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ABSTRACT OF THE DISSERTATION

Analysis of High-Dimensional Time Series
with Applications on Brain Signals

By

Yuxiao Wang

Doctor of Philosophy in Statistics

University of California, Irvine, 2017

Professor Hernando Ombao, Chair

Neuronal populations behave in a coordinated manner both during resting-state and while

executing tasks such as learning and memory retention. One of the major challenges to

analyzing brain signals such as electroencephalograms (EEGs) and functional magnetic res-

onance imaging (fMRI)is high dimensionality. There can be hundreds of channels in a typical

EEG recording, and the number of voxels in a fMRI recording can be hundreds of thousands.

We developed computationally efficient and theoretically justified tools for analyzing high

dimensional brain signals. Our approach is to extract the optimal lower dimensional represen-

tations for each brain region and then characterize and estimate connectivity between regions

through these factors. This approach is motivated by the fact that electroencephalograms

(EEGs) from many channels within each region exhibit a high degree of multicollinearity

and synchrony thereby suggesting that it would be sensible to extract summary factors for

each region. We focus on two types of linear filters. These methods were compared through

simulations under different conditions and the results provide insights on advantages and

limitations of each. We also performed exploratory analysis of resting state EEG data and

fMRI data. The spectral properties of the factors were estimated and connectivity between

regions via the factors using coherence measures were computed. We implemented these

methods in a Matlab toolbox XHiDiTS. The toolbox was utilized to investigate consistency
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of these factors across all epochs during the entire resting-state period. In order to quantify

the effective connectivity among sources in a densely voxelated (high-dimensional) corti-

cal surface, we developed the source-space factor vector autoregressive (VAR) model. The

first step in our procedure is to estimate cortical activity from multichannel electroencephalo-

grams (EEG) using anatomically constrained brain imaging methods. Following parcellation

of the cortical surface into disjoint regions of interest (ROIs), latent factors within each ROI

are computed using principal component analysis. These factors are ROI specific low-rank

approximations (or representations) which allow for efficient estimation of connectivity in

the high-dimensional cortical source space. The second step is to model effective connectiv-

ity between ROIs by fitting a VAR model jointly on all the latent processes. The different

cortical sources within a ROI may share common factors as each source is a mixture of these

VAR factors. From this commonality we derive the connectivity between the sources. Mea-

sures of cortical connectivity, in particular partial directed coherence (PDC), are formulated

using the VAR parameters. We illustrate the proposed model to investigate connectivity

and interactions between cortical ROIs during resting state.
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Chapter 1

Introduction

1.1 Background on Electroencephalography (EEG)

Electroencephalography (EEG) is the recordings of the electrical signal on the scalp. It

measures the fluctuation of voltages due to the neuron activities (Niedermeyer and da Silva,

2005). The first EEG recording on human was performed by Hans Berger in 1924 (Berger,

1929; Haas, 2003). In general, EEG waveforms are classified using their amplitude, shape

and frequency. One classification of EEG waveforms is based on the frequency range where

each frequency band of EEG is closely related to brain activity. The frequency bands are

delta (less than 4 Hz), theta (4-8 Hz), beta (16-32 Hz) and Gamma (32-50 Hz) bands. In

cognitive studies, EEGs have been widely used because of its advantages of high temporal

resolution (in milli-second), non-invasiveness and low cost. It is also of interest to study the

properties of brain activities from EEG data. The remainder of this introduction chapter

overviews (1.) modeling EEG sources; (2.) the approaches for EEG source reconstruction;

and (3.) brain connectivity measures. Part of this chapter has already been published in the

book chapter Wang et al. (2016a).
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1.1.1 EEG Sources

EEG signals are recordings on the scalp which means that EEGs are not direct measurements

of neuronal activities on cortex. In order to model the cortical source activity from EEG

recordings, two types of models have been developed. One class of models depends on the

physical head forward model which assumes the EEG sources are dipole currents that are

located within brain region. The other class of models assumes that the sources represent

independent brain networks, which might be either localized or distributed.

