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ABSTRACT OF THE DISSERTATION

Maximizing Signal Detection

and Improving Radio Frequency Interference Identification

in the Search for Radio Technosignatures

by

Pavlo Pinchuk

Doctor of Philosophy in Physics

University of California, Los Angeles, 2021

Professor Jean-Luc Margot, Chair

In this work, I describe significant advancements to the signal detection and Radio Frequency In-

terference (RFI) identification capabilities of modern radio technosignature detection algorithms.

These improvements are presented alongside the results of the analysis of four annual UCLA radio

technosignatures searches spanning 2016–2019. First, I describe the UCLA SETI Group’s initial

versions of the signal detection and RFI identification algorithms, which were able to detect ap-

proximately 850 000 candidate signals within a frequency range of 1.15–1.73 GHz over ∼2 hours

of observations with the 100 m diameter Green Bank Telescope in 2016. Next, I describe an im-

proved candidate signal detection algorithm that detected approximately 6 million signals in a 2017

search for technosignatures with identical observational parameters. Importantly, I show that the

common practice of ignoring frequency space around candidate detections can reduce the number

of signals detected by a factor of four or more and presents significant problems when estimating

figures of merit or upper limits on the prevalence of technosignatures. I then present further im-

provements to these detection algorithms, which introduce the use of the topographic prominence
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for detection purposes and nearly double the signal detection count of some previously analyzed

data sets. I also describe improvements to direction-of-origin filter algorithms, which are designed

to remove most of the signals attributable to RFI from the data. The updated algorithms ensure

a unique link between signals observed in separate scans. Finally, I present a novel machine-

learning-based RFI mitigation algorithm, which helps address a major remaining challenge in the

search for radio technosignatures. Specifically, I describe the design and deployment of a Convo-

lutional Neural Network (CNN) that can determine whether or not a signal detected in one scan

is also present in another scan. This CNN-based filter outperforms both a baseline 2D correla-

tion model as well as existing filters over a range of metrics and reduces the number of signals

requiring visual inspection after the application of traditional filters by a factor of 6–16 in nominal

situations.
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CHAPTER 1

Introduction

The question “Are we alone in the Universe?” is one of the most enduring and fundamental unan-

swered questions in modern science. The quest for a definitive answer to this question motivates

the search for evidence of life in the Solar System and beyond. Over time, two primary strate-

gies for the search have emerged. One focuses on biosignatures, which are defined as scientific

evidence of past or present life. The other focuses on technosignatures, which are defined as any

scientific evidence of the existence of extinct or extant technology. Given our present knowledge

of astrobiology, it is impossible to reliably predict which strategy will succeed first. However,

the search for technosignatures offers four distinct advantages compared to telescopic or robotic

searches for biosignatures.

First, present-day human technology limits the targets for a biosignature search to planetary

systems around a few dozen nearby stars, including our own Sun. In contrast, the number of avail-

able targets for a directed technosignature search is likely at least a billion times larger, given the

abundance of potentially habitable exoplanets [Borucki, 2016] and our ability to detect technosig-

natures emitted thousands of light years away [e.g., Margot et al., 2018]. Second, the detection of

a biosignature outside the Solar System, along with its interpretation, may remain ambiguous and

controversial for many years, whereas a confirmed detection of an extraterrestrial technosignature

of the type described in this work would offer a high level of certainty in interpretation. Third, the

information content of some biosignatures may remain limited post-detection, while the content

of an intentional extraterrestrial transmission could potentially provide an unparalleled advance in

knowledge. Finally, a substantial search for technosignatures can be accomplished with only a

1



small (<1%) fraction of the budget currently allocated to the search for biosignatures, including

missions like Mars 2020, Europa Clipper, and the James Webb Space Telescope.

The UCLA SETI Group has been conducting annual observations for radio technosigatures

since 2016. This search builds on the legacy of technosignature searches performed in the period

1960–2010 [Tarter, 2001, Tarter et al., 2010, and references therein] and compares favorably to

other recent searches in terms of end-to-end sensitivity, frequency drift rate coverage, and sig-

nal detection count per unit bandwidth per unit integration time. So far, the UCLA SETI Group

has focused on detecting signals that are narrow in the frequency domain, which would provide

compelling evidence of the existence of another civilization. A repeatedly observable signal that

originates from an extrasolar source and is narrow (< 10 Hz) in the frequency domain is a tech-

nosignature because natural sources do not emit such narrowband signals. The narrowest reported

natural emission spans about 500 Hz and corresponds to OH (1612 MHz) maser emission [Cohen

et al., 1987].

Although no technosignatures have been discovered to date, the tools and algorithms used to

analyze the radio baseband data have undergone multiple levels of improvements. In the following

chapters, I describe significant advancements to the signal detection and Radio Frequency Interfer-

ence (RFI) identification capabilities of modern radio technosignature detection algorithms. These

improvements are presented alongside the results of the analysis of four annual UCLA radio tech-

nosignatures searches spanning 2016–2019.

In Chapter 2, I describe the UCLA SETI Group’s initial versions of the signal detection and

RFI identification algorithms. Specifically, I describe a search for technosignatures that is sensitive

to Arecibo-class transmitters located within ∼420 ly of Earth and transmitters that are 1000 times

more effective than Arecibo within∼13 000 ly of Earth. The observations focused on 14 planetary

systems in the Kepler field and used the L-band receiver (1.15–1.73 GHz) of the 100 m diameter

Green Bank Telescope. The initial signal detection algorithms identified approximately 850 000

candidates, corresponding to a hit rate density of 1.691× 10−3 hits per hour per hertz (see Section

4.5 for a definition of hit rate density). Most (99%) of these signals were automatically classified
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as human-generated RFI. A large fraction (>99%) of the remaining candidate signals were also

flagged as anthropogenic RFI because they have frequencies that overlap those used by global

navigation satellite systems, satellite downlinks, or other interferers detected in heavily polluted

regions of the spectrum.

In Chapter 3, I describe an improved candidate signal detection algorithm that detected ap-

proximately 6 million signals in a 2017 search for technosignatures with identical observational

parameters. The observations focused primarily on planetary systems in the Kepler field, but also

included scans of the recently discovered TRAPPIST-1 and LHS 1140 systems. The improved

data processing pipeline yielded a hit rate density of 1.07 × 10−2 hits per hour per hertz, a signif-

icant improvement over the pipeline described in the previous chapter, and classified over 98% of

the detected signals as anthropogenic Radio Frequency Interference (RFI). I discuss the problems

associated with the common practice of ignoring frequency space around candidate detections in

radio technosignature detection pipelines, which include inaccurate estimates of figures of merit

and unreliable upper limits on the prevalence of technosignatures. The improved candidate signal

detection algorithm mitigates these problems and improves the efficiency of the search. Specifi-

cally, the new algorithm increases the number of candidate detections by a factor of more than four

compared to the detection algorithms described in Chapter 2.

In Chapter 4, I present further improvements to these detection algorithms and apply them

to a search for technosignatures in regions surrounding 31 Sun-like stars near the plane of the

Galaxy. Specifically, the improved candidate signal detection procedure relies on the topographic

prominence of the signal power and nearly doubles the signal detection count of some previously

analyzed data sets. The improved algorithms detected candidate signals at a hit rate density of

2.21× 10−2 hits per hour per hertz, significantly outperforming the algorithms used previously by

the UCLA SETI Group as well as those used by the Breakthrough Listen (BL) team. I also describe

improvements to the direction-of-origin filters that remove most RFI. These improvements promote

unique links between signals observed in separate scans. Additionally, I describe the results of a

preliminary signal injection and recovery analysis to test the performance of the UCLA SETI
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Group’s pipeline. The search described in this chapter compares favorably to other recent searches

in terms of end-to-end sensitivity, frequency drift rate coverage, and signal detection count per unit

bandwidth per unit integration time.

In Chapter 5, I present a novel machine-learning-based RFI mitigation algorithm, which helps

address a major remaining challenge in the search for radio technosignatures. Specifically, I de-

scribe the design and deployment of a Convolutional Neural Network (CNN) that can determine

whether or not a signal detected in one scan is also present in another scan. CNNs offer a promis-

ing complement to existing filters because they can be trained to analyze dynamic spectra directly,

instead of relying on inferred signal properties. I describe the compilation of several data sets con-

sisting of labeled pairs of images of dynamic spectra, as well as the design and training of a CNN

that can determine whether or not a signal detected in one scan is also present in another scan. This

CNN-based DoO filter outperforms both a baseline 2D correlation model as well as existing DoO

filters over a range of metrics. I show that the CNN reduces the number of signals requiring visual

inspection after the application of traditional DoO filters by a factor of 6–16 in nominal situations.

Integrating this ML-based DoO filter into existing radio technosignature search pipelines has the

potential of providing accurate RFI identification in near-real-time.

Chapter 6 briefly summarizes the results presented in this work.
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CHAPTER 2

A search for technosignatures from 14 planetary systems in the

Kepler field with the Green Bank Telescope at 1.15–1.73 GHz

Analysis of Kepler mission data suggests that the Milky Way includes billions of Earth-like planets

in the habitable zone of their host star. Current technology enables the detection of technosigna-

tures emitted from a large fraction of the Galaxy. We describe a search for technosignatures that

is sensitive to Arecibo-class transmitters located within ∼420 ly of Earth and transmitters that are

1000 times more effective than Arecibo within ∼13 000 ly of Earth. Our observations focused

on 14 planetary systems in the Kepler field and used the L-band receiver (1.15–1.73 GHz) of the

100 m diameter Green Bank Telescope. Each source was observed for a total integration time of

5 minutes. We obtained power spectra at a frequency resolution of 3 Hz and examined narrowband

signals with Doppler drift rates between ±9 Hz s−1. We flagged any detection with a signal-to-

noise ratio in excess of 10 as a candidate signal and identified approximately 850 000 candidates.

Most (99%) of these candidate signals were automatically classified as human-generated radio-

frequency interference (RFI). A large fraction (>99%) of the remaining candidate signals were

also flagged as anthropogenic RFI because they have frequencies that overlap those used by global

navigation satellite systems, satellite downlinks, or other interferers detected in heavily polluted

regions of the spectrum. All 19 remaining candidate signals were scrutinized and none were at-

tributable to an extraterrestrial source.
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2.1 Introduction

Analysis of Kepler mission data suggests that the Milky Way includes billions of Earth-like planets

in the habitable zone (HZ) of their host star [e.g., Borucki, 2016]. The possibility that intelligent

and communicative life forms developed on one or more of these worlds behooves us to conduct a

search for extraterrestrial intelligence. Here, we describe an L-band radio survey of 14 planetary

systems selected from the Kepler mission field. Our analysis methods are generally similar to

those used by Siemion et al. [2013], but our observations sample a different slice of the search

volume. In addition, our analysis examines signals of lower signal-to-noise ratio (10 vs. 25) and

larger range of Doppler drift rates (±9 Hz s−1 vs. ±2 Hz s−1) than recent Breakthrough Listen

results [Enriquez et al., 2017].

We define a “technosignature” as any measurable property or effect that provides scientific

evidence of past or present technology, by analogy with “biosignatures,” which provide evidence of

past or present life. The detection of a technosignature such as an extraterrestrial signal with a time-

frequency structure that cannot be produced by natural sources would provide compelling evidence

of the existence of another civilization. A signal that is narrow (< 10 Hz) in the frequency domain

is a technosignature because natural sources do not emit such narrowband signals. The narrowest

reported natural emission spans about 550 Hz at L-band and corresponds to OH (1612 MHz)

maser emission [Cohen et al., 1987]. A monochromatic signal that shifts by ±10 Hz as a function

of time according to a complex sequence in a manner similar to that used in transmitting the 1974

Arecibo message [The staff at the National Astronomy and Ionosphere Center, 1975] is another

technosignature. This work focuses on detecting signals that are narrow in the frequency domain,

and is sensitive to both of these examples. Our data are also amenable to searching for signals that

are narrow in the time domain (e.g., pulses).

Our search is not predicated on the assumption of deliberate transmissions aimed at Earth.

Earthlings, for instance, use high-power (∼ 106 W) transmissions to study asteroids that may pose

an impact hazard [e.g., Naidu et al., 2016]. These transmissions use monochromatic, binary phase-

6



coded, or chirp signals, all of which would be recognized as technosignatures by alien civilizations.

In most such observations, less than a millionth of the energy is absorbed and scattered by the

asteroid, and the remainder propagates beyond the asteroid at the speed of light. Our search is

agnostic about whether radio transmissions were intended for detection by a distant civilization

(e.g., a beacon) or not (e.g., a radar or inter-planet telecommunication system).

Sections 2.2, 2.3, 2.4, and 2.5 describe the observations, analysis, discussion, and conclusions,

respectively.

2.2 Observations

We selected 14 exoplanet host stars (Table 2.1) from the Kepler catalog. A majority of these stars

host small habitable zone planets with radii Rp < 2RE , where RE is Earth’s radius [Kane et al.,

2016]. Although such planets may be advantageous for the development of extraterrestrial life

forms, advanced civilizations may be capable of thriving in a variety of environments, and we do

not restrict our search to small habitable zone planets. Indeed, because planets and habitable zone

planets are common among most stars in the Galaxy [e.g., Petigura et al., 2013, Batalha, 2014],

there is no compelling reason to search the Kepler field [e.g., Siemion et al., 2013] as opposed to

other fields. There is, however, a possible increased probability of detecting technosignatures when

observing planetary systems edge-on, because it has been shown that most planets have low orbital

inclinations [< 3◦; Fang and Margot, 2012], in which case interplanetary transmissions may be

aligned with Earth.

Our observing sequence was inspired by a solution to the traveling salesperson problem, which

minimized the time spent repositioning the telescope. Each target was observed twice in the fol-

lowing 4-scan sequence: target 1, target 2, target 1, target 2. The integration time for each scan

was τ = 150 s, yielding a total integration time of 5 minutes per target.

We conducted our observations with the 100 m diameter Green Bank Telescope (GBT) [Jewell

and Prestage, 2004] on 2016 April 15, 16:00-18:00 Universal Time (UT). We recorded both linear
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polarizations of the L-band receiver, which has a frequency range of 1.15–1.73 GHz. Over this

frequency range, the full-width half maximum (FWHM) beam width of the telescope is 11 arcmin–

7.3 arcmin. The aperture efficiency is ∼72%,1 which provides an effective area of ∼5600 m2 and

telescope sensitivity of ∼2 K/Jy.2 At elevations above ∼20 degrees, the system temperature is

∼20 K and the system equivalent flux density (SEFD) is ∼10 Jy. The L-band receiver is located

at the Gregorian focus of the telescope, which was designed with an off-axis reflector to minimize

stray radiation.

We used the GUPPI backend [DuPlain et al., 2008] in baseband recording mode and sampled

800 MHz of bandwidth from 1.1 to 1.9 GHz. The signal was channelized into 256 channels

of 3.125 MHz bandwidth each. The raw voltages of the in-phase and quadrature channels were

digitized with 8-bit quantization. GUPPI’s baseband recording mode enables reduction of the data

storage requirements by a factor of four with minimal signal degradation with an optimal four-level

(two-bit) sampler [Kogan, 1998]. In this mode, the quantization thresholds are set to−0.981599 σ,

0, +0.981599 σ, where σ is the root-mean-square (rms) of the voltage and the quantized levels

are set to ±1 and ±3.335875. The quantization efficiency, which is the ratio of signal power that

is observed with the four-level sampler to the power that would be obtained with no quantization

loss, is ηQ = 0.8825 [Kogan, 1998]. Eight computers handled the transfer of our data to 8 disk

arrays at an aggregate rate of 800 MB/s or 2.88 TB/h.

Calibration procedures at the beginning of our observing window consisted of recording a

monochromatic tone at 1501 MHz (center frequency + 1 MHz), performing a peak and focus

procedure on a bright radio source near the Kepler field, and observing a bright pulsar near the

Kepler field (PSR B2021+51) [Manchester et al., 2005].

1https://science.nrao.edu/facilities/gbt/proposing/GBTpg.pdf

21 Jy = 10−26 Wm−2Hz−1.
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2.3 Analysis

2.3.1 Validations

We verified the validity of our data-processing pipeline by analyzing the monochromatic tone data

and recovering the signal at the expected frequency. We also folded the pulsar data at the known

pulsar period and recovered the characteristic pulse profile.

2.3.2 Data selection

We unpacked the data to 4-byte floating point values, computed Fourier transforms of the com-

plex samples with the FFTW routine [Frigo and Johnson, 2005], and calculated the signal power

(Stokes I) at each frequency bin. Signals with frequencies outside the range of the L-band receiver

(1150–1730 MHz) were discarded. We used the GBT’s notch filter to mitigate interference from a

nearby aircraft surveillance radar system. Signals with frequencies within the 3 dB cutoff range of

the notch filter (1200–1341.2 MHz) were also discarded.

2.3.3 Bandpass correction

Individual channels of the GUPPI instrument exhibited a mostly uniform bandpass response, with

a few notable exceptions. We fit a 16-degree Chebyshev polynomial to the median bandpass re-

sponse of well-behaved channels. We divided each power spectrum by this median response, which

normalized signal levels across the entire bandpass.

2.3.4 Spectral analysis

We used a Fourier transform length of 220, corresponding to a time interval of ∆τ = 0.336 s and

yielding a frequency resolution ∆f = 2.98 Hz. This choice of transform length and frequency

resolution was dictated by our desire to examine drift rates of order 10 Hz s−1 (Section 2.3.5).

We stored about 450 consecutive power spectra, depending on the exact integration time of each
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scan, in frequency–time arrays of 220 columns and 432–451 rows (hereafter, “time-frequency dia-

grams”, sometimes known as “spectrograms” or “spectral waterfalls”). The average noise power

was subtracted and the array values were scaled to the standard deviation of the noise power.

2.3.5 Drift rate analysis

Because radio signals experience time-variable Doppler shifts due to the rotational and orbital

motions of both emitters and observers, uncompensated signals smear in frequency space on a

timescale ∆f/ḟ , where ∆f is the frequency resolution and ḟ is the Doppler drift rate. The du-

ration of a time series required to obtain a spectrum with resolution ∆f is 1/∆f , such that the

maximum drift rate that is observable without smear is ḟmax = ±(∆f)2. The maximum Doppler

drift rates due to Earth’s rotational and orbital motions are ∼0.15 Hz s−1 and ∼0.034 Hz s−1,

respectively, at the maximum frequency of our observations and at Green Bank’s latitude. The

Doppler drift rates due to the emitters are unknown. We examined drift rates of up to ḟmax =

±(∆f)2 = ±8.88 Hz s−1, corresponding to accelerations of ±1.6 m s−2, which admit a wide

range of planetary radii, spin rates, orbital semi-major axes, and orbital periods. We applied a

de-smearing procedure to compensate for the accelerations of both emitter and observer. Specif-

ically, we implemented a computationally advantageous tree algorithm [Taylor, 1974, Siemion

et al., 2013], which enabled examination of 512 Doppler drift rates from 0 to 8.88 Hz s−1 in lin-

early spaced increments of 0.0173 Hz s−1. This algorithm reads the frequency–time arrays, then

shifts and sums all powers corresponding to each of the 512 possible drift rate values, effectively

enabling integration of the signal power over the entire scan duration without smear. Application

of the algorithm with positive and negative Doppler drift rates resulted in two frequency–drift rate

arrays of 220 columns and 512 rows for each scan.
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2.3.6 Candidate signal detection

We identified candidate signals with an iterative procedure. We searched for the element with

the highest signal-to-noise ratio (S/N) in the frequency–drift rate arrays. The characteristics of

this candidate signal (unique identifier, source name, scan number, scan start time, frequency at

start of scan, drift rate, S/N, frequency resolution) were stored in a SQL database for subsequent

analysis. Because a candidate signal would often be detected redundantly at multiple drift rate

values adjacent to that with the highest S/N, we decided to keep only the instance with the highest

S/N value. In order to do so, we blanked the frequency–drift rate arrays in a region of frequency

extent ±ḟmaxτ centered on the frequency of the highest S/N candidate signal. We then repeated

the procedure and searched for the element with the next highest S/N. All candidate signals with

S/N > 10 were identified in this fashion and stored in the database. We counted 858 748 candidate

signals, which amounts to∼750 000 candidates per hour of on-source integration time in the useful

frequency range of the GBT L-band receiver.

2.3.7 Rejection algorithms

A signal from a distant source at rest or in uniform motion with respect to the observer exhibits

no time variation in the value of the Doppler shift. Signals from extraterrestrial sources, unless

cleverly compensated for a specific location on Earth, experience a nonzero Doppler drift rate due

in part to the rotational and orbital motions of Earth. For these reasons, we categorized all signals

with zero Doppler drift rate as likely terrestrial and eliminated them from further consideration.

About a quarter (231 181) of the candidate signals were flagged on this basis, leaving 627 567

candidates with nonzero Doppler drift rates.

To further distinguish between radio-frequency interference (RFI) and genuine extraterrestrial

signals, we implemented two additional filters. First, we flagged any signal that was not detected in

both scans of the same source. This filter can rule out many anthropogenic signals that temporarily

enter the beam (e.g., satellite downlinks). Second, we flagged any signal that appeared in more
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than one position on the sky. This filter can rule out many anthropogenic signals that are detectable

through the antenna sidelobes. A logical AND was used to automatically flag candidate signals that

remained for consideration after the rejection steps. Our rejection filters used the scan start times,

frequencies, Doppler drift rates, and frequency resolutions stored in the SQL database to properly

recognize signals from the same emitter observed at different times. These filters successfully

flagged 617 410 of the remaining signals as likely anthropogenic, leaving 10 157 signals for further

investigation.

Overall, our rejection filters automatically eliminated 99% of the initial detections as RFI.

2.3.8 Known interferers

Several regions of the spectrum exhibit an unusually high density of detections (Figure 2.1). Most

of these high-signal-density regions can be attributed to known interferers. We discarded all can-

didate signals in these regions, which we defined by the frequency extents shown in Table 2.2. For

signals generated by global navigation satellite systems, we used the signal modulation character-

istics, typically binary phase-shift keying (BPSK), to delineate the frequency extent. For satellite

downlinks, we used the Federal Communications Commission (FCC) table of frequency alloca-

tions. On average, the density of detections in the frequency regions ascribed to these satellites

is ∼3 500 detections per MHz of bandwidth. In contrast, the density of signals in regions of the

spectrum that exclude these interferers is ∼500 detections per MHz of bandwidth.

We flagged 9 663 candidate signals out of 10 157 as most likely due to these known interferers,

leaving 494 signals for further consideration.

2.3.9 Additional interferers

After we excised the known interferers listed in Table 2.2, we identified hundreds to thousands of

detections with common time-frequency characteristics in narrow regions of the spectrum spanning

a total of ∼9 MHz (Table 2.3). Because these classes of signals were each detected in at least six
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Figure 2.1: Number of detections as a function of frequency, prior to application of our rejection

algorithms (Section 2.3.7). Most of the high-density regions are due to the known interferers listed

in Table 2.2. The three clusters near 1400 MHz correspond to additional interferers described in

Table 2.3.

distinct pointing directions, they are almost certainly anthropogenic, and we flagged them as RFI.

We flagged 456 candidate signals out of 494 as most likely due to RFI, leaving 38 signals for

further consideration.

We detected strong interference in the radio astronomy protected band (1400–1427 MHz). The

interferers are visible in histograms of our detections in two 9-MHz-wide regions of the spectrum

(Figure 2.2). We briefly describe the characteristics of these interferers below.

The interferers near 1396 MHz, 1400 MHz, 1403 MHz, and 1406 MHz are similar. They

have a comb-like appearance in the frequency domain, with spectral features spaced every kilo-

hertz. Each feature has a bandwidth of about 140 Hz and resembles the modulation of a double-

sideband suppressed-carrier transmission. In addition to these features, strong carriers are observed

at 1396.18 MHz, 1396.75 MHz, and 1402.94 MHz. Most of these interferers are in the radio as-
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Figure 2.2: Number of detections as a function of frequency, prior to the application of our rejection

algorithms (Section 2.3.7), in two 9 MHz-wide regions of the spectrum that partially overlap the

1400–1427 MHz radio astronomy protected band. Signal characteristics are listed in Table 2.3.

tronomy protected band.

The region of the spectrum near 1401.5 MHz is characterized by a number of narrow lines that

seem to cluster near 10 discrete frequency regions. They have small (mostly <0.2 Hz s−1) positive

or negative Doppler drift rates. Some of these lines exhibit somewhat erratic behavior as a function

of time, perhaps indicating an unstable oscillator. The small Doppler drift rates suggest a terrestrial

source.

The interferer near 1422 MHz generates a broad (∼270 kHz) region of increased noise power

without distinct lines, making the identification of the Doppler drift rate difficult.

The region between 1423 MHz and 1429 MHz exhibits some interferers that are approximately

70 Hz wide and reminiscent of those described by Siemion et al. [2013, their figure 5]. Others are

time-variable signals (12–15 s periodicity) that are approximately 70 Hz wide. These characteris-

tics are similar to those of some Air Route Surveillance Radars (ARSR) that track aircraft in all

azimuthal directions at 5 rotations per minute, except that these systems are designed to operate be-

tween 1250 MHz and 1350 MHz. If due to ARSR, it is unclear whether the interference is caused

14



at the source or generated by intermodulation products in the GBT receiver system. The sinc-type

appearance of the histogram (Figure 2.2) is reminiscent of the power spectrum of a BPSK wave-

form with 1 MHz bandwidth and compressed pulse width of 1 µs. Such waveforms are used to

provide radar imaging with 150 m resolution [e.g., Margot et al., 2000]. Some ARSR systems use

non-linear frequency modulation (NLFM) to provide a nominal range resolution of 116 m. Some

NLFM schemes exhibit a sinc-like power spectrum. In addition to the periodic interferers, strong

carriers with variable drift rates are observed near 1425.05 MHz and 1428.18 MHz.

Figure 2.3 shows a graphical summary of the frequency regions that were excluded from our

analysis.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Frequency (Ghz)

L1L5 L2

L1L2L3

Beyond receiver bandpass
Aircraft radar
Satellite downlinks
GPS
GLONASS
RFI

Figure 2.3: Color-coded summary of frequency regions that were excluded from our analysis.

2.3.10 Evaluation of remaining candidates

The 38 remaining signals represent 19 pairs of scans. The characteristics of the first scans are

shown in Table 2.4. We generated frequency-time diagrams for all 19 pairs. We then searched our
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database for signals at similar frequencies and compared their time-frequency diagrams to those

of our top candidates. This process revealed that all 19 candidates are detected in more than one

direction on the sky, ruling out the possibility of an extraterrestrial signal. Examination of the time-

frequency diagrams revealed groups of signals that can be attributed to the same source of RFI.

We provide a brief description of the signals below, along with a few examples of time-frequency

diagrams. To our knowledge, these interferers have not been reported in the literature, although

they may of course have been detected in other searches.

