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Abstract

Machine Listening as a Generative Model:

Happy Valley Band

by

David Andrew Kant

ORGANVM PERCEPTVS is a collection of 11 songs for mixed en-

semble written by translating machine listening analysis of pop songs into

musical notation. Motivated by the idea that analysis algorithms inher-

ently carry the values of the communities that produce them, I see my

compositional process as a way of understanding how musical ideas, be-

liefs, preferences, and aesthetics are embedded within analysis algorithms.

The musical scores are overly-specific, complex, and brimming with the

artifacts of the machine listening process, and I formed a dedicated en-

semble, the Happy Valley Band, to develop a performance practice unique

to the idiosyncratic music. This dissertation essay documents the analy-

sis algorithms used, my compositional process, the performance practice

developed, the process of recording and releasing an album of music, and

the public reception. I discuss my compositional ideas in the context of a

number of twentieth century aesthetic traditions, including plunderphon-

ics and sampling, computer analysis driven composition, and complexity in

computer-assisted composition. I see this project as relevant to emerging

cultural concerns of algorithmic bias and discrimination, and I relate my

experience to contemporary dialogues around digital automation.
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Chapter 1

Introduction

As automated algorithms are increasingly woven into the fabric of contemporary

life, it occurs to me not only that the individuals, institutions, and communities

that produce them wield a tremendous amount of power, but more importantly,

public understanding around computation — what the results of computational

processes represent and how to interpret them — is sorely in need of a software

update. Over the past eight years, I have explored this intuition through the

Happy Valley Band (HVB), a project in which I transcribe machine listening

analysis of pop songs into music notation for human musicians to perform. The

motivations for this project extend back at least nine years to when I first became

interested in sound analysis. The prospect that all of the subtle and ineffable

qualities of musical experience are somehow encoded within a sequence of numbers

and available for quantification enthralled me. However, as I came to understand

the communities of thought that produce ideas and technologies in sound analysis,

including engineering, industry, and higher education, I grew skeptical of many

underlying musical values and assumptions.

As a musician interested in a variety of twentieth century contemporary music
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practices, including free improvisation, live electronic music, soundscape record-

ing, noise, and avant jazz, I did not always feel that my musical values and inter-

ests were represented in the algorithms that I studied and in the communities that

produced them. The more I learned about sound analysis, the more I came to

understand that assumptions are necessary and inherent to it, assumptions about

what one is even analyzing for in the first place — analyzing for pitch or rhythm

requires an idea of what pitch or rhythm is. At a certain point analysis is tauto-

logically true: you find what you look for. This struck me as deeply concerning,

especially given the ubiquity of automated computation present today, whether

musical or not. I became interested in what it means for values to be embed-

ded within an analysis algorithm, the limits of digital sound analysis, what ideas

and assumptions in particular motivate algorithms that are widespread today,

and most importantly, the implications when analysis algorithms are automated,

scaled, and left to operate autonomously.

1.1 The Happy Valley Band Project

This dissertation is a collection of songs written by translating machine listening

analysis of pop songs into musical notation. Motivated by the idea that analysis

algorithms inherently carry the values of the communities that produce them, I see

my compositional process as a way to understand how musical ideas, beliefs, pref-

erences, and aesthetics are embedded within analysis algorithms. HVB transcrip-

tions are microtonal and rhythmically complex; pitch and rhythm are specified to

exacting and inhuman degrees of precision, and the scores are rife with additional

notes, artifacts of the machine listening process. The differences between the orig-

inal recordings and HVB transcriptions are a result of my approach to machine

2



listening. I highlight the idiosyncrasies of the machine listening process and the

challenges of translating between scales of digital analysis and human perception.

I often use well-known songs by artists such as Madonna, James Brown, Patsy

Cline, and Phil Collins. Excerpt 1.1 shows a typical HVB score.
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Over the past eight years, the HVB project has developed to include a suite

of custom machine listening and music transcription tools — tools for spatial

filtering, spectrogram decomposition, multiple fundamental frequency estimation,

feature extraction, onset detection, and music notation — as well as a specific

compositional process and approach to sound transcription. Composition and

algorithm design are synonymous in HVB, from the musical ideas that motivate

algorithm design down to technical implementation.

Most important, this project has grown to include a dedicated performing

ensemble, the Happy Valley Band, who developed a unique performance practice

in response to the unusual performance demands of the computer transcriptions.

Performers devise their own strategies for navigating the overly complex and de-

tailed scores but adapt in response to one another in live performance, allowing a

group feeling to emerge. When I made the first machine listening transcriptions, I

never imagined people would play them. In summer 2011, at the suggestion of two

composer-performer colleagues, Beau Sievers and Mustafa Walker, we formed a

dedicated ensemble to play the computer generated transcriptions. The ensemble

has evolved into a collective structure, centered around a core group of musicians

with whom I work closely — Alex Dupuis, Andrew Smith, Beau Sievers, and

Mustafa Walker. The analysis tools, music notation, performance practice, and

my interpretation of the project have emerged in the context of this group, shaped

by their ideas and input.

When I first became interested in sound analysis, I wanted to know how ma-

chines hear. My advisor at the time gently suggested there is no way of hearing

intrinsic to technology, rather machines reflect people’s ideas about how hearing

works. From the design of machine listening algorithms down to the constructs of

boolean logic and material sciences that form the framework of modern compu-
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tation within which algorithms are expressed, machines reflect human ideas. In

many ways, this project has been my reconciling the desire for a way of hearing

intrinsic to machines. I realized that as much as this desire seemed a fantasy of

science fiction, there is a machine way of hearing, although it does not reside in

the technological processes but in an assemblage of forces — the musical values

of communities that produce them as well as the history of science, technology,

and engineering that has led to the current understandings of sound and signal

processing. This project argues the need to consider machine listening algorithms

as a social construct if we are to understand how values are embedded within

them.

Ultimately this project is motivated by the conviction that we use machine

listening technologies to hear more inclusively, less be at risk of amplifying, in

a positive feedback loop, the values of the communities that produce them to

the exclusion of more diverse forms of music. Eight years ago this conviction

was a vague intuition, more of a feeling than a well-formed idea. While I did

not have the language necessary to articulate it, I was concerned by the implica-

tions for autonomous machine listening systems such as music recommendation or

surveillance. Now more than eight years later, algorithmic bias — the idea that al-

gorithms are not neutral but can unfairly discriminate against certain population

groups — has emerged as a pressing and widespread social concern. Automated

algorithms are involved in many aspects of daily life, from hiring practices to jail

sentencing to autonomous surveillance, and news bubbles that came to light in

the 2016 presidential election demonstrated the danger of using automation to

reify rather than diversify our experiences.

5



1.2 Reflections

I have come to see this project from a number of different perspectives, which

have helped me to understand and explain aspects of the project and draw various

conclusions. First, HVB scores are as much a product of the music analyzed as

the values and assumptions inherent to the algorithms. I have come to understand

the music as emergent between the two; it resides neither in one nor the other

but in the interaction between them. The concept of emergence provides for me

a way of understanding the agency of the machine listening process. I believe

that if we are to understand the agency of a distributed system of forces — a

technological object such as an algorithm for instance being a network of factors,

including technical and social — then the framework of emergent and dynamical

systems is necessary.

Second, I find a concept from statistical modeling to be a useful metaphor

for explaining my compositional approach, including the decisions that I make

and how. I like to think of machine listening algorithms as a generative model. In

contrast with other kinds of models that are only capable of describing phenomena,

a generative model can be used to generate new instances of a phenomena, because

they learn such rich representations of the phenomena they model. Extending this

concept as a metaphor, I frame machine listening algorithms as generative models,

and liken composition to exploring the possibility space of a high-dimensional

parametric model. The metaphor of a generative model provides a way for me to

see a description of sound embedded within an analysis algorithms and connects to

Constructivist ideas of perception, which stress the extent to which our perception

is shaped by prior held mental frameworks.

Third, the recent proliferation of concern for algorithmic bias gave language,

6



concepts, and frameworks to my nascent intuitions that algorithms embody the

values of the communities that produce them. The concept of a positive feedback

loop is readily described in the literature to explain how self-reifying systems per-

petuate biases to the exclusion of other ideas. Academic writing and news articles

confirmed my suspicion that algorithms are commonly thought to be objective

and unbiased — machine learning algorithms in particular — a finding which fur-

ther amplified my sense that we need to better understand how bias is embedded

in algorithms. While the field of algorithmic bias contains many open questions,

most pressing among them are how to identify and ameliorate bias in autonomous

systems. While HVB may not provide practical solutions that translate to other

domains, I have come to think of it as a heuristic analysis of algorithmic bias,

a way of coming to access the values inherent in an algorithms through musical

interactions with them.

1.3 Related Work

George Lewis’ work provided an important context for my ideas, in particular his

1987 piece Voyager. Lewis argued that algorithms are not neutral but reflect the

values of the communities that produce them and furthermore that interaction

with algorithms reveals said values. At the time (and arguable still today) most

research and composition in computer music was produced by communities that

were almost entirely all male and all white and dominated by trans European mu-

sical ideas. In response, Lewis designed Voyager, an interactive and spontaneous

music system with a decidedly African American provenance, structuring the sys-

tem around Jeff Donaldson idea of multidominance. In the context of Lewis’ idea

of interaction, I think of performing HVB music as a form of interaction that

7



provides access to the values embedded within the listening algorithms.

I see HVB as related to a larger trend of work currently undertaken by a

generation of young scholars who are exploring questions pertaining to the rela-

tionship between technology and culture, including how technologies embody and

exhibit agency: Asha Tamirisa’s work on how gender norms are encoded in elec-

tronic music technologies; Madison Heying’s study of Carla Scaletti, the Kyma

computer music language, and the community of users; Ezra Teboul’s alternative

history of electronic music examined at the component level of electrical design;

Nick Seaver’s ethnographic concept of the algorithm as well as his fieldwork with

researchers in computer audition and recommender systems; Ted Gordon’s study

of Bay Area experimentalism and the fluidity between technological paradigms,

composition, and lifestyle; and Josh Hudelson’s account of the cultural effects of

the concept of the “frequency domain” in signal processing. Through a variety of

approaches and methodologies, these studies all address questions pertaining to

how values are embedded within technologies and the implications, both cultural

and technological.

Ultimately, my means of addressing such questions draws neither from the

hard sciences, nor the social sciences, nor engineering, but is enacted through an

artistic practice of music composition and performance. I believe that musicality

is a sense unto itself, that through performance and listening we can come to

know aspects of the world that are not otherwise explicable. By translating the

artifacts of machine listening processes into music, my intuition was I would come

to understand aspects of such technologies. Translating this experience back into

words, however, is another challenge.
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1.4 Contents of the Dissertation Essay

The purpose of this essay is to document the HVB project and to give context to

the ideas explored. I describe the compositional process, detailing the algorithms

used and why, and discuss the evolution of the ensemble as a collective entity.

I also discuss the recording and production of HVB’s 2016 album ORGANVM

PERCEPTVS, as well as the public reception. I develop the concept of machine

listening as a generative model, describe HVB music as emergent, and in the final

chapter, I relate my experience to contemporary discussions of algorithmic bias.

In Chapter 2, I document the machine listening process and algorithms used.

My intention in this chapter is to articulate the musical ideas underlying the

various algorithms and my reasons for choosing them. I also identify the numerous

decisions that need to be made and parameters that need to be set in order to

produce a HVB transcription. Chapter 2 is the most technical chapter of the

dissertation. I address the details of digital signal processing a well as music

theory and music analysis.

In Chapter 3, I discuss the HVB ensemble. I describe the ensemble as a collec-

tive social structure and discuss how the group’s performance practice evolved in

response to the specific challenges of the music. I relate the ensemble’s approach

to traditions in contemporary music such as Complexity and computer-assisted

composition. Despite the affinities, the defining aspect of HVB’s performance

strategy arises from group dynamics within a collaborative social structure.

Chapter 4 focusses on the ideas that guide my decisions when making a

transcription. Having previously identified in Chapter 2 the various parameters

that need to be determined, in Chapter 4 I discuss what considerations influence

my decisions. I develop the metaphor of machine listening as generative model to
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explain my compositional approach.

Chapter 5 documents the process of recording and releasing ORGANVM

PERCEPTVS. I reflect on the public reception of the record, one reviewer in par-

ticular who found the record to be “conceptually fascinating” but simply “cannot

bear to listen to it.” I reflect on intellectual property and Artificial Intelligence,

briefly discussing the history of sampling and new challenges to intellectual prop-

erty posed by big data, automation, and learning algorithms.

I conclude in Chapter 6 by relating my experience to emerging concerns of

algorithmic bias and discrimination. While the field is in need of practical, scalable

solutions to identify and ameliorate bias in automated algorithms, it is admittedly

difficult to argue what answers art can provide. Drawing on George Lewis’ idea

that interacting with technologies reveals aspects of the communities that produce

them, I develop the idea of a heuristic analysis of algorithmic discrimination, and

reflect on the kinds of bias I find to be present in machine listening systems.
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Chapter 2

Algorithms Used

The Happy Valley Band transcription process has four stages: 1) source separa-

tion, extracting individual instruments from the original recording; 2) pitch and

rhythm analysis, analyzing the separated tracks for pitch and rhythm as well as

other features of musical performance such as dynamics or articulation; 3) mu-

sical notation, expressing the results of pitch and rhythm analysis in the form

of musical notation; and 4) performance, assembling an ensemble to perform the

computer generated transcriptions. Figure 2.1 diagrams the analysis stages of a

typical HVB transcription. For each step of the process, I developed custom soft-

ware, sometimes drawing from well-known algorithms and other times designing

tools from scratch. I developed my own software tools in part out of curiosity

— I wanted to understand each step of the process — but, more importantly,

because, in this project, composition and algorithm design are synonymous. The

choice of analysis algorithms and parameter selection are the channels that I use

to influence the resulting music.

This chapter focusses on my transcription process, the algorithms used, and

how I use them. I document and discuss the technologies that I developed for each
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stage of the process, and I explain my motivations in the context of perception,

acoustics, sound analysis, and music theory. This chapter is also an effort to make

explicit the musical ideas, values, and preferences implicit within my transcription

system.

Figure 2.1: Stages of Happy Valley Band analysis.
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2.1 Source Separation

Source separation is the task of identifying and extracting individual acoustic

sources from a mixture of sources. The human auditory perception exhibits a

remarkable capacity to recognize and isolate sound. Humans are able to hear,

within a complex sonic mixture, individual elements — instruments, voices, or

performers — and shift focus from one sound to another. How does human au-

ditory perception identify and separate sound and and how might a computer

algorithm mimic it?

In general, source separation is a very difficult problem. The difficulty is

due, in part, to the complexities of the physical properties of acoustic mixing.

Due to positive and destructive interference between sound waves, mixing is an

information losing process. An ideal source separation technique would know

how and when to put back missing or cancelled sound information. Furthermore,

the perceptual mechanisms involved in parsing multiple sound sources are also

complex, and, in many cases, what we hear is in part an illusion that is not

physically present. An instrument may sound drastically different solo than in

the mix. This happens when frequencies overlap and mask one another, and

is well-known to recording engineers, who intentionally remove frequencies that

would otherwise compete. How should we model the complexities of both the

physical and perceptual domains, as well as the prior knowledge and expectations

of listeners?

There are a variety of computational approaches to source separation. Some

model the human auditory system in terms of a set of fundamental perceptual rules

that hierarchically organize and group sound energy into sources. These gener-

ally fall under the category of Computational Auditory Scene Analysis (Wang
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and Brown 2006) and are based on Albert Bregman’s pioneering work on Audi-

tory Scene Analysis (Bregman 1994), which draws on expert knowledge developed

over decades of empirical study. Other approaches, such as a more recent trend

in machine-learning based algorithms, rely less on expert knowledge, but rather

attempt to extrapolate and generalize patterns from data. As a result, these mod-

els need to be trained to produce results that correspond with human auditory

perception. In my workflow, I use a number of different tools to separate mix-

tures, often in combination, depending on the particular production qualities of

the acoustic mixture and of the instruments being separated, including spatial

filtering and spectrogram decomposition.

2.2 Source Separation by Spatial Filtering

Humans perceive sound along a number of spatial dimensions — horizontal loca-

tion (azimuth), vertical location (zenith), and depth, as well as acoustic qualities

such as reverberation (dry versus wet) and width (wide versus narrow). These

features, which function as perceptual cues to the nature of the acoustic envi-

ronment, are captured in acoustic recording or fabricated by mixing and sound

processing effects. Spatial filtering refers to a variety of techniques for filtering

sound along these spatial dimensions. In particular, the problem of localization

— estimating the location of a sound in space and isolating sounds at a given

spatial location — has received considerable attention from researchers in sound,

music, and acoustics as well as the sciences and engineering more broadly.

There exists a vast body of literature and diversity of approaches to sound

localization, with different applications, engineering constraints, and problem for-

mulations. Approaches tend to vary in terms of sound propagation model; audio
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features and spatial cues (interaural time difference, interaural intensity differ-

ence, spectral notches, spectral cues); number of signals/microphones (stereo and

binaural versus array-based techniques); number of sources to localize (single ver-

sus multiple); and end results (location estimation, source identification, source

separation (Rascon and Meza 2017). Different applications require different anal-

ysis techniques, but among the most common is beamforming, which uses timing

difference between multiple microphones to localize and separate sounds.

In popular music production, however, the predominant localization cue is

most often intensity differences, not timing differences. This is due to the nature

of studio production techniques which generally rely on amplitude-based panning

to place close-miked monaural sources in a stereo mix. Even the multi-microphone

stereo recording techniques commonly employed in pop music production, such

as coincident and near-coincident pairs or spaced microphones, tend to carry

amplitude-based cues due to the use of directional microphones or microphone

placement in close proximity to sound sources. Phase-based panning is less com-

mon in popular music studio production, and, when present, phase-based location

cues, or time differences, often produce a sense of width or reverberation. These

are often introduced as signal processing effects rather than captured acoustically

via microphones.

My approach to spatial filtering relies on both interaural intensity differences

(IID) and interaural time differences (ITD). It is related to CASA systems that

separate mixtures according to sound localization, such as Richard Lyon’s binaural

separation model (Lyon 1983), which groups audio components by ITD estimates

from a cross-correlogram and was later extended by Markus Bodden (Bodden

1993) to include head-related transfer functions (HRTF) as well IID.
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2.2.1 xtrk

xtrk is an audio plug-in that I built to implement spatial filtering in real-time.1

xtrk visualizes the stereo image of an audio signal in a two-dimensional space

— frequency is plotted along the vertical axis against estimated stereo location

(azimuth) plotted along the horizontal axis — and allows the user to isolate or

mute regions of the stereo image by drawing rectangular outlines, as shown in Fig.

2.2. xtrk has two modes, one for IID or amplitude-based estimation and another

for ITD or phase-based estimation.

xtrk performs Short-time Fourier Transforms (STFT) of the left and right

channels and estimates the perceived stereo location according to differences in

phase and amplitude for each STFT time-frequency bin. The user-selected regions

provide a set of frequency domain binary masks that are applied during iFFT

resynthesis to selectively pass or attenuate time-frequency bins, effectively muting

or soloing regions of the stereo image. In the following sections, I discuss the details

of the amplitude-based and a phase-based masking.

1. The UI design of xtrk is based on the Elevayta Extra Boy Pro plug-in by Paul R. Harvey.
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Figure 2.2: xtrk user interface.

2.2.2 Amplitude-based Masking

The perceived stereo location can be estimated from the amplitudes of the left and

right signals by solving amplitude-based panning equations. Panning a monarual

source is generally implemented by mixing more or less signal to one channel or

the other of a stereo mix. A source is panned to the right by attenuating the signal

mixed to the left channel and boosting the signal mixed to the right channel. How

much to attenuate or boost is determined by a pair of panning equations, which

represent the amplitudes of the left and right signals when panning a monaural

source into a two-channel stereo field.

Perhaps the simplest form of amplitude panning is linear panning, given by
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the set of equations

xl(t) = x(t) · θ (2.1)

xr(t) = x(t) · (1− θ)

where x(t) is the monaural source, xl(t) and xr(t) are the left and right signals,

and θ ∈ [0, 1] is the pan position expressed between 0 and 1. When estimating

the perceived stereo location, the amplitudes of the left and right signals are

given, and the location is estimated by solving the system of panning equations

for unknowns θ and x(t):

x(t) = xl(t) + xr(t) (2.2)

θ = xl(t)
xl(t) + xr(t)

Analyzing in the frequency domain, however, gives a separate panning es-

timate for each frequency component. Because θ is a scaler, or DC source, the

frequency-domain representation of linear panning equations (2.1) simplifies to

multiplication by a constant θ (rather than convolution) and is given by the set

of equations

|Xl(ω)| = |X(ω)| · θ(ω) (2.3)

|Xr(ω)| = |X(ω)| · (1− θ(ω))

where X(ω) is the Fourier Transform of the monaural source x(t) with frequency

denoted ω, Xl(ω) and Xr(ω) are the Fourier Transforms of the left and right sig-

nals, |Xl(ω)| denotes the magnitude spectrum, and the scalar θ is the panning
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position. The panning position θ is parametrized over frequency ω having a sep-

arate panning position for each Fourier component ω. The system of equations

(2.3) can be solved for θ at each frequency component ω, giving an estimate of

the panning position and amplitude of each Fourier component in terms of the

amplitudes of the left and right signals:

|X(ω)| = |Xl(ω)|+ |Xr(ω)| (2.4)

θ(ω) = |Xl(ω)|
|Xl(ω)|+ |Xr(ω)|

In many audio signals, Xl(ω) and Xr(ω) represent a mixture of multiple

sources panned in different locations, not a single source panned in one location.