Dipole Source Model

According to (Srinivasan and Deng, 2012), the potential at location r in the brain or on the

scalp surface can be expressed as the integral of the contributions of sources

X(r, t) =

∫
B

GH(r, r′)P (r′, t)dV (r′) (1.1.1)

where P (r′, t) represents the dipole moment per unit volume at location r′, where r′ ranges

over the whole brain region B; GH(r, r′) is Green’s function which depends on the properties

of the volume conductor and the locations of source r′ and measurement location r. In order

to formulate the EEG inverse problem in a fundamental point of view, according to (Nunez

and Srinivasan, 2006a), the entire brain volume can be parceled into N voxels, each of volume

∆V , each having a strength pn(rn, t) = P (rn, t)∆V . The potential given by Equation 1.1.1

can be written as a finite sum over contributions from N voxels:

X(rk, t) =
N∑
n=1

Gn(rk, rn)pn(rn, t) . (1.1.2)

According to (Baillet et al., 2001a), the algebraic formulation of EEG measurement at lo-

cation r can be written as X(r) =
∑

i a(r, rqi ,Θqi)qi, where a(r, rq,Θq) is formed as the

2



solution to electric forward problem for a dipole with unit amplitude and orientation Θ. For

the simultaneous activation of N dipoles located at rqn , the EEG recording for M locations

can be written as X(t) = AZ(t), where X(t) = [X(r1, t), ..., X(rM , t)]
′ is EEG measurement

for M locations at time t; Amn = a(rm, rqnΘqn) is the gain matrix relating the dipoles to

the sensors, and Z(t) = [q1(t), ..., qN(t)]′ is the source amplitudes. Each column of A is the

forward field of the current dipole, sampled as M discrete locations of the EEG sensors.

Independent Source Model

Section 1.1.1 models the EEG signals as the potential generated by dipole currents within

brain regions due to neuronal activities, where the sources might be correlated. An alterna-

tive way of modeling EEG signals is to treat it to be the output of a number of statistically

independent potential-generating systems. The systems are spatially fixed but can be either

spatially restricted or widely distributed, according to (Makeig et al., 1996a). The indepen-

dent systems can be interpreted as independent brain activity networks. Figure 1.1 shows

𝑋1(𝑡) 

𝑋3(𝑡) 𝑋2(𝑡) 

𝑋4(𝑡) 

𝑍1 𝑡  𝑍2(𝑡) 

𝐴11 

𝐴22 

𝐴42 𝐴32 

Figure 1.1: Graphical representation of latent source model.
The directions of the arrows represent dependence relationship.

a graphical illustration of the mixing structure for the signals of two independent sources

(Z1 and Z2) and four electrodes (X1, . . . , X4). The element Amn in mixing matrix A can

be interpreted as the loading of n-th source signal Zn on the EEG signal at m-th electrode

3



(Xm). If Amn = 0, for some m and n, we conclude that Zn(t) has no contribution to EEG

signal Xm(t), since the loading for source Zn(t) is zero.

1.1.2 Formulation of EEG Source Models

According to Section 1.1.1 and 1.1.1, a general model of EEG data can be written as

X(t) = AZ(t) + N(t) (1.1.3)

where X(t) ∈ RM is the recorded EEG signal forM electrodes at time t; Z(t) ∈ RN represents

the activity of N source signal at time t due to brain activities and is not directly observed;

A ∈ RM×N is a matrix representing instantaneous source mixing. The noise term N(t) ∈ RM

represents either measurement error or machine error at time t.

Let X = [X(1), . . . ,X(T )], Z = [Z(1), . . . ,Z(T )], and N = [N(1), . . . ,N(T )], then we have

X ∈ RM×T , Z ∈ RN×T and N ∈ RN×T . The model in Equation 1.1.3 can be written in the

equivalent form X = AZ + N.