The candidate signal near 1151 MHz (Figure 2.4) is a monochromatic signal with a substantial

Doppler drift rate that is observed in at least eight distinct directions on the sky.

The candidate signal near 1375 MHz has a complex time-frequency structure that is observed

in at least one other direction on the sky.

The candidate signal near 1414 MHz (Figure 2.5) exhibits both high S/N and somewhat erratic

frequency behavior. The rejection filter logic likely failed because the Doppler behavior of this

signal is erratic.

The candidate signal near 1444 MHz is a low S/N monochromatic signal that is observed in at

least four other directions on the sky.

Both candidates near 1453 MHz exhibit a set of intermittent narrow lines that are observed in

multiple directions on the sky.

All five candidates near 1457 MHz are due to anthropogenic RFI and share the same charac-

teristics, i.e., a monochromatic signal superimposed on a broadband, elevated noise level.

The candidate signal near 1461 MHz is a single line that is observed in at least two directions

on the sky. Moreover, signals with similar lines that are offset in frequency by almost exactly

20 kHz and 30 kHz are observed in other directions on the sky.

The candidate signal near 1467 MHz (Figure 2.6) exhibits a set of monochromatic lines. The

strongest one exceeded our S/N threshold. It is observed in at least four directions on the sky.

The candidate signal near 1472.254 MHz is detected in at least three directions on the sky.
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Kepler-283, MJD 57493.70692, f0 = 1151.551501 MHz, df/dt = -0.2429 Hz/s, SNR = 21.6, ID = 128112

Figure 2.4: Time-frequency characteristics of the first sample candidate signal. (Top) Time-

frequency diagrams showing consecutive power spectra; (Bottom) Integrated (i.e., shifted and

summed) power spectra.

The candidates near 1472.262 MHz correspond to the same signal that is observed in at least

two distinct directions.

The candidates near 1485 MHz and 1501 MHz are monochromatic signals that are detected in

at least two and six directions on the sky, respectively.

The candidate signal near 1623 MHz has a complex time-frequency structure that is observed

in several directions on the sky. An approximately linear ramp with slope -150 Hz s−1 appears

then disappears with on and off durations of 5 to 10 s.
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Kepler-141, MJD 57493.70009, f0 = 1414.058675 MHz, df/dt = 0.0867 Hz/s, SNR = 544.1, ID = 2914

Figure 2.5: Time-frequency characteristics of the second sample candidate signal. (Top) Time-

frequency diagrams showing consecutive power spectra; (Bottom) Integrated (i.e., shifted and

summed) power spectra.

2.4 Discussion

2.4.1 Search volume

Although no extraterrestrial signals were identified in our analysis to date, we emphasize that our

study encompassed only a small fraction of the search volume. The fraction of the sky that was

covered in our search is 14 times the solid angle of the GBT beam. At the center frequency of

our search, each beam has a solid angle of 0.015 deg2. Considering all 14 sources, we covered

0.21 deg2 or about 5 ppm of the entire sky. Our observations lasted a total of 5 minutes on each

source, which is about 10 ppm of a terrestrial year. After the elimination of polluted bands, our use-
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Kepler-141, MJD 57493.70009, f0 = 1467.993506 MHz, df/dt = -0.0173 Hz/s, SNR = 13.3, ID = 11819

Figure 2.6: Time-frequency characteristics of the third sample candidate signal. (Top) Time-

frequency diagrams showing consecutive power spectra; (Bottom) Integrated (i.e., shifted and

summed) power spectra.

ful bandwidth spanned almost exactly 300 MHz, which is a small fraction of the electromagnetic

spectrum available for transmission.

We computed the Drake figure of merit [Drake, 1984, Enriquez et al., 2017] that corresponds

to our search parameters:

DFM =
∆ftotΩ

F
3/2
det

, (2.1)

where ∆ftot = 300 MHz is the total bandwidth examined, Ω = 0.21 deg2 is the total area of the sky

covered, and Fdet = 10 Jy is the minimum flux density required for a detection (Section 2.4.3). In

these units, we find DFM ' 2 × 106. Referring to the values provided in Enriquez et al. [2017],

our search is about 150 times larger than that of Horowitz and Sagan [1993] and 10 times larger
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than that of Gray and Mooley [2017]. It amounts to about 2% and 12% of the recent large surveys

by Enriquez et al. [2017] and Harp et al. [2016], respectively.

2.4.2 Existence limits

Attempting to place existence limits on the basis of SETI observations is a difficult exercise. Cer-

tainly, we can place limits only on the kinds of signals that we are looking for, not actual limits

on the presence of civilizations. For instance, Enriquez et al. [2017] attempted to place a limit on

the number of 100%-duty cycle transmitters (e.g., a radio beacon) and suggested that fewer than

0.1% of the stellar systems within 50 pc possess such transmitters. However, beacons operating

at frequencies lower than 1.1 GHz, larger than 1.9 GHz, or in the 1.2–1.34 GHz range would be

undetected in their (and our) search, which makes general claims about the number of beacons

unreliable. In this spirit, we describe the types of signals that are detectable with our search, but

we do not attempt to make inferences about the prevalence of radio beacons in the Galaxy.

2.4.3 Sensitivity

For the detection of narrowband signals above a floor with noise fluctuations, the S/N can be

expressed as Pr/∆Pnoise, where Pr is the received power and ∆Pnoise is the standard deviation of

the receiver noise given by

∆Pnoise =
kBTsys∆f√

∆fτ
, (2.2)

with kB Boltzmann’s constant, Tsys the system temperature, ∆f the frequency resolution, and τ

the integration time [e.g., Ostro, 1993, Naidu et al., 2016]. The power received by a transmitter of

power Pt and antenna gain Gt located at distance r is

Pr =
PtGt

4πr2

Ae
2
, (2.3)

where Ae is the effective area of the receiving station and the factor of 1/2 accounts for reception

by a single-polarization feed. If powers received in both polarizations are added incoherently

as in this work, S/N =
√
npol × Pr/∆Pnoise, with npol = 2. The S/N is proportional to the
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product of factors that relate to the transmitter-receiver distance, transmitter performance, receiver

performance, quantization efficiency, and data-taking and data-analysis choices, as shown in this

expression:

S/N =

(
1

4πr2

)
(PtGt)

(
Ae

2kBTsys

)
(ηQ)

(
npol τ

∆f

)1/2

. (2.4)

The second factor is known as the effective isotropic radiated power (EIRP) and the third factor is

the inverse of the system-equivalent flux density (SEFD), so we can rewrite the S/N as

S/N = 9

(
100 ly

r

)2(
EIRP

1013 W

)(
10 Jy

SEFD

)(ηQ
1

)(npol

1

)1/2 ( τ
1 s

)1/2
(

1 Hz

∆f

)1/2

. (2.5)

The S/N is maximized when the frequency resolution of the data matches the bandwidth of the

signal.

We used the Arecibo planetary radar as a prototype transmitter with Pt = 106 W, Gt = 73.4 dB,

and EIRP = 2.2 ×1013 W. The nominal receiver is the GBT with Ae = 5600 m2, Tsys = 20 K, and

SEFD = 10 Jy. The quantization efficiency of the four-level sampler is ηQ = 0.8825. Our data-

taking and data-analysis choices correspond to npol = 2, τ = 150 s, and ∆f = 3 Hz. With these

values, we find ∆Pnoise = 3.9 × 10−23 W and Pr = 3.1 × 10−22 W for a transmitter located at a

distance of 420 ly (128 pc) from Earth. Such transmissions would be at the limit of detection with

our minimum S/N threshold of 10.3

The target stars with known distances in our sample are located at distances that exceed 420 ly,

such that a more powerful transmitter, a more sensitive receiver, longer integration times, or nar-

rower frequency resolutions would be needed for detection. Transmitters with considerably larger

EIRPs than that of Arecibo may be available to other civilizations. A transmitter with 1000 times

Arecibo’s EIRP would be detectable in our search from distances of up to 13 250 ly. Current

technology enables the detection of technosignatures emitted from a large fraction of the Galaxy

(Figure 2.7). In such a vast search volume, there are billions of targets accessible to a search for

technosignatures. In contrast, the search for biosignatures will be limited in the foreseeable future

to a few targets in the Solar System and to a few hundred planetary systems around nearby stars.

3An S/N threshold of 10 with our search parameters and ηQ = 1 corresponds to detection of flux densities of 10 Jy.
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One can use Figure 2.7 to evaluate the detectability of the Arecibo planetary radar by other civ-

ilizations. From a S/N standpoint, an increase by a factor of 10 in EIRP is equivalent to an increase

in effective area by a factor of 10. In other words, the colored lines in Figure 2.7 also represent

the detectability of Arecibo by remote antennas with effective areas that are 1-1000 times larger

than those of the GBT or Arecibo, assuming similar system temperatures and search parameters

(npol = 2, τ = 150 s, and ∆f = 3 Hz). Equation (2.5) can be used to evaluate detectability with

other transmitter, receiver, or search parameters. Typical planetary radar transmissions have a duty

cycle of approximately 50%, and the maximum tracking duration for celestial sources at Arecibo is

∼2.5 h. For observations of main belt asteroids and more distant bodies at opposition, the pointing

direction over the entire tracking duration changes by less than 2 arcmin, i.e., less than the width

of the beam for S-band (2.38 GHz) planetary radar transmissions.

2.5 Conclusions

We described the results of a search for narrowband signals from extraterrestrial sources using

two hours of GBT telescope time in 2016. We identified 858 748 candidate signals. Our rejection

filters automatically eliminated 99% of the candidates, leaving 10 157 candidate signals for further

inspection. Almost all of the remaining signals were ruled out because they were attributable to

anthropogenic RFI, leaving 19 pairs of candidate signals. All of these candidates were observed in

more than one direction on the sky, thereby ruling them out as extraterrestrial signals.
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Table 2.1: Target host stars listed in order of observations. Distances in parsecs are from the

NASA Exoplanet Archive. Habitable zone categories 1 and 2 refer to small (Rp < 2RE) planets

in the conservative and optimistic habitable zones described by Kane et al. [2016], respectively. In

multi-planet systems, only the lowest category is listed.

Host star Distance (ly) HZ category

Kepler-399 NA

Kepler-186 561+42
−33 Cat. 1

Kepler-452 NA Cat. 2

Kepler-141 NA

Kepler-283 NA Cat. 1

Kepler-22 620

Kepler-296 737+91
−59 Cat. 1

Kepler-407 NA

Kepler-174 NA Cat. 2

Kepler-62 1200 Cat. 1

Kepler-439 2260+215
−124

Kepler-438 473+65
−75

Kepler-440 851+52
−150 Cat. 2

Kepler-442 1115+62
−72 Cat. 1
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Table 2.2: Spectral regions exhibiting a high density of detections per unit frequency. The number

of detections are reported both prior to and after application of our rejection filters (Section 2.3.7).

The density column shows the number of pre-filter detections per MHz. Because some bands

overlap, the totals are not the arithmetic sums of the table entries.

Spectral region Width Pre-filter Post-filter Density Identification

(MHz) (MHz) detections detections (# per MHz)

1554.96 – 1595.88 40.92 107 955 2657 2638 GPS L1

1155.99 – 1196.91 40.92 206 093 5289 5036 GPS L5

1592.9525 – 1610.485 17.5325 80 908 1110 4614 GLONASS L1

1192.02 – 1212.48 20.46 37 792 518 1847 GLONASS L3

1530 – 1559 29 28 814 89 994 Satellite downlinks

Total 129.385 459 543 9663 3552
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Table 2.3: Characteristics of likely anthropogenic interferers. The number of detections are re-

ported both prior to and after the application of our rejection filters (Section 2.3.7). Doppler drift

rate and S/N statistics are computed on the pre-filter detections. Strong interferers are detected in

the radio astronomy protected band (1400–1427 MHz).

Spectral region Width Pre-filter Post-filter Median drift S/N

(MHz) (MHz) detections detections rate (Hz s−1) (min/median/max)

1395.810 – 1397.097 1.287 6210 46 0.451 10.0/15.9/1087.2

1399.872 – 1400.054 0.182 287 0 0.434 10.0/12.5/26.1

1401.547 – 1401.599 0.052 220 2 -0.017 10.0/19.0/1423.6

1402.536 – 1403.750 1.214 7536 76 0.434 10.0/19.5/451.8

1406.145 – 1406.250 0.105 418 4 0.434 10.0/12.6/25.6

1422.000 – 1422.270 0.270 5150 2 N/A 10.0/17.4/84.1

1423.308 – 1428.971 5.663 20 134 326 0.121 10.0/21.9/7642.2

Total 8.773 39 955 456
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Table 2.4: Characteristics of top candidates listed in increasing order of frequency. Epoch, fre-

quency, and drift rate refer to the beginning of the first scan with units of modified Julian date

(MJD), Hz, and Hz s−1, respectively. S/N refers to the integrated power over the scan duration

after correcting for the corresponding Doppler drift rate.

ID Source Epoch Frequency Drift rate S/N

(MJD) (Hz) (Hz s−1)

128112 Kepler-283 57493.70692 1151551501.442434 -0.2429 21.6

141584 Kepler-442 57493.74497 1375489655.604034 -8.8124 16.7

2914 Kepler-141 57493.70009 1414058674.868273 0.0867 544.0

93976 Kepler-399 57493.68869 1444533390.553847 0.0173 14.2

36563 Kepler-186 57493.69100 1453857276.541974 0.0173 16.0

52175 Kepler-22 57493.70934 1453895304.341606 0.0173 19.1

81528 Kepler-296 57493.71608 1457414449.371766 0.3123 18.9

108574 Kepler-407 57493.71818 1457414503.015998 0.3469 10.7

81536 Kepler-296 57493.71608 1457442281.787187 0.2949 14.5

108572 Kepler-407 57493.71818 1457453120.902177 0.3643 12.2

81533 Kepler-296 57493.71608 1457490984.788880 0.3123 16.7

108848 Kepler-407 57493.71818 1461771970.293017 -0.0173 17.6

11819 Kepler-141 57493.70009 1467993506.067759 -0.0173 13.3

123438 Kepler-438 57493.73606 1472254848.842477 0.0173 16.4

72937 Kepler-283 57493.70692 1472262660.038624 -0.0347 13.8

24383 Kepler-174 57493.72476 1472262722.623560 -0.0347 75.4

153968 Kepler-440 57493.74274 1485092589.943495 -0.0173 10.4

956243 Kepler-442 57493.74497 1501557959.611854 0.1041 10.2

1129207 Kepler-439 57493.73383 1623514653.815893 -0.1735 22.0
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Figure 2.7: S/N of detections as a function of transmitter distance from Earth, assuming search

parameters identical to those used in this work (npol = 2, τ = 150 s, and ∆f = 3 Hz). Colored lines

represent transmitter EIRPs that are equivalent to 1–1000 times that of the Arecibo Observatory

(AO) planetary radar. Solid and dashed colored lines represent reception with the GBT (SEFD =

10 Jy) and AO (SEFD = 3.2 Jy), respectively. The black horizontal line represents the threshold

for detection used in this work. The black vertical line represents the distance to the center of the

Galaxy.
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CHAPTER 3

A search for technosignatures from TRAPPIST-1, LHS 1140,

and 10 planetary systems in the Kepler field with the Green

Bank Telescope at 1.15–1.73 GHz

As part of our ongoing search for technosignatures, we collected over three terabytes of data in

May 2017 with the L-band receiver (1.15–1.73 GHz) of the 100 m diameter Green Bank Tele-

scope. These observations focused primarily on planetary systems in the Kepler field, but also

included scans of the recently discovered TRAPPIST-1 and LHS 1140 systems. We present the re-

sults of our search for narrowband signals in this data set with techniques that are generally similar

to those described by Margot et al. [2018]. Our improved data processing pipeline classified over

98% of the ∼ 6 million detected signals as anthropogenic Radio Frequency Interference (RFI).

Of the remaining candidates, 30 were detected outside of densely populated frequency regions

attributable to RFI. These candidates were carefully examined and determined to be of terrestrial

origin. We discuss the problems associated with the common practice of ignoring frequency space

around candidate detections in radio technosignature detection pipelines. These problems include

inaccurate estimates of figures of merit and unreliable upper limits on the prevalence of technosig-

natures. We present an algorithm that mitigates these problems and improves the efficiency of the

search. Specifically, our new algorithm increases the number of candidate detections by a factor of

more than four compared to Margot et al. [2018].
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3.1 Introduction

In this chapter, we present a search for radio technosignatures using the L-band receiver of the

100 m diameter Green Bank Telescope (GBT). We scanned a total of 12 sources within a 2 hour

observational window with the goal of detecting narrowband emissions. Narrowband (∼ 10 Hz)

signals are diagnostic of engineered emitters because the narrowest known sources of natural emis-

sion span a larger (∼ 500 Hz) range of frequencies at L band [e.g., Cohen et al., 1987]. Our search

builds on the legacy of technosignature searches performed in the period 1960–2010 [Tarter, 2001,

Tarter et al., 2010, and references therein] and complements some recent efforts [Siemion et al.,

2013, Harp et al., 2016, Enriquez et al., 2017, Gray and Mooley, 2017, Margot et al., 2018], but

differs primarily in the choice of sample of the vast parameter space still left to search. In addition,

we are generally sensitive to a wider range of signal drift rates (±8.86 Hz s−1) than the cited works,

and to signals with lower signal-to-noise-ratio (S/N>10) than a recent large survey [Enriquez et al.,

2017, S/N>25].

We present a substantial improvement to the signal detection algorithms used in the search

pipelines of Siemion et al. [2013], Enriquez et al. [2017], Margot et al. [2018]. In these pipelines,

a wide (several hundred Hertz) window surrounding the frequency of each candidate detection is

removed from further consideration, whether this candidate appears in a primary [Siemion et al.,

2013, Margot et al., 2018] or secondary [Enriquez et al., 2017] scan.

Consequently, other legitimate signals within that window are never analyzed, which implies

that both figures of merit for the completeness of the search and upper limits on the prevalence

of technosignatures reported in these works are inaccurate. By adjusting the way in which the

frequency space surrounding each candidate signal is handled, we no longer need to discard le-

gitimate signals and are able to analyze a larger fraction of the frequency space. This advance is

appreciable. We estimate that this improvement alone increases our detection count by a factor of

more than four as compared to Margot et al. [2018]. The increase in the detection count of other

search pipelines after implementation of a similar improvement would likely be substantial.
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Our data acquisition techniques, a brief overview of which is presented in Section 3.2, are

generally similar to those presented by Margot et al. [2018]. Section 3.3 explains our data anal-

ysis procedures, including major changes and improvements to our data processing pipeline. The

results of our search are presented in Section 3.4, followed by a discussion and conclusions in

Sections 3.5 and 3.6, respectively.

3.2 Data Acquisition

3.2.1 Sources

For our observations, we selected 10 sources (Table 3.1) from the Kepler catalog based on hab-

itability criteria presented by Kane et al. [2016]. These criteria take into account the size and

location of exoplanets with respect to the host stars. Small planets (Rp < 2RE , where Rp and

RE are the radii of the planet and Earth, respectively) in the conservative and optimistic habitable

zones fall under Habitable Zone (HZ) categories 1 and 2, respectively. Conversely, planets with

any radius in the conservative and optimistic habitable zones fall under HZ categories 3 and 4,

respectively.

For our observations, we selected all seven host stars reported by Kane et al. [2016] with

confirmed planets in HZ categories 1 and 2 (Table 3.1). We supplemented these with three more

host stars with confirmed planets in HZ categories 3 and 4 (Table 3.1). In addition to the 10 sources

in the Kepler field, we observed the recently discovered TRAPPIST-1 and LHS 1140 systems. The

TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf

star [Gillon et al., 2017]. The benign equilibrium temperatures of some of the planets in the system

make the prospect of liquid water on their surfaces, and thus the possibility of life, plausible. The

LHS 1140 system harbors only one known planet, which orbits its M dwarf host star within the

habitable zone [Dittmann et al., 2017].
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3.2.2 Observations

We conducted our observations with the 100 m diameter Green Bank Telescope (GBT) on May

4, 2017, 15:00 – 17:00 Universal time (UT). We recorded both linear polarizations of the L-band

receiver using the GUPPI backend in its baseband recording mode [DuPlain et al., 2008]. GUPPI

was configured to channelize 800 MHz of recorded bandwidth into 256 channels of 3.125 MHz

each. We verified telescope pointing accuracy with standard procedures and tested signal integrity

by injecting a monochromatic tone near the receiver frontend.

We observed all our targets in pairs in order to facilitate the detection and removal of signals of

terrestrial origin (Section 3.3.4). The sources were paired by approximately minimizing the slew

time of the telescope for the duration of the observing block and then taking consecutive pairs

from the solution. Pairings were adjusted to eliminate any ambiguity in the direction of origin

of detected signals. Specifically, we required angular separations larger than 1◦ (several times

the ∼ 9 arcmin beamwidth of the GBT at the center frequency of our observations) between pair

members. The pairs are listed consecutively in Table 3.1 (i.e., the first pair is Kepler-442 and

Kepler-440, and so on). Each pair was observed for a total of ∼ 330 s using an “on” - “off” - “on”

- “off” sequence, where “on” represents a scan of the first source in the pair, and “off” represents

a scan of its partner.

3.3 Analysis

3.3.1 Data Pre-Processing

After unpacking the data, we computed 220-point Fourier transforms of the digitized raw voltages,

yielding a frequency resolution of ∆ν = 2.98 Hz. We chose this frequency resolution because it is

small enough to provide unambiguous detections of technosignatures and large enough to examine

Doppler frequency drift rates of up to ∼ 10 Hz s−1 (Section 3.3.2).

We modeled the bandpass response of GUPPI’s 256 channels by fitting a 16-degree Chebyshev
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polynomial to the median bandpass response of all channels within the operating range of the GBT

L-band receiver (1.15 — 1.73 GHz), excluding channels that overlap the frequency range (1200 –

1341.2 MHz) of a notch filter designed to mitigate radio frequency interference (RFI) from aircraft

radar. Our experience indicates that this process allows us to apply bandpass corrections that yield

the expected flat baselines. After applying the bandpass correction to all 256 channels, we stored

consecutive power spectra of length 220 as rows in a time-frequency array and normalized the result

to zero mean and unit variance of the noise power. We call the graphical representation of such

arrays time-frequency diagrams, though they are also often referred to as “spectrograms”, “spectral

waterfalls”, or “waterfall plots”.

3.3.2 Doppler De-Smearing

Due to the orbital and rotational motions of both the emitter and the receiver, we expect extraterres-

trial technosignatures to drift in frequency space [e.g., Siemion et al., 2013, Margot et al., 2018].

A de-smearing algorithm is required to avoid spreading the power of a given signal over multi-

ple channels. Since the Doppler drift rates due to the emitters are unknown, we examined 1023

linearly spaced drift rates in the range ±8.86 Hz s−1, with a step of ∆ḟ = 0.0173 Hz s−1. To

accomplish this, we made use of a computationally advantageous Doppler de-smearing algorithm

[Taylor, 1974, Siemion et al., 2013] which computes an array containing de-smeared power spec-

tra, where each de-smeared spectrum represents a time integration of the consecutive power spectra

after correcting for a given Doppler drift rate. A single pass of this algorithm computes 512 power

spectra for all drift rates in the range 0 to 8.86 Hz s−1 . To obtain power spectra at negative drift

rates, we applied the algorithm a second time and reversed the search direction.

In a previous analysis, Margot et al. [2018] performed a search for technosignatures on each of

the resulting arrays individually. As a result, it was possible for a candidate signal to be detected

twice; once with the correct drift rate, and once with a spurious drift rate of the opposite sign

(Figure 3.1). This duplication increased the false detection count and was occasionally problematic

in subsequent stages of the data-processing pipeline. To avoid this problem, we concatenated the
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Figure 3.1: Time-Frequency diagram of a signal that would result in multiple detections in an

earlier version of our data processing pipeline. In this diagram, pixel intensity represents signal

power. The green dashed line shows the correct drift rate of the signal, while the red dashed

line indicates a drift rate along which signal values integrate to a summed power that exceeds

our detection threshold, resulting in an additional, spurious detection. Our improved pipeline

eliminates the possibility of spurious detections for signals of this nature.

outputs of both applications of the de-smearing algorithm into a single array prior to subsequent

analysis. This array contained all 1023 possible drift rates (one duplicate calculation at 0 Hz s−1

was removed).

3.3.3 Candidate Signal Detection

The output of the Doppler de-smearing algorithm contains the integrated power spectra of the scan

at various drift rates, making it ideal for identifying promising candidates for extraterrestrial tech-

nosignatures (hereafter, “candidate signals”). We performed this search iteratively by identifying

the signal with the highest S/N and storing its characteristics in a structured query language (SQL)

database before moving on to the next signal. Drift rates that are similar to the drift rate with max-

imum S/N often yield integrated powers with large S/N values as well, and it is important to avoid
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redundant detections of the same signal. Siemion et al. [2013], Margot et al. [2018] avoided the re-

dundancy by discarding all detections within a frequency range ∆f centered on the start frequency

of the highest-S/N signal. For the analysis at 3 Hz resolution, they defined the frequency range to

be ∆f = 2ḟmaxτ , where ḟmax = 8.86 Hz s−1 and τ is the duration of the scan (typically around

150 s). This choice guaranteed that duplicate detections for signals with the highest detectable drift

rates were not recorded. However, this procedure also removed all other valid candidates within

a ∼ 3000 Hz window of every detected candidate signal. Moreover, due to the iterative nature

of the search, high S/N signals were always detected first, which prevented lower-S/N signals in

their vicinity from being detected. This procedure removed many legitimate candidate signals in

the vicinity of higher-S/N signals, ultimately leaving large regions of the spectrum unexamined.

This issue results in two unacceptable consequences. First, it yields incorrect calculations of fig-

ures of merit, because such calculations rely on an accurate measure of the bandwidth examined

during a particular search. Second, it renders attempts to place upper limits on the abundance of

technosignature sources unreliable because the pipeline eliminates the very signals it purports to

detect. Problems of this nature affect the results of several studies, including those of Siemion et al.

[2013], Enriquez et al. [2017], Margot et al. [2018]. To properly quantify the impact of these dis-

carded signals on estimates of the prevalence of technosignatures, a proper injection and recovery

study must be conducted. This study is beyond the scope of our work.

