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 In bioacoustics, passive acoustic localization and tracking plays an important role in 

studying marine mammals and other organisms that produce underwater sounds. However, the 

implementation of such techniques faces many practical challenges, such as lack of environmental 

data for accurately modeling acoustic propagation, uncertainties in sensor position, time-

synchronization of autonomous instruments, and logistical constraints due to large arrays. The 

three research chapters of this dissertation cumulatively address these hurdles. 

 Chapter 2 develops a reformulation of the “double-difference” method for long-range 

tracking of acoustic sources. Originally developed for high-resolution localization of earthquakes 

across a network of widely distributed sensor, the double-difference approach is here adapted to 
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exploit acoustic multipath on a vertical array, deployed in a deep-water waveguide. Results are 

shown to provide high-precision relative depth and range tracks of sources on the order of 50 km 

away, by compensating for biases caused by underdetermined array tilt and sound speed model. 

The method is demonstrated on both a towed acoustic source and a sperm whale (Physeter 

macrocephalus).   

 Chapter 3 presents a passive time-synchronization technique for independent autonomous 

acoustic recorders. This approach relies on the coherent ambient noise sources maintaining the 

same statistical angular distribution around the instruments. Under this assumption, the temporal 

evolution of the cross-correlation function between sensor pairs reveals their relative time drift. 

This method enables continuous measurements of clock offset, including small-scale non-linear 

fluctuations of the drift, otherwise unobservable with standard time-synchronization techniques. 

Data from a field study in San Ignacio Lagoon, Mexico, is used to demonstrate this technique 

which is here applied to low frequency pulses, most likely originating from croaker fish 

(Sciaenidae family).   

 Chapter 4 uses acoustic vector sensor data to track multiple sources simultaneously. The 

method is demonstrated on singing humpback whales (Megaptera novaeangliae) off western 

Maui. Here, the directional capabilities of vector sensors are exploited to identify and match 

azimuthal tracks from multiple sources between sensors, yielding localized whale tracks in terms 

of latitude and longitude over time. This approach shows potential for further applications such as 

tracking boats and analyzing the directional properties of ambient noise field.
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Chapter 1 
 
 
Introduction 
    
 Passive acoustic localization (PAL) uses the sound emitted by an acoustic source to infer 

information about its spatial location. Early work on this topic began during World War I, followed 

by substantial advances in locating and tracking enemy submarines throughout World War II and 

the Cold War (Holler, 2014). While navy applications remain relevant today, the ubiquitous 

prevalence of sound in the marine environment has made PAL a useful tool in a variety of 

oceanography-related topics.  

 Marine mammals are known to produce underwater vocalizations for a variety of purposes. 

These calls provide a unique opportunity for applying PAL techniques to study various aspects of 

the behavior and ecology of marine mammals. For example, precise localization and tracking of 

individual animals can yield information about their swimming kinematics and its relation to their 

acoustic behavior (Thode et al., 2000; Zimmer et al., 2003; Soule and Wilcock, 2013; Thode et 

al., 2016; Guazzo et al., 2017; Thode et al., 2017; Henderson et al., 2018; Varga et al., 2018; 

Wiggins and Hildebrand, 2020; Hendricks et al., 2021). PAL and subsequent tracking may also 

provide information on habitat use (Frankel et al., 1995; Henderson et al., 2018; Hendricks et al., 

2021), or the response of various species to anthropogenic stressors or other environmental 

changes (Hastie et al., 2014; Blackwell et al., 2015). Furthermore, PAL of calls enables estimation 

of their source levels and thus the detection range (Cato, 1998; Sirovic et al., 2007; Mathias et al., 

2013; Thode et al., 2016; Bouffaut et al., 2021), which are required parameters for conducting 

passive acoustic density and abundance surveys (Marques et al., 2013). PAL techniques also have 

the potential to be used for real-time conservation management by mitigating exposure to 
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underwater noise or ship strikes (Compton et al., 2008; Dolman et al., 2009; Van Parijs et al., 

2009; Klinck et al., 2012; Baumgartner et al., 2013; Kowarski et al., 2020). 

 Bio-logging technologies (tags) have enabled observation of fine-scale movements of 

marine mammals and address some of the research topics mentioned above (Schmidt et al., 2010; 

Goldbogen et al., 2014; Stimpert et al., 2020). However, in addition to being intrusive in 

comparison to PAL, tagging marine mammals remains logistically expensive and yields small 

sample sizes. Thus, PAL complements bio-logging in the sense that while it has lower-resolution 

localization capabilities, it allows localizing large numbers of animals, providing a more holistic 

understanding of the behavior and ecology of marine mammal species. 

 Beyond marine mammals, interest is growing in other organisms that also produce 

underwater sound, such as many species of fish and certain invertebrates (Popper et al., 2001; 

Slabbekoorn et al., 2010; Vermeij et al., 2010; Hawkins and Popper, 2017; Ladich, 2019; Butler 

et al., 2021). PAL can also be used to study these species as well as their ecosystems by tracking 

individual animals (Mouy et al., 2018), characterizing the spatiotemporal distribution of sounds  

and the directional properties of the ambient noise field (Thode et al., 2021). In addition to 

biological signals, PAL may also be used for marine surveillance by tracking illegal fishing vessels 

and other unreported offshore activities (Sorensen et al., 2010; Kline et al., 2020). 

 To infer information on the location of an acoustic source, PAL generally requires some 

knowledge – or assumptions – about the position of the receiver(s) and the propagation 

environment between the source and the receiver(s). This relationship between the source, the 

receiver(s), and the environment results in many PAL principles being applicable to analogous 

oceanographic topics. For example, in a well-characterized environment the principle of acoustic 

reciprocity implies the position of a receiver can be determined using sources whose position is 
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known. These acoustic element localization techniques have practical applications in ocean 

engineering for tracking the position of underwater sensors and vehicles, which cannot use Global 

Positioning System (GPS) like land-based and airborne systems (Van Uffelen et al., 2016). 

Similarly, many underwater inversion problems are also related to PAL, allowing environmental 

features to be inferred from sources and receivers whose position is known. This concept forms 

the basis of ocean acoustic tomography (Munk et al., 2009) and geoacoustic inversion (Collins et 

al., 1992; Lindsay and Chapman, 1993; Gerstoft, 1994; Bonnel and Chapman, 2011).  

 Over the past few decades, advancements in computer power, acoustic propagation models, 

and data processing and storage techniques have enabled PAL to be applied to new problems. 

However, implementing PAL often still faces practical hurdles:   

1. Lack of data and measurements for accurately modeling propagation environments (e.g., 

sound speed profile, bathymetry, seafloor composition). 

2. Uncertainties in the position of the receivers (e.g., autonomous underwater vehicles, 

deployment location uncertainty, array tilt and shift over time). 

3. Internal clock offsets and drift between sensors with independent data acquisition systems. 

4. Logistical constraints due to the cumbersome nature of many PAL systems. 

 This dissertation focuses on how linear arrays (multiple sensors) and directional sensors 

(acoustic vector sensors) can alleviate some of these challenges, with an emphasis on applications 

for studying marine mammals and other biological sources.  Chapter 2 addresses points 1 and 2, 

while Chapters 3 and 4 both address points 3 and 4. In this introductory chapter, theoretical 

concepts and previous literature relevant to the rest of the dissertation are reviewed, followed by 

an overview of the three research chapters. Section 1.1 reviews TDOA localization, a standard 

approach for many marine mammal PAL applications. Sections 1.2 and 1.3 review topics related 
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to Chapter 2, Section 1.4 reviews noise interferometry, a topic fundamental to Chapter 3, and 

Section 1.5 reviews acoustic vector sensors, the technology that lies at the heart of Chapter 4. 

 

1.1 TDOA localization 
 
 Time-difference-of-arrival (TDOA) localization is a standard approach for applying PAL 

to marine mammals. This basic approach assumes the signal travels in a straight line from the 

source to the receiver in a medium of constant sound speed. In a two-dimensional plane, the locus 

of points that produces a given TDOA between two sensors is a hyperbola. By measuring the 

TDOA between all sensor pairs, the intersection of the resulting hyperbolas yields the location of 

the source (Watkins and Schevill, 1972; Schau and Robinson, 1987). Some work has examined 

the influence of spatial variation in sound speed on TDOA localization (Spiesberger and Fristrup, 

1990). The accuracy and precision of the localization depends on the bandwidth of the signal in 

question, its received signal-to-noise ratio (SNR), the validity of the constant sound speed 

assumption, and the relative locations of the source and the sensors. When multiple animals are 

calling simultaneously, or when significant multipath or other propagation effects degrades the 

coherent structure of a signal, it can become difficult to identify the same call on different sensors. 

 Localization of marine mammals over large areas, in longitude and latitude, is most often 

performed using this method (Sirovic et al., 2007; Simard et al., 2008; Baggenstoss, 2011; Helble 

et al., 2015; Hendricks et al., 2021). In addition to the sensors needing to be time-synchronized, 

the main requirement for localizing within a two-dimensional plane is that the source should be 

detected on at least three spatially distinct sensors. In principle, it is possible to extend this 

technique for localizing sources in three-dimensions by adding at least a fourth sensor. However, 

this approach only works at short ranges (Mouy et al., 2018), as the vertical separation of the 
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sensors required for long-range three-dimensional localization is not compatible with the depth of 

the ocean. 

 

1.2 Beamforming 
 
 If sensors are clustered closely together so that their spacing is less than half the acoustic 

wavelength, the TDOA (or phase difference) of a signal between sensors can be used to estimate 

its angle of arrival, relative to the array, under the assumption that the signal is propagating in the 

form of a plane wave. This approach, known as “beamforming”, is usually applied to multi-

element line arrays as it also improves the SNR of the received signal, thus increasing the detection 

range of the source along with features estimated from the signal. If the background noise is 

uncorrelated between sensors, the SNR is improved by 10𝑙𝑜𝑔𝑁 decibels (dB), where 𝑁 is the 

number of sensors. The angular resolution of the beamforming estimate is related to the aperture 

of the array, with a wider (longer) array providing a higher angular resolution. While beamforming 

can also be performed in the time-domain, frequency-domain beamforming allows using adaptive 

processing techniques may improve the resolution of the estimate against environmental 

uncertainty (Cox et al., 1987; Debever and Kuperman, 2007; Jensen et al., 2011).    

 

1.3 Multipath localization using vertical line arrays 
 
 Acoustic multipath occurs when reflection and/or refraction mechanisms yield different 

propagation paths between a source and receiver. At short ranges and high frequencies, a direct 

arrival can be followed by time-separated reflections from the surface and the bottom.  Over longer 

ranges in shallow water, low-frequency multipath reflections from ocean boundaries can be 
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mathematically expressed in terms of dispersive normal mode propagation. At longer ranges in 

deep water, multipath can arise from refraction due to the depth-dependent sound speed profile. 

 The time delay between acoustic multipath arrivals provides additional information that 

may allow localization, even from a single sensor (Thode et al., 2002; Tiemann et al., 2006; Mouy 

et al., 2012; Bonnel et al., 2014). Beamforming on a vertical array also provides the vertical 

elevation angle of each arrival relative to the horizontal, providing further localization information. 

Using the appropriate acoustic propagation model along with knowledge of the array depth and 

the environment, acoustic multipath measured on a vertical array can be used to localize the source 

(Thode et al., 2000; Thode, 2004; Mathias et al., 2013). This approach is the basis of matched-

field processing (MFP), in which measured data from a vertical array is compared to a modeled 

acoustic field given a series of candidate source positions to find the maximum-likelihood solution 

(Fizell and Wales, 1985; Baggeroer et al., 1993; Newhall et al., 2012). When using range-

independent propagation models, as it is most often the case, these methods usually allow finding 

the two-dimensional position of the source in cylindrical coordinates (i.e., depth, and range from 

the array). If azimuthal information is available, the source may be localized in three-dimensions 

(Tiemann et al., 2006).  

 

1.4 Noise interferometry 
  
 In wave physics, the Green’s function describes how a signal is modified by the 

environment as it propagates from point 𝐴 to point 𝐵. Specifically, it represents the signal that 

would be received at point 𝐵 if a unit amplitude impulse of infinitely short duration is produced at 

point 𝐴. Knowledge of the Green’s function allows deriving the received signal structure from any 

arbitrary source signal. 
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 Both theoretical and experimental studies have shown that in the presence of a diffuse 

ambient noise field, the time-domain Green’s function can be extracted from the time-averaged 

cross-correlation function between two sensors (Lobkis and Weaver, 2001; Weaver and Lobkis, 

2001; Campillo and Paul, 2003; Malcolm et al., 2004; Brooks and Gerstoft, 2007; Gouedard et al., 

2008). The field of study that exploits this property is often referred to as “noise interferometry”. 

In underwater acoustics, noise interferometry has been applied to ambient noise for passive 

tomography and geoacoustic inversion purposes (Ren and Hermand, 2013; Godin, 2018), 

synchronization of clocks on autonomous underwater instruments and self-localizing acoustic 

sensors (Sabra et al., 2005c). Chapter 3 extends the results of Sabra et al. (2005c) to cases where 

the ambient noise field violates the conditions needed for standard noise interferometry, but still 

contains enough information to time-synchronize two sensors. 

 

1.5 Vector sensors and source triangulation 
 
 Most underwater acoustic studies measure only pressure, as this quantity is straightforward 

to measure underwater with a pressure sensor (hydrophone). However, in addition to fluctuations 

in pressure, the propagation of an acoustic wave also generates a local motion of the particles 

comprising the medium. This vector quantity can be formulated in terms of displacement, velocity, 

or acceleration, and provides information on an acoustic wave’s direction of travel. Acoustic vector 

sensors are instruments that have been developed to measure both pressure and particle motion at 

a single point (Greene et al., 2004; Martin et al., 2016; Raghukumar et al., 2020). This ability 

allows them to infer directional properties of the acoustic field such as the dominant direction of 

incoming sound (D'Spain et al., 1991; D'Spain et al., 2006; Thode et al., 2019). While these sensors 

have been used for navy purposes since the 1960s (Holler, 2014), their use in bioacoustics has only 
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become recognized over the past 20 years (Greene et al., 2004; McDonald, 2004; Nedelec et al., 

2016). 

 One main advantage of vector sensors regarding PAL is that they do not require precise 

time-synchronization, as beamforming or TDOA localization techniques do. The location of an 

acoustic source can be determined with vector sensors using triangulation from a minimum of two 

estimated bearings. Marine mammals have been localized in two-dimensions from this approach 

using vector sensors (Greene et al., 2004; Thode et al., 2012).  Triangulation localization can also 

be applied to TDOA-estimated bearings estimated from nested hydrophone arrays to obtain three-

dimensional tracks (Gassmann et al., 2015). 

 

1.6 Dissertation overview 
 
 This dissertation is comprised of three research chapters. In Chapter 2, a “double-

difference” localization approach is adapted from seismology for long-range tracking of acoustic 

sources using a single vertical array in deep water. Chapter 2 draws inspiration from the concept 

of noise interferometry to time-synchronize independent sensors using an ambient noise field 

whose properties violate the azimuthal symmetry requirements of standard approaches. In Chapter 

4, vector sensor data is used for tracking multiple singing humpback whales in two-dimensions off 

the western coast of Maui. The novel contribution of this chapter lies in the processing of the vector 

sensor directional data. Cumulatively, these three chapters provide additional avenues for solving 

the hurdles to implementing PAL that opened this introduction. 
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Chapter 2 
 
 
A double-difference method for high-resolution 
acoustic tracking using a deep-water vertical array 
 
 Ray-tracing is typically used to estimate the depth and range of an acoustic source in 

refractive deep-water environments by exploiting multipath information on a vertical array. 

However, mismatched array inclination and uncertain environmental features can produce 

imprecise trajectories when ray-tracing sequences of individual acoustic events. “Double-

difference” methods have previously been developed to determine fine-scale relative locations of 

earthquakes along a fault (Waldhauser and Ellsworth, 2000). This technique translates differences 

in travel times between nearby seismic events, recorded at multiple widely separated stations, into 

precise relative displacements. Here, this method for acoustic multipath measurements on a single 

vertical array of hydrophones is reformulated. Changes over time in both the elevation angles and 

the relative arrival times of the multipath are converted into relative changes in source position. 

This approach is tested on data recorded on a 128-element vertical array deployed in 4 km deep 

water. The trajectory of a controlled towed acoustic source was accurately reproduced to within a 

few meters at nearly 50km range. The positional errors of the double- difference approach for both 

the towed source and an opportunistically detected sperm whale are an order of magnitude lower 

than those produced from ray-tracing individual events.  
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2.1 Introduction 
 
 Passive acoustic monitoring offers a non-invasive approach for localizing and tracking 

acoustic sources such as marine mammals, and has numerous academic, industrial, and naval 

applications. A standard approach for localizing impulsive signals is to measure the difference in 

detected arrival times of a signal across multiple hydrophones, assuming a spatially homogenous 

sound speed and conducting hyperbolic localization (Watkins and Schevill, 1972). However, the 

separation between the sensors generally needs to be at least 20% of a source’s range for this 

technique to work. Thus, in order to locate a source over any significant region, multiple 

hydrophone stations need to be deployed across at least several kilometers range to create the 

required aperture.  