1.1.3 Inverse Source Reconstruction

According to (Baillet et al., 2001a), the lead field matrix A and the source activity Z(t) can

be estimated based on the physical modeling of the head. The lead field matrix A can be

estimated from a spherical head model or a realistic head model. The solution for spherical

head model can be computed analytically (Rush and Driscoll, 1969) however the solution for

a realistic head model can only be computed numerically. The most popular approaches to

estimating the lead field matrix A are the BEM (boundary element method (Hamalainen and

Sarvas, 1989)) and FEM (finite element method (Yan et al., 1991)). The only thing unknown

in inverse source reconstruction is the dipole activity qn, n = 1, 2, ..., N . In general, there

4



are two approaches to estimation of EEG sources: parametric and imaging methods.

Parametric Methods

Parametric methods typically assume the sources can be characterized by a few equivalent

current dipoles sources with unknown locations. The dipole moments are estimated using

non-linear numerical methods including simplex search, genetic algorithm, and simulated

annealing (Uutela et al., 1998). In the presence of noise, the forward model at time can be

written as

X(t) = AZ(t) + N(t) (1.1.4)

where X(t) = [X1(t), . . . , XM(t)]′ is EEG measurement at M locations {r1, . . . , rM}; Amn =

a(rm, rqnΘm) is the gain matrix relating the dipoles to the sensors, Z(t) = [q1(t), . . . , qN(t)]′

is the source amplitudes, N(t) ∈ RM is the measurement and machine noise.

Let X = [X(1), . . . ,X(T )], Z = [Z(1), . . . ,Z(T )], and N = [N(1), . . . ,N(T )], the model in

Equation 1.1.4 can be written in the following equivalent form X = AZ + N. The goal

of dipole fits is to determine best set {ri,Θi} of number N sources and model parameters,

and sources Z that best describe the data. Least square estimation (LSE) is one of the

approaches. The LSE approach minimized the cost function in the form

JLS(rqi ,Θi,Z) = ‖X− A({rqi ,Θi})Z‖2
F (1.1.5)

where the the subscript F indicates the Frobenius norm, that is

‖X− A({rqi ,Θi})Z‖2
F = Tr[(X− A({rqi ,Θi})Z)(X− A({rqi ,Θi})Z)T ]
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The cost function 1.1.5 can be minimized by exhaustive scanning through the whole solution

space. However it is too computational expensive, even for small values of N . Some non-

linear optimization based on directed search algorithms have been developed, which are more

efficient than the exhaustive searching algorithm. The non-linear optimization algorithms

also suffer from the problem of easily being trapped in local optima.

One disadvantage of the dipole fits model is that the correct number of dipole sources N

is unknown in priori and it has to be estimated. Approaches to estimating the number of

sources include stepwise selection, multiple signal classification (MUSIC), principal compo-

nent analysis (PCA), independent component analysis (ICA), second order blind identifica-

tion (SOBI).

Imaging Methods

Imaging methods assume that the primary sources are intracellular currents in dendritic

trunks of the pyramidal neuron in cerebral cortex. (Teplan, 2002; Baillet et al., 2001a).

It performs inference on dipole moments at a fixed set of locations within the brain and

therefore the inverse problem in this case is linear. Number of sensors is in the order 102,

while number of unknowns source parameters are in the order of 104.

Distributed source models reconstruct the electric activity at each point of the grid of solution

space (3D for brain activity, 2D for cortical activity). It makes assumption on the number

of dipoles in the brain. It overcomes the problem with the diople model described in Section

1.1.3 that the exact number of dipoles could not been determined a priori. However, in the

distributed source models, the number of source points N is much greater than the number

of EEG electrodes M , which makes the source inversion problem ill-conditioned. In order

to solve the ill-conditioned inversion problem, regularization must be applied. For example,

constraints that are based on biophysical knowledge or other imaging techniques. The basic
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assumptions for distributed source models are: (1.) Each point can be treated as a dipole

with fixed location, the only that varies is magnitude and orientation and (2.) the observed

EEG signals are linearly related to the source magnitude through a mixing matrix A.

In general, the approach for source imaging method minimizes a cost function that combines

both the estimation error and a penalty term

Ẑ = arg min
Z

‖X− AZ‖2
Q + f(Z) (1.1.6)

where the Q-norm in equation 1.1.6 is defined as follows

‖ X− AZ ‖2
Q= Tr[(X− AZ)TQ−1(X− AZ)],

with Q = E[N(t)N(t)T ] representing the variance-covariance matrix of the noise term N(t).

