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Abstract

Machine Listening as a Generative Model:

Happy Valley Band
by

David Andrew Kant

ORGANVM PERCEPTVS is a collection of 11 songs for mixed en-
semble written by translating machine listening analysis of pop songs into
musical notation. Motivated by the idea that analysis algorithms inher-
ently carry the values of the communities that produce them, I see my
compositional process as a way of understanding how musical ideas, be-
liefs, preferences, and aesthetics are embedded within analysis algorithms.
The musical scores are overly-specific, complex, and brimming with the
artifacts of the machine listening process, and I formed a dedicated en-
semble, the Happy Valley Band, to develop a performance practice unique
to the idiosyncratic music. This dissertation essay documents the analy-
sis algorithms used, my compositional process, the performance practice
developed, the process of recording and releasing an album of music, and
the public reception. I discuss my compositional ideas in the context of a
number of twentieth century aesthetic traditions, including plunderphon-
ics and sampling, computer analysis driven composition, and complexity in
computer-assisted composition. I see this project as relevant to emerging
cultural concerns of algorithmic bias and discrimination, and I relate my

experience to contemporary dialogues around digital automation.
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Chapter 1

Introduction

As automated algorithms are increasingly woven into the fabric of contemporary
life, it occurs to me not only that the individuals, institutions, and communities
that produce them wield a tremendous amount of power, but more importantly,
public understanding around computation — what the results of computational
processes represent and how to interpret them — is sorely in need of a software
update. Over the past eight years, I have explored this intuition through the
Happy Valley Band (HVB), a project in which I transcribe machine listening
analysis of pop songs into music notation for human musicians to perform. The
motivations for this project extend back at least nine years to when I first became
interested in sound analysis. The prospect that all of the subtle and ineffable
qualities of musical experience are somehow encoded within a sequence of numbers
and available for quantification enthralled me. However, as I came to understand
the communities of thought that produce ideas and technologies in sound analysis,
including engineering, industry, and higher education, I grew skeptical of many
underlying musical values and assumptions.

As a musician interested in a variety of twentieth century contemporary music



practices, including free improvisation, live electronic music, soundscape record-
ing, noise, and avant jazz, I did not always feel that my musical values and inter-
ests were represented in the algorithms that I studied and in the communities that
produced them. The more I learned about sound analysis, the more I came to
understand that assumptions are necessary and inherent to it, assumptions about
what one is even analyzing for in the first place — analyzing for pitch or rhythm
requires an idea of what pitch or rhythm is. At a certain point analysis is tauto-
logically true: you find what you look for. This struck me as deeply concerning,
especially given the ubiquity of automated computation present today, whether
musical or not. I became interested in what it means for values to be embed-
ded within an analysis algorithm, the limits of digital sound analysis, what ideas
and assumptions in particular motivate algorithms that are widespread today,
and most importantly, the implications when analysis algorithms are automated,

scaled, and left to operate autonomously.

1.1 The Happy Valley Band Project

This dissertation is a collection of songs written by translating machine listening
analysis of pop songs into musical notation. Motivated by the idea that analysis
algorithms inherently carry the values of the communities that produce them, I see
my compositional process as a way to understand how musical ideas, beliefs, pref-
erences, and aesthetics are embedded within analysis algorithms. HVB transcrip-
tions are microtonal and rhythmically complex; pitch and rhythm are specified to
exacting and inhuman degrees of precision, and the scores are rife with additional
notes, artifacts of the machine listening process. The differences between the orig-

inal recordings and HVB transcriptions are a result of my approach to machine



listening. I highlight the idiosyncrasies of the machine listening process and the

challenges of translating between scales of digital analysis and human perception.

I often use well-known songs by artists such as Madonna, James Brown, Patsy

Cline, and Phil Collins. Excerpt 1.1 shows a typical HVB score.
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Over the past eight years, the HVB project has developed to include a suite
of custom machine listening and music transcription tools — tools for spatial
filtering, spectrogram decomposition, multiple fundamental frequency estimation,
feature extraction, onset detection, and music notation — as well as a specific
compositional process and approach to sound transcription. Composition and
algorithm design are synonymous in HVB, from the musical ideas that motivate
algorithm design down to technical implementation.

Most important, this project has grown to include a dedicated performing
ensemble, the Happy Valley Band, who developed a unique performance practice
in response to the unusual performance demands of the computer transcriptions.
Performers devise their own strategies for navigating the overly complex and de-
tailed scores but adapt in response to one another in live performance, allowing a
group feeling to emerge. When I made the first machine listening transcriptions, I
never imagined people would play them. In summer 2011, at the suggestion of two
composer-performer colleagues, Beau Sievers and Mustafa Walker, we formed a
dedicated ensemble to play the computer generated transcriptions. The ensemble
has evolved into a collective structure, centered around a core group of musicians
with whom I work closely — Alex Dupuis, Andrew Smith, Beau Sievers, and
Mustafa Walker. The analysis tools, music notation, performance practice, and
my interpretation of the project have emerged in the context of this group, shaped
by their ideas and input.

