 2014). Dipole generation is assumed to be the result of the α-effect from helical flows
inside the core, where the induction term can be approximated by

V ×B = εBφV
2

rmsl/η, (4.5.18)
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and l is the width of a convection column, and Bφ is the azimuthal magnetic field (Moffatt,
1970). The factor ε was introduced in Buffett et al. (2014) to represent the fraction of
field generation that contributes to the external dipole field. This approximation can be
justified through a rough agreement between the total induction efficiency and that inferred
from (4.5.18) (Buffett et al., 2014). Consequently the source term (4.5.4) becomes

S ≈ 3

2µ

(εBφV
2

rmsl

Lη

)
Vc, (4.5.19)

where L represents the characteristic length-scale of V ×B. Parameters l, L and ε represent
average properties of the convective system of the convective system, and are defined in a
time-averaged sense. Local variations in l and L are likely to be small (e.g., Aubert et al.,
2017). Considering variations in (4.5.19) from Vrms and Bφ gives

〈∆S2〉 12
〈S〉

= 2
〈∆V 2

rms〉
1
2

〈Vrms〉
+
〈∆B2

rms〉
1
2

〈Brms〉
(4.5.20)

for the time average when ∆V 2
rms and ∆B2

rms are assumed to be statistically independent.
Values for the terms in (4.5.20) for the dynamo models are reported in Table 4.2. Estimating
the amplitude of the source 〈S〉 from equation (4.5.11) with τeff =1/γ allows for the calcula-

tion of the amplitude of the source fluctuations, 〈∆S2〉 12 . These calculations are compared
to the result from (4.5.17) for each of the dynamo cases in Fig. 4.5. The estimates and fits
for each model agree reasonably well, despite the order of magnitude difference in ḡ2 over
the two dynamo regimes. Replacing Vrms with the variation in the poloidal field V p

rms gives
similar results. Although within uncertainties, there is a small underestimate for the bottom
driven cases. This may be due to the no heat-flux boundary condition suppressing velocity
variations in the upper part of the core. The velocity variations in the remaining part of the
core would preferentially contribute to the fluctuations in the source, resulting in estimates
of 〈∆S2〉 12 from Vrms, the full core volume average, being an underestimate.

Noise Correlation: Integral Time Scale

Source variations ∆S(t) are attributed to a turbulent flow with a finite correlation time;
however, the link between these correlations, physical quantities in the dynamo, and terms
in a stochastic model, have not been previously studied. One measure of the correlation
timescale of a process y(t) is the integral of the normalised autocorrelation function

Py(τ) =
1

Var(y)

〈(
y(t)− 〈y〉

)(
y(t+ τ)− 〈y〉

)〉
, (4.5.21)

over [0,∞] (Hänggi and Jung, 1995). This is expressed by the functional

Θ[y(t)] =

∫ ∞
0

Py(τ) dτ. (4.5.22)
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Figure 4.5: Noise variation amplitude from each dynamo simulation. Black circles and
error bars represent values determined from SDE analysis and 95% confidence intervals,
respectively, from Table 4.3. Red (shifted right) and blue (shifted left) squares represent
estimates taken from diagnostic parameters, based on Vrms and V p

rms, respectively, in the
dynamo simulations. Error bars represent 95% confidence intervals. Note the change in
y-limits for the two plots.

Noise in the stochastic model, ζ(t), was formulated specifically to have an autocorrela-
tion (4.3.3) with correlation time equal to θ,

Θ[ζ(t)] =

∫ ∞
0

Pζ(τ) dτ =

∫ ∞
0

e−|τ |/θ dτ = θ. (4.5.23)

The corresponding correlation time of physical fluctuations ∆S(t),

Θ[∆S(t)] =

∫ ∞
0

P∆S(τ) dτ, (4.5.24)

is defined by variations in the terms in (4.5.19) that contribute significantly to its amplitude,
i.e., Vrms and Bφ. The effective correlation time is set by the fastest varying term (Van
Kampen, 1992), which corresponds to Vrms in the dynamo simulations. Accordingly we
replace the autocorrelation P∆S with PVrms in (4.5.24), where Vrms(t) is extracted from the
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Figure 4.6: Correlation time of noise from each dynamo simulation. Black circles and error
bars represent values determined from SDE analysis, θ̂, and 95% confidence intervals, respec-
tively, from Table 4.3. Red (shifted right) and blue (shifted left) squares represent estimates
taken from diagnostic parameters Θ[Vrms(t)] and Θ[V p

rms(t)], respectively. Error bars on the
colored squares represent an estimate of the uncertainties due to finite integration lengths
of Θ[. . . ] (see text).

dynamo simulations. The integral over time is limited to a finite T to allow for numerical
calculation. The sample correlation time is

Θ[Vrms(t)] =

∫ T

0

PVrms(τ) dτ. (4.5.25)

In practice as τ increases PVrms(τ) decays rapidly then fluctuates around zero. Choosing
the limit T ∼ 8 kyr yields a representative estimate for θ. The integral is repeated for a
range T ∼ 8± 1 kyr, and variance in results gives an estimate of the uncertainty associated
with the correlation time, shown in Fig. 4.6.

These calculations are compared with fits of the correlation time from Table 4.4 for each
dynamo case (see Fig. 4.6). All models show good agreement between fits and estimates
from the stochastic and physical interpretations. Replacing Vrms with poloidal V p

rms gives
comparable correlation times, as it did in the interpretation of the amplitude of the noise.
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Drift Gradient: Slow Adjustment of the Dipole Field

Slow relaxation of the axial dipole to its time average is described by the drift term in the
stochastic model. For all dynamo simulations in this study, fits of the drift are approximately
linear, defined in (4.4.1). This provides three important pieces of information:

1. The drift vanishes at the time average, X̄, where the ADM is no more likely to increase
or decrease.

2. The rate of change of the ADM is proportional to the displacement from the average,
and the magnitude of the rate is independent of the sign of this displacement.

3. This response drives the ADM towards the time average.

Point 1 verifies that there exists one ADM state where, on average, S(t) and Φ(t) balance.
This condition defines the time average 〈X〉. The second and third points are more subtle.
Naively, the inverse of the drift gradient γ−1 may be interpreted as the slow relaxation
timescale of the stochastic process (e.g., Strogatz, 2018). However this offers little physical
insight. To determine the physical origins of these observations, we proceed by analyzing
processes in the dynamo that govern the time-averaged adjustment of the dipole field to 〈X〉.

We start our analysis in a similar manner to Buffett et al. (2014), but focus on the
imbalance between generation and decay of the dipole field. In the absence of any source
mechanism the field B decays according to

∂

∂t
B = η∇2B. (4.5.26)

Solutions of (4.5.26) define the decay modes of the dipole field. It is customary to represent
the dipole field in terms of a poloidal scalar

B(r, θ, t) = ∇×∇× [P(r, θ, t)r̂], (4.5.27)

where P(r, θ, t) = P(r, t) cos θ is the l = 1,m = 0 poloidal scalar field, defined in terms of
colatitude θ. At any instant in time, P may be decomposed into a set of orthogonal modes

P(r, t) ≈
N∑
n=1

AnPn(r, t) (4.5.28)

where the nth decay mode
Pn(r, t) = P̃n(r)e−t/τn , (4.5.29)

is associated with a characteristic timescale τn and An is a constant coefficient (Gubbins
and Roberts, 1987). The first few modes in a spherical shell have dimensional decay times
of (47.9, 10.7, 4.1, . . . ) kyr. When B has the structure of a single mode Pn, the rate of
change of the dipole field is given by −B/τn. A more general field can be represented
by a linear superposition of modes, so an effective decay time τeff would be defined by
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differentiating (4.5.28). It follows that the diffusive term in (4.5.26) can be approximated by
equation (4.5.8). This approximation is best when the field can be well represented by the
first few long wavelength modes, which is valid for our simulations.

Next, we need to explicitly consider the long-term balance between decay and sources
in B. The time average of (4.5.1) requires

∇× 〈V ×B〉 = −η∇2〈B〉. (4.5.30)

Using this result in the definition of S(t) in (4.5.4) gives an expression for the time-averaged
source

〈S〉 = − 3

2µ

∫
Vc

ẑ · η∇2〈B〉 dVc. (4.5.31)

Recalling the definition of Φ(t) from (4.5.5), we can now write the imbalance between decay
and average source as

〈S〉 − Φ(t) =
3

2µ

∫
Vc

ẑ · η∇2
(
B(t)− 〈B〉

)
dVc, (4.5.32)

which depends on deviations of B(t) from the time average. This imbalance between Φ(t)
and 〈S〉 controls the rate at which X(t) adjusts toward 〈X〉 due to diffusion, satisfying point
3. This is precisely what the drift term is intended to represent.

Both B(t) and 〈B〉 can be represented as a linear combination of decay modes, so the
slow adjustment of X(t) can be related to the amplitudes of the linear superposition of decay
modes. To illustrate this, suppose that the dipole field can be represented at time t0 by a
linear combination of coefficients An(t0). The change in coefficients at later times due to the
influence of diffusion can be expressed in the form

An(t) = 〈An〉+
(
An(t0)− 〈An〉

)
e−(t−t0)/τn , (4.5.33)

where 〈An〉 are the coefficients of time-averaged field 〈B〉. Note that this formulation predicts
relaxation to the mean on a timescale that is independent of whether the adjustment involves
growth or decay, as noted in point 2. Random fluctuations due to ∆S(t) cause deviations
from this expected relaxation, but by averaging over a large ensemble of solutions we can
expect the slow adjustment to the mean to emerge because the random fluctuations should
average to zero.

We can test this expectation using samples of the poloidal scalar field P(r, t) from the
dynamo simulations. Samples were extracted from each dynamo simulation (except TB0)
and mode amplitudes An(t) in (4.5.28) were determined at each time-step using least squares
regression. To capture the large-scale field structures, we truncate the sum in (4.5.28) to N=
3 modes. The slowest decay mode accounts for most of the radial variation in snapshots of
the poloidal scalar. This is true of all our dynamo simulations. Trajectories are defined as

An(t;x) := bAn(t− t0)cX(t0)=x, (4.5.34)
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where the conditioning on X(t0) is set by a small bin around x. In order to verify (4.5.33),
we perform two tests for each dynamo simulation: X(t0) starting from above the mean,
and X(t0) starting from below the mean. To facilitate this, the center of the bin in (4.5.34)
is chosen to be ADM values either 2 standard deviations above or below the mean. For each
test, 20 trajectories were extracted for each dynamo simulation, and the ensemble mean path
and confidence intervals were calculated. We would expect individual trajectories to fluctuate
due to noise from the magnetic induction term (4.5.1), and the ensemble should display a
relaxation to the mean value. If (4.5.33) holds, the relaxation of the nth mode should be
symmetric above or below the mean, and on a timescale set by τn. Sample trajectories and
ensemble averages are shown for case TB1 in Fig. 4.7. Similar plots for the other simulations
are available in the supplementary material (Figs D.10-D.12).

Fig. 4.7 shows that the slowest mode accommodates the majority of the changes to the
full field. Higher order modes seem unaffected by conditioning on X(t0), and do not differ
significantly from the time-averaged field. On average the slowest mode relaxes to the mean
faster than the characteristic decay timescale τn in (4.5.33) predicts, suggesting that diffusion
in (4.5.32) is enhanced by fluid motion at small scales (Braginsky and Meytlis, 1990). This
validates the second point of proportional response. Furthermore, the average relaxation for
the ensemble is within the confidence intervals of exponential decay with a timescale γ−1,
predicted by the stochastic model. This suggests that the characteristic timescale of the drift
function can be interpreted as representing the turbulence enhanced diffusion of the l = 1
poloidal field, which is the dominant magnetic structure in the core.

For the uniformly conducting spherical shell in our dynamo models, the slowest decay
time is τ1 = r2

cmb/(k
2η), where k ≈ 3.1688. By setting τ1 = γ−1 we can estimate the

effective diffusivity implied by the drift term, which comprises both molecular and turbulent
contributions, i.e., ηeff = η + ηtur. Table 4.5 shows these inferred diffusivities and the ratio
of turbulent to molecular diffusivity (η = 0.8 m2s−1) for each dynamo model. The turbulent
diffusivities are also shown in Fig. 4.8. Diffusion is enhanced by turbulence most significantly
in the top-and-bottom driven dynamo models, but is a minor effect for the bottom-driven
models. This suggests why, for the bottom-driven cases, the average model amplitudes
relax to the mean only marginally faster than (4.5.33) predicts. Indeed the uncertainties on
ηtur for the bottom-driven cases means that these dynamo models are compatible with no
turbulent enhancement of diffusivity, and magnitudes of estimated values are comparable to
their uncertainties. Plotting ηtur as a function of (dimensionless) rms velocity in Fig. 4.8 is
effectively a plot using the magnetic Reynolds number when Pm = 1. Extrapolating ηtur to
a realistic value of Rm ≈ 1000 would give ηtur ∼ 5− 10 m2 s−1.

These interpretations demonstrate that random motions of the fluid are responsible for
both the drift and noise terms. Turbulent diffusion enhances the slowest decay mode, which
contributes to the drift term; small-scale helical turbulence contributes to the noise term.
The phenomena of turbulence contributing in both a constructive and destructive way has
been previously investigated in the context of mean field electrodynamics, through analysis
of the turbulent electromotive force arising from the induction term V ×B (e.g., Tobias,
2021). Contributions to the induction arise from helical flows—the α-effect—which act to
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Figure 4.7: Relaxation of decay mode amplitudes (n=1, 2 and 3) extracted from case TB1.
Plots show trajectories of individual mode trajectories with n=1 at the top and n=3 at
the bottom. Left and right plots are conditional on sample points starting two standard
deviations above and below the mean, respectively. The thin black lines show a sample of
individual conditioned trajectories (4.5.34). The thick red line and shaded red area show
the ensemble mean and 95% confidence intervals on the mean of trajectories, respectively.
The solid and dashed thick black lines show the total mean ± two standard deviations,
respectively, for the mode amplitudes An(t). The solid blue line shows relaxation predicted
by timescale γ−1. The dashed blue line shows the theoretical relaxation (4.5.33), for the
imposed magnetic diffusivity in the dynamo solution.

Table 4.5: Effective diffusivity from dynamo models. Sub/superscripts indicate approximate
95% confidence intervals based on 10 000 bootstrap resamples (Kunsch, 1989).