We designed a novel procedure to alleviate these shortcomings. In order to avoid redundant de-

tections, we simply require that no new detection contain any subset of the points in time-frequency

space belonging to any other already-detected signal. In other words, we require that none of our

detections “cross” in time-frequency space. In this context, the frequency range used to discard

redundant detections is no longer a constant, but rather a function of the drift rate of a new poten-

tial candidate and the bandwidth of the already-detected signal. If ḟ0 is the drift rate of a known

candidate, and ḟ is the drift rate of the potential candidate signal, then the potential candidate is
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marked redundant if its frequency f at the start of the scan satisfies

f0 −∆fb < f < f0 + (ḟ − ḟ0)τ + ∆fb if ḟ > ḟ0 (3.1)

f0 + ∆fb > f > f0 + (ḟ − ḟ0)τ −∆fb if ḟ < ḟ0

where f0 is the frequency of a known candidate signal, τ is the scan duration, and ∆fb is half of

the signal bandwidth. Because we do not want new detections that contain any part of an already-

detected signal, we must account for its non-zero bandwidth by extending the frequency range as in

Equation 3.1. For implementation details of this procedure, including the estimation of bandwidth,

see Appendix 3.A.

One drawback of this method is that potential technosignatures may be discarded if they “cross”

a stronger signal of terrestrial origin in time-frequency space. There is no reason to assume a priori

that a valid candidate signal would not exhibit this behavior. However, superimposed signals are,

by their very nature, difficult to detect. Other detection pipelines, including those of Siemion et al.

[2013], Enriquez et al. [2017], Margot et al. [2018] are also blind to such signals.

We identified all candidate signals with S/N > 10 in channels within the operating range of the

GBT L-band receiver (1.15 — 1.73 GHz), excluding channels that overlap the GBT notch filter at

1200 – 1341.2 MHz. A total of 5,840,149 candidate signals were detected.

3.3.4 Doppler and Direction-of-Origin Filters

After all candidate signals were identified, we applied several filter procedures in order to distin-

guish anthropogenic signals from promising technosignature candidates. The overall purpose of

the algorithms is generally similar to those described by Margot et al. [2018].

Our filter procedures (hereafter, “filters”) are designed to search the SQL database and flag the

most promising candidates. The first filter flagged all candidate signals with non-zero Doppler

drift rates. Signals with zero Doppler drift rates, defined here as signals that drift across less than

one frequency channel over the course of a scan, are of no interest to us because the correspond-

ing emitters will generally not be in motion with respect to the receiver, which suggests they are
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terrestrial in nature. The second filter flagged a signal as a promising candidate if it is persistent,

i.e., it is detected in both scans of its source. This filter removes any anthropogenic signals that

may have temporarily entered the beam during one of the scans. The third filter marks a signal as a

technosignature candidate if its direction of origin is unique, i.e, it is not detected in the scans cor-

responding to other sources. This filter eliminates many anthropogenic signals that are detectable

through the antenna sidelobes. For implementation details, see Appendix 3.B. If both a candidate

signal and its corresponding signal in the other scan of the source were flagged by all three filters,

then the candidate signal was marked as a high-interest signal. Of the 5,840,149 total detections,

5 743 209 (> 98%) were discarded as a result of these filters.

3.3.5 Frequency Filters

A majority of the signals detected in our search have frequencies in operating bands of known

interferers, such as Global Navigation Satellite Systems or Aircraft Radar. Figure 3.2 depicts our

detection count superimposed onto frequency bands of known anthropogenic RFI. The interferer

labeled simply as “RFI” is particularly interesting, as it overlaps the radio astronomy protected

band near 1420 MHz. The time-frequency structure of this RFI is similar to that described by

Siemion et al. [2013] and Margot et al. [2018], who attributed the likely origin of the RFI to inter-

modulation products of Air Route Surveillance Radars (ARSR). Table 3.2 describes the properties

of the regions of most prominent detected anthropogenic RFI. These regions are reminiscent of

some of Harp et al. [2016, Table 2]’s “permanent RFI bands.” All candidate signals detected within

these regions were removed from consideration because of their likely anthropogenic nature.

After removing candidates with frequencies in the operating bands of some well-known an-

thropogenic interferers (Table 3.2), we observed that regions of high signal density remained. An

example of such a region is shown in Figure 3.3. Note the presence of many narrow clusters of

high-signal-density regions. Although it is possible that a valid technosignature could be found

within one of these regions, it would likely be difficult to detect and establish its validity given

the vast amount of strong, ambient RFI. With this challenge in mind, we developed a method to
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Figure 3.2: Candidate signal count as a function of frequency, superimposed on operating bands

of known interferers. Note that the majority of detections occur in congested bands. The region

marked simply as “RFI” contains signals from an interferer, likely ARSR, whose intermodulation

products overlap the radio astronomy protected band [Margot et al., 2018]. Frequencies overlap-

ping the GBT notch filter at 1200 – 1341.2 MHz are excluded.

discriminate signals found within densely populated frequency regions from signals found in qui-

eter parts of the spectrum. Specifically, we measured the signal density in 1-kHz-wide frequency

bins and discarded candidates within that bin if the signal density exceeded a pre-defined threshold

value. For this work, we chose a threshold value of 1000 signals MHz−1, which corresponds to

a sharp drop-off in histograms of signal density. For further details, see Appendix 3.C. A sample

result of this procedure is shown in Figure 3.3, where signals left after our density thresholding pro-

cedure are shown in red. More than 96% of the 581 433 signals found outside of the well-known

interferer operating bands listed in Table 3.2 were discarded using this procedure.

3.4 Results

Signals that remained after application of our Doppler, direction-of-origin, and frequency filters

were marked as final technosignature candidates. Thirty such signals remained, and their properties

are given in Tables 3.3 and 3.4. Further examination of the final 30 candidates revealed that 13 of
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Figure 3.3: Example of a region of high signal density detected outside of known interferer oper-

ating bands. Signals left after application of our signal density thresholding procedure are shown

in red. Most of the remaining signals are eliminated by the Doppler and direction-of-origin filters,

which are applied independently.

them are anthropogenic because they are also present in the “off” scan of the source. They were

not correctly identified by our filters for a variety of reasons, which we summarize into categories

below.

Category ‘a’ refers to signals with S/N<10 in the “off” scan. Because the “off” scan detections

were not recorded in the database, it was not possible for our filters to flag this category of signals

as RFI.

Category ‘b’ refers to signals whose drift rates between the “on” and “off” scans differed by

more than our allowed tolerance, which we set to±∆ḟ =±0.0173 Hz s−1 (Appendix 3.B). Because

the “off” scan detections were not correctly paired to the “on” scan detections, it was not possible

for our filters to flag this category of signals as RFI.

Category ‘c’ refers to signals that ‘cross’ a signal of a higher S/N in scan of a different source.

As discussed before, our signal detection methods are currently blind to such signals.

Category ‘d’ refers to broad signals for which it is difficult to accurately determine a drift
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rate. Such signals are naturally difficult to ‘pair’, since the integrated power may peak at different

frequencies within the bandwidth of the signal for different scans.

Category ‘e’ refers to signals that exhibit non-linear behavior in frequency as a function of

time. Our pipeline is not currently well-equipped to handle such signals because the Doppler

de-smearing algorithm can only detect linear drifts in frequency vs. time.

All categories described above pinpoint potential areas for improvement for our current pipeline.

Of the remaining 17 signals, we believe that 15 are anthropogenic. These signals appear in

three sources: Kepler-296 (3), LHS 1140 (5), and TRAPPIST-1 (7). In each source, the signals

exhibit similar modulation properties and are detected at similar frequencies but at different drift

rates, implying that they are unlikely to be of extraterrestrial origin. These signals are labeled as

Category ‘f’ in Tables 3.3 and 3.4. The time-frequency diagrams of the “on” - “off” - “on” scans

for a sample signal from each of the three sources are shown in Figures 3.4, 3.5, and 3.6.

The remaining two candidates are shown in Figures 3.7 and 3.8. Note that the drift rate for both

candidates is close to zero (Table 3.4). Additionally, both candidates are found within 100 Hz of

other candidates flagged by our pipeline as RFI. As a result, we cannot conclude that these signals,

nor any of the other signals found in this search, are of extraterrestrial origin.

3.5 Discussion

3.5.1 Drake Figure of Merit

The Drake Figure of Merit [Drake, 1984] is often used to compare the parameter space examined

by different searches and is given by

DFM =
∆νtotΩ

F
3/2
det

(3.2)

where ∆νtot is the total bandwidth observed, Ω is the total angular sky coverage, and F 3/2
det is the

minimum flux density required for a detection. For our search, F 3/2
det = 9.4Jy and Ω = N ×
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Figure 3.4: Time-Frequency diagrams for the “on” - “off” - “on” scans for a sample category

‘f’ candidate. This signal, found during the Kepler-296 scans, has a time-frequency structure

reminiscent of the ARSR structure.

0.015 deg2, where N = 12 is the number of individual sky pointings [Margot et al., 2018]. To

compute ∆νtot, we take the bandwidth of the GBT L-band receiver (580 MHz) and subtract the

bandwidth of the GBT notch filter (141.2 MHz), the bandwidth discarded due to known interferers

(Table 3.2; 137.167 MHz), and the total bandwidth discarded during our density thresholding

procedure (Section 3.3.5; 37.101 MHz). Using the resulting bandwidth ∆νtot = 264.532 MHz, we

find that the DFM associated with this search is 1.6 × 106. This number amounts to about 1.7%
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Figure 3.5: Time-Frequency diagrams for the “on” - “off” - “on” scans for a sample category ‘f’

candidate from the scans of LHS 1140.

and 10% of the recent large surveys presented by Enriquez et al. [2017] and Harp et al. [2016],

respectively.

3.5.2 Increase of Candidate Detection Efficiency

The candidate detection procedures presented by Siemion et al. [2013], Enriquez et al. [2017],

Margot et al. [2018] leave substantial regions of the spectrum unexamined, as pointed out in Sec-

tion 3.3.3. This deficiency leads to an overestimation of the Drake Figure of Merit (DFM) associ-
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Figure 3.6: Time-Frequency diagrams for the “on” - “off” - “on” scans for a sample category ‘f’

candidate from the scans of TRAPPIST1.

ated with these searches, since this number is directly proportional to the total bandwidth examined

(Equation 3.2).

We can calculate the magnitude of this overestimation for the work of [Margot et al., 2018] by

noting that a signal with a drift rate ḟi occupies no more than ḟiτ Hz of bandwidth, where τ is the

scan duration. However, a window fw ≈ 3000 Hz was discarded around every detection, leaving

fw− ḟiτ Hz unexamined around every candidate signal. We can calculate the approximate fraction
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Figure 3.7: Time-Frequency diagrams for the “on” - “off” - “on” scans for the first promising tech-

nosignature candidates. The candidate signal is at the center of the diagram. This signal has a near-

zero Doppler drift rate, and is in the vicinity of other signals that were discarded as anthropogenic

RFI. For this reason, we cannot conclude that this signals is an extraterrestrial technosignature.

F by which the DFM was overestimated using

F =
N∆ftot

N∆ftot −
∑

i(fw − ḟiτ)
, (3.3)

where ∆ftot is the total bandwidth that was searched (300 MHz), and N is the total number of scans.

Using the database of detections found by Margot et al. [2018], we find F = 1.048, meaning that

their reported DFM was overestimated by approximately 5%. Enriquez et al. [2017] eliminate
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Figure 3.8: Time-Frequency diagrams for the “on” - “off” - “on” scans for the second promis-

ing technosignature candidates. The candidate signal is at the center of the diagram. This signal

has a near-zero Doppler drift rate, and is in the vicinity of other signals that were discarded as

anthropogenic RFI. For this reason, we cannot conclude that this signals is an extraterrestrial tech-

nosignature.

fw = 1200 Hz of frequency space in their “on” scans centered around detections in their “off”

scans. In the absence of complete information about their detections, we are unable to compute the

magnitude by which their DFM was overestimated.

Our current procedure greatly improves on this situation by only requiring that detections do
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not overlap in time-frequency space. This improvement allows us to search the space around

detected signals instead of discarding frequency windows that are 1200-3000 Hz wide. As a result,

our calculation of the DFM (Section 3.5.1) no longer suffers from overestimation problems.

We can get a better idea of the level of improvement to our data processing pipeline by com-

paring the signal counts recovered by the candidate detection method used by Margot et al. [2018]

and the method that is used in this work (Figure 3.9). Evidently, our improved detection proce-

dure recovers more than four times the number of detections reported by Margot et al. [2018].

Furthermore, 91 283 of the 97 083 signals that passed our Doppler and Direction-of-Origin filters

(Section 3.3.4) were only detected as a result of this improvement. Eight of our final 30 candidates

(Tables 3.3 and 3.4) would not have been detected with the detection algorithms of Margot et al.

[2018].

The practice of blanking frequency space around candidate detections suggests that a large

number of candidates, which could include valid technosignatures, are removed from consideration

when using the detection algorithms of Siemion et al. [2013], Enriquez et al. [2017], Margot et al.

[2018]. This practice makes the calculation of existence upper limits unreliable, because these

pipelines remove from consideration many of the signals that they are designed to detect.

We have reprocessed the 2016 data discussed by Margot et al. [2018] with our improved algo-

rithms (Appendix 3.D). We found no evidence of extraterrestrial technosignatures.

3.5.3 Existence Limits

Considering that radio SETI detection pipelines typically eliminate substantial fractions of the

spectrum (e.g., Harp et al., 2016, Table 2; Enriquez et al., 2017, 1200-1350 MHz; Margot et al.,

2018, Table 2; this work, Table 2) and further eliminate a fraction of the signals that they are de-

signed to detect [Siemion et al., 2013, Enriquez et al., 2017, Margot et al., 2018], it is difficult to

make general and robust statements about the prevalence of narrowband emitters in the Galaxy.

One such claim by Enriquez et al. [2017] has been shown to be questionable [Margot et al., 2018].
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Figure 3.9: Detection counts obtained with the algorithm of Siemion et al. [2013], Margot et al.

[2018] (red) and that presented in this work (blue). The removal of many legitimate detections by

typical algorithms suggests that claims of existence limits based on the results of these algorithms

and others like it [e.g., Enriquez et al., 2017] are questionable.

Injection of artificial signals in the data would demonstrate that a fraction of detectable and legiti-

mate signals are not identified by existing pipelines. Until this fraction is properly quantified, it is

wise to refrain from making overly confident claims about the prevalence of radio emitters in the

galaxy.

3.5.4 Sensitivity

Margot et al. [2018] provide a detailed analysis of the sensitivity of a search performed with the

100 m GBT at a frequency resolution of ∆ν = 2.98 Hz sensitive to flux densities of 10 Jy. The

results of that calculation [Margot et al., 2018, Figure 5] are generally applicable here because

our search parameters are identical except for a slightly better sensitivity of 9.4 Jy. We estimate

that civilizations located near the closest of our observed sources (TRAPPIST-1; ∼ 40 ly) would
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require a transmitter with only a small fraction (< 1%) of the effective isotropic radiated power

(EIRP) of the Arecibo planetary radar to be detectable in our search. Transmitters located as far

as our most-distant observed source (Kepler-452; ∼ 1800 ly) require approximately 18 times the

Arecibo EIRP.

3.6 Conclusions

We described the results of a search for technosignatures using two hours of GBT telescope time

in 2017. We identified 5,840,149 candidate signals, 98% of which were automatically eliminated

by our rejection filters. Of the signals that remained, 30 were found outside of densely popu-

lated frequency regions and required further inspection. None of the remaining candidates were

attributable to extraterrestrial technosignatures.

We found that quiet parts of the radio spectrum remain unexamined in the radio technosignature

search pipelines of Siemion et al. [2013], Enriquez et al. [2017], Margot et al. [2018]. This problem

results in inflated estimates of figures of merit and unreliable upper limits on the prevalence of

technosignatures. To address this problem, we implemented a new procedure that increased the

candidate detection efficiency by a factor of four or more compared to Margot et al. [2018].

3.A Candidate Signal Detection and Bandwidth Estimation

To identify promising candidate signals in the drift-rate-by-frequency array output by the Doppler

de-smearing algorithm, we applied an iterative procedure that seeks out candidate signals with S/N

exceeding 10. We began by arranging the 1023× 220 array so that the drift rates decrease linearly

down the rows of the array (i.e., the first row contains the integrated power with drift rate 8.8644 Hz

s−1, the second row contains the integrated power with drift rate 8.8471 Hz s−1, and so on). We

then searched for the highest S/N signal in this array, and noted its drift rate ḟ0 and frequency f0 at

the start of the scan.
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We measured the bandwidth of candidate signals with the Python SciPy routine peak widths.

These routines measure the width from the central peak of the signal to the first point on either side

above a pre-defined threshold value, using linear interpolation when necessary. We initially mea-

sured the bandwidth as the full width at half maximum (FWHM) of each signal. However, due to

the peculiar nature of many of the detected signals this threshold value proved to be ineffective.

We instead set the bandwidth measurement threshold at five times the standard deviation of the

noise, which corresponds to half of our signal detection threshold (Figure 3.10).
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Figure 3.10: Sample result of the bandwidth estimation procedure. (Top) Time-Frequency diagram

of signal. (Bottom) The power of the signal integrated with the best-fit drift rate of 0.2429 Hz s−1,

in units of standard deviations of the noise (σ). The estimated bandwidth measured at FWHM

is shown by the red arrows and proved to be ineffective for the purpose of avoiding duplicate

detections (e.g., signal outside this bandwidth exceeds our detection threshold of 10σ). The green

arrows show the bandwidth measured at 5σ, which yields a more robust estimate of the bandwidth

and which we used in our implementation.

By default, we used a search window of 200 frequency bins (∼ 600 Hz) on either side of

each signal to measure the bandwidth. For narrowband signals, this range is more than enough to
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ensure that the entirety of a signal fits within the search window. If a detected signal is close to the

edge of the channel and the required frequency window is not available on one side of the signal,

we utilize the entire available frequency range on that side of the signal, and the full 600 Hz on

the other. The SciPy routines conveniently provide the frequency coordinates of the left and right

intersection points at the specified threshold, which we used to calculate the width of the signal to

the left (∆fbl) and right (∆fbr) of the center frequency.

Signals with large bandwidths required additional care. If the median integrated power of the

signal within the initial 1200 Hz window exceeded 5σ, we labeled the signal as broadband and

increased the search window to 200000 frequency bins, or ∼ 600 kHz, on either side of the main

signal. We applied a Savitzky-Golay filter [Savitzky and Golay, 1964] with a window of 1001

frequency bins (∼ 3000 Hz) and a polynomial order of 3 to the integrated spectra within the search

window. This filter reduces noise by fitting a polynomial to all the points within the specified

window and replacing the central point with the corresponding fit value. This filter was chosen for

its computational advantages and simplicity. We then applied the bandwidth estimation procedure

described above to the filtered points and stored the result in our database.

We used the bandwidth measurements in Equation 3.1, as follows:

f0 −∆fbl < f < f0 + (ḟ − ḟ0)τ + ∆fbr if ḟ > ḟ0 (3.4)

f0 + ∆fbr > f > f0 + (ḟ − ḟ0)τ −∆fbl if ḟ < ḟ0

However, we chose to establish a minimum bandwidth to account for uncertainty in the determi-

nation of the drift rate of a signal (for example, if a signal’s drift rate is time variable or is not a

perfect multiple of the drift rate step ∆ḟ ). Specifically, we redefined ∆fbl as min(∆fbl , 3∆ν) and

∆fbr as min(∆fbr , 3∆ν), which amounts to a minimum of ∼ 10 Hz on either side of each signal,

for a minimum of 20 Hz per signal.

We removed redundant detections with frequencies given by Equation 3.4 by applying a mask

to the drift-rate-by-frequency array. This mask is defined by drawing two lines through the array.

The first is a vertical line at the frequency of the detected candidate signal. The second is a line
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with a slope of −∆ḟ/∆ν crossing through the frequency and drift rate point corresponding to the

detected signal (Figure 3.11). The boundaries defined by these two lines comprise the mask for

zero bandwidth signals. In order to account for the finite bandwidth of a signal, the boundaries are

shifted to the left and right so that the total width of the mask at the detection point matches the

measured bandwidth of the signal (signified by the red arrows in Figure 3.11).
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Figure 3.11: (Left) A portion of the original array output by the Doppler de-smearing algorithm

for a sample scan (LHS 1140). The plot is centered on f = 1546.879303 MHz. The intensity

of the plot represents the integrated power at a given drift rate and frequency. Signals of interest

are represented as local maxima. The minimum integrated power in this array exceeds our 10 S/N

detection threshold, therefore all signals shown are detectable by our pipeline. The signal with

maximum S/N in this portion of the array is located at the center frequency. The area between the

dashed vertical lines represents the slice of the array that would have been discarded after a signal

detection with the approach of Siemion et al. [2013] and Margot et al. [2018], i.e., only one of

the signals would have been reported. (Middle) Same array after application of our new masking

procedure, assuming that the measured bandwidth of the signal is 0. With our new procedure, valid

signals in the vicinity of the strongest signal are not discarded. (Right) Same array after application

of our new masking procedure, assuming that the measured bandwidth of the signal is 60 Hz. This

number was chosen for visualization purposes, and does not represent the true measured bandwidth

(∼ 3 Hz) of the center peak.
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3.B Doppler and Direction-of-Origin Filters

To distinguish anthropogenic signals from potential extraterrestrial technosignatures, we invoked

several filter procedures within our database to flag promising technosignature candidates. The

first filter flags candidate signals with non-zero Doppler drift rates.

The direction-of-origin filters require signals from different scans to be compared and possibly

paired. We pair two signals if they have similar drift rates and compatible frequencies, i.e., the

frequencies at the beginning of each scan are within some tolerance of a linear relationship with a

slope equal or nearly equal to the drift rate. We quantify these tests as follows. Consider a signal

with start time t0, start frequency f0, and drift rate ḟ0, and another signal from a different scan with

corresponding values t, f , ḟ . We define ∆t = t− t0 and require that f falls in the interval [f−, f+]

for pairing, where

f± = (ḟ0 ± 2∆ḟ)∆t±∆ν. (3.5)

In this work, the values ∆ḟ and ∆ν are given by 0.0173 Hz s−1and 2.98 Hz, respectively. To

account for uncertainty in the drift rate determination, we allow for a drift rate difference of ∆ḟ .

We thus query the database for all candidate signals with a frequency at the start of the scan in the

range [f−, f+] with a drift rate ḟ0−∆ḟ ≤ ḟ ≤ ḟ0 + ∆ḟ Hz s−1. Two signals are considered paired

if the following condition holds:

min
i
|(f − f0) + ḟi∆t| ≤ ∆ν (3.6)

where ḟi ∈ {ḟ0, ḟ0 ±∆ḟ , ḟ , ḟ ±∆ḟ}.

To determine whether a signal is persistent, i.e., whether it is detected in both scans of its

source, we apply the above procedure to each candidate and all candidates detected in the second

scan of the same source. If a match is found, both signals are flagged. To determine whether a

signal’s direction of origin is unique, i.e, to ensure that it is not detected in the scans corresponding

to other sources, we apply the above procedure to each candidate and all candidates detected in

either scan of all other sources. All matches are discarded from consideration. The candidate
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signals that remain are flagged as having a single direction of origin.

3.C Signal Density Thresholding

In order to remove candidate signals that were likely to be anthropogenic RFI, we developed a

procedure to filter signals based on the density of nearby detections. We began by dividing the

1.15 – 1.73 GHz range into 1-kHz-wide frequency bins. For each bin, we measured the signal

density by counting the number of detections within a window centered on the bin. For these

calculations, we excluded the regions listen in Table 3.2. We tested four different window sizes:

1 kHz, 10 kHz, 100 kHz, and 1 MHz. For each window size, we plotted a histogram of signal

counts. We found that a 1 MHz window resulted in a distinctive transition between small and large

signal densities at approximately 1000 signals MHz−1 (Figure 3.12), and we used this threshold

and window size to filter out regions of high signal density.

3.D Re-analysis of 2016 Data

Margot et al. [2018] presented the results of a search for technosignatures around 14 planetary

systems in the Kepler field conducted on April 15, 2016, 16:00 - 18:00 universal time (UT) with

the GBT. They discarded a frequency region of width ±ḟmaxτ ' 3000 Hz around each detection,

where ḟmax = 8.86 Hz s−1 is the maximum drift rate detectable by their search and τ ≈ 150 s

is the integration time of the scan. This process or a variant of it is also implemented in the

radio SETI detection pipelines of Siemion et al. [2013] and Enriquez et al. [2017]. As a result, a

substantial portion of the spectrum remains unexamined in these searches, and the Drake figure of

merit associated with these searches is overestimated (Section 3.5).

To remedy this situation, we have re-analyzed the data obtained by Margot et al. [2018] us-

ing the candidate detection procedure described in this work. We have found a total of 4 228 085

signals as compared with 1 046 144 reported previously. Our Doppler and direction-of-origin rejec-
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Figure 3.12: Signal densities of 1kHz regions in the 1.15–1.73 GHz range. The plot is clipped at a

max of 1200 signals MHz−1. Note the sharp dropoff at approximately 1000 signals MHz−1.

tion algorithms (Section 3.3.4, Appendix 3.B) automatically labeled more than 99% of the detected

signals as anthropogenic RFI. After removing all remaining signals found within operating bands

of the interferers described by Margot et al. [2018, Tables 2 and 3], we were left with 18 tech-

nosignature candidates. Seven of these had been identified by Margot et al. [2018] and attributed

to anthropogenic RFI. The properties of the remaining 11 technosignature candidates are given

in Table 3.5. These signals were further scrutinized and categorized according to the procedure

described in Section 3.4. All were found to be attributable to anthropogenic RFI.

We note that 3 of the 19 final technosignature candidates described by Margot et al. [2018] were

found to be part of a broadband RFI signal and were removed via Equation 3.1. The remaining 9

signals were correctly labeled as RFI by our Doppler and direction-of-origin rejection algorithms
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or frequency-based filters. This enhancement in classification performance was only possible be-

cause of the improvements to the candidate signal detection algorithms presented in this work and

because the raw data were preserved for re-analysis.
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Table 3.1: Target host stars listed in order of observation. Distances in light years (ly) were ob-

tained from the NASA Exoplanet Archive. Habitable Zone categories are described by Kane et al.

[2016]. Categories 1 and 2 refer to small (Rp < 2RE) planets in the conservative and optimistic

habitable zones, respectively, while categories 3 and 4 refer to planets of any radius in the conser-

vative and optimistic habitable zones, respectively. TRAPPIST-1 and LHS 1140 were categorized

on the basis of orbital radii from the NASA Exoplanet Archive and HZ boundaries as calculated

with the algorithm of [Kopparapu et al., 2013].

Host Star Distance (ly) HZ Category

Kepler-442 1115+62
−72 1, 2

Kepler-440 851+52
−150 2

Kepler-174 1210.04+63
−56 3, 4

Kepler-62 1200 1, 2

Kepler-296 737+91
−59 1, 2

Kepler-86 1128.5+44
−42 4

Kepler-22 620 4

Kepler-283 1477.49+67
−74 1, 2

Kepler-452 1787.34+395
−243 2

Kepler-186 561+42
−33 1, 2

TRAPPIST-1 39.5± 1.3 1, 2

LHS 1140 40.67± 1.37 1
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Table 3.2: Spectral regions exhibiting a high density of detections per unit frequency. Known

anthropogenic interferers are listed in the ‘Identification’ column.