The penalty term f(Z) in equation 1.1.6 represents the a priori assumptions. Note that if

f(Z) can be written as f(Z) =
∑T

t=1 ft(Z(t)), then Equation 1.1.6 can be reformulated to

Ẑ = arg min
Z

T∑
t=1

[
(X(t)− AZ(t))TQ−1(X(t)− AZ(t)) + ft(Z(t))

]
(1.1.7)

Therefore for any given time t, the estimator of Z(t) can be constructed using

Ẑ(t) = arg min
Z(t)

[
(X(t)− AZ(t))TQ−1(X(t)− AZ(t)) + ft(Z(t))

]
(1.1.8)

Based on different assumptions on regularization condition, a few approaches have been

developed for cortical source imaging:

• Minimum norm (MN) method

The minimum norm estimator (Hämäläinen and Ilmoniemi, 1994a) minimizes the ob-
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jective function given by

‖ X− AZ‖2
F + λ‖Z‖2

F (1.1.9)

Equation 1.1.9 gives the minimum norm estimator (MNE) as Ẑ = (ATA+λIN)−1ATX

or Ẑ = AT (AAT + λIM)−1X.

A more general MNE model sets the penalty term in equation 1.1.6 to be f(Z) =

λ‖Z‖2
R, which means there’s no a priori information used, except that it assumes the

current distribution has small overall intensity (L2 penalty). The minimum norm

estimator for the sources, denoted by Ẑ can be computed as

Ẑ = arg min
Z

‖X− AZ‖2
Q + λ‖Z‖2

R (1.1.10)

where Q = Cov (N(t)) and R = Cov (Z(t)).

The minimum norm estimator can be expressed explicitly as

Ẑ = RAT (ARAT + λQ)−1X (1.1.11)

The minimum norm estimator (MNE) in favors weak and localized activation patterns.

That means, superficial solution points in a 3D brain is favored since there is less

activation needed to have similar impact on observations, comparing to some “deeper”

sources.

• Weighted minimum norm (WMN) method

In order to overcome the disadvantage of MN that it favors superficial sources, weighted

minimum norm (WMN) (Gorodnitsky et al., 1995) approaches have been developed

where different weighting strategies have been applied. The WMN estimator is com-
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puted as

Ẑ = arg min
Z

‖X− AZ‖2
Q + λ‖WZ‖2

F (1.1.12)

W can be determined in multiple ways. One possible choice for W ∈ RN is to set W

to be a diagonal matrix, where the diagonal elements are proportional to to the norm

of the columns of the mixing matrix A. That is

Wnn =

√√√√ M∑
m=1

(Amn)2.

• Laplacian weighted minimum norm (LORETA) method

LORETA method sets the penalty term in Equation 1.1.6 to be f(Z) = ‖DWZ‖2
F ,

where D ∈ RN is used to implement the discrete spatial Laplacian operator, W is a

diagonal matrix for the column normalization of A. The Laplacian matrix D can be

written as

Dij =
1

h2


−6 if‖ri − rj‖ = 0

1 if‖ri − rj‖ = h

0 otherwise

(1.1.13)

where h is the minimum inter-grid distance. The LORETA estimator for Z can be

obtained as

Ẑ = arg min
Z

‖X − AZ‖2
F + λ‖DWZ‖2

F (1.1.14)

LORETA in favors the solution with smooth spatial distribution, provided that it puts

penalty on spatial roughness, which is measured by the Laplacian of the weighted

sources. The assumption is related to the physiological in the sense that it assumes
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neighboring sources are correlated. It also need to be pointed out that solutions ob-

tained using LORETA are over-smoothed, in some situations.