Run name γ−1, kyr ηeff, m2 s−1 ηtur, m2 s−1 ηtur/η

TB0/TB00 13.5+8.2
−3.9 2.8+1.1

−1.1 2.0+1.1
−1.1 2.5+1.4

−1.3

TB1 10.1+5.5
−3.0 3.8+1.6

−1.3 3.0+1.6
−1.3 3.7+2.0

−1.7

B2 38+24
−16 1.00+0.67

−0.38 0.20+0.67
−0.20 0.24+0.86

−0.24

B3 26+26
−12 1.45+1.19

−0.73 0.65+1.19
−0.65 0.82+1.48

−0.82
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Figure 4.8: Root mean squared (dimensionless) velocities and turbulent diffusivities for
dynamo models. Values for models TB0/TB00, TB1, B2, and B3 are displayed with a
triangle, inverted triangle, diamond, and square respectively. Arrows from case TB0/TB00
to TB1 and from B2, B3 are for visual distinction between the two convection regimes. Error
bars for Vrms show 95% percentiles of the distribution of data. Error bars for ηtur indicate
approximate 95% confidence intervals based on 10 000 bootstrap resamples (Kunsch, 1989).

alter the poloidal field on the timescale of V (Parker, 1955; Steenbeck and Krause, 1966).
On the other hand, second spatial derivatives of the mean field gives, in its simplest form
known as the β-effect, a net effect of enhancing magnetic diffusivity (Moffatt, 1978; Krause
and Raedler, 1980). Buffett et al. (2014) showed that the smallest scales in the velocity
field (spherical harmonic degrees ` & 47) did not significantly contribute towards induction,
indicating that effects of turbulent diffusivity are not restricted to small scales. In general,
the properties found from the SDE fitting are consistent with statistical properties extracted
from the dynamo simulations. These physical inferences can be used to interpret fluctuations
in virtual axial dipole moment (VADM) from the paleomagnetic record.

4.6 Implications for the Paleomagnetic Record

As the physical inferences developed in the previous section apply for general dynamo pro-
cesses, we can use them in conjunction with stochastic models of the paleomagnetic field to
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infer the internal state of the core. Stochastic models of variations in the recent geomagnetic
field have been previously fitted to paleomagnetic observations of the VADM. In order to
conduct a meaningful comparison, it is necessary to focus on studies that explicitly account
for the finite correlation time of the noise. Paleomagnetic estimates of the VADM were
analyzed in this way in the study of Buffett and Puranam (2017). More recently, Morzfeld
and Buffett (2019) fitted the drift and noise functions for the last 2 million years based on
a variety of paleomagnetic VADM models, as well as recent reversal rates. Broadly similar
results were obtained for the amplitude of the noise term, gradient of the drift term, and cor-
relation time, so we will use these fits in conjunction with the physical inferences developed
in Section 4.5 to infer physical quantities in the core.

Morzfeld and Buffett (2019) fit a drift function with two stable points (positive and neg-
ative polarity) at an absolute VADM of |X̄| = 5.23±0.04×1022 A m2. The drift gradient at
these points is γ = 100±3 Myr−1 which corresponds to γ−1 ≈ 10 kyr, a timescale comparable
to the top and bottom driven dynamo models. Relating this timescale to the slowest decay
mode of a uniformly conducting sphere, τ1 = r2

cmb/(π
2η), we obtain an effective diffusivity

of ηeff = 3.9 m2 s−1. Typically this would correspond with an upper bound on effective
diffusivity (Buffett et al., 2014) because modes other than the slowest decay mode could
potentially contribute. Our results from the dynamo models suggest that slow variations in
dipole field structure can be almost completely expressed by the slowest mode. If this struc-
ture is representative of the Earth’s core, then we can assume that this estimate of effective
diffusivity is a reasonable assumption. Assessing the partitioning of this diffusivity requires
a choice for the core electrical conductivity. Adopting a value of σe = 0.8×106 S m−1 would
correspond to a molecular diffusivity of 1.0 m2 s−1, requiring an additional turbulent diffusiv-
ity of 2.9 m2 s−1 to account for the drift term. A higher conductivity of σe = 1.6×106 S m−1

entails a molecular diffusivity of 0.5 m2 s−1 (Koker et al., 2012; Pozzo et al., 2012; Gomi
et al., 2013), giving a turbulent diffusivity of 3.4 m2 s−1. These estimates give a ratio of
turbulent to molecular diffusivity in a range from 2.9 to 6.8. Other fits for the gradient
of the drift function report lower values of γ = 75 Myr−1 (Buffett and Puranam, 2017),
which would correspond to ηeff = 2.9 m2 s−1. This would result in lower values turbulent
diffusivities, as well as lower proportions of turbulent to molecular diffusivities. Our dynamo
simulations span a range of values for γ and result in ratios of turbulent to molecular dif-
fusivities both above and below unity, so there is no reason to expect interpretations of the
paleomagnetic record using stochastic models to promote or suppress the requirement for
turbulent diffusivity.

The assumption of a constant noise term is supported by the paleomagnetic record (Buf-
fett et al., 2013); there is some evidence for increased noise amplitudes at low VADM, however
this may be due to measurement noise (Buffett and Puranam, 2017). Morzfeld and Buffett
(2019) fit a constant noise term with amplitude ḡ2/2 ≡ D = 340 ± 7 × 1044 A2 m4 Myr−1

based on paleomagnetic estimates for the recent field (i.e., the last 2 million years). From
equation (4.5.17) we predict that the rms variations in the dipole generation for the recent
field is 9.6× 1024 A m2 Myr−1. Comparing this with 〈S〉 = γX̄ permits an estimate of rela-
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tive source variations 〈∆S2〉12/〈S〉, defined in (4.5.20), about 180 per cent for the recent field.
Source variations depend on both velocity and magnetic field variations in the core. In our
dynamo models, these variations have roughly equal magnitudes. If these conditions are rep-
resentative of Earth’s core, convective velocity and magnetic field vary by about 60 per cent.
We note that the noise amplitude for the Earth is higher than our dynamo models, indicating
that the Earth is likely more strongly driven by fluid turbulence.

The drift term can be extended from a linear function to allow for two stable points at
X̄ and −X̄, and one unstable point at the polarity crossing (Buffett and Puranam, 2017)

v(x) = −γx
X̄

(|x| − X̄). (4.6.1)

This modification allows reversals of polarity. It also permits us to estimate the rate of
reversals using Kramers’ formula (Kramers, 1940). The reversal rate can be expressed as

r =
γ

2π
e−γX̄

2/(3ḡ2), (4.6.2)

Using values determined from Morzfeld and Buffett (2019) give a reversal rate of about
4.2 Myr−1, which is comparable with recent observations (Lowrie and Kent, 2004). To
facilitate the interpretation of the reversal rate in terms of our findings, we introduce a
non-dimensional reversal rate

r̃ = 2π
r

γ
. (4.6.3)

which isolates the exponential term in Kramers’ formula. Using (4.5.17) and (4.5.11) allows
us to express r̃ in terms of physical timescales and relative source variations

r̃ = exp

(
− 1

3

(
〈S〉
〈∆S2〉 12

)2(
γ−1

τfθ

))
. (4.6.4)

This connection to internal physical quantities contrasts with previous studies, where the
reversal rate is related to external statistical quantities such as the mean and variance of
the ADM (Buffett and Puranam, 2017). Changes in reversal rate can be attributed to
relative changes in the source fluctuations or to changes in the overturn time relative to the
slow relaxation time. Values for these quantities are extracted from each of the dynamo
models and the resulting reversal rates r̃ are plotted in Fig. 4.9. We also show the location
of the recent paleomagnetic field. The reversal rate for the recent field is nearly invariant
with respect to changes in timescale ratio γ−1/τfθ, whereas small changes in relative source
fluctuations would produce substantial changes in the reversal rate.

These results yield a link between relative velocity and magnetic fluctuations to the
reversal rate, and can provide further insight into the ultimate influence of the CMB on
the dynamo (Biggin et al., 2012). Previous numerical studies indicate that reversal rates
are linked to the local Rossby number (Aubert et al., 2009), a measure of the velocity
of small scale flows (Christensen and Aubert, 2006). An empirical scaling relates these
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velocities to the convective power to drive the dynamo (Olson and Christensen, 2006), and
therefore the heat flux at the CMB (Aubert et al., 2009), showing that the amplitude of
CMB heat flow is positively correlated with reversal frequency (Driscoll and Olson, 2009;
Driscoll and Olson, 2011; Olson and Amit, 2014). Further influences of heterogeneous CMB
heat flux, especially in the equatorial zones, seem to increase this effect (Olson et al., 2010;
Amit and Olson, 2015; Olson and Amit, 2015). Our results show an order of magnitude
higher noise amplitudes for models with active CMB boundaries, and therefore support
a link between CMB heat flux and reversal rate. Furthermore, they additionally offer a
physical interpretation to the connection between the small scale flows—through the relative
velocity and magnetic fluctuations and source variations (4.5.20)—to reversal rates through
equation (4.6.4). As indicated in Fig. 4.9, estimates for the recent field show preferential
sensitivity to changes in relative source variations, indicating that variations in reversal
rate may be largely controlled by the state of the CMB. Furthermore, by using (4.6.2)
with (4.5.17) and (4.5.20) we can investigate the influence of relative convective velocity
and magnetic field variations on observed reversal rate for a fixed timescale ratio. The
dynamo solutions suggest that the relative fluctuations in velocity and magnetic field are
comparable to each other, so the velocity variations contribute two-thirds of the relative
source fluctuations. This allows us to plot reversal rate as a function of relative velocity
variations for the recent paleomagnetic field (see Fig. 4.10). Interestingly, the recent reversal
rate from the paleomagnetic record is close to the point of greatest variability. Raising
relative rms velocity variations from 60 per cent to 90 per cent increases reversal rate by a
factor of two. Decreasing variations to 40 per cent reduces the reversal rate by more than
a factor of six. Furthermore, this formulation permits a value of velocity variations with a
critical point

V crit
rms =

2

27

√
2γ−1

τfθ
, (4.6.5)

below which the reversal rate is essentially zero. This corresponds to variations of about
38 per cent for the recent paleomagnetic field. With increasing velocity variations, the
reversal rate eventually saturates to a value of γ/2π. The transition to this behavior is not
as sharply defined as (4.6.5), but can be approximated as

V sat
rms =

1

27
(2 + e3/2)

√
2γ−1

τfθ
. (4.6.6)

These two transition points partition dynamics into three sections: non-reversing, reversing
with a variable rate, and saturated reversing. These sections are illustrated in Fig. 4.9; the
non-reversing/reversing transition line correctly discriminates between the non-reversing dy-
namo models and the reversing recent field, validating the predictions of (4.6.4). Validation
of this transition from reversing numerical dynamo simulations deserves further investiga-
tion. Distinguishing between the dynamics of these three sections may be possible for the
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longest paleomagnetic records, and can provide inferences on turbulent fluctuations in the
core.

Figure 4.9: Correlation between source variations and timescale ratios for the four dynamo
models. The location of the recent paleomagnetic field is identified by a small circle (with
error bar uncertainties). Values found from models TB0/TB00, TB1, B2, and B3 are indi-
cated with a triangle, inverted triangle, diamond, and square respectively. Nearby colored
points indicate uncertainties from 10 000 bootstrap resamples (Kunsch, 1989). Use of differ-
ent colors visually discriminates between the different cases. Thin grey contour lines indicate
values of equal ln(r̃). The thick solid red line corresponds to the critical value V crit

rms , and the
thick dashed red line corresponds to the saturation value V sat

rms.

4.7 Conclusions

We use a set of numerical dynamo simulations to fit stochastic models of ADM variations,
using a fitting method that intrinsically accounts for correlated noise. All of the stochastic
models have the same general linear form (4.4.1) over a range of different configurations and
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Figure 4.10: Predicted reversal rates for the recent paleomagnetic field as a function of
〈∆V 2

rms〉
1
2/〈Vrms〉, assuming that the relative variations in velocity and magnetic field are

equal. The red circle indicates recent reversal rate, where the velocity variation is roughly
60%. The black dashed line indicates the asymptotic reversal rate. The red solid and red
dashed lines indicate the critical and saturation reversal rate thresholds, (4.6.5) and (4.6.6),
respectively.

convective vigour. Theoretical and numerical power spectra are in excellent agreement, even
though no long timescale information was used to build the stochastic models.

Detailed output from the dynamo model is used to interpret the terms in the stochastic
model. The drift term reflects the slow adjustment of the dipole field to its time average.
Average variations in ADM are accommodated by the slowest decay mode, however the
relaxation back to time average is enhanced by turbulent diffusion, giving a shorter timescale
of relaxation than the molecular rate of decay (Gubbins and Roberts, 1987). The noise term
characterises variations in the amplitude of dipole field generation, arising from velocity and
magnetic field variations, whereas the correlation of this process is set by the lifetime of
convective fluctuations. If the paleomagnetic field can be interpreted this way, the strength
of such fluctuations would have a strong influence on the reversal rate. Small decreases in
the rms velocity variation is sufficient to terminate reversals.
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Chapter 5

Analysis of a Reversing Geodynamo
Simulation

Foreward

In order to continue investigating stochastic models of geomagnetic field variations, I extend
the analysis of the previous chapter to a reversing geodynamo simulation. Specifically, I con-
struct a stochastic model from the results of a reversing numerical geodynamo simulation,
and investigate whether variations in the axial dipole field can be accurately reproduced.
Particular attention is paid to the statistics of polarity reversals. I also consider the possi-
bility of using stochastic models that are fitted from short simulations to predict long-run
reversal statistics.

This work was performed in collaboration with Bruce Buffett (University of California,
Berkeley), Nathanaël Schaeffer (ISTerre, CNRS, Université Grenoble Alpes), and Alexandre
Fournier (Université de Paris, Institut de Physique du Globe de Paris). Permission to present
this work in this dissertation has been obtained from these co-authors.
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Summary

Fluctuations in the Earth’s magnetic field occur on a wide range of timescales. It has been
proposed that stochastic models may be able to reproduce the statistics of variations in the
Earth’s axial magnetic dipole field. Here we analyze a stochastic model derived from the
output of a reversing numerical geodynamo simulation. We find that the bimodal distribution
of chron durations in the simulation is approximately reproduced by the stochastic model.
The average reversal rates are almost comparable, suggesting that stochastic models can
reproduce some bulk qualitative characteristics and quantitative properties of simulated axial
dipole field variations. We also investigate the effect of the simulation length on the accuracy
of the fitted stochastic model. The data used here were obtained from a computationally
expensive, long-duration simulation. We thus investigate whether it could be possible to
extract the same statistical information from the results of shorter simulations. We find that
similar stochastic models can be fitted with the first ∼ 20% of the simulation.

5.1 Introduction

The geodynamo is a complex and chaotic system. Its time evolution is governed by the
interactions between fluid motions and the magnetic field in the outer core (Roberts and
King, 2013). These interactions generate a magnetic field that is observable at the Earth’s
surface, which exhibits variations over a broad range of timescales, from historical secular
variation to superchrons spanning tens of millions of years (Constable and Johnson, 2005).
Observations of the external magnetic field represent one of the few methods we have to
gain insight into the deep Earth; however, links between the dynamics of the geomagnetic
field and physical processes within the core are still poorly understood. Numerical geody-
namo simulations offer one way of exploring these connections (Wicht and Sanchez, 2019).
These simulations solve the full magnetohydrodynamic equations in a 3D domain, and as
such the internal details of the flow and magnetic field are directly accessible. Although nu-
merical limitations necessitate that these simulations are conducted at parameters far from
those of the Earth (Wicht and Sanchez, 2019), many properties of the external field can be
reproduced (Christensen et al., 2010).