When [ first became interested in sound analysis, [ wanted to know how ma-
chines hear. My advisor at the time gently suggested there is no way of hearing
intrinsic to technology, rather machines reflect people’s ideas about how hearing
works. From the design of machine listening algorithms down to the constructs of

boolean logic and material sciences that form the framework of modern compu-



tation within which algorithms are expressed, machines reflect human ideas. In
many ways, this project has been my reconciling the desire for a way of hearing
intrinsic to machines. I realized that as much as this desire seemed a fantasy of
science fiction, there is a machine way of hearing, although it does not reside in
the technological processes but in an assemblage of forces — the musical values
of communities that produce them as well as the history of science, technology,
and engineering that has led to the current understandings of sound and signal
processing. This project argues the need to consider machine listening algorithms
as a social construct if we are to understand how values are embedded within
them.

Ultimately this project is motivated by the conviction that we use machine
listening technologies to hear more inclusively, less be at risk of amplifying, in
a positive feedback loop, the values of the communities that produce them to
the exclusion of more diverse forms of music. FEight years ago this conviction
was a vague intuition, more of a feeling than a well-formed idea. While I did
not have the language necessary to articulate it, I was concerned by the implica-
tions for autonomous machine listening systems such as music recommendation or
surveillance. Now more than eight years later, algorithmic bias — the idea that al-
gorithms are not neutral but can unfairly discriminate against certain population
groups — has emerged as a pressing and widespread social concern. Automated
algorithms are involved in many aspects of daily life, from hiring practices to jail
sentencing to autonomous surveillance, and news bubbles that came to light in
the 2016 presidential election demonstrated the danger of using automation to

reify rather than diversify our experiences.



1.2 Reflections

I have come to see this project from a number of different perspectives, which
have helped me to understand and explain aspects of the project and draw various
conclusions. First, HVB scores are as much a product of the music analyzed as
the values and assumptions inherent to the algorithms. I have come to understand
the music as emergent between the two; it resides neither in one nor the other
but in the interaction between them. The concept of emergence provides for me
a way of understanding the agency of the machine listening process. I believe
that if we are to understand the agency of a distributed system of forces — a
technological object such as an algorithm for instance being a network of factors,
including technical and social — then the framework of emergent and dynamical
systems is necessary.

Second, I find a concept from statistical modeling to be a useful metaphor
for explaining my compositional approach, including the decisions that I make
and how. I like to think of machine listening algorithms as a generative model. In
contrast with other kinds of models that are only capable of describing phenomena,
a generative model can be used to generate new instances of a phenomena, because
they learn such rich representations of the phenomena they model. Extending this
concept as a metaphor, I frame machine listening algorithms as generative models,
and liken composition to exploring the possibility space of a high-dimensional
parametric model. The metaphor of a generative model provides a way for me to
see a description of sound embedded within an analysis algorithms and connects to
Constructivist ideas of perception, which stress the extent to which our perception
is shaped by prior held mental frameworks.

Third, the recent proliferation of concern for algorithmic bias gave language,



concepts, and frameworks to my nascent intuitions that algorithms embody the
values of the communities that produce them. The concept of a positive feedback
loop is readily described in the literature to explain how self-reifying systems per-
petuate biases to the exclusion of other ideas. Academic writing and news articles
confirmed my suspicion that algorithms are commonly thought to be objective
and unbiased — machine learning algorithms in particular — a finding which fur-
ther amplified my sense that we need to better understand how bias is embedded
in algorithms. While the field of algorithmic bias contains many open questions,
most pressing among them are how to identify and ameliorate bias in autonomous
systems. While HVB may not provide practical solutions that translate to other
domains, I have come to think of it as a heuristic analysis of algorithmic bias,
a way of coming to access the values inherent in an algorithms through musical

interactions with them.

1.3 Related Work

George Lewis’ work provided an important context for my ideas, in particular his
1987 piece Voyager. Lewis argued that algorithms are not neutral but reflect the
values of the communities that produce them and furthermore that interaction
with algorithms reveals said values. At the time (and arguable still today) most
research and composition in computer music was produced by communities that
were almost entirely all male and all white and dominated by trans European mu-
sical ideas. In response, Lewis designed Voyager, an interactive and spontaneous
music system with a decidedly African American provenance, structuring the sys-
tem around Jeff Donaldson idea of multidominance. In the context of Lewis’ idea

of interaction, I think of performing HVB music as a form of interaction that



provides access to the values embedded within the listening algorithms.