• Local autoregressive average (LAURA) method

LAURA approach (de Peralta Menendez et al., 2001) integrates the laws of physics in

terms of a local spatial-temporal average with coefficients depending on the distance

between solution points. LAURA incorporate biophysical laws by assuming that the

electromagnetic activity follows Maxwell’s law. The solution is obtained by

Ẑ = arg min
Z

‖X− AZ‖2
F + λ‖WBZ‖2

F (1.1.15)

where W is defined similarly as the diagonal matrix whose diagonal elements are the

column norm of A. The diagonal elements of B are defined as Bii = N
Ni

∑
k∈Vi

d−eiki , and

the off-diagonal elements are zeros except for k ∈ Vi, where the value is defined as

Bik = −d−eiki , where ei = 2, meaning that the fields are decreasing with the square of

the inverse distance, dik is the Euclidean distance between point i and k, Vi represents

the neighbor points of i, and Ni is the size of set Vi.

• Minimum current (MC) method

Minimum current (MC) method applies L1 norm penalty on source to obtain sparse

solution (Matsuura and Okabe, 1995) (Uutela et al., 1999). In MC method, the penalty

term in Equation 1.1.6 is defined as f(Z(t)) = ‖Z(t)‖1. For a given time t, the minimum

current estimator for Z(t) can be obtained using

Ẑ(t) = arg min
Z

(t) = ‖X(t)− AZ(t)‖2 + λ‖Z(t)‖1 (1.1.16)

The source reconstruction methods mentioned above are summarized in table 1.1.
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Methods
Parameter and

Signals
Dimensions Objective function to be minimized Remarks

Dipole fits rn, φn, Zn N < M ‖X−
∑N

n=1 a(rn, φn)Zn‖2F estimate location and strength

LORETA Z N > M ‖X− AZ‖2F + λ‖DWZ‖2F smooth solution

MN Z N > M ‖X− AZ‖2Q + λ‖Z‖2R prefer surface/weak source

WMN Z N > M ‖X− AZ‖2Q + λ‖WZ‖2F weighted according to depth

MC Z(t) N > M ‖X(t)− AZ(t)‖2Q + λ‖WZ(t)‖1 sparse solution

LAURA Z N > M ‖X− AZ‖2F + λ‖WBZ‖2F follow Maxwells’ law

Table 1.1: Summary of Source Reconstruction Methods

1.1.4 Blind Source Separation

Generally, the source Z(t) and mixing matrix A are unknown in the model described in

Section 1.1.2. Various methods have been developed to estimate the mixing matrix A and

reconstruct the unknown source Z(t). Most commonly used methods in reconstructing the

unknown sources are listed discussed below.

The inverse source reconstruction methods, as discussed in Section 1.1.3, are capable of

estimating both the source activities and source locations. However, they rely on accurate

forward individual head models and exact positions of electrodes. Inaccurate forward model

may lead to inaccurate estimate. An alternative approach that does not depend on the head

forward model estimates the mixing matrix A and source Z(t) in a completely data driven

way. This class of approaches is referred to as blind source separation (BSS), which can be

performed via a few approaches, including PCA, ICA and SOBI.

• Principal Component Analysis (PCA)

According to (Jung et al., 2000), the mixing matrix A and source Z can be estimated

through eigenvalue decomposition. Let Σ ∈ RM×M be the covariance matrix of X(t),

the PCA approach reconstructs the source by first performing eigen decomposition of
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Σ:

Σ = WDW T (1.1.17)

where W ∈M×M is unitary matrix, D ∈ RM×M is a diagonal matrix, with diagonal

elements d1 ≥ d2 ≥, ..., ≥ dM , which are eigen values of Σ. The m-th column of W is

the eigven vector of Σ corresponding to eigen value dm. Let WN ∈ RM×N be the matrix

that is constructed by the first N columns of W , the reconstructed source Ẑ(t) can be

obtained using Ẑ(t) = W T
NX(t). The mixing matrix A can be estimated using Â = WN .

The covariance matrix Σ in Equation 1.1.17 might be unknown, therefore we may use

its estimate. An estimate of Σ can be computed as Σ̂ = 1
T

T∑
t=1

(X(t) − µ̂)(X(t) − µ̂)T ,

where µ̂ = 1
T

T∑
t=1

X(t).

