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Abstract 

High-Throughput Single-Molecule Diffusivity Analysis: New Approaches and Applications 

by 

Ha Hyung Park 

Doctor of Philosophy in Chemistry 

University of California, Berkeley 

Professor Ke Xu, Chair 

 

Following the popularization of super-resolution microscopy for biological research, the advent of 
functional super-resolution microscopy enabled decoding high-throughput single-molecule signals 
in single-molecule localization microscopy (SMLM) and extracting multiple physical parameters 
beyond the structure of the target system. Among those parameters, the diffusivity of single 
molecules has provided deeper insight into biological systems as diffusion is one of the key 
mechanisms that carry out life processes and as the diffusivity reflects multiple physicochemical 
parameters and thus properties of the microenvironment. This dissertation describes applications 
of the recently developed wide-field ultrahigh-throughput diffusion coefficient analysis and a new 
method that enables the equivalent measurement without sophisticated hardware setup. By 
extensively tracking diffusion behaviors of proteins in nanometer-sized matrix structured hydrogel, 
I drew a comprehensive picture of how different sizes of meshwork affect the protein diffusion 
coefficients, as well as how such an effect is differentiated by the relative size of proteins to the 
meshwork. Then, I introduce a new approach to extract diffusion coefficients out of conventional 
SMLM by incorporating single-molecule image processing through a convolutional neural 
network. In the last chapter, I summarized efforts on taking the SMLM diffusion analysis to a 
greater extent.     
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Chapter 1: Introduction 

 

1.1. Single-molecule imaging and localization 

1.1.1. Molecular fluorescence 

 The quantum mechanical structure of molecules is defined by the energy states of 
electrons: how those energy states (or molecular orbitals) are constructed, and how electrons are 
distributed among those energy states. The electronic configuration of molecules in the ground 
state is such that their energy levels are occupied in order of increasing energy. These ground-state 
molecules can be excited by external stimuli, such as photons. The excitation process takes place 
in subfemtosecond timescales, so that atomic nuclei cannot follow the relocation of the electron 
simultaneously, resulting in vibrationally excited molecules (vertical transition, Franck-Condon 
principle).1 The vibrational energy soon dissipates into the surroundings (typically, solvent 
molecules). This thermal relaxation process usually takes picoseconds in the condensed phases, 
and the resulting electronically excited, vibrationally relaxed state has a nanosecond lifetime 
before it decays back to the electronic ground state. Such a closed-circuit involving molecule 
emission is called fluorescence, as the electronic excitation and relaxation accompany the 
absorption and emission of photons, respectively.  

However, molecules cannot absorb or emit just any wavelength of light; their energy states 
are quantized, and only a photon with an energy that matches the energy difference between two 
states can cause an electronic transition. Therefore, the wavelengths of the photons corresponding 
to the fluorescence process are characteristic of the molecule. In the condensed phases, the 
emission wavelength is always longer than the absorption wavelength as the fluorescence emission 
takes place after the thermal relaxation. Such properties of molecular fluorescence led to the 
utilization of those molecules having strong fluorescence (both absorption and emission), dye 
molecules, in scientific research.2,3  

  

1.1.2. Fluorescence microscopy 

 Scientific studies often rely on visual evidence. Shapes sometimes tell much more than 
how they look, such as how they work and what they do – the correlation between structures and 
functions is one of the main strategies to understand rather complex systems. The logic applies the 
same to the microscopic world: visual clues frequently project properties and mechanisms of 
cellular machineries and molecules. Among different classes of microscopy, optical microscopy 
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has been the most popularized tool to interrogate biological systems as visible light is the 
wavelength window that minimally interferes with cellular components.4 Specifically, 
fluorescence optical microscopy is widely adopted for biological research, due to its target 
specificity.2,3 The choice of excitation wavelength selectively activates fluorescence dyes, and the 
emission wavelength differentiated from the excitation wavelength allows background-free, high-
sensitivity detection of the target.  

 However, the tool has a fundamental limitation of spatial resolution. The spatial resolution 
is a metric of how close two light sources (here, fluorescence target molecule) can be placed while 
we can still see those as two. Thus, it is the performance of the microscopy that determines how 
much of the structural details can be obtained. As a point light source through the optical setup of 
a circular aperture generates the diffraction pattern of the first-order Bessel function of the first 
kind, the intensity pattern of the point source (point spread function, PSF) is the square of the 
function (Airy disk).5 To separately identify two PSFs, the distance must be at least the radius of 
the first minimum of the Airy disk. This criterion defined by Lord Rayleigh can be described as: 

sin𝜃𝜃𝑅𝑅 ≈ 1.22 𝜆𝜆
𝐷𝐷

     (1.1) 

where θR is the angular resolution at the circular aperture, λ is the wavelength of the light, D is the 
diameter of the lens. With the approximation that θR is small, the microscope resolution is defined 
by: 

𝑅𝑅 = 1.22 𝜆𝜆
𝑁𝑁𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

= 0.61𝜆𝜆
𝑁𝑁𝑁𝑁

= 0.61𝜆𝜆
𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐿𝐿

   (1.2)  

where R is the resolution, NA is the numerical aperture, n is the refractive index of the medium, 
and θL is the half angle of the lens aperture. In epifluorescence microscopy, the light condenser 
and objective lens are identical, and the resolution of the setup is determined by the NA of the 
objective lens and wavelength used for imaging. For a typical high-resolution oil immersion lens, 
NA is around 1.4, therefore the spatial resolution of fluorescence microscopy using visible light 
(400~700 nm wavelength) is around 200~300 nm. Considering the main (functional) components 
of biological systems, proteins, are a few nanometers in size, this resolution may limit the usage 
of fluorescence microscopy to discover biological processes in detail. Moreover, in practical 
situations, these biological components are often in a state of motion, which can further complicate 
the microscopy readouts: the convolution of the PSFs over thousands of photons collected along 
the motion trajectory during the acquisition time.  

 

1.1.3. Single-molecule localization microscopy 

 Recent decades have witnessed overcoming the resolution limit of optical imaging 
through engineering microscopy methods. Although different methods have been developed, 
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namely STORM (Stochastic Optical Reconstruction Microscopy),6 PALM (PhotoActivated 
Localization Microscopy),7 or PAINT (Points Accumulation for Imaging in Nanoscale 
Topography),8 they share the same principle to achieve higher spatial resolution: single-molecule 
localization microscopy (SMLM). Instead of activating all fluorescence molecules as in 
conventional fluorescence microscopy, SMLM sparsely activates target molecules so that their 
signals are not overlapping (thus, distinguishable under Rayleigh’s criterion). Individual single-
molecule signals then are fitted to PSF models (the Bessel function, or more commonly 
approximated to Gaussian) to precisely define the position of each molecule. By accumulating 
single-molecule localizations for multiple frames, a super-resolved image of the target can be 
rendered. Since each microscopy frame is a convolution of photons collected during acquisition 
time, the lateral localization error of the molecular position is wPSF/√N (wPSF is the width of PSF, 
N is the number of photons).9 This term in SMLM is typically 10~30 nm, meaning rendered 
features in the super-resolution image have lateral precisions in the given scale. The breakthrough 
of this microscopy technique enabled landmark discoveries of cellular structures and provided 
crucial insights into understanding their functions.10–13      

 

1.2. Single-molecule displacement/diffusivity mapping (SMdM) 

1.2.1. Functional single-molecule localization microscopy 

 Although SMLMs provided unprecedented structural details on structures, yet the 
information available is limited to spatial coordinates (either 2D or 3D) of fluorescence molecules. 
Biological systems and their behaviors are rather complex, and essential insights to understand 
their mechanisms and processes are often embedded in physical and chemical properties alongside 
the structure. The development of functional SMLM directly aimed to tackle this by decoding 
single-molecule signals and extracting additional information on top of the spatial coordinate (thus, 
an additional dimension).14 The first example of multi-dimensional SMLM is demonstrated by 
using solvatochromic dyes, of which optical properties are responsive to microscopic local 
environments such as polarity.15 Correlative imaging of single-molecule spectra to their positions 
revealed that different cellular membranes are differentiated by chemical compositions. 
Alternatively, fluorescence excitation engineering enabled the tracing of fast-diffusing molecules 
to map out diffusion coefficients correlatively to the super-resolution SMLM images.16 Diffusivity 
maps of a protein inside cells showed high coherence with the cellular architectures and that the 
proteins diffused slowly in sterically hindered parts.  

 

1.2.2. Super-resolution diffusion coefficient mapping  
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The localization precision of 10~30 nm in SMLM is for static molecules. However, free 
molecules are continuously in motion so that even large molecules like proteins move hundreds of 
nanometers in milliseconds. Therefore, the few-millisecond frame exposure time of typical high 
quantum-yield single-molecule imaging results in extensively blurry single-molecule signals. 
Moreover, it is highly likely that each molecule captured in one frame will move out of the focus 
in the next frame (Figure 1a). Single-molecule displacement/diffusivity mapping (SMdM) 
overcame these by introducing tandem stroboscopic excitation, by placing the illumination pulse 
(typically, a few hundreds of microseconds) in the odd frames near the end of camera acquisition 
and another pulse in the even frames near the beginning of the acquisition.16 By reducing the 
motion blur and thus localization error by shorter illumination (Figure 1b), and by enhancing 
effective time resolution (down to sub milliseconds) between odd-even frames by pulse timing 
modulation (Figure 1c), SMdM successfully captures freely diffusing molecules and their 
displacement. The collected step displacements are processed through the maximum-likelihood 
estimation (MLE) of the 2D-Brownian diffusion, which yields the 2D-diffusion coefficient of the 
target molecule (Figure 1d). If the sample is spatially heterogeneous, those step displacements can 
be accumulated on a grid of ~100 nm and generate a super-resolved diffusivity map. Alternatively, 
when the sample is homogenous, it provides high-throughput diffusivity analysis without spatial 
binning.  

 

Figure 1. SMdM illumination configuration and SMdM data from fluorescently labeled protein. 
(a) Under conventional illumination of fluorescence microscopy, typical freely diffusing proteins give 
motion-blurred signals and are highly likely to diffuse out of the focal plane in the consecutive frame. (b) 
Under stroboscopic illumination, as illumination time is decreased, signals of diffusing single-molecules 
are less blurred but are still not trackable. (c) When a pair of stroboscopic illumination pulses are placed 
near the frame-edge, the effective time resolution increases, and freely diffusing molecules are captured in 
the pair of frames. (d) SMdM data and analysis result for IgG labeled with Alexa Fluor 647 (AF647). By 
repeating the illumination sequence shown in (c) and localizing single-molecule signals, step distances of 
single-molecules can be calculated between each pair of frames. The collection of step distances (histogram) 
is processed with the maximum-likelihood estimation (MLE; blue curve) and yields the diffusion 
coefficient. (a)-(c) modified with permission from Xiang et al.16 Copyright 2020 Springer Nature. 
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1.3. Thesis overview 

In chapter 2, I present the study on hindered diffusion of proteins in wide ranges of the 
nanomatrix sizes formed inside synthetic hydrogels. By repurposing the recently popularized 
expansion microscopy to control the meshwork size of hydrogels,17,18 we examine the size-
dependent suppression of molecular diffusivity in the resultant tuned hydrogel nanomatrices over 
a wide range of polymer fractions of ~0.14−7 wt %. We show that with a fixed meshwork size, 
larger molecules exhibit more impeded diffusion and that, for the same molecule, diffusion is 
progressively more suppressed as the meshwork size is reduced; this effect is more prominent for 
the larger molecules. Moreover, we show that the meshwork-induced obstruction of diffusion is 
uncoupled from the suppression of diffusion due to increased solution viscosities. Thus, the two 
mechanisms, respectively, being diffuser-size-dependent and independent, may separately scale 
down molecular diffusivity to produce the final diffusion slowdown in complex systems like the 
cell. 