Frequency Region (MHz) Total detection count Density (# per MHz) Identification

1155.99 - 1196.91 3 579 122 87 466 GPS L5

1192.02 - 1212.48 96 233 4703 GLONASS L3

1422.320 - 1429.992 41 757 5443 ARSR products?

1525 - 1559 809 877 23 820 Satellite downlinks

1554.96 - 1595.88 718 711 17 564 GPS L1

1592.9525 - 1610.485 184 207 10 507 GLONASS L1
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Table 3.3: Characteristics of Top 15 Candidates from Kepler sources. Properties are listed for the

first scan of the source only. For a description of the ‘Category’ column, see Section 3.4.

Source Epoch (MJD) Frequency (Hz) Drift Rate Hz s−1 S/N Category

Kepler-86 57877.66340278 1151559391.617775 0.0867 11.2 a

1457412120.699883 0.4510 19.7 b

Kepler-174 57877.65087963 1501593533.158302 -0.0520 33.8 b

Kepler-186 57877.68348380 1457412961.125374 0.5551 18.6 c

1457488715.648651 0.1908 15.6 a

1457489272.952080 0.1735 12.9 a

1693601790.070534 0.1041 189.0 b

Kepler-296 57877.66091435 1420354264.974594 0.2429 11.2 f

1420476266.741753 0.2255 15.4 f

1431607288.122177 0.2082 10.5 f

1435340115.427971 0.1561 26.6 a

Kepler-440 57877.64343750 1457473185.658455 0.3296 26.2 b

Kepler-442 57877.64098380 1436369919.776917 0.3123 11.3 a

1457510107.755661 0.2949 22.4 d

1501766377.687454 -0.0520 17.8 e
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Table 3.4: Characteristics of Top 15 Candidates from LHS 1140 and TRAPPIST-1. Properties

are listed for the first scan of the source only. For a description of the ‘Category’ column, see

Section 3.4.

Source Epoch (MJD) Frequency (Hz) Drift Rate Hz s−1 S/N Category

LHS 1140 57877.69550926 1675002533.197403 0.01735 28.0 f

1676205691.695213 0.01735 23.5 f

1676211157.441139 -0.01735 24.0 f

1677041041.851044 -0.01735 12.9 f

1678640750.050545 0.03469 17.0 f

1728618854.284286 -0.01735 10.0

TRAPPIST-1 57877.69228009 1151731526.851654 0.01735 16.2

1463927415.013313 0.03469 92.4 a

1675910618.901253 -0.01735 14.0 f

1676249122.619629 -0.01735 13.1 f

1676298260.688782 -0.01735 14.6 f

1677018946.409225 -0.01735 14.1 f

1678110888.600349 0.03469 12.0 f

1678460314.869881 0.01735 13.6 f

1678716921.806335 0.01735 15.5 f
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Table 3.5: Characteristics of Top 11 Candidates from 2016 Search. Properties are listed for the

first scan of the source only. For a description of the ‘Category’ column, see Section 3.4.

Source Epoch (MJD) Frequency (Hz) Drift Rate Hz s−1 S/N Category

Kepler-22 57493.70935185 1456613901.257515 0.52042 14.3 a

Kepler-296 57493.71608796 1454808911.681175 0.05204 10.3 a

1454877239.465714 0.01735 14.0 a

1457440766.692162 0.31225 12.9 a

1457443791.627884 0.31225 11.9 b

Kepler-399 57493.68870370 1414058676.362038 0.01735 764.4 b

Kepler-407 57493.71819444 1620381447.672844 -6.40113 14.5 d

Kepler-440 57493.74275463 1457486632.466316 0.41633 21.4 b

1457486835.122108 0.39899 23.6 b

Kepler-442 57493.74497685 1308946093.916893 -0.01735 11.3 e

1376548311.114311 -0.24286 540.9 b

59



CHAPTER 4

A Search for Technosignatures Around 31 Sun-like Stars with

the Green Bank Telescope at 1.15–1.73 GHz

We conducted a search for technosignatures in April of 2018 and 2019 with the L-band receiver

(1.15 – 1.73 GHz) of the 100 m diameter Green Bank Telescope. These observations focused

on regions surrounding 31 Sun-like stars near the plane of the Galaxy. We present the results of

our search for narrowband signals in this data set as well as improvements to our data processing

pipeline. Specifically, we applied an improved candidate signal detection procedure that relies on

the topographic prominence of the signal power, which nearly doubles the signal detection count

of some previously analyzed data sets. We also improved the direction-of-origin filters that re-

move most radio frequency interference (RFI) to ensure that they uniquely link signals observed in

separate scans. We performed a preliminary signal injection and recovery analysis to test the per-

formance of our pipeline. We found that our pipeline recovers 93% of the injected signals over the

usable frequency range of the receiver and 98% if we exclude regions with dense RFI. In this anal-

ysis, 99.73% of the recovered signals were correctly classified as technosignature candidates. Our

improved data processing pipeline classified over 99.84% of the ∼26 million signals detected in

our data as RFI. Of the remaining candidates, 4539 were detected outside of known RFI frequency

regions. The remaining candidates were visually inspected and verified to be of anthropogenic

nature. Our search compares favorably to other recent searches in terms of end-to-end sensitivity,

frequency drift rate coverage, and signal detection count per unit bandwidth per unit integration

time.

60



4.1 Introduction

We describe a search for radio technosignatures with the L-band receiver of the 100 m diameter

Green Bank Telescope (GBT). We used a total of 4 hours of GBT time in 2018 and 2019 to observe

the regions around 31 Sun-like stars near the plane of the Galaxy. We have so far prioritized the

detection of narrowband (∼ 10 Hz) signals because they are diagnostic of engineered emitters

[e.g., Tarter, 2001].

Our search builds on the legacy of technosignature searches performed in the period 1960–2010

[Tarter, 2001, Tarter et al., 2010, and references therein] and previous searches conducted by our

group [Margot et al., 2018, Pinchuk et al., 2019]. Other recent searches include work conducted

by Siemion et al. [2013], Harp et al. [2016], Enriquez et al. [2017], Gray and Mooley [2017], Price

et al. [2020].

Our choice of search parameters has key advantages compared to the Breakthrough Listen

(BL) searches described by Enriquez et al. [2017] and Price et al. [2020], which contend with

much larger data volumes. Specifically, our search provides roughly uniform detection sensitivity

over the entire range of frequency drift rates (±8.86 Hz s−1) whereas the BL searches suffer a

substantial loss in sensitivity due to the spreading of signal power across up to 13–26 frequency

resolution cells. In addition, we cover a range of frequency drift rates that is 2–4 wider than the

BL searches with a time resolution that is 51 times better.

Our search algorithms are distinct from the BL algorithms in that they alleviate the necessity of

discarding∼kHz wide regions of frequency space around every detected signal. We abandoned this

practice in previous work [Pinchuk et al., 2019]. In this work, we further refined our algorithm by

implementing a candidate signal detection procedure that relies on the concept of prominence and

by removing the requirement to compute the bandwidth of candidate signals. Our new approach,

combined with better end-to-end sensitivity and drift rate coverage, enables a hit rate density or

signal detection count per unit bandwidth per unit integration time that is ∼300 times larger than

that of the BL search described by Price et al. [2020].
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A key measure of the robustness and efficiency of a data processing pipeline is provided by the

technique of signal injection and recovery [e.g., Christiansen et al., 2013], whereby artificial signals

are injected into the raw data and the fraction of signals recovered by the pipeline is quantified.

Despite the importance of this metric, we are not aware of an existing tool to quantify the recovery

rates of data-processing pipelines in radio technosignature searches. We make a first step towards

the implementation of this tool and show that our current pipeline detects 93% of the injected

signals over the usable frequency range of the receiver and 98% if we exclude regions with dense

RFI. In addition, our pipeline correctly flagged 99.73%of the detected signals as technosignature

candidates. Although our current implementation requires additional work to fully capture the

end-to-end pipeline efficiency, it can already illuminate imperfections in our and other groups’

pipelines and be used to calibrate claims about the prevalence of other civilizations [e.g., Enriquez

et al., 2017].

The chapter is organized as follows. Our data acquisition and analysis techniques are presented

in Sections 4.2 and 4.3, respectively. Our preliminary signal injection and recovery analysis is

described in Section 4.4. The main results of our search are outlined in Section 4.5. In Section 4.6,

we describe certain advantages of our search, including dechirping efficiency, drift rate coverage,

data archival practices, candidate detection algorithm, and hit rate density. We also discuss limits

on the prevalence of other civilizations, search metrics such as the Drake Figure of Merit, and re-

analysis of previous data with our latest algorithms. We close with our conclusions in Section 4.7.

4.2 Data Acquisition and Pre-Processing

Our data acquisition techniques are generally similar to those used by Margot et al. [2018] and

Pinchuk et al. [2019]. Here, we give a brief overview and refer the reader to these other works for

additional details.
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4.2.1 Observations

We selected 31 Sun-like stars (spectral type G, luminosity class V) with median galactic latitude

of 0.85◦ (Tables 4.1 and 4.2) because their properties are similar to the only star currently known

to harbor a planet with life. We observed these stars with the GBT during two 2-hour sessions

separated by approximately one year. During each observing session, we recorded both linear

polarizations of the L-band receiver with the GUPPI backend in its baseband recording mode

[DuPlain et al., 2008], which yields 2-bit raw voltage data after requantization with an optimal

four-level sampler [Kogan, 1998]. The center frequency was set to 1.5 GHz and we sampled 800

MHz of bandwidth between 1.1 and 1.9 GHz, which GUPPI channelized into 256 channels of

3.125 MHz each. We validated the data acquisition and analysis processes at the beginning of each

observing session by injecting a monochromatic tone near the receiver frontend and recovering it

at the expected frequency in the processed data.

We observed all our targets in pairs in order to facilitate the detection and removal of signals of

terrestrial origin (Section 4.3.2). The sources were paired in a way that approximately minimized

telescope time overhead, i.e., the sum of the times spent repositioning the telescope. Pairings

were adjusted to avoid pair members that were too close to one another on the plane of the sky

with the goal of eliminating any possible ambiguity in the direction of origin of detected signals.

Specifically, we required angular separations larger than 1◦ between pair members, i.e., several

times the ∼ 8.4 arcmin beamwidth of the GBT at 1.5 GHz.

Each pair was observed twice in a 4-scan sequence: A, B, A, B. The integration time for

each scan was 150 s, yielding a total integration time of 5 minutes per target. CoRoT 102810550

and CoRoT 110777727 were each observed for an additional two scans. With 66 scans of 150 s

duration each, our total integration time amounts to 2.75 hr.

4.2.2 Sensitivity

Margot et al. [2018] calculated the sensitivity of a search for narrowband signals performed with
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the 100 m GBT. Assuming a System Equivalent Flux Density (SEFD) of 10 Jy, integration time

of 150 s, and frequency resolution of 3 Hz, they found that sources with flux densities of 10 Jy

can be detected with a signal-to-noise ratio (S/N) of 10. The results of that calculation are directly

applicable here because our search parameters are identical to that study. Specifically, our search

is sensitive to transmitters with the effective isotropic radiated power (EIRP) of the Arecibo plan-

etary radar transmitter (2.2 ×1013 W) located 420 ly from Earth [Margot et al., 2018, Figure 5].

Transmitters located as far as the most distant source (CoRoT 102963038; ∼ 10, 407 ly) and with

& 600 times the Arecibo EIRP can also be detected in this search. Although we selected Sun-like

stars as primary targets, our search is obviously sensitive to other emitters located within the beam

of the telescope. A search of the Gaia DR2 catalog [Gaia Collaboration, 2016, 2018] inspired by

Wlodarczyk-Sroka et al. [2020] reveals that there are 15,031 known stars with measured parallaxes

within the half-power beamwidths associated with our 31 primary sources. The median and mean

distances to these sources are 2088 and 7197 ly, respectively.

4.2.3 Computation of Power Spectra

After unpacking the digitized raw voltages from 2-bit to 4-byte floating point values, we com-

puted consecutive power spectra with 220-point Fourier transforms, yielding a frequency resolu-

tion of ∆f = 2.98 Hz. We chose this frequency resolution because it is small enough to provide

unambiguous detections of narrowband (<10 Hz) technosignatures and large enough to examine

Doppler frequency drift rates of up to nearly±10 Hz s−1 (Section 4.2.4). We processed all channels

within the operating range of the GBT L-band receiver (1.15–1.73 GHz), excluding channels that

overlap the frequency range (1200–1341.2 MHz) of a notch filter designed to mitigate radio fre-

quency interference (RFI) from a nearby aircraft detection radar. Although Enriquez et al. [2017]

and Price et al. [2020] used the L-band receiver over a larger frequency range (1.1–1.9 GHz), we

used a narrower range because we observed serious degradation of the bandpass response beyond

the nominal operating range of the receiver.

In order to correct for the bandpass response of GUPPI’s 256 channels, we fit a 16-degree
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Chebyshev polynomial to the median bandpass response of a subset of the processed channels

that did not include strong RFI and that were not close to the cutoff frequencies of filters located

upstream of the GUPPI backend. After applying the bandpass correction to all channels, we stored

the consecutive power spectra as rows in time-frequency arrays (a.k.a time–frequency diagrams,

spectrograms, spectral waterfalls, waterfall plots, or dynamic spectra) and normalized the power

to zero mean and unit standard deviation of the noise power. The normalized power values reflect

the S/N at each time and frequency bin.

4.2.4 Doppler Dechirping

Due to the orbital and rotational motions of both the emitter and the receiver, we expect extrater-

restrial technosignatures to drift in frequency space [e.g., Siemion et al., 2013, Margot et al., 2018,

Pinchuk et al., 2019]. To integrate the signal power over the scan duration while compensating

for Doppler drifts in signal frequency, we used incoherent sums of power spectra, where each

individual spectrum was shifted in frequency space by a judicious amount prior to summation.

This technique is known as incoherent dechirping. Coherent dechirping algorithms exist [Korpela,

2012] but are computationally expensive and seldom used.

Because the Doppler drift rates due to the emitters are unknown, we examined 1023 linearly

spaced drift rates in increments of ∆ḟ = 0.0173 Hz s−1over the range ±8.86 Hz s−1. To accom-

plish this task, we used a computationally advantageous tree algorithm [Taylor, 1974, Siemion

et al., 2013], which operates on the dynamic spectra and yields time integrations of the consecu-

tive power spectra after correcting approximately for each trial Doppler drift rate. The algorithm

requires input spectra with a number of rows equal to a power of two, and we zero-padded the

dynamic spectra with approximately 65 rows to obtain 512 rows. The output of this algorithm,

which was run once for negative drift rates and once for positive drift rates, is stored in 1023 × 220

drift-rate-by-frequency arrays that are ideal for identifying candidate signals, i.e., radio signals that

exceed a certain detection threshold (Section 4.3.1). We quantify the sensitivity penalty associated

with the use of the tree algorithm in Section 4.6.1.
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4.3 Data Analysis

4.3.1 Candidate Signal Detection

We performed an iterative search for candidate signals on the drift-rate-by-frequency arrays ob-

tained with the incoherent dechirping algorithm. Specifically, we identified the signal with the

highest integrated S/N and stored its characteristics in a structured query language (SQL) database,

then identified and recorded the signal with the second highest S/N, and so on. Redundant detec-

tions can occur when signals in the vicinity of a candidate signal have large integrated power along

similar drift rates. Different data processing pipelines tackle these redundant detections in different

ways. Siemion et al. [2013], Enriquez et al. [2017], Margot et al. [2018] and Price et al. [2020]

discarded all detections within∼kHz-wide regions of frequency space around every candidate sig-

nal detection. This method leaves large portions of the observed frequency space unexamined and

biases the results towards high S/N signals because signals with lower S/N in their vicinity are

discarded. Importantly, this method complicates attempts to place upper limits on the abundance

of technosignature sources because the pipeline eliminates the very signals it purports to detect

(Sections 4.6.4 and 4.6.5).

Pinchuk et al. [2019] introduced a novel procedure to alleviate these shortcomings. In order

to avoid redundant detections, they imposed the restriction that two signals cannot cross in in

the time-frequency domain of the scan and discarded detections only in a small frequency region

around every candidate signal detection. The extent of this region was set equal to the bandwidth

of the candidate signal measured at the 5σ power level, where σ is one standard deviation of the

noise. Unfortunately, this bandwidth calculation can cause complications in some situations. For

example, small noise fluctuations may result in an unequal number of candidate signals detected

in two scans of a source. In the ∼400 Hz region of the spectrum shown on Figure 4.1, two signals

(±100Hz) are detected in the first scan but only one signal (−100Hz) is detected in the second

scan. This incompleteness is detrimental to our direction-of-origin filters (Section 4.3.2), which

rely on accurate signal detection across all scans. Moreover, discarding the region corresponding
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to a bandwidth measured at 5σ prevents the detection of at least five other signals per scan in this

example (Figure 4.1).
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Figure 4.1: Comparison of signal detection procedures illustrated on a ∼400 Hz region for scans 1

(top) and 2 (bottom) of TYC 1863-858-1. (Left) Dynamic spectra, where pixel intensity represents

signal power. (Middle) Integrated power spectra with blue crosses marking the signals that are

detected with the procedure described by Pinchuk et al. [2019]. In the first scan, the strongest signal

(+100 Hz) is detected and the corresponding 5σ bandwidth is shown in red. The second strongest

signal (−100 Hz) is then detected and the corresponding 5σ bandwidth is shown in orange. In the

second scan, only the strongest signal, which is now at −100 Hz, is detected. (Right) Integrated

power spectra with blue crosses marking the signals that are detected with the procedure described

in this work.

In this work, we improve on the procedure presented by Pinchuk et al. [2019] in two important

ways. First, we identify candidate signal detections on the basis of the topography-inspired concept

of prominence. The prominence of a signal is defined as the vertical distance between the peak

and its lowest contour line, as implemented in the numerical computing package SciPy [Virtanen
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et al., 2020]. Because our integrated spectra are one-dimensional, we take the larger of a peak’s

two ‘bases’ as a replacement for the lowest contour line. The high-frequency (low-frequency) base

is defined as the minimum power in the frequency region starting on the high (low) frequency

side of the peak and ending +500 Hz (−500 Hz) away or at the frequency location of the nearest

peak with higher (lower) frequency and larger power, whichever results in the smallest frequency

interval. While the±500 Hz limits are not essential to compute prominences, they do speed up the

calculations. Second, we remove the bandwidth-dependence of Pinchuk et al. [2019]’s algorithm.

Instead, we apply a local maximum filter to the drift-rate-by-frequency arrays in order to remove

any points that are not a maximum in their local 3x3 neighborhood. We find that this filter in

conjunction with the prominence-based candidate signal detection identifies the signals of interest

without introducing redundant detections.

Signals are considered candidate detections if their prominence meets two criteria: (1) their

prominence exceeds 10σ, where σ is one standard deviation of the noise in the integrated spec-

trum, (2) their prominence exceeds a fraction f of their integrated power. For this analysis, we

settled on f = 75%. The second requirement is necessary because power fluctuations superim-

posed on strong broadband signals that approach or exceed the 10σ detection threshold can yield

prominences that exceed 10σ. With this second requirement, a signal with a prominence of 10σ

above a 3.0-σ baseline would be marked as a detection, but the same signal above a 3.5-σ baseline

would not. Figure 4.2 describes the detection space.

As a result of these candidate signal detection improvements, we now detect 1.23–1.75 and

∼12 times as many signals as we did with the data processing pipelines of Pinchuk et al. [2019]

and Margot et al. [2018], respectively (Figure 4.3). We compare this signal detection performance

to that of other searches in Section 4.6.4.

Once a signal with frequency f0 and drift rate ḟ0 is detected with the criteria described in this

section, we follow the procedure outlined by Pinchuk et al. [2019]. Specifically, we eliminate any

other candidate signal with frequency f and drift rate ḟ if the following inequalities hold true at
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Figure 4.2: Illustration of detection criteria. Signals above the dashed black line line are marked

as detections by our pipeline.

the start of the scan:

f0 < f < f0 + (ḟ − ḟ0)τ for ḟ > ḟ0 (4.1)

f0 > f > f0 + (ḟ − ḟ0)τ for ḟ < ḟ0

where τ is the scan duration. Our candidate detection procedure was applied iteratively until all

candidate signals with prominence≥ 10σ were identified. Occasionally, signals with prominences

≥ 10σ but S/N < 10 get recorded in the database. This condition tends to occur primarily in

regions with dense RFI where the baseline subtraction is imperfect. For this reason, we flagged all

signals with S/N < 10 and did not consider them to be valid candidates.
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Figure 4.3: Detection counts obtained with the algorithms presented by Margot et al. [2018],

Pinchuk et al. [2019], and this work. Our current pipeline detects 1.23–1.75 as many signals as

Pinchuk et al. [2019]’s pipeline and ∼ 12 times as many signals as Margot et al. [2018]’s pipeline.

4.3.2 Doppler and Direction-of-Origin Filters

After identifying all candidate signals, we applied a Doppler filter and improved variants of our

direction-of-origin filters [Margot et al., 2018, Pinchuk et al., 2019] to detect and discard anthro-

pogenic signals in the data.

We began by applying a Doppler filter, which is designed to remove all signals with zero

Doppler drift rate, defined here as signals that drift less than one frequency resolution cell (∆f

= 2.98 Hz) over the duration of a scan (τ = 150 s). The signals removed by this filter are of no

interest to us because the corresponding emitters exhibit no line-of-sight acceleration with respect
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to the receiver, suggesting that they are terrestrial in nature.

Next, we applied two direction-of-origin filters, which are designed to remove any signal that is

either not persistent (i.e., not detected in both scans of its source) or detected in multiple directions

on the sky (i.e., also detected in scans corresponding to other sources). Because the largest possible

sidelobe gain is approximately -30 dB compared to the main lobe gain, signals detected in multiple

directions on the sky are almost certainly detected through antenna sidelobes. The second filter is

highly effective at removing such signals.

As explained by Pinchuk et al. [2019], the direction-of-origin filters compare signals from

different scans and flag them according to the observed relationships. For example, if a signal from

a scan of source A is paired with a signal from a scan of source B, then both signals are removed

because they are detected in multiple directions of the sky. In our previous implementation of these

filters, two signals were considered a pair if their drift rates were similar and their frequencies at

the beginning of each scan were within a predetermined tolerance of a straight line with a slope

corresponding to the drift rate. With this definition, it was possible for multiple signals in one scan

to be paired with a single signal from a different scan, which is undesirable. For example, a valid

technosignature candidate from one of the scans of source ‘A’ could be labeled as RFI because it

was paired with a signal from one of the scans of source ‘B’, even if the signal in the scan of source

‘B’ was already paired with a different (RFI) signal from the scan of source ‘A’.

We have redesigned our filter implementation to keep a record of all signals that are paired

during filter execution. We use this record to impose the restriction that each signal is allowed to

pair with only one other signal in each scan. Additionally, we implemented an improved pairing

procedure that is loosely based on the Gale – Shapley algorithm [Gale and Shapley, 1962] designed

to solve the stable matching problem. Our improved procedure operates as follows. We define the

propagated frequency difference ∆F (fi, fj) of two signals from different scans to be

∆F (fi, fj) =
∣∣∣(fi − fj) + ḟij∆tij

∣∣∣ (4.2)

where fi and fj are the start frequencies of the two signals, ḟij = (ḟi + ḟj)/2 is the average of the
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two signal drift rates, and ∆tij = tj − ti is the time difference between the two scans. Our updated

algorithm iterates over all remaining unpaired candidate signals and updates the pairings until

∆F (fi, fj) is minimized for all signal pairs. In rare cases when the minimum value of ∆F (fi, fj)

is not unique, multiple pairings are allowed, but no inference about the anthropogenic nature of the

signals is made on the basis of these pairings alone.

To ensure that paired signals likely originated from the same emitter, we impose two additional

requirements on all signal pairs. First, we require that

fij,− ≤ fj ≤ fij,+ or fji,− ≤ fi ≤ fji,+ (4.3)

where fij,± = fi + (ḟi ± ∆ḟ)∆tij ± ∆f represent the propagated frequency bounds and ∆ḟ ,

∆f are the drift rate and frequency resolution, given by 0.0173 Hz s−1and 2.98 Hz, respectively.

This condition places an upper limit on ∆F (fi, fj) and we reject signal pairs whose propagated

frequency differences exceed this bound. Second, we require that∣∣∣ḟi − ḟj∣∣∣ ≤ 2∆ḟ , (4.4)

and we reject signal pairs that do not satisfy this criterion. In tandem, these requirements reduce

the possibility of pairing two unrelated signals.

To determine if a signal is persistent (first filter), we apply the pairing procedure to candidate

signals detected in both scans of a source. Those signals left without a partner are deemed to

originate from transient sources and are labeled as RFI. To determine whether a signal is detected in

multiple directions of the sky (second filter), we apply the pairing procedure to signals from scans

of different sources. In this case, all resulting pairs are attributed to RFI and discarded. Candidate

signals remaining after the application of these procedures are marked for further inspection.

4.3.3 Frequency Filters

A majority of the candidate signals detected in our search are found in operating bands of known

interferers. Table 4.3 describes the frequency ranges and signal counts associated with the most
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prominent anthropogenic RFI detected in our data. Candidate signals detected within these fre-

quency regions (except the ARSR products region) were removed from consideration because

of their likely anthropogenic nature. The combined 2017 and 2018 signal detection counts in

the excluded RFI regions (156,327/MHz) are considerably higher than outside of these regions

(20,654/MHz) or in the 1400–1427 MHz radio astronomy protected band (6,949/MHz). The pro-

tected band is regrettably polluted, possibly as a result of intermodulation products generated at

the telescope [Margot et al., 2018].

The useful bandwidth of our observations ∆ftot = 309.3 MHz is computed by taking the

operational bandwidth of the GBT L-band receiver (580 MHz) and subtracting the bandwidth of

the GBT notch filter (141.2 MHz) and the total bandwidth discarded due to known interferers

(Table 4.3; 129.5 MHz).

4.4 Preliminary Signal Injection and Recovery Analysis

A signal injection and recovery analysis consists of injecting artificial signals into the raw data and

quantifying the fraction of signals that are properly recovered by the pipeline [e.g., Christiansen

et al., 2013]. Although a rigorous injection analysis is beyond the scope of this paper, we performed

a preliminary examination by injecting narrowband (2.98 Hz) signals into the dynamic spectra

before applying the incoherent dechirping (Section 4.2.4), candidate detection (Section 4.3.1), and

Doppler and direction-of-origin filtering (Section 4.3.2) procedures.