Equations (2.4) give only one amplitude and pan estimate for each Fourier com-

ponent, which, in the case of sources overlapping in frequency, collapses multiple

panned sources to one location estimate. Each source, however, contributes to

θ(ω) at most proportional to its amplitude in that Fourier component, depend-

ing on phase alignment. For time-frequency components that are dominated by

amplitude of one source, the pan estimate θ(ω) will be a good approximation.

For time-frequency components that are not dominated by a single source — two

or more are relatively balanced sources, for instance — the single pan estimate

given by θ(ω) will be a poor approximation. However, because the relative am-

plitudes of multiple sources often vary over time, an STFT frequency component

may be dominated by one source at one time moment and another source at an-

other time moment. As a result, with good temporal resolution (an STFT hop of

1024 samples at a sample rate of 44100), enough time-frequency bins are generally

left unattenuated to maintain the perceptual integrity of the isolated source while

degrading beyond recognition the intelligibility of the background sources. As cur-
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rently implemented, xtrk does not group adjacent bins through time. The same

binary mask is applied each frame, unless the user manually adjusts the selection

regions. Grouping adjacent bins between hops could mitigate the effects of bins

abruptly turning on or off over time, and could be accomplished with smoothing

filters, hysteresis, or a Hidden Markov Model.

2.2.3 Phase-based Masking

As mentioned above, many common techniques for source localization and separa-

tion rely on the time difference(s) between two or more signals. In popular music,

however, time difference is more often a cue of stereo width and reverberation

rather than of precise spatial location — the result of stereo miking a single in-

strumental source or the application of delays and other time-based based effects.

With xtrk, I use time differences to filter sounds based on the phase coherence,

a measure of phase consistency across STFT frequency bins and through time,

rather than localize and separate sources based on stereo location in the azimuth.

The phase error between the left and right channels is measured at each STFT

time-frequency component, and components that fall outside a threshold of phase

coherence are attenuated. The phase error is computed by the difference between

phases of the corresponding left and right Fourier components:

∆phase(ω) = 6 Xr(ω)− 6 Xl(ω) (2.5)

where 6 Xl(ω) and 6 Xr(ω) are the phases of the left and right Fourier Transforms

at frequency component ω.

Components with nonzero phase differences indicate the presence of noise,

reverberation, or stereo sources. Sounds with time-based effects, such as stereo
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delays, have nonzero phase error due to timing differences between the left and

right channels. The presence of noise or reverberation in a signal causes phase

differences to spread vertically across frequency bins, producing a wide phase por-

trait across the frequency spectrum. Limiting the phase coherence can effectively

separate sounds with wide versus narrow phase portraits, isolating reverberant or

stereo sources from a mix.

The rhythm guitar in Madonna’s recording of Like a Prayer, for instance, has

an extremely wide stereo image in the mix. The guitar is heard from both the far

left and far right sides of the mix, due to a time delay between the two signals —

likely the result of a stereo delay effect, stereo miking, or double tracking. The

guitar is perceived as spread across the stereo field, rather than localized to a

single point, and can be isolated by using phase coherence to filter narrow from

wide phase portraits. Similarly, I use phase coherence in Black Sabbath’s War

Pigs to help isolate the singing voice from the ringing cymbals. The voice, which

is a monoaural signal, has a tight phase portrait, where as the drums, recorded

using stereo multi-microphone techniques, has wider phase errors, especially in

the cymbals.

As with amplitude-based masking, in the presence of multiple sources that

overlap in frequency, ∆phase(ω) gives only one phase estimate per frequency

component, collapsing multiple sources to a single value. Similarly, since sources

contribute to phase proportional to their relative amplitudes, frequency compo-

nents that are dominated by a single source will give good estimates, and often

applying the mask through time is sufficient to degrade the background sources

beyond recognition while maintaining intelligibility of the intended source.
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2.2.4 Related Work

My phase-based filtering approach is related to the use of the Generalized Correla-

tion Coefficient (GCC) (Knapp and Carter 1976) and frequency domain masking

approaches in beamforming. One of the difficulties of beamforming is estimating

of the Time Difference of Arrival (TDOA) between microphone signals of the in-

tended source. TDOA is usually estimated using a measure of cross correlation,

such as the Pearson Correlation Coefficient, although this suffers from distortions

due to noise, reverberation, and the presence of multiple sources. The Generalized

Correlation Coefficient is a frequency domain extension that mitigates these errors

by weighting different frequency regions more or less heavily. The GCC-Phat, in

particular, normalizes out amplitude information, leaving only phase information,

as given by the equation

GCC-PHAT(ω) = Xl(ω)Xr(ω)∗
|Xl(ω)Xr(ω)∗| (2.6)

where Xr(ω)∗ denotes the complex conjugate. The denominator normalizes out

the magnitude information, leaving just the phase difference for each Fourier com-

ponent. A number of authors have proposed frequency domain masking (see D.

Wang 2005 for a discussion), and Arabi and Shi (Aarabi and Shi 2004) in par-

ticular, derive, from the GCC-Phat, a similar phase-based masking technique of

punishing STFT time-frequency bins based on the phase error.

2.2.5 Discussion

I use spatial filtering to separate sounds that can be isolated according to stereo

location or by spatial features such as width or reverberation. Spatial filtering can

be very effective because mix engineers tend to place instruments that have similar
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frequency profiles in different spatial locations to increase mix clarity, or use spatial

effects such as reverb and delay to give instruments unique spatial footprints.

Spatial filtering tends to work best on older mixes, dating from the 1960s and

1970s, when hard panning was popular. Most mixes, especially more recently,

feature sounds that overlap in both frequency and spatial location, requiring more

sophisticated approaches to source separation.

2.3 Source Separation by Probabilistic Latent

Component Analysis

For mixtures that are more complex, containing sources overlapping in both fre-

quency and spatial location, I use a spectrogram decomposition technique, Prob-

abilistic Latent Component Analysis (PLCA) (Smaragdis 2007). PLCA decom-

poses the short-time magnitude spectrum into a set of basis functions and time

activations. The basis functions represent the spectra of individual sources in the

mixture and the corresponding time activations represent the temporal locations

and amplitudes of their occurrences over time. The basis functions recombine

according to the temporal locations and amplitudes of the activation weights to

reconstruct an approximate of the original spectrogram.

PLCA is a form of matrix factorization. The magnitude spectrum is rep-

resented as a matrix S and expressed as the product of two lower dimensional

matrices

S ≈W ·H (2.7)

where the columns of W represent spectral basis functions and the rows of H

represent the corresponding activations of each basis function over time.
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Many algorithms have been used to find the bases W and activations H, and

all produce different perceptual results due to the variety mathematical constraints

assumed. Bases found with Principal Component Analysis (PCA), for instance,

generally do not exhibit substantial separation because the algorithm does not im-

pose perceptually informed constraints. Independent Component Analysis (ICA),

enforces statistical independence between components, producing basis functions

that are more perceptually distinct. The assumption of statistical independence,

however, is often too strong to model acoustic mixtures, and Sparse Component

Analysis (SCA) instead finds good separation by enforcing sparsity — commonly

measured using the L0 norm which counts the number of zero or near zero en-

tries in the basis vector. PCA, ICA, and SCA, however, all allow for negative

values, which in the case of magnitude spectra, are not perceptually meaningful

and lead to noise and other artifacts. Non-negative Matrix Factorization (NMF)

improves upon this by restricting basis functions to positive values only, giving a

more acoustically and perceptually meaningful separation.

PLCA formulates the spectrogram decomposition problem in a probabilistic

framework, treating the magnitude spectra as a distribution or histogram across

the dimensions of frequency and time. In addition to enforcing positivity, this

probabilistic formulation allows for extensions to learning frameworks, providing

for musically, acoustically, and perceptually meaningful constraints and transfor-

mations, such as sparsity, and transpositional invariances in both the dimensions

of frequency and time.

PLCA is an example of a recent trend of machine-learning approaches to

sources separation, which parallels a rise more generally of machine-learning ap-

plications in artificial intelligence. Earlier techniques, such as Computational

Auditory Scene Analysis (CASA), a general category of approaches to source sep-
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aration that were previously popular, identify basic perceptual mechanisms of

the human auditory system that operate to form high level representations of

the world. Grounded in physiology, perception, and empirical study, CASA sys-

tems are designed to model the perpetual rules and mechanisms of the human

auditory system that govern how we hierarchically organize auditory phenomena.

Machine-learning based approaches, however, are motivated by the assumption

that the laws, both perceptual and physical, that govern acoustic mixing and per-

ception can be extrapolated from example data. As such, this knowledge does

not need to be explicitly programmed into a source separation algorithm but can

be learned. Importantly, machine-learning techniques, such as PLCA, need to be

trained to produce results that correspond with human perception.

2.3.1 The PLCA Model

PLCA models the magnitude spectrogram as a probability distribution, or his-

togram. The magnitude spectrogram S is interpreted as a two-dimensional prob-

ability distribution P (f, t) and expressed as the product of its two marginal dis-

tributions. The marginals, one over frequency P (f) and the other over time P (t),

provide the basis functions W and activations functions H of the spectrogram de-

composition. They are computed by integrating out (or summing over) the other

dimension:

P (f) =
∫
P (f, t) dt and P (t) =

∫
P (f, t) df (2.8)

For one source, the marginals are equivalent to the power spectrum and amplitude

envelope of the original mixture signal.

While a single pair of time and frequency marginals are not a particularly

meaningful decomposition for the purposes of source separation, multiple pairs of
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time and frequency marginals can be extracted by introducing a latent variable

z. The latent variable model represents P (x) as the sum of multiple component

distributions, indexed by the value of the latent variable z. Each component

distribution is similarly expressed as the product of its two marginal distributions,

one over time and the other over frequency. This gives a set of frequency marginals,

or basis functions, for W and a set of time marginals, or activation functions, for

H. The general form of the latent variable model Probabilistic Latent Component

Analysis is

P (x) =
∑

z

P (z)
N∏

j=1
P (xj|z) (2.9)

where P (x) is anN -dimensional distribution of the random variable x = {x1, x2, . . . , xN},

the latent variable z is a discrete variable taking on integer values {1, 2, . . . , n}

up to the number of latent components n, and the marginals P (xj|z) ∀j ∈ N are

one-dimensional distributions across each of x’s dimensions.

PLCA is an optimization algorithm. PLCA finds the marginals P (xj|z) and

latent weights P (z) that best approximate P (x) using an Expectation-Maximization

algorithm (EM), an iterative method that alternatives between expectation (E)

and maximization (M) steps. In the expectation step, the relative contribution

of each value of the latent variable z is estimated, normalized by the sum total

contribution over all values of z:

R(x, z) =
P (z) ∏N

j=1 P (xj|z)∑
z′ P (z′) ∏N

j=1 P (xj|z′)
(2.10)

This gives a collection of time-frequency distributions in which the value at each

time-frequency location is the relative amount of observed energy contributed by

that component distribution.

In the maximization step, the marginals P (xj|z) and latent variable distri-
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bution P (z) are reestimated to maximize the contribution weightings found in

the expectation step. This is done by multiplying the observed distribution P (x)

by the relative contributions R(x, z), giving the amount of observed energy con-

tributed by each value of z. The latent distribution P (z) is reestimated to be the

total amount of observed energy contributed, computed by integrating across all

dimensions, and the marginals P (xj|z) are reestimated by integrating over all but

the desired dimension:

P (z) =
∫
P (x)R(x, z) dx (2.11)

P (xj|z) =
∫
. . .

∫
P (x)R(x, z) dxi

P (z) ∀i ∈ N, i 6= j (2.12)

This has the effect of updating each of the latent marginal P (xj|z) to account for

an amount of P (x) relative to the marginal’s prior contribution. The E and M

steps are successively repeated over and over until either reaching a convergence

thresholds or exhausting a given number of iterations.

Applied to magnitude spectra, x is a two-dimensional distribution, x1 across

frequency and x2 across time. The marginals P (x1|z) and P (x2|z) are a collec-

tion of multiple frequency distributions and time distributions, corresponding to

different values of the latent variable z. The multiple frequency and time distribu-

tions provide the basis and activation functions of the spectrogram decomposition.

Effectively, PLCA finds a set of spectral kernels that reoccur through time to con-

struct P (x).

Because PLCA is a matrix factorization technique, the model can be applied

to any positively valued matrix, regardless of what spectral transform the data

represents. STFT spectrum, Constant-Q spectrum, and Mel-Frequency spectrum

are all commonly used. However, since PLCA operates only on the magnitude

spectra, discarding phase and phase delta information, the model does not account
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for destructive interference in mixing, a limitation which leads to analysis and re-

synthesis artifacts.

2.3.2 Application to Musical Source Separation

PLCA can be used for musical source separation in a number of different ways, in-

cluding unsupervised, supervised, and semi-supervised learning. In unsupervised

learning, none of the sources are known in advance, and the goal is usually to

extract basis functions that match each of the sources. As with NMF, unsuper-

vised separation can be successful, but PLCA parameters, such as the number

of components and sparsity, must be chosen carefully to match the sources. In

supervised learning, all of the sources are known in advance, and basis functions

are derived from tagged examples rather than from the mixture itself. During the

training phase, basis functions are learned from isolated audio clips of the known

sources. The learned basis functions are then used to decompose, or fit, the mix-

ture, giving new activation functions that reconstruct the mixture according to

the learned basis functions. Multiplying the pre-learned basis functions by the

new activations resynthesizes each source component.

Generally, I learn multiple basis functions per source, anywhere from 20− 80

components each. Not much audio is necessary for training. A few seconds or even

less can be effective, depending on the amount of variation of each source in the

mixture and in the training audio. Supervised learning is based on the assumption

that learned basis functions can adequately describe new instance of sound from

that source and its success depends on the amount of variation and extent to which

the model is required to generalize. Too few components and the model will not

generalize and account for variation in a source; too many components and the

learned basis functions will be too fine, such that components of one source may
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easily fit another source, causing poor separation.

Most often, I use PLCA in a semi-supervised context, in which one or more

sources are known in advance, but others are unknown. The unknown source may

represent a single instrument (such as a voice or instrument) or an entire ensemble

of sources (such as the entire band minus the voice). The target source to isolate

may be the known source, unknown source, or both. I learn multiple sets of basis

functions, one set for each known source and another set for the unknown source.

The known sets are learned during training phase but kept fixed during fitting.

The unknown set is learned during fitting.

Figure 2.3 shows a mixture of two sources, voice and piano, from Neil Young’s

recording of After the Gold Rush. The first half (segment 1) of the clip contains

piano solo, and the second half (segment 2) contains a mixture of piano and voice.

I first learn basis functions for the piano by training on segment 1 (outlined in

red), and then fit the entire clip (segments 1 and 2 together) using the piano basis

functions together with new, untrained basis functions. The piano bases are held

constant (not updated), since they should do a good job describing the piano, and

the untrained bases are updated to describe the remaining source, the voice. The

piano is reconstructed using the piano components, and the voice is reconstructed

using voice components. Spectrograms are shown in (c) and inverted back to time

domain waveforms. The separated components are overlaid in (d), illustrating

that PLCA achieves very good separation, about 20dB between the desired source

and background in each reconstruction, even though the sources overlap in time,

frequency, and stereo location.

I use two components for the piano, and six for the voice. The basis functions

represent spectral components of each source. If too few piano components are

used, the basis functions will be too constrained to described the variety of piano
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(a) Mix with training region highlighted in red

(b) Decomposition into basis functions and activations

(c) Reconstructed components

(d) Reconstructed component waveforms overlay

Figure 2.3: PLCA After the Gold Rush voice and piano separation.
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sound in the mixture. As a result, some piano sound will be accounted for by

the voice components instead, causing piano to bleed into the voice. If too many

components are used, the basis functions will be too general, or too fine, and some

piano basis functions will fit aspects of the voice, causing voice to bleed into the

piano reconstruction as well as producing spectral holes in the isolated voice.

2.3.3 Discussion

To achieve good separation, there are a number of analysis parameters that need

to be tuned. STFT parameters — primarily hop size, window size, and FFT size

— must be selected appropriately to capture relevant spectral features. There

must be sufficient temporal and frequency resolution to represent distinct sources

as distinct spectral features, otherwise the spectrogram cannot be decomposed

into separate sources. Good resolution is generally preferred, although coarse

time resolution can smooth percussive transients and coarse frequency resolution

can help eliminate low frequency bleed. With PLCA, the number of components

per each source is critical, and the appropriate number depends largely on the

sources, their spectral similarity, the training clips available, and amount of sonic

variation of each source in the mixture. The numbers of components of each source

relative to the others is also critical. Adjusting sources to have greater or fewer

sources relative to another effectively pushes or pulls information from one source

to another. I parameterize the number of components in terms of two values: the

relative number of components per each source multiplied by a resolution scalar.

PLCA can be very effective, especially when clean training data is available.

There is always some bleed between sounds, or holes within sounds, but these

artifacts are, in part, due to the physical and perceptual complexities of the mix-

ing, as well as the limitations of PLCA. In many ways, these artifacts reflect the
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complexities of the physical and perceptual processes involved in hearing. As I

worked more and more with source separation algorithms, I became interested

in the question, is there some way to translate these artifacts back into music?

The remaining steps of the HVB process — pitch and rhythm analysis and music

notation — are my attempt to express my fascination with source separation into

the form of music notation and performance.

2.4 Pitch Analysis

Pitch analysis, often referred to as (multiple) fundamental frequency estimation,

is the task of estimating, from a waveform, the pitch, or set of multiple pitches,

that a human listener would perceive. Although pitch can be explained as the

perceptual feature of sound that corresponds with the physical feature of wave-

form frequency, pitch perception is a complex phenomena that is not well defined.

Most waveforms, for instance, do not repeat exactly, yet humans still experience

the perception of pitch, to a greater or less extent, and, in the case of complex,

aperiodic waveforms, pitch perception can be highly subjective. There are many

approaches to pitch estimation, some mathematically motivated, some physiolog-

ically motivated, and, more recently, others data-driven using machine learning

algorithms.

2.4.1 Maximum Likelihood Pitch Estimation

My approach to multiple fundamental frequency estimation is a maximum likeli-

hood method based on [fiddle~] (Puckette, Apel, and Zicarelli 1998), in which

the salience of a fundamental frequency is estimated according to the presence of

peaks in the frequency spectrum at or near harmonics of that fundamental. The
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algorithm design is motivated by the perceptual idea that harmonics reinforce the

perception of pitch. I chose this algorithm for a few reasons: I am interested in

the compositional controls that the parameters of the maximum likelihood esti-

mator afford, but, more importantly, I am interested in the harmonic series as a

structuring concept in twentieth century music.

The spectrum is first reduced to a limited set of peak frequencies, after per-

forming an STFT transform with phase vocoder to estimate the instantaneous

frequency, which are then used to compute a likelihood function for possible fun-

damental frequencies. The probability that a given frequency f is a fundamental

is computed by the likelihood function

L(f) =
k∑

i=0
A(ai)∆(ti)H(ni) (2.13)

where f is the frequency candidate, k is the number of peaks in the spectrum, A(ai)

is a function that depends on the amplitude of the ith peak, ∆(ti) is a function

that depends on the distance of the ith peak to the nearest harmonic of f , and

H(ni) is a function that depends on the order of that nearest harmonic — whether

it is a low or high multiple of f . A(ai) normalizes by the sum total amplitude

within an STFT frame, ∆(ti) normalizes according to a maximum bandwidth for

inclusion, outside of which peaks are discounted or zeroed, and H(ni) weights

harmonics inversely on an power scale ( 1
ni

)p, preferencing lower harmonics. In

summary, L(f) is the sum total amplitude of peaks that fall within a bandwidth

of inclusion from harmonics of f , and peaks are weighted less strongly the further

they are from actual harmonics and the higher they are into the harmonic series.

To find multiple fundamentals, L(f) is computed over set of possible funda-

mental frequencies, spanning, in quarter tone steps, a given range from minimum
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to maximum fundamental. The frequencies are ranked according to likelihood

score L(f) from highest to lowest, and the top n are considered multiple fun-

damentals. Finally, because frequency candidates are measured at quarter tone

intervals, once a candidate is determined to be a fundamental, a more precise

estimate is found using a weighted least squares linear regression

WAx ≈ Wb (2.14)

where b is a matrix of spectrogram peaks, A is a matrix of the orders (integer mul-

tipliers) of their nearest harmonics, and W is a matrix of corresponding weights

for amplitude and harmonic order as in L(f). Solving for x gives a more precise

estimate of the fundamental by minimizing the distance between the found spec-

trogram peaks and their nearest harmonics. Finally, when analyzing for multiple

fundamental frequencies, it is necessary to connect pitch changes over time to

prevent false onsets or offsets. Pitches are connected between adjacent analysis

frames to form tracks using a nearest neighbor model that allows for the termi-

nation and creation of new tracks. Figure 2.4 illustrates the sequence of steps

involved in pitch estimation.

2.4.2 Compositional Parameters: Harmonicity

A challenge of this approach, however, is that harmonics of salient fundamental

frequency candidates tend to also have high likelihood scores, producing harmonic

duplicates and octave jumps from analysis frame to frame. Fundamental frequency

candidates that are in harmonic ratio with one another are suppressed, returning

only the top candidate (highest likelihood) of the group. Parameters specifying

which harmonic ratios are to be suppressed, the bandwidth for inclusion, as well
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Figure 2.4: Pitch estimation signal flow.
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as how far back in time to look for duplicates — within a single frame or over

multiple frames — are made variable, controlling of the harmonicity of the set of

multiple fundamentals. These harmonicity parameters have a substantial impact

on the resulting music, and I tend to tune them from song to song, to reflect

different musical and sonic aspects of the original songs.