In chapter 3, I present the development of high-resolution diffusivity mapping from 
single-molecule microscopy using a convolutional neural network. While critical to biological 
processes, molecular diffusion is difficult to quantify, and spatial mapping of local diffusivity is 
even more challenging. Here I introduce a machine-learning-enabled approach, pixels-to-
diffusivity (Pix2D), to directly extract the diffusion coefficient D from single-molecule images, 
and consequently enable super-resolved D spatial mapping. Working with single-molecule images 
recorded at a fixed framerate under typical single-molecule localization microscopy (SMLM) 
conditions, Pix2D exploits the often undesired yet evident motion blur, i.e., the convolution of 
single-molecule motion trajectory during the frame recording time with the diffraction-limited 
point spread function (PSF) of the microscope. Whereas the stochastic nature of diffusion imprints 
diverse diffusion trajectories to different molecules diffusing at the same given D, we construct a 
convolutional neural network (CNN) model that takes a stack of single-molecule images as the 
input and evaluates a D value as the output. We thus validate robust D evaluation and spatial 
mapping with simulated data, and with experimental data successfully characterize D differences 
for supported lipid bilayers of different compositions and resolve gel and fluidic phases at the 
nanoscale. 

 

Publications reproduced in this dissertation are listed below. Permission has been granted by all 
critical co-authors for the reproduction of the work in the dissertation. 

 

H. H. Park, A. A. Choi, and K. Xu. “Size-dependent suppression of molecular diffusivity in 
expandable hydrogels: A single-molecule study.” Journal of Physical Chemistry B 127, (2023): 
3333-3339. Published as part of The Journal of Physical Chemistry virtual special issue “Xiaoliang 
Sunney Xie Festschrift”. 
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H. H. Park, B. Wang, S. Moon, T. Jepson, and K. Xu. “Machine-learning-powered extraction of 
molecular diffusivity from single-molecule images for super-resolution mapping.” 
Communications Biology 6, (2023): 336. 
 
A. A. Choi, H. H. Park, K. Chen, R. Yan, W. Li, and K. Xu, “Displacement Statistics of Unhindered 
Single Molecules Show no Enhanced Diffusion in Enzymatic Reactions.” Journal of American 
Chemical Society 144, (2022): 4839-4844. 
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Chapter 2: Size-dependent suppression of molecular diffusivity in 
expandable hydrogels: A single-molecule study 

 

The work in this chapter was conducted in collaboration with Alexander A. Choi and Ke 
Xu. It is reproduced in part here from ref.19 and with permission from all coauthors. Copyright 
2023 American Chemical Society.  

2.1. Introduction 

Molecular diffusion underlies vital physical and chemical processes that govern the 
dynamic behaviors of non-equilibrium systems, including the living cell.20–24 However, it remains 
unresolved how and why the intracellular molecular diffusivity scales with the diffuser size.25–30 
Whereas current models often assume that, for molecules ≲30 kDa, the intracellular diffusion 
coefficients D are ~25% of that in vitro (Dcyto/Dwater ~ 0.25) and that this ratio drops substantially 
to ≲0.05 for molecules ≳50 kDa,20,24,27 we and collaborators have recently shown that in the 
mammalian cell, the diffusion of small (≲1 kDa) molecules is only modestly suppressed to 
Dcyto/Dwater ~ 0.730 and that, in the bacterial cytoplasm, Dcyto/Dwater drops slowly over the 20−300 
kDa range.29  

Suppressed intracellular diffusion beyond that is expected from the modestly (20−40%) 
higher viscosity of the cytosol over water31 is often attributed to obstruction from the nanoscale 
architectures in the cell. An earlier study has shown that nanomatrices/meshworks formed by 
cross-linked actin filaments partly recapitulate the diffuser size-dependent slowdown of diffusion, 
so that at 8 mg/mL (~0.8 wt %) actin, substantial suppressions of D are observed for large DNA 
molecules.26 In contrast, no diffuser size-dependent diffusion slowdown is observed with 
alternative crowding agents such as cytosol or Ficoll-70 polymer solutions,26 thus emphasizing the 
importance of cross-linked meshworks, i.e., hydrogels, in the size-dependent obstruction of the 
diffusion of large molecules. Apart from providing a valuable platform to understand obstructed 
diffusion, molecular diffusion in hydrogels also plays a vital role in diverse biomedical, chemical, 
and material applications ranging from drug delivery to separation science.32–35 Recent years have 
seen increased interest in examining the diffusion and dynamics of biomolecules and particles in 
synthetic hydrogels with modern microscopy tools.33,36–38 However, as each study only tests a few 
polymer conditions defined by the starting monomer concentrations, they do not provide a 
complete picture of how the evolution of the meshwork size gives rise to transitions between 
unimpeded and impeded diffusions. Varying the starting monomer concentrations may further 
affect the polymerization kinetics and lead to altered microscopic structures beyond simple 
rescaling of the meshwork size.39 Thus, it remains a challenge to elucidate how the meshwork size 
itself controls obstructed diffusion. 
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In this work, we achieve continuous fine-tuning of the hydrogel nanomatrix meshwork 
size by borrowing the recent success of expandable hydrogels with high-resolution 
microscopy,17,18 including single-molecule and super-resolution microscopy applications.40–43 By 
starting with the same monomer concentrations for polymerization and then expanding the 
resultant hydrogel in a different way, this approach leaves the geometric expansion of meshwork 
size as the only variable. Integrating our recent development of single-molecule 
displacement/diffusivity mapping (SMdM),16,30,44,45 which measures D with high fidelity via 
stroboscopic-illumination-enabled wide-field detection of diffusing single molecules,46,47 we 
quantify diffusion-hindering effects in this controllably tuned system. We thus show that under the 
same hydrogel expansion condition and hence a constant meshwork size, increasingly impeded 
diffusion occurs for the larger molecules. By fine-tuning the expansion ratio to achieve a wide 
range of polymer fractions of ~0.14−7 wt %, we then show that for the same molecule, diffusion 
is progressively more suppressed with reduced meshwork sizes, and that this effect is more 
prominent for the larger molecules. Moreover, we show that the meshwork-induced obstruction of 
diffusion is uncoupled from diffusion suppressions due to increased solution viscosity, so the two 
mechanisms may separately scale down D to produce the final diffusion slowdown. 

2.2. Results and discussions 

2.2.1. Controllable expansion of the hydrogel 

Expansion microscopy17,18 starts by embedding a (biological) sample in a swellable ionic 
hydrogel48,49 of cross-linked poly(acrylamide-co-sodium acrylate). Upon hydration, the hydrogel 
expands isotropically owing to the repulsive charges on the acrylate residues on the polymer chain. 
Whereas most expansion-microscopy applications use the maximal expansion (~4.5× in each 
dimension; ~100× in volume) to enlarge structural details, we reason that this system may be 
repurposed to generate continuously tunable matrix pore sizes and polymer fractions in the final 
hydrogel, ideal for elucidating the size-dependent diffusion properties of macro(bio)molecules 
(Figure 2 and Figure 3a). 

Thus, starting with a fixed total amount (1.25 M; 8.9 wt %) of acrylamide and sodium 
acrylate monomers and the same amount (0.8 mol % of monomers) of the crosslinker N,N’-
methylenebisacrylamide (MBAA), we varied the sodium acrylate fraction to generate hydrogels 
of different expansibilities. Expansion factors, as defined by the length ratios of the hydrogel after 
and before the expansion (Figure 2), were thus attained in the range of 1.1−4 (Figure 3b; left y-
axis), hence ~7−0.14 wt % polymer fractions in the expanded gel (Figure 3b; right y-axis). Higher 
expansion factors were obtained with increased sodium acrylate fractions, and the expansion factor 
could be further fine-tuned in a reversible fashion by adjusting the solution ionic strength (Figure 
4).  
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Figure 2. Schematics of the sample-preparation workflow.  
(a) Hydrogel is polymerized in a chamber assembled from coverslips. Two small pieces of spacer coverslips 
were placed on an 18-mm diameter round coverslip at an ~4 mm separation. A small piece of parafilm-
wrapped coverslip was used as the top lid of the chamber. 5-10 µL of polymerization mixture is injected 
into the cavity of the assembly right after TEMED and APS are added. Hydrogel polymerization is 
completed in a 37°C humidified incubator for 30 min. (b) The polymerization chamber is then disassembled. 
The dimensions of the resultant hydrogel are measured, and the hydrogel is next washed, quenched, 
expanded, and infused with the target molecule. Edge lengths of the expanded hydrogel are remeasured, 
and the expansion factor is calculated. (c) After the excess sample solution is removed, the hydrogel is 
transferred onto a BSA-passivated 25-mm diameter coverslip and mounted for SMdM.  

To characterize molecular diffusion in the hydrogels, we integrated our recently developed 
SMdM.16,44,45 In SMdM, fast-diffusing single molecules are imaged in the wide-field by reducing 
motion blur via stroboscopic excitation.46,47 The stroboscopic pulses are applied in tandem across 
odd−even camera frames at short time separations of ∆t <1 ms (Figure 3c), thus allowing for the 
determination of single-molecule displacements in the ∆t time window. By continuously running 
this tandem stroboscopic excitation scheme at 110 frames per second, we thus accumulated the 
transient displacements of >104 single molecules (Figure 3d,e) across the camera frame in ~1 min. 
Fitting the resultant displacement distributions to a random-walk model (Materials and Methods) 
yielded diffusion coefficient D with <±3% brackets at 95% confidence intervals (Figure 3d,e). We 
thus found, for example, the diffusion coefficient of the 67 kDa protein bovine serum albumin 
(BSA) inside a hydrogel expanded in the phosphate-buffered saline (PBS) by a factor of 1.73× 
(5.2× volume expansion; 1.7 wt % final polymer content) was 52% of that measured in PBS itself 
(Figure 3d,e). 
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Figure 3. Controlled expansion of hydrogels for the SMdM quantification of molecular diffusivity. 
(a) Schematic: N,N’-methylenebisacrylamide (MBAA)-crosslinked copolymerization of acrylamide and 
sodium acrylate generates a hydrogel network that expands isotropically in aqueous solutions. The degree 
of expansion is controlled by the sodium acrylate fraction and the ionic strength of the solution, hence 
tunable nanomatrix pore sizes for examining size-dependent molecular diffusion. (b) Measured expansion 
factor (left y-axis), as defined by the length ratio of the hydrogel after and before the expansion, and 
corresponding polymer wt% content of the expanded hydrogel (right y-axis), for hydrogels polymerized 
from different mole fractions of sodium acrylate and then expanded in the PBS (black) or water (red). Error 
bars: standard deviations between different runs. Inset: photos of a sample before and after 2.98x expansion 
in water. (c) SMdM: paired stroboscopic illumination pulses across tandem camera frames enable the 
detection of single-molecule displacements over a short time window, e.g., ∆t = 600 µs for the example 
images shown for Cy3B-labeled BSA diffusing in an expanded hydrogel. The paired excitation scheme is 
repeated ~6,000 times to establish statistics. (d,e) Example distributions of 600-µs single-molecule 
displacements for Cy3B-labeled BSA freely diffusing in PBS (d) vs. in a hydrogel expanded by 1.72x in 
PBS (e). Blue curves: Maximum likelihood estimation (MLE) with our diffusion model, yielding D = 
57.4±1.5 and 29.8 ± 0.6 µm2/s (95% confidence intervals), respectively. 

To examine how the polymer meshwork may differently suppress the diffusion of 
molecules of varied sizes, we quantified the diffusion coefficient D of the 0.6 kDa free dye Cy3B 
and dye-labeled proteins, the 14 kDa ribonuclease A (RNase A), the 67 kDa BSA, and the 150 
kDa immunoglobulin G (IgG), in PBS and in hydrogels of two contrasting expansion factors. Here 
we chose four highly water-soluble targets that substantially differ from each other in size, so that 
the size effect may stand out over other potential factors as molecular shape and hydrophobicity. 
For diffusion in PBS, SMdM yielded D values in the range of 40−350 µm2/s that dropped 
monotonically with the molecular weight M (Figure 5), comparable to our previous results45 
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affirming the D ~ M −1/3 model of Young-Carroad-Bell,50 and we obtained similar D values with 
∆t = 400 and 600 µs (Figure 5). 

 

Figure 4. Tuning the hydrogel expansion factor through the solution ionic strength. 
(a) Measured expansion factor, as defined by the length ratio of the hydrogel after and before the expansion, 
for hydrogels polymerized with 0.71 mole fraction of sodium acrylate and expanded in solutions of different 
ionic strengths. Error bars: standard deviations between different samples. Inset: zoom-in of the low ionic 
strength part. (b) Reversible modulation of hydrogel expansion by varying the solution ionic strength. Four 
hydrogel samples polymerized with 0.71 mole fraction of sodium acrylate were sequentially equilibrated 
with solutions of different ionic strengths, under which conditions the hydrogels expanded and shrank to 
different expansion factors in a reversible fashion. 