 More recently, methods for long-range tracking of marine mammals in deep water using a 

short aperture array of hydrophones have been developed (Tiemann et al., 2006; Mathias et al., 

2013). The term “short” refers to the aperture of the array relative to the water depth, not relative 

to an acoustic wavelength, and the term “deep water” refers to water depths that greatly exceed the 

acoustic wavelength of the lowest frequency component in a signal.  

 These tracking techniques are mostly based on ray theory, exploiting the multipath arrival 

information [elevation angle and relative time of arrival (RTOA)] present in a signal’s refracted 

and reflected ray arrivals across the array aperture. By modeling the back-propagation, or “ray-

tracing,” detected ray arrivals into the waveguide, the source’s location can be determined by 

measuring where the rays converge (Fig. 2.1). This method has been defined as either ray-tracing 

or matched-field processing (MFP; Fizell and Wales, 1985), the latter term covering situations 

where RTOA information has been incorporated into the ray-propagation model. Sperm whales 

have been the focus of several of these tracking studies because of the nature of their vocalizations, 
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which can be characterized as a series of loud and impulsive broadband clicks (Goold and Jones, 

1995), which are convenient for multipath detection (Thode et al., 2002; Zimmer et al., 2003; 

Thode, 2004).  

 

 
Figure 2.1: Illustration of 2D ray-tracing using a vertical array. Rays detected at 
the array are back-propagated into the waveguide, whose sound speed profile is 
known (left of the image), in order to determine the depth and range of the 
vocalizing sperm whale (right of the image). 

  

 While ray-tracing methods allow localizing at long ranges relative to the array aperture, 

they often yield significant uncertainties in the position of the source due to several factors. 

Because of the lack of extensive field measurements, environmental propagation models are 

typically assumed to be range independent, even though the underlying environment varies with 

range. The resulting mismatch in the modeled sound speed profile can therefore be an important 

source of error when applying ray-tracing, especially at longer ranges. Another potential source of 

error is the array inclination, or tilt, which affects the measured elevation angles of rays. Because 

of these errors, tracking a moving source by individually ray-tracing a series of acoustic events 

often yields a trajectory with large error estimates.  

 Various adaptive filtering and state-state techniques like Kalman filtering can be adapted 

for smoothing acoustic trajectories, essentially by incorporating information from previous 

localizations into the next estimate. However, this approach requires making assumptions about 
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the behavior of the system, such as speed and heading, for example (Evensen, 2009). Here, we are 

interested in techniques that rely entirely on measured data and not on interpolative or smoothing 

approaches.  

 Methods for high-resolution relative localization of earthquakes are common in seismology 

whenever seismic events in close spatial proximity are detected at multiple sensors (Poupinet et 

al., 1984; Ito, 1985; Fremont and Malone, 1987; Shearer, 1997). These methods are based on 

measuring the differences in travel times between sets of events to determine the relative location 

of these events. A popular and efficient formulation of this approach is the “double-difference” 

method by Waldhauser and Ellsworth (2000), which will be subsequently labeled as “WE.” The 

technique minimizes the residuals between measured and modeled travel times for clusters of 

nearby earthquakes recorded across common stations. This approach assumes the propagation 

paths of sets of nearby earthquakes are similar enough that they share the same systematic errors 

in the modeled travel times caused by environmental perturbations and/or instrument timing error. 

The double-difference method has been adapted for tracking fin whales in the northeast Pacific 

using a network of seafloor seismic stations (Wilcock, 2012), but to our knowledge has not been 

previously applied to multipath tracking from a single array deployment.  

 This paper presents how double-difference methods can be adapted to a deep water 

waveguide to track a moving acoustic source at long ranges, using multipath on a single vertical 

hydrophone array, instead of separate direct arrivals on a seismic network of widely spaced 

recorders. This approach, which usually requires relatively high signal-to-noise ratio (SNR) 

signals, is shown to yield much higher precision than standard ray-tracing results, and can reduce 

systematic errors arising from environmental mismatch and array tilt uncertainties. The method is 

tested on a towed acoustic source whose position is independently measured throughout its 



 13 

deployment. Results from applying this technique to opportunistically measured sperm whales are 

also presented and discussed.  

 

2.2 Theory 
 

2.2.1 Nomenclature 
 
 Consider a two-dimensional waveguide (a vertical range/depth slice of the ocean) in which 

multiple acoustic events from a moving source are received on a vertical array of hydrophones. 

Figure 2.2 schematically illustrates two acoustic ray paths a	and b	reaching the vertical array, each 

propagating from two time-separated events 𝑖	and 𝑗. In theory, the events need not be generated 

by the same source, but must be sufficiently spatially and temporally close to each other such that 

the difference in propagation environments between two events is nearly homogenous, and that at 

least two ray paths from each event traverse similar propagation paths to the receiver. If 𝑇+, 	

represents the travel time along a particular ray path a	from a given acoustic event 𝑖	to the array, 

then the RTOA between two ray paths 𝛼	and 𝛽	is defined here as  

∆𝑇+, = 𝑇+, − 𝑇-, 	

(2.1) 

and the difference between the RTOAs of the two events 𝑖	and 𝑗	becomes  

∆𝑇+-
,. = K𝑇+, − 𝑇-,L − M𝑇+

. − 𝑇-
.N	

(2.2) 

Note that Eq. 2.2 effectively removes the effects of range-dependent sound speed fluctuations 

between the array and the two events, because the time perturbations generated by these 

fluctuations affect both events and are thus subtracted out in Eq. 2.2. Let the “elevation angle” of 
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a ray across the vertical array be defined as the arrival angle measured relative to the horizontal 

with positive angles pointing toward the seafloor and negative angles pointing toward the surface. 

The elevation angle of ray path a	from an acoustic event 𝑖	is then noted 𝜃+, . Following the same 

logic as for the ray travel times, Eq. 2.2 can be rewritten in terms of the relative differences in 

elevation angles (RDEAs) between rays 𝛼	and 𝛽	and events 𝑖	and 𝑗,  

∆𝜃+-
,. = K𝜃+, − 𝜃-, L − M𝜃+

. − 𝜃-
.N	

(2.3) 

Note that Eq. 2.3 removes any measurement bias arising from incorrect estimates of array 

inclination, assuming no changes in array inclination occur between events 𝑖	and 𝑗.  

 
Figure 2.2: Schematic diagram of two nearby acoustic events 𝑖	 and 𝑗, each 
producing two acoustic rays 𝛼 (blue) and 𝛽 (red). A given ray path follows a 
slightly different trajectory from one event to the other and therefore arrives at 
the vertical array with slightly different elevation angles and RTOA for each 
event.  However both experience the same range-dependent fluctuations in sound 
speed between the events and the vertical array. 

 
 

 2.2.2 Double-difference equations for a vertical array 
 
 The double-difference method minimizes residuals between differences	in measured and 

modeled travel times for clusters of nearby events recorded on the same sets of sensors (WE). The 
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technique assumes that the quantities in Eqs. 2.2 and 2.3 remove or reduce systematic errors in 

modeling or recording. Differences in relative travel times between event pairs are then translated 

into positional changes, permitting high-resolution relative localizations of the events. The original 

double-difference equations in WE can be rewritten in terms of the RTOA (Eq. 2.2) and RDEA 

(Eq. 2.3) instead of the absolute travel times. For a pair of events 𝑖	and 𝑗, whose ray paths 𝛼	and 𝛽	

are detected on a vertical array of sensors, the resulting “double difference” equations are as 

follows:  

𝜕∆𝑇+-,

𝜕𝑅 Δ𝑅, +
𝜕∆𝑇+-,

𝜕𝑧 Δ𝑧, −
𝜕∆𝑇+-

.

𝜕𝑅 Δ𝑅. −
𝜕∆𝑇+-

.

𝜕𝑧 Δ𝑧. = M∆𝑇+-
,. N

/012
− M∆𝑇+-

,. N
/34

 

(2.4) 

𝜕∆𝜃+-,

𝜕𝑅 Δ𝑅, +
𝜕∆𝜃+-,

𝜕𝑧 Δ𝑧, −
𝜕∆𝜃+-

.

𝜕𝑅 Δ𝑅. −
𝜕∆𝜃+-

.

𝜕𝑧 Δ𝑧. = M∆𝜃+-
,. N

/012
− M∆𝜃+-

,. N
/34

 

(2.5) 

where (	)/012 and (	)/34  denote the measured and modeled RTOAs and RDEAs, respectively, in 

Eqs. 2.2 and 2.3, and KΔ𝑅, , Δ𝑧,L	 and KΔ𝑅. , Δ𝑧.L	 represent the range and depth adjustments 

required for events 𝑖	and 𝑗 in order for the model to better fit the data. For 𝑁	events with a total of 

𝑀	measurements (both RTOA and RDEA), Eqs. 2.4 and 2.5 can be compactly expressed in matrix 

form as  

𝐆𝐦 = 𝐝 

(2.6) 

where 𝐆	is a 𝑀 × 2𝑁	matrix of partial derivatives, 𝐦	is a 2𝑁	vector of positional adjustments, and 

𝐝	is the set of 𝑀	residuals on the right-hand sides of Eqs. 2.4 and 2.5. Note that Eqs. 2.2-2.5 differ 

slightly from those presented in WE. The equations presented here use 𝛼	 and 𝛽	 to represent 

acoustic ray paths, instead of individually placed seismic stations. Furthermore, the residuals on 
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the right-hand sides of Eqs. 2.4 and 2.5, defined as “double-differences” in the original paper, have 

technically become “triple-differences” here, as they represent differences	between measurements 

and models of differences	 between two events of RTOAs or RDEAs (which are themselves 

differences	of arrival times or angles between two ray paths). A consequence of this reformulation 

is that the absolute times at which events 𝑖	and 𝑗	are generated, which were additional unknown 

variables in the original expressions, have been eliminated.  

 For a given event pair 𝑖	and 𝑗, Eqs. 2.4 and 2.5 are first solved using estimates of the 

absolute event locations as an initial model, which can be provided by initial ray-tracing of one of 

the events. Figure 2.3a shows how the resulting components of 𝐦	are then used to readjust event 

positions. This process is then re-iterated using the updated modeled positions of each event, until 

the residuals on the right-hand sides of Eqs. 2.4 and 2.5 are minimized. The final value of the 

residuals provides an estimate of the localization errors for the events, as will be discussed in Sec. 

2.2.3.  

 The partial derivatives (or “ray derivatives”) in these equations are calculated for the 

current modeled position of the source. From basic ray theory, it can be shown that  

𝑑𝑇
𝑑𝑅 =

1
𝑐(𝑧) cos	(𝜃) ≡ 𝑝 

(2.7) 

𝑑𝑇
𝑑𝑧 =

1
𝑐(𝑧2)

sin	(𝜃) ≡ 𝜂(𝑧2) 

(2.8) 

where 𝑐(𝑧) is the depth-dependent sound speed and 𝑧𝑠	denotes the depth of the source. 𝑝	is known 

as the ray parameter, or horizontal slowness, which is constant along a given ray path in a range-
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independent propagation environment, and 𝜂(𝑧) is known as the vertical slowness on the medium 

(Cornuelle, 1985; Frisk, 1994; Shearer, 1999). 

 

 
Figure 2.3: Schematic diagram demonstrating the repositioning of events using 
the double-difference: (a) using Eqs. 2.4 and 2.5, (b) assuming a homogenous 
environment using Eqs. 2.9 and 2.10. 
 

 
2.2.3 Double-difference equations for a homogeneous 
environment 

 
 It is possible for an environment to be range dependent over long distances (e.g., on the 

order of tens of kilometers between an event cluster and receiver), but still be treated as effectively 

homogenous over the region connecting two consecutive events (e.g., tens of meters for 

consecutive events detected from a moving source). Further simplifications in Eqs. 2.4 and 2.5 can 

be then made by assuming that the sound speed gradients are effectively identical inside the spatial 

region containing events 𝑖	and 𝑗. Equations 2.4 and 2.5 then reduce to  

𝜕∆𝑇+-
,.

𝜕𝑅 Δ𝑅,. +
𝜕∆𝑇+-

,.

𝜕𝑧 Δ𝑧,. = M∆𝑇+-
,. N

/012
− M∆𝑇+-

,. N
/34

 

(2.9) 

𝜕∆𝜃+-
,.

𝜕𝑅 Δ𝑅,. +
𝜕∆𝜃+-

,.

𝜕𝑧 Δ𝑧,. = M∆𝜃+-
,. N

/012
− M∆𝜃+-

,. N
/34
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(2.10) 

where the derivatives above are the average of the derivatives evaluated at the locations of events 

𝑖	and 𝑗. Note that Eqs. 2.10 and 2.11 now solve for Δ𝑅,. 	and Δ𝑧,., the adjustments in range and 

depth separation between events 𝑖	and 𝑗 (Fig. 2.3b), instead of Δ𝑅,, Δ𝑧,, Δ𝑅., and Δ𝑧., which 

adjust the range and depth of each event individually, as seen in Fig. 2.3a. This simplification 

reduces the number of variables in Eq. 2.6 from 2𝑁	to 2(𝑁 − 1) and provides an option for Eqs. 

2.9 and 2.10 to be solved independently from other event pairs. The movements of a source can 

therefore be estimated one event pair at a time, instead of having to solve for the relative position 

of each event in the entire track all at once, as would be the case for the full “inhomogeneous” 

problem.  

 For each pair of events there are two equations (Eqs. 2.9 and 2.10) and two unknowns 

(Δ𝑅,. 	and Δ𝑧,.), so a minimum of two shared ray paths between the model and the measurements 

is required for every iteration. If this requirement is not met, the system becomes under-determined 

and the separation between the pair of events cannot be determined. This method therefore requires 

that pairs of events occur close enough together in space for them to share similar ray paths.  

 It is possible for the model and the measurements of an event pair to share more than two 

ray paths in common. In this case, the system becomes over-determined, which gives an option to 

solve the system using only Eq. 2.9, ignoring the RDEA elevation angle measurements. This 

approach is defined here as the “RTOA-only” double-difference, as opposed to the “full” double-

difference approach that uses the RDEA measurements. Unless otherwise specified, subsequent 

use of the term double-difference method below refers to the full reformulated double-difference.		
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 2.2.4 Error estimates for double-difference computations 
 
 Error estimates for double-difference computations can be computed using bootstrap or 

jackknife resampling of residual values, or singular-value decomposition (SVD; WE). The small 

numbers of events used in this paper makes the use of the SVD approach straightforward and 

practical (Press, 1992). The 𝑀 × 2(𝑁 − 1) matrix 𝐆 defined in Eq. 2.6 has a SVD of 𝐆 = 𝐔𝚲𝐕5, 

where 𝚲	is a diagonal matrix of singular values, 𝐔	is an 𝑀 ×𝑀	matrix with orthogonal columns, 

and 𝐕	is a 2(𝑁 − 1) × 2(𝑁 − 1) matrix with orthogonal columns.  

 Mimicking the notation of WE, the error estimate 𝜎, of the 𝑖6(	component of the vector 𝐦	

in Eq. 2.6 becomes  

𝜎, = f𝐶,, 	 ∙ 	𝜎4# 

(2.11) 

where 𝐶,, is the 𝑖6( diagonal element of the covariance matrix 𝐂 = 𝐕𝚲7#𝐕5, and 𝜎4# is the variance 

of the final residuals (elements of 𝐝 in Eq. 2.6)  

𝜎4# =
1

2𝑁 − 3 i (𝑑8 − �̅�)
#(%7")

8;"

 

(2.12) 

where �̅� is the mean of 𝐝 (WE). 

 In the full case where both RTOA and RDEA measurements are made (and thus the 

components of d have different units), Eq. 2.12 is computed independently for the RTOA and 

RDEA residuals, and then each row of 𝐆 is rendered unitless by dividing it by the appropriate 

value of 𝜎4,=5>? or 𝜎4,=@A?. The SVD is performed, and Eq. 2.11 then reduces to 𝜎, = k𝐶,,. 
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2.3 Methods 
 

2.3.1 Equipment 
 
 Acoustic data were collected on the mid-frequency noise array (MFNA), which was 

designed and built by the Marine Physical Laboratory (MPL) at the Scripps Institution of 

Oceanography (Fig. 2.4). This drifting vertical array consists of 128 elements with 0.1m spacing 

(7.5kHz half wavelength), creating an aperture of 12.7 m. Vertical inclinometers were attached on 

the top and bottom elements of the assembly to monitor the array tilt. Data from each channel were 

sampled at 25kHz and stored autonomously with 16-bit resolution. The system also had the 

capability of transmitting data via an 802.11 wireless connection close to a monitoring vessel.  