In my analysis of (You Make Me Feel Like) A Natural Woman (Excerpt 2.1),

I suppressed harmonic relationships heavily, because I wanted the harmony to be

rich with complex ratios — I also thought it a good opportunity to dig into the

inharmonic aspects of the piano spectra. By contrast, in the transcription of Led

Zeppelin’s When the Levee Breaks (Excerpt 2.2), I did not suppress any harmonic

relationships, because I wanted the transcription to capture the ringing quality

of the droning bass guitar, harmonica, and overdriven lapsteel. The resulting

transcription is rich in just-intoned thirds ands sevenths. In many ways I want

pitch estimation to reflect not just the perceived fundamentals but also the spectral

qualities of sound. I do so because I believe pitch perception and sound spectra are

deeply interrelated phenomena and not separable as the conventional “everything

else” definition of timbre would suggest.

Excerpt 2.1: (You Make Me Feel Like) A Natural Woman, Piano
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Excerpt 2.2: When the Levee Breaks, Lapsteel

2.4.3 Related Work

Among the many different approaches to pitch estimation are time-domain meth-

ods such as zero crossing rate and autocorrelation; autocorrelation based methods

such as YIN (Cheveigné and Kawahara 2002) and pYIN (Mauch and Dixon 2014),

which include additional processing and heuristics and are generally considered

among the state of the art for monophonic pitch estimation; physiologically moti-

vated models such as Klapuri’s method (Klapuri 2005), which combines a gamma-

tone filterbank model of the human auditory periphery together with a periodicity

analysis stage; and, more recently, corpus driven deep learning algorithms such as

CREPE (Wook Kim et al. 2018), a convolutional neural network that operates on

time-domain signals. My algorithm belongs to a general class of maximum like-

lihood estimators, which attempt to find periodicities of peaks in the frequency

spectrum. These harmonic analysis based approaches are related to earlier work

such as harmonic product spectrum, cepstral pitch determination, and maximum

likelihood estimate as described by Noll (Noll 1970), although many more re-

cent authors have developed their own variants, including Puckette’s [fiddle~],

Klapuri’s summation of harmonic amplitudes (Klapuri 2006), Doval and Rodet’s

maximum likelihood estimator (Doval and Rodet 1991). I chose a harmonic anal-

ysis based approach because I am interested in the concept of harmonic structure

and its relation to pitch perception.
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2.5 Rhythm Analysis

Music is often represented, notated, and heard as a sequence of events over time.

These events may be articulated by changes in pitch, spectra, loudness, playing

techniques, and other features of sound and musical performance. Onset/Offset

detection is the process of finding the locations of these events within an audio

signal — both the start and end times — as a human listener would perceive

them and pertains to how the human auditory perception groups spans of time

at a primary level of temporal organization.

2.5.1 Onset and Offset Detection

The perception of onsets and offsets is generally understood to correspond with

change over time, and onset detection strategies usually operate by measuring

change within an audio signal, or instantaneous difference, from one frame to the

next, to find moments of significant change. Onset detection strategies gener-

ally involve identifying local peaks in an onset detection function (ODF), a time

varying audio feature known or expected to correspond with the perceptual onset

of musical events. The audio features, however, that serve as perceptual cues

for onsets and offsets can be different for different sound sources, because dif-

ferent instruments have different spectral envelopes, especially during the start

of a note. As such, a variety of detection functions have been used, including

the time-domain amplitude envelope, change in spectra, change in a particular

spectral feature, physiologically motivated features (Klapuri 1999, Collins 2005a),

probabilistic measures of entropy or surprise, aspects of synthesis models such as

spectral modeling synthesis residual, as well as estimated pitch (see Bello et al.

2005 for a comparison of different approaches). In the literature on onset/offset
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detection, offset detection has received less attention. The end of a musical event

may be characterized simply by the beginning of the next event, or by a decrease

in amplitude. When analyzing acoustic mixtures or noisy signals, however, these

cues can be difficult to identify, and additional features such as pitch confidence

can help locate moments when no musical event is present.

For HVB transcription, I choose ODFs to match the character of the mu-

sic being analyzed — generally using either amplitude envelope, spectral flux,

phase deviation, or pitch estimation. I also tend to use multiple ODFs simul-

taneously, detecting “percussive” onsets through changes in either amplitude or

spectra as well as “pitched” onsets through changes in pitch estimation, and bal-

ancing between the two. This balance gives me a control that can radically alter

the character of the transcription, essentially focussing on different perceptual

cues, or features of the sound. I tend to find offsets simply by connecting adjacent

onsets, or using an amplitude envelope threshold. When the signal falls below the

threshold an offset is triggered. In the following sections, I discuss the various

detection functions used and how onsets are interpreted into musical events.

2.5.2 Onset/Offset Detection Functions

A perceptually and computationally simple detection function is the amplitude

envelope, which corresponds with the perception of loudness, and is measured by

the signal amplitude averaged over time. The signal is analyzed in frames, within

which it is windowed, rectified, and summed to give the amplitude envelope

env(n) = 1
N

N
2 −1∑

m=−N
2

|x(n+m)|w(m) (2.15)
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where n is the frame index, x(t) is the time-domain signal, w(m) is a window

function zero centered, and N is the window size. The amplitude envelope is

effective for identifying onsets that are marked by abrupt increases in loudness,

such as percussive sounds, or pitched instruments marked by distinct attacks, such

strummed bass or guitar. (See Figure 2.5, orange plot).

Frequency-domain detection functions, which measure spectral difference in

either the magnitude, phase, or complex domains, are more commonly used and

considered state of the art within music information retrieval (MIR) community.

Spectral flux measures the element-wise difference between magnitude spectra

of successive STFT frames. Essentially, STFT frames are interpreted as high-

dimensional vectors and any number of vector space distance metrics can be ap-

plied. Generally, spectral flux refers to difference in magnitude, not phase. I use

the L1 norm of the half-wave rectified difference vector, giving the spectral flux

flux(n) =
N
2 −1∑
k=0

H(|Xk(n)| − |Xk(n− 1)|) (2.16)

where Xk(n) is the STFT of the time-domain signal x(t) at frequency bin index

k and frame index n, and H(x) is the half-wave rectify function. The half-wave

rectify function passes only positive, or increasing, bins and discounts the negative,

or decreasing, bins. Because the spectra are differentiated before they are summed,

spectral flux is sensitive to changes in the distribution of spectra, not just changes

in the sum total amplitude. Spectral flux can identify changes in timbre or pitch

that are not articulated by the amplitude attack envelopes, such as changes in

bowed violin notes or onsets that are marked by noise or other spectral change.

(See Figure 2.5, green plot).

Additionally, spectral change can be measured in the phase domain. Phase
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deviation measures the difference in instantaneous frequency, given by the second

difference in phase between STFT frames (instantaneous frequency itself is given

by the first difference)

pdev(n) =
N
2 −1∑
k=0
|∆2ϕk(n)| (2.17)

where ϕk(n) is the 2π unwrapped phase ofXk(n), and ∆2 = ϕk(n−2)−2ϕk(n−1)+

ϕk(n) is the second difference. Peaks in phase deviation correspond to deviations

from steady state spectra, regardless of intensity. These often occur during noisy

attack transients and transitions between harmonically related pitched notes. (See

Figure 2.5, red plot).

It can be difficult to generalize about the kinds of musical events captured

by magnitude- versus phase-based ODFs, because magnitude and phase work

together as complex domain Fourier coefficients to express a signal. Changes can

be reflected in magnitude, phase, or both features, depending on how the signal

lines up in analysis bins, both vertically across frequency and horizontally across

time. Spectral flux, for example, will capture changes in pitch distance large

enough to register across frequency bins, where as phase deviation will capture

change within frequency bins. Because of this, complex difference is often used,

which combines both spectral flux (magnitude) and phase deviation (phase) into

one measure (see Bello et al. 2004 and Dixon 2006 for a discussion of phase and

complex-domain onset detection functions).

In addition to amplitude envelope and spectral change, I use pitch as an

onset feature, in a manner similar to [fiddle~] (Puckette, Apel, and Zicarelli

1998) or Nick Collin’s pitch detector method (Collins 2005b), to identify onsets

marked by stabilization of estimated pitch, rather than changes in spectra. An

onset is found when a change in pitch stabilizes, or remains within a window of its
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center pitch for a certain amount of time. The center pitch is the average within a

running window, from the last change in pitch up through the current candidate,

and is measured by the mean log scale pitch distance. While other spectral onset

features, such as phase deviation and, to a lesser extent, spectral flux, are also

sensitive to pitched change and stabilization, using pitch estimation as an onset

features gives a more direct parameterization that is useful for tuning the onset

detector to musical sounds. The magnitude and time thresholds determine the

onset detector’s sensitivity to small or short-lived changes, features which are

generally designed to suppress vibrato and reject spurious discontinuities in pitch

tracking, and function, in the case of HVB transcription, as controls, tuning the

onset detector’s sensitivity to minute changes. (See Figure 2.5, purple plot).

Figure 2.5 compares onset detection functions of viola and piano, both playing

ascending sequences of four notes. Four discrete note events are easily seen in

the spectrogram, as characterized by subsequent vertical shifts in spectra, and

are marked by broadband energy at onsets. The viola (left) does not exhibit a

substantial change in amplitude envelope (orange), yet onsets correspond with

distinct peaks in spectral flux (green) due to the shift in amplitude across bins.

Phase deviation (red) is high at note onsets as well as at the decay of each note,

making it difficult to distinguish onsets by phase deviation alone — the increase

in phase deviation in the latter half of the note reflects the presence of vibrato.

By contrast, the piano (right) does exhibit distinct rises in amplitude envelope

(orange) at note onsets due to the percussive envelope of the piano. This is also

reflected in the spectral flux (green). Phase deviation (red) also exhibits peaks at

note onsets, due to the initial noise transient, although the peaks are less distinct,

making them difficult to distinguish from false positives. For both sources, changes

in pitch estimation are quite clear, changing abruptly at note onsets and remaining
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relatively stable throughout the duration of the note.

The audio clips in Figure 2.5 were synthesized for the purpose of providing

clear examples, free of noise and performance distortions. Figure 2.6 shows ODFs

of a human performance, a violin excerpt from Karen Dalton’s Katie Cruel, after

source separated from the mix. As can be seen from the plots, peaks in the ODFs

are less distinct, a result of many factors, including noise and artifacts of the

separation process as well as aspects of human performance — the violin playing

is dynamic and expressive, featuring changes in loudness, vibrato, pitch bends,

slurs (notes not articulated by separate bow strokes), and timbral inflections. All

of these factors complicate onset detection, many in ways that bleed across ODFs.

Figure 2.5: Onset Detection Functions for Viola and Piano.
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Figure 2.6: Multiple Onset Detection Functions HVB excerpt.

2.5.3 Mapping Analysis Features to Performance Features

Musical events are generally associated with additional properties beyond time

and duration, including pitch value, unpitched sounds, articulation, dynamics,

bow position, or additional performance techniques. Once an onset is identified,

the properties of the corresponding musical event still need to be determined. I

often treat onsets differently depending on which detection function is triggered —

“pitched” onsets (onsets that are trigged by pitch estimation ODF) versus “per-

cussive” onsets (onsets that are triggered by amplitude or spectral ODFs). I find

that using multiple simultaneous ODFs helps me to produce more detailed, ex-

pressive scores, and mimic idiomatic and genre-specific playing styles by mapping

different analysis features to different aspects of musical performance.

Usually I use pitched onsets to trigger new pitches, drawing on the estimated
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pitch value of the corresponding analysis frame, which is filtered and smoothed

to debounce changes that are small or short-lived (as described in above). I

use percussive onsets to rearticulate the most recent pitch or chord, producing

rhythmic figures of repeated notes. The balance of pitched versus percussive

onsets controls the rate of new pitch information, and allows me to focus the

transcriptions on melodic versus rhythmic figures. This is a flexible control that

can be tuned to suit diverse musical figures, from foregrounded melodic lines

to backgrounded accompaniment parts, such as rhythm piano or rhythm guitar.

Excerpt 2.3 shows a transcription of the rhythm guitar in This Guy’s in Love

with You. I balanced the onset detection more heavily towards percussive onsets

slowing the rate of harmonic motion and producing rhythmic figures of repeated

chords.

In some transcriptions, I map pitched and percussive onsets to different ar-

ticulations or aspects of playing technique. Excerpt 2.4 shows the banjo tran-

scription of Katie Cruel, in which percussive onsets are interpreted as unpitched

muted strokes rather than repeated notes, to mimic the percussive aspects of

Karen Dalton’s clawhammer banjo style. In other transcriptions, I use additional

analysis features to determine playing techniques. In the guitar transcription of

Like a Prayer, pitch confidence determines whether an onset is a pitched chord

or unpitched muted stroke. Pitch confidence is a measure of pitch salience, or

how certain the pitch estimator is of the estimated pitch. Onsets below a given

confidence threshold are transcribed as muted strokes and above as chords.
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Excerpt 2.4: Katie Cruel, Banjo

2.5.4 Polyphonic Onsets

When working with polyphonic voices, there are many ways to interpret onsets,

from fully coordinated voices to fully independent voices. This pertains equally

to individual polyphonic instruments, such as keyboards and guitars, or sections

of multiple monophonic instruments, such as a choir or horn section.

An onset (either percussive or pitched) can be used to trigger multiple si-

multaneous notes, producing rhythmically coordinated voices. This is illustrated

by the transcription of the background vocal trio in (You Make Me Feel Like) A

Natural Woman in Excerpt 2.5. I wanted the voices to be in rhythmic unison,

as sung in the original recording, and onsets are triggered simultaneously across

each of the three voices. As a result, some voices have rearticulations where others

have new pitches, and small discrepancies in rhythm are smoothed into rhythmic

unison.

Alternatively, onsets may be detected separately for each voice, producing

rhythmically independent polyphonic voices. Excerpt 2.6 shows a transcription

of the horn section of Jungle Boogie, consisting of trumpet, alto sax, and tenor

sax. I wanted the horn section to be uncoordinated, the three instrumental voices

unraveling like the effect of a trumpet fall. The three instrumental staves are

quantized separately, producing different subdivision grids. The first beat of bar
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51, for instance, is subdivisions of eight against five against seven. I often inter-

polate between these two poles, assigning different functions to different kinds of

onsets, which gives a continuum between coordinated and independent voices.
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Excerpt 2.6: Jungle Boogie, Horns

2.5.5 Onset Detection for Percussion

Drums transcription requires a different strategy than the onset/offset detection

method used for pitched instruments. Drums are a mixture of overlapping discrete

unpitched sources. Drum tracks consist of multiple sources — each drum is a
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separate source — that may occur simultaneously, where as pitched instruments

are separated into individual instruments before onset/offset detection. Since

drum notes do not exist along a continuous continuum of pitch, but rather are

chosen from a discrete set of unpitched sounds, deciding the value of a drum note

is not as simple as using the current pitch value, but requires identifying which

drum(s) is struck.

For HVB, I developed a drum transcription method using PLCA (the spec-

trogram decomposition model previously discussed in Section 2.3). The PLCA

model is pre-trained on samples of individual drum hits — these are synthesized

using the Apple DLS General MIDI Sound Bank. A drum track is transcribed

by fitting the pre-trained basis functions to the track, which gives a new set of

activation functions, representing the temporal locations and amplitudes of the

pre-trained bases within the drum track audio. These activation functions are

used as onset detection functions, one for each drum in the trained model, and

onsets are found by peak picking, allowing polyphonic drum transcription of mul-

tiple overlapping sources. Figure 2.7 shows an example of PLCA activations as

used for drum transcription. The audio clip consists of four beats of a simple

drum figure. Activations and basis functions are plotted for the four individual

drum sources, and it can be seen that abrupt rises in the activations correspond

clearly with drum onsets. Importantly, moments when multiple drums are hit

simultaneously exhibit energy across multiple activation functions.
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Figure 2.7: Drum transcription using PLCA activations as ODFs.

PLCA can be very effective for drum transcription, and its analysis param-

eters afford useful controls. Imposing sparsity constraints, for instance, on the

activation functions operates as a control of polyphony, otherwise the algorithm

finds multiple similar percussion sources in place a single source. The number of

components used to represent each training sample influences the model’s ability

to generalize and account for variability in a single drum source. This number

essentially controls the flexibility or “wiggle room” for each source when matching

it in the mix, and sources with more flexibility will occur more frequently in the

transcription. I also impose weights on the activations to control the likelihood

of each source in the transcription. These parameters allow me to control the

relative number of occurrences of each drum in the transcription and steer the

model towards more or less of a certain drum if that source is overpowering or

lacking in the transcription.
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2.6 Music Notation

The values produced during pitch and rhythm analysis are found without con-

sideration for any particular musical representations of time or pitch. Timings

are expressed in seconds, measured to a degree of resolution afforded by STFT

analysis — usually a hop size of 512 samples, or 44100/512 = 1/86th of a second.

Pitch is expressed in hertz, measured to floating point numerical precision. Quan-

tizaton is the task of fitting these “arbitrary” analysis values (generated without

respect for musical values) to a limited set of musical values. This section fo-

cusses on rhythmic quantization because my treatment of pitch quantization is

less complex; frequency is quantized to the cent (1/1200th of an octave) and no-

tated as cent deviations from nearest twelve-tone equal temperament pitch. Of

course more complex tuning strategies could be used, such as inferring a tuning

system — either fixed, variable, or perhaps even paratactical. My treatment of

rhythmic quantization, however, is more complex, and involves fitting sequences

of time points to musical subdivision grids.

2.6.1 Rhythmic Quantization

Conventional music notation represents time according to a metric framework

of beats. Musical time is measured in terms of a fundamental unit, the beat,

which can be divided into smaller parts, usually of equal size and in small integers

ratios — 2, 3, 4, 5, 6. Rhythmic quantization, the task of fitting an arbitrary

sequence of time points (generated without respect for musical durations) to the

form of musical notation, poses several considerable challenges, which have been

addressed in a variety of ways by composers and researchers, particularly those in

the domain of computer-assisted composition. Because musical rhythms must fit
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a specific form of allowable subdivsions, there is often not an exact match, and

transcribing an arbitrary sequence of time points, in general, involves finding the

closest match, while balancing excessive notational complexity — such as small

divisions of the beat, large prime subdivisors, and frequent changes of subdivision

grids.

My quantization framework is informed by ideas from Nick Didkovsky (Did-

kovsky 2004, Didkovsky and Burk 2019) and Paul Nauert (Nauert 1994). I use

a quantization technique based on the concept of the beatspan. A beatspan is a

duration of time (expressed in terms of beats) that may be subdivided, or broken

down into smaller parts, generally but not always of equal division — incomplete

tuplets, for example are unequal divisions of a beatspan. These parts may be

in turn treated as beatspans themselves and further subdivided into smaller and

smaller spans, forming a hierarchical structure of nested subdivisions. A rhythmic

grid constructed according to this process of subdivisions is called a quantization

grid, abbreviated Q-grid, a term introduced by Nauert. An example Q-grid is

shown in Figure 2.8, illustrating the structure through which a beatspan — in

this example, four beats — is hierarchically subdivided into finer and finer divi-

sions.

Due to the nested structure of subdivisions, Q-grids can be irregular, having

uneven spacing between grid divisions. The flexibility of Q-grid representation

is due to the allowance that beatspan durations may be greater than, equal to,

or less than a beat, providing for divisions of half the beat or less. Multiple

subdivisions may be mixed within a beat, such as dividing the first half into

triplet subdivisions and the second half into quintuplet subdivisions. This allows

for complex and hierarchical grouping of rhythms. This flexibility to fit arbitrary

time points, however, comes at the cost of notational simplicity.
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A collection of possible beatspans — called a beat division scheme list, a term

borrowed from Didkovsky — determines the possible Q-grids, or possible musical

durations and that can be used to express timings. Quantization involves finding

the best Q-grid to express an arbitrary sequence of time points, and substituting

it for the arbitrary sequence. The number of possible Q-grids depends on the

possible beatspans and is generally quite large, growing combinatorially with the

number of beatspans, as well as the length of the sequence to be quantized. Find-

ing the best Q-grid is a balance between resolution, computation demands, and

notational complexity. Large collections of possible beatspans provide finer tempo-

ral resolution, but also allow for many more possible Q-grids, which increases the

computational difficulty of finding the best fit, as well as the notational complex-

ity of the resulting musical expression — increasing depth of nested subdivision

hierarchy and larger subdivisor primes.

An example beat division scheme list is shown in Figure 2.9. A beat divi-

sions scheme is represented as a list of possible beatspans — Nauert uses a tree

structure. Each beatspan is defined in terms of its total duration and number of

subdivisions. This is encoded by a multiplier and baseline note duration, modeling

standard music tuplet notation such as 3:2 (said “three in the span of two”). The

total beatspan duration is given by the baseline note duration multiplied by the

denominator, and the numerator gives the number of subdivisions. For example,

bds.add_tuplet((5, 4), 1.0/2) represents a beatspan of five eighth notes in the

span of four eighth notes, or an eighth note quintuplet.
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Figure 2.9: Beat division scheme list.
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2.6.2 Optimal Q-grids

Finding the best Q-grid to express an arbitrary sequence of time points can be

treated as an optimization problem. Given a sequence of arbitrary time points to

be quantized {xi}, the optimal Q-grid minimizes the quantization error, expressed

as the sum of power differences between the actual and quantized points

N−1∑
i=0
|xi − yi|p

1
ni

w(ni) (2.18)

where {yi} are the corresponding quantized time points, found by taking the clos-

est Q-grid subdivision: yi = argmin(|xi − y|)∀y ∈ Y for each xi. The term ni is

the number of the subdivisons in the beatspan containing yi, and the expression

1/ni is a general regularizing term that depends inversely on the magnitude of the

number of subdivisions. It is intended to penalize large subdivisors, combatting

the problem that smaller divisions of the beat tend to populate quantizations,

because they represent finer temporal grains. The term w(ni) is a manually sup-

plied weight, also depending on the subdivisor ni of the containing beatspan, for

further hand-tuning the regularization. The weights {wni
} afford control of the

notational complexity of the quantized rhythms by allowing separate tuning for

each beat division. The exponent p scales error along an exponential curve. In

summary, the quantization error expresses the best fit Q-grid subject to additional

constraints on notational complexity.