 

2.2.2. Hindered diffusion of single-molecules in expandable hydrogels 

For in-gel diffusion, SMdM indicated that in hydrogels expanded by 3.31 ± 0.30 in water 
(36× volume expansion; 0.24 wt % final polymer content), D of all diffusers remained largely 
unaffected, i.e., Dgel/DPBS ~ 1 (Figure 6a). In contrast, in hydrogels expanded by 1.66 ± 0.14 in 
PBS (4.6× volume expansion; 1.9 wt % final polymer content), SMdM unveiled a striking size-
dependent suppression of diffusion (Figure 6a). Whereas the diffusivity of the 0.6 kDa Cy3B was 
only slightly impeded to 91 ± 3% of its value in PBS, steady drops to 78 ± 8%, 60 ± 10%, and 50 
± 10% of the PBS values were, respectively, found for the increasingly larger RNase A, BSA, and 
IgG. Examination of the SMdM-recorded transient single-molecule displacements yielded good 
fits to our random walk model (Figure 6b,c), suggesting normal diffusion of the differently 
impeded proteins at the temporal (~500 µs) and length (~300 nm) scales of our experiments. This 
marked size-dependent depression of diffusion is consistent with a model in which as we reduce 
the mesh size of our hydrogel system to the few-nanometer scale,51 larger molecules are more 
affected by the nanomatrix (schematics in Figure 3a). 
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 Cy3B RNase A BSA IgG 

M (kDa) 0.56 13.7 66.5 150 

D (µm2/s) 355 ± 14 105 ± 2 57.3 ± 0.8 40 ± 2 

Figure 5. SMdM results in PBS of four molecules used in this work. 
(a) Histograms showing the distributions of cumulated step distances in SMdM carried out at different time 
separations Δt of 400 and 600 µs, for Cy3B, ribonuclease A (RNase A), bovine serum albumin (BSA), and 
immunoglobulin G (IgG). Blue curves: MLE results, with the resultant 95% confidence intervals of D 
values marked in each plot. (b) Molecular weight M and SMdM-determined D values of the four diffusers. 
Means and standard deviations were calculated from multiple SMdM measurements. The mean values are 
used as references to calculate the relative diffusivities in this work. 

We next focused on Cy3B and BSA as representative small and macromolecules, and fine-
tuned the hydrogel expansion factor to examine how their diffusion transits from unimpeded to 
impeded as the meshwork size is gradually reduced. SMdM showed that for the 0.6 kDa small 
molecule Cy3B (Figure 7a,b), only mild drops in D occurred when the linear expansion factor was 
reduced to <2 (8× volume expansion; 1.1 wt % polymer content), with the D value lowering to~85% 
of that in PBS in the limit of expansion factors of 1.1−1.2 (~6 wt % polymer content). In contrast, 
for the 67 kDa BSA protein (Figure 7a,c), SMdM unveiled notable decreases in D for expansion 
factors <3 (27× volume expansion; 0.33 wt % polymer content), and D dropped to 50−70% and 
~30% of that in PBS at expansion factors of ~2 (1.1 wt % polymer content) and 1.1−1.2 (~6 wt % 
polymer content), respectively.  
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Figure 6. Molecular size-dependent suppression of diffusivity in differently expanded hydrogels. 
(a) SMdM-determined in-gel diffusion coefficient D relative to that in the PBS buffer for the 0.6 kDa free 
dye Cy3B and dye-labeled proteins, the 14 kDa ribonuclease A (RNase A), 67 kDa bovine serum albumin 
(BSA), and 150 kDa immunoglobulin G (IgG), in hydrogels expanded by 1.66±0.14 in PBS (black) vs. by 
3.31±0.30 in water (red). Error bars: standard deviations from ~8 hydrogels for each condition. (b,c) 
Example histograms of SMdM single-molecule displacements for RNase A (b) and IgG (c) under the two 
expansion conditions. Blue curves: MLE results, with the resultant 95% confidence intervals of D values 
marked in each plot. 

 

Figure 7. Contrasting diffusivity scaling behaviors in expanded hydrogels for Cy3B and BSA. 
(a) The SMdM-determined in-gel diffusion coefficient D relative to that in the PBS buffer for the 0.6 kDa 
dye Cy3B (blue) and the 67 kDa protein BSA (red), in different hydrogel samples at varied expansion 
factors (bottom x-axis) and hence polymer contents (top x-axis). Vertical lines connect paired data, in which 
the diffusion of AF647-labeled BSA and Cy3B were sequentially measured through 2-color SMdM in the 
same gel sample. (b) Normalized count distributions of the SMdM-measured 400 μs single-molecule 
displacements for Cy3B diffusing in PBS (dash line) and in four hydrogel samples of different expansion 
factors (solid lines), with respective MLE results shown in the legend as 95% confidence intervals. (c) 
Similar to (b) but for the diffusion of BSA. 
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To further substantiate the contrasting scaling behaviors of Cy3B and BSA, in several gel 
samples we examined the diffusion of both molecules by performing two-color SMdM, using the 
spectrally distinct Alexa Fluor 647 (AF647) to label BSA (Figure 8). The sequentially acquired 
SMdM data in the two color channels (connected by vertical lines in Figure 7a) thus confirmed in 
the same samples distinct relative D values over PBS, with the diffusion of BSA being substantially 
more suppressed. Together, these results indicate that the diffusion of the 67 kDa BSA molecule 
is progressively more impaired as the hydrogel mesh size is continuously reduced to reach polymer 
contents of >0.33 wt %, whereas the 0.6 kDa Cy3B does not quite “sense” the existence of the 
polymer nanomatrix even at much higher polymer contents. 

 

Figure 8. Two-color SMdM for analyzing the diffusivity of two molecular species in the same hydrogel. 
(a) Example paired single-molecule images between odd and even frames, from SMdM data sequentially 
acquired under 642- and 561-nm excitations with corresponding filter sets. The hydrogel sample had an 
expansion factor of 1.72, and was infused with the 642-excited AF647-labeled BSA and 561-excited Cy3B. 
Crosses: the super-localized positions of identified single molecules. (b) Distribution of single-molecule 
displacements from the SMdM results of the two color channels, showing contrasting diffusivities of the 
two diffusers. Blue curves: MLE results, with the resultant 95% confidence intervals of D values marked 
in each plot. 

 

2.2.3. Independent diffusion hindrances from solution viscosity and nanomatrix 

As intracellular diffusion is suppressed by both the nanoscale architecture of the cell and 
the 20− 40% higher viscosity of the cytosol over water,31 we next probed, with our expandable 
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hydrogel system, whether the two effects would independently modulate the diffusion of small and 
macromolecules. To this end, we thickened the solution by adding the inert small molecule 
glycerol.52,53 SMdM showed that in an 18 wt % glycerol solution, the D values of Cy3B and BSA 
dropped to 217 and 35 µm2/s (dash-dot curves in Figure 9b,c), respectively, corresponding to 62% 
and 60% of that in PBS (dash curves in Figure 9b,c). These diffuser size-insensitive values match 
that predicted (60%) through scaling the known glycerol concentration-dependent viscosity.52,53 

We next examined the diffusion of both molecules in our hydrogel system expanded in 
the presence of 18 wt % of glycerol. Interestingly, as we plotted the SMdM-determined relative D 
values over that in the 18 wt % glycerol solution, we observed similar expansion-factor-dependent 
D scaling as hydrogels expanded in PBS (Figure 9a). Thus, obstruction of diffusion due to the 
hydrogel nanomatrix is uncoupled from diffusion suppressions due to higher solution viscosities, 
and the two factors may each separately scale down the D values to produce the final diffusion 
slowdown. 

 

Figure 9. Uncoupled diffusion suppressions by the solution viscosity and by the hydrogel nanomatrix.  
(a) Solid symbols: the SMdM-determined in-gel diffusion coefficient D of Cy3B (blue) and BSA (red), in 
hydrogels expanded at different expansion factors (bottom x-axis) and hence polymer contents (top x-axis) 
in solutions containing 18 wt% glycerol, relative to that in the 18 wt% glycerol solution. Hollow symbols: 
reproduced from Figure 7a for in-gel D relative to no-gel for hydrogels expanded in PBS. (b) Normalized 
count distributions of the SMdM-measured 400 μs single-molecule displacements for Cy3B diffusing in 
PBS (dash line), in the 18 wt% glycerol solution (dash-dot line), and in two hydrogels of different expansion 
factors in 18 wt% glycerol solutions (solid lines). MLE results are shown as 95% confidence intervals in 
the legend. (c) Similar to (b) but for the diffusion of BSA. 

 

2.3. Conclusion 

Together, by repurposing the recently popularized expansion microscopy to achieve 
controlled tuning of the hydrogel meshwork size, we examined the in-gel diffusion of small and 
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macromolecules over a wide range of polymer fractions of ~0.14−7 wt %. Through SMdM single-
molecule measurements, we thus showed that with a constant meshwork size, larger molecules 
exhibited more impeded diffusion, and that for the same molecule, diffusion is progressively more 
suppressed as the meshwork size was reduced, and this effect was more prominent for the larger 
molecules. Whereas similar trends have been reported with hydrogels prepared from discrete initial 
monomer concentrations,37,38,54 our approach both ensured the geometric expansion of meshwork 
size as the only variable between different samples and achieved continuous fine-tuning of the 
meshwork size. Moreover, by thickening the solution while conserving the hydrogel expansion 
factors, we showed that the meshwork-induced obstruction of diffusion is uncoupled from the 
suppression of diffusion from increased solution viscosities.  

In complex systems like the cell, the two mechanisms, respectively being diffuser-size 
dependent and independent, should separately scale down D to produce the final diffusion 
slowdown. On this discussion, our observation that the formal factor caused minimal slowdowns 
for Cy3B, even in the limit of low expansion factors where substantial diffusion obstruction was 
observed for macromolecules, echoes our recent finding that the intracellular D of small molecules 
is only modestly depressed to ~70% of that in water by the slightly higher viscosity of the cytosol.30 
Meanwhile, the demonstrated unconventional use of expandable hydrogel and expansion 
microscopy for physical-parameter tuning provides an appealing path toward the future 
development of manipulation and measurement tools. 

 

2.4. Materials and methods  

Preparation of fluorescence dye-labeled proteins 

Ribonuclease (RNase) A (Sigma, R5500) and bovine serum albumin (BSA, Sigma, A3059) were 
labeled with Cy3B or Alexa Fluor 647 (AF647) via NHS (N-hydroxysuccinimide) ester 
conjugation. Cy3B-NHS (Cytiva, PA63101) or AF647-NHS (ThermoFisher, A37573) were mixed 
with protein in 0.1 M NaHCO3 at a 10:1 dye-to-protein ratio, incubated at room temperature for 
1.5 hr, are then purified with 3k and 10k MWCO centrifugal filters, respectively (Millipore, 
UFC500396 and UFC501096). The resultant dye-to-protein ratios were 0.5-1.5, as determined 
with a NanoDrop 2000c spectrometer (ThermoFisher). Dye-labeled RNase A was further treated 
with sulfo-NHS-acetate (ThermoFisher, 26777) to cap the excessive lysines. For immunoglobulin 
G (IgG), a commercial AF647-labeled goat anti-mouse secondary antibody (ThermoFisher, 
A21236) was used.  