4.4.1 Generation and Injection of Artificial Signals

We selected 10 000 starting frequencies from a uniform distribution over the operating region of

the GBT L-band receiver (1.15–1.73 GHz), excluding the frequency region of the GBT notch filter

(1.2–1.3412 GHz). For each starting frequency, we also randomly selected a frequency drift rate

from the discrete set {k × ∆ḟ : k ∈ Z, −510 ≤ k ≤ 510}, with ∆ḟ = 0.0173 Hz s−1. Each

signal was randomly assigned to one of the sources and was injected into the first scan of this
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source. A corresponding partner signal was injected into the second scan of this source. The

starting frequency of the partner signal was obtained by linearly extrapolating the frequency of the

signal in the first scan, i.e., by adding the product of the artificial drift rate and the known time

difference between the two scans. The drift rate of the partner signal was set equal to the that of

the original signal plus an increment randomly chosen from the set {−∆ḟ , 0,∆ḟ}.

We injected half of the signals at our detection threshold (10σ) to test the limits of our pipeline’s

detection capabilities. The remaining signals were injected at an S/N of 20 to test our sensitivity to

stronger signals. A total of 20,000 signals were injected into the April 27, 2018 data. A full list of

the injected signal properties is available as supplemental online material.

4.4.2 Recovery and Classification of Injected Signals

After injecting the signals into the dynamic spectra, we applied our candidate detection procedure

(Section 4.3.1) and stored the output in a SQL database. Signals were considered properly recov-

ered if their properties matched those of the injected signals within ±2 Hz in frequency, ±∆ḟ in

drift rate, and±0.1 in S/N. We found that our procedure recovered 18,528 (92.64%) of the injected

signals. Outside of the regions with dense RFI described in Table 4.3, our pipeline performs better,

with a recovery rate of 97.66%. We observe no significant difference in the recovery rate as a

function of drift rate or scan number (Figure 4.5), but we do notice a∼3% increase in the recovery

rate for signals with larger S/N.

We found that most of the signals missed by our pipeline were injected in regions of known RFI

(Figure 4.5). This pattern is a consequence of two known limitations of our candidate detection

procedure. First, our algorithms only detect the signal with highest S/N when two signals intersect

in time-frequency space [Pinchuk et al., 2019]. Second, signals with a low prominence super-

imposed on an elevated noise baseline are discarded (Section 4.3.1). High-density RFI regions

such as the ones listed in Table 4.3 are conducive to both of these conditions, thereby reducing

the recovery rate. A cursory analysis suggests that ∼70–80% of the non-detections are due to the
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intersecting condition.

In order to quantify the performance of our Doppler and direction-of-origin filters (Section 4.3.2),

we applied our filters to the entire set of detected signals, including the detections resulting from

injected signals. To distinguish the performance of these filters from that of our detection algo-

rithm, we removed 414 of the injected signals that were detected in only one scan of a source.

Furthermore, we removed 21 signals that were injected with a Doppler drift rate of 0 (i.e., station-

ary with respect to the observer). Of the remaining 18,093 injected signals, 18,044 (99.73%) were

flagged as promising technosignature candidates by our Doppler and direction-of-origin filters.

4.4.3 Performance of Data Processing Pipeline

The preliminary injection and recovery analysis described in this section identified some important

limitations of our radio technosignature detection pipeline. Our detection algorithm, which is an

improvement over those of Margot et al. [2018] and Pinchuk et al. [2019] (Figure 4.3) and outper-

forms those of Enriquez et al. [2017] and Price et al. [2020] (Section 4.6.4), experiences degraded

performance in regions with dense RFI. In these regions, it is more likely for a technosignature

candidate to intersect a strong RFI signal (Figure 4.4), thereby escaping detection by our pipeline.

This limitation could be overcome by using the recorded drift rates and starting frequencies of two

signals within a scan to determine whether the signals are predicted to intersect each other in the

other scan of the source. If an intersection condition were detected, the known signal could be

blanked or replaced with noise and a new detection procedure could be run to identify previously

undetected signals. In the presence of strong RFI, a fraction of the injected signals escape detec-

tion because their prominence is below our detection threshold (i.e., prominence < f× integrated

power, with f=75%). In some situations, a valid technosignature could also be removed if it were

detected in a frequency region corresponding to a broadband signal. It may be possible to over-

come this limitation in the future by including a comparison of the properties of the narrowband

signal (e.g., drift rate, modulation, etc.) to those of the underlying broadband signal.
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Our improved Doppler and direction-of-origin filters performed exceptionally well, only mis-

labeling 49 of the 18,093 injected signals. The signals that were incorrectly flagged were paired

with an RFI signal of similar drift rate in a scan of a different source. This issue can be mitigated

by expanding the signal matching criteria to include signal properties other than starting frequency

and drift rate, such as bandwidth or gain ratio.

The results presented in this section provide important insights into the detection capabilities of

our current data processing pipeline. In particular, they demonstrate that our pipeline still misses

some of the narrowband signals that it is designed to detect. These results are also useful to identify

specific areas in need of improvement.

4.4.4 Limitations of Current Signal Injection and Recovery Analysis

The analysis presented in this section is preliminary because it injects signals into the dynamic

spectra and not into the raw data. Therefore, the current implementation does not consider certain

data processing steps such as correcting for the bandpass channel response (Section 4.2.3), cal-

culating the noise statistics and normalizing the power spectra to zero mean and unit variance, or

applying the incoherent dechirping procedure (Section 4.2.4).

In future work, we will implement the capability to inject signals in the raw data. This improved

implementation will allow us to quantify the detection performance of the entire pipeline. We

anticipate that it will also be helpful in revealing additional areas for improvement.

4.5 Results

We applied the methods described in Section 4.3 to the data described in Section 4.2.1. We detected

a total of 26,631,913 candidate signals over both 2018 and 2019 observation epochs. We used the

total integration time of 2.75 hr and useful bandwidth of ∆ftot = 309.3 MHz to compute a signal

detection count per unit bandwidth per unit integration time. In BL parlance, our detections are
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referred to as “hits” [Enriquez et al., 2017, Price et al., 2020] and the hit rate density of this search

is 3.1 ×10−2 hits per hour per hertz. In comparison, the L-band component of Price et al. [2020]’s

search with the same telescope and S/N threshold resulted in 37.14 million hits in 506.5 hr over a

useful bandwidth of 660 MHz, or a hit rate density of 1.1 ×10−4 hits per hour per hertz, almost

300 times smaller than ours. We discuss possible reasons for this large differential in Section 4.6.4.

A complete table of signal properties of the detected candidates is available online.1 Our

Doppler and direction-of-origin filters flagged 26,588,893 (99.84%) signals as anthropogenic RFI.

A majority of the remaining 43,020 signals were detected within operating regions of known in-

terferers (Table 4.3). Candidate signals remaining within these frequency regions were attributed

to RFI and removed from consideration.

The remaining 4 539 signals were deemed most promising technosignature candidates. Visual

inspection of all of these candidates revealed that they are attributable to RFI. Figure 4.6 shows an

example of a promising signal that was ultimately attributed to RFI.

The vast majority of the most promising candidates were eliminated because they were detected

in multiple directions on the sky. These signals escaped automatic RFI classification by our filters

for one or more of the following reasons, which are generally similar to the “Categories” described

by Pinchuk et al. [2019, Section 4]:

1. The S/N values of corresponding signals in scans of other sources were below the detection

threshold of 10. This difficulty could perhaps be circumvented in the future by conducting

an additional search for lower S/N signals at nearby frequencies.

2. The drift rate of the signal differed from those of corresponding signals in scans of other

sources by more than our allowed tolerance (±∆ḟ = ±0.0173 Hz s−1).

3. The signal was not detected in scans of other sources because it intersected another signal of

a higher S/N.

1https://doi.org/10.5068/D1937J
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4. The signal bandwidth exceeded 10 Hz, making it difficult to accurately determine a drift rate

and therefore link the signal with corresponding signals in scans of other sources.

All of these difficulties could likely be overcome by a direction-of-origin filter that examines the

time-frequency data directly instead of relying on estimated signal properties such as starting fre-

quency and drift rate. We are in the process of implementing machine learning tools for this

purpose.

Because automatic classification and visual inspection attributed all of our candidate signals to

RFI, we did not detect a technosignature in this sample. We are preserving the raw data in order

to enable reprocessing of the data with improved algorithms in the future, including searches for

additional types of technosignatures.

4.6 Discussion

4.6.1 Dechirping Efficiency

Over sufficiently short (∼5 min) scan durations, monochromatic signals emitted on extraterrestrial

platforms are well approximated by linear chirp waveforms (f(t) = f(t0) + ḟ(t − t0)). Most

radio technosignature detection algorithms rely on incoherent dechirping, i.e., incoherent sums of

power spectra, to integrate the signal power over the scan duration (Section 4.2.4). In the context

of incoherent sums, the magnitude of the maximum drift rate that can be considered without loss

in sensitivity is given by

ḟmax =
∆f

∆T
, (4.5)

where ∆f is the adopted spectral resolution and ∆T is the accumulation time corresponding to one

row in the dynamic spectra. If the drift rate of a signal exceeds this maximum drift rate (ḟ > ḟmax),

the signal frequency drift exceeds ∆f during ∆T , and power is smeared over multiple frequency

channels, resulting in reduced sensitivity.

In this work (∆f = 2.98 Hz; ∆T = 1/∆f = 0.34 s), the maximum sensitivity can be
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obtained up to frequency drift rates of ḟmax,UCLA = 8.88 Hz s−1. BL investigators Enriquez

et al. [2017] and Price et al. [2020] used ∆f = 2.79 Hz and ∆T = 51/∆f = 18.25 s, which

yields ḟmax,BL = 0.15 Hz s−1. However, these authors conducted searches for signals with drift

rates larger than 0.15 Hz s−1, resulting in reduced sensitivity for >90% of the drift rates that they

considered. For instance, at the largest drift rate considered by Price et al. [2020], the frequency

drifts by 4 Hz s−1 × 18.25 s = 73 Hz (26 channels) during ∆T , and only ∼4% of the signal power

is recovered in each frequency channel. We express this loss of signal power with a detection

efficiency in the range 0–100% and refer to it as a dechirping efficiency.

To confirm the performance of the data processing pipelines, we conducted numerical experi-

ments with both our algorithms and BL’s turboSETI package [Enriquez et al., 2017]. For the pur-

pose of these simulations, we created noise-free, constant-power dynamic spectra of linear chirp

waveforms with the frequency and time resolutions appropriate for the UCLA and BL searches.

By considering only integral pixel locations, we simulated frequency drift rates that are exact mul-

tiples of the elemental drift rates considered by our respective tree algorithms (0.0173 Hz s−1 for

the UCLA searches, 0.0096 Hz s−1 for the BL searches). We ran the respective tree algorithms

on the simulated spectra and recorded the power recovered at each drift rate as a function of total

signal power (Figure 4.7, Left). The experiments show that, at the nominal frequency resolutions

of ∼3 Hz, dechirping efficiencies of 100% are possible in our and other searches with ḟ ≤ ḟmax,

whereas dechirping efficiencies rapidly degrade to values as low as 4% in the BL searches with

ḟ > ḟmax,BL

In this experiment, a perfect algorithm would recover 100% of the signal power, as long as

ḟ ≤ ḟmax. The tree algorithm (Section 4.2.4) is not perfect in that it reuses pre-computed sums

to achieve N logN computational cost. As a result, the tree algorithm shifts every spectrum by

an amount that is not always optimal. In other words, it is unable to perfectly dechirp most linear

chirp waveforms. In our simulations of the UCLA pipeline, we do observe 100% of the power

recovered for several drift rates (Figure 4.7, Left). On average, the pipeline recovers 72.4% ±

6.8% of the signal power. In the worst-case scenario, the fraction of power recovered is 60%. The
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tree algorithm’s dechirped waveform of this worst-case scenario reveals that 60% of the frequency

bins are shifted to the correct locations and 40% are shifted to incorrect locations (Figure 4.7,

Right). We quantified the dechirping efficiencies associated with the use of the tree algorithm for

a variety of array dimensions (Table 4.4).

We computed a rough estimate of the mean dechirping efficiency in the search of Price et al.

[2020] for the nominal frequency resolution of ∼3 Hz and a uniform distribution of candidate

signals as a function of drift rate. We assumed a generous 100% efficiency between 0 and 0.15 Hz

s−1 and the 1/x trend observed in Figure 4.7 between 0.15 Hz s−1 and 4 Hz s−1. We found a mean

efficiency of 16.5%. A weighted mean of the efficiency based on the exact distribution of signals

as a function of drift rate would provide a more accurate and likely larger value.

We describe two alternate, partial solutions to the loss of sensitivity sustained during incoher-

ent dechirping. The first is to reduce the frequency resolution of the dynamic spectra, thereby

increasing the range of drift rates that can be explored without spreading power across multiple

channels [e.g., Siemion et al., 2013]. However, this solution still results in loss of sensitivity. For

narrowband signals, each doubling of the frequency resolution results in a
√

2 decrease in sensi-

tivity. To reach the maximum drift rates of ±4 Hz s−1considered by Price et al. [2020], one would

have to apply 4–5 doublings, resulting in frequency resolutions of 45–90 Hz and sensitivity to

narrowband signals of 18–25% of the nominal value. Another, related approach, would be to use

a drift-rate-dependent boxcar average of the integrated spectra to recover the power that has been

spread over multiple channels, e.g., by averaging 26 channels at the maximum drift rates of±4 Hz

s−1considered by Price et al. [2020]. Doing so would degrade the frequency resolution to values

up to 73 Hz and the sensitivity to narrowband signals to 20% of the nominal value.
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4.6.2 Extreme Drift Rates

In a recent study2 of the expected drift rates of a large class of bodies, including exoplanets with

highly eccentric orbits and small semimajor axes, Sheikh et al. [2019] recommended searching

drift rates as large as ḟ/fobs = 200 nHz At the center frequency of our observations (1.5 GHz),

this corresponds to a drift rate of 300 Hz s−1. Our data archival policy (Section 4.6.3) would

enable reprocessing of the data with parameters that are more conducive to large drift rates. For

example, we could reprocess our data with Fourier transforms of length 217. This choice would

increase our frequency resolution 8-fold to 24 Hz and would allow us to search for drift rates

up to ∼ 570 Hz s−1 without incurring any sensitivity loss due to signal smearing over multiple

frequency channels. In contrast, BL archive products include dynamic spectra but do not include

most of the raw voltage data [Lebofsky et al., 2019, Enriquez et al., 2017, Price et al., 2020],

making it impractical to conduct a search with archival products at drift rates larger than ∼1 Hz

s−1 with adequate sensitivity (Figure 4.7).

4.6.3 Data Requantization and Preservation

Our choice of data recording parameters is largely driven by our dedication to preserve the raw

voltage data recorded during our observations. We prefer to archive the raw data as opposed to

derived data products such as dynamic power spectra, for four reasons. First, the raw 2-bit data

require less storage space than the 32-bit dynamic spectra. Second, the dynamic power spectra can

be easily regenerated from the raw data, but the reverse is not true, because phase information is

lost in the process of computing power spectra. Third, there are large penalties associated with

preserving incoherent averages of individual power spectra. Enriquez et al. [2017] and Price et al.

[2020] average 51 consecutive spectra to keep the archival volume manageable, which degrades

the sensitivity of the search by factors of up to ∼25 (Section 4.6.1) and the time resolution by a

2Sheikh et al. [2019] incorrectly delineated the search parameters of Enriquez et al. [2017] in their Figure 1. The
maximum frequency excursion considered in that search is 600 Hz, not 12,000 Hz.
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factor of 51 (Figure 4.8). As a result, the BL dynamic spectra would not be useful in confirming

or interpreting a signal with 1 Hz modulation, for instance. Fourth, the only way to preserve the

ability to conduct novel or improved data analysis with maximum sensitivity and resolution is to

preserve the raw data. However, there are penalties associated with storing raw data in 2-bit format

as opposed to 8-bit format [e.g., Price et al., 2020].

For this work and previous analyses [Margot et al., 2018, Pinchuk et al., 2019], we selected

a data-taking mode that yields 2-bit raw voltage data after requantization with an optimal four-

level sampler [Kogan, 1998]. The quantization efficiency, which is the ratio of signal power that is

observed with the optimal four-level sampler to the power that would be obtained with no quanti-

zation loss, is 0.8825. Price et al. [2020] noted that a consequence of this requantization is that the

S/N threshold used in this work (10) would need to be lowered by approximately 12% to detect

the same number of candidate signals as 8-bit quantized data. While we agree with this statement,

the S/N threshold of radio technosignature searches is somewhat arbitrary, and our choice com-

pares favorably to that of other surveys (Table 4.5). Should the need ever arises to detect weaker

signals, we would simply re-analyze our data with a lower S/N threshold. In addition, the sensitiv-

ity enabled by our decision to minimize the accumulation time when computing dynamic spectra

(Section 4.6.1) offsets the losses due to quantization efficiency compared to pipelines with longer

accumulation times. Specifically, if we apply the 0.8825 quantization efficiency to the results il-

lustrated in Figure 4.7, we find that our overall sensitivity surpasses BL’s sensitivity for any drift

rate larger than 0.153 Hz s−1 and surpasses it by a factor of at least 5 for any drift rate larger than

1.11 Hz s−1 .

4.6.4 Candidate Signal Detection Count

Our results indicate a hit rate density of 3.1 ×10−2 hits per hour per hertz whereas Price et al.

[2020] obtained a considerably lower value of 1.1 ×10−4 hits per hour per hertz with the same

telescope and S/N threshold (Section 4.5). We investigate possible causes for this factor of ∼300

difference. First, our observing cadence involves two scans of 150 s each per source, whereas

82



Price et al. [2020] used three scans of 300 s each per source. The difference in integration time

could perhaps be invoked to explain a factor of up to 3 difference in hit rate density, although

a larger number of signals ought to be detectable with BL’s longer scan durations. Second, our

usable frequency range extends over 309.3 MHz, whereas Price et al. [2020] used a superset of

that range extending over 660 MHz. A non-uniform distribution of dense RFI across the spectrum

could perhaps be invoked to explain a factor of up to ∼2 difference in hit rate density. Third, we

examine a range of drift rates that is twice as large as the range used by Price et al. [2020], which

may explain a factor of ∼2 difference in hit rate density if the distribution of hits as a function

of drift rate is roughly uniform. These small factors cannot explain the two orders of magnitude

difference in hit rate density, which must be related to more fundamental effects. We surmise that

the two most important factors are the difference in the effective sensitivities of our searches due to

different dechirping efficiencies (Section 4.6.1) and the algorithmic difference in the identification

of candidate signals or hits.

As detailed by Pinchuk et al. [2019], the candidate signal detection procedures used in several

previous radio technosignature searches [e.g., Siemion et al., 2013, Enriquez et al., 2017, Margot

et al., 2018, Price et al., 2020] unnecessarily remove kHz-wide regions of frequency space around

every signal detection. This practice complicates attempts to place upper limits on the existence of

technosignatures, because the algorithms discard many signals that are legitimate technosignature

candidates. In addition, this practice leads to slight overestimates of search metrics, such as the

Drake Figure of Merit (DFM) [Pinchuk et al., 2019]. Here, we quantify the number of signals that

are unnecessarily discarded by algorithms that remove∼kHz wide frequency regions around every

detection.

To perform this comparison, we used the database of signals detected during the April 27, 2018

observations and we replicated the procedure described by Enriquez et al. [2017] and Price et al.

[2020]. The “blanking” procedure used by Price et al. [2020] specifies “Only the signal with the

highest S/N within a window ... ± 600 Hz is recorded as a hit.” To replicate this step, we sorted the

signals detected in each scan in decreasing order of S/N and iterated over the sorted lists. At every
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iteration, we kept the signal with the largest remaining S/N value and eliminated all other signals

within ± 600 Hz. The next step described by Price et al. [2020] combines hits that fall within a

certain frequency range into groups as long as the signal is detected in every scan of the source. We

replicated this step by grouping signals that were present in both scans of each source according

to Price et al. [2020]’s prescription for frequency range. The third step of the procedure described

by Price et al. [2020] reads: “Additionally, any set of hits for which there is at least one hit in the

OFF observations within ± 600 Hz of the hit frequency from the first ON observation would be

discarded.” This elimination seems wasteful because the presence of OFF-scan signals with drift

rates that are unrelated to the ON-scan drift rate results in elimination. To replicate this step, we

removed all groups of signals for which one or both of the two OFF-scans contained an unrelated

signal within ± 600 Hz of the detection in the first ON-scan. To determine whether signals were

unrelated, we placed the following condition on drift rate:

|ḟ − ḟ0| > 2∆ḟ , (4.6)

where ḟ is the drift rate of the OFF-scan signal, ḟ0 is the drift rate of the ON-scan signal, and

∆ḟ = 0.0173 Hz s−1 is the drift rate resolution. Our direction-of-origin filters (Section 4.3.2)

also remove signals if they are found in multiple directions on the sky, but only in conjunction

with careful analysis of the drift rates of both signals. Specifically, our filters only remove the two

signals if their drift rates are within a tolerance of 2∆ḟ . For the purpose of this blanking analysis,

we kept signals that satisfy this criterion because both pipelines remove them during subsequent

filtering. We found that our pipeline detected 10,113,551 signals whereas our pipeline with a

blanking algorithm modeled after the descriptions given by Enriquez et al. [2017] and Price et al.

[2020] detected only 1,054,144 signals. In other words, our pipeline detects ∼10 times as many

signals as the BL-like pipeline over the same frequency range, with a corresponding increase in hit

rate density.

To summarize, we found that our algorithmic approach to signal identification explains the

largest fraction of the factor of∼300 difference in hit rate density between our and the BL searches,

likely followed by our better overall sensitivity for >90% of the frequency drift rates examined by
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the BL pipeline (Section 4.6.1), likely followed by our shorter integration times and consideration

of a wider range of drift rates. It is also possible that the limited dynamic range of our 2-bit voltage

data makes our search susceptible to spurious detections at harmonics of strong RFI signals (Danny

Price, pers. comm.). We are planning to quantify the importance of this effect in the future.

The differential in hit rate density has implications for the validity of existence limit estimates

and figure of merit calculations described by Enriquez et al. [2017] and Price et al. [2020].

4.6.5 Existence Limits

We describe three issues that affect recent claims about the prevalence of transmitters in the Galaxy

[Enriquez et al., 2017, Price et al., 2020, Wlodarczyk-Sroka et al., 2020].

First, the range of Doppler drift rates considered in these searches has been limited (±2 Hz

s−1and ±4 Hz s−1), whereas transmitters may be located in a variety of settings with line-of-sight

accelerations that would only be detectable at larger drift rates [e.g., Sheikh et al., 2019].

Second, these claims invoke transmitters with certain EIRP values that are calculated on the

basis of the nominal sensitivity to non-drifting signals. However, the sensitivity to signals drifting

in frequency is demonstrably degraded (Section 4.6.1) with the incoherent dechirping method used

in these searches. The published EIRP values could be erroneous by factors of up to 25 for these

searches, depending on the drift rate of the putative signal.

Third, our preliminary candidate signal injection and recovery analysis (Section 4.4) reinforces

the concerns voiced by Margot et al. [2018] and Pinchuk et al. [2019] about Enriquez et al. [2017]’s

claims. Pinchuk et al. [2019] argued that an injection and recovery analysis would demonstrate

that a fraction of detectable and legitimate signals are not identified by existing pipelines, thereby

requiring corrections to the claims. We have shown that our current pipeline misses ∼ 7% of the

signals injected into the dynamic spectra (Section 4.4). We surmise that the BL pipelines used by

Enriquez et al. [2017] and Price et al. [2020] miss a substantially larger fraction of signals that they

are meant to detect because of reduced sensitivity (Section 4.6.1), time resolution (Section 4.6.3),
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and detection counts (Section 4.6.4) compared to our pipeline.

In light of these issues, published claims about the prevalence of transmitters in the Galaxy

[e.g., Enriquez et al., 2017, Price et al., 2020, Wlodarczyk-Sroka et al., 2020] almost certainly need

revision. As mentioned in Section 4.4.4, we are planning improvements to our signal injection and

recovery analysis. Until this refined analysis is complete, we will not be in a position to make

reliable inferences about the prevalence of radio beacons in the Galaxy.

4.6.6 Drake Figure of Merit

The Drake Figure of Merit [Drake, 1984] is a metric that can be used to compare some of the

dimensions of the parameter space examined by different radio technosignature searches. It is

expressed as

DFM =
∆ftotΩ

F
3/2
det

, (4.7)

where ∆ftot is the total bandwidth observed, Ω is the total angular sky coverage, and Fdet is the

minimum detectable flux. Assuming unit quantization and dechirping efficiencies, our search with

S/N threshold of 10 is sensitive to sources with flux densities of 10 Jy and above [Margot et al.,

2018]. For consistency with earlier calculations [Enriquez et al., 2017, Price et al., 2020], we have

assumed that the bandwidth of the transmitted signal is 1 Hz, resulting in a minimum detectable

flux Fdet = 10−25 W m−2. The sky coverage of this search is Ω = 31× 0.015 deg2 = 0.465 deg2,

i.e., 11 ppm of the entire sky. The useful bandwidth is ∆ftot = 309.3 MHz (Section 4.3.3).

We used these parameters to calculate the DFM associated with this search and found DFM =

1.11 × 1032, where we have used units of GHz m3 W−3/2 for compatibility with Horowitz and

Sagan [1993]. We reanalyzed our 2016 and 2017 data sets (Section 4.6.8) and recomputed DFM

values of 5.00 × 1031 and 4.71 × 1031 for these data sets, respectively, with an aggregate DFM

for our 2016–2019 searches of 2.08 × 1032. However, we regard these values and all previously

published DFM values with skepticism.

The DFM values published in recent works do not provide accurate estimates of search volume

86



or performance for a few reasons. First, the DFM relies on minimum detectable flux, but authors

have ignored factors that can tremendously affect overall search sensitivity, such as quantization

efficiency (∼88% for 2-bit sampling) or dechirping efficiency (60–100% with the tree algorithm

and the parameters of this search, and as low as ∼4% in the recent BL search described by Price

et al. [2020]). Second, it does not take account of the range of drift rates considered in a search,

which is clearly an important dimension of the search volume. Third, it ignores the quality of

the signal detection algorithms, such that two surveys may have the same DFM even though their

data processing pipelines detect substantially different numbers of signals (e.g., the blanking of

kHz-wide regions of frequency space described in Section 4.6.4). For these reasons, we believe

that DFM values calculated by authors of recent searches, including our own, are questionable in-

dicators of actual search volume or performance. Horowitz and Sagan [1993] expressed additional

concerns, stating that the DFM “probably does justice to none of the searches; it is a measure of the

odds of success, assuming a homogeneous and isotropic distribution of civilizations transmitting

weak signals at random frequencies.”