 An ITC-2040X acoustic source built by International Transducer Corporation (ITC, Santa 

Barbara, CA) was used as a sound source during the experiment. It was programmed to produce 

one second long, frequency-modulated (FM) linear sweeps from 3 to 9kHz at 140dB re 1	µPa at 

1m, which were repeated every second. A depth sensor attached to the source recorded the depth 

of the tow to within 1-m resolution once every 30 s.  
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Figure 2.4: Diagram of the Mid-Frequency Noise Array (MFNA) deployment 
configuration. 
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2.3.2 Experiment 
 
 The MFNA was deployed at 330 m depth off the coast of San Diego, CA, in a region of 

flat bathymetry 4 km deep. The deployment occurred at 22:00 UTC on February 17, 2014 at 31.72° 

N and 122.12° W and was recovered at 14:00 UTC on February 19 at 31.7° N and 122.01° W, 

corresponding to a drift of ~10km. The inclinometer data on February 18 showed that the tilt at 

top of the array stayed fairly constant, just below 1 degree, whereas at the lower end of the array, 

the tilt showed slow fluctuations between 1 and 2 degrees throughout the day, suggesting a slight 

catenary.  

 Figure 2.5 shows the measured depth and range of the towed acoustic source with respect 

to the array, throughout the deploy- ment. The source was deployed at 32.12° N and 122.18° W, 

around 17:00 UTC on February 18, from R/V Melville. Between 17:00 and 19:00 UTC, it was 

lowered to almost 300 m depth, with pauses every 100 m. The source was then towed away from 

the array at a depth slightly less than 200 m, over about 7 km, from 20:00 to 22:00 UTC. After 

that, the source was lowered to almost 300 m depth and then brought back up to the surface, once 

again pausing every 100 m, until it was recovered shortly before 0:00 UTC on February 19, at 

32.17° N and 122.2° W. The drift of the array during the entire deployment of the acoustic source 

was about 1.5km. The horizontal range between the source and the array was assumed to be the 

distance between the array and the vessel. Since the source is being towed ~200 m behind the 

vessel, this assumption would yield an absolute offset between –200 m and 200 m from the true 

position, depending on the vessel’s heading. However, the inclination of the towed array cable 

remained steady throughout the tow, indicating that the relative range separations between towed 

array positions was the same as the relative range shift of the ship measured via the Global 

Positioning System (GPS).  
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 In addition to the FM sweeps broadcasted from the towed source, sperm whale clicks were 

opportunistically recorded over the same time period in the data collected on the vertical array. 

Occasional humpback whale and dolphin signals were also encountered.  

 

 
Figure 2.5: Depth (a) and range (b) trajectories of the towed acoustic source from 
the MFNA array during its deployment from 17:00 UTC on February 18, 2014 
to 0:00 UTC on February 19, 2014. 

 
 

2.3.3 Sound speed profile 
 
 Figure 2.6a shows the sound speed profile used in this analysis. Over the course of the 

experiment 15 CTD (conductivity temperature–depth) measurements were conducted to a depth 

of 2 km, from which an average sound speed profile was derived for the upper portion of the water 

column. These measured data are consistent with historical data for this region in February 

(Locarnini et al., 2013) and shows a minimum sound speed close to 500 m depth. The lower portion 

of the profile down to the seafloor was then extrapolated based on historical models. A decaying 

exponential function was used to smoothly transition from the measured profile to the extrapolated 

linear function.		
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Figure 2.6: Example of propagation modeling. (a) Sound speed profile used in 
this analysis. The top 2000 m are based on averaged CTD measurements 
conducted during the experiment. The lower portion of the profile down to the 
seafloor at 4000 m was extrapolated. (b) Example of simple ray-trace propagation 
modeling of a towed source event. Appendix 2.8.2 details how the best-fit 
position is estimated from ray paths that do not converge at a single point. 

 
 

2.3.4 Data processing: Measuring elevation angle and RTOA of 
rays 

 
 In order to identify and measure the RTOA and RDEA of individual ray arrivals, acoustic 

events (towed source signals or sperm whale clicks) are plotted as two-dimensional (2D) migration 

plots, which display arrival angle versus time. These plots are computed by applying time-delay 

and sum beam- forming to the data with an angular resolution of 0.1 degrees.  

 For the towed source, the FM nature of the signals it produces makes individual rays 

difficult to identify and RTOA measurements inaccurate if the migration plot is produced directly 

from the raw signal. Because the characteristics of these signals are known precisely, matched 

filtering was used to increase the SNR and yield more precise measurements (Skolnik, 1962). This 

process converts the FM signals from the source into single impulses, allowing RTOAs between 

rays to be measured more precisely. Figure 2.7 shows an example of a migration plot from a 
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matched filtered towed source signal. Note that for sperm whale clicks, it was not necessary to 

apply a matched filter as their signals are already broadband impulses.  

 The arrival times and angles for each ray path were measured by taking the local maxima 

of a manually selected region on the averaged migration plots.  

 

 
Figure 2.7: Migration plot of a matched filtered FM sweep signal from the towed 
source at 22:36 UTC on February 2014. Five main rays, arriving at distinct times 
and elevation angles, can be identified. 

 
 

2.3.4 Implementing the reformulated double-difference 
algorithm for a vertical array  

 
 The modeled RTOA and RDEA differences in the right- hand sides of Eqs. 2.9 and 2.10 

were computed using the ray-tracing program BELLHOP (Porter and Reiss, 1984; Porter, 1991). 

Eigenrays were computed using a fan of 3000 rays from –16 to 16 degrees, and a step size of 10 

m, yielding an estimated “miss” criteria of ~10 m for logging an eigenray. Each modeled ray is 

then matched with a particular measured ray, based on the smallest difference in elevation angle 
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between the model and measurement. If the minimum difference exceeded 1.5°, data associated 

with that measured ray path were discarded from the iteration.  

 The ray derivatives in Eq. 2.9 were computed analytically in terms of the ray parameter 

and the vertical slowness, using Eqs. 2.7 and 2.8. The ray derivatives in Eq. 2.10, while also having 

analytical solutions (see Appendix 2.8.1), were instead calculated numerically from BELLHOP by 

modeling sources with small offsets in range and depth from a reference position and obtaining 

the angular shifts. Equations 2.9 and 2.10 are iterated until the value of 𝐦	either converges or 

settles into an alternating cycle. In the latter case, the maximum value of 𝐦	obtained during the 

cycle is used to compute the final residuals 𝐝.  

 To generate a complete trajectory, the first set of events is assigned initial modeled 

positions (i.e., initial guess for the absolute position) based on either ray-tracing or the known 

position. For subsequent events in the track, the initial modeled positions are then based on the 

result of the previous double-difference computation, as discussed above. Positional errors for the 

double-difference estimates are computed as shown in Sec. 2.2.4.  

 Figure 2.6b shows a typical example where rays do not converge at a single point. The 

algorithm used to produce ray-tracing position estimates as well as their associated errors is 

presented in Appendix 2.8.2.  

 

2.4 Results 
 
 The vertical array double-difference algorithm is first tested on the towed acoustic source 

by comparing the results to the measured trajectory of the source during two distinct phases of the 

source deployment: a horizontal source tow and a vertical haul during the source recovery. For 

each case, trajectories obtained from individually ray-tracing each event in the track are also 
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shown. A comparison between the full double-difference and the RTOA-only approach is also 

presented for the vertical haul trajectory. Finally, the full double-difference technique is applied to 

a 25-min sperm whale track.  

	
Figure 2.8: Depth and range trajectories of the acoustic source for the horizontal 
tow, from to 21:10 to 21:30 UTC (a)(c), and the vertical haul, from 22:30 to 22:45 
UTC (b)(d), on February 18, 2014. 

 
 

2.4.1 Towed acoustic source 
 

2.4.1.1 Horizontal tow 
 

 Figures 2.8a and 2.8c display the depth and range, respectively, of the towed source over a 

20 min period, when the source is being towed from 47 to 48 km range from the array, bouncing 

between depths of 160 and 180 m. Figures 2.9a and 2.9c plot RTOA and elevation angle 

measurements, respectively, from nine events, which are 2-4 min apart, where three rays were 

identified in each event. The angular measurements show that ray 1 increases by 1 degree over the 

20 min period at a fairly constant rate, whereas rays 2 and 3 fluctuate over a 1-2 degree window 
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and do not show a clear trend. The RTOA of rays 2 and 3 both show a fairly steady increase of 8 

and 4 ms, respectively, with respect to ray 1, chosen here as the reference ray.  

 Figure 2.10 shows the corresponding double-difference results, plotted both in terms of 

absolute (Figs. 2.10a and 2.10c) and relative (Figs. 2.10b and 2.10d) depth and range (with the 

latter being defined relative to the location of the first event). Also plotted are the measured 

positions of the source, as well as localization estimates based on ray-tracing individual events. 

Vertical bars show the uncertainties associated with each technique. The initial modeled positions 

for the first pair of events were set to 46.8km in range and 150m in depth. Figures 2.10b and 2.10d 

illustrate how the ray-tracing results diverge from the measured range of the source, while also 

yielding larger uncertainties for both range (6100–500 m) and depth (610–40 m), as seen in Figs. 

2.10b and 2.10d. By contrast, the double-difference method accurately reconstructs the relative 

trajectory of the source within a few meters of the measured depth trajectory and less than 100 m 

for the range trajectory, with uncertainties approximately an order of magnitude smaller than for 

the ray-tracing.   

2.4.1.2 Vertical haul 
 

 Over this 20 min period the vessel was stationary at around 49.75km range, while hauling 

the source back toward the surface, from 280 to 200 m depth. Figures 2.8b and 2.8d show the depth 

and range trajectories, respectively, of the source between 22:28 and 22:40 UTC. Over that same 

period, Figs. 2.9b and 2.9d show the RTOA and elevation angles, respectively, measured from 

seven events, spaced in 2 min intervals. Four to five rays were identified for each event. The 

elevation angles of all the rays remain fairly steady over this time period, but the RTOA of rays 2 

to 5 (relative to ray 1) begin decreasing at a fairly constant rate around 22:32 UTC, which is when 
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the source begins its vertical ascent. The decrease of RTOA spans from about 5 ms to almost 20 

ms depending on the ray.  

 Figures 2.10e-2.10h show the measured, ray-traced, and double-difference position 

estimates for each event, in terms of both absolute (Figs. 2.10e and 2.10g) and relative (Figs. 2.10f 

and 2.10h) depth and range. The initial modeled positions for the first pair of events were set to 

49.75km in range and 270 m in depth. Figure 2.10f shows that both the double-difference and the 

ray-tracing produce accurate depth trajectories, within a few meters of the measured position, but 

Fig. 2.9h shows that ray-tracing is less accurate at reproducing the range trajectory, with biases on 

the order of 200 m, versus the 100 m for the double-difference. Even more striking are the relative 

uncertainties in position estimates between the two methods: ray-tracing produces uncertainties on 

the order of tens of meters in depth and hundreds of meters in range (Fig. 2.10g), in comparison 

with the uncertainty in depth and range (Fig. 2.10h) for the double difference results, which are an 

order of magnitude smaller.  

 

 
Figure 2.9: Elevation angle and RTOA measurements from the acoustic source 
signals for the horizontal tow, from to 21:10 to 21:30 UTC (a)(c), and the vertical 
haul, from 22:28 to 22:40 UTC (b)(d), on February 18, 2014. 



 30 

 
Figure 2.10: Depth and range trajectories of the towed acoustic source: double-
difference results (solid blue line), ray-tracing results (dashed purple line) and 
measured position (dashed yellow line). The top four plots show the horizontal 
tow and the bottom four plots show the vertical haul. The left and right columns 
show the trajectories in term of the absolute and relative positions respectively. 
Note that the vertical scale of (h) is different than the vertical scale of (g). 
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 Figure 2.11 compares the full double-difference results for the depth trajectory of the 

vertical haul with an RTOA-only double-difference computation. This particular scenario was 

selected for this comparison because it was one of the few situations where sufficient ray paths 

existed per event to provide a solution in terms of RTOA only. The results show that the RTOA-

only double-difference performs very similarly to the full double-difference approach, but fails to 

converge for the last few events of the trajectory, yielding an incomplete track. The uncertainties 

of the RTOA-only approach are also greater than the full solution.  

 

 
Figure 2.11: Absolute (a) and relative (b) depth trajectories of the towed acoustic 
source: “full” double-difference results (solid blue line), “RTOA-only” double-
difference results (solid turquoise line) and measured depth (dashed yellow line). 

 
 

2.4.2 Sperm whale track 
 
 RTOA and elevation angle measurements were taken from 15 sperm whale click events 

over a 25 min period at intervals of 1, 2, and 4 min. During its dive the whale’s inter-click interval 

(average time between clicks in a series of clicks) stayed nearly constant at around 0.7s. Figure 

2.12 indicates three consistent ray paths were identified throughout the track. The angular 

measurements show that ray 1 increases by about 1 degree at a relatively steady rate, whereas rays 

2 and 3 remain fairly constant. RTOA measurements of these rays show a clear overall increase of 

about 15–20 ms (relative to ray 1) throughout the track.  
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 The true position of the animal is unknown in this case, but results from applying the 

double-difference method can still be compared to ray-tracing estimates from the individual events 

in this track. The initial modeled positions for the first pair of events were set to 46 km in range 

and 350 m in depth, based on initial ray-tracing estimates.  

 The resulting trajectories (Fig. 2.13) show that the sperm whale remains at a fairly constant 

depth, between approximately 360 and 380 m, and travels from 45 to 47 km away from the ver- 

tical array. The double-difference and ray-tracing produce similar trajectories, but once again the 

double-difference approach yields relative uncertainties that are almost negligible (6–22 m in 

range and 1 m in depth) compared to ray-tracing uncertainties that are around 80–250 m in range 

and 5–20 m in depth.  

 Since the azimuth of the whale cannot be measured on the vertical array, the exact speed 

and heading of the whale cannot be calculated. However, a minimum and maximum possible speed 

can be estimated based on the geometry of the problem and assuming constant velocity. The 

minimum speed assumes zero heading, i.e., the animal is swimming directly away from the array, 

whereas the maximum speed assumes of heading of 90 degrees, with the whale swimming 

tangentially to the array from 45 to 47km. Taking into account the 90 m drift of the array during 

time period, the possible speed of the whale ranges from 2.4 to 17.9 knots.  
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Figure 2.12: (a) Elevation angle and (b) RTOA measurements from the sperm 
whale track, between 12:42 and 13:06 UTC on February 18, 2014. 

 
 

 
Figure 2.13: Sperm whale track between 12:42 and 13:06 UTC on February 18, 
2014: double-difference results (solid blue line) and ray-tracing results (dashed 
purple line). The left and right columns show the trajectories in term of the 
absolute and relative positions respectively. 
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2.5 Discussion 
 
 Applying the reformulated double-difference algorithm to data gathered from a field 

experiment shows how depth and range trajectories of both a towed acoustic source and a sperm 

whale can be reconstructed. This approach yields trajectories that are sometimes slightly offset 

from the absolute position of the source, but accurately reproduces the positions of acoustic events 

relative to each other (relative trajectory), as seen throughout Fig. 2.10. These double-difference 

trajectories are also shown to be more precise than those obtained using standard ray-tracing, with 

localization uncertainties an order of magnitude smaller than the ray-tracing uncertainties. The 

improved performance of the double-difference versus ray-tracing was particularly obvious for the 

range estimates of the controlled acoustic source, as seen in Figs. 2.10d and 2.10h.  

 Both the full and RTOA-only double-difference methods were tested on the same data (see 

Fig. 2.11). The outcome of this analysis demonstrates that both approaches perform similarly, as 

long as there are enough matching rays between the model and the measurements for a given pair 

of events. This requires not only that the ray structure between two events be similar, but also that 

these rays be identified and measured in the data. If this requirement is not met, the double-

difference equations become under-determined. This can be observed in Fig. 2.11, which shows 

an incomplete track for the RTOA-only double-difference that resulted from insufficient numbers 

of rays to permit a least-squares solution. Even though four to five rays were identified in this 

trajectory (see Figs. 2.9b and 2.9d), the results suggest only two of these rays were successfully 

matched with the model, which permitted solutions for the full double-difference but not for the 

RTOA-only approach. An advantage however, of the RTOA-only algorithm is that it does not need 

to repeatedly run BELLHOP to compute the angular derivatives in Eq. 2.11, making it less 

computationally expensive. The RTOA-only double-difference can therefore be a more efficient 



 35 

approach as long as, for each iteration, there are at least three matching rays between the model 

and the measurements of a given event pair. This is sometimes a challenging requirement, so the 

full double-difference approach, which requires only two matching rays and also produces smaller 

errors, is generally considered more robust.  

 The importance of matching ray arrivals between the model and the data is also clear 

whenever testing the robustness of the double-difference method to uncertainties in array tilt and 

perturbations in the sound speed profile. As long as sufficient rays are matched, the double-

difference appears to be fairly robust to uncertainties in array tilt and sound speed. However, small 

perturbations can sometimes cause the modeled ray structure to change substantially, reducing the 

number of matching rays between events and making the system under-determined. Another key 

factor that can have a major impact on the results is the initial modeled position of the source. 

Small changes (sometimes on the order of a few meters for the depth) in the initial modeled 

position can cause the ray structure to change enough for the double-difference to produce an 

incomplete track. For each track shown here, a series of trial initial event locations was tested to 

determine the positions that generated enough matching ray paths across the entire sequence of 

events.  