The transcriber quantizes a sequence of arbitrary time points by substituting

it with the sequence of Q-grid time points that minimizes the quantization er-

ror as expressed by Equation 2.18. Figure 2.10 shows the quantization error of an

arbitrary sequence of time points. The transcriber finds the subdivision grid, or Q-

grid, that minimizes the the sum total amount of error, shown in red. The Q-grid
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that minimizes the quantization error is found by searching all possible Q-grids. I

transcribe one measure at a time to keep the sequence length short, since compu-

tation time grows combinatorially with the length of the sequence. Currently, the

transcriber implementation enumerates all possible Q-grids and calculates their

errors, but this could be made more efficient using AI techniques. Didkovsky, for

example, uses a heuristic search with backtracking to reduce computation time.

(a) Un-quantized sequence of time points

(b) Quantization error (red) to quantization grid (dotted vertical lines)

(c) Notated rhythm

Figure 2.10: Quantization error of arbitrary time points.

2.6.3 Constraints on Complexity

Many theorists have devised tools and concepts to measure and constrain rhyth-

mic complexity in music transcription. These frameworks generally consider both

the numerical complexity of subdivision ratios as well as the difficulties and cog-

nitive demands of musical performance. Nauert’s framework, perhaps one of the
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most detailed, identifies three categories of factors that contribute to rhythmic

complexity: properties of the Q-grid itself, such as large prime divisors and rapid

subdivisions of time; changes in the rate of subdivisions, either within or between

beatspans; and the number of location of deletions (grid points that are unarticu-

lated or rests) — whether they fall on weak Q-grid subdivisions or on very small

divisions of beatspans. Nauert’s framework is both musically and numerically mo-

tivated. Q-grid properties, such as having large primes, pertain to the numerical

complexity of the Q-grid. Deletion properties, on the other hand, how many and

where they fall, are motivated by the difficulty of visually parsing and mentally

subdividing awkward rhythms.

Didkovsky’s JMSL transcriber also includes a useful number of control pa-

rameters pertaining to notational complexity. One, in particular, is the minimum

number of beatspan divisions that must be articulated to use a given beatspan.

Similar to Nauert’s deletion principle, requiring larger numbers of articulations

guards against sparse Q-grids that are difficult for performers to mentally subdi-

vide.

Barlow’s indispensability function (Barlow and Lohner 1987), which measures

the metric contribution of a given pulse, can be used to measure and constrain per-

formance complexity during quantization. Indispensability identifies the rhythmic

locations that are most salient in the perception of meter. Dispensable subdivi-

sions do not contribute substantially to the sense of meter and can be deleted

without altering the perception of the type of meter. Indispensability identifies or

formalizes the concept of strong and weak, and, if used as a quantization constraint

(weighting factor), steers the quantizer away from rhythms that have ambiguous

meters and, as such, are difficult to perform. Constraining quantization to rel-

atively indispensable subdivisions will produce clear meters, where as allowing
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dispensable subdivisions will produce ambiguous meters.

Outside the domain of rhythmic quantization, theorists have given consid-

erable attention to the complexity of ratios, most often in considering harmonic

distance, which attempts to measure and explain the relative consonance of pitch

intervals. Many approaches to harmonic distance, however, can also be applied to

rhythm. Barlow’s rhythmic indispensability function, for example, is an applica-

tion to rhythm of his harmonicity harmonic distance function and yields similar

results in both domains. Harmonic distance functions, such as Tenney’s HD func-

tion (Tenney 2015) and Euler’s gradus suavitatis (GS) function (Polansky 2013),

usually consider the number of distinct prime factors as well as the magnitude of

those primes and their powers. Large primes and composite numbers, which are

more complex numerically, have greater harmonic distance. While harmonic dis-

tance functions are usually applied to the simplified relatively prime ratios, when

applied to rhythm, it is useful to maintain the unsimplified ratio. Magnitude cor-

responds to the depth of nested subdivision, where as relative, or simplified ratio,

corresponds to the relationship within a given tier. The tuplet 6:4, for example,

should be more complex than 3:2, even though the ratios are equivalent when

simplified.

In my transcriber, I only consider complexity constraints based on notational

complexity, which are implemented in the form of manually supplied subdivi-

sor weights. There are two primary motivations for this decision. First, I am less

interested in tempering the music notation according to theoretical ideas of perfor-

mance complexity as to what is/not playable; I’d rather pass unfiltered notation

along to the players. This pertains to my approach to performance (discussed

in Chapter 3), which draws on a tradition of twentieth century computer-assisted

composition that pushes the limits of musical performance by not simplifying com-
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puter composed abstract ideals according to constraints of human performance

practice. Second, this part of the project workflow, rhythmic transcription, serves

a practical need — to prevent small subdivisions from dominating the transcrip-

tion — and is intended to achieve this desired result rather than an exploration

of a deeper musical question about notation and performance complexity. The

weights are supplied manually rather than implemented using a mathematical

function or measure of numerical complexity because I want direct control over

the distribution and balance of tuplets rather than indirect control through equa-

tion coefficients.

2.6.4 Alignment to the Beat

A common problem in rhythm transcription is misalignment between the pulse of

the original sequence and the pulse of the transcription. If a sequence is quantized

to an arbitrary pulse, rhythms that are perceptually simple may become notation-

ally complex. I transcribe to the beat of the original song, quantizing rhythms

to the locations of pulses in the original recording. The transcription remains

aligned to the original beat despite rubato, accelerando, ritardando, and minute

fluctuations in tempo from beat to beat, and is more semantically meaningful

because it is notated with respect to the original beat.

I do so by normalizing fluctuations in tempo to a constant pulse at the average

tempo (beats per minute as averaged over the entire song). This requires knowing

the location of each beat — knowing the tempo alone is not enough because the

pulse may drift in musical performance. I find the location of each beat manually

by listening to the song and tapping along on a computer interface, which records

the timings of each tap. To ensure the tap tempo is accurate, I listen to the

song multiple times in advance to anticipate tempo changes, use punch in/out
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recording techniques to re-record portions of the track, or manually adjust the

beat markers after the fact using a DAW. Given a sequence of time points and list

of beat locations, each time point t is normalized to a constant pulse using linear

interpolation relative to nearest neighboring lower and upper bounding beats, such

that

tnorm = t− bn

bn+1 − bn

+ i (2.19)

where t is the time point to be normalized, bn and bn+1 are the beat locations

directly before and after, and i is the beat index. Figure 2.11 illustrates a sequence

of time points with a fluctuating pulse as normalized to a constant pulse. The

actual beat locations and intervening onsets are time warped to a constant pulse.

Grid top (a) is the waveform with onsets (dashed lines) and manually annotated

beat locations (numbers). Grid bottom (b) shows the onset locations as warped

to the constant pulse. Transcription top (c) is the sequence as transcribed to an

unaligned pulse. Transcription bottom (d) is the sequence as transcribed with

alignment. Not only is the unaligned sequence unnecessarily complex, but the

aligned sequence is more semantically meaningful because the rhythm spellings

refer to the beats of the original song.

Notating to the pulse of the original songs also allows me to include the

vocal line in each instrumental part. Since there is no common subdivision grid

shared among instrumental parts, it is difficult for the ensemble to keep time in

performance by listening to one another. Rather, the ensemble performs along

with the original voice track, which gives a common pulse. Timing fluctuations,

which are normalized out during quantization, are reintroduced in performance

by slowing down and speeding up in time with the singer.
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Chapter 3

The Ensemble: Performance

Practice and Collective Identity

In 2011 I formed an ensemble, the Happy Valley Band, to play the computer

generated transcriptions. The ensemble formed at the suggestion of two composer-

performer colleagues, Mustafa Walker and Beau Sievers. During an artist talk

at Ostrava Days 2011 Festival of New Music, in which I spoke mainly about a

recent algorithmically generated orchestra piece, I showed a computer synthesized

mockup of the HVB song Crazy, an example of a new project and future work

direction. Mustafa Walker and Beau Sievers, who were both in the audience,

immediately suggested that we form an ensemble to play the machine listening

transcriptions. At this point, I had not considered that an ensemble would perform

the music. The transcriptions existed as MIDI data and audio renderings, not as

notated musical scores. Within a day or two, I produced the first HVB scores —

this was done hastily by importing the MIDI data into Finale — and the ensemble

had its world premiere days later at a club in Ostrava, Czech Republic, with an ad

hoc group consisting of Beau Sievers, Mustafa Walker, Andrew Smith, and Larry
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Polansky. Having only had one brief afternoon rehearsal, the performance was a

rushed, scrappy interpretation, and the scores looked considerably different than

current HVB notation.

Two important things occurred that evening. First, Kurt Gottschalk, a writer

and host of the WFMU radio show Miniature Minotaurs, approached me and said,

“if you ever do this again you’re playing on my radio show.” The invitation was

sufficient excuse to make the HVB ensemble official and to start expanding the

HVB repertoire list. Second, within the span of a week or so at Ostrava Days

Festival, I had worked with both a professional orchestra and an ad hoc group

of composer-performer colleagues. Working with the ad hoc group of colleagues

was a very different experience than working with the professional orchestra. In

the orchestra piece, I was careful to temper the difficulty of the music to fit

within an hour or two of rehearsal time, and I made sure not to ask too much

of any particular instrumentalist. HVB was very much the opposite. I indulged

in the difficulty of the notation, and the fun of the music came from its absurd

impracticality. Just about everything asked of the performers was impossible, but

I found that musicians — or these particular musicians — reveled in the challenge.

While it was impossible to play the music exactly as written, something emerged

in performance that was more than the sum of the parts. A group interpretation or

feeling emerged, as the performers together found ways to interpret the impractical

notation and excessive pitch and rhythmic resolution of the musical scores. This

was the flash of excitement and insight that propelled the project forward. It was

not immediately clear how we should approach writing or performing such music,

and the HVB ensemble exists to explore these questions.

From its inception, the HVB ensemble has been a collaborative idea and a

collective endeavor. It is a core group of seven musicians — Beau Sievers (drums),
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Mustafa Walker (bass), Andrew Smith (keyboards), Alexander Dupuis (guitar),

Pauline Kim (violin), Conrad Harris (violin), and myself (saxophones) — with

whom I worked closely over the course of five years, from 2011 to 2016, to develop

the project. The ensemble performance practice as well as the music itself grew

out of working with these performers, and the music is shaped by their feedback,

preferences, and playing styles, not to mention their values, perspectives, and aes-

thetic preferences. What makes the ensemble unique is both remarkably novel

and immensely mundane: it is a collaborative social structure that allowed for the

emergence of a shared group identity and the development of a group decision-

making process in response to complex musical performance practice challenges

— put more colloquially, it is a band. While collective and collaborative musik-

ing is very much the norm in certain cultural contexts, such as a rock band, in

the context of contemporary and composed music, it presents challenges to and

complications of concepts of authorship, authenticity, and intent.

Figure 3.1: Happy Valley Band performing live at CCRMA, May 2017.1
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3.1 Performance Challenges in HVB

HVB music presents a number of performance practice questions. How should per-

formers approach instrumental writing that is physically awkward, impractical, or

non-idiomatic to the instrument, such as difficult leaps across registers and breaks

in the instrument, awkward bowing, or uncomfortable fingerings? How should

performers approach notation that is impossible, such as pitches above or below

the playing range of an instrument, simultaneous notes in monophonic parts, and

chords that are wider than the stretch of the hand? Should the transcription

algorithm be adjusted to prevent these problems from occurring in the first place

by encoding knowledge of human performance limits within the transcription pro-

cess, should these problems be corrected after the fact as a kind of post-processing

manual notation cleanup, or should the performers be tasked with finding ways to

deal with them? How should the performers approach notation that is specified

beyond the precision of human performance capabilities — pitch is quantized ar-

bitrarily to the nearest cent deviation, not to a limited subset of pitches or specific

tuning system, and without respect to a underlying tonal reference, and rhythm

is quantized to small subdivisions and complex nested tuplets? Is it even possible

to play in the first place? Should performers prioritize one aspect of the music

notation or another and how? How should the ensemble keep time in the absence

of a discernible beat, or really any coordination at all between parts? Parts are

quantized separately; beyond a common pulse, there is no common subdivision

grid shared among individual instruments. Should performers attempt to coordi-

nate in time and how? Should the music be conducted? Or should the parts be

left to come in and out of alignment?

1. Photo credit Madison Heying
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3.2 A Few Perspectives on Impossibility

Since the latter half of the twentieth century, composers have continually pursued

the limits of musical performance. There are precedents to be found for many if

not all of these questions within traditions of twentieth century music practice,

which, in general, saw both an increase in the complexity of written music as well

as an increase in musicians’ abilities to play difficult music. At the time that I was

wrestling with questions of how to notate and perform HVB music, a handful of

perspectives in particular formed the intellectual and aesthetic context in which I

approached the project and influenced my to approach to performing HVB music.

In the 1970’s, John Cage (1912–1992) composed three sets of etudes that have

become iconic of notation that is extremely complex and incredibly difficult to per-

form — Etudes Australes for piano (1974–75), written for Grete Sultan; Freeman

Etudes for violin (1977–80/1989–90), written for Paul Zukofsky; and Etudes Bo-

realis for cello and piano (1978), written for Jack and Jeanne Kirstein. All three

sets were composed using star charts and I Ching chance procedures. Although

the use of star charts is similar to Cage’s compositional approach of Atlas Eclip-

ticalis (1961–1962), these works are more detailed and determined than Cage’s

earlier scores. Musical material, including not only pitch and duration but also

additional performance instructions, such as articulations and performance tech-

niques, are specified. This wealth of notational instruction is largely responsible

for the extreme performance difficulty of the scores.

Perhaps the most challenging of the three sets is Freeman Etudes. Beyond

rapid figures and difficult fingerings, the music is notated in great detail, specify-

ing articulations, bowing direction, bowing locations, and bowing styles, tremolo

and vibrato, detached versus legato, as well as a four types martellato attacks and
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five degrees of pizzicato. Cage even indicated exactly how many times the bow

should bounce when performing ricochet bowing. What makes the music partic-

ularly difficult, however, are the abrupt and dramatic changes, from moment to

moment, in playing style and technique, a result of using chance procedures to

independently determine the many performance parameters of each note. Pitch,

dynamics, articulations, and other performance techniques shift rapidly and un-

predictably over the entire range of the instrument from one note to the next.

In 1980, after working on the collection for three years, Cage ceased work

on the project, having completed only seventeen of the planned thirty-two etudes.

While composing the eighteenth etude, passages became so dense that Cage feared

the music would be unplayable. While Cage had intended the music to be difficult,

this extreme was an unintended result of the composition process — a confluence

of the chance procedures used to select the number of notes together with the

density of stars in that particular area of the start chart. Cage resumed work on

the project, however, nine years later, upon hearing Irvine Arditti play the first

sixteen etudes, adding the performance instruction that musicians play “as many

as possible” when faced with particularly dense passages. This instruction gives

performers artistic license with which to approach the music and, for Cage, proved

a solution to the impossible performance demands.

Cage saw meaningful social implications in attempting to play the unplayable,

beyond a dedication to a compositional process. When asked about the difficulty,

Cage referred to the “practicality of the impossible,” expressing a poetic optimism

about trying in the face of seemingly difficult or hopeless situations, which con-

nected, for Cage, to serious and seemingly impossible problems in society. Cage

explains:

These [the etudes] are intentionally as difficult as I can make them,
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because I think we’re now surrounded by very serious problems in the
society, and we tend to think that the situation is hopeless and that
it’s just impossible to do something that will make everything turn
out properly. So I think that this music, which is almost impossible,
gives an instance of the practicality of the impossible.2

For Cage, as well as many other composers — myself included — there is value,

both musical and poetic, in attempting to play music, even when the result will

not be a perfectly accurate rendering of what is written, and this interplay be-

tween notation and performer becomes a part of the piece. The story of Freeman

Etudes also illustrates that the designation “impossible” is contingent, both on

the abilities of an individual performer as well as, more generally, the historical

moment. It is a criteria that can change and can be changed.

Brian Ferneyhough (b. 1943) and associated “New Complexity” school of mu-

sic composition represent another widespread perspective on impossibility in mu-

sical performance, which ultimately bears many similarities to Cage’s. Although

the term New Complexity is contentious and ill-defined — the associated group

of composers maintain vastly different compositional approaches and notational

strategies, as well as different motivations for and definitions of the term complex-

ity — the term generally refers to an extreme notation specificity and abundance

of notes. It is often marked by parametric and other new and invented notation

systems. Brian Ferneyhough is a central figure, having worked in this manner

dating to the 1960s. In the 1980s, however, Ferneyhough’s ideas found renewed

interest with a younger generation of composers, among them Michael Finnissy,

Chris Dench, Richard Barrett, and Aaron Cassidy, and are now widespread in

contemporary music, in part due to Ferneyhough’s tenure as a pedagogical fixture

at US universities.

2. Cage quoted in Pritchett 1993
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Although the term New Complexity often refers to the surface-level features

of extremely dense and detailed notation, the deeper shared musical idea is a

perspective on the limits of music notation. Maintaing that no system of notation

can “record information encompassing all aspects of sonic phenomena for which it

stands,” Ferneyhough eschews the concept of accuracy — the exact rendering of

musical notation into sound — in favor of a more complex relationships between

notation and performance. Similar to Cage, Ferneyhough sees value in attempting

the impossible, rather than shying away from it, advocating “the musical effects

of as near an approach as possible to this unreachable ideal.”3 Much of his music

focusses on devising notation systems to explore this space.

Ferneyhough sees exactitude not as a limitation of performer freedom and

interpretation but rather as an opportunity for it, giving the performer license to

move within the strata of notational detail. Because the music is so exacting, the

performer must devise a strategy for interpreting it, as Ferneyhough explains:

The goal here, I think, is, therefore, a notation which demands of
the performer the formulation of a conscious selection-procedure in
respect of the order in which the units of interpretational information
contained in the score are surveyed and, as an extension of this choice,
a determination of the combination of elements (strata) which are
to be assigned preferential status at any given stage of the realization
process. The choice made here colors in the most fundamental manner
the rehearsal hierarchy of which, in performance, the composition itself
is a token.4

The performer’s decision-making process is a part of the piece, and their strategy,

including decisions about which aspects of musical performance to prioritized and

how to prepare and rehearse the music, as well as abilities as a performer, forms

a filter through which the music is rendered. Difficulty is part of the composition,

3. Ferneyhough 1995
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not necessarily a barrier to overcome. Ferneyhough refers to the score as a “token,”

a tangible stand-in for the composition, where as the piece itself takes shape

across multiple artifacts — the composer’s sonic idea, its rendering into music

notation, a performer’s response to that notation, and a listener’s experience of

that performance.

While Cage’s view is couched in a social optimism, many composers associ-

ated with New Complexity, Ferneyhough included, connect their music to percep-

tion, experience, and the complexity of the world. Composer Erik Ullman offers a

definition of New Complexity as “a music that privileges ambiguity and subtlety,

nourishing many paths of perception and interpretation.”5 Composer Kaija Saari-

aho similarly writes that music should reflect “our personal way of filtering the

world,“ rather than “the endless information surrounding us.”6 Common to many

interpretations of New Complexity is an emphasis in the subjectivity of experience

in a world that is overwhelming dense and full of information. This complexity is

reflected in the notation, the exactitude of which gives performers and listeners au-

tonomy to find their own ways through. Despite composers’ words and intentions,

whether or not performers experience the music in this way is another question.

In contemporary music communities, Ferneyhough’s music often seems like a con-

duit for virtuosic displays of technical prowess, a challenge to be mastered, not

a celebration of performer freedom. Although stylistically very different, HVB

relates to New Complexity in two regards: first, not altogether dissimilar from

Ferneyhough’s description, performers develop performance strategies to navigate

the notation; and second, HVB explores machine listening as a subjective, rather

than objective, metaphor for human perception.

4. Ibid.
5. Ullman 1994
6. Saariaho quoted in Duncan 2010
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Beyond the difficulties of exacting and overwhelmingly detailed notation, an-

other kind of impossibility proliferated within twentieth century music practice,

this one pertaining to musical ideas that challenge the underlying mechanisms

and structures of human music practices. Works that are notationally simple may

still be difficult or impossible to perform because musicians are asked to engage

with musical performance in ways that are not consistent with how musicians

are trained to act, conceive of, or organize music making — some may even be

incongruent with the very cognitive mechanisms that function when musiking! A

trend in twentieth century art, more generally, was an interrogation of the very

medium and material of expression, and twentieth century music composition is

rich with works that question, subvert, ignore, and otherwise extend the bound-

aries, assumptions, and structuring principles of human music practice. In many

instances, the challenge to traditional principles causes unusual performance sit-

uations and impossibilities.

