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ABSTRACT
We propose a novel entropy-based sensor selection heuristic
for localization. Given 1) a prior probability distribution
of the target location, and 2) the locations and the sensing
characteristics of a set of additional sensors, we would like
to select an optimal additional sensor such that fusion of
its measurements with existing information would yield the
greatest entropy reduction of the target location distribu-
tion. The heuristic can select a sub-optimal additional sen-
sor without retrieving the measurements of candidate sen-
sors. The heuristic is computationally much simpler than
the mutual information based sensor selection approaches
for localization and tracking [1, 2]. Just as those existing
approaches do, the heuristic greedily selects one sensor in
each step.

Categories and Subject Descriptors
H.1.1 [MODELS AND PRINCIPLES]: Systems and In-
formation Theory—Value of information

General Terms
Algorithms

Keywords
sensor selection, localization, wireless sensor networks

1. INTRODUCTION
There have been many investigations of information-theoretic

approaches to sensor fusion and management. The idea of
using information theory in sensor management was first
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proposed in [3]. Sensor selection based on expected infor-
mation gain has been introduced for decentralized sensing
systems in [4]. The mutual information between the pre-
dicted sensor measurements and the target location distri-
bution has been proposed to evaluate the expected informa-
tion gain of incorporating a sensor in [1, 2]. The dependency
of the localization uncertainty on the sensor locations rela-
tive to the target location has been identified during the
development of localization algorithms without using infor-
mation theory [6]. One example is the convex hull heuristic
of localization using time-difference-of-arrival (TDOA) sen-
sors. Targets inside the convex hull of TDOA sensors can be
much more accurately located than those outside the convex
hull. We propose a novel entropy-based heuristic for sensor
selection based on our experiences with target localization.
It is computationaly more efficient than mutual information
based methods proposed in [1, 2].

We use the following notations throughout this poster:
(1) x is the random variable for the target location, xt is the
true target location, x̂ is the maximum likelihood estimate
of the target location,
(2) zi is the random variable for the observation of sensor i,
zv

i is the view of sensor i about the target location,
(3) xi denotes the deterministic location of sensor i.

2. SENSOR SELECTION HEURISTICS
The sensor selection problem discussed in this poster can

be formally defined as follows. Given
(1) the prior target location distribution: p(x),
(2) the locations of additional sensors: xi, i ∈ S,
(3) the sensing models of additional sensors: p(zi|x), i ∈ S,

the objective is to find the additional sensor î whose mea-
surements zî minimizes the conditional entropy of the pos-
terior target location distribution,

î = arg min
i∈S

H(x|zi). (1)

Equivalently, sensor î maximizes the expected target entropy
reduction,

î = arg max
i∈S

(H(x) − H(x|zi)). (2)

H(x) − H(x|zi) is one expression of I(x; zi), the mutual
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information between the target location x and the sensor
measurements zi. Thus, using the definition of I(x; zi),

î = arg max
i∈S

�
p(x, zi) log

p(x, zi)

p(x)p(zi)
dxdzi (3)

[1, 2] propose to select the sensor with maximum I(x; zi).
I(x; zi) is computed using the predicted p(zi) based on p(x)
and p(zi|x) without obtaining the actual measurement of
zi. However, I(x; zi) could be computationally intensive to
low-end micro sensor nodes because p(x, zi) could be in a
space of up to four dimensions. We propose an efficient
sub-optimal solution to the above problem.

During the development of wireless sensor networks for
localization, we have noticed that the localization accuracy
is greatly effected by two factors, namely, the entropy of
the sensor’s view of the target and the sensor’s sensing un-
certainty. From the sensor’s perspective, the target is ran-
domly distributed in the measurement space. For example,
to a direction-of-arrival (DOA) sensor, there is only a bear-
ing distribution for the target. The probability distribution
of sensor’s view of the target, p(zv

i ), is the projection of the
prior target location distribution p(x) onto the sensor’s ob-
servation perspective, which solely depends on the target
location distribution p(x), the sensor measurement modal-
ity (i.e. TDOA, DOA, range), and the sensor location xi.
The entropy of p(zv

i ) is

Hv
i = −

�
p(zv

i ) log p(zv
i )dzv

i . (4)

The sensing uncertainty is the entropy of the sensor’s sensing
model p(zi|xt) at the true target location xt. For a single-
modal p(x), we can use the maximum likelihood estimate
x̂ to approximate xt, and thus the sensing uncertainty is
approximated as

Hs
i = −

�
p(zi|x̂) log p(zi|x̂)dzi. (5)

For a p(x) with M modes x̂(m), m = 1, . . . , M ,the sensing
uncertainty is approximated as a weighted average of the
sensing uncertainty for all modes,

Hs
i = −

M�
m=1

p(x̂(m))

�
p(zi|x̂(m)) log p(zi|x̂(m))dzi. (6)

The sensing uncertainty depends on the signal-to-noise ratio
(SNR), the sensor hardware, and the sensing algorithms.
We have repeatedly observed that the incorporation of the
measurements of sensor i with a larger Hv

i and a smaller Hs
i

will yield larger uncertainty reduction of the posterior target
location distribution. Therefore, we propose to use Hv

i −
Hs

i as a suboptimal but efficient alternative to I(x; zi) for
evaluating the information utility of sensor i. The heuristic
is to select sensor î such that

î = arg max
i∈S

(Hv
i − Hs

i ). (7)

The entropy difference Hv
i −Hs

i can be closely related to
I(x; zi) under several assumptions. Another expression of
I(x; zi) is H(zi) − H(zi|x). H(zi) is the entropy of p(zi),

p(zi) =

�
p(zi|x)p(x)dx. (8)

p(zi) becomes p(zv
i ) when the sensing model p(zi|x) is de-

terministic without uncertainty. Thus Hv
i is smaller than

H(zi). However, the optimal sensor selection does not re-
quire an accurate evaluation of sensor information utility.
Instead, a correct order of sensors in terms of information
utility is needed. Therefore, Hv

i can reasonably replace
H(zi) to sort sensors into the right order of their informa-
tion utility. We have found a fast algorithm to compute
p(zv

i ) given p(x) and xi. If the sensing model p(zi|x) is very
complex, Hv

i will be much simpler to compute than H(zi).
H(zi|x) is actually the expected sensing uncertainty aver-
aged for all possible x,

H(zi|x) =

�
p(x){−

�
p(zi|x) log p(zi|x)dzi}dx. (9)

Therefore, Hs
i defined in (5) and (6) are reasonable approx-

imations of H(zi|x). Hs
i is much simpler to compute than

H(zi|x). Besides, Hs
i could be computed once and re-used

multiple times if the sensing uncertainty does not change
rapidly with time. On the other hand, H(zi|x) has to be
re-computed each time even if the sensing uncertainty does
not change with time. Therefore, the heuristic defined in
(7) is much more efficient than the method using mutual
information defined in (3).

3. RESULTS, CONCLUSION, AND FUTURE
WORK

We have evaluated the above described sensor selection
heuristic by using target localization simulations. The heuris-
tic is much simpler to compute than mutual information.
More details can be found in [5]. This poster presents the
case study of sensor selection for localization using DOA
sensors. We plan to implement the method on a real-time
wireless sensor network testbed for localization.
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