One property of particular interest in geodynamo models is the presence reversals, where
the axial dipole field completely changes sign and attains a stable opposite polarity (Wicht
et al., 2009; Amit et al., 2010; Glatzmaier et al., 2015). These are a first-order feature
of paleomagnetic observations, which show that the Earth’s field reversed polarity many
times throughout of Earth’s history (Valet and Fournier, 2016). As such, the presence and
frequency of polarity reversals have been suggested as criteria for the indication of Earth-like
geodynamo simulations (Sprain et al., 2019). Numerous studies have been able to produce
numerical dynamos that exhibit reversals (see Glatzmaier et al., 2015, for a comprehensive
review), and these simulations have enabled the investigation of links between the state
of the core and the frequency and style of reversals. Connections have been made to the
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role of the inner core (Lhuillier et al., 2013, 2019), thermal conditions at the core-mantle
boundary (Olson and Amit, 2014), as well as the style and vigor of convection (Christensen
and Aubert, 2006; Meduri et al., 2021). However, a recurring difficulty encountered in these
studies relates to the typical rarity of reversals. Adequately constraining an accurate estimate
of reversal rates generally requires a simulation to sample hundreds of reversals, requiring
long integration times. For example, in order to adequately estimate the rate of reversals,
Lhuillier et al. (2013) ran low-resolution simulations for 50 Myr in scaled time. This is
particularly impracticable in the case of higher-resolution simulations, where long integration
times come at great numerical expense, sometimes requiring millions of CPU hours (Roberts
and King, 2013; Schaeffer et al., 2017). This poses the question: can asymptotic reversal
rates can be predicted with more efficient methods than direct, brute-force simulation?

One option it to employ a “rare event sampling” technique, which forces a computer sim-
ulation to selectively sample states or transition paths of interest (e.g., Bouchet et al., 2019;
Hussain and Haji-Akbari, 2020). Although such methods have seen great success in other
areas of geophysics (e.g., Hoffman et al., 2006; Weare, 2009; Ragone et al., 2018; Webber
et al., 2019), they have yet be used in the context of geodynamo simulations. An alterna-
tive approach is to use a suite of geodynamo simulations to search for correlations between
asymptotic reversal rates and some other “proxy” attribute of the field. The hypothesis is
that reversal rates might obey some sort of scaling law, which is reflected in other details of
field variations. If the proxy attribute can be constrained with shorter simulation lengths,
and assuming the proposed correlations can be extrapolated to simulations outside of the
sample, this would allow for the prediction of reversals rates of new simulations with much
shorter integration times. This approach was explored in Lhuillier and Gilder (2013), where
the authors investigated the variabilities of the external field in dynamo simulations, as it
would be observed from the Earth’s surface. Specifically, relative fluctuations in surface field
intensity and the dispersion of virtual geomagnetic poles were found to be good proxies for
reversal rate in their set of simulations. A different approach was taken by Wicht and Meduri
(2016), where the shape of the histograms of axial dipole intensity were investigated. They
found that the absolute intensities of non-reversing simulations had approximately Gaussian
distributions, whereas reversing simulations were more negatively skewed. Although these
attempts showed some predictive power, they exclusively considered quantities that are ag-
nostic to time-dependencies of the field, disregarding valuable information present in the
time-dependent field.

Another possible option is to model the time-dependent variability of the external field
as a stochastic processes (Brendel et al., 2007; Buffett et al., 2013; Meduri and Wicht, 2016;
Bouligand et al., 2016; Morzfeld and Buffett, 2019). Stochastic processes are commonly used
to describe the variability of a small set of representative quantities in large and complex
physical systems (see Friedrich et al. (2011) for a comprehensive review). For the geomagnetic
field, the time dependence of the axial dipole moment (ADM) is modeled as the result of
a stochastic differential equation (SDE). The underlying assumption of the dynamics is
a temporal separation of scales: that the internal memory of fluctuations is substantially
shorter than macroscopic response timescales. These SDEs have two main components. The
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first term—the drift function—governs the slow deterministic adjustment towards average
stable states. The second term—the noise function—sets the amplitude of random fast-scale
fluctuations. These functions are generally assumed to be independent of time, reflecting
the fact that the simulations often have no long-term secular evolution or forcing. The
drift and noise functions can be fitted from time-series data using established methods (e.g.,
Siegert et al., 1998; Friedrich et al., 2011). Recent studies have suggested that SDEs are
able to reproduce some properties of non-reversing ADM fluctuations, including the power
spectra (Buffett and Matsui, 2015; Davis and Buffett, 2021) and the variability of millennial-
scale trends (Buffett et al., 2019). Although stochastic models were previously explored
in the context of reversing dynamo simulations (Meduri and Wicht, 2016), the capacity
of SDEs to reproduce reversal rates was not investigated. This poses the question: can
stochastic models reproduce reversal statistics of numerical simulations? If so, then this
raises a second question: can reversal rates be reliably predicted from SDEs built with short
simulation times, perhaps only displaying a few reversals? This would be particularly useful
for systematic parameter searches for Earth-like dynamo simulations (Lhuillier et al., 2013;
Olson and Amit, 2014; Wicht and Meduri, 2016; Lhuillier et al., 2019; Meduri et al., 2021).

The purpose of this study is twofold. First, we aim to qualitatively and quantitatively
compare the ADM of a reversing numerical dynamo simulation and a corresponding stochas-
tic model. To do this, we begin by examining the ADM variations from a long-run reversing
numerical dynamo simulation. Under the assumption that the ADM variations can be well
described by an SDE model, we fit the corresponding drift and noise functions of that model.
A time-series realization of this model is then produced, and compared with the original sim-
ulation data. Specific attention paid to the statistics of reversals, and we investigate whether
the SDE model can reproduce the reversal rate of the dynamo simulation. The second aim
is to investigate the effect of length of data on the fitted stochastic model, and whether a
stochastic model can predict asymptotic reversal rates with only a short length of data.

5.2 Descriptions of the Geodynamo Simulation and

Stochastic Model

We compare the time-series of ADM variations from a dynamo simulation with a reconstruc-
tion from an SDE. The geodynamo simulation, which is considered as the “ground truth”,
is a direct numerical simulation of the three-dimensional magnetohydrodynamic (3D MHD)
equations. The reconstruction is a time-series realization of an SDE model, which is fitted
from the statistics of the 3D MHD time-series. We briefly describe the numerical simulation
and corresponding stochastic model.

3D MHD Geodynamo Simulation

Numerical geodynamo simulations solve the governing equations of thermal-chemical convec-
tion and magnetic field induction in the core. For this study, we consider a dynamo simulation
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which exhibits polarity reversals and dipole excursions. The simulation is part of an ensem-
ble of reversing simulations, and has been presented previously in Gwirtz et al. (2021). The
set of equations governing rotating dynamo action in a spherical shell geometry are solved
with a pseudo-spectral approximation using the xshells1 code. The physical scales chosen
to non-dimensionalize the governing equations are the same as those used by Schaeffer et al.
(2017). The radius ratio of the inner-core boundary to the core-mantle boundary is set to its
present-day value. The 3D simulation has no-slip boundary conditions on the inner-core and
core-mantle boundaries, and it assumes that the inner core is electrically conducting. The
solution is specified using four non-dimensional control parameters, including the Ekman
number Ek = 10−4, the Prandtl number Pr = 1, the magnetic Prandtl number Pm = 3, and
the Rayleigh number Ra = 1.5× 103 (see Schaeffer et al. (2017) for definitions). In order to
scale to physical time, the time-average power spectra of the magnetic field and its secular
variation are computed for the non-dipole field up to spherical harmonic degree 13. Time is
then scaled under the assumption that the dynamo simulation and the earth share the same
secular-variation time scale, namely 415 years (Lhuillier et al., 2011). This approximately
corresponds to advective scaling, as the secular variation is mostly due to flux transport.
With this scaling the simulation has a sampling interval ∆t ∼ 43 years, and a total length of
172 million years. In this time frame, approximately 142 long-scale polarity changes occur.
For further technical details of the simulation, and descriptions of its favourable physical
and morphological attributes compared to the Earth’s magnetic field (Christensen et al.,
2010; Sprain et al., 2019), see Section 2.2.4 of Gwirtz et al. (2021). For this study, we will
exclusively examine the time dependence of the ADM from this simulation, as shown in the
left panels of Fig. 5.1. In the next section, we use this time-series to construct a stochastic
model for ADM variations.

Stochastic Model for Axial Dipole Moment Variations

For the stochastic model of ADM variations, we use a scalar SDE driven by exponentially
correlated noise (Davis and Buffett, 2021). The time evolution of the ADM X(t), and its
driving noise ζ(t), is written as

d

dt
X(t) = v(X(t)) + g(X(t))ζ(t), (5.2.1)

d

dt
ζ(t) = −1

θ
ζ(t) +

1

θ
ξ(t), (5.2.2)

where v(x) is the drift function, g(x) is the noise function, θ is the correlation time of
the noise, and ξ(t) is internal Gaussian white noise. The drift function governs the slow
deterministic adjustment towards equilibrium states, whereas the noise function sets the
amplitude of random fast-scale fluctuations. The drift and noise functions are independent

1This code is available at https://nschaeff.bitbucket.io/xshells/
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Figure 5.1: Time variations in axial dipole moment for the 3D MHD simulation (left, in
blue) and the SDE realization (right, in orange). The top panels illustrate the full length of
the data, and subsequent panels highlight increasingly smaller timescales (sections indicated
with gray vertical lines).
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of time, reflecting the fact that the 3D MHD simulation has no long-term secular evolution or
forcing. The process ζ(t) drives the fast scale fluctuations in the system, and has a vanishing
average

〈ζ(t)〉 = 0, (5.2.3)

and an autocorrelation of

〈ζ(t)ζ(t′)〉 =
1

2θ
e−|t−t

′|/θ. (5.2.4)

This form ensures well defined time-derivatives of X(t) (Van Kampen, 1992), which is ap-
propriate as we expect the rate of change of the ADM to converge to well defined values.

We fit the drift and noise functions, and correlation time θ, from the dimensional ADM
time-series of the dynamo simulation using the method of Lehle and Peinke (2018). A
full description of the implementation of this method is available in Section 3.2 of Davis
and Buffett (2021), as well as Section 4.3 of this thesis. We give a brief summary here
and reiterate the details relevant to this study. The first two conditional moments of the
increments in X(t) are calculated directly from the time-series data,

M̂ (1)(x, τ ;h) =
〈
bX(t+ τ)−X(t)cX(t)=x

〉
, (5.2.5)

M̂ (2)(x, τ ;h) =
〈
[bX(t+ τ)−X(t)cX(t)=x − M̂ (1)(x, τ ;h)]2

〉
. (5.2.6)

Here 〈. . . 〉 indicates averaging over all times t, and b. . . cX(t)=x indicates state conditioning
which is accomplished through kernel averaging (Lamouroux and Lehnertz, 2009). For exam-
ple, evaluating equations (5.2.5–5.2.6) at τ = 15∆t involves averaging across all time-steps
that are 15∆t apart. These two moments are calculated at a range of spatial evaluation
points x, and time-difference evaluation points τ , for a set kernel bandwidth h. Lehle and
Peinke (2018) showed that the expected conditional moments moments M (k)(x, τ) of an
arbitrary SDE defined by (5.2.1-5.2.2) can be represented in the form

M (k)(x, τ) ≈
3∑
i=1

λ
(k)
i (x)ri(τ ; θ), k = 1, 2, (5.2.7)

where terms O(τ 4) and higher are omitted. Functions ri are prescribed basis functions,

and λ
(k)
i (x) are the corresponding coefficients. We note that for relation (5.2.7), a prior fit

of θ is required. This step follows a similar procedure as above, involving a comparison of
the sample autocorrelation of X(t) to theoretical predictions. Details of this step are present
in Appendix B of Davis and Buffett (2021), as well as Appendix B of this thesis. Following

from the expansions (5.2.7), the i = 1 coefficients of λ
(k)
i (x) can be related to the drift and

noise functions of the original SDE,
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λ
(1)
1 (x) = v(x) +

1

2
g(x)g′(x) +

1

2
θ
(
v′(x)g(x)g′(x)− v(x)g′(x)2

)
,

λ
(2)
1 (x) = g(x)2 + θ

(
v′(x)g(x)2 − v(x)g(x)g′(x)

)
,

(5.2.8)

where v′(x) and g′(x) are the derivatives of the drift and noise functions evaluated at x,
respectively. In summary, the overall method can outlined in the following steps:

1. Fit the correlation time, θ.

2. Calculate the conditional moments (5.2.5)–(5.2.6).

3. Posit that the conditional moments follow the relation (5.2.7), and extract coeffi-

cients λ
(k)
i (x) at a range of evaluation points in x.

4. Finally, solve the differential-algebraic equations (5.2.8) for the drift and noise func-
tions, v(x) and g(x).

This method intrinsically accounts for the effects of correlation in the noise, in contrast to
the “direct estimation” method (Siegert et al., 1998; Friedrich et al., 2002) used in previous
studies (Buffett et al., 2013; Meduri and Wicht, 2016).

For the 3D MHD data, conditional moments are calculated for a set of 50 equally spaced
evaluation points in x, in the range [−14, 14]×1022 Am2, and we use a kernel bandwidth h =
1.05. The time-difference evaluation points τ are from the sampling interval ∆t to τmax =
15∆t ≈ 646 years. The value of τmax is picked using a heuristic described in Lehle and
Peinke (2018), however the fitted stochastic model is not overly sensitive to this choice.
Fig. 5.2 shows the sample conditional moments extracted from the time-series data, as well
the functional fit.

After the inversion process the fit to the data is excellent, having an average mean error
comparable to the calculations of Lehle and Peinke (2018) and Davis and Buffett (2021).
The fitted drift and noise functions are shown in Fig. 5.3. The correlation timescale is found
to be θ = 70.7+1.1

−1.0 years (see Fig. 5.4). This bound is very far from overlapping with zero,
suggesting that the process is not driven by white noise. We note that repeating the fitting
process with the non-dimensional time-series and applying dimensional scaling afterwards
gives almost identical results. Alternatively, if the white noise assumption is enforced by
using the direct estimation method, we observe absolutely lower drift and noise functions
(Fig. 5.3) which corresponds to inconsistent conditional moments (Fig. 5.2).

With the drift and noise functions of the SDE model now fitted, a time-series realization
can be computed. Equations (5.2.1–5.2.2) are integrated forward in time using the Euler-
Maruyama method (e.g., Kloeden and Platen, 2013) and a random sample of internal noise ξ.
We use an internal time-step of δt = 0.02 × ∆t = 0.86 years. Arbitrary initial conditions
for X(0) and ζ(0) are imposed as the memory of these conditions are quickly forgotten. The
realization is integrated until reaching steady state dynamics, and then subsequently recorded
for a given time-span. In principle the realization could be integrated to any required length,
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Figure 5.2: The first (left) and second (right) conditional moments calculated from the
ADM of the dynamo simulation. Colored circles indicate calculated moments from equations
(5.2.5–5.2.6). The color of the circles corresponds to the evaluation point x for the moment
calculation, and is indicated by the colorbar. Solid black lines indicate the resulting best fit
for a process driven by correlated noise (Lehle and Peinke, 2018; Davis and Buffett, 2021),
whereas dashed gray lines indicate moments for a process driven by white noise, fit using
the direct estimation method (Siegert et al., 1998). Note that the direct estimates diverge
from the calculated moments at low time-shifts. For visual clarity, the moments have been
downsampled to a set of 25 equally spaced points in x. The inset in the right plot shows
the sample autocorrelation increments and its prediction, as black circles and a red line,
respectively. Data from every 15th T evaluation point is plotted.

however for a fair comparison we choose to match the length and sampling interval of the 3D
MHD simulation, as shown in the right panels of Fig. 5.1. With the stochastic model now
defined, we proceed by comparing its realization to the time-series of the original dynamo
simulation.