 These analyses, including the sensitivity to initial position, suggest that the depth-

dependent sound speed profile variability is an important factor when considering the robustness 

of the approach. Indeed, the depths analyzed here are all below 400 m, a region where the sound 

speed changes rapidly with depth, as seen in Fig. 2.6. The ray structure can therefore vary rapidly 

with depth in this shallow region, which would explain why the double-difference results are 

sometimes sensitive to small changes in initial modeled position and other perturbations such as 

array tilt and sound speed. If true, this hypothesis predicts that double-difference approaches could 
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be even more robust for deeper sources in the water column, where the variability of the sound 

speed profile is smaller. This depth-dependent environmental variability might also explain the 

similarity in performance between the double-difference and the ray-tracing results for the vertical 

haul, as seen in Figs. 2.10b and 2.10f.  

 The double-difference was implemented here assuming a locally “homogenous” 

environment (Eqs. 2.9 and 2.10), which permitted the separations between any given pair of events 

to be solved separately from all other events in a trajectory. Attempts to implement the 

“inhomogeneous” version of the problem (Eqs. 2.4 and 2.5), where the relative positions of all 

events in a trajectory are computed simultaneously in one single matrix inversion (WE), were 

unsuccessful because it was challenging to discover initial modeled positions that yielded the 

required number of matching rays throughout the entire sequence of events. Had we made RTOA 

or RDEA measurements between all possible combinations of events, and not just events adjacent 

in time, we might have made more progress with the inhomogeneous formation. However, Fig. 

2.10 shows that the homogenous formulation of the double-difference equations produced 

satisfying results, showing that shifts in source position on the order of a few meters could be 

measured accurately at ranges of nearly 50 km, even in a portion of the water column with a strong 

sound speed gradient.  

 Results also show that this method could track a sperm whale over 25 min, as seen in Fig. 

2.13. The double-difference analysis reveals that the animal is holding a fairly steady depth within 

10 m of its original position, while steadily increasing its range. Observations this precise would 

have been impossible with the high-uncertainty trajectory measurements resulting from standard 

ray-tracing. The estimated speed window of 2.4–17.9 knots spans known sperm whale swimming 

speeds found in the literature (Miller et al., 2004; Aoki et al., 2007). 
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 2.6 Conclusion 
 
 The double-difference method, initially developed to localize earthquakes by WE and 

recently applied to fin whales (Wilcock, 2012), has been reformulated here for localizing sources 

using multipath arrival information (RDEA and RTOA) detected on an array of sensors. This 

reformulation has been applied for long-range tracking of moving acoustic sources on an array 

whose aperture is short relative to the water depth.  

 Results show that relative depth and range trajectories of a towed acoustic source, located 

about 50 km from the array, can be accurately recovered using this method. Comparing these 

results to a standard ray-tracing algorithm found that the double-difference method yielded more 

accurate range trajectories of moving sources, and produced range and depth error estimates at 

least an order of magnitude smaller than ray-tracing approaches, even those that incorporated least-

square fits of RTOA data. This method was also used to track the movements of a sperm whale 

over a 25 min period, yielding information on an animal’s swimming and diving behavior.  

 At least two common ray paths must be identified between the model and the 

measurements for pairs of events, which can be challenging in an environment in which the sound 

speed changes rapidly with depth, but becomes feasible as more events become available to 

process, permitting RTOA and RDEA measurements from more combinations of events.  
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2.8 Appendix 
 

2.8.1 Ray derivatives for elevation angle 
 
 The analytical forms of the derivatives in Eqs. 2.5 and 2.10 are given by  

𝑑𝜃
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where 𝜏 is known as the delay time, 𝑝 is the ray parameters, g is the vertical slowness, and 𝑧B and 

𝑧2 are the receiver and source depths, respectively (Frisk, 1994; Shearer, 1999). In practice, the 

evaluation of these derivatives is vulnerable to numerical instabilities, so for practical applications 
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these derivatives were simply numerically evaluated by perturbing BELLHOP runs, as explained 

in Sec. 2.3.4.  

 

2.8.2 Ray-tracing localization algorithm 
 
 Acoustic events were localized based on a least-squares approach, which was equivalent 

to a maximum-likelihood approach for this dataset. For each individual event, measured elevation 

angles were first propagated back into the waveguide from the array using BELLHOP. A 

rectangular region was then selected around the most likely convergence zone and the eigenrays 

were computed for each point in the grid (depth interval: 1 m, range interval: 10 m). For each grid 

point that produced enough rays to be matched with the measurements, the log-likelihood function 

was computed based on the following expression:  
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where 𝜃, 	and 𝑇, are the elevation angle and travel time of the 𝑖6( ray, 𝑇0 is the travel time of the 

reference ray, 𝜎'#  and 𝜎5# are the estimated variances in the measured elevation angles and travel 

times, respectively, using the migration plots shown in Fig. 2.7. The depth and range of the event 

was then determined by locating the minimum of the log-likelihood over the search grid. The error 

was then computed by running the localization algorithm 50 times with random perturbations in 

both the elevation angle and RTOA measurements, following a normal distribution with variances 

𝜎'#  and 𝜎5#, respectively. The error bars for the ray-tracing displayed in Figs 2.10 and 2.13 are the 

standard deviations of the localization results from these 50 iterations.  
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Chapter 3 
 
 
Using anisotropic and narrowband ambient noise for 
continuous measurements of relative clock drift 
between independent acoustic recorders 
 
 Relative clock drift between instruments can be an issue for coherent processing of acoustic 

signals, which requires data to be time-synchronized between channels. This work shows how 

cross-correlation of anisotropic narrowband ambient noise allows continuous estimation of the 

relative clock drift between independent acoustic recorders, under the assumption that the spatial 

distribution of the coherent noise sources is stationary. This method is applied to two pairs of 

commercial passive acoustic recorders deployed up to 14 m apart at 6 and 12 m depth respectively, 

over a period of 10 days. Occasional calibration signals show that this method allows time-

synchronizing the instruments to within ± 1 ms. In addition to a large linear clock drift component 

on the order of tens of milliseconds per hour, the results reveal for these instruments, non-linear 

excursions of up to 50 ms that standard methods would not be able to measure, but are crucial for 

coherent processing. The noise field displays the highest coherence between 50 to 100 Hz, a 

bandwidth dominated by what are believed to be croaker fish, which are particularly vocal in the 

evenings. Both the passive and continuous nature of this method provides advantages over time-

synchronization using active sources.   
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3.1 Introduction 
 
 Most modern data acquisition systems use crystal oscillator clocks, which are subject to 

drift against a more precise reference time (e.g. GPS). Unlike land-based systems, the internal 

clocks of underwater instruments cannot be corrected for drift via GPS. In this case, data can be 

time-synchronized by making clock measurements before and after an instrument is deployed, and 

assuming a linear drift. This method is commonly used for passive acoustic localization using 

multiple acoustic recorders spaced on the order of kilometers apart (Sirovic et al., 2007; Simard 

and Roy, 2008). However, when conducting coherent processing (e.g. beamforming) on smaller 

arrays with receivers on the order of tens of meters apart, time-synchronization within a 

millisecond becomes necessary, and any potential non-linear clock drifts may not be negligible. If 

all channels are sampled by a central acquisition system, time-synchronization is not an issue since 

any potential drift is the same across all channels. In contrast, if array channels are sampled 

independently (i.e. separate instruments), relative clock drift between channels can be problematic. 

In this case, regular acoustic calibration signals, transmitted from a known location relative to the 

receivers, can be used to time-synchronize the data (Mathias et al., 2013). However, this approach 

can be logistically constraining since it requires additional equipment. Furthermore, active acoustic 

sources can impact bioacoustic measurements and violate local underwater noise regulations.  

 Multiple studies have demonstrated, theoretically and experimentally, that the cross-

correlation function between two receivers in a diffuse ambient noise field is related to the structure 

of the time-domain Green’s function between the two receivers (Lobkis and Weaver, 2001; 

Weaver and Lobkis, 2001; Campillo and Paul, 2003; Malcolm et al., 2004; Wapenaar, 2004; 

Weaver and Lobkis, 2005; Campillo, 2006; Gouedard et al., 2008). This property has been used 

in both seismology and underwater acoustics for inferring clock errors between instruments (Sabra 
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et al., 2005a; Sabra et al., 2005c; Thode et al., 2006; Stehly et al., 2007; Sens-Schonfelder, 2008; 

Hannemann et al., 2014; Hable et al., 2018), including non-linear clock drift between ocean-

bottom mounted seismometers (Gouedard et al., 2014). In order to obtain a high-quality Green’s 

function estimate, these methods require the noise field to be coherent over a large bandwidth and 

be isotropic in the plane of the two receivers (Sabra et al., 2005b). 

 Here, we experimentally demonstrate that ambient noise cross-correlations can be used to 

continuously track the clock drift of two acoustic receivers in a complex noise field that violates 

these ideal theoretical assumptions of isotropic broadband noise. Although the narrow coherent 

bandwidth and the directional characteristics of a local noise field might not allow estimating the 

Green’s function, the relative clock drift between the acoustic recorders can still be tracked, 

assuming the spatial distribution of the ambient noise sources is sufficiently stationary. From a 

single independent measurement of the time offset between the clocks, the two receivers are time-

synchronized throughout the deployment using the estimated clock drift. The data were collected 

on instrument pairs separated by up to 14m and at depths of 6 and 12 m in February 2018 in Laguna 

San Ignacio, a shallow-water lagoon on the Pacific coast of Baja California, Mexico. 

 

3.2 Theory 
 

 The cross-correlation function between two time series 𝑥"(𝑡) and 𝑥#(𝑡) of duration 𝑇 from 

sensors 1 and 2 respectively, is given by 

𝐶"#(𝜏) = p 𝑥"(𝑡)𝑥#(𝑡 − 𝜏)	𝑑𝑡
5

!
 

(3.1) 

where 𝜏 is the delay time.  
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 As demonstrated in previous work, in a broadband noise field that is isotropic around the 

sensors, the time derivative of their cross-correlation function can be approximated as  

𝑑𝐶"#(𝜏)
𝑑𝜏 ≈ −

𝛿(𝐿 𝑐⁄ + 𝜏)
𝐿 +

𝛿(𝐿 𝑐⁄ − 𝜏)
𝐿  

(3.2) 

where 𝐿 and 𝑐 are the separation and average sound speed respectively between sensors 1 and 2 

(Sabra et al., 2005a). The RHS terms of Eq. 3.2 result from both the positive and negative travel-

times ±	𝐿/𝑐 between sensors 1 and 2, and correspond to the forward and backward (causal and 

acausal) time-domain Green’s function. For a time-synchronized system this function is symmetric 

and yields two peaks at 𝜏 = ±	𝐿/𝑐. If a clock offset is present, it can thus be measured from the 

asymmetry of the two peaks about 𝜏 = 0 (Sabra et al., 2005c; Stehly et al., 2007; Gouedard et al., 

2014). 

 If the bandwidth of the correlated components of the spectrum narrows, and the distribution 

of sound sources becomes anisotropic around the receivers, the cross-correlation function will no 

longer have the dual-peak structure expected from Eq. 3.2. Nevertheless, in a noise field of 

constant bandwidth and directional properties that remain statistically stationary, any changes in 

the structure of the cross-correlation function over time should still reflect fluctuations in both the 

travel-time and the clock offset between the sensors. Thus, if the travel-time between the sensors 

remains constant, and as long as the exact clock offset can be measured at one point in time, the 

clock offset 𝜏3CC(𝑡) can then be tracked backwards and forward in time throughout the deployment 

from any given persistent feature 𝑝(𝑡) (e.g. peak) within the cross-correlation structure as 

𝜏3CC(𝑡) = 𝑝(𝑡) − 𝑝(𝑡!) + 𝜏! 

(3.3) 

where 𝜏! is the clock offset measured at reference time 𝑡!. 
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3.3 Methods 
 

3.3.1 Acoustic deployment 
 
 Acoustic data used in this study were collected in Laguna San Ignacio, a shallow coastal 

lagoon (25 m maximum depth) along the Pacific coast of Baja California, Mexico. The lagoon is 

approximately 30 km long with an average width of 5 km (Fig. 3.1). It is known primarily for 

being both a breeding and calving site for gray whales (Eschrichtius robustus) in the winter months 

of their annual migration. The area was designated a UNESCO World Heritage site in 1993 and 

ecotourism has since then developed into one of the main drivers of the local economy. In order 

to avoid any disturbance to the local marine environment, it is therefore preferable to avoid the use 

of active acoustic sources for underwater monitoring.  

 The lagoon’s dynamic acoustic environment arises from a variety of biological and 

physical sources. In addition to gray whale and bottlenose dolphins (Tursiops truncatus), the 

bioacoustic component of the ambient noise is dominated by snapping shrimp and fish (Dahlheim, 

1987). Small boat traffic (from both ecotourism and fishing), wind and tides also contribute to this 

complex and dynamic acoustic environment (Seger et al., 2015).  

 Two linear acoustic arrays were deployed off Punta Piedra (26.789160°N, 113.243530°W), 

the narrowest point of Laguna San Ignacio (Fig. 3.1). Each array consisted of two anchors 

connected by a 28 m segment of polypropylene rope, upon which were attached two acoustic 

recorders and an acoustic transponder. The recorders were separated by 14 m, with the transponder 

located halfway in between (Fig. 3.2).  

 The acoustic instruments were SoundTrap 300 STD (Ocean Instruments, New Zealand) 

that recorded 16-bit samples at 96 kHz (the data were subsequently downsampled to 9.6 kHz for 
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this analysis). The internal clocks of these instruments are OV-7604-C7 Low Power Clock 

Oscillator 32.768 kHz (Micro Crystal Switzerland). The SoundTraps were color-coded as Red, 

Orange, Blue and Green; henceforth, the two arrays will be designated as the Red/Orange (RO) 

and Blue/Green (BG) arrays. The transponders, acoustic release units model AR-60-E (Sub Sea 

Sonics), provided two-way communication with a portable ARI-60 transponder box and transducer 

using high frequency pings, centered around 38.462 kHz. The transponder pings provided 

independent measurements of clock drift at a few fixed times during the deployment. The BG array 

was also equipped with a HOBOware pressure & temperature logger (Onset, Massachusetts) that 

sampled data at 5 min intervals.   

 Both arrays were deployed on February 13, 2018 off a small fishing boat by dropping one 

anchor, traveling in the direction of the desired orientation, and dropping the second anchor once 

the line was taut, while taking GPS points at both drops. Note that in practice, the line may not 

have been perfectly taut, and the spacing of the SoundTraps may have been less than 14 m. 

Immediately after the deployment, the boat circled each array several times, creating an acoustic 

signature to estimate the instruments’ clock offset, separation and orientation on the seafloor, as 

described in Appendix A. The RO and BG arrays were deployed at approximately 6 and 12 m 

depth respectively and were separated by roughly 200 m from one another (Fig. 3.1). The arrays 

were recovered on February 22, 2018. 
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Figure 3.1: Deployment site. (a) Map of Baja California, Mexico, showing the 
location of Laguna San Ignacio. (b) Satellite image of Laguna San Ignacio. (c) 
Location of the deployment of the two arrays off Punta Piedra. The points on the 
map represent the GPS locations where the anchors from each array were 
dropped. Their color is representative of the closest SoundTrap. 

 

 

 

Figure 3.2: Schematic diagram of the acoustic arrays. Two SoundTrap 300STD 
sampling at 96 kHz (the data were subsequently downsampled to 9.6 kHz for this 
analysis) were attached to a 28 m polypropylene rope that had an anchor at each 
end. The acoustic recorders were separated by 14 m of rope, with a transponder 
placed halfway between the two, to provide occasional independent estimates of 
clock drift. 
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3.3.2 First-order time-synchronization (removing linear clock 
drift) 

 
 As shown in the results, the clock drift is dominated by a linear component. In order to 

measure and correct the small-scale non-linear clock drift, it is thus convenient to apply a first-

order time-synchronization by estimating and removing the linear clock drift and initial offset 𝜏!. 

Let the total clock offset be modeled as 

𝜏3CC(𝑡) = 𝜏&(𝑡) + 𝜏%&(𝑡) 

(3.4) 

where 𝜏&(𝑡) and 𝜏%&(𝑡) are the linear and non-linear components of the clock offset. The linear 

correction term 𝜏&(𝑡) can be defined as  

𝜏&(𝑡) = 𝑇4B,C6 ∗ (𝑡 − 𝑡!) + 𝜏! 

(3.5) 

where 𝑇4B,C6 is the linear clock drift rate.  

 The exact clock offset 𝜏! at the time of the deployment 𝑡! can be measured after the 

deployment of the instruments from boat engine noise, as shown in Appendix 3.8.1. For logistical 

reasons, the same measurement could not be made when recovering the arrays. However, an 

approximate clock offset (within the travel time between the instruments) 𝜏0D4 at time 𝑡0D4 at the 

end of the deployment can still be estimated by visually aligning the time series of any transient 

acoustic event picked up at both sensor. The relative linear clock drift rate between sensor pairs 

can then be approximated as  

𝑇4B,C6 =
𝜏0D4 − 𝜏!
𝑡0D4 − 𝑡!