I see HVB as related to a larger trend of work currently undertaken by a
generation of young scholars who are exploring questions pertaining to the rela-
tionship between technology and culture, including how technologies embody and
exhibit agency: Asha Tamirisa’s work on how gender norms are encoded in elec-
tronic music technologies; Madison Heying’s study of Carla Scaletti, the Kyma
computer music language, and the community of users; Ezra Teboul’s alternative
history of electronic music examined at the component level of electrical design;
Nick Seaver’s ethnographic concept of the algorithm as well as his fieldwork with
researchers in computer audition and recommender systems; Ted Gordon’s study
of Bay Area experimentalism and the fluidity between technological paradigms,
composition, and lifestyle; and Josh Hudelson’s account of the cultural effects of
the concept of the “frequency domain” in signal processing. Through a variety of
approaches and methodologies, these studies all address questions pertaining to
how values are embedded within technologies and the implications, both cultural
and technological.

Ultimately, my means of addressing such questions draws neither from the
hard sciences, nor the social sciences, nor engineering, but is enacted through an
artistic practice of music composition and performance. I believe that musicality
is a sense unto itself, that through performance and listening we can come to
know aspects of the world that are not otherwise explicable. By translating the
artifacts of machine listening processes into music, my intuition was I would come
to understand aspects of such technologies. Translating this experience back into

words, however, is another challenge.



1.4 Contents of the Dissertation Essay

The purpose of this essay is to document the HVB project and to give context to
the ideas explored. I describe the compositional process, detailing the algorithms
used and why, and discuss the evolution of the ensemble as a collective entity.
I also discuss the recording and production of HVB’s 2016 album ORGANVM
PERCEPTYVS, as well as the public reception. I develop the concept of machine
listening as a generative model, describe HVB music as emergent, and in the final
chapter, I relate my experience to contemporary discussions of algorithmic bias.

In Chapter 2, I document the machine listening process and algorithms used.
My intention in this chapter is to articulate the musical ideas underlying the
various algorithms and my reasons for choosing them. I also identify the numerous
decisions that need to be made and parameters that need to be set in order to
produce a HVB transcription. Chapter 2 is the most technical chapter of the
dissertation. I address the details of digital signal processing a well as music
theory and music analysis.

In Chapter 3, I discuss the HVB ensemble. I describe the ensemble as a collec-
tive social structure and discuss how the group’s performance practice evolved in
response to the specific challenges of the music. I relate the ensemble’s approach
to traditions in contemporary music such as Complexity and computer-assisted
composition. Despite the affinities, the defining aspect of HVB’s performance
strategy arises from group dynamics within a collaborative social structure.

Chapter 4 focusses on the ideas that guide my decisions when making a
transcription. Having previously identified in Chapter 2 the various parameters
that need to be determined, in Chapter 4 I discuss what considerations influence

my decisions. I develop the metaphor of machine listening as generative model to



explain my compositional approach.

Chapter 5 documents the process of recording and releasing ORGANVM
PERCEPTYVS. I reflect on the public reception of the record, one reviewer in par-
ticular who found the record to be “conceptually fascinating” but simply “cannot
bear to listen to it.” I reflect on intellectual property and Artificial Intelligence,
briefly discussing the history of sampling and new challenges to intellectual prop-
erty posed by big data, automation, and learning algorithms.

I conclude in Chapter 6 by relating my experience to emerging concerns of
algorithmic bias and discrimination. While the field is in need of practical, scalable
solutions to identify and ameliorate bias in automated algorithms, it is admittedly
difficult to argue what answers art can provide. Drawing on George Lewis’ idea
that interacting with technologies reveals aspects of the communities that produce
them, I develop the idea of a heuristic analysis of algorithmic discrimination, and

reflect on the kinds of bias I find to be present in machine listening systems.
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Chapter 2

Algorithms Used

The Happy Valley Band transcription process has four stages: 1) source separa-
tion, extracting individual instruments from the original recording; 2) pitch and
rhythm analysis, analyzing the separated tracks for pitch and rhythm as well as
other features of musical performance such as dynamics or articulation; 3) mu-
sical notation, expressing the results of pitch and rhythm analysis in the form
of musical notation; and 4) performance, assembling an ensemble to perform the
computer generated transcriptions. Figure 2.1 diagrams the analysis stages of a
typical HVB transcription. For each step of the process, I developed custom soft-
ware, sometimes drawing from well-known algorithms and other times designing
tools from scratch. I developed my own software tools in part out of curiosity
— I wanted to understand each step of the process — but, more importantly,
because, in this project, composition and algorithm design are synonymous. The
choice of analysis algorithms and parameter selection are the channels that I use
to influence the resulting music.

This chapter focusses on my transcription process, the algorithms used, and

how I use them. I document and discuss the technologies that I developed for each

11



stage of the process, and I explain my motivations in the context of perception,
acoustics, sound analysis, and music theory. This chapter is also an effort to make
explicit the musical ideas, values, and preferences implicit within my transcription

system.
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2.1 Source Separation

Source separation is the task of identifying and extracting individual acoustic
sources from a mixture of sources. The human auditory perception exhibits a
remarkable capacity to recognize and isolate sound. Humans are able to hear,
within a complex sonic mixture, individual elements — instruments, voices, or
performers — and shift focus from one sound to another. How does human au-
ditory perception identify and separate sound and and how might a computer
algorithm mimic it?