5.3 Comparison of Chron Durations and Reversal

Rates

A comparison of the time-series of the 3D MHD simulation and the SDE realization in
Fig. 5.1 shows that the two time-series look, qualitatively, similar on a range of timescales.
For a more quantitative comparison, we investigate the distributions of chron durations for
the two time-series.

The zero-crossing times of both the 3D MHD and SDE time-series are determined, and the
durations of time between consecutive zero-crossings are defined as chrons. By this choice,
excursions are not considered as a separate family of events. The left panel of Fig. 5.5 shows
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Figure 5.3: Drift (left) and noise (right) functions fitted to the ADM of the dynamo simu-
lation. Solid colored lines indicate the fitted functions, and grey shaded areas indicate esti-
mated 95% confidence intervals, calculated with a block bootstrap algorithm using 10 000
resamples (Kunsch, 1989). These uncertainties are very small, due to the great length of the
time-series data. Dotted grey lines indicate functions calculated using the direct estimation
method, evaluated at τ = τmax.

the distributions of these chron-durations for the two records. Two types of polarity reversals
are present: (1) chrons related to the average transition from a mean state of one polarity
to the alternate mean state; and (2) chrons corresponding to frequent fluctuations around
zero (Constable and Parker, 1988; Wicht and Meduri, 2016). This dichotomy is apparent in
chron durations as well as the average ADM strength during a chron, as shown in Fig. 5.6.
The stochastic model recovers the bimodal distribution of chron durations in the dynamo
simulation. For type 1 chrons the 3D MDH time-series has a modal duration of ∼ 350 kyr,
while the SDE realization reproduces more chrons at a modal duration of ∼ 200 kyr. For
type 2 chrons the 3D MDH and the SDE records both have a modal duration of ∼ 500 years,
however the SDE model reproduces fewer chrons. It should be noted that type 1 chrons
here correspond to what are commonly identified as a reversal, whereas type 2 chrons are
expressions of reversal complexities, and would be masked by the slow magnetic acquisition
process in marine magnetic anomalies (e.g., Lowrie and Kent, 2004). Smoothing both records
by 25 kyr—representing the resolution of marine magnetic anomalies—indeed reduces the
abundance of type 2 chrons, as shown in the right panel of Fig 5.5. To interpret these data
in the same way as the paleomagnetic record, we interpret reversal rates as the inverse of
chron durations, using the smoothed records. The 3D MHD simulation has a mean reversal
rate of 0.82 Myr−1, and the SDE realization has a rate of 2.00 Myr−1.

The mean reversal rates of the 3D MHD simulation and the SDE model are not equivalent,
showing greater than a factor of two difference. On the other hand, there is a overlap in
the distribution of observed chron durations, Fig. 5.5. The chron durations of both records
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(       )

Figure 5.4: Fitted noise correlation time, θ, for the stochastic model of ADM variations.
The red vertical line indicates the full data fit, and the histogram shows the distribution of
the 10 000 bootstrap resamples.

show a bimodal distribution, indicating a qualitatively similar behavior over a wide range
of timescales. This bimodal distribution is also reflected in the average absolute chron
amplitudes, which is reproduced approximately by the SDE model (see Fig. 5.6). The
SDE model is approximately able to reproduce some quantitative properties of the dynamo
simulation, with similar short-scale polarity changes, but larger discrepancies for the long-
scale reversals. Overall, the bulk qualitative characteristics of the ADM variations of the
dynamo simulation are approximately reproduced by the form of the SDE (5.2.1–5.2.2).

Alternate SDE Approaches

Although some properties of the ADM variations of the dynamo simulation were somewhat
reproduced by the stochastic model, the mean reversal rate was overpredicted. One question
that arises is whether a stochastic model specially formulated to match the reversal statistics
could also be consistent with the shorter time-scale statistics of the original data. As an
illustrative example, we alter the fitted drift and noise functions such that the chron-duration
distribution of the resulting stochastic realization matches that of the 3D MHD simulation.
The characteristic shapes of the fitted drift and noise functions are kept the same, and we
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Figure 5.5: Chron-duration distributions for the 3D MHD time-series (blue) and the stochas-
tic realization (orange). The chron durations for the original records (left) are compared
with filtered records (right) to represent the typical resolution of marine magnetic anoma-
lies (Lowrie and Kent, 2004). The filter is a moving average with a width of 25 kyr. A
schematic is included in the left panel, depicting the typical behavior of type 1 and type 2
chrons.

only consider linear transformations. In order to encourage longer type 1 reversals, we reduce
the drift function and correlation time by 50%. The empirical probability distribution of
the time-series is kept similar to the original SDE model by applying an appropriate linear
transformation to the noise function (e.g., Risken, 1996). A realization of this new SDE
model is produced, and its chron-duration distribution is calculated similarly to the original
SDE model. Fig. 5.7 shows the chron-duration distributions for the 3D MHD simulation as
well as this new SDE model.

This comparison between the 3D MHD simulation and the new SDE model is excellent.
The type 1 chrons of the new SDE model reproduced that of the 3D MHD simulation in both
duration and quantity. For type 2 chrons, the new SDE model predicts the modal duration
of ∼ 300 years. This is a slight underprediction compared with the value from the 3D MHD
time-series, ∼ 350 years. Similar to the original SDE model, the new model also reproduces
fewer type 2 chrons. Although this new SDE model is able to successfully reproduce the
large-scale reversal statistics of the original 3D MHD simulation, it produces a very poor fit
to the conditional moments of the original data, as shown in Fig. 5.8.

The poor fit of conditional moments reveals that the proposed drift and noise functions
are not representative of the statistics of the original 3D MHD simulation at small time
increments. This example shows that the replication of reversal rates does not necessarily
guarantee a self-consistent stochastic model.

The original stochastic model was not able to accurately reproduce the average reversal
rate of the dynamo simulation, overpredicting by approximately a factor of two. However,



CHAPTER 5. ANALYSIS OF A REVERSING GEODYNAMO SIMULATION 87

Figure 5.6: Distribution of average absolute chron amplitudes and chron-durations, for the
3D MHD time-series (blue) and the stochastic realization (orange). Each point represents a
single chron. The bimidal dustribution of type 1 and 2 chrons are indicated.

as this prediction is the same order of magnitude, the bias might be tolerable and useful
results may still be obtained. In particular, this suggests that SDEs may be used as a tool
for predicting the asymptotic reversal rates of shorter dynamo simulations, which perhaps
display only a few reversals. This is of interest to systematic searches of parameter space
for Earth-like dynamo simulations (Lhuillier et al., 2013; Olson and Amit, 2014; Wicht and
Meduri, 2016; Lhuillier et al., 2019; Meduri et al., 2021). In the next section, we ask the
question: what is the critical amount of data required to estimate asymptotic reversal rates?

5.4 The Effect of Simulation Length on Model

Reliability

The estimation of asymptotic reversal rates in numerical geodynamo models often necessi-
tates long simulation lengths (e.g., Lhuillier et al., 2013). As numerical dynamo simulations
are computationally intensive, this makes a direct assessment of reversal statistics difficult.
On the other hand, estimation of reversal rates from shorter simulations may introduce bias.

In the previous section, we showed that a stochastic model can approximately repro-
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Figure 5.7: Chron-duration distributions for the 3D MHD time-series (blue) and a stochastic
process formulated to produce a similar chron-duration distribution (purple).

duce the broad reversal statistics of a dynamo simulation, with about a factor of two error.
As such, it may be possible to recover reversal statistics from stochastic models built from
shorter simulations, displaying only a few reversals. Therefore it is important to investigate
the effect of the length of data on estimated statistical properties. If the length of data is too
short, then an estimate will not be representative of the asymptotic value. Alternatively, a
long simulation will produce well-constrained results at the cost of excessive computational
effort. A post hoc, qualitative comparison can be accomplished by repeating the drift and
noise function fitting with a fraction of the length of the time-series. For example, repeating
the fit with 10% of the data gives drift and noise functions that cannot be visually dis-
tinguished from the functions in Fig. 5.3. However we seek a quantitative assessment of
this similarity. Ideally this assessment should also be applicable for determining an early-
stopping point when running numerical simulations. In this case, the theoretical “ground
truth” would not be known beforehand, so any assessment will have to be based off available
data up until that current point. A lower limit to the minimum amount of data length
necessary is at least enough time for the process to sufficiently explore its parameter space.
In the case of a reversing dynamo simulation, this equates to having at least one polarity
reversal. Previous research on the topic of data length for fitting SDE functions offers only
recommendations on the number of data points used, suggesting counts of & 104−105 for ac-
curate results (Mourik et al., 2006; Kleinhans and Friedrich, 2007; Lamouroux and Lehnertz,
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Figure 5.8: The first (top) and second (bottom) conditional moments for the dynamo model
and the new SDE model. For visual clarity, only the moments conditioned at x = −12 are
plotted. Colored circles indicate calculated moments from the ADM of the 3D MHD time-
series, using equations (5.2.5–5.2.6). The color of the circles corresponds to the evaluation
point x for the moment calculation, using the same color scale as Fig. 5.2. Black crosses
indicate moments from the ADM of the new SDE model, evaluated at the same x and τ
condition points. Only data from every 15th T evaluation point is plotted.

2009). These suggestions are conditional on the characteristic timescale of the process and
the sampling interval. Furthermore, they are not appropriate for correlated noise, or when
using multiple-timestep techniques (Honisch and Friedrich, 2011; Lehle and Peinke, 2018).
For this reason, we will focus on the effect of the length of data rather than the number of
data points.

The first step is to define a measure of similarity between the drift and noise functions of
the full length data, which will be assumed to be the “ground truth”, and the functions fitted
from shorter data. We consider the fitted drift and noise functions—and corresponding un-
certainties estimated though block bootstrap resampling (Kunsch, 1989)—as distributions.
As v(x) and g(x) are sampled at n = 50 points in x, these these values can be interpreted
as two 50 × 1 column vectors, µv and µg. These vectors represent the most likely val-
ues in 50-dimensional space for the drift and noise functions, respectively. Similarly, the
bootstrap resamples represent 10 000 samples of the drift and noise distributions in 50-
dimensional space. To facilitate calculations with these distributions, we use the assumption
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that they are well represented by multivariate Gaussian distributions. We then estimate the
two 50 × 50 sample covariance matrices, Sv and Sg, corresponding to the drift and noise
functions, respectively. Using these vectors and covariance matrices, we can measure how
many standard deviations a given 50× 1 vector, x, is from its corresponding distribution,

Dv(x) =

√
(x− µv)ᵀS−1

v (x− µv), (5.4.1)

Dg(x) =

√
(x− µg)ᵀS−1

g (x− µg). (5.4.2)

This method of multivariate distance is sometimes referred to as the Mahalanobis dis-
tance (Mahalanobis, 1936). It would be possible to combine (5.4.1) and (5.4.2) into one
distance, however it is revealing to keep them separate for comparison. To verify the multi-
variate Gaussian distribution assumption, we evaluate (5.4.1-5.4.2) for all 10 000 bootstrap
samples and compare the distribution of these distances with the predicted form: the chi-
squared distribution at 50 degrees of freedom (Slotani, 1964). The deviation from this
distribution is very small for both the drift and noise functions, each giving a mean absolute
error of about 10−3, validating the assumption.

Now we focus on fits from shorter lengths of data by resampling the original ADM time-
series. We choose to fix the start of the sample at the original starting point, to emulate
the conditions of running a simulation. Using a fraction of the total data length, 0 < f < 1,
we repeat the fitting of the drift and noise functions, noted as µv̂,f and µĝ,f . We then
calculate the distance of the fitted drift and noise functions, from the full data distribution
using (5.4.1–5.4.2), noted as Dv(µv̂,f ) and Dg(µĝ,f ). Uncertainties on these distances are
calculated using 10 000 bootstrap resamples. If the fits from fractional data are similar to
the ground truth, then distances (5.4.1–5.4.2) will be small. Otherwise, if the length of data
is too short to produce accurate drift and noise functions, the multivariate distances will be
large. To assess what distance is considered significantly different, we set up a hypothesis
test. Under the null hypothesis, H0, a candidate drift vector µv̂,f is not significantly far from
the distribution N(µv,Sv). However, we can reject H0 with significance p if

Dv(µv̂,f ) > F−1
χ2 (1− p, 50), (5.4.3)

where F−1
χ2 (x, 50) is the inverse cumulative distribution function of the chi-squared distri-

bution with 50 degrees of freedom evaluated at x. An equivalent hypothesis and inequality
is used for the noise function. We resample the original time-series and calculate distances
(5.4.1-5.4.2) for a range of fractions f in the interval (0, 1), shown in the top panel of Fig. 5.9.
To assess the sharpness of acceptance/rejection transition, we consider two significance levels
of p = 0.05 and p = 0.001.

For the fitted drift and noise functions with f close to 1, distances Dv and Dg are
very small and not significantly different from N(µv,Sv) or N(µg,Sg), as expected. This
“closeness” continues for decreasing f until approximately f . 0.2 for the drift function,
and f . 0.1 for the noise function. At these points, the distances are greater than both
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Figure 5.9: Cumulative multivariate distances and reversal rates. The top panel shows
multivariate distances for drift and noise functions fit at partial lengths compared with
the full length counterparts. Blue circles and green squares indicate the distances for the
drift and noise functions, respectively. These points share the same abscissa, so values
for the noise functions have been shifted slightly to the right, for visual clarity. Error bars
indicate estimated 95% confidence intervals. Horizontal gray dashed and dotted lines indicate
distances at p = 0.05 and p = 0.001 significance, respectively. The bottom panel shows
cumulative reversal rates of the dynamo simulation and stochastic models. The black solid
line indicates the mean reversal rate for the dynamo simulation calculated using a fraction of
the full length of the data. The horizontal grey dashed line indicates the estimated reversal
rate using the full length of data. The red circles indicate the predicted asymptotic reversal
rate from a stochastic model fit to a fraction of the simulation data. The horizontal red
dashed line indicates the predicted reversal rate from a stochastic model fitted to the full
length of data.
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critical levels and the null hypotheses can be rejected. A realization of an SDE with drift
and noise functions fitted with f = 0.2 of the data indeed reproduces the chron-duration
distributions and mean reversal rate of the full data SDE, see the bottom panel of Fig. 5.9).
Repeating this method using several different discretizations of the drift and noise functions
(e.g., sampling at n = 20 points) has little effect on these results. These results show that
stochastic models fitted from the ADM time-series are reliably resolved when f & 0.2.