 

(3.6) 
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 Let a “snapshot” be a short time series such that any clock drift is negligible over its 

duration. This first-order time-synchronization can then be applied to any two snapshots by time-

adjusting the non-reference snapshot by 𝜏&(𝑡) (Eq. 3.5). Removing this large linear component of 

relative clock drift between the instruments allows observation of the small (but significant in the 

context of coherent processing) residual non-linear drift across the entire deployment. This non-

linear component of clock offset can be expressed by combining Eqs. 3.3 and 3.4 as 

𝜏%&(𝑡) = 𝑝(𝑡) − 𝑝(𝑡!) − 𝑇4B,C6(𝑡 − 𝑡!) = 𝑝%&(𝑡) − 𝑝%&(𝑡!) 

(3.7) 

so that 𝜏%&(𝑡!) = 0 ≈ 𝜏%&(𝑡EFG). Here, 𝑝%&(𝑡) represents a persistent feature (e.g. peak) in the 

cross-correlation structure once the first-order time-synchronization has been applied. 

 This first-order time-synchronization also provides important practical advantages of 

enabling shorter cross-correlation snapshots when processing data in bulk. Indeed, if two snapshots 

are poorly time-synchronized, longer-duration snapshots are necessary in order to capture time-

overlapped data and obtain a meaningful cross-correlation function. By allowing shorter snapshots, 

this first-order time-synchronization reduces computational cost and permits time averaging over 

more snapshots, which reinforces the coherent contribution of the noise spectrum. 

 

3.3.3 Weighted cross-correlation of ambient noise field 
 
 The cross-spectral density of a signal is defined by 

𝐺"#(𝑓) = 𝐸[𝑋"∗(𝑓)𝑋#(𝑓)] 

(3.8) 

where 𝑓 is the natural frequency, 𝑋" and 𝑋# are the Fast Fourier Transforms (FFT) of the time 

series 𝑥" and 𝑥#, and * denotes the complex conjugate. Here, the operator 𝐸 denotes the expected 
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value. Assuming the signal is ergodic, an estimate 𝐺|"#(𝑓) of 𝐺"#(𝑓) can be obtained by time 

averaging 𝑋"∗(𝑓)𝑋#(𝑓) over 𝑁 snapshots. The cross-correlation function (Eq. 3.1) can be computed 

using the inverse Fourier Transform of 𝐺"# 

𝐶,.(𝜏) = p 𝐺"#(𝑓)𝑒,#ICJ	𝑑𝑓
K

7K
 

(3.9) 

 In order to emphasize frequency components that are highly correlated across the two 

sensors, the integrand in Eq. 3.9 can be weighted by  

𝜓(𝑓) =
|𝛾�"#(𝑓)|#

�𝐺|"#(𝑓)�[1 − |𝛾�"#(𝑓)|#]
 

(3.10) 

where 𝛾�"# denotes the estimated coherence at a given time between the two channels as a function 

of frequency 

𝛾�"#(𝑓) =
𝐺|"#(𝑓)

k𝐺|""(𝑓)𝐺|##(𝑓)
 

(3.11) 

and 𝐺|"" and 𝐺|## are the estimated auto-spectral densities of 𝑥" and 𝑥# respectively. The coherence, 

whose magnitude lies between -1 and 1, must be estimated by time averaging over multiple 

snapshots because the coherence of a single FFT snapshot between sensors is always 1. As seen in 

Eq. 10, the weight factor 𝜓(𝑓) ranges from 0 to infinity, based on the estimated coherence of that 

frequency component.  

 The time averaged coherence is then used to compute the final weighted cross-correlation 

for each individual snapshot  

𝐶"#
$ (𝜏) = p 𝜓(𝑓)𝑋"∗(𝑓)𝑋#(𝑓)𝑒,#ICJ	𝑑𝑓

K

7K
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(3.12) 

 This approach has been shown to be a maximum-likelihood estimator for determining time-

delay between two signals (Knapp and Carter, 1976). Equation 3.12 allows the cross-correlation 

procedure to adaptively and automatically adjust its effective bandwidth to create the sharpest 

possible maxima in the time-domain cross-correlation estimate.  

 

3.3.4 Stacked cross-correlation plots 
 
 In order to observe and measure the non-linear clock drift, it is convenient to stack the 

cross-correlation functions with respect to absolute time. First, the coherence is estimated by (1) 

downsampling the data from 96 kHz to 9.6 kHz, (2) dividing 10 minutes of data from each receiver 

into non-overlapping 1-sec snapshots (𝑁 = 600), (3) applying the first-order time-

synchronization, (4) computing the 16384-point FFT of each snapshot (9600 samples, zero-

padded), and (5) applying Eq. 3.11. The clock drift is assumed to be negligible over this 10-minute 

window after the first-order linear correction. 𝐶"#
$ (𝜏) (Eq. 3.12) is then computed for every FFT 

snapshot pair over that same 10-minute interval, using the estimated coherence for that window. 

 One of the dynamic aspects of Laguna San Ignacio’s acoustic environment is the presence 

of loud transient signals from boat noise and whales. Because the directional properties of these 

signals are non-stationary, the cross-correlation of snapshots containing such transients is not 

representative of the stationary component of the noise field, and thus a single strong transient 

within a 10-minute window can destroy the valid cross-correlation structure. In order to remove 

these outliers, the median of M adjacent estimates of 𝐶"#
$ (𝜏), evaluated at each lag point 𝜏 is 

computed to obtain 𝐶�"#
$ (𝜏). This differs from most previous work, in which standard averaging is 

usually applied. Here, 𝑀 = 600 with a 50% overlap is used, meaning 𝐶�"#
$ (𝜏) is estimated every 5 
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minutes over a 10-minute time window. The midpoint of each window is the absolute time 

associated with each measurement of 𝐶�"#
$ (𝜏). In principle, the number of snapshots used to 

estimate the coherence 𝑁 and the median of the cross-correlation 𝑀 can differ, but in this case they 

are both set to cover 10 minutes. 

 In order to emphasize the primary cross-correlation peak when plotting results over long 

periods of time, referred to here as “stacked” cross-correlation plots, each estimate of 𝐶�"#
$ (𝜏) is 

normalized by its maximum value such that 

𝐶�"#
$,D(𝜏) 	=

𝐶�"#
$ (𝜏)	

maxK𝐶�"#
$ (𝜏)	L

 

(3.13) 

 

3.3.5 Measuring the non-linear clock drift 
 
 The precision required by the separation of the instrument pairs is such that any non-linear 

clock drift – on the order of milliseconds – is non-negligible and needs to be measured (Eq. 3.7). 

An estimate �̂�%&(𝑡) of 𝑝%&(𝑡) can be determined from the time delay associated with the maximum 

value of each 𝐶�"#
$ (𝜏). Additional outliers (e.g. cross-correlation side peaks) are manually removed 

by visually inspecting scatter plots of �̂�%&(𝑡). Finally, in order to estimate a continuous function 

𝑝%&(𝑡) function, a cubic smoothing spline (‘csaps’ MATLAB function from curve fitting toolbox) 

is applied to the remaining points of �̂�%&(𝑡). The spline algorithm’s interpolation interval is 3 min 

and the smoothing parameter for the spline fit was 𝑃 = 0.9999 (𝑃 = 0 being a least-squares 

straight line fit, and 𝑃 = 1 is the natural cubic spline interpolant). The resulting function can then 

be used as 𝑝%&(𝑡) to estimate the non-linear clock offset function 𝜏%&(𝑡) (Eq. 3.7) and the total 

offset function 𝜏3CC(𝑡) (Eq. 3.4). 
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3.3.6 Time-synchronization validation using transponder pings 

 
 It is important to confirm that the observed fluctuations of the cross-correlation structure 

over time are a result of clock drift and not changes in the spatial distribution of the ambient noise 

sources – or at least that any effect of potential redistributions in the noise field on the correlation 

structure are negligible in comparison to the effects of non-linear clock drift.  

 The transponders from each array (Fig. 3.2) provide an independent means of validating 

the clock drift measurements using ambient noise cross-correlation. Indeed, once the time-

synchronization has been applied, the time delay between the transponder pings should remain 

constant throughout the deployment. If the arrays were deployed in a perfect line, the time delay 

between pings should be exactly zero since the transponder would be equidistant from each 

acoustic recorder. Even if an imperfect deployment had placed the transponder slightly closer to 

one of the recorders, a successful time-synchronization should yield constant time delays between 

pings throughout the experiment. 

 The transponders from each array were activated on four distinct occasions during the 

experiment. Whenever a transponder was pinged, it would transmit back a series of 5-10 pings at 

38.462 kHz that could be detected by the acoustic recorders of the corresponding array. For each 

individual transponder ping, the time delay was measured manually from the signal envelopes 

(Hilbert Transform) of the time-synchronized time series. The median time delay was then 

computed for each series of pings, as well as the interquartile range (IQR) between the 25th and 

75th percentiles.  
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3.4 Results 
 
 Figure 3 displays examples of normalized stacked cross-correlations (Eq. 3.13) and 

coherence (Eq. 3.11) for the RO array over 24 hours following the reference time 𝑡!. Figures 3.3a 

and 3.3b show the stacked cross-correlations before and after applying the first-order time-

synchronization. The cross-correlation structure in Fig. 3.3a shifts over time on the order of tens 

of milliseconds per hour, according to the total relative clock drift 𝜏3CC(𝑡). Once the linear 

component of clock drift has been removed (Fig. 3.3b), the peaks’ timing only shifts by about 10 

ms over this time window: this residual shift is related to the non-linear clock drift 𝜏%&(𝑡). 

 The cross-correlation structure shows two distinct regimes. During nighttime, between 

approximately 19:00 and 5:00 the next day, the cross-correlations can be described as a series of 

evenly spaced peaks whose amplitudes decay symmetrically about a main peak. In the daytime, 

the same main peak can still be observed most of the time, but the side lobes are less regular over 

time, giving the cross-correlations a less predictable and noisier structure. These two distinct 

regimes can be related to the structure of the stacked coherence (Fig. 3.3d). The 50-100 Hz band 

shows consistent evidence of coherence throughout the entire 24-hour time window. However, the 

nighttime coherence becomes much higher and extends up to 400 Hz, better defining the cross-

correlation peaks. This same 24-hour cycle persists in both the cross-correlation and coherence 

structures throughout the entire deployment for both arrays. A one-minute spectrogram of the 

transient impulsive signals that increase the coherence in the 50-400 Hz band during nighttime is 

shown in Fig. 3.4. Croaker fish (Sciaenidae family) are believed to produce these pulses, as further 

discussed in Sec. 3.5.2. 

 In this dataset, taking the median of cross-correlation snapshots 𝐶"#
$ (𝜏) rather than their 

average is shown to improve the sharpness of the cross-correlation main peak during the daytime, 
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when the coherence is lower. On the other hand, little difference is noticeable during nighttime 

when the coherence is high. To illustrate the difference, Fig. 3.3c shows an example of averaging 

the snapshots 𝐶"#
$ (𝜏) in the stacked cross-correlations. 

 Table 3.1 lists the clock offset 𝜏! measurements and the resulting linear relative clock drift 

rate 𝑇4B,C6 estimates between the two instruments, for each array. The GB array is shown to drift 

linearly by 46.22 ms/h, which is about three times more than the drift of the RO array, which drifts 

by 14.54 ms/h. 

 

Figure 3.3: Stacked cross-correlations and coherence for the RO array over 24 
hours following the reference time (𝑡! = 02/13	10: 50) with (a) no time-
synchronization, (b) first-order time-synchronization (removing linear 
component of clock drift and initial offset). Panel (c) is the same as (b) but 
averaging the snapshots 𝐶"#

$ (𝜏) instead of taking the median. Panel (d) displays 
the squared magnitude of the coherence.  
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Figure 3.4: Spectrogram of the transient impulsive signals that increase the 
coherence in the 50-400 Hz band during nighttime. These are believed to be from 
a fish species of the Sciaenidae family. The spectrogram was plotted using the 
down-sampled data at 9.6 kHz, with 75% overlapping FFT windows of length 
4096 samples. 

 

Table 3.1: Clock offset measurements and calculated linear clock drifts rates for 
each array. 

 

Array 𝑡! (Date/time) 𝜏!	(s) 𝑡0D4 	(Date/time) 𝜏0D4 	(s) 𝑇4B,C6	(ms/h) 

RO 02/13 10:50 -0.578 02/22 16:00 -3.794 -14.54 

GB 02/13 10:35 -1.343 02/22 16:00 -11.577 -46.22 

 

 After removing the dominant linear clock drift component, the small-scale non-linear 

fluctuations can be observed from the noise cross-correlation structure over longer periods of time, 

as seen in Fig. 3.5, which shows stacked cross-correlations for both arrays over the entire 

deployment. These fluctuations are different between the two arrays. The RO array shows a larger 

excursion of up to about 50 ms, while the GB array shows smaller fluctuations between ± 20 ms. 

 Using the RO array as an example, Fig. 3.6 shows the steps involved in estimating the 

continuous interpolated fit for 𝑝%&(𝑡). The resulting modeled function follows the cross-



 56 

correlation peak to within a millisecond. Figure 3.7 then shows the non-linear component of clock 

offset 𝜏%&(𝑡) for both deployments, which is computed from 𝑝%&(𝑡) using Eq. 3.7. 

 

 

Figure 3.5: Stacked cross-correlations for the (a) RO and (b) GB arrays over the 
entire deployment, after the first-order time-synchronization. The visible shifts 
of the ambient noise cross-correlation structure are related to the non-linear clock 
drift 𝜏%&(𝑡).  
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Figure 3.6: Estimation of 𝑝%&(𝑡) for the RO array, overlaid over the stacked 
cross-correlations (same as Fig. 3.3a). Outliers in �̂�%&(𝑡) (blue circles) are 
manually removed before applying a spline interpolation to the remaining data 
points of �̂�%&(𝑡) (black circles), to obtain a continuous function for 𝑝%&(𝑡) (red 
line). 

 

 

Figure 3.7: Non-linear clock offsets 𝜏%&(𝑡) for both the RO and GB arrays 
obtained by applying Eq. 3.7 to the interpolated 𝑝%&(𝑡) functions. The 
transponder ping measurement times are also plotted as vertical dashed lines. 
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 Measurements of the transponder ping time delays were performed four times (shown in 

Fig. 3.7) during the experiment. Figure 3.8 shows that for all measurements the time delays of the 

transponder pings remain within ± 1 ms, even though the non-linear time drift show time offsets 

from –20 to 70 ms. The transponder pinrg measurements thus independently confirm the 

predictions of the ambient noise time-synchronization. Additionally, the fact that the transponder 

ping time delays lie so close to zero confirms that the transponders of each array were indeed 

nearly halfway between the two instruments. A detailed list of the transponder ping measurements 

is shown in Appendix 3.8.2. 

 
Figure 3.8: Median time delays of transponder pings from each array measured 
on four different days throughout the experiment. These measurements were 
made after the full time-synchronization was applied. The error bars represent 
the IQR between the 25th and 75th percentiles of each series of pings from which 
the median was computed. 
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3.5 Discussion 
 

3.5.1 Evaluation of ambient noise time-synchronization 
 
 The approach presented in this paper relies on one main assumption: that the spatial 

coherence of the ambient noise field remains stationary over time. This assumption requires that 

the travel time between instruments remains steady, and that the statistical angular distribution of 

the sources that comprise the ambient noise field, is also stationary. 

 The travel time is dependent on both the separation 𝐿 of the instruments, and the average 

sound speed 𝑐. Here, the instruments are assumed not to move since they are weighted and lying 

on the bottom. This assumption has been verified in subsequent datasets by checking the 

instrument separation with boat noise (as shown in Appendix 3.8.1) several times throughout the 

deployment. Additionally, for closely spaced instruments, changes in sound speed have negligible 

impact on the travel time between instruments. For example, at 20°C a 1°C change in seawater 

temperature causes approximately a 0.3% change in sound speed, which results in a change of 

travel-time of 0.03 ms between two sensors 14 m apart (Mackenzie, 1981). In this case, the 

temperature fluctuations during this experiment (Appendix 3.8.3) will have a negligible effect – 

less than 0.1 ms – on the travel-time.  

 However, the assumption that the angular distribution of the ambient noise sources remains 

stationary raises the question as to whether the observed shifts in 𝜏%&(𝑡) are a result of clock drift 

alone, or changes in the spatial distribution of sources themselves. The independent transponder 

ping time delay measurements provide the most compelling evidence that the underlying coherent 

ambient noise field is sufficiently stationary to restrict any shifts in time delay to within ±1 ms. 

For example, if the bulk of the ambient noise sources arrive broadside of the 14 m array, then the 

distribution shift must be less than ±6.2° in order to generate a shift of less than ±1 ms in the 
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ambient cross-correlation peak.  Were the bulk of the ambient noise sources arriving endfire of the 

array, then the distribution shift must be less than ±27° to generate less than a ±1 msec shift. Any 

changes in the noise source spatial distribution beyond those angles would have caused shifts in 

the time delays of the pings throughout the deployment. The transponder ping measurements 

thereby confirm that any changes in the source angular distributions are sufficiently small such 

that the observed changes in the structure of the cross-correlation are dominated by clock drift, 

and not a redistribution of the noise sources. 