 

Preparation of expandable hydrogel 
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Sodium acrylate (Sigma, 48220), acrylamide (Sigma, A9099), N,N’-methylenebisacrylamide 
(MBAA, Sigma, M7279), N,N,N’,N’-tetramethyl ethylenediamine (TEMED, Sigma, T7024) and 
ammonium persulfate (APS, Sigma, A3678) were prepared as stock solutions of 0.38, 0.5, 0.02, 
0.1, and 0.1 g/mL in water, respectively. Monomer mixture solutions were prepared from the stock 
solutions to 1.25 M total concentrations with varied sodium acrylate and acrylamide mole fractions 
and a fixed 0.8% mole fraction of MBAA. To initiate polymerization, TEMED and APS were 
added, both to 0.2% wt. in the final mixture, and the mixture was quickly injected into a gel-
formation chamber (Figure 2) adopted and modified from standardized expansion-microscopy 
protocols.55,56 The assembly was placed in a 37 °C humidified incubator for 30 min. The chamber 
was dissembled, and the lengths of the four edges of the resultant hydrogel were measured. Each 
hydrogel was then expanded in a solution of a fixed ionic strength for 10 min, followed by a racial-
quenching solution of the same ionic strength but with the addition of 1 mM of 4-hydroxy-TEMPO 
(Sigma, 176141) for 30 min, and then the same expanding solution without 4-hydroxy-TEMPO 
for 10 min. Ionic strengths lower or higher than that of phosphate-buffered saline (PBS; 14190144, 
Gibco) (160 mM) were prepared by diluting PBS with Milli-Q water or by adding NaCl to PBS, 
respectively. To infuse dyes and dye-labeled proteins, the hydrogel was immersed in the same 
expanding solution with the addition of 150−300 pM of the fluorescent probe for 10−20 min. The 
dimensions of the hydrogel were remeasured, and the averaged length ratio over that before the 
expansion was taken as the expansion factor. Excess solution was removed, and the hydrogel was 
transferred onto a BSA-passivated 25-mm diameter #1.5 coverslip, and mounted into the coverslip 
holder (ThermoFisher, A7816). Coverslip passivation was done through the sequential sonication 
in acetone and Milli-Q water for 5 min each, treating with 10 mg/mL BSA in PBS for 30 min, 
rinsing with Milli-Q water, and drying with N2 gas.   

Optical setup 

SMdM was performed on a Nikon Ti-E inverted fluorescence microscope, as described 
previously.16,44,45 A 561 nm laser (OBIS 561 LS, Coherent, 165 mW) and a 642 nm laser (Stradus 
642, Vortran, 110 mW) were focused at the back focal plane of an oil-immersion objective lens 
(Nikon CFI Plan Apochromat λ 100×, numerical aperture 1.45). A translation stage shifted the 
laser beams toward the edge of the objective lens to reach the sample at an incidence angle slightly 
below the critical angle of the coverslip-hydrogel interface, thus illuminating a few micrometers 
into the hydrogel. Single-molecule images were collected 1.5−2 μm away from the coverslip 
surface. Fluorescence emission under 561 nm excitation was filtered by long-pass (ET575lp, 
Chroma) and band-pass (ET605/70m, Chroma) filters. Fluorescence emission under 642 nm 
excitation was filtered by long-pass (ET655lp, Chroma) and band-pass (ET705/100m, Chroma) 
filters. Wide-field single-molecule images were collected at 110 frames per second for 5,000-8,000 
frames with an EM-CCD camera (iXon Ultra 897, Andor). For SMdM pulse control, the excitation 
lasers were modulated by a multifunctional input/output board (PCI-6733, National Instruments), 
which read the EMCCD camera exposure output signal to enable pulse-frame synchronization. 
Tandem laser pulse sequences were applied at fixed center-to-center separations Δt of 400 or 600 
µs, with corresponding pulse durations set at 200 and 400 µs, respectively.  
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Chapter 3: Machine-learning-powered extraction of molecular 
diffusivity from single-molecule images for super-resolution mapping  

 

The work in this chapter was conducted in collaboration with Bowen Wang, Suhong Moon, 
Tyler Jepson, and Ke Xu. It is reproduced in part here from ref.57 and with permission from all 
coauthors. Copyright 2023 Park et al. under the terms of the Creative Commons Attribution 
License, which permits unrestricted use and redistribution provided that the original author and 
source are credited. 

3.1. Introduction 

Molecular diffusion underlies vital cellular processes.20,58–60 The diffusion coefficient D, 
a metric of how fast molecules diffuse, is a function of both the molecular size and intracellular 
parameters such as viscosity and intermolecular interactions. This correlation between diffusion 
and intracellular parameters has led to the use of D as a reporter of intracellular 
(micro)environments to correlate dynamic properties with structures.  

Many fluorescence microscopy techniques have been developed to probe diffusion at 
different spatiotemporal scales. Traditional approaches such as fluorescence recovery after 
photobleaching (FRAP)60 and fluorescence correlation spectroscopy (FCS)59,61–64 offer limited 
capabilities for spatial mapping, and they often encounter background and calibration challenges 
when applied to biological samples. Single-particle tracking (SPT)65–68,22 provides high spatial-
resolution measurements for molecular diffusion, and with recent developments integrating 
photoactivation and related concepts from single-molecule localization microscopy (SMLM), has 
substantially increased the density of single molecules that can be tracked in the sample.65,67 
However, SPT aims at obtaining long single-particle tracks, from which the D value of each 
particle is calculated. The need to track the same particle over many consecutive frames limits the 
application to photostable particles consistently bound to the target, e.g., lipid membranes, while 
also limiting the spatial mapping capabilities.65,67,69 

We recently developed single-molecule displacement/diffusivity mapping (SMdM), 
which focuses on detecting the transient motion/velocity of single molecules across tandem camera 
frames under frame-synchronized stroboscopic illumination.16 By eliminating the need to track 
long trajectories, the approach works well for unbound fluorescent proteins in the cell16 and dye 
molecules dynamically entering and leaving lipid membranes.44 The accumulation of many 
transient displacements over different frames further enables local statistics14 and D mapping. The 
need for frame-synchronized stroboscopic illumination, however, limits the adaptation of this 
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technique. Moreover, each molecule needs to be successfully captured in two consecutive frames 
and correctly paired to yield a useful measurement, limiting the possible throughput. 

Here we report a strategy, pixels-to-diffusivity (Pix2D), to directly extract D values from 
single-molecule images recorded under typical SMLM conditions. We reason that for diffusing 
molecules, images recorded at a fixed camera framerate are the convolution of their motion 
trajectories and the microscope point spread function (PSF), with the faster-moving molecules 
exhibiting stronger motion blurs. Whereas such information may not directly yield a meaningful 
D value for each molecule due to the stochastic nature of diffusion, accumulating many molecules 
over different frames may enable spatial binning for local analysis14 and thus D mapping at the 
super-resolution level. Although previous work has extracted D from single-molecule images,70–

72 a global D value is obtained for each sample without spatial mapping, and the model-based 
fitting approach is susceptible to experimental factors such as camera pixelation effects and 
backgrounds.  

In this work, we seize the rising opportunities of modern machine-learning approaches to 
directly link single-molecule images to D values without assuming any models, and we further 
achieve super-resolution mapping. Recent years have witnessed the fast growth of machine 
learning in single-molecule microscopy,73 with applications ranging from the enhancement of 
localization74–85 and tracking86–88 to the characterization of diffusive modes and properties.89–92 In 
a previous study, we demonstrated the use of neural networks to connect single-molecule images 
to their color and depth information, thus enabling two-color three-dimensional SMLM.77 Here we 
construct a convolutional neural network (CNN) model to connect stacks of single-molecule 
images to D values. Spatially binning single-molecule images accumulated from many frames 
further enables local image stacks to be used as inputs for the model to generate D maps at the 
super-resolution level. 

 

Figure 10. Architecture of the Pix2D convolutional neural network model.  
The CNN model processes input through a 3×3 convolution filters of twice the input channel size (2nch), a 
2×2 pooling layer applied at stride 2, another 3×3 convolution filters with 4nch channels, another 2×2 
pooling layer applied at stride 2, two consecutive 3×3 convolution filters with 8nch channels, followed by a 
fully connected layer and then final regression layer to the output. The final prediction was computed by a 
fully connected layer, followed by a regression layer that calculated the MSE losses between the predicted 
values and the ground truth labels. 
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3.2. Results and discussions 

3.2.1. Construction of diffusivity-mapping CNNs. 

We constructed a CNN architecture that maps single-molecule images to D values. As 
discussed, an individual single-molecule image does not provide a meaningful readout for D. Thus, 
we built a CNN model that took a stack of uncorrelated single-molecule images as the input and 
predicted a D value as the output. Following the design principles of ResNet,93 a seminal work in 
deep neural network architectures, we designed the CNN model stacking multiple convolutional 
layers, a fully connected layer, and the final regression layer (Figure 10). Each convolutional 
building block entailed a convolutional layer with a kernel size of 3, a batch normalization layer,94 
and Swish activation.95 Whereas ResNet uses the ReLU96 activation function, we employed the  

 

Figure 11. Pix2D CNN training and implementation. 
(a) Examples of simulated Brownian trajectories for D = 1, 3, and 5 µm2/s for a camera exposure time of 9 
ms. (b) Mapping of simulated trajectories to pixelized images using the microscope point spread function 
profile and a pixel size of 160 nm. 400 independent trajectories were initially generated for every D value 
in the range of 0-6 µm2/s at a 0.05 µm2/s spacing. (c) As CNN training input, for each D label, hundreds of 
stacks of nch simulated images, each sampled as 7×7 pixels, were initially selected per diffusivity label. (d) 
The training data were then augmented via domain randomization, in which multiple image sets were 
created through identical processes as in (a)-(c), but with different combinations of noise levels and photon 
counts. The CNN model was then trained with the augmented data. (e-h) Implementation of Pix2D 
diffusivity spatial mapping. Single-molecule signals from the raw image sequence were localized and 
spatially binned with a fixed grid size (f is a zoom-in of the boxed region in e). (g) For each bin, m = 100 
permutations of nch single-molecule images were each fed to the trained model. The resultant m predicted 
D values were averaged to give the diffusivity of the bin. (h) The results of different spatial bins were color-
coded to generate a spatial map. 
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Swish activation function for our regression task. A relatively shallow CNN model was 
implemented to avoid overfitting. 

Here we focus on diffusion in a two-dimensional system, so that single-molecule motion 
blurs are not further convoluted with off-focusing. For training, single-molecule images were 
generated by mapping simulated two-dimensional Brownian trajectories (Figure 11a) to pixelized 
intensities using the PSF profile of our microscope setup (Figure 11b). To match typical 
experimental settings, simulations were performed for a pixel size of 160 nm and an exposure time 
of 9 ms per frame. The input was a stack (nch channels) of uncorrelated single-molecule images 
cropped at 7×7 pixels (Figure 11c). Training (Figure 11d) was performed on a dataset augmented 
with different molecule brightnesses and backgrounds (see below), with each diffusivity label 
containing hundreds of such stacks as the training inputs (Materials and Methods).  

For spatial mapping of diffusivity, single-molecule images (Figure 11e) were first 
localized in each frame via centroid fitting. A region of interest (ROI) of 7×7 pixels was sampled 
around the center of each localized molecule, and molecules with overlapping ROIs were discarded. 
The localized molecules, accumulated from many frames, were then spatially binned onto a fine 
grid (~100 nm) (Figure 11f), so that each bin had a pool (pi for bin i) of single-molecule images. 
For every bin satisfying pi > 10, m = 100 inputs, each with the same dimensionality as the training 
data – thus 100 different 7 × 7 × nch arrays – were generated by random sampling from the pi 
images for feeding into the model (Figure 11g). The resultant 100 outputs from the model were 
averaged to yield the diffusivity of the bin. The results of different spatial bins were then color-
coded to generate a spatial map (Figure 11h). 

 

3.2.2. Performance of Pix2D. 

Figure 12a shows the model prediction results with nch = 40, using evaluation data not 
included in the training data. To avoid biases due to capping at the upper bound of the training 
range, here we trained the model with D = 0–6 µm2/s data, and applied it to evaluate data generated 
with D of 0–5 µm2/s. Statistics of the Pix2D results on 400 evaluation inputs at each diffusivity 
yielded averages (Figure 12a, black dots) well following the ground truth (Figure 12a, red line), 
and the relative errors, %Error = (E – T)/T × 100%, with E and T respectively being the Pix2D-
evaluated and ground-truth D values, showed typical standard deviations of ~12% (Figure 12a 
shaded areas and Figure 12b). 