5.5 Conclusions

We use a reversing numerical dynamo simulation to construct a stochastic model for varia-
tions in ADM. The correlation of the noise is explicitly accounted for—as opposed to previous
studies (Buffett et al., 2013; Meduri and Wicht, 2016)—allowing for a model that accurately
reproduces the conditional moments. The ADM variations of the dynamo simulation and
the stochastic model look visually similar on a broad range of timescales, and both records
show bimodal chron-duration distributions, relating to large-scale reversals as well as fast
polarity changes at low ADM. The stochastic model approximately reproduces the distri-
bution of shorter reversals, however there is a discrepancy for the longer reversals. At low
ADM states the observable field would be dominated by the non-dipole part of the field,
and a change in sign of the dipole would have a limited impact on the intensity or direction
recorded in paleomagnetic observations (Constable and Parker, 1988). Such fast-scale po-
larity changes are masked by the gradual acquisition of magnetization in marine magnetic
anomalies (Cande and Labreque, 1974; Buffett and Avery, 2019). The average reversal rate
of the stochastic model approaches that of the dynamo simulation, overpredicting by a factor
of about two. Despite this error, the stochastic model compares to some degree with the
dynamo simulation, and this study represents the first attempt at a reconciliation of rever-
sal rates between numerical simulations and stochastic models of ADM variations. Further
work should investigate alternate SDE models to (5.2.1–5.2.2), which may be able to better
reproduce reversal rates.

We show that a stochastic model specifically constructed to reproduce reversal statistics
is not guaranteed to be internally consistent with short-time-scale variations. This lack of
consistency indicates that, in such a case, the fitted drift and noise functions are unlikely to
reflect any physical processes in the dynamo simulation. Attempts at links to internal mech-
anisms have been present in previous studies of stochastic models of ADM fluctuations. For
example, for stochastic models of non-reversing dynamo simulations, both long-scale prop-
erties (e.g., power spectral densities) and shorter scale statistics (e.g., conditional moments)
are well represented, allowing the investigation of links between the drift and noise functions
and internal field generation mechanisms (Davis and Buffett, 2021). Future work should aim
to create stochastic models that can reproduce both shorter timescale statistics—such as
the conditional moments—as well as longer scale properties—such as reversal rates—before
attempting to investigate links to internal processes in the simulations.

We also investigate the effect of length of data on the fitted stochastic model, with the
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aim to predict asymptotic reversal rates from shorter data. Visually similar drift and noise
function can be fitted with 10% of the original data. We attempt to further quantify this
by developing similarity criteria, which account for uncertainties in the fitted drift and noise
functions. However, as this method relies on bootstrap resampling to estimate uncertainties,
its accuracy is questionable (Schenker, 1985). From this method, we find that the drift
and noise functions fitted from this dynamo simulation are similarly resolved from & 20%
of the time-series data, which reproduces the reversal rate of the stochastic model fitted
from the full data. For the dynamo simulation discussed here, the first 20% of the data
corresponds to approximately 29 large-scale polarity reversals, giving an estimated reversal
rate of 1.02 Myr−1. This compares with the full-record rate of 0.82 Myr−1, meaning that the
stochastic model shows little advantage to simply estimating the reversal rate directly from
a shorter simulation. Together with the bias present in the stochastic model prediction of
the reversal rate, the usefulness of this perspective has yet to be demonstrated.
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Chapter 6

Estimation of Drift and Diffusion
Functions from Unevenly Sampled
Time-Series Data

Foreward

When interpreting complex systems like the geomagnetic field as stochastic processes, it is im-
portant to quantitatively fit appropriate models. To facilitate this fitting, various top-down
statistical methods have been developed. However, paleomagnetic and archaeomagnetic ob-
servations of the geomagnetic field are often not compatible with these methods, as they are
sampled irregularly in time. In order to analyse geomagnetic observations, I develop a set of
techniques for the inference of stochastic processes that allows for irregular sampling. The
following chapter introduces these new methods, and demonstrates their validity for a set of
numerical and empirical data.

This work has been previously published in:
W. Davis and B. Buffett (2022). “Estimation of drift and diffusion functions from un-

evenly sampled time-series data”. Phys. Rev. E 106 (1), p. 014140, doi: 10.1103/-

PhysRevE.106.014140.
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Summary

Complex systems can often be modeled as stochastic processes. However, physical observa-
tions of such systems are often irregularly spaced in time, leading to difficulties in fitting
appropriate models from data. Here we present extensions of two methods for fitting drift
and diffusion functions from irregularly sampled time-series data. Our methods are flexible
and applicable to a variety of stochastic systems, including non-Markov processes or systems
with measurement noise. To demonstrate applicability, we use this approach to analyse
an irregularly sampled paleoclimatological isotope record, giving insights into underlying
physical processes.

6.1 Introduction

The time-dependent behavior of complex systems consisting of a large number of subsystems
can often be described by low-dimensional order parameter equations (Haken, 2004). In many
cases, a separation between slow adjustments and fast fluctuations allows such systems to
be described by a Langevin-type equation,

d

dt
X(t) = f(X, t) + g(X, t)Γ(t), (6.1.1)

where Γ(t) denotes the stochastic forcing, with 〈Γ(t)〉 = 0 and 〈Γ(t)Γ(t′)〉 = δ(t− t′) (Risken,
1996). The same information is expressed in the corresponding Fokker-Planck equation,

∂

∂t
p(x, t|x′, t′) =

[
− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

]
p(x, t|x′, t′), (6.1.2)

which contains the Kramers-Moyal (KM) coefficients

D(n)(x, t) = lim
τ→0

1

n!τ

∫ ∞
−∞

[
x′ − x

]n
p(x′, t+ τ |x, t) dx′, (6.1.3)

where p(◦|◦) is the transition probability. Here, the first two coefficients are called the
drift and diffusion,1 respectively, connecting to (6.1.1) in f(x, t) = D(1)(x, t) and g(x, t) =√

2D(2)(x, t).
It has been shown that it is possible to fit the forms of such processes directly from

regularly sampled time-series data using a technique called “direct estimation” (Siegert et
al., 1998; Gottschall and Peinke, 2008). This approach has been applied to various fields of
science (Friedrich et al., 2011).

There are two main difficulties associated with applying this approach to “real-world”
time-series data. The first occurs when observations are contaminated by another undesirable

1The diffusion term is also sometimes referred to as the noise term. However, since I will also refer to
measurement noise in this chapter, I will exclusively refer to this term as the diffusion.
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signal, or measurement noise. In this case, Böttcher et al. (2006) introduced a method to
parametrically fit drift and diffusion functions as well as the amplitude of the measurement
noise, an approach has been expanded in subsequent studies (Lind et al., 2010; Lehle, 2011;
Scholz et al., 2017).

The other difficulty involves the discrete sampling of the time-series data. For low
sampling frequencies, is can be difficult to perform or infer the limit τ → 0 required for
direct estimation. In this case, Honisch and Friedrich (2011) proposed a finite-τ predic-
tion/optimization method that correctly recovers drift and diffusion functions even at large,
regular sampling. However a related impediment is irregular sampling. In this case, there
is no obvious way to calculate averages in (6.1.3). This is commonly encountered in geo-
scientific measurements (e.g., Schulz and Stattegger, 1997; Rehfeld et al., 2011), but also
is encountered in turbulence measurements (Tropea, 1995; Broersen et al., 2000; Harteveld
et al., 2005), astrophysical observations (Scargle, 1981; Scargle, 1982; Edelson and Krolik,
1988; Scargle, 1989), and biological systems (Liew et al., 2007). In some cases, interpola-
tion is used to side-step these difficulties; however such methods can introduce a significant
and hard-to-quantify bias (Scholes and Williams, 1977; Hayashi and Yoshida, 2005; Rehfeld
et al., 2011; Eckner, 2014). This motivates a method for fitting drift and diffusion functions
directly from the unaltered time-series data.

In the next section we review the currently available estimation techniques, and propose
two extensions for irregular sampling. Section 6.3 gives three numerical examples where we
demonstrate the functionality of our new methods. In Section 6.4 we apply this framework to
an empirical data-set, namely a paleoclimatological isotope record (Westerhold et al., 2020).
Discussion and conclusions are given in Section 6.5, where further applications are proposed.

6.2 Estimation of Conditional Moments

We consider a stationary scalar process X(t) that is observed at a set of N increasing points
in time, {t1, t2, . . . , tN}, with no guarantee of a regular sampling frequency. Observations
at these points are denoted as {X(t1), X(t2), . . . , X(tN)}. The finite-time KM coefficients
of X(t) are defined as (Honisch and Friedrich, 2011)

D(n)
τ (x) =

1

n!τ
M (n)(x, τ), (6.2.1)

which are calculated using the finite-time conditional moments

M (n)(x, τ) =

∫ ∞
−∞

[x′ − x
]n
p(x′, t+ τ |x, t) dx′. (6.2.2)

The task is to estimate these conditional moments from data X(t). These estimates will
subsequently be used as finite-time KM coefficients (e.g., Honisch and Friedrich, 2011) in an
appropriate method in order to fit drift and diffusion functions of the underlying process.
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Conditional moment estimates are denoted as M̂ (n)(xi, τj), and are evaluated at a set of
evaluation points in xi ∈ {x1, x2, . . . , xmax}, and τj ∈ {τ1, τ2, . . . , τmax}.

Histogram Based Regression

The simplest way of estimating conditional moments is by means of regressogram, (e.g.,
Tukey, 1961), also known as histogram based regression (HBR). This estimator can be
written as, (e.g., Lamouroux and Lehnertz, 2009),

M̂ (n)(xi, τj) =

N∑
k=1

I
(
X(tk) ∈ B(x)(xi)

)[
X(tk + τj)−X(tk)

]n
T∑
k=1

I
(
X(tk) ∈ B(x)(xi)

) , (6.2.3)

where I(◦) is the indicator function, and binning is indicated with the half closed inter-
val B(x)(xi) := [xi − 1

2
bx, xi + 1

2
bx), where bx is the width of the bin.

Histogram Time-Based Regression

One simple way to extend HBR to account for uneven time-sampling is to average over all
pairs of increasing times, and also bin data by timestep. We shall refer to this method
as histogram time-based regression (HTBR). This approach, when applied to estimators of
the autocorrelation function, has been called “slotting” (Edelson and Krolik, 1988). The
estimator for conditional moments can be written as

M̂ (n)(xi, τj) =

N−1∑
k=1

N∑
l=k+1

x-conditioning︷ ︸︸ ︷
I
(
X(tk) ∈ B(x)(xi)

) τ -conditioning︷ ︸︸ ︷
I
(
∆tl,k ∈ B(τ)(τj)

) [
X(tl)−X(tk)

]n
T−1∑
k=1

T∑
l=k+1

I
(
X(tk) ∈ B(x)(xi)

)
I
(
∆tl,k ∈ B(τ)(τj)

) (6.2.4)

where ∆tl,k := tl − tk(> 0), and binning in τ is facilitated with a bounded half closed
interval B(τ)(τj) := [max(0, τj − 1

2
bτ ), τj + 1

2
bτ ).

Both HBR and HTBR provide simple methods of estimating conditional moments. How-
ever the histogram based nature of both methods results in undesirable properties.

1. Histograms assign the same weight to every point inside each bin, resulting in the
undesirable property of a sharp cut-off between data across the edge of a bin.

2. The width of the bins sets the resolution length scale, however this length scale depen-
dence is not explicit, it is indirectly determined by the number and range of bins.
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Kernel Based Regression

To address the deficiencies of the histogram based approach, Lamouroux and Lehnertz (2009)
extended HBR using a kernel based regression (KBR) method. For this, each value of
conditional moments at x is assigned an estimate by averaging over all observations according
to the distance of the observation X(t) to x. Moments are then estimated with

M̂ (n)(xi, τj) =

N∑
k=1

Kh(xi −X(tk))[X(tk + τj)−X(tk)]
n

T∑
k=1

Kh(xi −X(tk))

(6.2.5)

where Kh(◦) = K(◦/h)/h is a scaled kernel, h is the bandwidth, and K(◦) is the kernel
function. Here we use the Epanechnikov kernel (Epanechnikov, 1969)

K(x) =

{
3
4
(1− x2) if x2 < 1,

0 otherwise.
(6.2.6)

for its computationally desirable properties (Härdle et al., 2004).
Kernel-based methods have a number of advantages over histogram-based approaches.

They show a higher convergence rate in the limit of a large number of data points (Härdle
et al., 2004). Also, the introduction of a bandwidth gives an explicit indication of the length
scale of averaging. However, as points are indexed at set time-shifts τj in the future, this
method is unsuitable for unevenly spaced data.

Kernel Time-Based Regression

To extend KBR to unevenly spaced data, kernel density estimation is applied to the τ com-
ponent as well as the x component. We shall refer to this method as kernel time-based
regression (KTBR). A similar approach has been used for estimators of the autocorrelation
function (Babu and Stoica, 2010). A bivariate kernel density estimation is used

M̂ (n)(xi, τj) =

T−1∑
k=1

T∑
l=k+1

K
(2)
h (xi −X(tk), τj −∆tl,k)

[
X(tl)−X(tk)

]n
T−1∑
k=1

T∑
l=k+1

K
(2)
h (xi −X(tk), τj −∆tl,k)

, (6.2.7)

where K
(2)
h (◦, ◦) is a bandwidth scaled, Euclidian distance 2D kernel

K
(2)
h (x, τ) =

C

hxhτ
K
((

(x/hx)
2 + (τ/hτ )

2) 1
2

)
(6.2.8)

where hx and hτ and the bandwidths in x and τ , respectively. The prefactor C is defined
such that the kernel integrates to unity over the whole domain. In this example we continue
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to use the Epanechnikov kernel (6.2.6), in which case C = 8/3π. This choice is equivalent
to a diagonal bandwidth matrix (Wand and Jones, 1993).

As the domain in τ only has positive support, kernel estimations at τ < hτ can be biased.
To account for this, we use a boundary correction method (Jones, 1993) that replaces the
application of kernel (6.2.8) inside (6.2.7) in the following way

K
(2)
h (xi −X(tk), τj −∆tl,k)→

[
K

(2)
h (xi −X(tk), τj −∆tl,k) +K

(2)
h (xi −X(tk), τj + ∆tl,k)

]
.

(6.2.9)
We note that it is not simple to express estimator (6.2.7) in the traditional multivariate
vector form, as ∆tl,k values are dependent on pairs of (X(tk), X(tl)).

6.3 Numerical Examples

To validate the presented methods, we test them on a set of three synthetic data-sets. These
examples each have difficult aspects, and hence require different estimation methods from
the conditional moments, illustrating the flexibility and versatility of HTBR and KTBR.

Example A: Ornstein-Uhlenbeck Process

Here we test the method on an Ornstein-Uhlenbeck process given by the drift and diffusion
functions

D(1)(x) = −x, (6.3.1a)

D(2)(x) = 1. (6.3.1b)

For this process, we consider a discrete time-series sampling of X(t) consisting of 107 points
with uneven time-sampling, with a distribution of time-samples, ∆t ∼ N (5×10−3, 3.2×10−7).
The solution is integrated using the Milstein method (Mil’shtejn, 1975) with an internal
time-step of at most δt ≤ 10−4, to ensure numerical accuracy.