 The magnitude of the non-linear clock drift (Fig. 3.7) provides additional evidence that the 

observed non-linear time offsets arise from clock drift, and not redistributions of ambient noise 

sources. Assuming the instruments are 14 m apart and a sound speed of 1500 m/s, physically 

implies all time-delays must lie within the range ± 9.33 ms. Figure 3.7, by contrast, demonstrates 

that the time offsets in 𝜏%&(𝑡) easily exceed these values, and thus instrumental clock drift must 

be responsible for the majority of the drift observed, and not shifts in the spatial distribution of the 

noise sources. Comparing 𝜏%&(𝑡) between the two arrays also shows no temporally correlated 

shifts, which would have been expected if changes in the ambient noise field were responsible for 

the observed shifts.  

 
3.5.2 Origin of coherent ambient noise signal 

 
 The results show that throughout the deployment, noise components between 50 and 100 

Hz tend to be highly coherent (Fig. 3.3d). Note that this bandwidth is coherent with the spacing of 

the peaks in the stacked cross-correlation plots (Fig. 3.3b for example), which is between 10 and 

15 ms. In the evenings, the coherence increases in both magnitude and bandwidth, extending these 

daily events to up to 400 Hz, and permitting the adaptive cross-correlation function (Eq. 3.12) to 

sharpen the cross-correlation peaks (Figs. 3.3a-c). 
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 The spectrogram (Fig. 3.5) reveals that a cacophony of short pulses dominate the ambient 

noise field at these specific times and bandwidth. Despite being at lower frequencies than what is 

described in the literature, based on their regular daily cycle, these pulses are believed to be fish 

calls from the Sciaenidae family, commonly known as the croakers (Locascio and Mann, 2011; 

Erisman and Rowell, 2017; Rice et al., 2017). Laguna San Ignacio is inhabited by four species 

from this family: Bairdiella icistia, Menticirrhus undulates, Umbrina roncador and Umbrina xanti 

(Barjau Gonzalez, 2008), but it is not known which one(s) of these species are producing the 

measured pulses.  

 In Sabra, et al. (2005c), croaker fish were also found to be the main source of coherent 

ambient noise. Cross-correlations were averaged over an 11 min time window between 300-700 

Hz. The omnidirectionality of the field and the coherence at higher frequencies allowed extracting 

features of the Green’s function itself. In contrast, because most of the coherent energy presented 

here is at lower frequencies and a narrower bandwidth (50-100 Hz), the ambient noise cross-

correlation does not allow extracting features of the Green’s function. However, it is shown here 

that the noise structure is sufficient to infer clock drift information to within ±1 ms, over long 

periods of time.  

 The assumption that fish with a diel acoustic activity pattern are producing these pulses 

raises the question whether there is a diel cycle to their spatial distribution. However, a Fourier 

analysis of 𝜏%&(𝑡) shows no sign of a regular oscillation in the clock offset, suggesting there is no 

diel oscillation present in the ambient noise spatial distribution. Combined with the independent 

transponder ping measurements, this observation provides further evidence that any potential 

changes in the angular distribution of these noise sources is sufficiently small to restrict changes 

in the cross-correlation peaks to ±1 ms.  
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3.5.3 Signal processing parameters for the ambient noise cross-
correlation 

 
 Previous literature has shown that averaging the cross-correlation function over longer 

periods of time can improve the Green’s function estimates, since longer averaging times suppress 

the uncorrelated components while making the sampled field more isotropic (Sabra et al., 2005b). 

However, averaging for longer than 10 minutes did not show improvements in the results of this 

study, in terms of coherent bandwidth or timing precision.  

 Instead of averaging the cross-correlation functions over multiple snapshots as was done 

in similar studies, taking the median was found to yields better results (Fig. 3.3). This approach 

was particularly effective during the daytime when the coherence is lower and there is more 

potential to pick up loud transient outliers that are not representative of the stationary noise field. 

 In this specific study the improvement in performance of the weighted cross-correlation 

(Eqs. 3.9 and 3.10) over standard band-pass filtering was negligible. However, this approach had 

the practical advantage of allowing to the cross-correlation frequency bandwidth to be chosen 

automatically and adaptively, removing the need for altering the bandwidth manually to optimize 

coherence in the noise field. 

 
 3.5.4 Potential causes of clock drift 
 
 The measured relative clock drifts of the SoundTrap pairs are very high, and would make 

coherent processing impossible within minutes of being deployed. The large predominant linear 

clock drift of the instruments can be attributed to small manufacturing variations in the oscillating 

crystals that give each clock its unique linear drift rate. Indeed, subsequent deployments show the 

same value of 𝑇4B,C6 for a given instrument pair. 
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 The exact cause of the smaller-scale non-linear fluctuations remains unknown, but is most 

likely caused by fluctuations in the internal temperature or pressure of the instrument. Note that 

certain modern oscillator circuits (known as TCXOs) use temperature compensation to minimize 

temperature-related effects on the speed of the clock, but this was not the case of those of the 

SoundTraps used in this study. 

 However, relative clock drifts do not show any sign of correlation between the 

simultaneous deployments of the RO and GB arrays (Fig. 3.7), which rules out the possibility that 

changes in the water temperature are driving the clock fluctuations. Furthermore, the temperature 

record from the BG array is not correlated with observed relative clock drift (see Appendix 3.8.3).  

 

3.6 Conclusion 
 
 Ambient noise cross-correlations in Laguna San Ignacio permit tracking the clock drift 

between two acoustic recorders to within ±1 ms, despite the fact that the coherent part of the 

ambient noise field is narrowband and is anisotropic.   Most coherent components of the noise 

field are shown to be transient pulses, which are particularly dominant daily from 18:00 to 

midnight.  Fish from the croaker family are believed to be the dominant source of this coherent 

noise.  

 This analysis assumed that the spatial distribution of the sources generating the ambient 

noise field between 50 and 100 Hz remained stationary throughout the experiment.  Independent 

timing measurements from a transponder on both arrays confirmed that changes in the structure of 

the ambient noise cross-correlation were dominated by nonlinear clock drift, and any changes in 

the angular distribution of the noise sources were less than 27° for endfire sources and less than 

6.2° for broadside sources. 
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3.8 Appendix  
 

3.8.1 Using boat noise to determine clock offset and 
instruments separation 

 
 After the deployment of each array, the boat was driven in a circle of about 100 m radius 

around the deployment location. Figure 3.9a shows the boat track after the GB array deployment 

as an example.  

 The exact clock offset between the instruments at the time of the boat circles is then inferred 

from cross-correlating snapshots of the boat noise. As the boat circles around the array, the time 

delay associated with the cross-correlation peak varies from its minimum to maximum values as 

it goes from one endfire of the array to the other. The time delay associated with the cross-

correlation peak of the boat track is shown in Fig. 3.9b, along with the time delay modeled based 

on the GPS track and the separation and orientation of the instruments. The mid-point between the 

maximum and minimum time delay represents the clock offset at that specific time. By trial and 

error, the exact clock offset can be found by adjusting the mid-point to 0, as is the case in Fig. 

3.9b.  

 The difference between the time delay maxima and minima corresponds to the travel time 

between the instruments. Based on the sound speed, the separation can then be computed. 

Measurements from subsequent years show that the instrument separation remains constant 

throughout these deployments.  

 In order to emphasize the boat noise in the cross-correlation, the data were band-pass 

filtered from 400 to 5200 Hz and the snapshots length was 0.5 s.  
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Figure 3.9: (a) GPS track of the boat circle around the GB array done 
immediately after its deployment and (b) time delay measured using boat noise 
cross-correlation (black dots) and modeled from the GPS track and separation 
and orientation of the instruments (colored circles). 

 

3.8.2 Transponder ping transmissions  
 
Table 3.2: Details for each transponder transmission (series of pings) used to 
validate the time-synchronization between the instruments. These 
measurements are plotted in Fig. 3.7. 

 

Array Date/time Median time delay (ms) IQR (ms) 

RO 02/13 10:45:50 -0.6 0.18 

RO 02/17 10:04:50 0.94 0.02 

RO 02/17 10:14:25 -0.16 0.11 

RO 02/17 10:20:20 0.64 0.04 

GB 02/19 11:19:45 0.84 0.25 

GB 02/19 11:27:20 -0.78 0.05 

GB 02/19 11:31:40 -0.66 0.27 

GB 02/16 15:11:20 0 0.06 
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3.8.3 BG array temperature record 
 

 
Figure 3.10: Temperature record measured at the GB array by the HOBOware 
sensor over the entire experiment. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 68 

Chapter 4 
 
 
Multi-target 2D tracking method for singing 
humpback whales using vector sensors 
 
 Acoustic vector sensors allow estimating the direction of travel of an acoustic wave at a 

single point by measuring both acoustic pressure and particle motion on orthogonal axes. In a two-

dimensional plane, the location of an acoustic source can thus be determined by triangulation using 

the estimated azimuths from at least two vector sensors. However, when tracking multiple acoustic 

sources simultaneously it becomes challenging to identify and link sequences of azimuthal 

measurements between sensors to their respective sources. This work illustrates how two-

dimensional vector sensors, deployed off the coast of western Maui, can be used to generate 

azimuthal tracks from individual humpback whales singing simultaneously. Incorporating acoustic 

transport velocity estimates into the processing generates high-quality azimuthal tracks that can be 

linked between sensors by cross-correlating features of their respective azigrams, a particular time-

frequency representation of sound directionality. Once the correct azimuthal track associations 

have been made between instruments, subsequent localization and tracking in latitude and 

longitude of simultaneous whales can be achieved using a minimum of two vector sensors. Two-

dimensional tracks and positional uncertainties of six singing whales are presented, along with 

swimming speed estimates derived from a high-quality track. 
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4.1 Introduction 
 
 Each winter, humpback whales (Megaptera novaeangliae) congregate in their respective 

breeding grounds in tropical waters around the globe. At these gatherings, males produce long 

sequences of structured vocalizations referred to as songs (Payne and McVay, 1971; Au et al., 

2006). Song is believed to play an important function in the mating system of humpback whales 

by signaling to females and mediating male-male interactions (Darling et al., 2006; Herman, 2017; 

Cholewiak et al., 2018).  Despite having been studied since the early 1970s, many aspects of 

humpback whale singing remain poorly understood and the exact way in which song mediates 

whale interactions is still unclear.  

 While the recent advancements of bioacoustic tags have allowed documenting fine-scale 

acoustic behavior of specific individuals in many marine mammal species (Schmidt et al., 2010; 

Goldbogen et al., 2014; Stimpert et al., 2020), tagging remains logistically expensive, yields low 

sample sizes and doesn’t always allow attribution of detected calls to the tagged whale. Passive 

acoustic localization and tracking is a complementary approach to tagging as it is non-invasive 

and allows addressing ongoing research questions on a larger scale (Noad et al., 2004; Schmidt et 

al., 2010; Stanistreet et al., 2013; Helble et al., 2015; Helble et al., 2016; Guazzo et al., 2017; 

Henderson et al., 2018). If few whales are present at a time, a network of widely spaced 

hydrophones can be used to track their position using time-of-arrival techniques on calls that are 

detected on at least three sensors (Schau and Robinson, 1987; Spiesberger, 2001). However, when 

large numbers of singing humpback whales are present, such as on their breeding grounds off 

Hawaii (Au et al., 2000), their songs dominate the ambient noise field. Because the overlap in time 

and in frequency hinders signal extraction from individual whales, conventional localization 

techniques (e.g., time-domain cross-correlation between sensors) become impractical. 
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 Developed during the second half of the 20th century, acoustic vector sensors were 

originally used in navy operations for detecting and localizing submarines, primarily through their 

use of DIFAR sonbuoys (Holler, 2014). In recent years, they have been developed into commercial 

recording packages and are used for a variety of passive acoustic monitoring applications (Greene 

et al., 2004; Raghukumar et al., 2020). In addition to measuring acoustic pressure like conventional 

hydrophones, vector sensors also measure particle motion, allowing them to estimate the dominant 

direction of travel of acoustic energy from a single point (D'Spain et al., 1991; D'Spain et al., 2006; 

Martin et al., 2016). This ability permits triangulation to localize acoustic sources using multiple 

vector sensors. In addition to requiring a minimum of only two sensors, this approach is also highly 

advantageous when compared to time-of-arrival techniques required by conventional 

hydrophones, as triangulation does not require precise time-synchronization between independent 

autonomous sensor packages. However, while triangulation is relatively straightforward to execute 

and automate in the presence of few sources producing stereotyped signals (Greene et al., 2004; 

Thode et al., 2012; Thode et al., 2021), it becomes challenging to apply when trying to track 

multiple non-stereotyped sources such as humpback whales.  

 Data from vector sensors can be processed in a variety of ways, including additive 

beamforming of the pressure and velocity channels (McDonald, 2004), or by multiplicative 

processing, where the pressure and velocity channels are multiplied together to model the acoustic 

intensity (D'Spain et al., 1991).  The speed of the latter approach makes it possible to display the 

dominant directionality of an ambient noise field as a function of time and frequency, a display 

that has been exploited many times and has recently been nicknamed an “azigram” when applied 

to biological studies (Thode et al., 2019). One of the key advantages of the azigram versus a 

conventional spectrogram is that it allows individual sources to be distinguished based on their 
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location. Another key metric, the acoustic transport velocity, also describes the directional 

properties of an acoustic field and can be computed using vector sensors. This quantity, which is 

later defined in further detail, gives insight into the spatial distribution of the acoustic sources 

generating an ambient acoustic field. It allows differentiation between directional sources such as 

a whale or a boat, and diffuse background ambient sound which arises from numerous 

simultaneous sources from multiple directions (D'Spain et al., 1991).  

 In this study we exploit the unique directional capabilities of vector sensors to track 

multiple singing humpback whales simultaneously, despite substantial overlap in their songs. We 

demonstrate this method on data collected off the coast of western Maui during the late breeding 

season in 2020, using modified DIFAR vector sensors (which measure horizontal particle velocity 

in two orthogonal directions) that enable two-dimensional (latitude and longitude) localization and 

tracking of whales. Section II presents the theory related to vector sensors relevant to this work, 

including the key metrics of dominant directionality and transport velocity. Section III gives an 

overview of the instruments, the deployment, and the demonstration dataset. Section IV details the 

tracking method along with examples and results illustrating the different steps of the algorithm. 

Finally, Section V presents tracking results for six whales, the track-derived swimming speed for 

one singer, and discusses the results as well as further potential applications. 

 

4.2 Vector sensor theory 
 
 Different quantities can be used to describe an acoustic field. The most prevalent metric is 

acoustic pressure, which is easily measured underwater with a conventional hydrophone. This 

scalar quantity represents the amount of compression between particles of the medium and is also 

the quantity measured by both terrestrial and marine mammal ears. However, measurements of 
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acoustic pressure alone do not suffice in fully describing the physics of an acoustic wave traveling 

through a point. Particle motion on the other hand is a vector that quantifies the movement of the 

particles as sound travels through the medium, expressed in terms of displacement, velocity or 

acceleration. Vector sensors are designed to measure both acoustic pressure and particle velocity 

along two or three orthogonal axes. 

The instantaneous acoustic intensity along a given axis 𝑘 is defined as  

𝐼8 = 𝑝𝑣8 

(4.1) 

where 𝑝 and 𝑣8 are the time series of acoustic pressure and particle velocity respectively. If the 

acoustic field is comprised by a single plane wave arriving from a distant, dominant, and spatially 

compact source, the magnitude of the particle velocity is proportional to and in phase with the 

pressure. Equation 4.1 then reduces to a form where the squared pressure alone can measure the 

intensity magnitude. However, since vector sensors measure pressure and particle motion 

independently, they provide direct measurements of the true underlying acoustic intensity, even in 

circumstances where the acoustic field is not dominated by a single plane wave.  

 The frequency-domain acoustic intensity 𝑆8 can be estimated at time-frequency bin (𝑇, 𝑓) 

as  

𝑆8(𝑇, 𝑓) = 〈𝑃(𝑇, 𝑓)𝑉8∗(𝑇, 𝑓)〉 ≡ 𝐶8(𝑇, 𝑓) + 𝑖𝑄8(𝑇, 𝑓) 

(4.2) 

where P and 𝑉8 are short-time Fast Fourier Transforms (FFTs) of 𝑝 and 𝑣8 respectively (Mann et 

al., 1987). The symbol ∗ denotes the complex conjugate of a complex number, and < > represents 

the ensemble average of a statistical quantity. If a time series can be considered to be statistically 

ergodic over a given time interval, this ensemble average can be obtained from time-averaging 
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consecutive FFTs (D'Spain et al., 1991). In reality the ambient acoustic fields are often highly 

nonstationary, but a short enough time interval can typically be found where the ergodicity 

assumption is valid. In Eq. 4.2, 𝐶8 and 𝑄8 are defined as the active and reactive acoustic intensities 

respectively and comprise the in-phase and in-quadrature components of the pressure and particle 

velocity. The active intensity 𝐶8 comprises the portion of the field where pressure and particle 

velocity are in phase and thus transporting acoustic energy through the measurement point.  The 

reactive intensity 𝑄8 comprises the portion of the field where pressure and particle velocity are 

90° out of phase and arises whenever a spatial gradient exists in the acoustic pressure (Mann et al., 

1987).  For the rest of this paper, we ignore the reactive component of intensity, and use the active 

component to define two directional metrics: the dominant azimuth and the normalized transport 

velocity (NTV). 