We next examined how the relative standard error depends on the data size. Comparing 
the model evaluation results with different nch and pi values in the range of 20-160 (Figure 13) 
indicated that the final precision depends only on the latter, namely, the count of starting single-
molecule images. Thus, the choice of nch was non-critical, and we found the nch = 40 and m = 100 
combination we used practical. Plotting the relative standard errors as a function of pi showed a 
monotonic decrease for an increased single-molecule count (Figure 12c). We have recently shown  
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Figure 12. Performance assessment for Pix2D CNN.  
(a) Validation of the trained CNN using simulated data not included in the training, for input channel size 
nch = 40. For each D value, evaluations were performed for 400 sets of nch images, and the average value 
and standard deviation were plotted as a black marker and the shaded area, respectively. Red line: reference 
(evaluation equaling the ground truth). (b) Distributions of relative errors (%Error) for training labels of D 
= 2 and 4 µm2/s. (c) Standard deviations of %Error for D = 1, 2, 3, and 4 µm2/s for different counts of 
starting single-molecule images (pi), but fixed nch = 40. Red dashed line: trend based on MLE analysis of 
the distribution of single-molecule step distances. (d) Spatial mapping of simulated data. (Left) Ground 
truths of simulated patterns with spatially varied D values. (Right) Pix2D mapping results at a binning grid 
size of 120 nm, so that each bin counted ~200 simulated single-molecule images. (e) Line profiles in three 
rows of the Pix2D mapping results along the black boxes in (d). Dashed line: reference line of ground truth 
diffusivity. (f) Distribution of the %Error of Pix2D results in the different spatial bins, for all bins in (d). 

that with maximum likelihood estimation (MLE) based on the distribution of step distances, the 
relative standard error in D equals to the inverse square root of the count of step distances.45 For 
the same number of single-molecule images, the Pix2D standard errors were consistently ~2-fold 
lower (Figure 12c). This behavior is reasonable, considering that in Pix2D, each single-molecule 
image directly encodes motion in two dimensions, whereas for approaches based on the analysis 
of step distances, each step needs two single-molecule images, and each connected single-step 
displacement is along one direction. 
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Figure 13. Performance assessment with different input channel sizes.  
n (equivalent to pi in each spatial bin when mapping) = 20, 40, 80, and 160 simulated single-molecule 
images of D = 2 µm2/s were processed with Pix2D of different input channel sizes nch = 20, 40, 100, and 
160. For each dataset, m = 100 sets of nch sampling from n images were separately fed into the model as 
inputs, and the averaged output of the m sets was taken as the estimated D value. This process was repeated 
300 times for each condition by randomly sampling n images, and the resultant 300 estimated D values 
were shown as histograms of % error from 2 µm2/s. a.u., arbitrary unit. 

 

3.2.3. Spatial diffusivity mapping of simulated data. 

To examine the performances of Pix2D for diffusivity mapping, we simulated spatial 
patterns, e.g., square and circular shapes ~1 µm in size with contrasting regional D values of 2 and 
4 µm2/s (Figure 12d, left). Single-molecule trajectories were simulated by randomly selecting the 
starting positions of the molecules and then updating D at every micro-step based on their new 
positions. The simulated single molecules were localized and spatially binned into a 120 nm × 120 
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nm grid, so that the resultant counts of molecules were ~200 per bin, comparable to the typical 
experimental super-resolution imaging data. Single-molecule images in each bin were then 
processed and fed into the model described above for diffusivity mapping (Figure 12d, right). We 
thus showed that our approach correctly mapped out spatial differences in diffusivity. Line profiles 
crossing the diffusion pattern boundaries showed sharp transitions in the mapped D values (Figure 
12e), so that full transitions were accomplished within ~2 bins (~240 nm). Relative errors to the 
ground truths were <10% for most bins for the entire images (Figure 12f). 

 

3.2.4. D mapping of experimental data on supported lipid bilayers. 

To apply the above model trained with simulated datasets to experimental single-molecule 
images, we first augmented the training data to deal with two potentially highly variable 
parameters, the brightness of molecules and background noise. We adapted domain 
randomization97 to achieve performance invariant toward these two parameters. Multiple training 
datasets were generated from combinations of different photon counts and background noise levels 
when mapping the diffusion trajectories to images. The ranges of these parameters were set to 
mimic the typical distributions of single-molecule brightness and background of wide-field single-
molecule images. The resultant model performed robustly for different combinations of parameters 
both not covered (Figure 14) and covered (Figure 15) in the augmentation.  

 

 

Figure 14. Interpolation and extrapolation performances of the trained model. 
Evaluation of the model with simulated datasets with background noise and brightness levels not used for 
the training, including (a) interpolation with values between the training noise and brightness levels and (b) 
extrapolation with lower (360 photons) and (c) higher (1350 photons) brightness levels outside the training 
range. 



25 

 

Figure 15. Evaluation of the data augmentation method for the model training.  
The model was trained with the data augmentation method of diversifying background noise levels and 
single-molecule brightness levels. (a) Validations of the model for different simulated background noise 
levels typical to our experiment data, with input channel size nch = 40. For each D value, evaluations were 
performed for 100 sets of nch images, and the average value and standard deviation were plotted as a black 
marker and the shaded area, respectively. Red line: reference (evaluation equaling the ground truth). (b) 
Validations of the model for different simulated single-molecule brightness levels typical to our 
experimental data.  

Experimental single-molecule images were obtained with a typical SMLM setup for BDP-
TMR-alkyne, which reversibly intercalated into supported lipid bilayers (SLBs) to report the 
lateral diffusivity of the membrane.44 Single-molecule images (Figure 16a) were collected with an 
exposure time of 9 ms per frame under typical SMLM conditions for SLBs prepared from pure 
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and mixtures of DOPC:bSM (brain 
sphingomyelin) 1:1 (mol%) and DOPC:bSM:cholesterol 1:1:1 (mol%). The localized single- 
molecule images were processed through Pix2D to generate diffusivity maps. Each spatially 
homogeneous, yet separately distinct diffusion coefficients were thus visualized for the three SLBs 
(Figure 16b). Statistics of the evaluation results of different spatial bins yielded D = 3.21±0.45, 
2.48±0.46, and 1.09±0.28 µm2/s, respectively, for the three SLBs (Figure 16c). These values are 
comparable to previously reported results, in which D ~3-4, ~2-3, and ~1 µm2/s are reported for 
similar DOPC, DOPC:bSM, and DOPC:bSM:cholesterol SLBs at room temperature.98,99 We also 
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performed single-particle tracking68 on the data, but found most molecules only stayed in the SLB 
for a few frames (Figure 17), as is typical in PAINT-type SMLM.8 Mean squared displacement 
(MSD) analysis on the occasionally observed long traces (Figure 18) yielded the same trends for 
the three SLBs, consistent with the notion that diffusion is slower in the more densely packed 
phases containing saturated lipids and cholesterol.98,99 

 

Figure 16. Pix2D applied to experimental data on single molecules diffusing in SLBs.  
(a) Example wide-field single-molecule images collected at an exposure time of 9 ms per frame, for BDP-
TMR-alkyne diffusing in SLBs of different compositions: DOPC only, DOPC:bSM 1:1 (mol%), and 
DOPC:bSM:cholesterol 1:1:1 (mol%). (b) Color-coded D maps of the three samples generated by spatially 
binning the single-molecule images accumulated over 30,000 frames onto a 320 nm × 320 nm grid, and 
then feeding the resultant ~200 single-molecule images in each bin into the Pix2D CNN for evaluation of 
local D. (c) Distributions of the evaluated D values in each bin for the three samples, corresponding to 
3.21±0.45, 2.48±0.46, and 1.09±0.28 µm2/s, respectively. 

 

 

 

Figure 17. SLB dwell time of BDP-TMR-alkyne single molecules.  
Plotted: Distribution of trajectory lengths in a typical experiment for BDP-TMR-alkyne single molecules 
diffusing in a DOPC SLB, plotted on the linear (a) and logarithmic (b) scales for the counts, respectively. 
Data was collected at a framerate of 110 frames per second. Tracking was performed using TrackMate100. 
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Figure 18. MSD analysis of BDP-TMR-alkyne single molecules diffusing in different SLBs. 
MSD analysis was performed using MSDanalyzer101 for BDP-TMR-alkyne single molecules in the data of 
Figure 3 for three SLBs compositions: DOPC, DOPC:bSM 1:1, and DOPC:bSM:Chol 1:1:1. Images were 
acquired at 110 frames per second with a pixel size of 160 nm. Trajectories 15-40 frames in length were 
selected for the MSD analysis, and the first 25% of MSD curves were used for fitting D. e.g., A delay range 
of 1 to 5 frames was used for a trajectory length of 21. (a-c) MSD curves and weighted-average MSD curves 
(black) for trajectories in the DOPC (a), DOPC:bSM 1:1 (b), and DOPC:bSM:Chol 1:1:1 (c) SLBs, 
respectively. (d-f) Distribution of fitted single-molecule D values from the MSD curves. Consistent 
decreasing trends in D were observed for the 3 SLBs, even though the distributions were board due to the 
limited trajectory lengths, and the absolute values generally appeared lower, possibly owing to statistical 
biases in which the slower-diffusing molecules had higher chances to stay longer in the SLBs to yield the 
rare long tracks. 

 

3.2.5. D mapping of microdomains in supported lipid bilayers. 

To further assess mapping capabilities, we prepared SLBs with spatially separated 
domains. With a 60:40 mixture of DOPC and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 
(DPPC), we generated SLBs in which DOPC and DPPC respectively segregated into the fluid and 
gel phases at room temperature.102 SMLM super-resolution images (Figure 20a) of BDP-TMR-
alkyne single molecules collected at an exposure time of 9 ms per frame showed contrasting 
localization densities for the DOPC and DPPC domains, as the higher packing order of aliphatic 
chains of the gel phase DPPC limited fluorophore access.103 This difference in localization density 
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disappeared upon melting of the DPPC domains at high temperatures (Figure 19). Binning the 
accumulated single-molecule images with a 120 nm × 120 nm grid allowed mapping of local D 
with Pix2D (Figure 20b). Contrasting D was thus unveiled for the two lipid phases. Temporally 
dividing the collected single-molecule data into two periods of 3.4-min durations for their separate 
Pix2D evaluations further yielded D maps comparable to the entire dataset (Figure 21), thus 
demonstrating that the diffusivity spatial patterns remained unchanged over the recording time. 

 

Figure 19. Melting of DPPC domains. 
Real-time epifluorescence images of a 60:40 DOPC:DPPC SLB stained with BDP-TMR-alkyne. At room 
temperature, DPPC domains appeared darker due to limited access for BDP-TMR-alkyne (left). Melting of 
DPPC domains at elevated temperatures allowed the mixing of DPPC and DOPC domains and BDP-TMR-
alkyne intercalation, and so the contrast differences diminished (middle and right). Scale bar: 2 µm. 

 

Figure 20. Pix2D D mapping of SLB microdomains. 
(a) SMLM super-resolution image of an SLB of 60:40 DOPC:DPPC, presented as the local counts of single 
BDP-TMR-alkyne molecules recorded over 45,000 frames at 110 frames per second with an exposure time 
of 9 ms per frame. (b) Color-coded D map generated by spatially binning the single-molecule images onto 
a 120 nm × 120 nm grid for the Pix2D evaluation of local D. (c) Zoom-in of the solid box-marked region 
in (a,b). (d) Two-dimensional distribution of the Pix2D-evaluated D versus single-molecule count for the 
different spatial bins in the dashed box-marked region in (a,b). 

Comparison of the Pix2D D map (Figure 20b) with the SMLM image (Figure 20a) showed 
good correlations: The high-count regions (DOPC phase) consistently exhibited high D of ~3.2 
µm2/s, close to our above results on the single-component DOPC SLB (Figure 16). Meanwhile, 
the low-count regions (DPPC phase) exhibited D<~0.5 µm2/s, consistent with the notion that this 
gel phase is nonfluidic at room temperature. Notably, features down to ~300 nm were well-
resolved in the Pix2D D map (Figure 20c), in agreement with our simulation results (Figure 20d,e). 
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Distribution of the evaluated local D values in each spatial bin versus the count of molecules in 
the bin further showed a good correlation that fast diffusion was exclusively observed for the high-
count DOPC phase (Figure 20d). 