In general, source separation is a very difficult problem. The difficulty is
due, in part, to the complexities of the physical properties of acoustic mixing.
Due to positive and destructive interference between sound waves, mixing is an
information losing process. An ideal source separation technique would know
how and when to put back missing or cancelled sound information. Furthermore,
the perceptual mechanisms involved in parsing multiple sound sources are also
complex, and, in many cases, what we hear is in part an illusion that is not
physically present. An instrument may sound drastically different solo than in
the mix. This happens when frequencies overlap and mask one another, and
is well-known to recording engineers, who intentionally remove frequencies that
would otherwise compete. How should we model the complexities of both the
physical and perceptual domains, as well as the prior knowledge and expectations
of listeners?

There are a variety of computational approaches to source separation. Some
model the human auditory system in terms of a set of fundamental perceptual rules
that hierarchically organize and group sound energy into sources. These gener-

ally fall under the category of Computational Auditory Scene Analysis (Wang

13



and Brown 2006) and are based on Albert Bregman’s pioneering work on Audi-
tory Scene Analysis (Bregman 1994), which draws on expert knowledge developed
over decades of empirical study. Other approaches, such as a more recent trend
in machine-learning based algorithms, rely less on expert knowledge, but rather
attempt to extrapolate and generalize patterns from data. As a result, these mod-
els need to be trained to produce results that correspond with human auditory
perception. In my workflow, I use a number of different tools to separate mix-
tures, often in combination, depending on the particular production qualities of
the acoustic mixture and of the instruments being separated, including spatial

filtering and spectrogram decomposition.

2.2 Source Separation by Spatial Filtering

Humans perceive sound along a number of spatial dimensions — horizontal loca-
tion (azimuth), vertical location (zenith), and depth, as well as acoustic qualities
such as reverberation (dry versus wet) and width (wide versus narrow). These
features, which function as perceptual cues to the nature of the acoustic envi-
ronment, are captured in acoustic recording or fabricated by mixing and sound
processing effects. Spatial filtering refers to a variety of techniques for filtering
sound along these spatial dimensions. In particular, the problem of localization
— estimating the location of a sound in space and isolating sounds at a given
spatial location — has received considerable attention from researchers in sound,
music, and acoustics as well as the sciences and engineering more broadly.

There exists a vast body of literature and diversity of approaches to sound
localization, with different applications, engineering constraints, and problem for-

mulations. Approaches tend to vary in terms of sound propagation model; audio

14



features and spatial cues (interaural time difference, interaural intensity differ-
ence, spectral notches, spectral cues); number of signals/microphones (stereo and
binaural versus array-based techniques); number of sources to localize (single ver-
sus multiple); and end results (location estimation, source identification, source
separation (Rascon and Meza 2017). Different applications require different anal-
ysis techniques, but among the most common is beamforming, which uses timing
difference between multiple microphones to localize and separate sounds.

In popular music production, however, the predominant localization cue is
most often intensity differences, not timing differences. This is due to the nature
of studio production techniques which generally rely on amplitude-based panning
to place close-miked monaural sources in a stereo mix. Even the multi-microphone
stereo recording techniques commonly employed in pop music production, such
as coincident and near-coincident pairs or spaced microphones, tend to carry
amplitude-based cues due to the use of directional microphones or microphone
placement in close proximity to sound sources. Phase-based panning is less com-
mon in popular music studio production, and, when present, phase-based location
cues, or time differences, often produce a sense of width or reverberation. These
are often introduced as signal processing effects rather than captured acoustically
via microphones.

My approach to spatial filtering relies on both interaural intensity differences
(IID) and interaural time differences (ITD). It is related to CASA systems that
separate mixtures according to sound localization, such as Richard Lyon’s binaural
separation model (Lyon 1983), which groups audio components by ITD estimates
from a cross-correlogram and was later extended by Markus Bodden (Bodden

1993) to include head-related transfer functions (HRTF) as well IID.
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2.2.1 =xtrk

xtrk is an audio plug-in that I built to implement spatial filtering in real-time.
xtrk visualizes the stereo image of an audio signal in a two-dimensional space
— frequency is plotted along the vertical axis against estimated stereo location
(azimuth) plotted along the horizontal axis — and allows the user to isolate or
mute regions of the stereo image by drawing rectangular outlines, as shown in Fig.
2.2. xtrk has two modes, one for IID or amplitude-based estimation and another
for I'TD or phase-based estimation.

xtrk performs Short-time Fourier Transforms (STFT) of the left and right
channels and estimates the perceived stereo location according to differences in
phase and amplitude for each STFT time-frequency bin. The user-selected regions
provide a set of frequency domain binary masks that are applied during iFFT
resynthesis to selectively pass or attenuate time-frequency bins, effectively muting
or soloing regions of the stereo image. In the following sections, I discuss the details

of the amplitude-based and a phase-based masking.