In Section 4.6.1, we showed that the dechirping efficiency degrades rapidly for frequency drift

rates larger than ḟmax (Figure 4.7). As a result, the minimum detectable flux for non-drifting sig-

nals, which has been used by Enriquez et al. [2017] and Price et al. [2020] in their DFM estimates

(Equation 4.7), is not representative of the minimum detectable flux of signals with >90% of the

drift rates that they considered, which can be up to 25 times larger. Given the presence of this flux

to the 3/2 power in the denominator of the DFM, we believe that the DFMs of these searches have

been inadvertently but considerably overestimated. Other figures of merit, such as Enriquez et al.

[2017]’s ‘Continuous Waveform Transmitter Rate Figure of Merit’ (CWTFM), are also affected by

this problem.

We can use our estimates of the mean dechirping efficiencies to quantify plausible errors in

DFM estimates. In Section 4.6.1, we computed a rough estimate of 16.5% for the mean efficiency

of the BL search conducted by Price et al. [2020], suggesting that the DFM of their search has been

overestimated by a factor of ∼15. This value may be revised down once a more accurate estimate
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of the mean dechirping efficiency becomes available. For the UCLA searches conducted between

2016 and 2019, the mean dechirping efficiency is 72.4% and the quantization efficiency is 88.25%,

resulting in an overall efficiency of 64% and DFM overestimation by a factor of ∼2.

4.6.7 Other Estimates of Search Volume

The range of drift rates considered in a search program obviously affects the probability of suc-

cess of detecting a technosignature. For instance, a search restricted to drift rates smaller than

ḟmax,BL = 0.15 Hz s−1 could fail to detect the signal from an emitter on an Earth-like planet. The

frequency drift rate dimension of the search volume does not appear to have been fully appreciated

in the literature. It is distinct from the “modulation” dimension described by Tarter et al. [2010],

who focused on “complex ... broadband signals”. It also appears to be distinct from the “modula-

tion” dimension of Wright et al. [2018], who contemplated drift rates on the order of the “Earth’s

barycentric acceleration”, i.e., 0.03 Hz s−1 at the center frequency of our observations. It is also

absent from the CWTFM used by Enriquez et al. [2017], Price et al. [2020], Wlodarczyk-Sroka

et al. [2020]. The development of an improved figure of merit for radio technosignature searches

is beyond the scope of this work. However, we recommend that improved figures of merit in-

clude the range of line-of-sight accelerations between emitter and receiver as a dimension of the

search volume as well as explicit guidelines regarding the treatment of quantization and dechirping

efficiencies.

4.6.8 Re-analysis of 2016 and 2017 Data

Margot et al. [2018] presented the results of a search for technosignatures around 14 planetary

systems in the Kepler field conducted on April 15, 2016, 16:00 - 18:00 universal time (UT) with

the GBT. Pinchuk et al. [2019] presented the results of a similar search conducted on May 4, 2017,

15:00 - 17:00 universal time (UT) that included 10 planetary systems in the Kepler field but also

included scans of TRAPPIST-1 and LHS 1140.
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We reprocessed these data with our updated algorithms and detected a total of 13,750,469

candidate signals over the 2016 and 2017 epochs of observation. Tables of signal properties of the

detected candidates are available online for both the 2016 [Margot et al., 2020a] and 2017 [Margot

et al., 2020b] data sets. We found that 13,696,445 (99.61%) signals were automatically flagged

as anthropogenic RFI and 54,024 signals were labeled as promising. Candidate signals found

within operating regions of known interferers (Table 4.3) were attributed to RFI and removed

from consideration. Visual inspection of all of the remaining 4,257 candidate signals revealed

that they are attributable to RFI. With this improved analysis, we confirm the initial results that

no technosignatures were detected in the data obtained in 2016 [Margot et al., 2018] and 2017

[Pinchuk et al., 2019].

4.7 Conclusions

We described the results of a search for technosignatures that used 4 hours of GBT time in 2018 and

2019. We identified 26,631,913 candidate signals, 99.84% of which were automatically classified

as RFI by rejection filters. Of the signals that remained, 4 539 were found outside of known RFI

frequency bands and were visually inspected. All of these were attributable to RFI and none were

identified as a technosignature.

We presented significant improvements to our signal detection and direction-of-origin filter

algorithms. We tested the signal recovery of the updated procedures with a preliminary signal

injection and recovery analysis, which showed that our pipeline detects ∼ 93% of the injected

signals overall. This recovery rate increases to ∼ 98% outside of known RFI frequency bands.

In addition, our pipeline correctly identified 99.73% of the artificial signals as technosignatures.

This signal injection and recovery analysis provides an important tool for quantifying the signal

recovery rate of a radio technosignature data processing pipeline. Planned improvements to this

tool will further illuminate imperfections in our and other groups’ pipelines and point to additional

areas for improvement.
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Our search represents only a modest fraction of the BL searches described by Enriquez et al.

[2017] and Price et al. [2020] in terms of number of targets and data volume. However, our search

strategy has advantages compared to these searches in terms of sensitivity (up to 25 times better),

frequency drift rate coverage (2–4 times larger), and signal detection count per unit bandwidth per

unit integration time (∼300 times larger).

We described limitations of recent Drake Figure of Merit (DFM) calculations in assessing the

probability of success of different search programs. These calculations have ignored important fac-

tors such as quantization and dechirping efficiencies. In addition, the DFM does not take account

of the range of drift rates considered in a search nor the quality of signal detection algorithms.

As a result, we suggest that recent DFM calculations are questionable indicators of actual search

volume or performance. We recommend that improved metrics include the range of line-of-sight

accelerations between emitter and receiver as a dimension of the search volume as well as explicit

guidelines regarding the treatment of quantization and dechirping efficiencies.
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Table 4.1: Target host stars listed in order of observation (2018). Successive pairs are separated by

a blank line. Spectral types and parallax measurements were obtained from the SIMBAD database

[Wenger et al., 2000]. Distances in light years (ly) were calculated from the parallax measurements.

The Modified Julian Date (MJD) refers to the beginning of the first scan.

Host Star Spectral Type Parallax (mas) Distance (ly) MJD of Scan 1

April 27, 2018 20:00 – 22:00 UT

TYC 1863-858-1 G0V 1.9547± 0.036 1669± 31 58235.84503472

TYC 1868-281-1 G2V 3.8622± 0.046 844± 10 58235.84737269

HD 249936 G2V 1.9515± 0.0412 1671± 35 58235.85430556

TYC 1864-1748-1 G2V 3.0350± 0.043 1075± 15 58235.85671296

HIP 28216 G2V 1.2479± 0.0909 2614± 190 58235.86393519

HD 252080 G5V 5.7621± 0.0511 566± 5 58235.86640046

HD 251551 G2V 4.5105± 0.0755 723± 12 58235.87356481

HD 252993 G0V 6.9544± 0.0401 469± 3 58235.87591435

TYC 742-1679-1 G5V 8.4009± 0.0360 388± 2 58235.88324074

HD 255705 G5V 6.8001± 0.0570 480± 4 58235.88562500

HD 254085 G0V 6.5338± 0.0967 499± 7 58235.89270833

HD 256380 G8V 2.3058± 0.0398 1415± 24 58235.89505787

TYC 739-1501-1 G2V ... ... 58235.90204861

HD 256736 G2V 6.1808± 0.0802 528± 7 58235.90435185

TYC 739-1210-1a G5V 9.9809± 0.0424 327± 1 58235.91119213

(a) The source paired with TYC 739-1210-1 was observed only once and not analyzed.
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Table 4.2: Target host stars listed in order of observation (2019). Successive pairs are separated by

a blank line. Spectral types and parallax measurements were obtained from the SIMBAD database

[Wenger et al., 2000]. Distances in light years (ly) were calculated from the parallax measurements.

The Modified Julian Date (MJD) refers to the beginning of the first scan.

Host Star Spectral Type Parallax (mas) Distance (ly) MJD of Scan 1

April 26, 2019 22:00 – 24:00 UT

TYC 148-515-1 G5V 5.4947± 0.0416 594± 4 58599.92175926

CoRoT 102810550 G2V 1.1333± 0.0247 2878± 63 58599.92392361

CoRoT 102830606 G2V 2.2193± 0.0357 1470± 24 58599.93030093

TYC 149-362-1 G5V 1.1606± 0.0581 2810± 141 58599.93254630

TYC 149-532-1 G2V 7.2260± 0.0380 451± 2 58599.93917824

CoRoT 102827664 G4V 2.3394± 0.0274 1394± 16 58599.94144676

CoRoT 102936925 G4V 1.0454± 0.0223 3120± 67 58599.94826389

CoRoT 110695685 G4V 1.5743± 0.0541 2072± 71 58599.95049769

CoRoT 110864307 G2V 1.5985± 0.0442 2040± 56 58599.95706019

CoRoT 102951397 G2V 1.1909± 0.0249 2739± 57 58599.95931713

CoRoT 102963038 G3V 0.3134± 0.0256 10407± 850 58599.96596065

HD 50388 G8V 7.3465± 0.0598 444± 4 58599.96820602

TYC 4805-3328-1 G5V 2.5383± 0.0455 1285± 23 58599.97480324

CoRoT 110777727 G1V 1.5407± 0.0457 2117± 63 58599.97699074

CoRoT 110776963 G4V 2.5207± 0.0436 1294± 22 58599.98373843

TYC 4814-248-1 G2V 2.9668± 0.0426 1099± 16 58599.98597222
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Table 4.3: Definitions of operating regions of known anthropogenic interferers and associated

signal counts. The column labeled “Post-filter Count” lists the number of signals remaining after

application of our Doppler and direction-of-origin filters. The time-frequency structure of the RFI

labeled as “ARSR products” is similar to that described by Siemion et al. [2013], Margot et al.

[2018], and Pinchuk et al. [2019]. These products are likely intermodulation products of Air Route

Surveillance Radars (ARSR).

Frequency Band (MHz) Detection Count Post-filter Count Identification

1155.99 – 1196.91 11,937,074 15,034 GPS L5

1192.02 – 1212.48 135,769 276 GLONASS L3

1422.32 – 1429.99 190,530 2 945 ARSR products

1525 – 1559 8,258,612 341 Satellite downlinks

1554.96 – 1595.88 5,016,951 19,621 GPS L1

1592.95 – 1610.48 933,813 3,569 GLONASS L1
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Figure 4.4: (Top) Time-Frequency diagram before signal injection. (Bottom) Time-Frequency

diagram after signal injection. The injected signal S/N was increased twentyfold to facilitate vi-

sualization. The bottom left panel shows a signal that was successfully recovered by our data

processing pipeline. The injected signal in the bottom-right panel crosses a stronger RFI signal

and was missed by our detection algorithm.
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Figure 4.5: (Left) Frequency distribution of injected and recovered signals. The number of signals

recovered within known RFI regions (such as GPS or GLONASS) is substantially lower than in

other regions. (Top right) Drift rate distribution of injected and recovered signals. (Bottom right)

Signals recovery counts as a function of S/N and scan number. We observe no significant difference

in the recovery rate as a function of drift rate or scan number, but we do notice a ∼3% increase in

the recovery rate of signals with larger S/N.
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Figure 4.6: Dynamic spectra (top) and integrated power spectrum (bottom) of a final candidate

signal that appears in scan 1 (left) and scan 2 (right) of HD 252993. Although this signal exhibits

many of the desirable properties of a technosignature (e.g., narrowband, non-zero Doppler drift

rate, persistence), it was ultimately rejected because it was visually confirmed to appear in multiple

directions on the sky.
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Figure 4.7: (Left) Dechirping efficiencies of the UCLA (blue) and BL (red) data processing

pipelines as a function of Doppler frequency drift rate at the nominal frequency resolutions of

∼3 Hz. Our choices of data-taking and data-processing parameters result in a fairly uniform effi-

ciency (72.4%± 6.8%) across the full range of drift rates considered, with values below 100% due

to imperfections of the tree algorithm (see text). The BL choices result in considerably reduced

detection efficiency beyond ḟmax,BL = 0.15 Hz s−1(dashed vertical line), with values as low as 4%

due to smearing of the signal power across multiple frequency bins. The performance at frequen-

cies beyond ḟmax is well approximated by a 1/x function (purple line), consistent with the inverse

bandwidth dependence of the amplitude of a linear chirp power spectrum. (Right) Dynamic spec-

trum of a linear chirp waveform dechirped imperfectly by the tree algorithm. In this worst-case

scenario for ḟ ≤ ḟmax, only 60% of the spectra are shifted by the correct amounts and only 60% of

the power is recovered in the appropriate frequency channel. Only the first 100 rows (∼30 s) are

shown.
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Table 4.4: Dechirping efficiencies resulting from incoherent dechirping of power spectra with a

computationally advantageous but approximate tree algorithm (Section 4.2.4).

Rows Min (%) Max (%) Mean (%) Median (%) STD (%)

4 100.00 100.00 100.00 100.00 0.00

8 75.00 100.00 93.75 100.00 11.57

16 75.00 100.00 90.62 93.75 10.70

32 68.75 100.00 85.16 81.25 11.20

64 68.75 100.00 81.64 78.12 9.83

128 64.06 100.00 77.93 75.00 8.88

256 64.06 100.00 75.17 73.44 7.68

512 60.16 100.00 72.42 71.09 6.84

1024 60.16 100.00 70.08 69.14 6.10

2048 56.84 100.00 67.92 66.60 5.53

4096 56.84 100.00 66.01 64.94 5.06

Table 4.5: S/N thresholds used in recent searches for radio technosignatures.

Reference S/N

Gray and Mooley [2017] 7

Harp et al. [2016] 9/6.5

UCLA SETI searches 10

Price et al. [2020] 10

Enriquez et al. [2017] 25

Siemion et al. [2013] 25
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Figure 4.8: Representative dynamic spectra of a signal shown with the nominal time resolution of

∼1/3 Hz = 0.33 s (left) and with the degraded time resolution resulting from time-averaging 51

consecutive spectra (right).
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CHAPTER 5

A Machine-Learning-Based Direction-of-Origin Filter for the

Identification of Radio Frequency Interference in the Search for

Technosignatures

Radio frequency interference (RFI) mitigation remains a major challenge in the search for radio

technosignatures. Typical mitigation strategies include a direction-of-origin (DoO) filter, where a

signal is classified as RFI if it is detected in multiple directions on the sky. These classifications

generally rely on estimates of signal properties, such as frequency and frequency drift rate. Convo-

lutional neural networks (CNNs) offer a promising complement to existing filters because they can

be trained to analyze dynamic spectra directly, instead of relying on inferred signal properties. In

this work, we compiled several data sets consisting of labeled pairs of images of dynamic spectra,

and we designed and trained a CNN that can determine whether or not a signal detected in one

scan is also present in another scan. This CNN-based DoO filter outperforms both a baseline 2D

correlation model as well as existing DoO filters over a range of metrics, with precision and recall

values of 99.15% and 97.81%, respectively. We found that the CNN reduces the number of signals

requiring visual inspection after the application of traditional DoO filters by a factor of 6-16 in

nominal situations.
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5.1 Introduction

Radio technosignature searches have increased dramatically both in scope and complexity since

the early days of the search for extraterrestrial intelligence [Drake, 1965, Tarter, 2001, Tarter et al.,

2010, Drake, 2011, and references therein]. In the past three years alone, the UCLA SETI Group’s

radio technosignature detection algorithms have undergone multiple levels of improvements, in-

creasing the total number of detections in a typical 2-hour observing window by more than an

order of magnitude [Pinchuk et al., 2019, Margot et al., 2021]. Our current pipeline detects 200

times more signals per unit bandwidth per unit integration time than recent Breakthrough Listen

(BL) searches [Enriquez et al., 2017, Price et al., 2020, Gajjar et al., 2021]. We have also improved

our radio frequency interference (RFI) excision algorithms, yielding RFI classification accuracies

of > 99% on data sets with millions of candidate signals. Other groups are making progress along

these lines as well. For instance, the custom hardware system that enabled the early 90s NASA

High Resolution Microwave Survey was migrated to a software platform whose RFI excision ca-

pabilities have continued to evolve [Harp et al., 2016]. Traas et al. [2021] reported the results from

a search of 28 targets selected from the TESS Input Catalog and also described an improvement to

the BL RFI excision technique.

Despite these advancements, RFI remains the biggest challenge to the search for technosig-

natures. Pinchuk et al. [2019] and Margot et al. [2021] described several pitfalls of current RFI

identification algorithms that rely on inferred signal properties, such as estimates of frequency and

frequency drift rate. They suggested that these hurdles might be overcome by an algorithm that

instead examines the structure of candidate signals in time-frequency space. Because the time-

frequency structure of a signal resembles an image, we can readily apply modern computer vision

techniques to this problem, as also suggested by Cox et al. [2018], Zhang et al. [2018], Harp et al.

[2019], and Brzycki et al. [2020].

The last decade (2010-2020) has seen considerable advances in the field of Convolutional Neu-

ral Networks (CNNs). In 2012, Krizhevsky et al. [2012] introduced the AlexNet architecture,
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which won the ImageNet ILSVRC challenge [Russakovsky et al., 2015] the same year. This ar-

chitecture achieved a top-five error rate of 17%, which represents the percentage of test images

(256×256 pixels) for which the network’s top five predictions, chosen from a total of 1000 classes,

did not include the correct answer. This was an unprecedented accomplishment at the time. An

explosion of CNN architectures followed in subsequent years, each performing better than the last

[Simonyan and Zisserman, 2014, Szegedy et al., 2015, He et al., 2016, Chollet, 2017]. Modern

CNN architectures have achieved top-five error rates of 3% or less [e.g., Tan and Le, 2019].

Machine learning has permeated both the workforce and the research industry, often leading to

large improvements in challenging classification problems. In particular, astronomers have already

applied CNNs to push the boundaries of astronomical data analysis. For example, Schawinski et al.

[2017] trained a Generative Adversarial Network composed of two CNNs (one to classify samples

and another to generate them during training) to recover features such as galaxy morphology from

low–signal–to–noise and low angular resolution images. Shallue and Vanderburg [2018] trained a

deep CNN to predict whether a signal found in Kepler data was a transiting exoplanet or a false

positive, allowing them to detect and validate a five–planet resonant chain around Kepler–80 and

a new, eighth planet around Kepler–90. Zhang et al. [2018] detected 72 new pulses from the

repeating fast radio burst FRB 121102 using a CNN trained on radio astronomy data obtained with

the Green Bank Telescope. For a more detailed overview of machine learning and CNNs applied

to astronomy, see Baron [2019] and references therein.

CNN applications have been explored in the context of radio technosignature searches. Cox

et al. [2018] and Harp et al. [2019] both generated a labeled set of synthetic candidate signals from

a small (< 10) number of RFI classes to train a CNN for RFI classification. Although this approach

provides a relatively simple way to obtain a labeled training set, the synthetic signals may not be

representative enough of actual signals and may therefore introduce a bias during model training.

Zhang et al. [2018] avoided this problem by using self-supervised learning to train their network.

Specifically, their CNN was trained to predict the future time-frequency structure of a signal given

the time-frequency structure from a past subset of the total observation. This method allowed the
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observations to act as both the training set and the training labels for the model. However, in order

to apply the network for RFI excision, the similarity of the predicted signals and the observed

signals must be evaluated. Because this task is not trivial, the RFI classification performance of

the network may suffer. Brzycki et al. [2020] explored the application of CNNs to technosignature

candidate signal detection. Specifically, the authors trained a CNN to detect up to two signals in

a frequency span of ∼1400 Hz. Although a potential improvement over the detection algorithms

of Enriquez et al. [2017] and Price et al. [2020], this CNN cannot yet compete with the detection

algorithms described by Margot et al. [2021], which can detect hundreds of signals within the same

frequency range.

In this work, we describe an application of CNNs to the excision of RFI in technosignature data.

The article is organized as follows. Our motivation and approach to this problem are presented in

Section 5.2. Our data compilation procedure is detailed in Section 5.3. In Section 5.4, we describe

our approach to CNN model selection and hyperparameter tuning. We also describe a non-ML

baseline model that we use as a point of comparison to the trained CNN. Section 5.5 summarizes

our results, including the final model performance on the test set as well as on archival data. In

Section 5.6, we describe several failure modes of our trained network and offer avenues for future

improvements. We present conclusions in Section 5.7.

5.2 Motivation and Approach

Modern radio technosignature programs detect millions of signals per survey [e.g., Siemion et al.,

2013, Harp et al., 2016, Enriquez et al., 2017, Margot et al., 2018, Pinchuk et al., 2019, Price

et al., 2020, Margot et al., 2021, Gajjar et al., 2021]. These signals must be carefully analyzed to

determine whether or not they are of anthropogenic nature. The standard approach to perform this

analysis is the direction-of-origin (DoO) filter. This filter labels a signal as RFI if it is not persistent

in one direction on the sky or if it is detected in multiple directions on the sky. Theoretically, this

filter is powerful enough to remove all RFI signals that are detected in multiple scans. In practice,
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this filter often fails on a small subset of signals, but even failure rates as low as 1% can be costly

because visual inspection of the remaining signals may be necessary. For instance, the filter failure

rates in the searches of Pinchuk et al. [2019] and Margot et al. [2021] were 1.66% and 0.162%,

respectively, requiring further examination of 96,940 and 43,020 signals, respectively.

The main pitfall of the DoO filter is the accuracy with which a unique signal can be linked

across multiple scans. This “signal pairing” is required for both the persistence-test (present in

all scans of the source) and the uniqueness-test (absent in scans of other sources) portions of the

filter. Different surveys implement this pairing functionality in various ways. For example, En-

riquez et al. [2017] and Price et al. [2020] consider two signals to be from a common origin if the

frequency at which the latter signal is detected is within a generous tolerance of ±600 Hz of the

detection frequency of the first signal, even if the corresponding frequency drift rates are unrelated.

Although this approach speeds up the analysis by discarding a large portion of the candidate sig-

nals, it is problematic because it may eliminate valid technosignatures. A more rigorous approach

was adopted by Pinchuk et al. [2019] and Margot et al. [2021]. In both of these searches, two

signals were paired only if their frequency drift rates and frequencies extrapolated to a common

epoch are within a small tolerance. More robust versions of this filter could include tests of other

signal properties, such as signal bandwidth or off-axis gain ratio.

In all four searches described in the preceding paragraph, the filter was applied to estimates

of signal properties produced by a computer program on the basis of the time-frequency structure

of each signal. Therefore, the efficiency of the filter relies heavily on the accuracy of the derived

signal properties. When the estimates of these signal properties are imprecise or incorrect, or when

the underlying assumption of a linear drift rate is violated, the filter classification fails. Pinchuk

et al. [2019] detailed five different signal types for which their DoO filter exhibited a degraded

performance. Importantly, this limitation can likely be overcome by an algorithm that examines

the time-frequency structure of each signal directly.

In this work, our approach is to train a CNN to pair signals by directly examining the corre-

sponding dynamic spectra. The trained network is then used to examine the data as follows. For
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each signal detected in the survey, we extract a portion of the dynamic spectrum centered on the

time-frequency location of the signal as the first input to the network. This dynamic spectrum is

guaranteed to contain a signal, because the minimum detection threshold in typical SETI searches

is set at ≥ ten times the standard deviation of the noise. Using an estimate of the drift rate of the

signal in this dynamic spectrum, we extrapolate the expected detection frequency to the starting

epoch of a different (typically subsequent) scan. We then extract a portion of the dynamic spectrum

of the second scan to use as the second input to our network. This portion has the same dimensions

as those of the first input and is centered on the expected detection frequency. The output of the

network provides an assessment of whether or not the second dynamic spectrum contains the same

signal as the first dynamic spectrum. The CNN will be trained to perform this task with a large

(∼1 million) labeled training set, such that the CNN can make this assessment by recognizing

patterns in the images, as opposed to calculating and comparing estimates of signal properties like

frequency and drift rate.

In what follows, we will use the terms “first” or “top” image to refer to the dynamic spectrum

of the first scan, which must contain a signal of interest. Likewise, we will use the terms “second”

or “bottom” image to refer to the dynamic spectrum of the second scan, which may or may not

contain the same signal.

5.3 Data Preparation

5.3.1 Observations

We compiled our data set from the observations presented by Pinchuk et al. [2019]. Those observa-

tions were conducted on 2017 May 4, 15:00 – 17:00 Universal time (UT) with the 100 m diameter

Green Bank Telescope (GBT). Both linear polarizations of the L-band receiver were recorded with

the GUPPI back end in its baseband mode [DuPlain et al., 2008]. GUPPI was configured to chan-

nelize 800 MHz of recorded bandwidth into 256 channels of 3.125 MHz each.
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The observations primarily consisted of sources from the Kepler field, but also included scans

of TRAPPIST-1 and LHS 1140. A total of twelve sources were scanned. A full list of targets

and their properties can be found in Table 1 of Pinchuk et al. [2019]. This article also includes

details relating to the formation of the dynamic spectra, which have a time resolution of 0.336 s

and frequency resolution ∆ν of 2.98 Hz.

A total of 10,293,618 signals were detected in the data, 8,592,771 of which have a signal-to-

noise ratio (S/N) ≥ 10. Because we had a large number of signals to choose from, we carefully

pruned the data according to principles described in Section 5.3.3 in order to obtain the best possi-

ble training candidates.

5.3.2 Definition of Data Sets

In order to successfully train our CNN, we need to set aside several small portions of our data

that we can use to evaluate the model performance during and after training. Typically, it is rec-

ommended to set aside 10–20% of the training data as a “validation” set that is used to evaluate

important metrics like precision, recall, and a model cost function or loss [Géron, 2019]. These

metrics can then be used to tune model hyperparameters (Section 5.4.3) or identify problems like

overfitting, which occurs when a neural network simply learns to reproduce the labels of the train-

ing data and therefore generalizes poorly to any other data. Standard ML practices suggest that

another 10–20% of the training data should be set aside as a “test” set that is only ever used to

evaluate the performance of the final model. This evaluation is important in order to obtain an

accurate estimate of how well the model generalizes to data that it has never seen before.

When the training data is representative of the data that the model will see in a production

environment, the training, validation, and test sets are enough to successfully train a CNN from

start to finish. However, because we needed to label a large training set in an automatic manner

(Section 5.3.4.1), our training data consists of two images taken from a single scan, whereas the

production data consists of two images from entirely separate scans. This difference between

106



training and production data makes our application atypical and requires adjustments to standard

ML practices. In particular, it is possible for the network to perform well on the training data

but poorly on the production data. This situation occurs when there is a “data mismatch” and

often requires some manipulation of the training set in order to better match the production data.

Importantly, this condition must be detected and addressed before the model is put into production.