 

Figure 21. Time-resolved Pix2D results. 
The original single-molecule data of Figure 20b collected over 6.8 min was divided into two periods of 3.4-
min duration each. The two divided datasets were separately fed into Pix2D to generate two independent 
diffusivity maps at a 160 nm × 160 nm spatial bin size. D maps comparable to Figure 20b were obtained 
for both periods, thus demonstrating that the diffusion spatial patterns remained unchanged over the 
recording time, as well as that viable D maps can be obtained at ~3 min time resolution. 

3.3. Conclusion 

While critical to biological processes, molecular diffusion has been difficult to quantify, 
and spatial mapping of local diffusivity is even more challenging. In this work, we exploited the 
often undesired yet evident motion blur of single-molecule images, recorded under typical SMLM 
conditions, to extract diffusion coefficient D and further enable spatial mapping. Many recent 
efforts have successfully applied machine learning to single-molecule images in SMLM contexts 
to assist three-dimensional localization and color separation, as well as to extract optical 
parameters such as the Zernike coefficients and fluorescent backgrounds73–85 In this study, we 
instead focused on extracting higher-dimensional, functional information104 on molecular 
diffusion from the single-molecule images.  

Different from previous machine-learning studies in which the parameters in question are 
directly projected to single-molecule images with a fixed pattern, the stochastic nature of diffusion 
mandates that even for a fixed D value, the diffusion trajectory of a molecule in a fixed time 
window (and thus motion blur) takes diverse forms not unique to the given D. Thus, rather than 
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attempting to assign a D value to each single-molecule image, we constructed a model that took a 
stack (nch~40 channels) of uncorrelated single-molecule images as the input and evaluated a D 
value as the output. For input data of different numbers of single-molecule images, m~100 sets of 
nch samplings were separately fed into the model, and the averaged output of the m datasets was 
taken as the final D value. This model architecture of fixed channel numbers simplified 
implementation, while the m-time sampling provided flexibility for the number of source single-
molecule images. These advantages proved instrumental to spatial mapping: we thus were able to 
spatially grid all the collected single-molecule images and separately fed the images in each spatial 
bin to the CNN model to evaluate local D, without having to worry about the different counts of 
molecules in each bin. 

With simulated data of known ground truths, we thus showed that our above Pix2D 
approach correctly extracted D from single-molecule image stacks. With 40 source single-
molecule images, the typical relative standard error σerror was ~12% over a wide D range, and the 
evaluation results were robust towards different brightness and background noise levels. This 
evaluation error was ~2-fold better than that based on the MLE analysis of single-molecule step 
distances, and decreased monotonically for increased numbers of single-molecule images with 
little dependence on nch.  

With experimental data on BDP-TMR-alkyne single molecules that dynamically entered 
SLBs and stayed for short durations, we next showed that Pix2D successfully resolved the different 
diffusivities for bilayers of different lipid compositions, with the resulting D value trends matching 
that expected based on previous bulk measurements. For the phase-separated DOPC-DPPC 
mixture system, we further demonstrated that Pix2D resolved the different D values in the two 
phases at the nanoscale. 

Together, by directly linking stacks of uncorrelated single-molecule images to diffusivity, 
we have successfully extracted D values from both simulated and experimental data, and further 
achieved spatial mapping under SMLM settings. Whereas with phase-separated SLBs we have 
resolved spatial patterns in the environment, the capability of detecting local diffusivities may also 
be harnessed to report on changes in the states of the diffusers themselves, e.g., oligomerizations 
and conformational changes. While in this work we have focused on the direct extraction of 
diffusivity from single-molecule images in individual frames, future efforts may consider 
connecting molecules spanning consecutive frames to further enhance prediction. The possible 
extension of the approaches developed in this work to diffusion in three dimensions, as well as to 
other high-dimensional single-molecule signal dimensions,14 represent additional exciting 
challenges. 

3.4. Materials and method 

Data simulation 
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For training and test data, single-molecule images were generated from Monte Carlo two-
dimensional Brownian diffusion simulation. For each molecule, a Brownian trajectory of 9 ms was 
simulated through 1,000 micro-steps of random two-dimensional motion of distance √4𝐷𝐷𝐷𝐷 using 
the local diffusion coefficient 𝐷𝐷  and the simulation interval 𝑡𝑡 . The simulated trajectory was 
mapped onto the pixelized image grid using typical photon counts of 60-120 photons per ms and 
the microscope PSF profile experimentally determined using 100-nm fluorescence beads. 
Background noise was further added to each pixel based on the typical values observed with the 
recording camera.  

 

Model architecture, training, and application 

The Pix2D CNN model was designed to take a stack (nch channels) of single-molecule images, 
each cropped at 7×7 pixels, as the input, and predict a D value as the output. The architecture 
stacked multiple convolutional layers, a fully connected layer, and the final regression layer 
(Figure 10). The final prediction was computed by a fully connected layer, followed by a 
regression layer that calculated the mean square error (MSE) losses between the predicted values 
and the ground truth labels. Design methodologies of ResNet93 were partially followed, so that the 
building blocks entailed a convolutional layer with a kernel size of 3, Swish activations,95 and 
batch normalization layers.94 As we performed regression for predicting continuous D values, we 
used Swish activation instead of the ReLU activation used in the original ResNet model. The 
training dataset was constructed for 121 labels of diffusion coefficients, from 0 to 6 μm2/s in 0.05 
μm2/s intervals. For each diffusion coefficient label, 100 training inputs of nch = 40 simulated 7×7 
pixels single-molecule images were used. Therefore, the training dataset had 12,100 inputs of the 
dimension of 7×7×40, for which we further augmented 20 combinations of single-molecule 
brightnesses and image backgrounds. Further increasing the training dataset size did not further 
improve the prediction accuracy. The training objective was the MSE loss between the predicted 
diffusivity and the target diffusivity using stochastic gradient descent (SGD) with momentum as 
the optimizer. Training was performed over 60 epochs with a batch size of 128, and an initial 
learning rate of 0.003. The learning rate was decreased by 10x after every 25 epochs. To apply the 
trained CNN model, m = 100 datasets, each with the same dimensionality as the training data – 
thus m different 7 × 7 × nch arrays – were generated by random sampling from the pi input images 
for feeding into the model. For bins having pi

 < nch, each input is generated by allowing repeated 
sampling of each image, yet limiting the repetition to the minimum integer j satisfying the 
following condition: j × pi

 > nch. The resultant m outputs from the model were averaged to yield 
the final diffusivity. Negative final values were treated as zero for physical relevance. 

 

SLB preparation 
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 Lipids (Avanti Polar Lipids 850375, 850355, and 860062) and cholesterol (Sigma, C8667) were 
dissolved in chloroform as 5 mg/mL stock solutions. The lipid mixture was combined in a 25-mL 
round bottom flask with the desired ratio from the stock solution. The solvent was removed under 
a stream of nitrogen gas. The resulting lipid film was rehydrated in 60 °C Milli-Q water and 
vortexed to a final concentration of 1 mg/mL multi-lamellar vesicle (MLV) solution. The MLV 
solution was then extruded at 60 °C over 11 times through a 100 nm polycarbonate membrane 
filter (Avanti Mini Extruder) to form small unilamellar vesicles (SUVs). The SUV solution was 
diluted in a 2:1:1 mixture of PBS (phosphate-buffered saline):H2O:SUV and sonicated until 
deposited on a piranha-etched coverslip. Excess, unruptured vesicles were removed after 20 
minutes by washing with PBS. 1 nM of BDP-TMR-alkyne (A24B0, Lumiprobe) in PBS was used 
for the single-molecule imaging of SLBs. 

 

Single-molecule imaging 

Fluorescence imaging was performed on a Nikon Ti-E inverted fluorescence microscope. A 561 
nm laser (OBIS 561 LS, Coherent, 165 mW) was focused at the back focal plane of an oil-
immersion objective lens (Nikon CFI Plan Apochromat λ 100×, numerical aperture 1.45) to 
continuously illuminate the sample at ~1 kW/cm2. A translation stage shifted the laser beams 
toward the edge of the objective lens, so the light reached the sample at an incidence angle close 
to the critical angle of the glass-water interface to achieve a near-total internal reflection condition. 
Wide-field single-molecule images were filtered by a long-pass filter (ET575lp, Chroma) and a 
band-pass filter (ET605/70m, Chroma), and recorded continuously using an EM-CCD camera 
(iXon Ultra 897, Andor) in the frame-transfer mode at 110 frames per second (fps) with a frame 
integration time of 9 ms. The typically recorded photon counts were 500-1200 for each BDP-
TMR-alkyne molecule. 30,000-50,000 frames were typically recorded for each sample. 

Processing of single-molecule images 

Single molecules were first identified and localized with established methods using Insight3 (Dr. 
Bo Huang at University of California, San Francisco, and Dr. Xiaowei Zhuang at Harvard 
University), yielding typical densities of ~0.1 molecules/µm2/frame. An ROI of 7×7 pixels was 
sampled around the center of each localized molecule, and molecules with overlapping ROIs were 
discarded. The single-molecule images were then spatially binned with a fixed grid size (e.g., 120 
nm × 120 nm). For bins having single-molecule count pi > 10, the accumulated single-molecule 
images were fed into the trained Pix2D model as described above for the evaluation of local D.  
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Chapter 4: Conclusion and outlooks 

Optical microscopy has been one of the most widespread and important tools for 
biophysical studies by allowing researchers to observe biological processes at high spatial and 
temporal resolution. Advances and engineering in this tool, such as super-resolution microscopy6–

8 and fluorescence correlation spectroscopy (FCS),59,61–64 have further extended the application of 
optical microscopy by breaking the spatial resolution limit and providing additional information 
beyond spatial coordinates, respectively. Nonetheless, microscopic techniques are being 
revolutionized toward analyzing the physical properties of the sample and the correlation to the 
structural information.14–16 In particular, single-molecule and protein diffusion studies have 
provided unprecedented insights into the molecular mechanisms of biological systems as many 
fundamental processes are carried out by the Brownian motions of molecules.20–24,58–60 Such 
understanding of the system is also crucial for a wide range of biomedical applications, including 
drug delivery, tissue engineering, and diagnostics.30–33  

In recent years, our research group has introduced single-molecule 
displacement/diffusivity mapping (SMdM), which can trace single molecules with high fidelity 
and high throughput as fast as hundreds of µm2/s, that corresponds to the diffusivity of smaller 
molecules of size around 1 kDa. In Chapter 2, I presented the application of SMdM for studying 
the suppression of molecular diffusion in hydrogel nanomatrices with a controlled meshwork size. 
By repurposing expansion microscopy and modulating a range of polymer fractions, we showed 
that larger molecules experience greater suppression of diffusion under the fixed meshwork size 
and that, as the meshwork size was reduced, diffusion was progressively suppressed, with this 
effect being more pronounced for larger molecules. The obstruction by the meshwork was found 
to be independent of the suppression of diffusion from increased solution viscosity. These two 
mechanisms work separately to reduce molecular diffusivity and produce the final diffusion 
slowdown in complex systems such as cells. The study's findings have potential implications for 
the development of manipulation and measurement tools using expandable hydrogels and 
expansion microscopy. 

In the following chapter, I demonstrated the high-resolution diffusivity mapping with deep 
learning that can correlate to the super-resolution imaging from typical single-molecule 
localization microscopy settings. We took advantage of the motion blur of the single molecules 
recorded in the camera frame to extract how fast the molecules move, thus diffusion coefficient D, 
without fitting the single-molecule images into any physical models. With both simulated and 
experimental data, the trained model correctly extracted diffusion coefficients and successfully 
resolved spatial patterns that were coherent to the sample structures at nanoscale. Future efforts 
may consider extending the approaches developed in this work to diffusion in three dimensions 
and correlative analysis with additional physical properties from single-molecule signals. 
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 The following section describes another example of SMdM application, that high 
statistical reliability of the method in measuring the diffusivity of different enzymes under their 
enzymatic activities. Unlike some recent studies that suggested those reactions accelerate the 
diffusion of these proteins, our results disprove the hypothesis as all enzymes measured with 
SMdM showed no significant difference whether or not they are in enzymatic reaction. 
Additionally, I present the validation of multiple-component model analysis of SMdM data using 
simulated dataset and experimental results.  