1. The UI design of xtrk is based on the Elevayta Extra Boy Pro plug-in by Paul R. Harvey.
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Figure 2.2: xtrk user interface.

2.2.2 Amplitude-based Masking

The perceived stereo location can be estimated from the amplitudes of the left and
right signals by solving amplitude-based panning equations. Panning a monarual
source is generally implemented by mixing more or less signal to one channel or
the other of a stereo mix. A source is panned to the right by attenuating the signal
mixed to the left channel and boosting the signal mixed to the right channel. How
much to attenuate or boost is determined by a pair of panning equations, which
represent the amplitudes of the left and right signals when panning a monaural
source into a two-channel stereo field.

Perhaps the simplest form of amplitude panning is linear panning, given by

17



the set of equations

wi(t) = a(t) - 0 (2.1)

where x(t) is the monaural source, x;(t) and z,(t) are the left and right signals,
and 6 € [0,1] is the pan position expressed between 0 and 1. When estimating
the perceived stereo location, the amplitudes of the left and right signals are
given, and the location is estimated by solving the system of panning equations

for unknowns 6 and x(t):

x(t) = x(t) + x.(t) (2.2)

(t)
w() + 2.(0)

Analyzing in the frequency domain, however, gives a separate panning es-
timate for each frequency component. Because 6 is a scaler, or DC source, the
frequency-domain representation of linear panning equations (2.1) simplifies to
multiplication by a constant 6 (rather than convolution) and is given by the set

of equations

[ Xi(w)] = [X(w)] - O(w) (2:3)

[ X (W) = [X(W)]- (1 = 6(w))

where X (w) is the Fourier Transform of the monaural source x(t) with frequency
denoted w, X;(w) and X, (w) are the Fourier Transforms of the left and right sig-

nals, |X;(w)| denotes the magnitude spectrum, and the scalar 6 is the panning
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position. The panning position @ is parametrized over frequency w having a sep-
arate panning position for each Fourier component w. The system of equations
(2.3) can be solved for 0 at each frequency component w, giving an estimate of
the panning position and amplitude of each Fourier component in terms of the

amplitudes of the left and right signals:

(X (W)] = [X(w)] + [ X ()] (2.4)

L IXw)
) = R+ %)

In many audio signals, X;(w) and X,(w) represent a mixture of multiple
sources panned in different locations, not a single source panned in one location.
Equations (2.4) give only one amplitude and pan estimate for each Fourier com-
ponent, which, in the case of sources overlapping in frequency, collapses multiple
panned sources to one location estimate. Each source, however, contributes to
O(w) at most proportional to its amplitude in that Fourier component, depend-
ing on phase alignment. For time-frequency components that are dominated by
amplitude of one source, the pan estimate #(w) will be a good approximation.
For time-frequency components that are not dominated by a single source — two
or more are relatively balanced sources, for instance — the single pan estimate
given by 0(w) will be a poor approximation. However, because the relative am-
plitudes of multiple sources often vary over time, an STFT frequency component
may be dominated by one source at one time moment and another source at an-
other time moment. As a result, with good temporal resolution (an STET hop of
1024 samples at a sample rate of 44100), enough time-frequency bins are generally
left unattenuated to maintain the perceptual integrity of the isolated source while

degrading beyond recognition the intelligibility of the background sources. As cur-
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rently implemented, xtrk does not group adjacent bins through time. The same
binary mask is applied each frame, unless the user manually adjusts the selection
regions. Grouping adjacent bins between hops could mitigate the effects of bins
abruptly turning on or off over time, and could be accomplished with smoothing

filters, hysteresis, or a Hidden Markov Model.

2.2.3 Phase-based Masking

As mentioned above, many common techniques for source localization and separa-
tion rely on the time difference(s) between two or more signals. In popular music,
however, time difference is more often a cue of stereo width and reverberation
rather than of precise spatial location — the result of stereo miking a single in-
strumental source or the application of delays and other time-based based effects.
With xtrk, I use time differences to filter sounds based on the phase coherence,
a measure of phase consistency across STFT frequency bins and through time,
rather than localize and separate sources based on stereo location in the azimuth.
The phase error between the left and right channels is measured at each STFT
time-frequency component, and components that fall outside a threshold of phase
coherence are attenuated. The phase error is computed by the difference between

phases of the corresponding left and right Fourier components:

Aphase(w) = X, (w) — LX) (w) (2.5)

where /X;(w) and /X, (w) are the phases of the left and right Fourier Transforms
at frequency component w.
Components with nonzero phase differences indicate the presence of noise,

reverberation, or stereo sources. Sounds with time-based effects, such as stereo
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delays, have nonzero phase error due to timing differences between the left and
right channels. The presence of noise or reverberation in a signal causes phase
differences to spread vertically across frequency bins, producing a wide phase por-
trait across the frequency spectrum. Limiting the phase coherence can effectively
separate sounds with wide versus narrow phase portraits, isolating reverberant or
stereo sources from a mix.