To estimate the conditional moments of this data, we use three separate methods. First,
the moments are estimated using HTBR (6.2.3). Sampling in x is performed by 11 evenly
spaced bins in the range [−2, 2]. Sampling in τ is performed by a single bin with lim-
its [0, 0.01]. Here τ is small enough that the drift and diffusion functions can be directly
estimated from the conditional moments

D̂(n)(x) ≈ 1

n!τ
M̂ (n)(x, τ). (6.3.2)

Second, the moments are estimated using KTBR (6.2.7). Evaluation points in x are 30 evenly
spaced points in [−2, 2], with a kernel bandwidth of hx = 0.3. Sampling in τ is performed with
a single evaluation point at τ = 5×10−3, with a kernel bandwidth of hτ = 2.5×10−3. As with
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Figure 6.1: Results for example A: Ornstein-Uhlenbeck process. Estimated finite-time co-
efficients for D(1)(x) and D(2)(x) are shown in the left and right plots, respectively. True
coefficients are plotted as black lines. Estimates from the HTBR method and KTBR method
are plotted with red crosses and green circles lines, respectively. Estimates from the HBR
method with interpolated data are plotted with blue plusses. KBR performed similarly to
HBR except with finer resolution, and is not shown for conciseness.

HTBR, the direct estimation method (6.3.2) is used to estimate the KM coefficients. Finally,
to compare with the two previous methods, naive resampling is performed on the time-series
data. The data X(t) is linearly interpolated to a regular sampling of ∆t = 5×10−3, and then
traditional direct estimation is applied with the sample bin sampling as the HTBR estimate.
The drift and diffusion functions are shown in Fig. 6.1.

We find that the estimates of drift and diffusion functions are in good accordance with the
true values for both HTBR and KTBR. These functions are systematically underestimated
when using HBR with interpolated time-sampling.

Example B: Multiplicative Process with Measurement Noise

Next we examine a multiplicative process with measurement noise. The drift and diffusion
functions are set as

D(1)(x) = −x, (6.3.3a)

D(2)(x) = 1 + x2. (6.3.3b)

Unevenly spaced time-series data X(t) is produced in the same way as example A, however
we now also add Gaussian δ-correlated measurement noise

Y (t) = X(t) + σζ(t), (6.3.4)
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where σ denotes the standard deviation of the measurement noise, and ζ ∼ N (0, 1). We
seek to estimate coefficients of parameterised drift and diffusion functions

D̂(1)(x) = p1 + p2x, (6.3.5a)

D̂(2)(x) = p3 + p4x+ p5x
2, (6.3.5b)

using the method of Lind et al. (2010). The time-series Y (t) is used to estimate noisy
moments, M̂ (n)(y, τ). These moments are then separated by linear regression

M̂ (1)(yi, τj) ≈ m̂1(yi)τj + γ̂1(yi), (6.3.6a)

M̂ (2)(yi, τj) ≈ m̂2(yi)τj + γ̂2(yi) + σ2, (6.3.6b)

along with uncertainties σ2
m̂1

(yi), σ
2
γ̂1

(yi), etc. . . These estimates are compared with theoreti-
cal values of m1(y), γ1,m2(y), and γ2, which depend solely on parameters p1, . . . , p5, and σ,
see Lind et al. (2010) for more details. The parameters vary the fit function

F =
8∑
i=1

{
[m̂1(yi)−m1(yi)]

2

σ2
m̂1

(yi)
+

[γ̂1(yi)− γ1(yi)]
2

σ2
γ̂1

(yi)

+
[m̂2(yi)−m2(yi)]

2

σ2
m̂2

(yi)
+

[γ̂2(yi)− γ2(yi)− σ2]2

σ2
γ̂2

(yi)

}
, (6.3.7)

which is minimised using simulated annealing (Carvalho et al., 2011).
As in example A, we compare three methods to estimate the conditional moments. For

HTBR, sampling in y is performed with 50 equally spaced bins in the range [−6, 6]. Sampling
in τ is performed by 8 equally spaced bins with centers from τ1 = 5× 10−3 to τ8 = 4× 10−2,
with bin-widths of bτ = 5 × 10−3. For KTBR, evaluation points in x are 50 equally spaced
points in the range [−6, 6], and the bandwidth is hx = 0.18. Sampling in time is performed
with 8 equally spaced points from τ1 = 5× 10−3 to τ8 = 4× 10−2, with a bandwidth of bτ =
2.5× 10−3. Finally, the data Y (t) is also linearly interpolated to a regular sampling of ∆t =
5×10−3 and then sampled in the same way as the HTBR example. The optimized parameters
from these three results are shown in Table 6.1 and the drift and diffusion functions are shown
in Fig. 6.2.

The parameters of the drift and diffusion functions are very close to the true values for
both HTBR and KTBR. For HBR with interpolated time sampling, the intercept of the drift
and the linear term in the diffusion are estimated well. However the magnitude of gradient
of the drift term, the constant diffusion term, and the quadratic term are all overestimated.
Finally the measurement noise amplitude σ is underestimated. We note that entering the
true parameter values into function (6.3.7) with estimates gathered from the interpolated
HBR method result in a value of F two orders of magnitude higher than the optimized
minimum.
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Table 6.1: True and optimized parameter values for example B: multiplicative process with
measurement noise. Parameters are rounded to either 2 significant figures or at least 2
decimal places. The HBR column represents results from interpolated Y (t) data. KBR
performed similarly to HBR, and is not shown for conciseness.

Parameter True HTBR KTBR HBR

p1 0 -0.0050 -0.0040 -0.014

p2 -1 -0.99 -1.00 -1.48

p3 1 0.99 1.00 1.62

p4 0 0.0062 0.013 0.0020

p5 1 0.97 0.98 1.11

σ 1 1.00 1.00 0.76

Figure 6.2: Results for example B: multiplicative process with measurement noise. Esti-
mated finite-time coefficients for D(1)(x) and D(2)(x) are shown in the left and right plots,
respectively. True coefficients are plotted as black lines. Estimates from the HTBR method
and KTBR method are plotted with red dashed lines and green dotted lines, respectively.
Estimates from the HBR method with interpolated data are plotted with blue dot-dashed
lines. KBR performed similarly to HBR, and is not shown for conciseness.
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Example C: Bistable System with Correlated Noise

Finally we test the method on a bistable process X(t) driven by a correlated noise η(t) (Lehle
and Peinke, 2018). This system is defined as

d

dt
X = D(1)(X) +

√
2D(2)(X)η(t), (6.3.8a)

d

dt
η = −1

θ
η +

1

θ
ξ(t), (6.3.8b)

where θ is the correlation time of the noise. The drift and diffusion functions are

D(1)(x) = x− 1

2
x3, (6.3.9a)

and D(2)(x) = 1 +
1

20
ln cosh 2x, (6.3.9b)

and the correlation time is θ = 0.01. An unevenly spaced timeseries is produced in the same
way as example 1, however only X(t) is observed.

We seek to estimate these drift and diffusion functions using the non-parametric method
of (Lehle and Peinke, 2018). This method involves comparing estimates of conditional mo-
ments, M̂ (n)(x, τ), with theoretical estimates

M (n)(x, τ) ≈
3∑
i=1

λ
(n)
i (x)ri(τ, θ), (6.3.10)

where functions ri are prescribed basis functions and λ
(n)
i (x) are the corresponding coeffi-

cients. Coefficients are found through least squares inversion, and then λ
(n)
1 (x) are directly

related to estimates of the drift and diffusion functions at points in x. For a detailed de-
scription of the method, see Lehle and Peinke (2018).

As in the two previous examples, we compare three methods of estimating conditional mo-
ments. For HTBR, sampling in x is performed by 16 equally spaced bins in the range [−2, 2].
Sampling in τ is performed by 30 spaced bins with from τ1 = 5× 10−3 to τ30 = 1.5× 10−1,
with bin-widths of bτ = 5 × 10−3. For KTBR, evaluation points in x are 50 equally spaced
points in the range [−2, 2], and the bandwidth is hx = 0.24. Sampling in time is performed
with 30 equally spaced points from τ1 = 5 × 10−3 to τ30 = 1.5 × 10−1, with a bandwidth
of bτ = 2.5× 10−3. Finally, the data X(t) is also linearly interpolated to a regular sampling
of ∆t = 5 × 10−3 and then sampled in the same way as the HTBR example. For all exam-
ples, we assume that the correlation time θ has been accurately estimated a priori (Edelson
and Krolik, 1988; Rehfeld et al., 2011). For all methods, the mean absolute error between
estimated moments M̂ (n)(x, τ) and fitted moments (6.3.10) is on the order of 10−5. The drift
and diffusion functions from these three estimates are shown in Fig. 6.3.
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Figure 6.3: Results for example C: bistable system with correlated noise. As Fig. 6.1.

The estimates of the drift and diffusion functions compare well with the true values for
both HTBR and KTBR. For the interpolated HBR the drift function is reproduced well,
whilst the diffusion function is systematically underestimated.

6.4 Application to Paleoclimatological Data

Paleoclimate proxies preserve a record of Earth’s climate variability. This variability is com-
monly studied through carbon and oxygen isotopes records from benthic foraminifera (Za-
chos et al., 2001; Westerhold et al., 2020). Of particular interest are large and rapid negative
excursions in carbon isotope ratios, δ13C, throughout the Cenozoic (Cramer et al., 2003;
Lourens et al., 2005; Nicolo et al., 2007; Sexton et al., 2011; Lauretano et al., 2015). These
excursions have been interpreted as “hyperthermal” warming events, and are speculated to
be linked to the release of isotopically depleted organic carbon from permafrost or methane
clathrates into the surface environment (Dickens, 2003; Lunt et al., 2011; DeConto et al.,
2012). Such records offer insights to Earth’s climate response to hyperthermal events, and
provide an analogue to modern anthropogenic forcing (Bowen et al., 2006; Zachos et al.,
2008; Dunkley Jones et al., 2010; Zeebe and Zachos, 2013). Recently Arnscheidt and Roth-
man (2021) suggested that the time-variability of these records can be modeled as stochastic
processes, invoking a single-variable correlated additive-multiplicative (CAM) process

d

dt
X = − 1

τeff

X + v (X − c) Γ(t), (6.4.1)

where τeff, v, and c are constants (Sura and Sardeshmukh, 2008; Sardeshmukh and Sura,
2009; Sura, 2011; Penland and Sardeshmukh, 2012; Sardeshmukh and Penland, 2015). This
conclusion was reached through a short-time-scale agnostic analysis of the probability density
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of the record. A non-parametric verification of the CAM hypothesis has been unreachable
with previous methods, as the δ13C record is unevenly sampled in time. In this section, we
apply KTBR to a section of this unevenly sampled paleoclimate record.

We choose a section of the record, from 53 Ma to 46 Ma, containing a series of representa-
tive excursions but excluding the anomalous Paleocene-Eocene Thermal Maximum (McIner-
ney and Wing, 2011), shown in Fig. 6.4. This section was previously found to have stationary
statistics (Arnscheidt and Rothman, 2021). The sampling in this timespan is approximately
log-normally distributed, with log10 ∆t ∼ N (−2.7, 0.2). To calculate conditional moments
using KTBR, evaluation points in x are 50 equally spaced points in the range [−0.8, 0.5],
and the bandwidth is hx = 0.4. Sampling in time is performed with 30 equally spaced points
from τ1 = 3.5 kyr to τ30 = 116 kyr, with a bandwidth of hτ = 5 kyr. The higher order

moments in M (4)(x, τ) ' 3
(
M (2)(x, τ)

)2
are evaluated using (6.2.7) and are comparable,

showing a small error of ∼ 5× 10−3, validating the continuity of the record (Lehnertz et al.,
2018; Tabar, 2019). To fit the drift and diffusion functions from these moments, we use
the approach of Lehle and Peinke (2018), while the correlation time is fitted through a grid
search and is found to be small but finite, θ ≈ 0.4 kyr. The moments are fit well, with an
absolute error between calculated moments M̂ (n)(x, τ) and fitted moments (6.3.10) on the
order of 10−4. The fitted drift and diffusion functions are shown in Fig. 6.5.

The drift function has a strongly linear form, and is well approximated by the CAM
model (6.4.1) with τeff = 47 kyr (R2 = 0.98). For the diffusion function, while a CAM
model (6.4.1) with the coefficients v = −3.2 and c = −1.2 falls within the confidence
intervals (R2 = 0.67), we cannot reject a likely piecewise diffusion of

D(2)(x) =

{
p1 + p2(x− p3), x ≤ p3,

p1, otherwise,
(6.4.2)

with best fitting coefficients of p1 = 3.30, p2 = −11.50, and p3 = −0.36 (R2 = 0.99).
To demonstrate that this linear drift and piecewise diffusion cannot be rejected by the

data, we numerically integrate a sample path with these functions. The timeseries and
probability density functions (PDF) of the original data and the SDE simulation are shown
in Fig. 6.4. The SDE matches the skewed distribution of the original record, and also displays
characteristic excursions to low δ13C values.

This model qualitatively displays temporally similar negative excursions, and has an
overall negatively skewed distribution. Note that if the drift function were constant, then
the system would behave approximately like an Ornstein-Uhlenbeck process and display no
skew. Beyond reproducing observations, the form of the fitted drift and diffusion functions
can give insight into the physical processes in Earth’s climate that are reflected in the record.
The linear drift term indicates an average relaxation timescale of τeff = 47+14

−17 kyr, with
uncertainties estimated from the bootstrap confidence intervals. This possibly reflects the
stabilizing feedback of weathering of silicate rocks (e.g., Walker et al., 1981; Bowen, 2013).
The piecewise nature of the diffusion suggests a critical “tipping-point” at ∼ 0.36 below the
time average. Beyond this point fluctuations are amplified, which may indicate an imbalance
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Figure 6.4: Carbon cycle variations in the Early Eocene, as recorded in benthic foraminiferal
δ13C data (Westerhold et al., 2020). A running mean of 1-Ma has been subtracted from
the data to remove longer scale effects and isolate sub-million-year fluctuations. The top
left plot shows the time-series data, while the right plot shows the histogram. A simulated
trajectory is shown in the bottom left plot. By convention, the vertical axes are reflected.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x, 13

-40

-20

0

20

40

60

D
(1

) (x
),

 
1

3
-1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

x, 13

0

5

10

15

20

D
(2

) (x
),

 [
1

3
2
 M

y
r-1
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and D(2)(x) are shown in the left and right plots, respectively. Best fits are plotted as black
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in the typical weathering feedback mechanism (Lenton et al., 2008; Rothman, 2017, 2019).
Further work should investigate whether this behavior reflected in related oxygen isotope
records, as well as other epochs in the Cenozoic.