 

4.1. Application of SMdM: Disproval of enzymatic diffusion enhancement 

 

The work in this part was conducted in collaboration with Alexander A. Choi, Kun Chen, 
Rui Yan, Wan Li and Ke Xu. It is reproduced in part here from ref.45 and with permission from all 
coauthors. Copyright 2022 American Chemical Society.  

Here, I present the application of SMdM taking advantage of its high-throughput nature, 
experimental results disproving the hypothesis that catalytic reaction can increase the D of 
enzymes. We aimed to measure the D of four enzymes during catalytic turnovers by analyzing the 
statistics of transient displacements of single molecules in common buffers. The precise 
measurements of D showed that there were no changes in the diffusivity of catalase, urease, 
aldolase, and alkaline phosphatase, over a wide range of substrate concentrations. Our study 
employing a single-molecule approach that overcame limitations and artifacts observed in previous 
studies thus indicates that enzymatic reactions do not enhance diffusion.   

 

4.1.1. Controversy and debates on enzymatic diffusion enhancement from its reaction  

The recent reporting of accelerated diffusion of enzymes in catalytic reactions has 
generated keen research interest and debate.105–112 Measurements based on fluorescence 
correlation spectroscopy (FCS) have documented substantial (>~30%) increases in the diffusion 
coefficient D for multiple enzymes under catalytic turnovers.105,106,113–120 Several recent studies, 
however, emphasize FCS artifacts107,121,122 and report contradicting results. Dynamic light 
scattering (DLS) experiments, with low sensitivity for the very small sizes of proteins, also yield 
inconsistent results either supporting118,120 or refuting123 substrate-enhanced diffusion. Likewise, 
different nuclear magnetic resonance (NMR) experiments have separately reported the presence 
or absence of reaction-enhanced D for enzymes and small molecules,124–127 with unsettled debate 
on data interpretation.112,128,129 
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Single-molecule experiments22,130,131 provide potential means to achieve precise D 
measurements by probing one molecule at a time. However, with expected D~30-50 µm2/s,50,110 
the fast motions of typical enzymes make it difficult to detect freely diffusing single molecules. 
Using reducing-oxidizing chemicals that suppress fluorophore blinking, a recent study achieved 
long-time anti-Brownian electrokinetic (ABEL) single-molecule trapping of dye-labeled alkaline 
phosphatase (ALP) to show no change in D with the addition of its substrate.122 Meanwhile, single-
molecule tracking has been reported for dye-labeled urease and ALP that were substantially slowed 
down by using viscous reagents as methylcellulose132,133 and glycerol122,133 or by tethering to 
supported lipid bilayers,133 which yielded contrasting results of no change versus up to 3-fold 
increases in D upon substrate addition. Thus, it remains difficult to quantify D through single-
molecule measurements for molecules freely diffusing in regular buffers, whereas the addition of 
blinking-suppressing chemicals and viscous reagents complicates data interpretation. 

 

4.1.2. Validation of SMdM statistical reliability 

To obtain statistical validity and robustness for diffusivity of enzymes, >5×104 single-
molecule displacements were typically accumulated for SMdM analysis. Under such conditions, 
maximum likelihood estimation (MLE) with a predefined model based on normal diffusion plus 
background yielded good fits, from which D values were obtained with their 95% confidence 
intervals, e.g., D = 47.3±0.4 µm2/s for Cy3B-labeled catalase in phosphate-buffered saline (PBS) 
(Figure 22a). We employed SMdM to measure the diffusion coefficients of 13 different protein 
samples in a wide 14-545 kDa size range in PBS and Tris buffers (Figure 22b) and obtained results 
in agreement with that is predicted by the Young-Carroad-Bell model,50,110 including for the fast-
diffusing small proteins as RNase A and lysozyme at >100 µm2/s. 

To define how the achievable precision in D depends on the count of single-molecule 
displacements N, we simulated 600-µs displacements d for molecules diffusing at D = 50 µm2/s. 
Different levels of backgrounds were further included, i.e., assuming 0%, 10%, or 25% of the total 
counts were due to extraneous molecules that randomly entered the vicinity during Δt. MLE of the 
simulated data showed that with zero background, the relative uncertainty of D (σD/D) was ~1/√N, 
so that 10% and 1% uncertainties were achieved with 100 and 10,000 counts of d, respectively 
(Figure 22c). This result is expected: each displacement provides an independent reporting of 
diffusivity, so the signal-to-noise ratio improves as ~√N. At background levels of 10% and 25%, 
1% uncertainty in D was achieved with ~20,000 and ~30,000 counts of d, respectively. As our 
experimental data contained <10% background, ~0.5% relative uncertainty (hence an ~±1% 
bracket for the 95% confidence interval) was thus obtained (Figure 22c) with the typical >50,000 
counts of d in our experiments, in agreement with our above MLE results on the experimental data 
(Figure 22a).  
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Figure 22. High-throughput statistics of single-molecule displacements for precise diffusivity analysis. 
(a) Histogram: distribution of the 65,541 transient single-molecule displacements collected in 9 min by 
repeating the tandem excitation scheme 30,000 times. Blue line: MLE yielding a diffusion coefficient D of 
47.3±0.4 µm2/s (95% confidence interval). (b) SMdM-measured D values of 13 different protein samples 
of varying sizes in PBS and Tris buffers. Dash line: expected values at 20 °C according to the Young-
Carroad-Bell model. (c) Relative uncertainty of D (σD/D) from MLE results of the simulated data at different 
levels of backgrounds, as a function of the counts of displacements. The standard deviations σD were 
calculated from the differences between 5,000 rounds of simulations under each condition.  

 

4.1.3. SMdM measurements of enzymes under their catalytic activities 

For catalytic reactions, we started with catalase in the presence of its substrate H2O2, for 
which system FCS has reported ~30-40% increase in D with ~25 mM H2O2.106,113,115 SMdM 
statistics showed that the addition of 1, 5, and 50 mM H2O2 did not noticeably shift the single-
molecule displacement distribution (Figure 23a). The catalytic reaction generated oxygen bubbles, 
which were more notable for samples with higher H2O2 concentrations (Figure 23a inset). The 
bubbles scattered light and increased the fluorescence background to slightly reduce our capability 
to track molecules across the tandem frames, and so led to a moderately increased tail in the d 
distribution (Figure 23a). Nonetheless, MLE yielded good fits (Figure 23b), and the resultant D 
values showed minimal variations in the range of 46.5-48.0 µm2/s between the different substrate 
concentrations (Figure 23c). These results contrast with the ~30-40% substrate-induced D 
enhancements reported in previous FCS studies.106,113,115  
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We next examined urease, for which previous FCS experiments have reported up to ~40% 
D enhancement in the presence of 10-100 mM of its substrate urea.105,106,116,118–120 Moreover, ~3-
fold substrate-induced D enhancement is recently reported for single urease molecules diffusing 
in the highly crowded or membrane-tethered systems at orders of magnitudes lower D values.132,133 
SMdM showed virtually identical distributions for the 600-µs single-molecule displacements of 
urease in PBS with and without the addition of 0.1-100 mM of urea (Figure 24a). MLE hence 
yielded comparable D values of 26.4-27.3 µm2/s for the five conditions with no noticeable trend 
on the substrate concentration (Figure 24b). 

 

Figure 23. No substantial change in single-molecule displacements for catalase under turnover. 
(a) Normalized count distributions of the measured 600-µs single-molecule displacements for Cy3B-
labeled catalase diffusing in PBS buffers with H2O2 added at 0, 1, 5, and 50 mM. Inset: photo of a sample 
with 50 mM H2O2, showing the generation of bubbles from the catalytic reaction. (b) Histogram: the count 
distribution with the 50 mM H2O2 solution. Blue line: MLE yielding D = 48.0±0.4 µm2/s (95% confidence 
interval). (c) MLE-determined D at the different substrate concentrations. Error bars: 95% confidence 
intervals of MLE. 

For ALP, FCS has initially reported up to an 80% increase in D with the addition of 2.6 
mM of its substrate p-nitrophenyl phosphate (pNPP).106 However, recent FCS 
experiments,107,120,122 as well as single-molecule trapping in blinking-suppressed buffers and 
tracking in glycerol-slowed solutions122 indicate no substrate-induced D enhancement. For ALP 
in its working buffer of 100 mM Tris-HCl (pH = 9.8) containing 1 mM MgCl2 and 20 µM ZnCl2, 
SMdM showed no substantial changes in single-molecule displacements with the addition of 0.5-
10 mM pNPP (Figure 24c). Accordingly, the resultant D values of 46.8-48.1 µm2/s indicated no 
enhanced diffusion (Figure 24d).  

We further examined aldolase, for which previous FCS experiments have either reported 
~30% increase114 or no change118,120 of D in the presence of ~1 mM of its substrate, fructose 1,6-
bisphosphate (FBP), whereas DLS118,123 and NMR125 experiments have indicated no D 
enhancement over broad substrate ranges. SMdM of aldolase in a HEPES buffer (pH = 7.4) showed 
no substantial changes in single-molecule displacements with and without the addition of 0.1-10 
mM of FBP (Figure 24e), and hence no enhanced diffusion of D values in the range of 42.9-44.4 
µm2/s (Figure 24f). 
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Figure 24. Results on urease, alkaline phosphatase, and aldolase also show no changes in single-
molecule displacements under catalytic turnover. 
(a) Normalized distributions of the measured 600-µs single-molecule displacements for Cy3B-labeled 
urease in PBS, with and without the addition of urea at different concentrations. (b) MLE-determined D 
values at different urea concentrations. Error bars: 95% confidence intervals of MLE. (c,d) Similar to that 
in (a,b), but for Cy3B-labeled alkaline phosphatase in 0.1 M Tris-HCl (pH = 9.8) with the addition of 1 mM 
MgCl2 and 20 µM ZnCl2, with p-nitrophenyl phosphate (pNPP) as the substrate. (e,f) Similar to that in (a,b), 
but for Cy3B-labeled aldolase in 0.1 M HEPES (pH = 7.4), with fructose 1,6-bisphosphate (FBP) as the 
substrate. 

 

4.1.4. Conclusion 

Together, with the high precision achieved through the high single-molecule statistics of 
SMdM, our results consistently showed unvarying D for four enzymes that have been reported as 
exhibiting enhanced diffusion under catalytic turnovers. These results, together with recent 
experiments that reexamine artifacts due to photophysical processes as fluorescence quenching 
and blinking,107,121,122 underscore the difficulties with quantifying D through FCS. Although 
blinking-suppressing buffers partly alleviate these issues while also enabling single-molecule 
trapping for D measurements,122 the addition of reducing and oxidizing chemicals complicates data 
interpretation. Meanwhile, the high D values of enzymes have largely limited single-molecule 
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tracking to systems in which viscous reagents as methylcellulose132,133 and glycerol122,133 are added 
to slow down molecular motions.  

In contrast, with SMdM we were able to work with the diffusion of enzymes in regular 
buffers without the addition of extraneous components that may potentially affect the system: As 
SMdM captured and accumulated the transient (600 µs) displacements of single molecules, it 
removed the needs to establish long-term fluorophore photostability or to impede diffusion to 
permit multi-frame tracking. Whereas in this study we have employed MLE to extract D values 
based on normal (Gaussian) diffusion, the highly invariant distributions of single-molecule 
displacements we observed under different substrate concentrations suggest no changes in 
diffusivity independent of the specific model. The sub-millisecond motion-detection time window 
of SMdM is comparable to that of FCS, which has been the primary method used in previous 
studies to advocate enhanced diffusion in the presence of substrates. For the four enzymes 
examined, this time window should accommodate multiple turnovers for catalase, urease, and ALP, 
but not aldolase. Our results thus support recent analysis that reaction-facilitated diffusion vanishes 
at the molecular scale,112 and call for the reexamination of factors that may have inadvertently 
affected previous measurements, including both photophysical processes107,121,122 and the 
dissociation of enzyme subunits.107,118 The application of the tools developed in this work to other 
systems in which precise D values are important, potentially including the even faster diffusion of 
smaller molecules, awaits future efforts. 