The rhythm guitar in Madonna’s recording of Like a Prayer, for instance, has
an extremely wide stereo image in the mix. The guitar is heard from both the far
left and far right sides of the mix, due to a time delay between the two signals —
likely the result of a stereo delay effect, stereo miking, or double tracking. The
guitar is perceived as spread across the stereo field, rather than localized to a
single point, and can be isolated by using phase coherence to filter narrow from
wide phase portraits. Similarly, I use phase coherence in Black Sabbath’s War
Pigs to help isolate the singing voice from the ringing cymbals. The voice, which
is a monoaural signal, has a tight phase portrait, where as the drums, recorded
using stereo multi-microphone techniques, has wider phase errors, especially in
the cymbals.

As with amplitude-based masking, in the presence of multiple sources that
overlap in frequency, Aphase(w) gives only one phase estimate per frequency
component, collapsing multiple sources to a single value. Similarly, since sources
contribute to phase proportional to their relative amplitudes, frequency compo-
nents that are dominated by a single source will give good estimates, and often
applying the mask through time is sufficient to degrade the background sources

beyond recognition while maintaining intelligibility of the intended source.
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2.2.4 Related Work

My phase-based filtering approach is related to the use of the Generalized Correla-
tion Coefficient (GCC) (Knapp and Carter 1976) and frequency domain masking
approaches in beamforming. One of the difficulties of beamforming is estimating
of the Time Difference of Arrival (TDOA) between microphone signals of the in-
tended source. TDOA is usually estimated using a measure of cross correlation,
such as the Pearson Correlation Coefficient, although this suffers from distortions
due to noise, reverberation, and the presence of multiple sources. The Generalized
Correlation Coefficient is a frequency domain extension that mitigates these errors
by weighting different frequency regions more or less heavily. The GCC-Phat, in
particular, normalizes out amplitude information, leaving only phase information,

as given by the equation

@)X, ()
X)X, ()]

GCC-PHAT(w) (2.6)

where X, (w)* denotes the complex conjugate. The denominator normalizes out
the magnitude information, leaving just the phase difference for each Fourier com-
ponent. A number of authors have proposed frequency domain masking (see D.
Wang 2005 for a discussion), and Arabi and Shi (Aarabi and Shi 2004) in par-
ticular, derive, from the GCC-Phat, a similar phase-based masking technique of

punishing STFT time-frequency bins based on the phase error.

2.2.5 Discussion

I use spatial filtering to separate sounds that can be isolated according to stereo
location or by spatial features such as width or reverberation. Spatial filtering can

be very effective because mix engineers tend to place instruments that have similar
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frequency profiles in different spatial locations to increase mix clarity, or use spatial
effects such as reverb and delay to give instruments unique spatial footprints.
Spatial filtering tends to work best on older mixes, dating from the 1960s and
1970s, when hard panning was popular. Most mixes, especially more recently,
feature sounds that overlap in both frequency and spatial location, requiring more

sophisticated approaches to source separation.

2.3 Source Separation by Probabilistic Latent
Component Analysis

For mixtures that are more complex, containing sources overlapping in both fre-
quency and spatial location, I use a spectrogram decomposition technique, Prob-
abilistic Latent Component Analysis (PLCA) (Smaragdis 2007). PLCA decom-
poses the short-time magnitude spectrum into a set of basis functions and time
activations. The basis functions represent the spectra of individual sources in the
mixture and the corresponding time activations represent the temporal locations
and amplitudes of their occurrences over time. The basis functions recombine
according to the temporal locations and amplitudes of the activation weights to
reconstruct an approximate of the original spectrogram.

PLCA is a form of matrix factorization. The magnitude spectrum is rep-
resented as a matrix S and expressed as the product of two lower dimensional

madtrices

S~W-H (2.7)

where the columns of W represent spectral basis functions and the rows of H

represent the corresponding activations of each basis function over time.
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Many algorithms have been used to find the bases W and activations H, and
all produce different perceptual results due to the variety mathematical constraints
assumed. Bases found with Principal Component Analysis (PCA), for instance,
generally do not exhibit substantial separation because the algorithm does not im-
pose perceptually informed constraints. Independent Component Analysis (ICA),
enforces statistical independence between components, producing basis functions
that are more perceptually distinct. The assumption of statistical independence,
however, is often too strong to model acoustic mixtures, and Sparse Component
Analysis (SCA) instead finds good separation by enforcing sparsity — commonly
measured using the L0 norm which counts the number of zero or near zero en-
tries in the basis vector. PCA, ICA, and SCA, however, all allow for negative
values, which in the case of magnitude spectra, are not perceptually meaningful
and lead to noise and other artifacts. Non-negative Matrix Factorization (NMF')
improves upon this by restricting basis functions to positive values only, giving a
more acoustically and perceptually meaningful separation.