If the validation set is generated as a subset of the training set, then data mismatch is impossible to

detect. On the other hand, if the validation data is comprised only of data that the model will see

in production, it is not possible to discern whether poor model performance is attributable to data

mismatch or to model training issues, such as overfitting, in the absence of other information. The

solution to this problem is to create an additional data set, the “train–dev” set, which is a subset of

10–20% of the training data and is used to monitor the performance of the model during training

and detect problems like overfitting. With the “train-dev” set on hand, we can compile validation

and test sets that match the data that the model will see in production. These two data sets are hand-

labeled, as is standard in most ML applications, and are therefore much smaller than the training

and train–dev sets. The validation and test sets provide a useful way to select an appropriate CNN

architecture, tune hyperparameters, and measure the model’s generalization to new data, among

other uses.

We compiled a subset of signals from the hand-labeled validation and training sets to evaluate

the performance of the UCLA SETI Group DoO filter. In order to facilitate a fair comparison to

our CNN, we only kept the labeled image pairs that corresponded to different scans of the same

source, and we only applied the persistence portion of the DoO filter to these signals (the signal

pairing logic is identical for both components of the filter). This is important because the DoO

filter examines many different scans from a single observing session to look for the presence of

a given signal elsewhere on the sky. However, when determining if the signal is persistent in its

detection direction, the filter only examines the two scans of the source containing the signal of

interest. The latter is consistent with a standard application of the CNN trained in this work and

therefore offers the best comparison between the performance of the existing DoO filter and the
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CNN.

We also made use of a small hand-labeled data set of image pairs to optimize and evaluate a

baseline model (Section 5.4.1). This model, which does not rely on ML techniques, provides a

mechanism to test the performance improvement due to the ML application. Table 5.1 summarizes

the data sets utilized in this work.

Table 5.1: Data set name, size, and usage for all data sets presented in this work. Sections 5.3.4 and

5.3.5 detail the data compilation strategy, including the choice of data set size. The parentheses in

the “Usage” column specify a particular use case for the data set. The final column details whether

or not the data set was labeled by hand.

Name Size Usage Hand-labeled?

Training 1,000,000 Training and evaluating the CNN No

Train-dev 100,000 Evaluating the CNN (Overfitting) No

Validation 1,156 Evaluating the CNN (Data mismatch) Yes

Test 1,272 Evaluating the CNN (Final results) Yes

UCLA DoO test 1,238 Evaluating the UCLA direction-of-origin filter Yes

Baseline 524 Optimizing and evaluating the baseline model Yes

Note that the validation and test sets are much smaller than the training and train–dev sets

because the former had to be analyzed and labeled by hand whereas the latter were labeled auto-

matically, as described in Section 5.3.4.

5.3.3 Data Selection Filters

We began by examining the distribution of drift rates of the 8,592,771 signals detected in 2017

(Figure 5.1, Left). We observed that the vast majority (> 98%) of detected signals have drift rates

|ḟ | ≤ 2 Hz s−1. Moreover, by examining the dynamic spectra of signals with drift rates |ḟ | > 2 Hz

s−1, we observed a lack of the narrowband characteristics that are often chosen as one possible
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Figure 5.1: Histograms of the (Left) drift rates, (Middle) S/N, and (Right) bandwidths as measured

by a FWHM metric of detected signals.

diagnostic of extraterrestrial engineered emitters. For these reasons, we excluded 168,684 (1.96%)

signals with drift rates |ḟ | > 2 Hz s−1 from the training set.

We performed a similar cut on the basis of the S/N of the detected signals. Instead of signifi-

cantly altering the S/N distribution, however, we opted to remove any signals with extremely large

S/N. Based on the cumulative distribution of S/N shown in the middle panel of Figure 5.1 we chose

to discard any signals with a S/N> 600. This threshold was large enough to preserve> 99% of the

remaining signals but also remove any extreme S/N outliers. As a result of this filter, we removed

58,399 (0.69%) signals with extreme S/N from the training set.

Next, we examined the bandwidth of the remaining signals, as quantified by a full width at half

maximum (FWHM) metric. The bandwidth of the training signals is especially important because

we needed our training-set signals to fit within a 225×225 image. This image size was chosen to

satisfy a few considerations. First, the number of lines cannot exceed half the number of lines in

the dynamic spectra, which is∼490 for the 2017 data at 2.98 Hz frequency resolution. Second, the

number of columns must be an odd number so that signals can be perfectly centered in the image.

Third, the input size for models like ResNet52 are images of size 224×224 pixels [He et al., 2016]

and have been shown to be manageable with modern CNN architectures. Our chosen image size

corresponds to an upper limit of ∼670 Hz on the bandwidth of the signals. However, because
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we are only interested in narrowband signals (≤ 10 Hz) in this work, we can set the bandwidth

threshold much lower than the theoretical upper limit. The distribution shown in the right panel

of Figure 5.1 suggests a threshold value of 100 Hz. As a result of this filter, we removed 15,044

(0.18%) signals with large bandwidths from the training set.

Finally, we discarded 6447 signals that were detected close enough to the edge of their 3.125 MHz

wide channel such that the signal overlapped with a neighboring channel. Although we could

“stitch” neighboring channels together to fully recover these signals, given the vast number of

signals left to choose from, we decided to simply remove this tiny fraction of signals from consid-

eration for the purpose of building the training set. When we evaluate actual data with the CNN, we

do combine two channels when necessary to correctly represent signals located near the channel

edges.

Overall, the filters above discarded 248,594 of the 8,592,771 detected signals, leaving 8,344,177

(97.11%) available to use for our training set. If we assume that the distributions of drift rates, S/N,

and bandwidths remain relatively constant over time and the RFI observed with the 2017 antenna

pointing directions is representative of other directions, then the network trained on our pruned

data set should be applicable to ∼97% of the detected signals in future searches with similar pa-

rameters. If the RFI environment changes so much in time or in space that it severely alters the

distributions of signal properties, this percentage value could change. Although the RFI environ-

ment may evolve in time and space, we were able to verify that these filters still captured ∼97%

of the detected signals in searches conducted in 2018 and 2019 by Margot et al. [2021] with dif-

ferent antenna pointing directions. Specifically, 97.4% (9,845,561 out of 10,113,551) and 97.2%

(16,048,515 out of 16,518,362) of the signals detected in 2018 and 2019, respectively, passed the

data selection filters described above.

The range of signals selected for the labeled training set translates into a finite domain of

applicability for the CNN. Because the CNN was not designed for signals with S/N< 10, frequency

drift rates |ḟ | > 2 Hz s−1 , or bandwidths > 100 Hz, it may not perform well when applied to such

signals. Note that the applicability of the training set to new data sets and the CNN’s decision
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accuracy are two different concepts. We evaluate the latter in Section 5.5.2.

5.3.4 Generation of the Training and Train–dev Set

Labeling a sizable training set by hand is time-consuming. To bypass this limitation, we developed

a strategy to synthetically generate our labeled data set. Because we are interested in training a

neural network to supplement our DoO filters by detecting whether or a not a signal is present in

two separate images, we need a training set that consists of pairs of images labeled with a binary

flag indicating the persistence of a signal across both scans.

5.3.4.1 Creation of Image Pairs

In order to simulate a pair of scans containing the same signal, we split the image representing a

single scan into two parts along the time dimension. We then evaluated whether the signal was

detected in both the top and bottom parts. If the signal was detected in both, we labeled the pair

as a positive sample. Otherwise, we labeled the pair as a negative sample to signify that the signal

was present in only one of the two parts. In practice, the detection decisions are implemented by

computing the ratio of signal powers in the top and bottom parts.

The power ratio calculations rely on the simplifying assumption that the total integrated power

associated with each signal is distributed evenly throughout the duration of the scan. In other

words, we expect the signal in each half of the spectrum to contribute equally to the total power.

We calculated the signal power detected in each half of the scan and recorded these values as

power ratios (Ptop, Pbottom), where the denominator is half of the total signal power in the scan.

The signal power was calculated by summing 2n + 1 pixels at each timestep along a line with

a slope equal to the drift rate of the signal, where n =
⌊
1.5× BFWHM

2∆ν

⌋
pixels on either side of

the line, BFWHM is the bandwidth of the signal measured in Hz, ∆ν = 2.98 Hz is the frequency

resolution of the data, and b c is the floor operator. The drift rate of the signal was assumed to be

the same in both halves of the spectrum. To calculate the signal power in the the top half of the
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dynamic spectrum, we started at the pixel corresponding to the detection frequency of the signal.

To calculate the power of the signal in the bottom half, we started at the center frequency obtained

by linearly extrapolating the signal detection frequency to the appropriate time. The total signal

power was obtained by summing the two halves. By comparing the ratio of powers in the top and

bottom halves of each scan to a suitable threshold, we were able to assign an appropriate label to

each signal. Section 5.3.4.2 describes the selection of the threshold.

This approach allowed us to label a large amount of signals in a short period of time. We

chose to compile the training and train–dev data sets from a pool of 1,100,000 total signals, which

is a random selection among the 8,344,177 signals that meet certain criteria described below. For

reference, the popular MNIST handwritten digit dataset [LeCun et al., 1998] as well as the CIFAR–

10 [Krizhevsky et al., 2009] multiclass image dataset both contain 60,000 samples each. Both the

training and train–dev set contain an equal ratio of positive and negative samples. We set aside

100,000 signals for the train–dev set, leaving 1 million signals to be used as the training set.

In order to be accepted into the training set or train–dev data set, signals had to satisfy several

criteria. Most importantly, the top image in a pair, which mimics the first scan in an actual observ-

ing sequence, must always contain a signal. Moreover, the primary signal must always be centered

in the top image and nearly centered in the bottom image, i.e., the signal must start in or near the

middle of the frequency array in the topmost time bin. This requirement affects the construction

and processing of the images, which are described in Section 5.3.4.3. In particular, we allowed a

small tolerance on the location of the signal in the bottom image, but the signal in the top image

must always start at column 113 (if counting from 1) in the first row of the 225×225 images. Both

of these criteria can easily be met in production, because one can apply these cropping steps to

detected signals with known starting frequencies. For signals whose bandwidth spans several pix-

els, the starting frequency is defined as the starting frequency reported by the detection algorithm,

which is where most of the power is detected [Margot et al., 2021].
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5.3.4.2 Selection of Suitable Signals

We began by examining the S/N of each signal in the top half of the scan only. In order to satisfy the

underlying assumption that there is definitely a signal in the center of the first image (represented

in the training set by the top half of the scan), we required a minimum top-half S/N of at least 6

(Figure 5.2), which corresponds to a ∼1 in a billion false detection rate. We validated our choice

of threshold by examining a sample of signals below the cutoff value. We found that most of these

signals are faint and difficult to detect visually, while the rest are not present at all. On the contrary,

signals above this threshold are clearly visible in the dynamic spectra. Appendix 5.A illustrates

these two cases.

As we performed our final selection, we needed to allow for variations in the S/N of the top and

bottom portions of the positive signals, since the top and bottom portions represent two separate

scans and we have empirically observed that the S/N can change substantially between scans. To

do so, we compared the integrated power values from the top and bottom halves of each signal.

Specifically, we examined the distribution of the ratio of bottom to top integrated powers (i.e.,

Pbottom/Ptop). We found that approximately 50% of the signals have a ratio between 0.75 and 1.25

(Figure 5.3), so we randomly selected 550,000 signals from this region to represent our positive

samples (i.e., a signal is detected in both scans/images). Additionally, we selected 50,000 signals

with a ratio of 0.2 or lower to partially represent our set of negative samples (see blue line in

Figure 5.3). To ensure the absence of a signal from the bottom half, we verified that none of

these samples had any signals with a prominence value greater than 3 times the standard deviation

of the noise in the bottom half (see Margot et al. [2021], Section 3.1 for an in-depth discussion

of the prominence calculation). Appendix 5.A depicts a sample of these signals. Ideally, all

negative samples would be obtained with this method, but there were not enough of these signals

to provide the necessary negative samples. Since this category is grossly under-represented in

the data, we used data augmentation to create more negative samples. Specifically, the remaining

500,000 negative samples were obtained by taking samples from the region with a Pbottom/Ptop

ratio between 0.75 and 1.25 and altering them in four different ways to remove any signals present
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Figure 5.2: Histogram of the S/N detected in the top half of each scan. The blue vertical line shows

the S/N cutoff value of 6 used to remove signals with low power in the top half of the scan.

in the bottom half. This process is described below.
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Figure 5.3: Distribution of the ratio of integrated powers, or Pbottom/Ptop ratio. The orange vertical

lines delimit the lower and upper bounds that we used to select 500,000 positive samples (0.75 and

1.25, respectively). The blue vertical line is plotted at a ratio of 0.2. We selected 50,000 signals

below this value to represent a portion of our negative samples.
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5.3.4.3 Processing of Selected Signals

After selecting the signals for our training set, we applied some processing to ensure that signals

in the positive and negative categories were representative of their respective labels.

We first considered the 550,000 signals from the positive category. When we applied our

machine learning algorithm to real data, we obtained the bottom image by extracting a portion of

the spectrum from the second scan centered on the frequency value calculated by extrapolating the

frequency detected in the first scan. If the same signal is present in both scans, and if the signal’s

drift in time-frequency space is approximately linear1, and if the drift rate estimate is approximately

correct, this method will ensure that the signal also appears in the bottom image, but it does not

guarantee that the signal will be perfectly centered in the bottom image. For instance, a small

discrepancy between the actual and estimated drift rates can result in an offset between predicted

and actual frequency values. To simulate this scenario in our training set, we shifted all of the

signals in the bottom image of our samples by ±0-5 pixels (0-15 Hz). The exact shift for each

image was randomly selected from a distribution of shift values described in Section 5.4.1.

The 550,000 signals for the negative category were compiled using five distinct procedures.

The first 50,000 signals were selected from the distribution shown in Figure 5.3 with a Pbottom/Ptop

ratio of < 0.2. For each of these signals, we verified the lack of any signals with a prominence

value greater than 3 times the standard deviation of the noise in the bottom half of the scan. The

next 125,000 negative samples were obtained by selecting unused signals from the “positive” range

(0.75 ≤ Pbottom/Ptop ≤ 1.25) and shifting the signal in the bottom image by ±6-10 pixels (18-

30 Hz). By doing so, we forced the algorithm to learn that a positive detection requires the bottom

signal to be detected in close proximity to the extrapolated frequency, which is calculated on the

basis of signal properties in the top image. We obtained another 125,000 negative samples by once

again selecting unused signals from the “positive” range and replacing the bottom signal with an

1The assumption of linearity is reasonable for a source analyzed at L band with a frequency resolution of∼2.98 Hz,
a scan duration of 150 s, and a line-of-sight jerk below 2.311e−5ms−3. For reference, the maximum line-of-sight jerk
for Earth’s spin and orbit are 2.453e−6ms−3 and 1.181e−9ms−3, respectively.
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unrelated signal (also sampled from the “positive” range). This group of negative samples forced

the algorithm to compare signal properties and not pair two unrelated signals that may have been

detected at similar frequencies in two different scans. Another 125,000 negative samples were

obtained by selecting leftover signals from the “positive” range and replacing the bottom image

with noise. The noise was generated by sampling values from a χ2 distribution with four degrees

of freedom that was fit to the bottom image after removing any power values belonging to any

signals detected in the spectrum. The signals were removed by obtaining the database records of

all signals detected within the relevant portion of the spectrum and discarding any power values

within 2 times the measured bandwidth along the linear drift rate of each signal. The final 125,000

samples were obtained similarly, but instead of replacing the entire bottom image with noise, only

the power values belonging to the signal in the bottom image were replaced with samples values

from a χ2 distribution that was fit to the bottom image with the same procedure as above.

An example product of each of the above procedures is shown in Figure 5.4.

Before finalizing the training and train–dev sets, we examined the drift rate distribution of

the 1.1 million signals selected with the process described above. This distribution is biased to-

wards signals with negative drift rates (Figure 5.5; left). This bias is expected from most low- and

medium-Earth-orbit satellites, such as Global Positioning System (GPS) satellites, which orbit in

a prograde fashion with respect to the telescope. In order to avoid inadvertently introducing this

bias into our model, we selected 364,184 signals with a negative drift rate using a stratified split

[Géron, 2019] on the signal drift rates, and horizontally flipped the images corresponding to these

signals. The resulting drift rate distribution exhibited a significantly reduced bias between −0.5

and 0 Hz s−1 at the expense of a slight bias between −2 and −1 Hz s−1 (Figure 5.5; right).

At the end of the compilation process, our training set consisted of 550,000 positive samples

and 550,000 negative samples. The 1.1 million samples were separated into 1 million training

samples and 100,000 train–dev samples. The samples were separated using a stratified split on the

bandwidth of the signals. Each set contained an equal amount of positive and negative samples.
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Figure 5.4: Sample signals used in the ML labeled training set. (a) Signal from the positive

category, shifted 3 pixels (∼9 Hz) to the right. (b) Sample signal from the negative category

with a Pbottom/Ptop ratio of < 0.2. (c) Sample signal from the negative category, shifted 8 pixels

(∼24 Hz) to the right. (d) Sample signal from the negative category with an unrelated signal in

the bottom image. (e) Sample signal from the negative category with a bottom image consisting

completely of simulated noise. (g) Sample signal from the negative category with the primary

(center) signal replaced by noise in the bottom image.

5.3.5 Creation of Validation, Test, and Baseline Model Data Sets

We compiled a small set of 1,156 hand-labeled images, where the top and bottom images are

extracted from two separate scans. These images are a true representation of the samples that

the network will see during production, so we use them as our validation set. By comparing the
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Figure 5.5: (Left) Drift rate distribution of the 1.1 million signals selected to be part of our training

set. Note a significant bias towards signals with a negative drift rate value. (Right) Drift rate

distribution of the same set of signals after applying a horizontal flip to 364,184 negative drift

rate signals. The bias that affects ∼685,000 signals between −0.5 and 0 Hz s−1 is almost entirely

removed at the expense of a slight bias introduced between −2 and −1 Hz s−1that affects ∼2500

signals.

model performance on the train–dev and the hand-labeled validation set, we can assess whether

or not there is a mismatch between the training set and the real test data. We also compiled a

set of 1,272 hand-labeled images to serve as the test set. These samples contain signals from two

different scans, as would be the case in the production environment. Finally, we selected 524 hand-

labeled samples, where each sample contains a signal in both scans, to optimize and evaluate our

baseline model (Section 5.4.1). This data set has no samples in common with any of the 4 data sets

described above.
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5.4 Models

5.4.1 Baseline Model

We devised a simple correlation-based model to serve as a benchmark or baseline for our results.

We began by selecting a baseline data set as described in Section 5.3.5. We then calculated the 2D

correlation coefficient between the two signals in each data sample, using all available time steps

in a region of frequency width 2w+ 1 centered on each signal. The correlation coefficient is given

by

ρ(A,B) =
1

N − 1

N∑
i=1

(
Ai − µA
σA

)(
Bi − µB
σB

)
, (5.1)

where Ai and Bi are the individual pixels of image A and image B, µj and σj are the mean and

standard deviation of the pixels under consideration in image j, j ∈ {A,B}, respectively, and

N is the total number of pixels compared. To ensure that our results were not influenced by poor

localization of the signals in the images, we shifted the bottom image by±3 pixels in the frequency

dimension and computed ρ(A,B) in each case. We report the maximum correlation score from the

set of seven resulting values. We tested both a large (w = 15 pixels, ∼50 Hz) and small (w = 3

pixels, ∼10 Hz) window size, and found that the latter gave the best results in terms of model

precision and recall.

After computing the correlation values, we selected a threshold value in order to assign a label

for each set of images. The label is positive (i.e., “True”, 1) if the signals in the images are

strongly correlated, or negative (i.e., “False”, 0) if the signals in the images are unrelated. Typically,

this threshold is chosen by finding the best trade-off between precision and recall [Géron, 2019].

Precision is defined as the ratio of the true positive count (i.e., label=prediction=1) to the sum of

the true positive and false positive counts (i.e., prediction=1). In other words, when a model with

a precision value of 1 predicts that an image pair belongs to the positive class, it is always correct.

On the other hand, recall is defined as the ratio of the true positive count to the sum of the true

positive and false negative counts (i.e., label=1). A model with a recall value of 1 will always

correctly classify all the positive samples. A perfect model would have both recall and precision
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values of 1. In practice, there is always a trade-off between the two metrics.

In our application, precision is more important than recall because a larger precision value

minimizes the number of false positives. False positives represent valid candidate technosignature

signals that were only detected in one image (or direction of the sky), yet were still classified as

RFI. For this reason we chose our threshold as the correlation value that yielded a precision≥ 95%.

At this threshold (0.0551), the recall was 33.7% (Figure 5.6). In other words, the baseline model

only detects ∼1/3 of the RFI in the data, but it does so with 95% precision.
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Figure 5.6: Precision and recall curves for a baseline 2D correlation model, which does not rely on

ML techniques and is used solely to serve as a benchmark to evaluate the performance improve-

ment of our ML application (Section 5.5.2). With the chosen threshold, the baseline model detects

approximately a third of the RFI in the data with 95% precision.

The baseline model also helped define a distribution of frequency shifts that we used in build-

ing the training and train–dev sets (Section 5.3.4.3). We selected a subset of 5,750 signals from

the 2017 observations [Pinchuk et al., 2019] that passed the UCLA DoO filter and had correlation

values that exceeded the threshold of 0.0551. We used randomly selected values from the distribu-
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tion of shifts of this subset to shift the signals in the second images of our training and train–dev

sets (Section 5.3.4.3).

5.4.2 Model Selection

In order to select the best suitable model for the DoO filter, we carried out a scaled-down perfor-

mance comparison of over 20 model architectures. For this comparison, we selected four ResNet

variants [ResNet34, ResNet50, ResNet101, and ResNet152; He et al., 2016], two VGG variants

[VGG16, VGG19; Simonyan and Zisserman, 2014], and the Xception architecture [Chollet, 2017].

In addition, we trained two Siamese model variants (see Appendix 5.B) for each of these 7 models.

We did not perform any hyperparameter tuning at this stage, and we trained each model on only

10% of the training set, using 10% of the train–dev set and the full validation set to evaluate the

results, because the goal was to quickly compare as many models as possible.

We found that all models outperformed their respective Siamese versions when comparing the

loss and other relevant metrics. We also found that none of the seven standard model architectures

significantly outperformed the others in terms of these metrics. However, we did notice that the

Xception architecture did not exhibit significant overfitting during training, whereas all other mod-

els did. Although there are multiple model regularization techniques designed to overcome model

overfitting, we decided to select the Xception model as our base architecture in order to reduce the

amount of model tuning required later during training.

5.4.3 Hyperparameter Tuning

After selecting the best model architecture for the DoO filter, we were left with a significant number

of hyperparameters to tune. Géron [2019] defines a hyperparameter as “a parameter of a learning

algorithm (not of the model). As such, it is not affected by the learning algorithm itself; it must be

set prior to training and remains constant during training.” All of the hyperparameters that were

considered during this process, as well as several suitable values for each, are listed in Table 5.2.
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The “Optimizer”, “Learning rate”, “Batch size”, and “Activation function” hyperparameters

simply refer to the network hyperparameter that was tuned during this process. The hyperparameter

“Fully connected layers on top” refers to the addition of one or more fully connected layers of

neurons inserted immediately after the global average pooling layer but before the final prediction

node. The number of layers and the number of neurons per layer were also tuned as part of this

process. When the hyperparameter “Dropout rate” was set to None, no changes were made to

the network architecture. Otherwise, a dropout layer [Srivastava et al., 2014] was added at the

end of the network with the corresponding dropout rate. The hyperparameter “Include Squeeze-

and-Excitation blocks” refers to the addition of Squeeze-and-Excitation (SE) blocks [Hu et al.,

2018] at the end of every separable convolution2 module of the Xception architecture. SE blocks

are network units that are designed to adaptively recalibrate channel-wise feature responses by

explicitly modeling interdependencies between the channels. Hu et al. [2018] demonstrated that SE

blocks bring significant improvements in performance for state-of-the-art CNNs with only a slight

addition to the computational cost. The “input batch normalization” hyperparameter controlled

the normalization of the input data. Specifically, if this parameter was set to False, the input data

would be normalized to zero mean and unit standard deviation, and no further modifications were

made to the base network structure. When this parameter was set to True, the input data were not

scaled, but an extra batch normalization layer [Ioffe and Szegedy, 2015] was added immediately

after the input layer of the network.

While a comprehensive grid search for the best hyperparameter combination would yield the

optimal model configuration, we found that hardware limitations made this approach impractical.

A single training session with only 20% of the training data and 10 epochs, where each epoch

represents a full pass of the training data through the neural network, took ∼10 hours on a sin-

gle ML-enabled graphical processing unit (GeForce RTX 2060 SUPER 8 GB GPU), which would

make a grid search prohibitively large considering the need to examine∼4,000 combinations. With

2A convolution layer is the central building block of a CNN. It applies a convolution kernel to each pixel of an
input image and produces a feature map. When the input image contains multiple channels (e.g., red, green, blue), the
convolution kernel has a third dimension equal to the number of channels.
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the current specifications, a grid search for the best hyperparameter combination from the set of

values described in Table 5.2 would take∼4.5 years to complete. Instead, we chose the best hyper-

parameter combination from the results of ∼30 different training sessions of 10–15 epochs each

using judiciously chosen combinations of hyperparameters. Our selection approach was “semi-

greedy” because we allowed the results of previous training sessions to have some influence over

the hyperparameter choice for the next session. Although this approach does not guarantee a glob-

ally optimal model configuration, we found that the the hyperparameter combination obtained via

this method yields satisfactory model performance (see Section 5.5.2).

The final combination of hyperparameters was determined by comparing the model perfor-

mance over all ∼30 training sessions. The best values for each parameters are listed in the final

column of Table 5.2.

5.4.4 Final Model

Our final model architecture is shown in Figure 5.7. The most important layer of the Xception

architecture is the separable convolution layer, which consists of a spatial convolution performed

independently over each channel of an input, where a channel refers to a slice along the depth

dimension of the input matrix, followed by a 1×1 convolution projecting the outputs of the first

convolution onto a new space. Chollet [2017] argues that the separable convolution layer is almost

identical to an “extreme” version of the inception module, which is the backbone of the GoogLeNet

architecture [Szegedy et al., 2015]. The Xception architecture prescribes the number of convolu-

tion kernels and output channels in each layer as well as the connections between layers. Some

key differences between our model and the standard Xception architecture include a batch normal-

ization layer in front of the network, an extra SE layer after every residual block in the middle

portion of the architecture, and the addition of a dropout layer at the end of the network, which

we included in place of the L2 weight regularization used in the original Xception model Chollet

[2017].
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MaxPool 3×3, s=2

SepConv 3×3, 728

+

14×14×728 feature maps

SepConv 3×3, 728

SepConv 3×3, 728

SepConv 3×3, 728

SE, 728:52

+

×8

SepConv 3×3, 728

Conv 1×1, 1024 s=2

MaxPool 3×3, s=2

SepConv 3×3, 1024

+

SepConv 3×3, 1536

SepConv 3×3, 2048

Global Average Pooling

Dropout (p=0.2)

Prediction

14×14×728 feature maps

Figure 5.7: Architecture of the final model presented in this work. This figure is adapted from

Figure 5 of Chollet [2017]. Batch normalization and activation (ReLu) layers that follow each

convolution and separable convolution layer are omitted from the diagram. Data flow follows the

arrows. The middle portion of the network is repeated to create 8 identical sections. For each layer,

we list the name, the kernel size, and the number of output channels. Layers with a stride length

of 2 instead of 1 are distinguished by “s=2.” The reduction ratio (14) of the SE layer is presented

as “728:52”, which denotes the number of input and output channels as a ratio of the number of

hidden layer channels [Hu et al., 2018].