One composer, in particular, whose work provided a context for my approach

to HVB is Larry Polansky (b. 1954). Polansky’s work explores how computers can

be used to extend and better understand human music practice, often resulting in

unique performance challenges. Much of Polansky’s work, for instance, explores

experimental intonation systems and performers are often asked to play or sing

in alternate tunings, and even adjust, adapt, and retune on the fly — in for

jim, ben and lou: Preamble (1995) the “percussionist” is tasked with retuning

the guitar as the guitarist plays it. Other works require musicians to perform

difficult cognitive tasks, or even multitask. In Ensembles of Note (1998–99) each

performer incrementally builds an eight-bar melody in five-four time, adding a

few notes with each repetition, much like slowly filling up a tape loop or delay

line. While the metaphor is simple, performing the work can be quite difficult,
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because of how human memory is used.

Proposition (three verbs and a logical operator), the second movement of

Polansky’s 3 New Hampshire Songs for 16 part mixed choir (1999), follows the

structure of a Rhythmicon, an early electronic instrument designed and built in

1930 by Henry Cowell and Léon Theremin in which pitch and rhythm are analo-

gously structured in harmonic ratios. Performers are asked to sing pitches tuned

to harmonic series intervals, up to the seventeenth harmonic of the fundamental

D, and in analogous rhythmic proportion, or polyrhythms. The two voices cover-

ing the seventeenth and thirteenths harmonics, for example, sing in polyrhythm

seventeen against thirteen. While the idea is simple, its execution is quite difficult,

because choirs are generally not trained to sing such pitch ratios and polyrhythms,

at least not in Western music traditions. At the premiere, the choir sung with

click tracks to maintain coordination.

Polansky’s ideas, like many if not all composers, are shaped by the contem-

poraneous cultural moment, including greater societal trends in technology and

the sciences. Even when not explicitly using digital technologies and electronic

tools for composition, these technologies nevertheless influence our thought, pro-

viding metaphors, mental models, and ways of thinking that structure and orient

our ideas. In this sense, many works that are incongruent with traditional mu-

sic practices indicate the influence of technology, even if indirectly — Polansky’s

tape loop metaphor in Ensembles of Note or the Rhythmicon in 3 New Hamp-

shire Songs. Not only do computers provide new metaphors and structures, but,

in the sense that computers tend toward abstraction, they allow composers to

work through and realize idealized concepts, removed from the constraints and

mechanisms of human performance. As I see it, HVB sits at a nexus between

logics that are shaped by technology and logics that are shaped by the traditions
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of human musical practices. Many of its performance challenges — the overly

precise notation and lack of rhythmic coordination, for instance — are artifacts

of digital abstraction and machine analysis, discontinuities between traditions of

human music practice and affordances of digital technologies. When considering

whether or not to edit out such performance challenges, it was seeing HVB in

the context of this tradition of computer music that helped me to realize these

challenges are artifacts of the translation process, not errors, and are, in fact, the

most important aspect of the music.

3.3 Constraints in Computer-Assisted Compo-

sition

Of all the performance challenges to be found in HVB music, perhaps the most

prevalent is notation that is impossible, awkward, or impractical, not because

there is too much information or too many notes, but because the music is tran-

scribed without concern for physical affordances and limitations of the instru-

ments. This includes notation such as chords that necessitate impossible fingerings

or stretches wider than a single hand, figures that are clumsy or sit awkwardly on

the instrument, and impractical or difficult leaps. Simply put, the transcription

process does not take into account basic orchestration knowledge. No consid-

eration is given to the kinds of instrument-specific performance concerns that a

skilled composer would likely consider when writing for an instrument.

Generally, in computer-assisted composition, these kinds of orchestration con-

cerns are accounted for — if they are accounted for at all — by ruled-based

methods or constraint solving techniques. Implementations often take the form

of simple rule checks and sequences of if-then statements, or more sophisticated
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systems of branching logical conditions and hierarchically prioritized rules sets.7

Such systems, however, are often tedious to design, requiring complex logic, and

can be inflexible, brittle, and overfit, leaving little room for edge cases or the

nuances of how a composer might resolve conflicting rule sets. With the HVB

transcription process, I chose to not implement orchestration constraints, beyond

a “soft” limit on playing range, which is enforced statistically rather than as a

“hard” limit — notes generally tend to be in playing range, but out of bounds

pitches with high pitch confidence are allowed.

There are a few reasons for this choice. First, it’s not entirely clear how an

orchestration constraint checker would hook into the music generation process,

which is not an infinite generator but rather a sound analysis process. It is not

as though there is an endless cue of notes to pull from, check, and reject. Would

the algorithm act like a filter, removing conflicting notes without replacement,

or would the algorithm apply certain allowable transformations such as octave

displacement, reach further into the pitch queue for new pitches that hopefully do

not violate constraints, or perhaps even tweak parameters of analysis algorithms

to generate new material? While deeply fascinating — a constraint checker, for

instance, that could tweak the analysis parameters to find the most playable

rendering would be an interesting project — these questions are, in many ways,

antithetical to my intentions and ethos with HVB: I am not interested in fitting

the results of the analysis process to my judgements of what is or is not playable.

I would rather let the instrumentalists themselves be the filters, each bringing

to the music their unique perspectives, preferences, and abilities. My knowledge

pales in comparison to that of skilled instrumentalists, who have particular under-

standings of their instruments and their abilities, and I am continually delighted by

the inventive solutions performers find to near impossible performance demands.
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Furthermore, performance limits change, not just from performer to performer,

but over time. The limits of musical performance are contingent, both historically

and culturally. Rather than fix HVB scores in one particular interpretation, my in-

tention is to allow performers to make their own interpretations. Ideally this may

even act as a force that challenges, stretches, and extends musical performance in

the future.

3.4 Performance Practice in the Happy Valley

Band

HVB performance practice is perhaps best summarized as “come up with some

sort of strategy and then try to do it.” I encourage performers to develop their

own ways of interpreting the notation, and consider these interpretations as much

a part of the music as the notes on the page. While performers develop their own

approaches to the music, performers also adapt their approaches to one another

on the fly in live performance, responding to how others are playing, which allows

a group feeling to emerge. Performance strategies develop together among the

performers as a group in response to one another and to the music notation.

When faced with difficult or impossible passages, performers must find their

own solutions, making decisions about which aspects of the music notation to

prioritize and which to ignore. In a particularly dense passage, a performer might

choose to play as many notes as possible, to prioritize highest and lowest notes of

dense chords, or to arpeggiate impossible chord fingers. By presenting too much

information and too much musical material, performers must make choices. I find

7. See Ames 1987 for a general overview of approaches to algorithmic composition including
rule-based systems and constraint solving searches. For a specific discussion of a protocol or
ranking system of tests used to express an order or preference of musical rules, see Ames 1990.
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that the exacting and excessive notation gives me, as a performer, agency to shape

the music, which is influenced as much by my preparation as well as by the group

dynamics of live performance.

Performance strategies vary from not just from instrument to instrument but

from song to song as well. Each instrument presents unique performance chal-

lenges, and performance strategies are often guided by the physical constraints

and affordances of a particular instrument. Larry Polansky’s approach to playing

guitar on Crazy was to prioritize the highest note in each chord and find some

hand shape to approximate the notes underneath it. Andrew Smith similarly

described his approach to performing the keyboard part on Born to Run as “I

arpeggiate randomly and make sure the top notes is right.” When performing

difficult saxophone parts I’ll often transpose difficult leaps, drop notes in dense

passages, or balance my mental focus between playing exact pitches and following

the pitch contour. It is also important to stress that not all HVB music is impos-

sible. Many of the parts can be worked through slowly and learned just like other

music.

These strategies are like search heuristics,8 a kind of “rule of thumb” that is

used to quickly prune notes from an overwhelming space of possibilities — when

in doubt play the highest note, or look for the stacked fourths, follow the pitch

contour, etc. They are cognitive shortcuts and strategies for quickly parsing the

excess of notation information. In this sense, I like to think of the performers as

an army of heuristic search algorithms simultaneously finding their ways through

a space of too many notes. Aware of one another, their criteria are not necessar-

8. In computer science, a heuristic is a technique used to guide a search algorithm towards
a solution more quickly than exhaustively inspecting every possible option. Heuristics rank
or eliminate possibilities according to a “rule of thumb” rather than evaluating every possible
option. While heuristics can arrive at solutions quickly, they are not guaranteed to find the best
solution, trading optimality for speed.
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ily fixed but adjust on the fly and in response to one another. These heuristic

strategies also give the music a kind distinct character beyond that of a random

flailing of limbs because the character is inherent to the heuristic — if the pianist

is looking for stacked fourths, the listeners is going to hear stacked fourths.

Such heuristics could be programmed into the transcription process, but why

not let the performers develop them for themselves? Giving performers the agency

to develop their own strategies allows for flexibility to adapt on the fly and in

response to one another, but, more importantly, it gives each performer space

to bring their own perspective to the music, rather than being locked into mine.

I like to think that this reflects the nature of human auditory perception. The

world is too flush with detail to take in everything at the same time; rather, we

prioritize, organize, and focus. I try to give performers the raw results of the

analysis algorithms and let them carve their own perspective out of it, offering

multiple simultaneous perspectives, or “views,” into the data.

Perhaps one of the most difficult aspects of performing HVB music is that the

notation is unfinished. The notation is also largely devoid of higher level musical

indications. Despite the exactitude of pitch and rhythm, other musical details

are often left underdetermined, such as phrasing, breath marks, slurs — details

pertaining to the hierarchical organization and grouping of notes into higher order

temporal units. The analysis algorithms, for the most part, focus on moment to

moment measurements, determining musical details one frame at a time, but not

further organizing or grouping into higher order musical objects, such as phrases,

gestures, sentences, or cadences. The result is a sense of myopia — an overabun-

dance of lower level details but a paucity of higher level grouping indications —

which presents difficulties for the performers, since they are not given cues how to

shape the music. It is not always clear from the music when to breath, where put
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emphasis, when to start and stop phrases, how to inflect and articulate gestures,

or if to shape the music at all — perhaps the best approach would be to stoically

play the notes and let these things coalesce in the listener’s perception?

As a performer in the ensemble, I approach my saxophone parts in terms

of finding phrases within the overabundance of detail. I work through the music

slowly, marking it up according to what I determined by ear to be the begin-

nings and endings of phrases, appropriate places to slur, breathe, and accent.

My strategy usually changes from song to song, depending on the notation chal-

lenges as well as the role of my part in the music. I generally work through

foreground melodic lines carefully note by note. If the figure is part of a horn

section or greater ensemble texture, I may be more inclined to follow the pitch

contour, which I draw in by hand, perhaps identifying a few important pitches or

key moments. Generally, my interpretation reflects what I perceive to be the key

characteristics of the music or what I understand to be the function of my instru-

mental part. I like to think of this process as a Rorschach test, an amorphous blob

of musical information; performers find what they want based on their cognitive

priors. Despite my preparation, I find that my interpretation often changes in live

performance, depending on the feel of the group, and I often practice multiple

different interpretation strategies so that I can adjust in live performance.
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Chapter 4

Composition: Sound Analysis as

a Generative Model

Composing Happy Valley Band music is primarily about listening. I like to think

of the entire compositional process — source separation, pitch analysis, onset

detection, and even music notation — as an extended act of listening, aided by

computational tools of digital analysis and visualization. Importantly, by render-

ing the results of digital analysis into music and thus back into sound, the process

is way of interacting musically with the analysis algorithms. In this chapter, I ex-

plain the considerations that guide my compositional decisions when making HVB

transcriptions. The chapter is structured around a number of musical examples

that illustrate how I approach decision-making. I begin with a brief description of

my workflow, then discuss the musical examples, and finally develop the metaphor

of sound analysis as a generative model to explain how I think about the process.
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4.1 Workflow

I use the term workflow to refer to the sequence of steps through which a song

passes during the transcription process and the tools and methods that I use to

navigate and organize it. Most of my tools are consolidated in a collection of

Python libraries, and I use the DAW Reaper as a frontend graphical interface,

which allows me to quickly hear and see results of the transcription process, as

well as control aspects of it.

I usually begin a transcription by separating the vocal from the mix before

moving on to the individual instruments. Depending on the recording, I use a

combination of PLCA and xtrk spatial filtering, and the decisions at this point in

the process pertain to parameter settings on each of the separation algorithms, as

well as the choice of training segments. Once a song is separated into individual

instruments, I render each instrument to a separate mono audio file, which are

used as the source audio in the following analysis stage.

The pitch and rhythm detection are performed offline using the Python li-

braries discussed in Chapter 2. There are a number of parameters to set, including

onset and offset thresholds, which onset detection functions to use, parameters of

the pitch estimation model such as number of pitches to return, harmonic weight-

ing, and thresholds for harmonic suppression. I set these individually for each

instrument and store them in a parameters.py file, which contains a list of all

possible analysis parameters and their values (see Figure 4.1b).

Running an analysis is quick, much faster than realtime — a typical three

minute song might take ten to twenty seconds. I use both auditory, visual, and

text-based feedback to help me understand the analysis. The results are rendered

directly to MIDI files that I use to view and audition the transcription. I monitor
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a number of basic statistical features, including the number of onsets, the ratio be-

tween pitched versus percussive onsets, average note density, time between onsets,

and number of notes filtered out. The statistical measures help me understand

the impact of changing analysis parameters, because it is not always clear from

listening.

It is not uncommon for me to spend a considerable amount of time tweaking

analysis parameters and observing the results. Sometimes I plot onset detection

functions or other analysis features for visual feedback. Ultimately I rely on my

ears as well as sense of musicianship to settle on the analysis parameters, although

I will observe the piano roll representation to make sure the transcription is not

unreasonably disjoint. With some transcriptions, the initial default parameters

work; other times it feels like a protracted battle with the analysis algorithms,

chiseling away at shapeless mass of notes until some kind of musical form emerges.

Oftentimes I adjust parameter values throughout a song, between verses and

choruses for instance, if the playing style changes radically. It is tempting to focus

too narrowly on individual instruments or individual parts of a song, but I try

to consider the transcription as a whole and not overfit to individual instruments

or short-lived moments of a song. It feels somewhat disingenuous to change the

transcription parameters too frequently, in part because it is interesting to hear

how different sections of a song drive the transcription algorithms in different

ways.

I use the DAW Reaper as a frontend tool (see Figure 4.1a). I insert markers

to indicate parameter changes, manage render settings, and to audition playback.

Reaper files are saved in a simple file format that is easily parsed, allowing me

to automatically extract information such as which section to render and which

parameter settings to use. The turnaround in my workflow between annotating
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parameter settings and rendering the results is quick. While I use Python plotting

tools for visual feedback, I often plot analysis data directly in Reaper as waveform

data, which maintains alignment between the analysis data and original track

while affording the convenience and functionality of navigating audio with a DAW.

Once the analysis parameters are set, I focus on music notation. I have two

primary concerns at this point. First, rendering the analysis in music notation

helps me identify sections that are excessively difficult or impractical. I do intend

the music to be somewhat playable, and the performance concerns by which I

judge the music are discussed in Chapter 3. At this point I often notice out of

range notes, passages that are excessively dense, or figures that have too many

leaps. If the music is too impractical, I return to the analysis stage and adjust

parameter settings. Viewing music notation is still a part of the workflow feedback

loop, although the music quantizer is relatively slow — it might take 30 seconds

to a few minutes to transcribe a typical song, although this largely depends on

the size of the beat division scheme list — so I tend to make fewer adjustments

at this point. My second concern during the notation stage is quantization, and I

adjust the subdivision weights to control the notational complexity of the scores.

Since quantization is separate, or downstream, from the analysis data, the nota-

tional complexity can be adjusted without changing the music analysis, although

it certainly impacts how the performs eventually play it. Often I will go back

and forth with musicians at this point, revising parts based on their input about

playing techniques and performance limits.
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4.2 Musical Excerpts

Excerpt 4.1: It’s a Man’s Man’s Man’s World, Timpani. Excerpt 4.1 is a tran-

scription of the opening timpani roll of James Brown’s It’s a Man’s Man’s Man’s

World. While the original recording features a single sustained timpani roll, I

wanted the HVB transcription to express the minute fluctuations of pitch and

spectra of a single timpani roll that are revealed by spectral analysis. In the HVB

transcription, I set the pitch and onset detection thresholds to be very sensitive to

minute changes, transforming the simple timpani roll into a complex sequence of

irregular rhythms and changes in pitch. The new timpani part is still performed

on a single timpani drum, but with constant foot-pedaling adjustments to alter

pitch.

I often use pitch estimation and onset detection to explore the spectral qual-

ities of sound, not just the fundamental frequencies. In this sense, one can think

of HVB as Spectralism applied to pop music.1 While traditions in Western music

composition and analysis tend to treat pitch and rhythm as the primary musical

features, in much pop music however, timbre is equally if not more important

to musical meaning and experience. My intention in transcribing fluctuations in

spectra as changes in pitch and rhythm is to articulate the inadequacy of pitch

and rhythm to account for what I perceived to be important and semantically

meaningful aspects of pop music.

1. Spectralism is a twentieth century composition technique concerned with the computer
analysis of timbre. Spectralism is often associated with the French research center Institut
de Recherche et Coordination Acoustique/Musique (IRCAM) and composers such as Tristan
Murail, Georg Friedrich Haas, or Gérard Grisey, whose piece Partiels (1975), is based on a
spectrogram analysis of a single, sustained trombone tone. In many ways, HVB is Spectralism
applied to pop music, although this phrase is more a way of explaining and locating the work
within a larger tradition of Spectral Music rather citing my motivations. While I do not think
of my work as a direct consideration of and response to the Spectral tradition, my awareness
of Spectral composer such as Grisey and Murail no doubt provided conceptual and aesthetic
contexts for my explorations.
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Excerpt 4.1: It’s a Man’s Man’s Man’s World, Timpani

Excerpt 4.2: This Guy’s in Love with You, Piano. Excerpt 4.2 shows two

bars of music from the piano feature in the HVB transcription of This Guy’s in

Love with You. The music is full of multi-octave leaps and notes that are very

short in duration, representing a more extreme example of the kind of complex-

ity to be found in HVB music. The difficulty is intentional; I wanted the piano

transcription to reflect the dense, active playing of the original recording, in par-

ticular because the song is a piano feature, and because the HVB version was

written for virtuosic pianist Joe Kubera. Rather than increase the sensitivity of

pitch and onset detection thresholds as in the previous musical excerpt, for this

song I increased the number of voices returned by the pitch estimation algorithm.

As discussed in Chapter 2, the pitch estimation algorithm ranks a set of possible

pitches according to likelihood of being perceived. Increasing the number of voices

causes the algorithm to reach further down the list of possible pitches, returning

pitches with less and less likelihood. This is more or less equivalent to lowering the

threshold of pitch confidence below which a pitch is suppressed. The short-lived

notes and abrupt leaps in register are largely a result of collapsing multiple pitch

tracks to a single musical voice.
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Excerpt 4.2: This Guy’s in Love with You, Piano

Excerpt 4.3: Crazy, Upright Bass. Occasionally the pitch estimation algo-

rithm returns an extremely high and spurious note, far beyond the playing range

of the instrument. This is often due to the presence of high-frequency noise in

the signal and the absence of low frequency energy, which causes the peak-picking

algorithm to concentrate many peaks towards the upper registers. While notes

beyond the range of the instrument could be removed or octave reduced to fit the

range of the instrument, I like to maintain some indication of their occurrence. In

the upright bass part to Crazy, these pitch estimation artifacts are notated with

the indication “as high as possible,” denoted by the triangle notehead, a nota-

tional idea that I borrow from composer Christian Wolff. Asking the performer

to play as high a note as possible preserves the contour of the pitch estimation

but also translates the artifact into a semantically meaningful notation. It is less

important which pitch class was reported, and more important to reflect that an

artifact occurred.
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Excerpt 4.3: Crazy, Upright Bass

Excerpt 4.4: Ring of Fire, Electric Guitar. In the original recording of

Johnny Cash’s Ring of Fire, the electric guitar drives the music almost more like a

percussion instrument than like a pitched instrument, playing palm-muted strokes

at an even quarter note rhythm. Wanting to reflect this in my transcription, I

weighted the onset detection thresholds more heavily in favor of percussive onsets

than pitches onsets. The transcribed pitches, however, deviate from what one

might expect. This is caused by the envelope of plucked string notes. The attack

of a plucked guitar strings is generally marked by a brief noise transient before

settling in to a stable pitch. During the noise transient, the perception of pitch is

ambiguous and difficult to measure, causing the pitch estimation to give erratic

results. A common solution to this problem is to use a slightly delayed pitch

estimate, allowing the pitch tracker time to settle into a more confident estimation.

Fascinated by the problem, I use the pitch estimation more or less concurrent with

the percussive onset.
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Excerpt 4.4: Ring of Fire, Electric Guitar

Excerpt 4.5: (You Make Me Feel Like) A Natural Woman, French Horn. I

wish I could say the collection of HVB songs represents a particularly meaningful

and considered statement about the history of popular music, but the truth is

song selection is driven by performers. I, or more accurately we — the entire band

usually weighs in on song selection — choose songs with particular musicians in

mind. I try to maintain a diversity of style, genre, time period, and production

techniques, but ultimately performs and instrumentation is the guiding factor.

When the Levee Breaks (2018) was written for Sam Friedman, a harmonica player

with whom I first worked on the recording of ORGANVM PERCEPTVS. Sam

recorded four bars of harmonica music remotely, and I made a mental note to

work with him again if the opportunity arose. This Guy’s in Love with You (2012)

was written for the composer, performer, and sound artist Gordon Monahan.