PLCA formulates the spectrogram decomposition problem in a probabilistic
framework, treating the magnitude spectra as a distribution or histogram across
the dimensions of frequency and time. In addition to enforcing positivity, this
probabilistic formulation allows for extensions to learning frameworks, providing
for musically, acoustically, and perceptually meaningful constraints and transfor-
mations, such as sparsity, and transpositional invariances in both the dimensions
of frequency and time.

PLCA is an example of a recent trend of machine-learning approaches to
sources separation, which parallels a rise more generally of machine-learning ap-
plications in artificial intelligence. Earlier techniques, such as Computational

Auditory Scene Analysis (CASA), a general category of approaches to source sep-
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aration that were previously popular, identify basic perceptual mechanisms of
the human auditory system that operate to form high level representations of
the world. Grounded in physiology, perception, and empirical study, CASA sys-
tems are designed to model the perpetual rules and mechanisms of the human
auditory system that govern how we hierarchically organize auditory phenomena.
Machine-learning based approaches, however, are motivated by the assumption
that the laws, both perceptual and physical, that govern acoustic mixing and per-
ception can be extrapolated from example data. As such, this knowledge does
not need to be explicitly programmed into a source separation algorithm but can
be learned. Importantly, machine-learning techniques, such as PLCA, need to be

trained to produce results that correspond with human perception.

2.3.1 The PLCA Model

PLCA models the magnitude spectrogram as a probability distribution, or his-
togram. The magnitude spectrogram S is interpreted as a two-dimensional prob-
ability distribution P(f,t) and expressed as the product of its two marginal dis-
tributions. The marginals, one over frequency P(f) and the other over time P(t),
provide the basis functions W and activations functions H of the spectrogram de-
composition. They are computed by integrating out (or summing over) the other

dimension:

P(f):/P(f,t) dt and P(t):/P(f,t)df (2.8)

For one source, the marginals are equivalent to the power spectrum and amplitude
envelope of the original mixture signal.
While a single pair of time and frequency marginals are not a particularly

meaningful decomposition for the purposes of source separation, multiple pairs of
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time and frequency marginals can be extracted by introducing a latent variable
z. The latent variable model represents P(x) as the sum of multiple component
distributions, indexed by the value of the latent variable z. Each component
distribution is similarly expressed as the product of its two marginal distributions,
one over time and the other over frequency. This gives a set of frequency marginals,
or basis functions, for W and a set of time marginals, or activation functions, for
H. The general form of the latent variable model Probabilistic Latent Component
Analysis is

P =X P() L PGl (2.9)

where P(x) is an N-dimensional distribution of the random variable x = {x, 29, ..., 2x},

the latent variable z is a discrete variable taking on integer values {1,2,...,n}
up to the number of latent components n, and the marginals P(z;|z) Vj € N are
one-dimensional distributions across each of x’s dimensions.

PLCA is an optimization algorithm. PLCA finds the marginals P(z;|z) and
latent weights P(z) that best approximate P(x) using an Expectation-Maximization
algorithm (EM), an iterative method that alternatives between expectation (E)
and maximization (M) steps. In the expectation step, the relative contribution
of each value of the latent variable z is estimated, normalized by the sum total

contribution over all values of z:

P(2) ITjL, P(xj]2)

=1

~ YL PO, Play]2))

R(x, 2) (2.10)

This gives a collection of time-frequency distributions in which the value at each
time-frequency location is the relative amount of observed energy contributed by
that component distribution.

In the maximization step, the marginals P(xz;|z) and latent variable distri-

26



bution P(z) are reestimated to maximize the contribution weightings found in
the expectation step. This is done by multiplying the observed distribution P(x)
by the relative contributions R(x, z), giving the amount of observed energy con-
tributed by each value of z. The latent distribution P(z) is reestimated to be the
total amount of observed energy contributed, computed by integrating across all
dimensions, and the marginals P(x;|z) are reestimated by integrating over all but

the desired dimension:

P(z) = / P(x)R(x, 2) dx (2.11)
P(z;]2) = f"‘fp(;zf)(x’ D e N2 (2.12)

This has the effect of updating each of the latent marginal P(z;|2) to account for
an amount of P(x) relative to the marginal’s prior contribution. The E and M
steps are successively repeated over and over until either reaching a convergence
thresholds or exhausting a given number of iterations.

Applied to magnitude spectra, x is a two-dimensional distribution, x; across
frequency and o across time. The marginals P(x1|z) and P(xs|z) are a collec-
tion of multiple frequency distributions and time distributions, corresponding to
different values of the latent variable z. The multiple frequency and time distribu-
tions provide the basis and activation functions of the spectrogram decomposition.
Effectively, PLCA finds a set of spectral kernels that reoccur through time to con-
struct P(x).