6.5 Discussion and Conclusion

We present two methods to estimate conditional moments from irregularly spaced time
series data. These moments are used alongside parametric or non-parametric methods to
facilitate the accurate estimation of drift and diffusion functions of stochastic differential
equations. We demonstrate this for three numerical examples, in a number of settings. Even
in the presence of measurement noise (example B) or non-Markovian processes (example C),
both HTBR and KTBR are able to produce moments that result in accurate estimates
of the original drift and diffusion functions. Additionally, KTBR is applied to a series of
irregularly spaced paleoclimatological measurements. We show that the fitted model is able
to produce qualitatively similar time-dependent behavior, in addition to reproducing the
broad statistics of the original data. Insights into the underlying dynamics are revealed,
including an indication of the characteristic timescale of recovery, as well as a sign of an
inflection point indicating an imbalance in the expected weathering feedback mechanism.

This study also illustrates the dangers of interpolating time-series observations for es-
timating stochastic processes. The effects of interpolation on regression results often can
be difficult to predict or quantify (e.g., Eckner, 2014; Rehfeld et al., 2011). Indeed, while
example A shows that interpolation results in an absolute underestimate in the magnitude
of estimated drift and diffusion functions, the parametric estimation in example B shows the
opposite bias (with an underestimated measurement noise amplitude estimate). Example C
shows that interpolation has no apparent effect on the estimated drift function, but the
same cannot be said for the diffusion function. In this case the bias may be small because of
the longer scale time information that is included in the inversion method. In other words,
the interpolation bias may be masked by the non-Markovian nature of the process. It is
possible that these smaller errors average out for the drift function, as is the case with weak
measurement noise (Siefert et al., 2003).

In addition to being applicable to a wide class of stochastic systems, these methods could
allow for the handling of other non-ideal sampling conditions. Data with sporadic missing
values or inconvenient gaps, for example, can be approached by this outlook when framed
as irregularly sampled processes. These methods are also capable of estimating higher-order
moments (n > 2 in (6.2.4) and (6.2.7)), which are useful for analysis of jump-diffusion
processes (Anvari et al., 2016). On the effect of number of data points on the accuracy
of the estimated drift and noise functions, as HTBR and KTBR are inherently frequency
based calculations we expect them to perform similarly to previous methods (Mourik et al.,
2006; Kleinhans and Friedrich, 2007; Lamouroux and Lehnertz, 2009). The methods here are
demonstrated in one dimension, however extensions to higher dimensions is straightforward.
On a technical note, both HTBR and KTBR require a double summation when indexing
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Table 6.2: An overview of moment estimation techniques. Spaces marked as “?” have, to
our knowledge, not been investigated.

x-condition

τ -condition Histogram Kernel

Index HBR1 KBR2

Histogram HTBR3 ?

Kernel ? KTBR3

1 In Siegert et al. (1998).
2 In Lamouroux and Lehnertz (2009).
3 This study.

through X(t), resulting in a computation time that scales with the square of the length
of X(t). Alternatively, equations (6.2.4) and (6.2.7) can be trivially expressed as rolling
time-series operators, reducing the time to the product of length of X(t) and the average
number of observations in each time window. As with many statistical operators, it may
be possible to devise a more efficient algorithm with a complexity proportional only on the
length of X(t) (Eckner, 2019).

In the broader picture for stochastic processes, the methods presented here extend time-
shift conditioning from index-based methods to regressogram and kernel based methods. An
overview of these methods is shown in Table 6.2. This reflects similar work that has been
done for calculating the sample autocorrelation (or power spectra) from irregular data (Edel-
son and Krolik, 1988; Babu and Stoica, 2010; Rehfeld et al., 2011). In those examples
conditioning in only one dimension is necessary, whereas state dependent statistics require
conditioning also on the ordinate. We note that it is not strictly required to match histogram
conditioning in x with histogram conditioning in τ—and similarly for kernels. In theory, hy-
brid methods could be used, for example, kernel conditioning in x combined with histogram
conditioning in τ . To our knowledge such methods have not been investigated, however it is
not clear if such approaches would have significant advantages over HTBR or KTBR.
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Chapter 7

Conclusions and Outlook

Variations in the geomagnetic field occur over a broad range of timescales; however the
physical origins of many of these variations remain poorly understood. This thesis has
sought to investigate stochastic models of the geodynamo, using data produced by numerical
geodynamo simulations. This represents a connection between the magnetohydrodynamic
field generation in the planetary cores, and the modeling of complex systems through the
lens of stochastic differential equations.

The material presented in Chapter 4—and previously published in Davis and Buffett
(2021)—is the main focus of this thesis. It investigated the use of stochastic differential
equations as models for variations in axial dipole moment. This analysis was performed on a
set of numerical geodynamo simulations. The work was conducted in an inductive manner,
without any prior assumption of a particular field generation mechanism. The numerical sim-
ulations were conducted at high numerical resolutions, and considered a wide range of styles
of convection and different boundary conditions. As such, they represent significant exten-
sions to previous studies (Kuipers et al., 2009; Buffett et al., 2014; Meduri and Wicht, 2016).
From these simulations, the time-varying axial dipole moment was modeled as the trajectory
of a stochastic differential equation. The drift and noise functions were fitted using a sophis-
ticated inversion technique (Lehle and Peinke, 2018). This method enabled the relaxation
of the white noise approximation, and instead used a more suitable exponentially-correlated
noise. This represents a major improvement compared with previous studies, where the white
noise approximation was inappropriately adopted. The axial dipole moment variations were
modeled more accurately than in previous studies with this stochastic differential equation,
which is non-Markov and has a noise with a finite correlation time. This new technique
enabled self-consistency of the conditional moments and autocorrelation (see e.g., Fig. 4.2),
as well as producing models with the realistic property of well-defined time derivatives. The
stochastic models that were derived all had a remarkably simple form, consisting of a linear
drift term and a constant noise term, and were compared with the numerical power spectra
of the original data. Qualitatively good fits were found, especially at very low frequencies,
suggesting that these simple stochastic models are representative of a wide range of axial
dipole moment variabilities in the simulations. These results were interpreted in the con-
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text of proposed magnetic field generation mechanisms for planetary dynamos, including the
Earth’s (e.g., Buffett et al., 2014). Specifically, links between the stochastic models and pro-
posed field generation mechanisms were investigated and re-evaluated. Through re-analysis
of the magnetic induction mechanism, the amplitude of the noise was linked to helical turbu-
lent fluctuations that contribute towards the axial dipole field (e.g., Parker, 1955; Moffatt,
1970). A further extension also associated the characteristic time-scale of the stochastic
noise with the integral time-scale of helical turbulent fluctuations. A major extension to
previous studies was made with regard to the interpretation of the drift term. Contrary to
previous hypotheses, the drift was not only representative of ohmic dissipation and absolute
decreases in axial dipole moment (Buffett et al., 2013; Avery et al., 2017, 2019). Instead,
the drift reflected symmetric imbalances between ohmic dissipation and average inductive
field generation. Furthermore, these imbalances were almost exclusively accommodated by
the slowest decay mode, rather than combinations of modes (Buffett et al., 2014). The dis-
crepancy between the characteristic decay time of the axial dipole moment, compared with
the expected decay rate, may reflect turbulently enhanced magnetic diffusion of the slowest
magnetic mode.

The Earth’s magnetic field has reversed polarity numerous times in the geologic past.
As stochastic models in Chapter 4 were shown to be good representations of stable dipole
variations, Chapter 5 investigated whether stochastic models can also adequately reproduce
reversals. This question was investigated using the axial dipole moment data from a single
reversing numerical geodynamo simulation. The simulation represents a significant exten-
sion of previous studies, as it is both high-resolution and substantially longer than previous
simulations (Kuipers et al., 2009; Meduri and Wicht, 2016). From this simulation, the
time-varying axial dipole moment was modeled as the trajectory of a stochastic differential
equation. Like the analysis of Chapter 4, this work also relaxed the assumption of white noise
in the stochastic process (Lehle and Peinke, 2018). It was found that, although the stochastic
model was able to reproduce some statistics of the original axial dipole moment, there were
slight discrepancies in the statistics of polarity reversals (see Fig. 5.5). Although the stochas-
tic model could be altered to remedy this inconsistency, that resulted in inconsistencies in
other places. In particular, the conditional moments were no longer self-consistent. Despite
this failure, the stochastic model still predicted a reversal rate that was approximately a
factor of two different than the true rate. One possibility that was explored was that, if the
bias in the predicted reversal rate could be tolerated, then perhaps a stochastic model fitted
from a short numerical geodynamo simulation could be used to gain an (admittedly biased)
asymptotic reversal rate of that simulation. The motivation of this was to aid systematic
searches through parameter space for Earth-like geodynamo simulations (e.g., Kutzner and
Christensen, 2002; Christensen and Aubert, 2006; Christensen, 2011). With regard to the
example simulation in Chapter 5, it was found that statistically indistinguishable drift and
noise functions could be attained from approximately the first ∼ 20% of the original data.
Therefore, the stochastic differential equation prediction of the reversal rate could be at-
tained from fewer data. However, a direct calculation of the reversal rate with ∼ 20% of
the data produced a number that was close to the full data value, negating the utility of the
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stochastic model. Together with the bias present in the stochastic model prediction of the
reversal rate, the usefulness of this of this perspective has yet to be demonstrated.

Paleomagnetic observations show that Earth’s magnetic field has had long periods of
relative stability and quiescence, and periods of more frequent reversals. In order to interpret
paleomagnetic models of these observations in the framework of stochastic processes, as has
been done in, e.g., Buffett et al. (2013), sampling complications from the geologic record must
be considered (e.g., Buffett and Puranam, 2017). In particular, most paleomagnetic records
have been irregularly sampled, and thus the data must be approached carefully (Rehfeld
et al., 2011). This problem was considered in Chapter 6, where statistical methods for
fitting drift and noise functions from irregularly sampled time-series data were developed.
Two methods were introduced, and validated on a set of synthetic examples. The examples
considered comprise a variety of Langevin-like systems, including processes contaminated
with measurement noise, and non-Markov processes—complications that are present in the
analysis of paleomagnetic models (Buffett and Puranam, 2017).

7.1 Future Directions

The work in this thesis has advanced the understanding of mechanisms and representations
of magnetic field generation in fluid dynamos, as well as developed new techniques for the
fitting of stochastic differential equations from irregularly sampled time-series data. As such,
this work motivates a few possibilities for new and continued research.

The investigation of stable-polarity geodynamo simulations presented in Chapter 4 can
be continued in a few directions. A particularly interesting set of simulations for further
study would sample the transition between stable and reversing dipole fields. An ideal
regime to explore is geodynamo simulations with a fixed inner core boundary heat flux,
fixed core-mantle boundary temperature, and between 0% and 50% internal heating, i.e.,
models along paths 3, 4 and 5 in Kutzner and Christensen (2002). This can be investigated
through increasing the Rayleigh number, as long as the stability of the simulations is per-
mitted with adequate increases to the numerical resolution, and multipolar configurations
can be avoided (Olson and Christensen, 2006). This path would likely increase the magnetic
Reynolds number, reflecting more geophysically relevant flows. These changes could also be
performed in conjunction with moderate increases to the magnetic Prandtl number (Wicht
and Sanchez, 2019). The mode of linear drift and constant noise might continue onward to
higher magnetic Reynolds numbers, further than has been explored in this thesis. However,
such a configuration must surely break down when reversals initiate, and the role of magnetic
induction becomes dominant at low dipolar states. In my opinion, the most scientifically
valuable simulations will be those just beyond the critical Rayleigh number for the onset
of reversals. As the influence of convective fluctuations continues to increase, a transition
from stable to reversing states occur. At that point, reversals should be present but rare,
allowing for a careful investigation of deviations from the linear drift and constant noise
stochastic hypothesis. However it is not clear how this would be reflected in the field genera-
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tion mechanisms identified in Chapter 4. Such an investigation would also test the predicted
sharp dependency of the strength of convective fluctuations on reversal rate (e.g., Fig. 4.10),
which has been previously indicated in simulations (Olson and Amit, 2014). Similarly, the
role of turbulent diffusion of the magnetic field would likely be altered (Braginsky and
Meytlis, 1990; Jones, 2008; Tobias, 2021), and may be reflected differently in the drift term
at low dipole moment. Exploring the nature of these deviations from the stochastic models
of Chapter 4 will assist in future insights into the nature of field generation in planetary
magnetic fields and fluid dynamos (Jones, 2011).

Another geophysically relevant regime that can be explored comprises dynamo simula-
tions at low Rayleigh numbers and moderate magnetic Prandtl numbers (Dormy, 2016).
This branch of solutions is typically characterized by particularly strong, dipole-dominated
fields; however, the physical mechanism for magnetic field generation at these conditions has
not been investigated (Dormy et al., 2018). The interpretation of the dipole evolution of
these simulations as stochastic models would enable a partitioning the dynamics into slow
decay and fast fluctuations, facilitating investigation of the field generation mechanisms.

In the stable-polarity geodynamo simulations presented in Chapter 4, the noise term
was found to reflect helical convective action that contributes towards the axial dipole field,
through the α-effect (Moffatt, 1970). This does not rule out other mechanisms of magnetic
induction in other fluid dynamos; for example, dynamos where the ω-effect is more efficient
for field generation (Roberts, 2015). This would be present in dynamos with strong toroidal
fields, which may be relevant for the Earth (e.g., Buffett and Bloxham, 2002). To my
knowledge, geodynamo simulations where this effect is important have not been investigated
in a stochastic differential equation model. As was the case with the geodynamo simulations
in Chapter 5, such a model may be useful for linking internal field generation to the external
field.

Focusing on stochastic modeling, there are many avenues for future research. The most
immediately obvious direction is extending the scalar stochastic differential equation to in-
clude an appropriate order parameter for the toroidal field. This could be, for example,
the amplitude of the slowest fundamental toroidal decay mode. The interaction between
these poloidal and toroidal order parameters is likely complicated and non-linear, and will
require careful non-parametric fitting and verification. This direction is of particular inter-
est because, as pointed out by Scullard and Buffett (2018), the ratio between the slowest
toroidal and poloidal modes is only ∼ 1/3. Such a high fraction suggests an incomplete
separation of fast and slow timescales necessary for the validity of single-variable Langevin
models (e.g., Risken, 1996). This investigation would be particularly interesting because the
toroidal field cannot exit the core (Roberts and Lowes, 1961). If the poloidal and toroidal
order parameters are not completely uncorrelated, it may be possible to infer attributes of
the unobservable toroidal field from the exterior poloidal field.

Stochastic models could also be used as time-dependent descriptions of higher order Gauss
coefficients. This approach has been previously explored for individual Gauss coefficients on
short timescales (Gillet et al., 2013; Bouligand et al., 2016). However cross-dependencies of
coefficients—like that of the covariances described by giant Gaussian processes (e.g., Bono
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et al., 2020)—have not been considered. In this case, a vector-valued stochastic differen-
tial equation describing the evolution of a number of Gauss coefficients would serve as a
statistical representation of field variation. Even just the addition of equatorial dipole com-
ponents would allow for the investigation of directional variations. This may prove useful
for paleomagnetic modeling (Constable, C., personal communication).