Gordon witnessed the first ever performance of HVB in Ostrava, Czech Republic,

and immediately invited us perform at his Electric Eclectics Festival in Meaford,

Ontario. The piano part was later revised for pianist Joseph Kubera for the

New York recording session. After the Gold Rush (2013) was written for Thomas

Verchot, a New York City based trumpeter. (You Make Me Feel Like) A Natural

Woman (2015) was written for French hornist Daniel Costello. After playing a

particularly demanding French horn part in an orchestra piece of mine, Daniel and

I stayed in touch. Excerpt 4.5 shows a few measure of the French horn part. In
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addition to the microtonal indications and demanding rhythms, the part features

difficult slurred leaps across breaks in the instrument and requires the performer

to play demanding passages at the lower and higher extremes of the instrument’s

range. These kinds of challenges are typical of HVB music.

Excerpt 4.5: (You Make Me Feel Like) A Natural Woman, French Horn

Excerpt 4.6: Born to Run, Full Score. Production qualities of the original

recordings have a tremendous impact on HVB transcriptions. Aspects of pro-

duction and mixing — panning, spatial effects, reverb, compression, equalization,

and balance between instruments — all affect HVB music, down to the notes

and rhythms transcribed. Instruments that are difficult to isolate produce noisy

signals that complicate the downstream pitch and onset analysis stages, causing

spurious notes and other pitch and onset detection artifacts. Because of this, I

consider separation to be part of my compositional process. When setting analysis

and separation parameters I am mindful of how separation artifacts might affect

pitch and rhythm analysis. Rarely do I fiddle with separation parameters in effort

to change notes and rhythms, but I do bear in mind my observations from one

transcription to the next.

Due to the mixing and production techniques of the original recording, Bruce

Springsteen’s Born to Run is perhaps the most difficult mix I tried to separate.

The recording is of a loud distorted rock band, the mix featuring layered guitar
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tracks, heavy use of compression, and distortion effects on both guitars and bass.

Many of the instruments in the mix — guitars, bass, saxophones, organs, and other

keyboards — overlap in frequency, particularly in the high mid range, masking

one another. Overlapping spatial positions and stereo effects further blend the

instruments together. In short, the production technique is a wall-of-sound style

approach, all instruments woven together in a distorted, ringing mass of sound. I

had difficulty differentiating one instrument from another by ear or telling exactly

which instruments were in the mix. The separated tracks are full of noise and

crosstalk, and the transcribed music reflects it. A kind of musical noise floor

permeates the entire transcription — pitch and rhythm artifacts of the analysis

process — and musical figures are shared between instruments, sometimes in

unison and other times spread across many instruments like a hocket.

Ultimately, some songs work and some songs do not. I can’t really explain how

or why. Sometimes the process results in music that is remarkable, fascinating,

surprising, or astounding, and sometimes it simply does not. The composition

process — training source separation models, setting pitch estimation parame-

ters, mapping onset features to musical features, setting detection thresholds, and

weighting notation schemes — is ultimately guided by intuition and by my ears.

For me, sound analysis is way to explore a signal, and I try to bear in mind both

the perceptual implications as well as mathematical features measured. I use these

tools to search for aspects of sounds that I find interesting or unexpected and I

try to focus the analysis on the features that I understand to be most salient and

substantial to the music.
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Excerpt 4.6: Born to Run, Full Score

4.3 A Generative Model of Machine Perception

A metaphor that I find useful for describing my compositional approach in HVB

is that of a generative model, an idea borrowed from statistical modeling. I’ve
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come to think of HVB as a generative model of sound analysis. In statistical

modeling, models generally fall into one of two categories: generative or discrim-

inative. While both types can perform similar tasks, such as classification, they

differ in terms of internal structure and operation. A generative model learns

a fuller description of the phenomena it models, allowing the model to generate

new samples of that phenomena, where as a discriminative model cannot generate

samples of the observed phenomena. Formally, a generative model learns the joint

probability P (X, Y ) of the input variable X and label Y, where as a discriminative

model learns the conditional probability P (Y |X) of the label Y given the input

variable X. The distinction is between a model that learns to describe phenomena

and one that learns to produce new instances of that phenomena.

A simple example would be that of an image classifier, a model that learns

from a dataset to classify input images as belonging to one of a given set of output

categories, such as cat, dog, or mouse. While the discriminative model will learn

to classify images, the generative model will learn not just to classify images but

to generate new images of a given category as well — a new image of a cat, dog,

or mouse. The ability to generate new images requires the discriminative model

to learn a representation of the input data based on the features of the images

themselves, such as what visual features constitute a cat, dog, or mouse, where

as the discriminative model might simply classify images based on the relative

similarity of one image to all the others. Generating new instances of a phenomena

requires more information, or a fuller representation, of the phenomena modeled.

Dispensing with precise statistical definitions and employing the distinction

rather as a metaphor, it occurs to me that machine listening algorithms are often

understood to describe sound. Instead, I like to think the HVB machine listening

algorithms as a kind of generative model, a means of producing new sounds and
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new music. Rather than passive devices that translate sound into an appropriate

musical representation, I think of machine listening algorithms as active devices

of sound production. This frame describes my mental state when composing HVB

music. I think of the parameters of the machine listening algorithms more like

parameters of a complex generative model. The compositional process starts with

a consideration of the content of the original recordings, but at some point becomes

more like exploring the possibility space of a high-dimensional parametric model.

The theory of constructivism provides a framework for considering how ma-

chine listening models function as active devices. Often associated with Jean

Piaget (1896–1980), a Swiss psychologist who studied cognitive development in

children, constructivism is a way of thinking that extends to many domains of

thought, from philosophy of mind, to learning theory, social theory, mathematics,

and perception. Piaget argued that learning is an active process in which indi-

viduals assimilate new information from the environment into a prior held mental

frameworks. Key is the role that the prior held mental frameworks plays in con-

structing a subjective representation of the world. Interpreted in the domain of

perception, be it visual or auditory, constructivist theories of perception stress

the role the sensory and cognitive mechanisms play in constructing a subjective

experience of the world. This is antithetical to theories of direct perception, in

which the sense are believed to provide direct access to reality.

I cannot help but see machine listening from a constructivist perspective. The

algorithms that I use — as well as those used by others — contain a tremendous

amount of information about the phenomena they purport to describe. A pitch

estimation model that looks for harmonically related chords, for instance, will find

harmonically related chords. The results are determined as much by the internal

structure and operation of a model as by the signal that is analyzed. My choices,
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including which parameters and how to set them, which analysis features to use,

and how to structure signal flow within the transcription system, all significantly

shape the resulting music. Put simply, how the model is wired affects the music

that comes out, and changing the model changes the results.

Importantly, the metaphor provides, for me at least, a way of seeing HVB

music as emergent between the input signal and internal structure of the analysis

models, residing not entirely in one or the other but in the interaction between

the two. The compositional decisions I make are less about reflecting a direct

relationship with the original songs. Rather I think of the transcription process

as a system in which the original recordings perturb a model of perception. It

strikes me that when considering discourses about the agency of technologies, the

language of emergence is useful for articulating how the values and beliefs em-

bedded within tools assert agency on users. The relationship does not manifest

as a directly observable transfer of value from technologist to user, but as a more

complex interaction between the two. The study of how tacit sources of power

and agency embedded within technologies assert influence could benefit from dy-

namical systems theory tools used to identify and measure mutual influence in

coupled systems.
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Chapter 5

Recording and Release

In March 2017, I released ORGANVM PERCEPTVS, an album of eleven songs

of the Happy Valley Band. The collection spans a variety of pop music genres,

artists, time periods, and production styles, including country, funk, pop, and rock

(Table 5.1 lists the songs included on the release). The music was recorded in fall

2015 at the Bunker Studio in Brooklyn, NY, with additional small ensemble work

and overdubs continuing into winter 2016. A few parts were recorded remotely,

by musicians in Los Angeles, Providence, and Germany, and then layered into the

mix. The project was mixed in winter 2016 by Joseph Branciforte of Greyfade

Studio in Brooklyn, NY and mastered in early spring of the same year by Cookie

Marenco at OTR Studio in Belmont, CA. In addition to the core ensemble, the

recording features an expanded personnel of twenty musicians, many of whom

had not played with HVB prior. The album was released on vinyl LP in March

2017 by Santa Cruz based record label Indexical and includes an accompanying

5,000 word liner notes essay “The Long Answer” in which I explain the project,

my motivations, and compositional process, as well as reflect on broader cultural

implications of automation technologies such as machine learning. The vinyl LP,
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liner notes, and album packaging are pictured in Figure 5.1. See Appendix D for

a complete list of album personnel and recording credits.

5.1 Recording ORGANVM PERCEPTVS

The recording project presented a number of new challenges, among them, how

to incorporate new performers into the ensemble. Up to this point, HVB con-

sisted of a core group of seven musicians with whom I worked closely over the

course of five years, from 2011 to 2016, to develop the ensemble performance

practice. ORGANVM PERCEPTVS required additional musicians to meet the

instrumentation of all of the songs. How would I integrate new performers into

this dynamic group who together had developed a shared understanding of the

project? Would the performance practice be comprehensible to new musicians?

Would the introduction of new performers alter the group dynamics? While many

of the new performers were already familiar with the project, some were not, and

explaining the performance practice to a freelance musician over the phone was

difficult. Additionally, the expanded instrumentation presented new playing chal-

lenges. Two songs in particular, Ring of Fire and (You Make Me Feel Like) A

Natural Woman, include a trio of vocalists, singing backup (not lead) vocal parts.

How should vocalists approach performing HVB music? The erratic jumps in pitch

present different performance challenges for vocalists than for instrumentalists.

The recording project also raised interesting questions about recording, pro-

duction, and mixing. I felt as though every assumption and convention of record-

ing and production was up for reconsideration. The most complicating factor by

far was that our lead singer is fixed on a tape track lifted from another recording,

sung to another performance. Should we attempt to mimic the production styles
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and recording techniques of the original recordings? How? And to what extent?

Should we use similar instruments, amplifiers, and microphones? Should we mimic

the panning, effects, reverbs, and spatial profiles of the original mixes? In pop

music, production can be as important to the character and identify of a song as

the notes and lyrics, not to mention that recording techniques also bear on the

success of the transcription process, affecting the notes and rhythms of the music

that we play. Initially I intended to mimic the originals. We matched the orig-

inal instrumentation and used similar instruments when tracking — we rented

a clavinet for one song, used an organ and Wurlitzer piano when appropriate,

switched between acoustic and electric guitars and basses, re-miked drums sets to

fit rock and jazz styles, matched auxiliary percussion, brought in flugelhorn and

French horn players, and even called in a harmonica overdub for just four bars of

music. In a few cases, we exaggerated the instrumentation. The B section of Like

a Prayer is marked by auxiliary percussion, but I had difficulty identifying the

percussion instruments in the original recordings, so I scored the HVB percussion

part for a battery of skins, woods, and metals, leaving it to the discretion of the

performer. We also took a few liberties, such as substituting saxophone in In the

Air Tonight for a synthesizer patch that sounds like horns.

Although I had intended to mimic the mix styles of the original recordings,

this reached a limit during mixing. The original recordings were mixed to suit

different performances, different bands, and different music; we needed to mix

to fit our music, not constrained to match. As a result, some of the mixes are

similar to the originals and others are quite different. In many of the mixes

we exaggerated one or two characteristic, identifying, or otherwise interesting

production techniques, much like a caricature portrait of the original song. We

exaggerate the gated snare reverb on Like a Prayer ; the final HVB mix of Born to
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Run is saturated with compression in a nod to the E Street Band’s wall-of-sound

style guitar tracks; and in In the Air Tonight we manually mimic a tape delay

effect by staggering multiple violinists one beat apart. In the original version of

Like a Prayer, bass guitarist Guy Pratt doubled the bass guitar part in unison on

Minimoog synthesizer, a common production technique in pop music at the time.

We mimic this production technique in the HVB version, using a pitch tracker

and software Minimoog emulation.

This project has also been an unexpected opportunity for me to engage with

some of the history of these recordings. I stumbled upon a number of fascinating

stories, often when deciding which version of a song to transcribe, such as the

unusual fade out in Elvis Presley’s Suspicious Minds. Towards the end of the

track there is a long fade out, as though the song is ending, but then the music

fades back in and a section of the verse loops for another 30 seconds before fading

out a second time, this time for good. According to Chips Moman, who produced

the recording, the fade is the result of disagreement between Moman and Elvis’

longtime producer Felton Jarvis. Jarvis was not happy about the session, and,

before releasing the track, added the exaggerated fade, perhaps to mimic the

manner in which Elvis performed live at the time.1 I find it fascinating that

a recording can be an artifact of and index to these personal stories, and this

is something that I like to consider when approaching a transcription. With

Suspicious Minds I chose to transcribe the fade itself — rather than recovering

the music and applying a new fade. As the music fades out, I allowed the tracks

to gradually fall below the thresholds of the pitch and onset detection algorithms,

causing the transcriptions to drop out erratically as the fade crosses the edge of

1. Marc Myers. 2012. “Caught in a Trap: Elvis’s last No. 1 Hit.” Wall Street Journal
(Online).
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audibility and then enter back in.

Song Title Artist Year

A1 Like a Prayer Madonna 1991

A2 Ring of Fire Johnny Cash 1963

A3 Jungle Boogie Kool and the Gang 1973

A4 (You Make Me Feel Like) A Natural Woman Aretha Franklin 1968

A5 Crazy Patsy Cline 1961

A6 Suspicious Minds Elvis Presley 1969

B1 It’s a Man’s Man’s Man’s World James Brown 1966

B2 After the Gold Rush Neil Young 1970

B3 In the Air Tonight Phil Collins 1981

B4 This Guy’s in Love with You Herb Alpert 1968

B5 Born to Run Bruce Springsteen 1975

Table 5.1: ORGANVM PERCEPTVS track list.

(a) Vinyl packaging (b) Liner notes booklet

(c) Vinyl record (d) Inner sleeve

Figure 5.1: ORGANVM PERCEPTVS vinyl packaging.
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5.2 Release and Public Response

I released ORGANVM PERCEPTVS in March 2017 to polarized public response.

Some reviewers were enthusiastic. The Wire, an international magazine for avant-

garde and experimental music, quickly picked up the project, publishing an inter-

view and exclusive pre-release album stream. Interviewer Emily Bick described the

music as “refracted and amplified through the software in often mystifying ways,

resulting in warped interpretations that are unexpected, to say the least.”2 The

growing online music distribution platform and media outlet Bandcamp, listed

the release second in their article “Meet the Artists Using Coding AI and Ma-

chine Language to Make Music,” describing the album as a “skewed, jittery ca-

cophony. . . equal parts bewildering and inspiring, highlighting how AI can help

humanity see the familiar from a fresh perspective.”3 The project was featured by

numerous other new music publications including I Care if You Listen, Sequenza

21, Experimental Music Yearbook, and Tiny Mixtapes, who called the project “pop

music’s post-human future. . . delirious and discordant.”4 Perhaps my favorite de-

scription came from New Classic LA writer Elizabeth Hambleton who wrote “I

am convinced [it] is an actual recording of my high school’s pep band at a snowy

football game when every brass instrument detuned after five minutes out of their

2. Emily Bick. 2017. “Album stream and interview: David Kant of Happy Valley Band
talks about their ‘machine listening’ album.” The Wire. Accessed April 27, 2019. https:
//www.thewire.co.uk/in-writing/interviews/listen-to-the-happy-valley-band-s-
new-album-and-read-an-interview-with-its-founder.

3. Simon Chandler. 2018. “Meet the Artists Using Coding, AI, and Machine Language to
Make Music.” Bandcamp Daily. Accessed April 27, 2019. https://daily.bandcamp.com/
2018/01/25/music-ai-coding-algorithms/.

4. Colin Fitzgerald. 2017. “Happy Valley Band deconstruct pop classics via machine-learning
algorithm on debut album ORGANVM PERCEPTVS.” Tiny Mix Tapes. Accessed April 27,
2019. https://www.tinymixtapes.com/news/happy- valley- band- deconstruct- pop-
classics-machine-learning-algorithm-debut-organvm-perceptvs.
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cases. This album is fresh, deceptive, and insanely fun to listen to.”5 See Appendix

B for a list of press and review publications.

Common to many reviews is the sense that the project is both confounding

and difficult to listen to — reviewers described the music as “mystifying,” “be-

wildering,” “unexpected,” as well as “cacophony,” “warped,” “discordant.” These

reviews capture a common response to HVB: many people are unsure what to

make of it. This is due, I think, to the nature of the project; it is a sprawling

and complex idea, a mix of motivations, both technical, aesthetic, and cultural.

It is not easy to explain in a succinct manner what HVB is or what is involved in

making the transcriptions, why the are “wrong,” or what exactly “wrong” might

mean, let alone why and how musicians play the music — Is this a big practical

joke? Are they making it up? Are they improvising? Why would anyone even

do this? The project is simultaneously humorous, facetious, and endlessly serious

and involved. Ultimately, most of the reviews resolve in a positive and optimistic

valence, describing the project as “fun,” “fresh,” “inspiring,” and even “valuable

to humanity.”

One reviewer, however, was more conflicted. Having agreed relatively early

on to review the project, I emailed to follow up after a few weeks had gone

by without communication. Over email the reviewer explained, while they had

agreed to review the project with every expectation of enjoying the music, upon

listening to the record, they simply did not know what to do. The reviewer

wrote, almost apologetically, “I find it a pretty conceptually fascinating record,

but I simply cannot bear to listen to it”6 In their review, “You, With the Violin!

5. Elizabeth Hambleton. 2017. “Happy Valley Band’s debut album ORGANVM PER-
CEPTVS.” New Classic LA. accessed April 27, 2019. http://newclassic.la/2017/04/
27/review-happy-valley-bands-debut-album-organvm-perceptvs/.

6. Chris Zaldua. Email message to David Kant. April 4, 2017.
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Sight-Read These Computer Algorithms!” they describe the music “like nails on

a chalkboard,” indicting the project for being, simply put, “bad. Quite bad.” At

the end of the review, the author raises a question that I find deeply fascinating:

“Actually, nails on a chalkboard sounds much better to me; what does it mean

that I prefer pure cacophony to off-time, off-kilter pop music?”7 This caused me

to wonder, what is it about this project that some people find so viscerally off-

putting?

5.3 Implications for Music Theory and Percep-

tion

5.3.1 The Uncanny Valley

Although it was not my intention at the outset of this project, the concept Un-

canny Valley provides a useful and difficult-to-ignore metaphor for understanding

responses to HVB — the term is to some extent a trend or buzz word in digital

culture at the present moment as well as in electronic and digital art. The term,

proposed by Japanese roboticist Masahiro Mori in a 1970 article “The Uncanny

Valley,” refers to an unsettled feeling that humans experience when artificial rep-

resentation closely resemble human beings.8 Generally, the affinity that humans

feel for an artificial representation increases with the likeness of that representa-

tion, except for a critical point, a characteristic dip or valley, as the representation

nears resemblance to a human being, and the feeling of affinity gives way to an

7. Chris Zaldua. 2017. “You, With the Violin! Sight-Read These Computer Algorithms!”
KQED. accessed April 27, 2019. https://www.kqed.org/arts/13038360/you-with-the-
violin-sight-read-these-computer-algorithms.

8. Masahiro Mori. 2012. “The Uncanny Valley.” Translated by Karl F. MacDorman and
Norri Kageki. IEEE Robotics and Automation Magazine 19, no. 2 (June): 98–100.
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unsettling sense of strange familiarity, or uncanny. This relationship is plotted in

Figure 5.2. The implication is, if automation and AI technology are designed to

model the likeness and modes of human operation, then there is a point at which

users will exhibit an overwhelmingly negative response. Over the past five to ten

years, there has been renewed focus on the uncanny, in the fine arts, design, and

technology, as well as a proliferation of scientific studies that attempt to verify,

disprove, or explain its cause.

Perhaps the Uncanny Valley pertains to the unsettled feelings of bewildering

cacophony that listeners experience of HVB. Perhaps HVB music sits at this

critical point of close but not close enough renderings of familiar songs and familiar

forms, inducing distress and disorientation. I often receive comments about the

Uncanny Valley in response to HVB, and I like to think that if the Uncanny

Valley is relevant, then explanations of the Uncanny Valley would shed light on

HVB, and maybe even vice versa. Ultimately, I cannot help but wonder why the

Uncanny Valley might exist in the first place. Numerous explanations have been

proposed, from biological motivations to perceptual and cognitive confusion such

as conflicting cues, but I like to think that it is biological warning, a line not to be

crossed, an evolutionary imperative that technology be used for its own logic rather

than to replicate that of humanity. The Uncanny Valley challenges the assumption

that technology should be like us, an assumption that I believe motivates much

development in technology, especially in the commercial and public spheres.

Interestingly, the application of Uncanny Valley rests on a key difference be-

tween HVB music and that of Ferneyhough, Cage, and much other contemporary

and new music. There is something against which to compare HVB transcrip-

tions: the original song. With Ferneyhough, for instance, the musical object itself

is abstract; the listener has no access to or prior familiarity with the sound object
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as Ferneyhough imagines and notates it, other than through a performer’s real-

ization. A listener does not know how accurately a performer plays Ferneyhough.

This is not the case with HVB. Many listeners are familiar with the original songs

that we perform, or at least familiar with the form of pop songs in general, per-

haps even a particular genre or artist. There is a sense of what the transcriptions

should sound like, were they to be “correct.”

pinker as if it had just come out of
the bath.