Because PLCA is a matrix factorization technique, the model can be applied
to any positively valued matrix, regardless of what spectral transform the data
represents. STFT spectrum, Constant-Q spectrum, and Mel-Frequency spectrum
are all commonly used. However, since PLCA operates only on the magnitude

spectra, discarding phase and phase delta information, the model does not account
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for destructive interference in mixing, a limitation which leads to analysis and re-

synthesis artifacts.

2.3.2 Application to Musical Source Separation

PLCA can be used for musical source separation in a number of different ways, in-
cluding unsupervised, supervised, and semi-supervised learning. In unsupervised
learning, none of the sources are known in advance, and the goal is usually to
extract basis functions that match each of the sources. As with NMF, unsuper-
vised separation can be successful, but PLCA parameters, such as the number
of components and sparsity, must be chosen carefully to match the sources. In
supervised learning, all of the sources are known in advance, and basis functions
are derived from tagged examples rather than from the mixture itself. During the
training phase, basis functions are learned from isolated audio clips of the known
sources. The learned basis functions are then used to decompose, or fit, the mix-
ture, giving new activation functions that reconstruct the mixture according to
the learned basis functions. Multiplying the pre-learned basis functions by the
new activations resynthesizes each source component.

Generally, I learn multiple basis functions per source, anywhere from 20 — 80
components each. Not much audio is necessary for training. A few seconds or even
less can be effective, depending on the amount of variation of each source in the
mixture and in the training audio. Supervised learning is based on the assumption
that learned basis functions can adequately describe new instance of sound from
that source and its success depends on the amount of variation and extent to which
the model is required to generalize. Too few components and the model will not
generalize and account for variation in a source; too many components and the

learned basis functions will be too fine, such that components of one source may
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easily fit another source, causing poor separation.

Most often, I use PLCA in a semi-supervised context, in which one or more
sources are known in advance, but others are unknown. The unknown source may
represent a single instrument (such as a voice or instrument) or an entire ensemble
of sources (such as the entire band minus the voice). The target source to isolate
may be the known source, unknown source, or both. I learn multiple sets of basis
functions, one set for each known source and another set for the unknown source.
The known sets are learned during training phase but kept fixed during fitting.
The unknown set is learned during fitting.

Figure 2.3 shows a mixture of two sources, voice and piano, from Neil Young’s
recording of After the Gold Rush. The first half (segment 1) of the clip contains
piano solo, and the second half (segment 2) contains a mixture of piano and voice.
[ first learn basis functions for the piano by training on segment 1 (outlined in
red), and then fit the entire clip (segments 1 and 2 together) using the piano basis
functions together with new, untrained basis functions. The piano bases are held
constant (not updated), since they should do a good job describing the piano, and
the untrained bases are updated to describe the remaining source, the voice. The
piano is reconstructed using the piano components, and the voice is reconstructed
using voice components. Spectrograms are shown in (c) and inverted back to time
domain waveforms. The separated components are overlaid in (d), illustrating
that PLCA achieves very good separation, about 20dB between the desired source
and background in each reconstruction, even though the sources overlap in time,
frequency, and stereo location.

[ use two components for the piano, and six for the voice. The basis functions
represent spectral components of each source. If too few piano components are

used, the basis functions will be too constrained to described the variety of piano

29



Frequency

3
H
g
H
-2

Components (W)

Frequency

(a) Mix with training region highlighted in red

Activations (H)
+0dB

0032
0028
-16 dB
0.024
24 dB
3248 © 0.020
9]
5
40ds 0.016
£
-48 dB
8 0012
-56 dB
0.008
-64 dB
. 0.004
- -80 dB - 0.000
piano voice Time

(b) Decomposition into basis functions and activations

(c) Reconstructed components

i bt e st

(d) Reconstructed component waveforms overlay

Figure 2.3: PLCA After the Gold Rush voice and piano separation.
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sound in the mixture. As a result, some piano sound will be accounted for by
the voice components instead, causing piano to bleed into the voice. If too many
components are used, the basis functions will be too general, or too fine, and some
piano basis functions will fit aspects of the voice, causing voice to bleed into the

piano reconstruction as well as producing spectral holes in the isolated voice.

2.3.3 Discussion

To achieve good separation, there are a number of analysis parameters that need
to be tuned. STF'T parameters — primarily hop size, window size, and FFT size
— must be selected appropriately to capture relevant spectral features. There
must be sufficient temporal and frequency resolution to represent distinct sources
as distinct spectral features, otherwise the spectrogram cannot be decomposed
into separate sources. Good resolution is generally preferred, although coarse
time resolution can smooth percussive transients and coarse frequency resolution
can help eliminate low frequency bleed. With PLCA, the number of components
per each source is critical, and the appropriate number depends largely on the
so