 In the case of a two-dimensional vector sensor that measures particle velocity along the 𝑥 

and 𝑦 axis, the dominant azimuth from which acoustic energy is arriving 𝜑, can be defined as  

𝜑(𝑇, 𝑓) = 𝑡𝑎𝑛7"
𝐶L(𝑇, 𝑓)
𝐶M(𝑇, 𝑓)

 

(4.3) 

where 𝜑 is expressed in geographical terms: increasing clockwise and starting from the 𝑦 axis. 

The dominant azimuth can be displayed as a function of both time and frequency, as an image: the 

azigram (Thode et al., 2019). 

 It is important to note that Eq. 4.3 estimates only the dominant azimuth, since acoustic 

energy may be arriving from different azimuths simultaneously at the measurement point. 

Equation 4.3 effectively represents an estimate of the “center of mass” of the arriving energy but 

provides no information about its angular distribution around the sensor.  The normalized transport 

velocity (NTV) is a quantity that provides this second order information about the acoustic field. 
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For the same two-dimensional vector sensor assumed for Eq. 4.3, the NTV is defined by the ratio 

between the active intensity and the energy density of the field   

𝑈(𝑇, 𝑓) =
2𝜌!𝑐	 〈�𝐶L#(𝑇, 𝑓) + 𝐶M#(𝑇, 𝑓)�

"/#〉

𝜌!#𝑐# 	〈|𝑉L(𝑇, 𝑓)|# + �𝑉M(𝑇, 𝑓)�
#〉 + 〈|𝑃(𝑇, 𝑓)|#〉

 

(4.4) 

where 𝜌! and 𝑐 are the density and sound speed in the medium respectively (Mann et al., 1987; 

D'Spain et al., 1991). Equation 4.4 is normalized such that the NTV is comprised between 0 and 

1. Although the NTV should be computed using particle velocity measurements along all three 

spatial axes, when measuring low-frequency sound in a shallow-water acoustic waveguide, only a 

small fraction of the total acoustic energy is transported vertically (along the 𝑧 axis) into the ocean 

floor. As a result, a relatively accurate NTV can be obtained on a two-dimensional sensor using 

only particle velocity measurements along the horizontal axes. A NTV close to 1 implies that most 

of the acoustic energy traveling through the measurement point is clustered around the dominant 

azimuth. Such would be the case for a single azimuthally compact source such as a whale or a ship 

whose signal-to-noise ratio (SNR) is high. By contrast, a NTV of 0 indicates that no net acoustic 

energy is being transported through the measurement point, which implies either no acoustic 

energy is present at all, or equal amounts of energy are being propagated from opposite directions, 

as is the case for a standing wave. Thus, low transport velocity occurs in the presence of noise 

fields that are either isotropic or azimuthally symmetrical.  

 

 

 

4.3 Illustrative dataset: Maui 2020 
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 A DASAR (Directional Autonomous Seafloor Acoustic Recorder) Model “C” is an 

autonomous underwater recording package equipped with a DIFAR (Directional Frequency 

Analysis Recording) vector sensor, which is itself composed of an omnidirectional pressure sensor 

(149 dB re 1 μPa/V @ 100 Hz sensitivity) and two particle motion sensors capable of measuring 

the 𝑥 and 𝑦 components of particle velocity (Greene et al., 2004; Thode et al., 2012). The signals 

measured on each of the three channels were sampled at 1 kHz with sensors that have a maximum 

measurable acoustic frequency of 450 Hz.   

 The sensitivity of the directional channels, when expressed in terms of plane-wave acoustic 

pressure (-243.5 dB re m/s equates to 0 dB re 1 μPa), is 146 dB re 1 μPa/V @ 100 Hz. The 

sensitivity of all channels increases by +6 dB/octave (e.g., the sensitivity of the omnidirectional 

channel is 143 dB re 1 μPa/V @ 200 Hz), since the channel inputs are differentiated before being 

recorded. These values were measured from two DASARs calibrated at the U.S. Navy’s 

underwater acoustic test facility TRANSDEC in San Diego in 2008. A finite impulse response 

(FIR) equalization filter was applied to recorded data to recover the original spectrum.  

 Between March and July 2020, three DASARs labeled A, B and C were deployed along 

the south facing coast of western Maui, capturing the last couple of months of the humpback whale 

breeding season. The instruments were spaced by approximately 3 km in a line running from the 

northwest (DASAR A) to the southeast (DASAR C) as shown in Fig. 4.1 at depths of 

approximately 20 m. The DASARs were lowered to the ocean floor from a small vessel using a 

rope, and thus the orientation of the package on the ocean floor could not be controlled and had to 

be measured acoustically. Using the same calibration technique as Thode et al. (2021), the small 

vessel was driven clockwise and counterclockwise around each DASAR after its deployment. 

From the GPS position of the boat and the associated estimated azimuths, the clock offset between 
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the GPS and the sensor data could be derived, along with the seafloor orientation of the sensors’ 

particle velocity axes. Additionally, this procedure was used to measure the uncertainty of the 

dominant azimuth estimates (7.61° median error). The details of the calibration are shown in 

Appendix 4.9.  

 In this study, 24 hours of data starting from midnight on April 18, 2020, are presented and 

analyzed. This time window, which has fewer whales present than earlier in the breeding season, 

was chosen for clarity of the presented method. 

 

Figure 4.1: Satellite image indicating the position of DASARs A, B and C, deployed 
between March and July 2020 off the western coast of Maui.  
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4.4 Tracking algorithm 
 

4.4.1 Time-frequency representation of directional metrics 
 

 As shown in Eqs. 4.3 and 4.4, both dominant azimuth 𝜑 and NTV can be computed for 

each time-frequency bin (𝑇, 𝑓) of a signal, allowing these quantities to be displayed as an image. 

In the dominant azimuth representation – the azigram – the color of each pixel is associated with 

a given geographical azimuth. In the NTV representation, the color of each pixel corresponds to a 

value between 0 and 1. Figure 4.2 shows the spectrogram, azigram and NTV of 30 seconds of data 

from DASAR B, starting at 2:24 UTC-10 on April 18, 2020. While the spectrogram suggests the 

presence of multiple humpback whales singing simultaneously, it does not allow straightforward 

association of songs units to individual whales (Fig. 4.2a). The azigram display, however, reveals 

distinct individual whales based on their color/azimuth (Fig. 4.2b). In this particular plot, the color 

scale is restricted to the 100° and 350° azimuth range, which points away from shore (see Fig. 4.1). 

Furthermore, the NTV time-frequency representation shows that whale calls have high NTV 

values (Fig. 4.2c). 
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Figure 4.2: Spectrogram (a), azigram (b), and normalized transport velocity (c) over a 
30-second time window starting at 2:24 UTC-10 on DASAR B. The color scale for (a) is 
in terms of power spectral density (dB re uPa2/Hz), while the color scale for (b) is in terms 
of azimuth relative to geographic north. All three subplots are computed using window 
and FFT lengths of 256 samples with 90% overlap, and no time-averaging of the FFTs.  

 
 

4.4.2 Identifying azimuthal tracks over long intervals 
 

 The number of singing whales and their azimuths to a DASAR can be estimated at any 

given time from the statistical distribution of 𝜑. Let ℎ' be defined as a histogram that counts the 

number of observations of 𝜑(𝑇, 𝑓) that fall within azimuthal bin of center 𝜃 and width 𝑑𝜃, within 

a time interval ∆𝑇(. ℎ' estimates the distribution of azimuths measured across all time-frequency 

bins in the azigram. Note that the histogram time window ∆𝑇(	 should be long enough for the 

azigram to include whale calls from all currently singing whales, and short enough for any changes 

in the animal’s azimuth to be negligible. For identifying humpback whale songs in this dataset, a 

time window ∆𝑇( = 60	𝑠 was found to be sufficient. To minimize contributions to ℎ' of the 
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background noise and other non-directional sources, a NTV threshold can be applied so that any 

observation 𝜑(𝑇, 𝑓) associated with a NTV below a value 𝛾) is discarded. For example, the 

histogram computed from Fig. 4.2b would only be computed with azimuthal values whose NTV 

is above 𝛾) in Fig. 4.2c. The resulting filtered histogram 𝐻' emphasizes azimuths than are 

associated with highly directional compact sources such as whales and boats. 𝐻' is normalized by 

its maximum value such that the most probable azimuth is always 1. Figure 4.3 displays sample 

histograms, before and after applying the NTV threshold and normalization, illustrating how this 

filtering enhances the azimuths associated with four distinct whales.  

 

 

Figure 4.3: Raw histogram ℎ' and filtered histogram 𝐻' at 2:24 UTC-10. These 
histograms estimate the distribution of azimuths over a time window ∆𝑇( = 60	𝑠 using 
bin width 𝑑𝜃 = 2°, and illustrate how NTV thresholding (𝛾) = 0.9) enhances the 
azimuthal peaks associated with (at least) four distinct humpback whales. The azigrams 
used to compute these histograms have window and FFT lengths of 256 samples with 
75% overlap, and 1s time-averaging of the FFTs. 
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 𝐻' can be plotted as a function of both time and azimuth by stacking histograms into an 

image which will be referred to as “azimuthal histogram display” (AHD). This representation 

allows identification of continuous tracks from discrete sources such as whales and boats over 

longer periods of time. These “azimuthal tracks” are not to be confused with the resulting 2D 

localized tracks which correspond to a sequence of positions (latitude and longitude) for a given 

whale. Figure 4.4 displays the AHDs for all three DASARs over a 24-hour time window starting 

at midnight on April 18, 2020. Also shown in Fig. 4.4 is the unfiltered AHD from DASAR C, 

illustrating how the NTV filtering and normalization improves the quality of the azimuthal tracks. 

Whales and small boats are easily distinguishable by the slope (azimuthal rate) of their azimuthal 

tracks. Because they are generally louder and thus typically more distant from the sensors, the 

azimuthal rate of whales is low, on the order of several degrees per hour. By contrast small boats 

generally travel faster and need to be closer to a DASAR to be detected, thus displaying higher 

azimuthal rates and producing tracks that are much shorter (on the order of minutes) and steeper 

(nearly vertical lines in Fig. 4.4). The AHDs in Fig. 4.4 also indicate that whale song only arrives 

from between approximately 100 and 350° (i.e., away from shore), while boat tracks are visible 

from all directions, including from the direction of the coastline.  

 To localize multiple individual whales over time, azimuthal tracks from the same whale 

need to be linked on at least two DASARs. The deployment configuration is such that if a whale 

is only detected on two of the three DASARs, as it is sometimes the case, DASAR B (the middle 

instrument) will always be involved. The practical problem to solve here is thus to determine 

which, if any, of the azimuthal tracks from DASAR B are associated with tracks from DASARs A 

and/or C. 
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Figure 4.4: Azimuthal histogram displays for DASARs A, B and C on April 18, 2020. 
These plots reveal azimuthal tracks of both whales (longer and smoother) and boats 
(quasi-vertical lines). The bottom plot shows the unfiltered AHD for DASAR C, 
illustrating how the filtering improves the visibility of the azimuthal tracks. The 
parameters used here are the same as those used to compute the histograms in Fig. 4.3. 

 

4.4.3 Manual selection of azimuthal tracks 
 

 While the goal is to eventually automate the azimtual track selection process, the purpose 

of this study is to demonstrate the azimuthal track linking technique. Here, tracks are traced 

manually from the AHDs of all three DASARs between midnight and 3:00 UTC-10 on April 18, 

2020. Let the 𝑛6( azimuthal track on DASAR 𝛼 be denoted ΘD+(𝑡). Figure 4.5 shows both the 

AHDs and resulting azimuthal tracks. These sample tracks have been manually traced with a priori 

knowledge of their associations between sensors so that those sharing the same number are from 

the same whale (i.e.,	𝑛 is both the track and whale number). The tracks show six distinct whales, 

five of which are detected on all three DASARs, and one whale which is detected on DASARs B 

and C only (whale 6). The time resolution of the azimuthal tracks is 1 minute. 
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Figure 4.5: AHDs and manually selected azimuthal tracks from DASARs A, B and C 
between midnight and 3:00. The azimuthal tracks shown here have been selected such 
that tracks who share the same number are from the same whale. Their time resolution 
is 1 minute. 

 

4.4.4 Azigram thresholding  
 

 Image thresholding can be applied to any azigram to create a binary image based on an 

azimuthal sector of width 𝑑𝜑, thus allowing whale calls arriving from a specific direction to be 

isolated on different DASARs. This process defined here as “azigram thresholding”, works as long 

any two singing whales are separated by at least an angle 𝑑𝜑/2. To enhance the thresholded image, 

a 2D 3 by 3-pixel median filter (Huang et al., 1979) is applied to remove speckle components of 

the image.  
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 At any given time and DASAR, the azimuth associated with track ΘD+(𝑡) (as shown in 

Fig. 4.5) can be used to threshold the corresponding azigram on sensor 𝛼 and isolate the song units 

of whale 𝑛. As an example Fig. 4.6 shows four whale songs extracted from DASARs B and C. 

The 30-second time window presented here corresponds to the first half of the histograms shown 

in Fig. 4.3, and thus shows the same four whales.  

 

 

Figure 4.6: Azigrams and associated binary images obtained by applying azigram 
thresholding to DASARs B and C to isolate calls from four distinct whales. The azigrams 
were computed using the same parameters as used for Fig. 4.2. The center of the 
azimuthal sectors of width 𝑑𝜑 = 15° is displayed in red on each binary image. The 30-
second time window presented here corresponds to the first half of the histograms shown 
in Fig. 4.3, and thus shows the same four whales. 

 

 

 

 

 

 

4.4.5 Matching azimuthal tracks between DASARs 
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 The goal is now to compare the thresholded azigrams, with no prior knowledge of their 

associations between DASARs, to determine which azimuthal tracks are from the same whale. 

 Let 𝐵+(𝑇, 𝑓) and 𝐵-(𝑇, 𝑓) be two binary images covering a same time window of length 

∆𝑇B, obtained from applying azigram thresholding to DASARs 𝛼 and 𝛽 respectively. The 

similarity of these two images can be quantified by taking the maximum value of the cross-

correlation between 𝐵+ and 𝐵- along time, expressed as 

𝑅 = max
J
�ii𝐵+(𝑇, 𝑓)𝐵-(𝑇 + 𝜏, 𝑓)

5C

� 

(4.5) 

where 𝜏 is the cross-correlation time delay. 𝑅 can be normalized into a “cross-correlation score” 

as 

  

𝑅� =
100

max�[𝑃+ , 𝑃-]�
𝑅 

(4.6) 

where 𝑃+ and 𝑃- are the total number of positive pixels in 𝐵+ and 𝐵- respectively. Equation 4.6 

normalizes the cross-correlation score between any two images to lie between 0 and 100. Cross-

correlating binary images is conceptually similar to “spectrogram correlation” methods used to 

detect stereotyped baleen whale calls (Mellinger and Clark, 2000).  

 For any time window that reports azimuthal tracks on two DASARs, the likelihood of these 

tracks being related can be assessed by computing their cross-correlation. The time window used 

for the cross-correlation ∆𝑇B should be long enough to include songs from all the whales being 

tracked, and short enough for their azimuths to remain constant to within the azimuthal sector 𝑑𝜑. 
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For comparing humpback whale calls in this dataset, a time window of ∆𝑇B = ∆𝑇( = 60	𝑠 and an 

azimuthal sector of 𝑑𝜑 = 15° (which corresponds to the azimuthal uncertainty derived in the 

appendix) was sufficient. By computing the median score of each cross-track combination across 

the portion of the two tracks that overlap temporally, the likelihood of any two azimuthal tracks 

being from the same whale can be identified. As an example, Fig. 4.7 shows the cross-correlation 

scores between Θ"*  and all six tracks from DASAR B. The median scores clearly indicate that Θ"O 

is the most likely track associated with the reference track Θ"* . The regular troughs in the cross-

correlation score occur when the whale stops singing while it surfaces to breathe, approximately 

every 15 min. 

 

Figure 4.7: (top) Reference azimuthal track Θ"*  (dashed black line) compared to all six 
tracks from DASAR B (solid lines). These are the same manually traced tracks shown 
in Fig. 4.5. (bottom) Cross-correlation scores (Eq. 4.6) for overlapping times of any two 
tracks. The median scores of each comparison, which are displayed in the bottom legend, 
suggests that Θ"O is the best match with reference track Θ"* , as it has the highest median 
score. The cross-correlation time window and azimuthal sector width used here are 
∆𝑇B = 60	𝑠 and a 𝑑𝜑 = 15° respectively.  
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 Following this procedure, the median scores for all combinations of tracks between 

DASAR B and DASARs A and C can be used to create confusion matrices, as illustrated in Fig. 

4.8. As expected from the manual selection of the tracks, the correct associations (along the 

diagonal of the confusion matrices) consistently produce the highest median scores. Note that 

when comparing track ΘPO to tracks from DASAR A (bottom row of left panel in Fig. 4.8), all 

median scores are low, which is expected since whale 6 is not detected on DASAR A (i.e., ΘPO 

has no match on DASAR A). In this idealized example, any score above 15 is associated with a 

correct match between tracks. 