One might say that the prosthetic
hand has achieved a degree of resem-
blance to the human form, perhaps
on par with false teeth. However, once
we realize that the hand that looked
real at first sight is actually artificial,
we experience an eerie sensation. For
example, we could be startled during a
handshake by its limp boneless grip
together with its texture and coldness.
When this happens, we lose our sense
of affinity, and the hand becomes
uncanny. In mathematical terms, this
can be represented by a negative value.
Therefore, in this case, the appearance
of the prosthetic hand is quite human-
like, but the level of affinity is negative,
thus placing the hand near the bottom
of the valley in Figure 1.

I don’t think that, on close inspec-
tion, a bunraku puppet appears similar
to a human being. Its realism in terms
of size, skin texture, and so on, does not
even reach that of a realistic prosthetic
hand. But when we enjoy a puppet
show in the theater, we are seated at a
certain distance from the stage. The
puppet’s absolute size is ignored, and
its total appearance, including hand
and eye movements, is close to that of a
human being. So, given our tendency
as an audience to become absorbed in
this form of art, we might feel a high
level of affinity for the puppet.

From the preceding discussion, the
readers should be able to understand the
concept of the uncanny valley. Now let
us consider in detail the relation between
the uncanny valley and movement.

The Effect of Movement
Movement is fundamental to ani-
mals—including human beings—and
thus to robots as well. Its presence
changes the shape of the uncanny val-
ley graph by amplifying the peaks and
valleys (Figure 2). For illustration,
when an industrial robot is switched
off, it is just a greasy machine. But
once the robot is programmed to
move its gripper like a human hand,
we start to feel a certain level of affin-
ity for it. (In this case, the velocity,
acceleration, and deceleration must

approximate human movement.)
Conversely, when a prosthetic hand
that is near the bottom of the uncanny
valley starts to move, our sensation of
eeriness intensifies.

Some readers may know that re-
cent technology has enabled prosthetic
hands to extend and contract their fin-
gers automatically. The best commer-
cially available model, shown in Figure
3, was developed by a manufacturer in
Vienna. To explain how it works, even
if a person’s forearm is missing, the
intention to move the fingers produces
a faint current in the arm muscles,

which can be detected by an electro-
myogram. When the prosthetic hand
detects the cur-
rent by means of
electrodes on the
skin’s surface, it
amplifies the sig-
nal to activate a
small motor that
moves its fingers.
As this myoelec-
tric hand makes
movements, it
could make healthy people feel uneasy.
If someone wearing the hand in a dark
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Figure 1. The graph depicts the uncanny valley, the proposed relation between the
human likeness of an entity, and the perceiver’s affinity for it. [Translators’ note: Bunraku
is a traditional Japanese form of musical puppet theater dating to the 17th century. The
puppets range in size but are typically a meter in height, dressed in elaborate costumes,
and controlled by three puppeteers obscured only by their black robes (see front cover).]
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Figure 2. The presence of movement steepens the slopes of the uncanny valley. The
arrow’s path represents the sudden death of a healthy person. [Translators’ note: Noh is
a traditional Japanese form of musical theater dating to the 14th century in which
actors commonly wear masks. The yase otoko mask bears the face of an emaciated
man and represents a ghost from hell. The okina mask represents an old man.]
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Figure 5.2: Plot showing the Uncanny Valley. The human affinity for a
simulation is plotted versus the human likeness of that simulation.9

5.3.2 Meta+Hodos

Another framework that I cannot help but see in the project is one proposed by

James Tenney. Tenney’s 1961 Master’s thesis Meta+Hodos (published in 1984) is

an application of Gestalt theory of psychology to music. Premised on the increased

complexity of twentieth century composition, in particular the observation that

any sound could now serve as the fundamental building block of music, Tenney

looked to Gestalt theory to explain how humans organize complex auditory phe-

9. Reproduced from Mori, Uncanny, 99.
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nomena. Tenney argued that the fundamental unit of music had changed, citing

in particular the music of composers such as Ives, Webern, Bartók, Ruggles, and

Schoenberg. Individual “tones” were no longer the only building blocks, but com-

plex sounds and “sound-configurations,” even those with considerable variation

in time, now had “equal potentiality for use as the elemental building-materials

in music.”10 Early twentieth century Gestalt theorists, such as Kurt Koffka or

Max Wertheimer, similarly attempted to explain, in the visual domain, the laws

by which human visual perception hierarchically groups together elements into

wholes, or “gestalts.” In Gestalt theory, the whole is something new, taking on

an identity distinct or other from the sum of its parts, and the role elements play

are contingent on their context and arrangement, not on intrinsic properties. Ac-

knowledging the insufficiency of established ideas in music theory to account for

the growing complexity of music, Tenney applied principles of Gestalt psychology

to develop an expanded conceptual framework for twentieth century music

Tenney identifies a number of factors that contribute to the impression of

discontinuity when listening to a piece of music, including focus and scale, and I

cannot help but wonder what role they might play in experiences of HVB. Tenney’s

first factor, focus, refers to which aspects of sound a listener attends to. If a listener

directs their attention towards the less essential parts of a complex sound texture

or less essential features11 of a musical figure, they may, understandably, miss

important structural aspects of the musical idea and experience discontinuity.

Tenney’s use of focus is motivated by the observation that in twentieth century

music, features other than pitch articulate musical ideas more so than in earlier

musics. Tenney uses the second term, scale, not in its ordinary musical context

10. James Tenney. 1986. Meta+Hodos: A Phenomenology of 20th-Century Musical Materials
and an Approach to the Study of Form. Edited by Larry Polansky. Frog Peak Music, 10.
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but rather in a sense more akin to visual perception, offering the analogy of

viewing an image from too close or too far. Simply put, scale refers to being too

far zoomed in or out to capture structuring ideas. An incongruity between the

scale of detail at which a listener is oriented towards distinguishing elements from

larger configurations and the scale at which the piece is organized will produce an

experience of discontinuity.

Tenney’s concept of discontinuity offers a possible explanation for the discord,

cacophony, and confusion that reviewers expressed in response to HVB. Both scale

and focus are treated in unusual ways. The listener is not listening to the original

song directly, but rather to an interpretation of that song, the results of a percep-

tual model. The focus and scale of that analysis are fixed, and arguable at a scale

not consistent with human perception. The choice of onset detection functions

(Chapter 2.5), for example, determines the parameters of focus — ultimately, my

best justification of how I choose them rests on what I perceive to be interesting.

Scale is similarly fixed and cast at low level details, perhaps zoomed further in

than a human listener would. Single notes are transcribed into short melodic fig-

ures, and fluctuations in pitch that would ordinarily be considered embellishment

are transcribed as though they are separate notes.

Fundamental to Tenney’s theory is the formation of perceptual units, called

clangs, which are further grouped hierarchically into larger units called sequences,

eventually reaching the level of form. Importantly, anything may function as an

element of a larger configuration if it is perceived as an element. Tenney identifies

a number of factors responsible for the formation of perceptual of units and for

11. I use the word “feature” synonymously with Tenney’s use of the word “parameter” to
maintain consistency with my earlier discussion of sound analysis features in Section 2.5. In
my terminology, I distinguish between feature and parameter: features is a perceived aspect of
sound, where as parameter is numerical quantity of a system or model.
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the separation of one unit from another. There are two primary factors (proximity

and similarity) and four secondary factors (intensity, repetition, objective set, and

subjective set). My observation is none of these factors operate strongly in HVB

music, and perhaps their absence is the reason the music is bewildering.

The first primary factor is proximity: sounds that are simultaneous, contigu-

ous, or close together in time will tend to form groups, while separation in time

will produce segregations. Figure 5.3a shows a simple example using alphanumeric

characters. The zeros cluster together because they are relatively close together

in spacing. Figure 5.4a shows a similar musical example. Similarly, three separate

groups form; the groups are internally contiguous yet separated from one another

by relatively large distances. The second primary factor is similarity: sounds

that are similar to one another will tend to form groups, while dissimilarity will

produce segregations. Again, Figure 5.3b shows a simple alphanumeric example.

Despite the absence of blank space, characters form visual groups according to

their similarity. Figure 5.4b shows a musical example in which three separate

groups cluster due to relative similarity in range, even though there are no breaks

between groups.

(a) Proximity groups

(b) Similarity groups

Figure 5.3: Illustrations of Tenney’s proximity and similarity factors.12

12. Reproduced from Tenney, Meta+Hodos, 28 and Tenney, Meta+Hodos, 29.
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(a) Proximity groups

(b) Similarity groups

Figure 5.4: Musical examples of Tenney’s proximity and similarity fac-
tors. Plots represents the intensity of some musical parameter through
time.13

Many passages in HVB music are undifferentiated sequences of notes that re-

sist the parsing described by Tenney’s factors of proximity and similarity. Notes

jump erratically between registers and are strung together without interruption.

Often there is little coordination between parts, and factors of similarity or prox-

imity would do little to find organization within and between the multiplicity of

voices. As discussed in Section 3.3, performers are left to shape the music them-

selves in the absence of phrasing and articulation indications. This often leads

13. Reproduced from Tenney, Meta+Hodos, 34.
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to perceptual grouping cues that are inconsistent between performers or between

various features of sound.

Perhaps the most interesting of Tenney’s secondary factors, at least in the

context of HVB, is the concept of a set. Tenney uses the term to mean a prior

psychological attitude or perspective which determines or alters one’s perception.

The objective set refers to expectations or anticipations arising during a musi-

cal experience, which are produced by previous events occurring within the same

piece; where as the subjective set refers to expectations or anticipations that are

a result of previous experience, separate from the musical work. Objective set

factors that contribute to feelings of expectation and anticipation include inter-

nal coherence, structure, inertia, the establishment of specific referential norms,

thematic reference, recurrence, or recall. Most of these factors are not present

in HVB music. HVB music in general does not provide many cues about what

will come next, what to expect, or what to anticipate — beyond, of course, broad

brush strokes pertaining to the form and structure of pop music.

Tenney’s theory provides a framework for understanding how and why HVB

might be considered cacophony. By Tenney’s factors, much of the music is, func-

tionally considered, noise — it does not congeal into structures of clang, sequence,

form; it does not establish internally coherent patterns and expectations. Despite

its seeming lack of coherence, however, the music is not entirely disordered either,

and Tenney’s theory provides insight about how and why. I like to think of HVB

more like random deviation from a form, akin to low amplitude high frequency

noise in the presence of a signal. The general form is still present as long as

the noise and signal are balanced, but as the noise amplitude increases, the form

dissolves.
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5.4 Automated Copyright Detection

On February 26, 2017 Indexical received an email notification of possible copyright

violation. The email came from DistroKid, a digital music distribution service

that enables artists to sell and stream music through large online retailers such as

iTunes, Spotify, and Tidal. Many streaming music platforms require a third party

service such as DistroKid for artists who are not represented by a major label,

although this is beginning to change, with platforms such as Spotify for Artists.

In response to HVB’s application for distribution, DistroKid responded:

We’ve been notified that one or more of your songs may contain
remixes, samples, or other audio that may not be 100% yours. You
may only upload audio that you have 100% recorded yourself. Stores
won’t accept music that contain unauthorized samples, remixes, and
so on.14

The full email is shown in Figure 5.5. DistroKid’s sample detection process is

automated as Philip Kaplan, founder and CEO of DistroKid, explains:

When an album is submitted to DistroKid, our automated system
processes the music files and artwork, scans for copyright and com-
pliance issues, and then immediately sends everything to the stores.
The entire process takes less than a minute per song. It runs 24/7 and
requires no human interaction.15

14. DistroKid. Email message to Indexical. February 26, 2017.
15. Philip Kaplan. 2019. “Open letter to Robb McDaniels, Founder and CEO of InGrooves.”

Accessed April 27. https://medium.com/@pud/open-letter-to-robb-mcdaniels-founder-
and-ceo-of-ingrooves-11b2bc746c2f.
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Figure 5.5: DistroKid email message to Indexical.

5.5 Two Thoughts on Musical Borrowing

My reaction to DistroKid’s email is two-tiered. First of all, DistroKid’s sample

detection process is automated. I can’t help but find it ironic and a little bit hu-

morous that HVB was taken down, for lack of a better phrase, by the same kinds

of automated sound analysis tools and techniques that I use to make the music

in the first place. What could be a better illustration of my concern that these

tools be used carefully and cautiously otherwise suffer unintended consequences.

In many cases those who bear the unintended consequences will be small, inde-

pendent communities already marginalized to the fringes of mainstream cultural
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values and largely powerless to fight back. I felt as though I had happened upon a

secret gatekeeper to the platforms of streaming music, an internet age version of

the kind of dystopian bureaucracy Terry Gilliam depicts in the 1985 film Brazil. I

found my interaction with DitsroKid to be a disarming mix of candor and charm

that belied the gravity of the situation, specifically problems facing fair and eq-

uitable access in electronic and streaming media, and diminished the complex

history of musical sampling.

Critics have spoken out against large streaming music services in recent years,

criticizing a concentration of power that monopolizes the marketplace, funnels ac-

cess through a centralized and streamlined format, and leaves artists with little

control over how their music is distributed and accessed, not to mention the fi-

nancial challenges of distributing royalties in an equitable way. Mat Dryhurst

in particular is an outspoken and prolific advocate of the challenges faced by in-

dependent artists in the streaming marketplace.16 Interestingly, concerns about

the centralization of streaming music parallel concerns more generally about the

centralization of the internet. What was once a decentralized open platform that

anyone could access equally is now disproportionately concentrated in the hands

of a few dominant social networks, proprietary developer platforms, and operating

systems that exert influence on development and distribution. These companies

control access, flow of information, and more importantly, mediate the very infor-

mation that we encounter online.

Providing users fair and equitable tools with which to navigate the tremen-

dous amount of media available on electronic platforms is an interesting new

challenge faced by streaming music services. Automated discovery and recom-

16. Mat Dryhurst. 2019. “SoundCrowd: Tokenizing and Collectivizing Soundcloud.” Accessed
April 27. https://medium.com/blockchannel/soundcrowd-tokenizing-collectivizing-
soundcloud-5c4f60ed4961.
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mendation systems are now widely deployed, with some of the largest streaming

platforms, including Spotify, Apple Music, and Pandora, providing personalized

music recommendation. Recommender systems, for the most part, operate on

either a user’s past activity on the platform — what a user plays, skips, and likes

— or features of the media itself, which involves automated sound analysis. While

there may be a sense that personalization is preferable or perhaps even synony-

mous with curation, truth be told, these discovery services are built to prioritize

and de-prioritize content, and wield too much power over which music is heard.

I cannot help but wonder what kinds of latent value judgements are implicit in

these systems and as such are reified by their mass deployment.

Second, sampling should be understood as part of a long history of musical

borrowing, a tradition that reaches back centuries in Western music practice. This

history raises many complex questions pertaining to concerns both artistic and

aesthetic as well as ethical and legal. In the history of notated Western music,

musical quotation, in which melodic, harmonic, or rhythmic fragments of a com-

poser’s work are incorporated into another, is a precursor for electronic sampling.

Medieval chants often borrowed melodic patterns from other chants. Paraphrase

masses of the Renaissance were based on well-known plainsong chants or secular

songs. Throughout the Romantic period, musical quotation was common and

composers would incorporate and rework music of their peers. With political rev-

olutions of the nineteenth century, it was also common for composers to quote folk

and protest songs. These traditions continued into and throughout the twentieth

century — composer Charles Ives in particular is well known for his extensive use

of borrowed material.17

At the turn of the twentieth century, trends in the visual and literary arts

17. Based on conversation with musicologist Madison Heying, April 24, 2019.
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prefigured attitudes towards sampling, a more recent innovation afforded by twen-

tieth century technologies in which a portion of a sound recording is incorporated

into a another. Marcel Duchamp’s concept of the readymade, Dada cut-up writ-

ing techniques, and even collage as pioneered in painting and visual art by George

Braque and Pablo Picasso all set artistic and aesthetic precedent that I argue

is more akin to musical sampling than to prior forms of musical borrowing such

as quotation. Although some composers worked with phonograph and turntable

techniques in the earlier part of the century, the genres of electroacoustic and tape

music were more firmly established around mid century when tape recorders be-

came accessible. Composers such as Pierre Schaeffer (1910–1995) and John Cage

(1912–1992) established the early norms and techniques of working with recorded

sound. Pierre Schaeffer assembled his Cinq études de bruits (1948) from samples

of train sounds that Schaeffer either recorded himself or found in the libraries of

various radio stations. John Cage’s Williams Mix (1951–53) consists of hundreds

of sound clips, recorded by Louis and Bebe Barron, that were edited and spliced

together on magnetic tape.18

Sampling, as it is colloquially known today, is deeply connected to hip hop, an

African American subculture, art movement, and music practice that developed in

the 1970s in the United States, particularly in New York City. Sampling is among

the defining features of hip hop music. DJs, such as DJ Kool Herc (b. 1955), Afrika

Bambaataa (b. 1957), and Grandmaster Flash (b. 1958), pioneered techniques of

electronic music using turntables to manipulate borrowed sound — to slow down,

speed up, loop, skip, play backwards. These artists represent a contribution to

electronic and computer music that is not always mentioned in the traditional

18. For a history of musical sampling see Jon Leidecker’s radio series Jon Leidecker. 2011-
2018. “Variations.” Ràdio Web Macba. Accessed April 27, 2019. https://rwm.macba.cat/en/
variations_tag.
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histories, but is perhaps more widespread culturally than most others.19 In many

ways composer John Oswald (b. 1953) was engaging with this popular culture

movement when he responded to new ways people were repurposing recorded

media. Oswald developed the idea of “plunderphonics,” a work that is a clearly

derivative manipulation of another recording. In the opening paragraph of his 1985

talk “Plunderphonics, or Audio Piracy as a Compositional Prerogative” Oswald

called attention to hip hop and to the new creative potential of electronic sound

manipulation:

A phonograph in the hands of a hip hop/scratch artist who plays a
record like an electronic washboard with a phonographic needle as a
plectrum, produces sounds which are unique and not reproduced - the
record player becomes a musical instrument. A sampler, in essence a
recording, transforming instrument, is simultaneously a documenting
device and a creative device, in effect reducing a distinction manifested
by copyright.20

More or less concurrent with the emergence of hip hop music, the US govern-

ment revised copyright law, passing the Copyright Act of 1976. Prior to this Act,

US copyright law had not been revised since 1910. The Copyright Act of 1976

extended protection of the law to “original works of authorship fixed in any tan-

gible medium of expression, now known or later developed, from which they can

be perceived, reproduced, or otherwise communicated, either directly or with the

aid of a machine or device,”21 including sound recordings. The Act also codified

the terms of “fair use,” under which the use of a copyrighted work is not copy-

right infringement, a category that many artists claim. It is important to note

the law is complex; while this Act remains the foundations of US copyright law

19. For a history of Hip Hop see Tricia Rose. 2008. The Hip Hop Wars: What We Talk About
When We Talk About Hip Hop - and Why It Matters. New York: Civitas Book.
20. John Oswald. 1985. “Plunderphonics, or Audio Piracy as a Compositional Prerogative.”

Accessed April 27, 2019. http://www.plunderphonics.com/xhtml/xplunder.html.
21. 17 U.S.C. Sec. 102.
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today, the law is also defined by legal precedent and court case rulings. Copyright

law was not generally enforced with respect to music sampling until a number of

landmark cases in the late 1980s and early 1990s, notably Grand Upright Music,

Ltd v. Warner Bros. Records Inc. In this case, Gilbert O’Sullivan, a popular

English songwriter challenged DJ and rapper Biz Markie, an extremely influential

hip hop artist, for sampling without permission. The court ruled in O’Sullivan’s

favor.22

Sampling continues to be a popular means of artistic expression today. Digital

and electronic appropriation is widespread culturally, in part due to the prolifer-

ation of digital content and the availability of extremely powerful consumer tools

for manipulating digital media, both audio and visual.23 As I see it, HVB is part

of this history, embroiled in the same legal and ethical conundrums, and motivated

by similar aesthetic and artistic drives. I also see in the project something new.

It points towards new legal and ethical questions surrounding machine learning

and big data.

Learning algorithms extrapolate patterns and trends across many thousands,

if not millions, of data points. What does it mean for a work to be based on

patterns extrapolated from many millions of works, not just a single work? Who

holds the rights then — the authors each of the individual works, the algorithm

designer, is there no human author at all? On the first day of my class Music and

Artificial Intelligence this past winter term 2018, a student asked, how often does

a machine learning algorithm scrape SoundCloud, an online platform where users

upload and share their music with one another, and generate new works based

on the works of an entire community? I didn’t know, and still don’t know, the

22. Music Copyright Infringment Resource. 2019. “Grand Upright v. Warner.” Accessed
April 27. https://blogs.law.gwu.edu/mcir/case/grand-upright-v-warner/.
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answer. It occurred to me, however, that this questions cuts to the core of public

concern around digital and online media and the uncertainty and unease around

data privacy. It’s not clear who should benefit from big data and how, nor what

role intellectual privacy and copyright should play. It’s not clear what constitutes

a copy anymore nor what should fall under the legal category “original works of

authorship.” This, I believe, will form the basis of intellectual property debates

in the coming years.
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Chapter 6

Conclusion

When I started the Happy Valley Band project over eight years ago, the terms

Machine Learning and Artificial Intelligence did not carry the same cultural con-

notations they do today. Machine learning technology was nascent, deep learning

had not yet boomed, and social issues such as algorithmic bias and discrimina-

tion had yet to be taken up by cultural theorists and the Digital Humanities.

Within the past ten years the term AI has proliferated. AI has become deeply

integrated into the daily life and arguably shapes our understanding of the world.

Concurrent with the rise of AI is a growing awareness and public conversation

about concerns of algorithmic bias and discrimination. I believe that artists can

and should play a critical role in thinking through the social and ethical issues of

artificial intelligence and automation. In this chapter, I relate my experience of

HVB to these contemporary conversations.