We trained our final model for 25 epochs, where each epoch was a full pass of all 1,000,000 sam-

ples in the training data through the neural network. Model loss was calculated using binary cross-

entropy, which is a standard loss function for binary classification problems that measures how well

the predicted class probabilities match the target class. The model performance was monitored by
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calculating performance metrics (Section 5.5.2) using the full train–dev and validation sets at the

end of every epoch. The training was carried out on a single ML-enabled graphical processing unit

(GeForce RTX 2060 SUPER 8 GB GPU) and took approximately 112 hours (∼ 4.5 days) days to

complete.

All of our models were implemented using TensorFlow [Abadi et al., 2015], and the source

code to reproduce our final model is available online.

5.5 Results

5.5.1 Model Evaluation

Although we allowed some tolerance on the calculation of the extrapolated detection frequencies

in the training set (Section 5.3.4.3), we found that a portion of the RFI signals in the validation

set were still misclassified as valid technosignature candidates because the signal in the bottom

image was not properly centered. Similarly, we found that a subset of signals were misclassified

because the S/N difference between the top and bottom images was too large. These discrepancies

are not surprising because our training data was generated by splitting a single scan into two parts,

while our test data contains signals from two completely different scans. As a result, errors on

the extrapolated detection frequencies as well as the S/N variability are not as pronounced in the

training data as they are in the test data.

In order to address these issues, we applied several additional steps when evaluating the model

on the validation, test, and production data. First, we evaluated the model multiple times for each

image pair in the validation and test sets, applying a pixel shift in the range -4 to 4 to the bottom

image each time. The largest of the resulting 9 values was chosen as the score for that data point.

The range of pixel shifts used for this step was chosen by running this test with a larger set of

pixel shift values and choosing a symmetric range that yielded the largest scores for ∼95% of the

validation data. We found that this step increased the validation recall from 0.859 to 0.942 for a
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total decrease of less than 0.1% in the validation set precision. Then, if the score after this step was

still below the decision threshold value of 0.5, we rescaled both images so that the new pixel values

ranged from zero to the average of the maximum pixel values of both images prior to scaling. We

found that this step further increased the validation recall from 0.942 to 0.992, while retaining a

validation precision of > 99%.

5.5.2 Model Performance

We used several metrics to evaluate the performance of our model. First, we evaluated the precision

and recall scores, which are defined in Section 5.4.1. We also calculated the F1 score, which is

defined as

F1 = 2× P ×R
P +R

, (5.2)

where P and R are the precision and recall, respectively. Another important metric often used

for model performance evaluation is the area under the curve (AUC) score. In this context, the

“curve” is the receiver operating characteristic (ROC) curve, which plots the true positive rate

against the false positive rate (Figure 5.8). We also calculated the area under the precision-recall

curve (AUPRC) as well as the average precision (AP) of the model, which is the precision averaged

over all recall values. Together, these metrics offer a thorough picture of the performance of all

models considered in this work. Table 5.3 lists the values of these metrics for the baseline model,

the existing DoO filter, and our trained CNN.

We find that our CNN significantly outperforms the baseline model, with a 99.15% precision at

a recall of 97.81%, compared to a baseline model precision of 95.08% at a recall of only 33.72%.

The CNN also performs favorably with respect to the existing DoO filter. Although the DoO

filter did not admit any false positives (100% precision) over the set of 1,238 hand-labeled signals

(Section 5.3.2), its recall scored at only 80.68%. This translates to a significant portion of signals

left over for manual inspection after application of the filter. The balance between precision and

recall can be summarized with the F1, AUC, or AUPRC score, all of which favor the CNN over the
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baseline model or direction of origin filter. A visualization of the performance differential between

the baseline model, the DoO filter, and the CNN is exemplified in Figure 5.8, which plots the ROC

curve for each model.

We note that∼36% of the misclassifications on the test set are attributable to signals detected in

scans of TRAPPIST-1 and LHS 1140. This percentage is appreciably larger than the total fraction

of signals from these two sources in the full test set (∼23%). This disproportionate distribution

may be due in part to the much larger sky separation between this source pairing (26.3◦) compared

to the typical angular separations between almost all other source pairings (1–3◦), including the

other source pairings in this observation run. Specifically, the time between the TRAPPIST-1 and

LHS 1140 data acquisitions is approximately twice as large as the mean time between data acqui-

sitions of the other source pairs, a unique circumstance that was driven by the desire to observe

noteworthy exoplanets that had been recently discovered at the time. The increased time between

data acquisitions of these two sources accentuates any errors in the frequency extrapolation that

we used to center the signals in the second image. These errors account for a major failure mode

discussed in Section 5.6.1.2. The increased error rate of the large-separation pairing suggests that

such pairings should be avoided when practical. This information can help guide the design of

future observing plans.

5.5.3 Application to Observational Data

We applied the trained model to a subset of the data presented by Margot et al. [2018], Pinchuk

et al. [2019], and Margot et al. [2021]. Specifically, we evaluated the model on signals that passed

the drift rate, S/N, and bandwidth data selection filters described in Section 5.3.3 as well as the

existing DoO filter. Table 5.4 shows the total candidate signal counts (from the first scan of each

source only) before and after application of the direction-or-origin filter and the CNN-based filter

described in this work. Although the existing DoO performs remarkably well already, we found

that the CNN can further reduce the number of signals left over to examine by a factor of 6-16

in nominal situations. In the atypical data set with unusually large angular separations between
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sources, the reduction factor decreased to ∼3.

We did not evaluate the CNN on the 3% of signals that did not pass our data filters (Sec-

tion 5.3.3) because we anticipate poor classification performance on these signals as they are out-

side of the domain of applicability for the network.

The evaluations took approximately 5, 18, and 6 hours on the Margot et al. [2018], Pinchuk

et al. [2019], Margot et al. [2021] data sets, respectively, on a single ML-enabled GeForce RTX

2060 SUPER 8 GB graphical processing unit, i.e., several times slower than data acquisition. This

performance is promising with respect to near-real-time data processing: the evaluation could keep

up with data acquisition with the addition of one or more high-end graphical processing units.

5.6 Discussion

5.6.1 Failure Modes

In this section, we examine some of the CNN failure modes that we identified by examining the

test set samples that the CNN misclassified.

5.6.1.1 Model-related Failure Modes

One set of failure modes fall under the category of model-related failures, which stem from the

model’s inability to learn an adequate representation of the data and therefore correctly classify a

subset of signal types.

One such failure mode occurred when the S/N of the signal in a data sample with S/N <∼ 30

was lower in the top image compared to the bottom image. In these cases, the network would

assign the pair of images a label of “0” when there is clearly a signal present in both. Figure 5.9

shows an example of such an image pair. Note that we did not find any evidence for the reverse

failure mode – when S/N of the signal in a data sample is larger in the top image compared to

the bottom image. Although we did attempt to introduce S/N variations between the two images
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in each sample of the training set (Section 5.3.4.2), this failure mode suggests that we needed to

allow even larger variations, specifically including cases where the S/N lower than the S/N of the

signal in the bottom image.

5.6.1.2 Failure Modes Related to Simplifying Assumptions

A different set of failure modes stemmed from some of the simplifying assumptions that we made

about the data. For example, one of the failure modes is related to the frequency extrapolation that

we performed in order to center the signal in the second image. We assumed that the frequency

drift rate would be linear, and we assumed that our estimate of the frequency drift rate would be

accurate enough to ensure centering of the signal in the second image within a tolerance of∼15 Hz.

Although we included this tolerance directly into the model, both during training (Section 5.3.4.3)

and evaluation (Section 5.5.1), we still found cases where the signal was clearly present in the

second image but was not properly centered. Figure 5.10 (left) shows an example of such a signal

from our test set. In this case, the model gave the sample a score of 0.0193. This score yields a

label of “0” (i.e., no signal in the second scan) because it is below the decision threshold of 0.5.

However, if we shift the bottom image 5 pixels (∼15 Hz) to the left, the score jumps to 0.7545,

which yields the correct label of “1.” Shifts of 6-10 pixels to the left all yield scores > 0.99.

Unfortunately, this problem cannot be fixed by simply increasing the range of shifts allowed

for the bottom image. In fact, it is likely that the same problem persists for any choice of the

tolerance on frequency to accept/reject a match. More importantly, increasing the range of allowed

shifts for the bottom image would also increase the risk of removing a technosignature candidate

by pairing it with RFI detected in its vicinity. Instead, this problem can be better addressed by

obtaining more accurate representations of the detected signal properties, which can then be used

to more accurately localize and thus center the signal in a subsequent scan.

Another failure mode is related to the simplifying assumption that the signal power in the first

half of a scan is comparable to the signal power in the second half of a scan. The input to the CNN
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is limited to approximately half of each scan, assuming the data taking parameters of Pinchuk

et al. [2019], by virtue of the training set parameters. Specifically, the input images are limited

to a size of 225×225 pixels, which corresponds to ∼75 seconds of observation, whereas each

scan typically lasts for a total of ∼150 seconds. This limitation significantly hinders the network’s

ability to identify RFI, because the CNN only examines the first temporal half of each scan, but

there are instances where a signal is only present in the latter half of one or both scans. An example

of this case is shown in Figure 5.10 (middle).

We performed three preliminary attempts at mitigating this issue. First, we tested the possibility

of downsampling the scan in the time dimension by a factor of two, effectively allowing us to

fit partial information from 450 rows (∼150 seconds) into 225 pixels along the time dimension.

Second, we tested an image rescaling approach consisting of a linear interpolation [Virtanen et al.,

2020] of the entire scan duration that was sampled at 225 equally-spaced time intervals. Neither

approach reduced the number of signals left to examine after application of the filter, indicating

that the issue persisted. In a third attempt, we applied the filter a total of four times to each

set of scans in the test data set. Each filter evaluation paired a different set of temporal scan

halves (scan1,top with scan2,top, scan1,top with scan2,bottom, etc.). We combined the results of these

evaluations by taking the maximum score across the four trials. We found that this method did

increase the recall score for the test set from 97.81% up to 98.91%. However, the precision score

was heavily penalized, decreasing from 99.15% down to 97.92%. This trade-off increases the

likelihood of finding additional pairings and therefore false positives. Taking the median score

across the four trials yielded similar results. This four-execution mitigation attempt also increased

the computational cost of the CNN filter by a factor of four. For these reasons, we did not apply

this method when evaluating the CNN on observational data. Further investigation beyond the

scope of this work is required to minimize the impact of this failure mode.
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5.6.1.3 Other Failure Modes

The final failure mode that we observed is related to instances of human error in labeling the

validation and test sets. Because the labels were supplied by a single classifier (PP), the margin for

error on the validation and test labels is nonzero. Figure 5.10 (right) shows an example of a test

signal that the CNN “misclassified”. Upon further investigation, it is clear that the label provided

with this data sample is incorrect. Although the network technically classified this signal correctly,

it counted as a misclassification when computing model performance (Section 5.5.2). This problem

could be substantially mitigated if multiple people examined and labeled the validation and test

data.

5.6.2 Future Improvements

Though we have attempted to thoroughly search the parameter space for the best model to perform

our classification task, there are still a number of options to consider for future improvements. For

example, for all CNN models considered in this work, the input was comprised of 225×225×2

images, where the last dimension distinguished the top half of the first scan from the top half

of the second scan. An alternative approach would pass the data as a single 450×225 image,

where the top halves of each scan are concatenated in the time dimension. It is worth investigating

whether or not this variant on the input data improves network classification performance. Along

the same lines, it may be beneficial to train a denoising auto–encoder [e.g., Xiang and Pang, 2018,

and references therein] and apply it to the images prior to sending them through the CNN. If the

denoising auto–encoder functions properly (i.e., reduces the noise around the signals in the image),

it is likely that the CNN would receive a boost in classification performance.

During our model selection step (Section 5.4.2), we found that standard network architectures

always outperformed their Siamese variants. However, those tests were performed without any

hyperparameter tuning, so it may be worthwhile to investigate whether a tuned Siamese model still

underperforms when compared to the base architecture model. On top of that, new state-of-the art
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CNN architectures are still being rapidly developed and may offer significant improvements over

the Xception architecture used as the final model in this work. For example, the novel EfficientNet

architecture [Tan and Le, 2019], which was published after our model selection efforts, is almost

an order of magnitude smaller and faster than other CNN architectures, yet has been shown to

exhibit state-of-the-art performance on the ImageNet data.

Finally, there are some improvements that can be made to the overall training and evaluation

process to mitigate the various failure modes discovered after evaluating the CNN on the test

data. These improvements are included with the corresponding description of each failure mode in

Section 5.6.1.

5.7 Conclusions

In this work, we designed a DoO filter using modern computer vision techniques to assist in the mit-

igation of RFI in the search for radio technosignatures. We began by randomly selecting 1,100,000

signals from a carefully selected set of over 8 million detections in order to obtain the cleanest

training and train-dev data set possible. Both of these data sets consist of pairs of images that were

obtained by splitting a single scan containing a signal into two parts. This approach allowed us to

label a large amount of signals in a short period of time.

Using these data sets, we trained and evaluated a CNN designed to determine whether or not

the signal in the first image is also present in the second image. This network can therefore be

applied to determine if a detected signal is persistent in one and only one direction on the sky. This

approach is similar to the one employed by traditional DoO filters, except that the CNN analyzes

the dynamic spectra directly instead of relying on inferred signal properties, such as frequency and

frequency drift rate.

We found that the CNN trained in this work outperformed both the baseline 2D correlation

model and the existing DoO filters, with a precision value of 99.15% at a recall of 97.81%. We

find that the CNN can reduce the number of signals left to analyze after applying the existing DoO

133



filter by a factor of 6-16 in nominal situations. In the atypical data set with unusually large angular

separations between sources, the reduction factor decreased to ∼3.

We identified several failure modes of the trained network, labeling failures, and failures related

to simplifying assumptions. Each failure mode can be addressed with future CNN versions to

increase the classification performance. Integrating this ML-based DoO filter into existing radio

technosignature search pipelines has the potential of providing accurate RFI identification in near-

real-time.

5.A Sample training signals

We validated our choice for the threshold of a top-half S/N < 6 (Section 5.3.4.2) by examining

a sample of signals below this cutoff value. Figure 5.11 depicts these signals, most of which are

faint and difficult to detect visually. Similarly, Figure 5.12 depicts a sample of signals above this

threshold, which are clearly visible in the dynamic spectra.

Figure 5.13 shows a sample of signals from the negative category with a Pbottom/Ptop ratio of

0.2 or lower and prominence value below 3 standard deviations of the noise (Section 5.3.4.2).

5.B Siamese models

The concept of a “Siamese” neural network was first introduced in 1993 by Bromley et al. [1993]

for the purpose of signature verification. Siamese networks are defined as two identical sub–

networks that are joined at the output, typically by subtracting the neuron values of the final layer

of one model from the neuron values of the final layer of the other model. The input to these

networks always consists of two data points, each of which are passed to one of the two sub–

networks. The output of the Siamese networks is typically given as a similarity score between the

two data points.

During the model selection portion of this work (see Section 5.4.2), we set the two identical
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sub–networks of each Siamese network to be one of the architectures under consideration (Fig-

ure 5.14). Each sub-network received one scan as input. For each architecture, we tested two

methods of joining the outputs of the final layers of the Siamese sub–networks. Specifically, we

considered the standard method of subtracting the values of one output from the other, as well

as a generalized version of this procedure. For the latter, we concatenated the output weights of

both sub–networks and added another fully connected layer with N nodes immediately after the

concatenated layer, where N is the number of neurons in the output layer of the sub–network. This

method is a generalized version of the subtraction procedure because it can be recovered by setting

the weights wij between the two layers to be

wij =


1, if i = j

−1, if i = j +N

0, otherwise

(5.3)

where i and j represent the indices of the neurons of the concatenated and the fully connected

layer, respectively.

Although Siamese networks seem like a promising solution to the problem of pairing signals

from two different scans, we found that the standard network architectures always outperformed

their Siamese variants (see Section 5.4.2).
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Table 5.3: Scoring metrics for the baseline model, DoO filter, and CNN validation and test sets.

Metric Baseline Model Direction-of-origin CNN Validation CNN Test

Precision 0.9508 1.0000 0.9973 0.9915

Recall 0.3372 0.8068 0.9919 0.9781

F1 0.4979 0.8931 0.9946 0.9848

AUC 0.7324 0.9034 0.9951 0.9811

AUPRC 0.6914 0.9975 0.9998 0.9982

AP 0.6921 0.9950 0.9998 0.9991
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Figure 5.8: ROC curve and AUC scores for the baseline 2D correlation model, the existing DoO

filter, as well as the CNN evaluated on both the validation and the test set. The DoO curve is linear

because the filter only outputs binary scores of 0 or 1, unlike the other models, which output a

score in the range from 0 to 1 for each sample. The dashed line shows the ROC curve for a purely

random classifier with an AUC score of 0.5.
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Figure 5.9: Sample signal with lower S/N in the top image compared to the bottom image. The

CNN score for this image pair is 0.2706, which corresponds to a label of “0”.
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Figure 5.10: (Left) Example image pair where the signal in the second image is not centered. This

occurs when the properties of the signal in the top image are inaccurately determined. (Middle)

Example of a signal that does not appear until the second half of the scan in the second image.

The standard application of the network mislabels this signal because the CNN looks at the top

half of each scan only. (Right) Example signal that was incorrectly hand-labeled as “1”, seemingly

indicating that it contains a signal in the second image.
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Figure 5.11: Example dynamic spectra of signals with a top-half S/N < 6 (exact values shown

above each plot). The horizontal blue line delimits the top and bottom halves. Note that these

signals (located in the center of the image starting at 0 Hz offset at time t = 0) are faint in the top

half of the image and difficult to detect visually.
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Figure 5.12: Example dynamic spectra of signals with a top-half S/N ≥ 6 (exact values shown

above each plot). The horizontal blue line delimits the top and bottom halves. Note that all of

these signals (starting at 0 Hz offset at time t = 0) are visually detectable in the top half of each

sample.
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Figure 5.13: Example time-frequency diagrams of signals with a Pbottom/Ptop ratio of 0.2 or lower.

The horizontal blue line delimits the top and bottom halves. No signals with a prominence value

greater than 3σ are present in the bottom halves. All of these signals represent valid negative

samples.
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Figure 5.14: Example of a Siamese network tested in this work. The labels “A” and “B” represent

input from two different scans. The “Network” in the middle was replaced with one of the architec-

tures that was tested in this work (see Section 5.4.2). The output layers were joined in two different

ways: (Top Right) In standard Siamese networks, the output layers are subtracted. (Bottom Right)

In our generalized version, the output layers are concatenated and connected to another layer with

N neurons. Equation 5.3 gives the set of weights for this configuration that reproduce the standard

layer subtraction procedure.
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CHAPTER 6

Conclusions

In this work, I described significant advancements to the signal detection and Radio Frequency In-

terference (RFI) identification capabilities of modern radio technosignature detection algorithms.

These improvements were presented alongside the results of the analysis of four annual UCLA

radio technosignatures searches spanning 2016–2019. These searches compare favorably to other

recent searches in terms of end-to-end sensitivity, frequency drift rate coverage, and signal detec-

tion count per unit bandwidth per unit integration time. The searches focused on detecting signals

that are narrow in the frequency domain, which would provide compelling evidence of the ex-

istence of another civilization. Although no technosignatures have been discovered to date, the

tools and algorithms used to analyze the radio baseband data have undergone multiple levels of

improvements.

I began by describing the UCLA SETI Group’s initial versions of the signal detection and RFI

identification algorithms, which identified approximately 850 000 candidates, corresponding to a

hit rate density of 1.691 × 10−3 hits per hour per hertz (see Section 4.5 for a definition of hit

rate density), and automatically classified most (99%) of these signals as human-generated RFI.

A large fraction (>99%) of the remaining candidate signals were also flagged as anthropogenic

RFI because they have frequencies that overlap those used by global navigation satellite systems,

satellite downlinks, or other interferers detected in heavily polluted regions of the spectrum.

Then, I described an improved candidate signal detection algorithm that detected approxi-

mately 6 million signals in a 2017 search for technosignatures with identical observational pa-

rameters. The improved data processing pipeline yielded a hit rate density of 1.07× 10−2 hits per
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hour per hertz, a significant improvement over the inital version of the pipeline. The improved

candidate signal detection algorithm helps mitigate problems associated with the common prac-

tice of ignoring frequency space around candidate detections in radio technosignature detection

pipelines, which include inaccurate estimates of figures of merit and unreliable upper limits on the

prevalence of civilizations.

Afterwards, I presented further improvements to these detection algorithms along whit their

application to a search for technosignatures in regions surrounding 31 Sun-like stars near the plane

of the Galaxy. The improved candidate signal detection procedure nearly doubles the signal detec-

tion count of some previously analyzed data sets. With a hit rate density of 2.21 × 10−2 hits per

hour per hertz, these algorithms significantly outperformed the algorithms used previously by the

UCLA SETI Group as well as those used by the Breakthrough Listen (BL) team. I also described

an improvement to the direction-of-origin filters that promotes unique links between signals ob-

served in separate scans.

Finally, I discussed the implementation of a novel machine-learning-based RFI mitigation algo-

rithm, which helped address a major remaining challenge in the search for radio technosignatures.

The newly-designed Convolutional Neural Network (CNN) can determine whether or not a signal

detected in one scan is also present in another scan. This CNN-based DoO filter outperforms both

a baseline 2D correlation model as well as existing DoO filters over a range of metrics. Impor-

tantly, the CNN reduced the number of signals requiring visual inspection after the application of

traditional DoO filters by a factor of 6-16 in nominal situations. Integrating this ML-based DoO

filter into existing radio technosignature search pipelines has the potential of providing accurate

RFI identification in near-real-time.
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S. Laloë, S. Lesteven, and R. Monier. The SIMBAD astronomical database. The CDS reference

database for astronomical objects. 143:9–22, 2000. doi: 10.1051/aas:2000332.

B. S. Wlodarczyk-Sroka, M. A. Garrett, and A. P. V. Siemion. Extending the Breakthrough Listen

nearby star survey to other stellar objects in the field. art. arXiv:2006.09756, 2020.

Jason T. Wright, Shubham Kanodia, and Emily Lubar. How Much SETI Has Been Done? Finding

Needles in the n-dimensional Cosmic Haystack. Astronomical Journal, 156:260, 2018. doi:

10.3847/1538-3881/aae099.

Qian Xiang and Xuliang Pang. Improved denoising auto-encoders for image denoising. In 2018

157

https://doi.org/10.1038/s41592-019-0686-2


11th International Congress on Image and Signal Processing, BioMedical Engineering and

Informatics (CISP-BMEI), pages 1–9, 2018. doi: 10.1109/CISP-BMEI.2018.8633143.

Y. G. Zhang, K. Hyun Won, S. W. Son, A. Siemion, and S. Croft. Self-supervised anomaly detec-

tion for narrowband seti. In 2018 IEEE Global Conference on Signal and Information Processing

(GlobalSIP), pages 1114–1118, 2018. doi: 10.1109/GlobalSIP.2018.8646437.

Yunfan Gerry Zhang, Vishal Gajjar, Griffin Foster, Andrew Siemion, James Cordes, Casey Law,

and Yu Wang. Fast radio burst 121102 pulse detection and periodicity: a machine learning

approach. The Astrophysical Journal, 866(2):149, 2018.

158


	Introduction
	A search for technosignatures from 14 planetary systems in the Kepler field with the Green Bank Telescope at 1.15–1.73 GHz
	Introduction
	Observations
	Analysis
	Validations
	Data selection
	Bandpass correction
	Spectral analysis
	Drift rate analysis
	Candidate signal detection
	Rejection algorithms
	Known interferers
	Additional interferers
	Evaluation of remaining candidates

	Discussion
	Search volume
	Existence limits
	Sensitivity

	Conclusions

	A search for technosignatures from TRAPPIST-1, LHS 1140, and 10 planetary systems in the Kepler field with the Green Bank Telescope at 1.15–1.73 GHz 
	Introduction
	Data Acquisition
	Sources
	Observations

	Analysis
	Data Pre-Processing
	Doppler De-Smearing
	Candidate Signal Detection
	Doppler and Direction-of-Origin Filters
	Frequency Filters

	Results
	Discussion
	Drake Figure of Merit
	Increase of Candidate Detection Efficiency
	Existence Limits
	Sensitivity

	Conclusions
	Candidate Signal Detection and Bandwidth Estimation
	Doppler and Direction-of-Origin Filters
	Signal Density Thresholding
	Re-analysis of 2016 Data

	A Search for Technosignatures Around 31 Sun-like Stars with the Green Bank Telescope at 1.15–1.73 GHz
	Introduction
	Data Acquisition and Pre-Processing
	Observations
	Sensitivity
	Computation of Power Spectra
	Doppler Dechirping

	Data Analysis
	Candidate Signal Detection
	Doppler and Direction-of-Origin Filters
	Frequency Filters

	Preliminary Signal Injection and Recovery Analysis
	Generation and Injection of Artificial Signals
	Recovery and Classification of Injected Signals
	Performance of Data Processing Pipeline
	Limitations of Current Signal Injection and Recovery Analysis

	Results
	Discussion
	Dechirping Efficiency
	Extreme Drift Rates
	Data Requantization and Preservation
	Candidate Signal Detection Count
	Existence Limits
	Drake Figure of Merit
	Other Estimates of Search Volume
	Re-analysis of 2016 and 2017 Data

	Conclusions

	A Machine-Learning-Based Direction-of-Origin Filter for the Identification of Radio Frequency Interference in the Search for Technosignatures
	Introduction
	Motivation and Approach
	Data Preparation
	Observations
	Definition of Data Sets
	Data Selection Filters
	Generation of the Training and Train–dev Set
	Creation of Validation, Test, and Baseline Model Data Sets

	Models
	Baseline Model
	Model Selection
	Hyperparameter Tuning
	Final Model

	Results
	Model Evaluation
	Model Performance
	Application to Observational Data

	Discussion
	Failure Modes
	Future Improvements

	Conclusions
	Sample training signals
	Siamese models

	Conclusions