 

Figure 4.8: Confusion matrices for all combination of azimuthal tracks between DASAR 
B, and DASARs A and C. Each grid point in these matrices represents a track 
combination and is computed as the median value of their normalized cross-correlation 
scores (Eq. 4.6). The correct associations of azimuthal tracks along the diagonal 
consistently show the highest scores. The parameters used here at the same as those from 
Fig. 7. 
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4.5 Localization and tracking results 
 
 The whales whose azimuthal tracks were extracted and matched in the previous section are 

used to demonstrate the 2D tracking results. The 2D localization method used in this study relies 

on triangulation from at least two DASAR azimuthal measurements and allows estimating a 

localization precision if at least three measurements are available. This approach is based on 

(Lenth, 1981) and has already been used to track bowhead whales in several studies involving 

DASARs (Greene et al., 2004; Blackwell et al., 2007; Thode et al., 2012). Here, a 2D “localized 

track” refers to a sequence of latitudes and longitudes derived from the linked azimuthal tracks of 

a same whale between distinct vector sensors. Individual localizations are therefore not linked to 

specific song units but rather they have the same 1-minute temporal resolution as the azimuthal 

tracks extracted from the AHDs.  

 Up to three DASARs are available in this dataset. Thus, at any given time the number of 

available azimuth measurements 𝑁 (from the azimuthal tracks) for a whale lies between zero and 

three, 𝑁 ∈ [0, 3]. A 2D whale track starts whenever 𝑁 ≥ 2 and ends if 𝑁 < 2. Over time periods 

where 𝑁 = 3, the localization uncertainty is also be computed for each localization. Figure 4.9 

shows the 2D localized tracks of all six whales with a localization interval of 1 minute. Using the 

method from Greene et al. (2004), the 90% confidence ellipse is computed and displayed every 10 

minutes over time periods where 𝑁 = 3. The location uncertainty can be computed over part of all 

tracks, with the exception of whale 6, which is only detected on DASARs B and C. 

 The track from whale 1 is a good example which shows the whale traveling towards the 

southeast. The direction of travel can be inferred from the azimuthal tracks in Fig. 4.6. During the 

first part of the track, the whale is directly in front of DASAR B (about 2.5 kilometers off the 

coast) and is detected on all three instruments. As the whale travels southeast, the range 
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uncertainties grow larger since triangulated bearings cross at shallower angles. Eventually, at 2:28 

when the whale is about 10 km away from DASAR A, it is only detected on DASARs B and C, 

and no localization uncertainty can be estimated. Using the first hour of the localized 2D track 

from whale 1 (when the animal is directly in front of DASAR B), the swimming speed is derived 

and shown in Fig. 4.10. The reported average swim speed of approximately 2 km/h is consistent 

with previous studies of signing whales (Frankel et al., 1995; Noad and Cato, 2007). The azigram 

cross-correlation score (Eq. 4.6) between the tracks from whale 1 on DASARs B and C is also 

displayed in Fig. 4.10 to show when the whale is singing (high score) and when it is surfacing to 

breathe (low score). Comparing the swim speed to the dive cycle reveals that the two appear to be 

correlated, with the whale remaining mostly stationary while it sings.  

 
Figure 4.9: 2D localized tracks of the six whales whose azimuthal tracks were extracted 
and matched in Section IV. The whale 2D location estimates are computed every minute 
whenever at least two azimuthal measurements are available (𝑁 ≥ 2). A 90% confidence 
ellipse is plotted every 10 minutes over time periods where three DASARs are available 
for the localization (𝑁 = 3). 
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Figure 4.10: Swim speed of whale 1 derived from the first hour of its 2D localized track, 
when the whale is in front of DASAR B (top), and azigram cross-correlation score 
between the tracks from whale 1 on DASARs B and C (bottom). Here, the cross-
correlation score indicates when the whale is singing (high score) and when it is 
surfacing to breathe (low score). Comparing the two plots shows that the swimming 
speed of the whale is correlated with the singing and diving cycle of the whale. 

 

4.6 Discussion 
 

4.6.1 Localization performance and limitations 
 

 Because of the intrinsic uncertainty in the dominant azimuth estimates, the performance of 

the 2D localization technique is highly dependent on the relative location of the source to the vector 

sensors and the deployment geometry itself. For this specific configuration with the DASARs 

along the coast, locations that are a few kilometers to the southwest of DASAR B produce the best 

results because (1) whales are detected on all three DASARs and (2) the azimuthal beams from all 

three DASARs intersect at steep angles. This is the case for approximately the first hour of the 2D 
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localized track from whale 1 in Fig. 4.9. As a whale moves further offshore, the SNR of its songs 

decreases along with the precision of the azimuth estimates, as well as the intersection angle of the 

beams and thus the localization precision. Similarly, when close the axis of this nearly linear array 

(termed “endfire”), the location uncertainties also become larger since the beams also intersect at 

shallow angles. Furthermore, the array aperture is such that whales that are endfire are often only 

picked up on the two closer DASARs. While the coastline deployment has practical advantages in 

terms of deployment logistics (e.g., shallow water depth and proximity to a harbor), the quality of 

the 2D localizations could be greatly improved by placing one or multiple DASARs farther away 

from the coast in deep water, or on the coast of Lanai, to define a triangular array perimeter. 

4.6.2 Azimuthal track matching  
 

 The method used to compare and match azimuthal tracks across DASARs relies on cross-

correlation of binary images obtained from azigram thresholding. While the example presented 

here is idealized (each azimuthal track from DASAR B has a unique matching track on at least one 

of the other two DASARs), identifying each matching track is straightforward (Fig. 4.8). The main 

potential weakness of this approach is its inability to differentiate between two whales that have 

the same azimuth on a given DASAR. Taking Fig. 4.7 as an example, the local cross-correlation 

around 1:10 UTC-10 shows high scores for both tracks Θ"O and Θ#O, which intersect at this time. 

Alternatively, two matching azimuthal tracks can produce low cross-correlation scores at times 

when the whale stops singing while it surfaces. These troughs, which can be seen approximately 

every 15 minutes in both the cross-correlation scores (to track 1B in Fig. 4.7) and the AHDs (Fig. 

4), occasionally cause cross-correlation scores with the wrong azimuthal track to become high (as 

seen from the two cross-correlation spikes for track ΘQO, around 00:24 and 00:40 UTC-10). 

Despite these potential limiting factors, when considering the entire azimuthal tracks and their 
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median scores, the track from the correct whale (track Θ"O) produces the highest median score by 

far. Therefore, this technique can successfully link two tracks from a same whale as long as (1) it 

is singing throughout the majority of the azimuthal track and (2) the majority of its tracks are 

azimuthally unique on each DASAR.   

 An alternative method for matching azimuthal tracks from a same whale on multiple 

DASARs would be to attempt localizing every combination of tracks, and making a decision based 

on the uncertainty of the resulting 2D localized tracks. Indeed, the localization for the correct set 

of azimuthal tracks should produce physical 2D locations with lower uncertainties than potential 

localizations resulting from the wrong combination of tracks. However, this approach requires 

azimuthal tracks to be present on all three DASARs in order to compute the location uncertainties. 

While this approach may be faster and effective in accurately matching azimuthal tracks in 

conditions where whales have clearly distinguishable trajectories, the azigram cross-correlation 

technique presented here is more robust as it exploits additional features in the time-frequency 

domain to link azimuthal tracks.      

4.6.3 Automation and real-time implementation 
 

 In order to process the entire dataset in a way that is both efficient and systematic, further 

automation of two key steps of the tracking algorithm is required: (1) extracting azimuthal tracks 

from the AHDs and (2) making association decisions between azimuthal tracks from different 

DASARs based on the median score confusion matrices (Fig. 4.8).  

In this study, the matching problem was simplified by having a unique track for each whale on 

each DASAR. In practice, depending on how the azimuthal tracks are obtained, the track from one 

whale may be split into multiple segments (duplicate tracks). In this case, rather than tracks being 

matched one-to-one, duplicate tracks from one DASAR need to be attributed to a single track from 
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another. Alternatively, an azimuthal track from one DASAR may have no match on the other two 

(orphan track). Automating the whale tracking method would thus require implementing a 

decision-making algorithm (e.g., using thresholding) to determine whether azimuthal tracks are 

related.  

 The issues about duplicate azimuthal tracks are strongly related to the initial extraction of 

the azimuthal tracks. Indeed, if a given extraction algorithm is prone to producing duplicate tracks, 

the matching algorithm will have to be designed to allow matching these succesfully. Furthermore, 

the performance of a track extraction algorithm will also determine the ability of the 2D tracking 

algorithm to deal with large number of whales at the peak of the breeding season, when the ambient 

noise field is dominated by humpback whale songs. If the azimuthal tracks cannot be successfully 

extracted from the AHDs, 2D tracking using the method presented in this study becomes 

impossible. 

 Several techniques, such as Probability Hypothesis Density (PHD) filtering (Gruden and 

White, 2020) and graph-based approaches (Vo et al., 2010; Meyer et al., 2018) exist that would 

allow automatically extracting the azimuthal tracks from the AHDs. Note that these extraction 

techniques can also be implemented in real-time. By using only current and previous information 

to match azimuthal tracks, the 2D whale tracking algorithm presented here could potentially be 

achieved in real-time (or near real-time).  

4.6.4 Processing parameters and potential applications 
 

 The parameters used here were chosen specifically for successfully identifying and 

matching humpback whale songs. The histogram and azigram cross-correlation time windows, 

∆𝑇( and ∆𝑇B respectively, have similar requirements in that they both should be long enough to 

include song units from all currently singing whales. However, they need to be short enough to 
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account for both azimuthal changes of the source and the measurement uncertainty, with respect 

to the histogram bin width 𝑑𝜃 and azimuthal sector 𝑑𝜑. The time window of 60 s used here for 

both the AHDs and azigram cross-correlation is suited for the rate at which the azimuth of whales’ 

changes with time. In principle this same approach could be used to track boats. To do so, the 

length of the time windows would have to be reduced to account for the rapid changes in azimuth. 

 Note that the FFT averaging (1 second) was only used when computing the histograms. 

This allows reducing the variance of the azimuth estimates, which in turns makes the azimuthal 

tracks in the AHDs sharper. Because FFT averaging affects the shape of individual song units in 

the azigram image, the cross-correlation produces better results when no FFT averaging is applied. 

 The high NTV threshold used here to filter the AHDs is designed enhance the contributions 

from compact sources such as whales and boats. Alternatively, the ambient noise itself can be 

examined by removing samples of 𝜑(𝑇, 𝑓) that have a high NTV and generating AHDs that only 

show contributions from low NTV sources. This approach would allow studying the directional 

characteristics of the ambient noise field over time.  

 In the subset of data presented in this study, the number of singing whales is such that 

individual whales can be distinguished. Earlier in the breeding season however, the number of 

whales is much higher, and distinguishing individual tracks in the AHDs becomes difficult. While 

this makes tracking individual whales less feasible, the overwhelming amount of song becomes an 

opportunity to treat humpack whale song as noise whose statistics can be analyzed (Seger et al., 

2016). Instead of tracking individual whales, the DASARs can be used to localize the “center of 

mass” of the whales. Furthermore, using longer time windows to compute the NTV, the azimuthal 

distribution of whales can be assessed to determine if whales are clustered or widely distributed.  
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4.7 Conclusion 
 
 This study presents a method for multi-target 2D tracking of acoustic sources using vector 

sensors. The technique, which relies on vector sensors’ ability to measure directional quantities of 

the acoustic field, is demonstrated on simultaneously singing humpback whales off western Maui 

using three sensors. The extraction of azimuthal tracks from individual whales on each sensor is 

possible using a histogram representation of the azigrams (AHDs) to which a transport velocity 

threshold is applied to enhance their quality. Subsequently, the azimuthal tracks are compared 

across vector sensors by cross-correlating thresholded azigrams, allowing tracks from the same 

whale to be matched. Once the azimuthal tracks are correctly matched, individual whales can be 

localized and tracked in 2D (latitude and longitude). The localization is based on triangulation 

from each sensor, allowing a position uncertainty to be estimated whenever three azimuthal 

measurements are available. The method was demonstrated by tracking the position of six singing 

whales. The derived swimming speed of one whale track showed that the swimming speed of the 

whale is related to its dive cycle. 
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4.9 Appendix 
 

 Figure 11 shows the results of the optimized boat calibration, along with the residual 

difference between the acoustically derived and GPS-derived azimuths derived from boat noise. 

Only the narrow bandwidth between 350 and 400 Hz was available for boat noise calibrations due 

to the strong interference of overlapping humpback song. The median absolute difference between 

the GPS and acoustic estimates is 7.61°, and so the uncertainty of the acoustic bearings was set to 

±7.5° in the azigram thresholding (azimuthal sector width, 𝑑𝜑 = 15°).  

 

Figure 4.11: Boat noise calibration for DASAR C. GPS-derived range of boat (top), 
acoustically derived and GPS-derived geographic azimuths (middle) and azimuthal error, 
after optimization (bottom). The acoustically derived azimuths were estimated between 
350 and 400 Hz. The optimization results show that the median error of the DASARs is 
7.61°. For DASAR C, the x-velocity axis is 154° clockwise relative to true north and the 
recorder timing offset from GPS is 4 seconds. 
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Chapter 5 
 
 
Conclusion 
 
 All three research chapters of this dissertation relate to passive acoustic localization and 

tracking using arrays and directional sensors and emphasize the application of these methods to 

signals of biological origin. Below are summarized the key points and findings of each chapter. 

 

5.1 Double-difference localization for long-range 
tracking of acoustic sources 
 
 Initially developed in the field of seismology for high-precision earthquake localization, 

the concepts of the double-difference method (Waldhauser and Ellsworth, 2000) were 

reformulated in Chapter 2 for long-range tracking of acoustic sources using multipath arrivals 

measured on a single vertical array of sensors (as opposed to its original application to widely-

distributed sensor networks). The improvement in precision of this approach relies on reducing 

systemic errors from mismatched modeling of the propagation environment, as well as array tilt.   

 Based on an approximate initial location in cylindrical coordinates (absolute depth and 

range from the array), this approach allows obtaining a high-precision relative depth and range 

trajectories of the source. Application of this method to a towed acoustic source, located 50 km in 

away from the array, yielded accurate relative trajectories that were precise to within a few meters 

in depth and up to 100 m in range. Both the accuracy and precision of the results were improved 

in comparison to localizing the source using a ray-trace model. 
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 The reformulated vertical array double-difference was also applied to a sperm whale, which 

was tracked in both range and depth. Ray-trace modeling indicated that the animal was close to 50 

km in range and about 300 m in depth. During the 25 min time window over which the whale was 

tracked, the high-precision double-difference results revealed the animal’s range increased steadily 

by 2 km, while holding its depth to within about 20 m. 

 

5.2 Time-synchronizing clocks from independent 
sensors using directional ambient noise 
 

 As mentioned in the introduction, time-synchronization can be a major hurdle for coherent 

processing when using independent autonomous acoustic recorders. In Chapter 3, it was shown 

that the ambient noise in Laguna San Igancio, Mexico, allows time-synchronizing independent 

autonomous acoustic recorders over a period of 10 days to within ±1 ms. Measuring the relative 

clock drift between the instruments was achieved by tracking changes in the structure of their 

ambient noise cross-correlation function over time. The main advantage of this passive approach 

is that it allows observing small-scale non-linear fluctuations of clock drift, which other time-

synchronization schemes would not permit. The technique relies on the assumption that the spatial 

distribution of coherent ambient noise sources remains constant. An interesting result of this work 

is that the coherent ambient noise that permits the time-synchronization is believed to originate 

from croaker fish, that are particularly vocal in the evenings. The statistical stationarity of the fish 

is confirmed by performing an independent calibration using signals from a known location to 

measure the accuracy of the time-synchronization results.  
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5.3 Simultaneous tracking of multiple singing 
humpback whales using vector sensors 
 

 Chapter 4 presents a method for multi-target localization and tracking (in latitude and 

longitude) of acoustic sources using vector sensors. The technique, which relies on vector sensors’ 

ability to measure directional quantities of the acoustic field, is demonstrated on simultaneously 

singing humpback whales off western Maui. Extraction of azimuthal trajectories is made possible 

by displaying the data from each vector sensor as histograms of the acoustic field’s azimuthal 

distribution over time, using the normalized transport velocity metric to restrict the measurements 

to those arising from discrete compact sources. The azimuthal tracks are matched between vector 

sensors for subsequent localization by cross-correlating time-frequency features of the humpback 

whales’ songs.  Localization is performed by triangulating the linked tracks between the sensors. 

 The performance of this vector sensor tracking approach shows potential for being applied 

to other acoustic sources such as boats. The azimuthal histogram display also provides a new 

visualization method for vector sensor data in which different aspects of the directionality of the 

acoustic field can be observed.  The use of the normalized transport velocity provides another 

potential avenue for detecting and classifying transient acoustic signals which would not require 

estimating the signal-to-noise ratio (SNR) of the transient. 
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