For analyses of variations in the virtual axial dipole inferred from paleomagnetic models
(e.g., Buffett et al., 2013), investigations into sources of measurement effects should be
continued (e.g., Buffett and Puranam, 2017). Rather than turning to heavily regularized
models built from continuous paleomagnetic measurements, an alternative direction could
be a direct analysis of the irregularly spaced, discrete measurements from igneous sources.
This may be explored using the new fitting techniques developed in Chapter 6, along with
the recently-updated compilation of paleomagnetic intensity measurements present in the
PINT database (Bono et al., 2022). Such an analysis may be incorporated into a wider,
comprehensive model for paleofield fluctuations (e.g., Morzfeld and Buffett, 2019), and may
enable the fitting of stochastic models for field variations through geologic time. If the
proposed links between stochastic models and interior geodynamo mechanisms suggested in
numerical simulations are applicable for the Earth, then this approach may allow inference
of core dynamics through geologic history.

Another application of the new modeling methods of Chapter 6 is the analysis of ma-
rine magnetic anomalies (Gee and Kent, 2007). Although traditionally only viewed in the
perspective of dipole polarity (Cande and Kent, 1995), continued work has revealed subtle
signals that reflect shorter-scale field variations (Gee et al., 1996; Gee et al., 2000; Avery
et al., 2017). Preliminary stochastic models for this record have been investigated (Gee
et al., 2016); however, new analysis may be enabled by recently available high-resolution,
irregularly-sampled near-bottom magnetic intensity measurements (Maher et al., 2021).
These measurements may provide additional constraints for comprehensive stochastic mod-
els of field variations (e.g., Morzfeld and Buffett, 2019). Additionally, if the paleofield can
be adequately established from other independent sources, then analysis into the emergent
measurement effects present (e.g., in the style of Buffett and Puranam, 2017) may provide
a window into understanding mid-ocean ridge magmatic processes.

For many of these proposed applications of stochastic modeling, attempting an induc-
tive investigation requires more complicated fitting techniques. This is especially true if one
wants to avoid the unrealistic properties of the white noise idealization. For instance, in the
fitting of scalar SDEs in Lehle and Peinke (2018), relaxation of the white noise approximation
to exponentially correlated noise required substantial effort. It is not clear whether similar
approaches are possible for two-, three-, or N -dimensional stochastic differential equations.
One drastic, but perhaps necessary option is to abandon the inverse modeling approach
altogether. The alternative is to use optimization-based forward modeling methods. This
approach would start with parameterized drift and noise functions and latent random vari-
ables representing the noise, and compare the resulting pathwise trajectory with empirical
data. The parameterized functions and latent states could then be optimized with respect
to the misfit between the prediction and data. This approach may not be completely im-
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practical if the gradient of the misfit with respect to parameters can be efficiently calculated.
In fact, this approach has been realized in the field of machine learning, where it is referred
to as “neural SDEs” (e.g., Movellan et al., 2002). Although previous implementations of
this approach have had to resort to computationally inefficient methods (Yang and Kushner,
1991; Gobet and Munos, 2005; Giles and Glasserman, 2006), recent research promises feasi-
ble scaling to high dimensions (Li et al., 2020). If these methods prove to be flexible and
computationally efficient, they may provide a promising direction for future investigation of
stochastic models of the geodynamo and geomagnetic field.
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Raffi, I. (2005). “Astronomical pacing of late Palaeocene to early Eocene global warming
events”. Nature 435.7045, pp. 1083–1087.

Lowes, F. (1966). “Mean-square values on sphere of spherical harmonic vector fields”. Journal
of Geophysical Research 71.8, pp. 2179–2179.

Lowrie, W. and Kent, D. V. (2004). “Geomagnetic Polarity Timescales and Reversal Fre-
quency Regimes”. Timescales Of The Paleomagnetic Field 145, pp. 117–129.

Lunt, D. J., Ridgwell, A., Sluijs, A., Zachos, J., Hunter, S., and Haywood, A. (2011). “A
model for orbital pacing of methane hydrate destabilization during the Palaeogene”.
Nature Geoscience 4.11, pp. 775–778.

Mahalanobis, P. C. (1936). “On the generalized distance in statistics”. In: National Institute
of Science of India.

Maher, S. M., Gee, J. S., Cheadle, M. J., and John, B. E. (2021). “Three-dimensional mag-
netic stripes require slow cooling in fast-spread lower ocean crust”. Nature 597.7877,
pp. 511–515.

Majda, A., Abramov, R. V., and Grote, M. J. (2005). Information theory and stochastics for
multiscale nonlinear systems. Vol. 25. American Mathematical Soc.

Malin, S. (1987). “Historical introduction to geomagnetism”. In: Geomagnetism. Ed. by J. A.
Jacobs. Vol. 1. Academic Press London, pp. 1–49.



BIBLIOGRAPHY 127

Mandea, M., Holme, R., Pais, A., Pinheiro, K., Jackson, A., and Verbanac, G. (2010). “Ge-
omagnetic jerks: rapid core field variations and core dynamics”. Space science reviews
155.1, pp. 147–175.

Marzocchi, W. (1997). “Missing reversals in the geomagnetic polarity timescale: Their influ-
ence on the analysis and in constraining the process that generates geomagnetic rever-
sals”. Journal of Geophysical Research: Solid Earth 102.B3, pp. 5157–5171.

Matsui, H., King, E., and Buffett, B. (2014). “Multiscale convection in a geodynamo sim-
ulation with uniform heat flux along the outer boundary”. Geochemistry, Geophysics,
Geosystems 15.8, pp. 3212–3225.

Matsui, H., Heien, E., Aubert, J., Aurnou, J. M., Avery, M., Brown, B., Buffett, B. A.,
Busse, F., Christensen, U. R., Davies, C. J., et al. (2016). “Performance benchmarks
for a next generation numerical dynamo model”. Geochemistry, Geophysics, Geosystems
17.5, pp. 1586–1607.

Mauersberger, P. (1956). “Das mittel der energiedichte des geomagnetischen hauptfeldes an
der erdoberflache und seine saulare anderung”. Gerlands Beitr. Geophys. 65, pp. 207–215.

Mazaud, A. and Laj, C. (1989). “Simulation of geomagnetic polarity reversals by a model of
interacting dipole sources”. Earth and planetary science letters 92.3-4, pp. 299–306.

McDonough, W. (2003). “3.16–Compositional model for the Earth’s core”. Treatise on geo-
chemistry 2, pp. 547–568.

McElhinny, M. W. and McFadden, P. L. (1999). Paleomagnetism: continents and oceans.
Elsevier.

McFadden, P. and Merrill, R. (1984). “Lower mantle convection and geomagnetism”. Journal
of Geophysical Research: Solid Earth 89.B5, pp. 3354–3362.

McInerney, F. A. and Wing, S. L. (2011). “The Paleocene-Eocene Thermal Maximum: A
perturbation of carbon cycle, climate, and biosphere with implications for the future”.
Annual Review of Earth and Planetary Sciences 39, pp. 489–516.

McMullin, E. (1968). “What do physical models tell us?” In: Studies in Logic and the Foun-
dations of Mathematics. Vol. 52. Elsevier, pp. 385–396.

McMullin, E. (1985). “Galilean idealization”. Studies in History and Philosophy of Science
Part A 16.3, pp. 247–273.

Meduri, D. G., Biggin, A. J., Davies, C. J., Bono, R. K., Sprain, C. J., and Wicht, J. (2021).
“Numerical dynamo simulations reproduce paleomagnetic field behavior”. Geophysical
Research Letters 48.5, e2020GL090544.

Meduri, D. G. and Wicht, J. (2016). “A simple stochastic model for dipole moment fluctua-
tions in numerical dynamo simulations”. Frontiers in Earth Science 4, p. 38.

Merrill, R., McElhinny, M., and McFadden, P. (1998). The Magnetic Field of the Earth: Pa-
leomagnetism, the Core, and the Deep Mantle. International geophysics series. Academic
Press. isbn: 9780124912465.

Mil’shtejn, G. (1975). “Approximate integration of stochastic differential equations”. Theory
of Probability & Its Applications 19.3, pp. 557–562.

Moffatt, H. K. (1978). “Field generation in electrically conducting fluids”. Cambridge Uni-
versity Press, Cambridge, London, New York, Melbourne 2, pp. 5–1.



BIBLIOGRAPHY 128

Moffatt, H. (1970). “Turbulent dynamo action at low magnetic Reynolds number”. Journal
of Fluid Mechanics 41.2, pp. 435–452.

Molina-Card́ın, A., Dinis, L., and Osete, M. L. (2021). “Simple stochastic model for geomag-
netic excursions and reversals reproduces the temporal asymmetry of the axial dipole
moment”. Proceedings of the National Academy of Sciences 118.10.

Mori, N., Schmitt, D., Wicht, J., Ferriz-Mas, A., Mouri, H., Nakamichi, A., and Morikawa,
M. (2013). “Domino model for geomagnetic field reversals”. Physical Review E 87.1,
p. 012108.

Morzfeld, M. and Buffett, B. A. (2019). “A comprehensive model for the kyr and Myr
timescales of Earth’s axial magnetic dipole field”. Nonlinear Processes in Geophysics
26.3, pp. 123–142.

Morzfeld, M., Fournier, A., and Hulot, G. (2017). “Coarse predictions of dipole reversals by
low-dimensional modeling and data assimilation”. Physics of the Earth and Planetary
Interiors 262, pp. 8–27.

Mourik, A. M. van, Daffertshofer, A., and Beek, P. J. (2006). “Estimating Kramers–Moyal
coefficients in short and non-stationary data sets”. Physics Letters A 351.1-2, pp. 13–17.

Movellan, J. R., Mineiro, P., and Williams, R. J. (2002). “A Monte Carlo EM approach
for partially observable diffusion processes: theory and applications to neural networks”.
Neural computation 14.7, pp. 1507–1544.

Naidu, P. (1971). “Statistical structure of geomagnetic field reversals”. Journal of Geophysical
Research 76.11, pp. 2649–2662.

Nakamichi, A., Mouri, H., Schmitt, D., Ferriz-Mas, A., Wicht, J., and Morikawa, M. (2012).
“Coupled spin models for magnetic variation of planets and stars”. Monthly Notices of
the Royal Astronomical Society 423.4, pp. 2977–2990.
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Appendix A

Kernel Estimation

Conditional increments in expression (4.3.5) are commonly calculated through histogram
methods (e.g., Siegert et al., 1998). Typically the evaluation range of x is divided into n
non-overlapping and equal width bins Bl. A bin counting function such as

B(X(t);x, n) =

n∑
l=1

I(x ∈ Bl)I(X(t) ∈ Bl)

N

〈
n∑
l=1

I(x ∈ Bl)I(X(t) ∈ Bl)

〉 , (A.0.1)

where I is the indicator function, assigns weights to the data. The expression for a conditional
increment becomes

B(X(t);x, n)[X(t+ τ)−X(t)]. (A.0.2)

Although this method is computationally inexpensive, it has undesirable properties such
as only offering estimates at the center of the bins, and sharp cutoffs between data just
outside a bin. Alternatively, density estimation kernels can be evaluated at arbitrary points,
and have a well defined scale parameter through explicit choice of bandwidth. For these
reasons, we use the kernel based method of Lamouroux and Lehnertz (2009) to estimate the
conditional increments.

For an arbitrary evaluation point on x, the influence of a single increment at X(t) is
weighted by their scaled distance (the Nadaraya-Watson estimator)

W (X(t);x, h) =
K(x−X(t);h)〈
K(x−X(t);h)

〉 . (A.0.3)

The length scaling of choice is made explicit by the bandwidth, h, that modulates the range
of the kernel

K(◦;h) =
1

h
κ(◦/h). (A.0.4)
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We use the Epanechnikov kernel

κ(x) =

{
3

4
√

5
(1− x2/5), if x2 ≤ 5

0, otherwise
(A.0.5)

for its computationally desirable properties (Silverman, 1986). Conditional increments indi-
cated in expression (4.3.5) that are calculated through this method are now defined by

∆X(t;x, τ, h) = W (X(t);x, h)[X(t+ τ)−X(t)]. (A.0.6)

To choose a bandwidth, we use a modified version of the normal reference selector of Fan
and Gijbels (1996)

ĥopt = 2.34snn
−1/5, (A.0.7)

where sn is the sample standard deviation and n is the number of data points divided by
the estimated number of correlated time-steps, see Appendix B.
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Appendix B

Correlation Time Fitting

Lehle and Peinke (2018) showed that for a process X(t) with autocorrelation

A(τ) = 〈X(t+ τ)X(t)〉, (B.0.1)

the increments of this function

∆A(τ) = A(τ)− A(0), (B.0.2)

can be represented by basis functions (4.3.12) in the form

∆A(τ) ≈
3∑
i=1

λiri(τ ; θ), (B.0.3)

accurately up to O(τ 3).
To fit correlation time θ, we first calculate sample autocorrelation increments (B.0.2) on

time-shift evaluation points T ,

(∆A)i = ∆̂A(Ti), (B.0.4)

where index i refers to the ith element of the T vector, and the hat symbol on ∆A denotes this
is sample statistic. Using matrix Rij(θ) defined by (C.0.2), we find the optimum correlation

time θ̂ from a grid search on

arg min
θ

∑
i

[
(∆A)i −Rijλj

]2
, (B.0.5)

where λj is found through the method of least squares

λj =
(
RjiRij

)−1
Rji(∆A)j. (B.0.6)
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Appendix C

Compact Notation of Moments and
Related Quantities

Discrete values for estimates of the first two moments are computed using (4.3.7)–(4.3.8)
and are represented in matrix form as

M
(k)
ij = M̂ (k)(Xj, Ti;h), k = 1, 2. (C.0.1)

where index i refers to the ith element of the T vector and j refers to the jth element of the
X vector. Similarly, the matrices of basis functions (4.3.12) and corresponding coefficients
are written in matrix form as

Ril = rl(Ti; θ), (C.0.2)

λ
(k)
lj = λ

(k)
l (Xj), (C.0.3)

respectively.
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Appendix D

Supplementary Material for Chapter 4

Contents

1. Figures D.1 to D.12.
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Figure D.1: Conditional moments and sample autocorrelation for combined cases TB0 and
TB00, as Fig. 4.2.
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Figure D.2: Conditional moments and sample autocorrelation for case TB1, as Fig. 4.2.
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Figure D.3: Conditional moments and sample autocorrelation for case B2, as Fig. 4.2.
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Figure D.4: Drift and noise functions fitted from combined cases TB0 and TB00, as Fig.
4.3.
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Figure D.5: Drift and noise functions fitted from case TB1, as Fig. 4.3.
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Figure D.6: Drift and noise functions fitted from case B2, as Fig. 4.3.
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Figure D.7: Power spectra for cases TB0 and TB00. As Fig. 4.4, except cases TB0 and
TB00 are shown with a black and blue line, respectively.
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Figure D.8: Power spectrum for case TB1, as Fig. 4.4.
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Figure D.9: Power spectrum for case B2, as Fig. 4.4.
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Figure D.10: Trajectories of individual mode amplitudes from case TB00, as Fig. 4.7.
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Figure D.11: Trajectories of individual mode amplitudes from case B2, as Fig. 4.7.
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Figure D.12: Trajectories of individual mode amplitudes from case B3, as Fig. 4.7.