117



6.1 Overview of Algorithmic Bias

Although algorithmic bias is difficult to define, there is a general sense that au-

tonomous algorithms are in danger of reflecting, reinforcing, and amplifying cul-

tural biases, stereotypes, and historical inequalities. Search algorithms, social

networks, and other forms of automated computation can unfairly privilege or

discriminate against arbitrary population groups, often along the lines of race,

gender, ethnicity, and socioeconomic status. Since automated models are used in

many aspects of daily life — policing, determining who is eligible for a loan, hir-

ing practices, and education — it is concerning that such algorithms may encode

discrimination and bias. In many cases, the groups against which algorithms are

biased are already underrepresented or subject to discrimination, thus reinforcing

and perpetuating inequality.

Many alarming examples of algorithmic bias have recently been reported. A

2016 analysis published by investigate journalism organization ProPublica claimed

that COMPAS, an algorithm used by judges to help determine bail sentencing de-

cisions, is biased against black defendants. COMPAS predicts the likelihood that

a defendant will commit a violent crime, assigning a risk score between 1 and 10

based on a number of factors including age, criminal history, charge degree, and

gender. The study found that black defendants were substantially more likely to

be incorrectly classified as high risk, while white defendants were more likely to

be incorrectly classified as low risk (Angwin et al. 2016). In a 2018 news article,

Jeffrey Dastin reported that Amazon’s hiring software was biased against women.

The software was used to screen resumes of job applicants, scoring candidates on a

scale from 1 to 5 stars, and was trained on a collection of prior resumes submitted

to Amazon. The collection of prior resumes was largely dominated by male candi-

118



dates, and the model learned to penalize female candidates, identifying gender not

just by keywords such as “women’s” but also by indicators that implicitly suggest

gender, such as having attended an all-women’s college (Dastin 2018). In a 2018

study by Buolamwini, three commercial machine vision systems were shown to be

biased on the task of gender classification, exhibiting substantial disparity in the

accuracy of classifying darker-skinned females versus lighter-skinned males. The

misclassification rate for darker-skinned females being as high as 34.7%, where as

the maximum error rate for lighter-skinned males is 0.8%. Since machine vision

tools are often used in a pipeline for higher risk tasks such as law enforcement and

public surveillance, bias could lead to wrongfully accusations based on confident

misidentifications (Buolamwini and Gebru 2018).1

In many examples, algorithmic bias is introduced by the dataset on which the

algorithm is trained. Buolamwini explains that machine vision models are often

trained using fewer images of women and people with dark skin, which leads to

poorer performance in such cases; Amazon’s hiring mode was trained on a dataset

dominated by male applications causing it to preference male candidates; and

predictive policing models are often trained on “dirty data” reflecting past histories

of flawed, unlawful, and racially biased police practices (Richardson, Schultz, and

Crawford 2019). These biases are reflected by the training dataset, captured by

the model, and perpetuated in a pernicious feedback loop that reinforces and

amplifies historical and cultural biases.

A recent example to illustrate how algorithms learn to encode bias is word

embeddings. A word embedding, such as the project word2vev (Mikolov et al.

2013), maps English language words to a high-dimensional vector space — 300

is a common number of dimensions — assigning to each word a 300 dimensional

1. For a discussion of how mathematical models increase inequality see O’Neil 2016.
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numerical value, which is interpreted as a location in that high-dimensional vector

space. The mapping is determined by English language usage, as found by training

on large bodies of text, and locations of words reflect their meanings. Words with

similar meanings are generally close together in the vector space, and semantic

relationships between words are encoded as geometric relationships in the vector

space.

Word embeddings have been shown to encode biases, such as gender and race,

that are implicit in the texts on which they are trained. The relationship between

the words “he” and “she,” for example, represents a vector in the embedding space

onto which other words can be projected to reveal implicit gender associations

(shown in Figure 6.1). Gender neutral words such as “homemaker” and “sewing”

are more strongly associated with “female,” where as “genius” and “tactical” are

more strongly associate with “male.” In a 2017 report, Caliskan et al. applied Im-

plicit Association Test of subconscious social biases to popular word embeddings,

including word2vec, and found significant social biases (Caliskan, Bryson, and

Narayanan 2017). The test revealed strong association between male names and

“career” while females names were associated with “homemaking” and “family.”

While it is not surprising that gender bias lurks in English language writing, it is

alarming that machine learning systems capture and encode it. Word embedding

is commonly used as a preprocessing feature for Natural Language Processing sys-

tems. What makes it powerful also makes it dangerous. Sophisticated semantic

relationships are captured, but cultural bias are also integrated into the machine

learning system, which can reinforce and perpetuate bias.
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Figure 7: Selected words projected along two axes: x is a projection onto the difference between the
embeddings of the words he and she, and y is a direction learned in the embedding that captures gender
neutrality, with gender neutral words above the line and gender specific words below the line. Our hard
debiasing algorithm removes the gender pair associations for gender neutral words. In this figure, the words
above the horizontal line would all be collapsed to the vertical line.

����!
softball ������!

football) are shown in the table. Words such as receptionist, waitress and homemaker are closer to
softball than football, and the �’s between these words and softball is substantial (67%, 35%, 38%, respectively).
This suggests that the apparent similarity in the embeddings of these words to

����!
softball can be largely explained

by gender biases in the embedding. Similarly, businessman and maestro are closer to football and this can
also be attributed largely to indirect gender bias, with �’s of 31% and 42%, respectively.

6 Debiasing algorithms
The debiasing algorithms are defined in terms of sets of words rather than just pairs, for generality, so that
we can consider other biases such as racial or religious biases. We also assume that we have a set of words to
neutralize, which can come from a list or from the embedding as described in Section 7. (In many cases it
may be easier to list the gender specific words not to neutralize as this set can be much smaller.)

The first step, called Identify gender subspace, is to identify a direction (or, more generally, a subspace)
of the embedding that captures the bias. For the second step, we define two options: Neutralize and
Equalize or Soften. Neutralize ensures that gender neutral words are zero in the gender subspace.
Equalize perfectly equalizes sets of words outside the subspace and thereby enforces the property that any
neutral word is equidistant to all words in each equality set. For instance, if {grandmother, grandfather} and
{guy, gal} were two equality sets, then after equalization babysit would be equidistant to grandmother and
grandfather and also equidistant to gal and guy, but presumably closer to the grandparents and further from
the gal and guy. This is suitable for applications where one does not want any such pair to display any bias
with respect to neutral words.

The disadvantage of Equalize is that it removes certain distinctions that are valuable in certain applications.
For instance, one may wish a language model to assign a higher probability to the phrase to grandfather a
regulation) than to grandmother a regulation since grandfather has a meaning that grandmother does not –
equalizing the two removes this distinction. The Soften algorithm reduces the differences between these sets

11

Figure 6.1: Word embedding. Reproduced from Bolukbasi et al. 2016.

In the past few years, many new conferences and institutes have formed with

the goal of making automated algorithms more fair, such as the conference on Fair-

ness Accountability and Transparency in Machine Learning (FATML) and the AI

Now Institute at New York University. Even within industry, leading companies

have formed boards for Artificial Intelligence and ethics — despite dubious moti-

vations, their presence nevertheless is a symbol of the widespread problem. While

it is clear that algorithmic bias is a pressing social issue, what to do about it is

less clear. The academic literature is vast and scattered across multiple disciplines

and applications. It is full of convincing examples and calls to action, but light on

pragmatic solutions and generalized frameworks. Many solutions have been ex-

plored, such as mathematically removing bias using subspace methods and vector

projection (Bolukbasi et al. 2016), developing diverse and robust testing bench-

marks (Buolamwini and Gebru 2018), and simply requiring humans to intervene

at some point in a decision pipeline — the EU’s recent General Data Protection

Regulation bans fully automated decision-making in significant situations. Unfor-

tunately, solutions are often fit to specific cases and models are often difficult to
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implement in mass deployment (Springer, Garcia-Gathright, and Cramer 2018).

Practical ways and workflows for identifying, preventing, and fixing algorithmic

bias are sorely needed.

Fairness is difficult to identify and define let alone codify in computer code.

Many different statistical interpretations of fairness exist, which leads to mutually

exclusive metrics that cannot be satisfied simultaneously. The very definition

of algorithmic bias itself is not clear. From a computational perspective, bias

is necessary; bias is what distinguishes an algorithm that is successful from an

algorithm that operates at chance. Algorithmic bias, however, generally refers to

bias that is unwanted or unintended. These two forms of bias — the necessary

and the unwanted — can be difficult to disentangle. Bolukbasi explains that

completing removing any gender variation from word embeddings is not always

a viable solution, because in many cases gender is important to meaning. While

it is important to remove gender stereotypes, such as the association between

the words “receptionist” and “female,” we may want to maintain desired gender

associations, such as between the words “queen” and “female.” The very nature

of bias, when to remove it, and how are open questions that need to be addressed

in context, requiring a larger guiding framework of understanding and evaluation.

At the root of the crisis of algorithmic bias is public understanding of algo-

rithms, mathematics, and computation. Algorithms are often seen as objective.

In fact, in many instances of algorithmic bias, automation is intended to curb the

possibility of human bias — a judge, for instance, who is tired after hearing many

court cases or allows emotional factors to influence their bail sentencing. At mid-

dle and high school education, mathematics tends to be taught as an instrument

of scientific objectivity. For many students, it is not until college level education

that they learn to appreciate the subjectivity and art in mathematics and logic.
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I believe there is a larger cultural association of number with objectivity which

has led to a false sense of objectivity that is now being challenged by the crisis of

algorithmic bias. In this sense, my intention with HVB is to illustrate the sub-

jectivity of mathematical analysis and to point towards considering algorithms as

socially and culturally determined constructs.

6.2 Music as a Heuristic Analysis of Algorithmic

Bias

Given that HVB was directly motivated by the question what does it mean for

values to be embedded in sound analysis algorithms, it only seems appropriate

to try to answer it. My understanding is informed as much by analyzing and

coding machine listening algorithms as by interacting with algorithms through

composition, performance, and listening.

While much of the current discussion around algorithmic bias focusses on bias

introduced by large datasets, it is clear to me, from my work with HVB, that indi-

viduals, communities, and cultures that produce technologies also introduce bias,

independent of the data ultimately used. Algorithms are cultural products, the

results of social, political, and economic forces, not just computational objects,

and it is necessary to consider bias as emanating from and residing within all of

the various facets of this assemblage. Research on algorithmic bias extends back

more than twenty years, and earlier writings provide frameworks for considering

types of bias not introduced by data. Friedman and Nissenbaum’s framework, in

particular, is well-suited for describing how I understand values to be embedded

in machine listening algorithms (Friedman and Nissenbaum 1996). Friedman and

Nissenbaum identify three categories of algorithmic bias: preexisting bias per-
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tains to the values, practices, and attitudes of the individuals or institutions that

produce technologies; technical bias refers from the limitations or constraints of

technical design; and emergent bias arises when a technology is used in a context

different than intended by its designers.

As addressed by Friedman and Nissenbaum’s concept of preexisting bias,

the musical ideas of the communities that produce machine listening technolo-

gies bias said technologies towards certain musical systems.2 Given that there is

no universal definition of pitch, for example, any algorithm for detecting pitch is

value-laden. A harmonic model of pitch perception will find different results than

a physiological model of pitch perception, especially when driven to extremes and

edge cases, such as in HVB. Deciding to smooth or suppress short-lived and spuri-

ous changes in pitch, which is common in many detection algorithms, labels such

artifacts as errors, indicating they are neither valid nor correct ways of hearing.

The very idea to transcribe music in terms of pitch and rhythm rather than other

features of sound, or to quantize to twelve-tone equal temperament, reflects a trans

European musical value system that is better suited to describe certain forms of

music than others. Such values may be encoded consciously or unconsciously as

individuals and communities are influenced by larger cultural forces and scientific

and engineering paradigms that lead to ways of describing the world.

As expressed by Friedman and Nissenbaum’s concept of technical bias, the

limits and constraints of the computational tools used introduce bias, both hard-

ware and software. Developers of machine listening technologies must necessarily

find ways to express musical ideas in mathematically computable forms, and the

2. With the HVB project, I have focussed on the question of how values are embedded in
algorithms. For an ethnographic study of the communities that produce machine listening
technologies and their value systems, see the work of anthropologist Nick Seaver on music
recommender systems (Seaver 2018; Seaver 2017).
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available mathematics and computational paradigms not only impose limits and

constraints but shape how musical ideas are codified. How problems are framed,

the software tools and paradigms used, the underlying structure of binary compu-

tation and its hardware implementations, and available mathematical ideas both

suggest and limit possibilities. One such pervasive construct in machine listen-

ing is Fourier analysis, which has had a profound impact on how we conceive

of sound in the twentieth century. Fourier analysis represents sound in terms of

the amplitude and phase of harmonically spaced sinusoids, distributing spectral

information between the dimensions of amplitude and phase, and this structure is

clearly reflected in a number of the onset detection functions discussed in Chapter

2. Spectral flux, phase deviation, and complex difference measure frame to frame

differences in the amplitude, phase, and combined domains respectively. While

it is tempting to interpret these spectral features as corresponding to indepen-

dent acoustic features, in reality the relationship is more complex. Furthermore,

Fourier analysis does not represent all sounds equally well. Sounds with harmonic

structure better fit the model than inharmonic sounds, which suffer from chatter

and leakage across analysis bins, and many artifacts in HVB music are themselves

results of FFT analysis and its computational implementation.

How can algorithmic bias be effectively identified, measured, and ultimately

ameliorated? These are among the most pressing questions facing the field ma-

chine learning today. In a recent article “Why Do We Want Our Computers to

Improvise,” Georg Lewis extends his idea of improvisation to include interactions

with technologies generally, not limited to music technologies (Lewis 2018). Lewis

explains that interactions with technologies reveal aspects of the people and en-

vironments that produce them. I see HVB in this context, as a set of interactions

with machine listening algorithms that reveal aspects of the values that motivate
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such technologies. Rather than quantified mathematical analysis, it is a heuristic

process,3 a way of coming to know the biases present through individual, hands-on

experience with the products of the algorithms. I believe that through experience

and though our sense of musicality we can uniquely come to understand the biases

implicit in algorithms, although I am admittedly unsure how to translate this into

an industry ready workflow.

Through my experience writing, performing, and listening to HVB music, I

have come to understand the nature of the machine listening algorithms. I believe

that others have as well, including the performers in the ensemble and listeners. To

return briefly to the reviewer of ORGANVM PERCEPTVS discussed in Chapter

5 who described the music as “conceptually fascinating” but simply “cannot bear

to listen to it,” upon reading the review my partner Madison Heying responded,

“They didn’t listen to the record enough.” I include this quote not to be flippant

and dismissive but in all earnest; composing this music, playing this music, and

listening to this music has changed the way I hear. This project has put me in

intimate contact with the idiosyncrasies of machine listening algorithms in way

that I never planned for. I have spent so much time fitting my brain into these

algorithms — listening to their results, tweaking parameters, anticipating new

results, then listening back and comparing — that is difficult for me to hear these

songs any other way, or really any other song any other way. Ultimately, I have

come to sense the logic in the transcription system.

Of all the responses to HVB that I have received, one in particular gives

me hope that my experiences will translates to others. On the internet forum

ilxor.com Milton Parker wrote:

3. My use of the term heuristic is informed by David Dunn’s recent collection of pieces titled
Heuristic Automata (Book 1) (2012–2016).
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at first it sounds as if it’s filled with timing errors and wrong notes,
but all the “wrongness” is actually over-precise analysis of some of
the original arrangements, and as you listen over time and the pieces
somehow hold together and get tighter and tighter, you realize that
they kind of aren’t strictly errors, there’s some kind of turbo-charged
high level thinking going on.

I like to think of Parker’s “turbo-charged high level thinking” as a utopian fu-

ture in which technologies extend our value systems to more inclusive ways of

hearing rather than reifying the value systems of the communities that produce

technologies.
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Appendix A

Related Publications

Writings that I have authored about Happy Valley Band:

Bick, Emily. 2017. “Album stream and interview: David Kant of Happy Val-

ley Band talks about their ‘machine listening’ album.” The Wire. Accessed

April 27, 2019. https://www.thewire.co.uk/in-writing/interviews/

listen - to - the - happy - valley - band - s - new - album - and - read - an -

interview-with-its-founder.

Kant, David. 2016a. “The Happy Valley Band: Creative (Mis)Transcription.” Leonardo

Music Journal (LMJ) 26:76–78.

. 2016b. “The Long Answer.” Experimental Music Yearbook. Accessed May 4,

2019. http://www.experimentalmusicyearbook.com/Happy-Valley-Band.

. 2017a. “Making music through machine ears.” Humanising Algorithmic

Listening. Accessed May 4, 2019. http : / / www . algorithmiclistening .

org/introductions/HVB/.

. 2017b. ORGANVM PERCEPTVS. Happy Valley Band. Indexical Index-

2, Vinyl LP + Print Booklet + Digital Download.
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Appendix B

Selected Press

Selected press and reviews about Happy Valley Band:

Bick, Emily. 2017. “Album stream and interview: David Kant of Happy Val-

ley Band talks about their ‘machine listening’ album.” The Wire. Accessed

April 27, 2019. https://www.thewire.co.uk/in-writing/interviews/

listen - to - the - happy - valley - band - s - new - album - and - read - an -

interview-with-its-founder.

Chandler, Simon. 2018. “Meet the Artists Using Coding, AI, and Machine Lan-

guage to Make Music.” Bandcamp Daily. Accessed April 27, 2019. https:

//daily.bandcamp.com/2018/01/25/music-ai-coding-algorithms/.

Fitzgerald, Colin. 2017. “Happy Valley Band deconstruct pop classics via machine-

learning algorithm on debut album ORGANVM PERCEPTVS.” Tiny Mix

Tapes. Accessed April 27, 2019. https://www.tinymixtapes.com/news/

happy-valley-band-deconstruct-pop-classics-machine-learning-

algorithm-debut-organvm-perceptvs.
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Hambleton, Elizabeth. 2017. “Happy Valley Band’s debut album ORGANVM

PERCEPTVS.”New Classic LA. Accessed April 27, 2019. http://newclassic.

la/2017/04/27/review-happy-valley-bands-debut-album-organvm-

perceptvs/.

Margasak, Peter. 2017. “Best of Bandcamp Contemporary Classical: March 2017.”

Bandcamp Daily. Accessed May 4, 2019. https://daily.bandcamp.com/

2017/03/28/best-of-bandcamp-contemporary-classical-march-2017/.

Zaldua, Chris. 2017. “You, With the Violin! Sight-Read These Computer Al-

gorithms!” KQED. Accessed April 27, 2019. https : / / www . kqed . org /

arts/13038360/you-with-the-violin-sight-read-these-computer-

algorithms.
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Appendix C

Complete List of Songs

List of all Happy Valley Band songs that I have transcribed:

Cry One More Time (2019), Gram Parsons

Stony End (2018), Laura Nyro

Katie Cruel (2017), Karen Dalton

War Pigs (2017), Black Sabbath

When the Levee Break (2017), Led Zepplin

Darling Nikki (2016), Prince

Like a Prayer (2015), Madonna

Jungle Boogie (2015), Kool and the Gang

Born to Run (2015), Bruce Springsteen

(You Make Me Feel Like) A Natural Woman (2015), Aretha Franklin

Ring of Fire (2013), Johnny Cash

After the Gold Rush (2013), Neil Young

Suspicious Minds (2012), Elvis Presley

It’s a Man’s Man’s Man’s World (2012), James Brown

In the Air Tonight (2012), Phil Collins
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This Guy’s in Love with You (2012), Herb Alperb

Wooden Heart (2012), Elvis Presley

Midnight Mover (2012), Wilson Pickett

Crazy (2011), Patsy Cline

Good Luck Charm (2011), Elvis Presley
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Appendix D

ORGANVM PERCEPTVS

Personnel

List of musicians who performed on ORGANVM PERCEPTVS :

Alexander Dupuis, Guitars

Mustafa Walker, Electric and Upright Bass

Beau Sievers, Drum Kit

Andrew Smith, Piano and Keyboards

David Kant, Saxophones

Pauline Kim Harris, Violin

Conrad Harris, Violin

Chris Nappi, Percussion

Joseph Kubera, Piano

Daniel Costello, French Horn

Thomas Verchot, Trumpet and Flugelhorn

Joe Moffett, Trumpet

Christoper Scanlon, Trumpet
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Nathaniel Morgan, Alto Saxophone

Sam Friedman, Harmonica

Charlotte Mundy, Voice

Jane Sheldon, Voice

Eve Gigliotti, Voice

John Welsh, Guitar

Larry Polansky, Guitar
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Appendix E

Performance History

2019 High Desert Soundings, Joshua Tree, CA

2018 CODAME Art + Tech Festival, San Francisco, CA

2018 Pro Arts Gallery, Oakland, CA

2018 Idea Fab Labs, Santa Cruz, CA

2017 Experimental Music Yearbook, Human Resources, Los Angeles, CA

2017 Center for New Music, San Francisco, CA

2016 CCRMA, Stanford University, Palo Alto, CA

2016 Don Quixote’s Musical Hall, Felton, CA

2015 Dog Star Orchestra 11, the wulf., Los Angeles, CA

2015 sfSound series, Center for New Music, San Francisco, CA

2013 Littlefield, Brooklyn, NY

2012 Electric Eclectics 7, Meaford, Ontario, Canada

2012 Miniature Minotaurs, WFMU Radio, Jersey City, NJ

2012 Transient Series I.2, Brooklyn, NY

2011 Ostrava Days Festival 2011, Ostrava, Czech Republic
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