 

4.2. Multi-component models for SMdM data analysis 

All previous results of SMdM assumed a single-component model in MLE: 

𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) ∝ 2𝑟𝑟
4𝐷𝐷Δ𝑡𝑡

exp �− 𝑟𝑟2

4𝐷𝐷∆𝑡𝑡
� + 𝑏𝑏𝑏𝑏   (4.1) 

where pdf(r) is the radial probability distribution function (pdf), r is step displacement in time 
interval ∆t, D is diffusion coefficient. For simplicity, the normalization factor is not shown. b 
accounts for matching extraneous molecules rather than the identical molecule when calculating r. 
This term is proportional to the density of the target molecule. However, in practice, multiple 
species can be detected in a single color channel, i.e., contamination or the target under equilibrium 
of multiple states. For example, SMdM of a protein under monomeric-dimeric equilibrium will 
result in the step displacement distribution that does not follow equation 4.1. To correctly fit the 
data, modification to the model is necessary:   

𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) ∝ 𝑝𝑝 2𝑟𝑟
4𝐷𝐷1Δ𝑡𝑡

exp �− 𝑟𝑟2

4𝐷𝐷1∆𝑡𝑡
� + (1 − 𝑝𝑝) 2𝑟𝑟

4𝐷𝐷2Δ𝑡𝑡
exp �− 𝑟𝑟2

4𝐷𝐷2∆𝑡𝑡
� +  𝑏𝑏𝑏𝑏 (4.2) 
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where D1 and D2 are diffusion coefficients of two components, respectively, and p is the fraction 
of the first component among the captured step displacements. Note that p and (1-p) do not directly 
project an actual population ratio under equilibrium, as even with the same concentration, species 
diffusing faster has a lower chance to be traced in the paired frame. Likewise, n-component models 
can be introduced for MLE in SMdM, i.e., the three-component model will be:  

𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) ∝ 𝑝𝑝 2𝑟𝑟
4𝐷𝐷1Δ𝑡𝑡

exp �− 𝑟𝑟2

4𝐷𝐷1∆𝑡𝑡
�+ 𝑞𝑞 2𝑟𝑟

4𝐷𝐷2Δ𝑡𝑡
exp �− 𝑟𝑟2

4𝐷𝐷2∆𝑡𝑡
�+ (1 − 𝑝𝑝 − 𝑞𝑞) 2𝑟𝑟

4𝐷𝐷3Δ𝑡𝑡
exp �− 𝑟𝑟2

4𝐷𝐷3∆𝑡𝑡
�+  𝑏𝑏𝑏𝑏 (4.3) 

with D1, D2, and D3 being the diffusion coefficients of the three components, and p and q being 
the fractions of the first and the second components, respectively. As increasing the number of 
parameters to fit the data steadily decreases the residual, the most suitable model for a given data 
should be determined from the likelihood-ratio test. With the collection of the step distance data, 
𝑋𝑋�, the likelihood (L) of one model is calculated as a product of the probability of all data under the 
model pdf. For example, for the single-component model above, the likelihood is given as: 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  =  ∏𝑝𝑝𝑝𝑝𝑝𝑝� 𝑋𝑋 � � , 𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟) ∝ 2𝑟𝑟
4𝐷𝐷Δ𝑡𝑡

exp �− 𝑟𝑟2

4𝐷𝐷∆𝑡𝑡
� + 𝑏𝑏𝑏𝑏  (4.4) 

For the statistical test, the negative log of the likelihood ratio (λLR) of MLE results is calculated:  

𝜆𝜆LR  = −2 ln � 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

�    (4.5) 

where the constrained model is the model assuming fewer components. With the cumulative 
distribution function (CDF) of chi-squared distribution with k degrees of freedom134, 𝜒𝜒𝑘𝑘2, where k 
is the difference in the number of parameters between the two models: For example, k = 2 when 
comparing the single-component (D, b) and two-component (D1, D2, p, b), or two-component and 
three-component (D1, D2, D3, p, q, b) models. The CDF value at x = λLR thus equals (1 – p-value), 
and that low p-value indicates the statistical significance to keep the unconstrained model. 
Practically, a significance level of 0.05 or 0.001 can be set as a standard, then λLR is compared to 
the fixed value at given k (for example, if k = 2, these are 5.99 and 13.82, respectively). In this 
section, I will discuss verifying the multi-component models for SMdM analysis as a proof of the 
concept, first on simulated data and then on experimental data that successfully distinguish two 
different species.  
 

4.2.1. Validation of multi-component models using simulated data 

To compare single- and multi-component models in MLE of SMdM data, I generated 
collections of step displacements under the probability distribution of eqn. 4.2. As typical proteins 
in the physiological condition have diffusion coefficients of tens of μm2/s, the simulation was 
performed for D1 and D2 both in the range of 1~60 μm2/s. The population p was swept from 0 to 
1, and ∆t was fixed to 1 ms for simplicity and to replicate typical SMdM data acquisitions. 
Although the total count of step displacement was also a parameter to sweep at the initial stage, 
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counts over 10,000 showed no significant trend by the data size and were not differentiated here 
and below. For each combination of parameters, 100 independent simulations were performed for 
statistical robustness.  

 

Figure 25. Multi-component MLE results on Simulated SMdM data. 
(a) Probability diagram of two-component MLE result predicts all D1, D2, and p within 10% relative error 
to the ground truth. (b) %Error distribution of D1 at p > 0.9 and D2 at p < 0.1. (c) %Error distribution of D1 
at p < 0.1 and D2 at p > 0.9. (d) Histogram: the count distribution of 40,000 step displacement generated 
with D1 = 60 μm2/s, D2 = 30 μm2/s, and p = 0.8 from eqn. 4.2. Red line: Single-component MLE result. 
Blue line: Two-component MLE result. (e) Histogram: the count distribution of 40,000 step displacement 
generated with D1 = 51 μm2/s, D2 = 24 μm2/s, D3 = 6 μm2/s, p = 0.35 and q = 0.4 from eqn. 4.3. Red line: 
Single-component MLE result. Blue line: Two-component MLE result. Green line: Three-component MLE 
result.  

Extensive qualification of two-component MLE performance by ground truth conditions, 
diffusivity difference between two species and their population, is summarized in Figure 25a. As 
nearly all data of p range in 0.1~0.9 passed the likelihood-ratio test, the fraction of the MLE results 
having relative errors for D1, D2, and p all less than 10% are shown for validation of two-
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component MLE. When one species outnumbers the other by a huge extent, the MLE result was 
not accurate regardless of the D difference. However, the D of the major component was accurately 
analyzed (Figure 25b), and the inaccuracy was explicitly from the diffusivity of the minor 
component (Figure 25c) and the population (for example, MLE result of p = 0.06 is outside 10% 
error from p = 0.05). In moderately populated circumstances, the MLE performed with high 
accuracy when the D difference was at least 20-30 μm2/s. The results together set the guideline for 
two-component MLE in SMdM data, of which system the model would provide the correct picture. 

For instance, 30,000 step distances generated with 70% of 35 μm2/s and 30% of 12 μm2/s, 
the single-component MLE yielded 26.66 μm2/s (Figure 25d, red line), whereas two-component 
MLE correctly differentiated two diffusivities as 35.51 μm2/s and 11.93 μm2/s, with 68.8% and 
31.2% population, respectively (Figure 25d, blue line). As SMdM analysis of similar data size 
gives <10% of error (Figure 22c), ~30% error from the diffusivity of the main component implies 
a two-component model is necessary for the data. Indeed, the log-likelihood test for comparing 
models strongly suggested the two-component over the single-component with p-value < 0.001.  

To further validate the multi-component model with simulated data, a set of 40,000 step 
distances were generated from eqn. 4.3. with 35% of 51 μm2/s, 40% of 24 μm2/s, 25% of 6 μm2/s 
(Figure 25e, histogram). From the heterogeneous data, the single-component MLE yielded 23.06 
μm2/s (Figure 25e, red line), the two-component MLE fitted two diffusivities as 39.13 μm2/s and 
7.24 μm2/s, with 65.3% and 34.7% population, respectively (Figure 25e, blue line), and the three-
component MLE correctly differentiated the three diffusivities as 52.81 μm2/s, 25.51 μm2/s, and 
6.23 μm2/s, with 33.6%, 39.2%, and 27.2% population, respectively (Figure 25e, green line). While 
both multi-component models performed better fitting over the single-component model and 
yielded comparable curves, the two-component MLE resulted in faster diffusivity of nearly an 
average value of two faster components and even failed to predict the correct fraction of the slowest 
component. This was further statistically verified from the negative log-likelihood ratio of the two 
models being ~18.9, which corresponds to a p-value < 0.001 and imply the three-component model 
is suitable for the given data.   

 

4.2.2. Application for heterogeneous protein samples 

To demonstrate the application of the two-component MLE in SMdM data analysis, here 
I present two cases where using the model was found effective: distinguishing two species in a 
single color channel and identifying two different states of proteins in the heterogeneous system. 
Firstly, the model clearly identified both Cy3B-labeled BSA and the free form of Cy3B in a single 
sample (Figure 26a). Not only the step distance histogram was successfully fitted with the two-
component model (Figure 26a, blue line), the D of both BSA-Cy3B and Cy3B in PBS were 
correctly analyzed: here 59.36 μm2/s and 370.05 μm2/s, respectively, compared to 57±2 μm2/s and 
357±10 μm2/s (95% confidence intervals of MLE), respectively when BSA and Cy3B are 
separately measured (Figure 5b). Consistent with the visual assessment, λLR of the two models was 
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over 1300. Meanwhile, λLR between the two- and three-component models was negative as the 
three-component MLE failed to converge, and the likelihood was not maximized. Thus, the two-
component model was the most suitable for the data. Although the chemical labeling of proteins 
with the dyes are followed by thorough filtering and purification, some chemical and physical 
conditions such as pH may lead to the dissociation of the bond and generate impurities. As SMdM 
can track fast diffusing free dyes, it can qualify the purity of the protein sample with high 
sensitivity in 1-2 minutes of data collection.  

 

Figure 26. Single- and two-component MLE results on SMdM data. 
(a) Histogram: the count distribution of SMdM step displacements of BSA-Cy3B containing free 
Cy3B dissociated under basic pH at 600 µs time interval. Red line: Single-component MLE result. 
Blue line: Two-component MLE result. The solid line shows the fitted scaled probability 
distribution, and dashed lines show fitted step distance distribution for the two species separately. 
(b) Histogram: the count distribution of SMdM step displacements in 400 µs time interval of 
RNase A-Cy3B in the hydrogel of expansion factor 1.42. See chapter 2 for detailed experimental 
conditions. The labeled protein here was not passivated to remove the excessive surface positive 
charges. Red line: Single-component MLE result. Blue line: Two-component MLE result. The 
solid line shows the fitted scaled probability distribution, and dashed lines show fitted step distance 
distribution for the two species separately. 

The two-component MLE can also discriminate two states of a single protein. For the 
RNase A in the hydrogel presented in Chapter 2 where it exhibits decreased diffusivity compared 
to in PBS, two distinctive D was analyzed (Figure 26b). While RNase A in the hydrogel with an 
expansion factor of 1.42 (2.9× volume expansion; 3.1 wt % final polymer content) is expected to 
have diffusivity around 70 μm2/s (Figure 6a), the single-component MLE resulted in 47.11 μm2/s. 
Unlike results presented in Chapter 2, here the positive charges of RNase A were not passivated 
with the acetate functional group. As RNase A is a protein positively charged under physiological 
pH (pI = 9.6), the protein experiences extra hindrance from charge interactions in the hydrogel of 
negatively charged acrylate.16 Such an effect was not observed from all of the proteins in the 
sample, as the fluorescence labeling degree varies protein by protein: one can have a single dye 
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conjugated, while another protein can have all available lysine residue consumed. The partially 
labeled protein would experience the charge effect, whereas fully labeled proteins are only affected 
by the geometric environment in the hydrogel. This was reflected in two different diffusivities 
from the SMdM data, that one population has 68.74 μm2/s, which corresponds to RNase A only 
experiencing steric effect of the meshwork, and the other has even slower diffusion, 28.41 μm2/s 
(Figure 26b, blue dashed lines). Here λLR of two models was over 320, and between the two- and 
three-component model was negative as three-component MLE also failed to converge. This again 
indicated the two-component model was the best, but not more component. Together, the multi-
component model for MLE of the SMdM data revealed deeper insight those are not explicitly 
available from the single-component model. For more complex systems, this can be further 
extended to higher degree of multi-component model for SMdM MLE.  
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