PCA looks for orthogonal directions along which the data has largest variance. The

estimated sources are uncorrelated (second order independent) and orthogonal. It is

reasonable to assume that the EEG sources are uncorrelated if the source are origi-

nally generated in different parts of the brain, however it is not reasonable in general

to assume the EEG sources are spatially orthogonal. For this reason, PCA filtered

signals are not generally interpreted as source signals. PCA is more commonly used in

dimensionality reduction by projecting the signals onto a space with lower dimension.

(Mørup et al., 2008) expanded the idea of SVD to higher order (tensor decomposition)

so that it can handle multi-channel EEG data that is recorded for multiple trials.

• Independent Component Analysis (ICA)

PCA de-correlate the data by diagonalizing empirical covariance matrix. For multivari-

ate Gaussian, it is equivalent to removing the dependence between sources. However,

for non-Gaussian signals, de-correlation does not necessarily imply removing depen-

dency. (Makeig et al., 1996a) described an approach of using ICA to recover the source

12



signals in EEG records, and it is the first publication on ICA applied to EEG data.

It recovers the source signal by minimizing the mutual information between source

factors. ICA methods using mutual information depends on all higher-order statistics,

comparing to PCA methods, which only depends on second order statistics. (Cardoso,

1999) describes one approach that recovers the independent components by Jacobi

method of diagonalization. The measures of independence are based on fourth-order

correlations between the observed signals.

According to (Makeig et al., 1996a), the ideal conditions for using ICA as a source

separation technique include (1) sources are independent (2) propagation of sources

to electrodes is negligible (3) observed EEG signals are linear mixing of sources. ICA

also has assumption of non-Gaussianity of the source distributions. In practice, ICA

should be restricted to data sets where the components show a significant amount of

non-Gaussianity.

• Second Order Blind Identification (SOBI)

An approach named Second Order Blind Identification (SOBI) has been developed

in (Belouchrani et al., 1997). SOBI performs joint diagonalization of more than two

cross-correlation matrices related to multiple time lags {τ1, τ2, ..., τp }. The algorithm

reconstruct A and Z by minimizing the cost function, which is the sum of the squares

of off-diagonal elements of the transformed matrices (cross-covariance matrices for

normalized signal). The assumption of SOBI requires that the source signals Z(t)

is a stationary multivariate process that satisfies

E[Z(t)Z(t+ τ)T ] = diag[ρ1(τ), ..., ρN(τ)]

The advantage of using SOBI in EEG source reconstruction includes (1) it relies only

on second order statistics (2) it allows separation of Gaussian sources and (3) it is

more robust since it uses multiple cross-covariance matrices. The accuracy of SOBI
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is affected by the overlapping of the spectra of sources. Large overlapping between

spectra of sources may lead to inaccurate estimate.

1.2 Modeling and Inference Connectivity

The term connectivity may refer to structural, functional and effective connectivity (Friston,

1994). Where the structural connectivity refers to the anatomical structure of the brain,

which can be studies via analysis of fMRI; the functional connectivity refers to undirected

temporal correlations between neurophysiological events, which can be studies based on

coherence or correlation; and the effective connectivity refers to the directed effects of one

neural activity over another. Approaches to characterizing effective connectivity include

Dynamic Causal Modeling (DCM)(Friston et al., 2003), Granger Causality Modeling (GCM)

(Granger, 1988), and Transfer Entropy (Schreiber, 2000) and etc.

1.2.1 Coherence

• Coherence between two univariate time series.

Coherence is the analog of cross-correlation in the frequency domain. Let X(t) ∈ R

and Y (t) ∈ R be two time series which have zero mean and are jointly stationary.

Then the cross-covariance between X and Y at lag h, denoted by γXY (h), can be

expressed as γXY (h) = E[X(t+ h)Y (t)]. The cross-spectrum SXY (ω) is the Fourier

transform of the cross-covariance γXY at frequency ω, which is in the form SXY (ω) =
∞∑

h=−∞
γXY (h) exp (−i2πωh), provided that

∑∞
h=−∞ |γXY (h)| <∞. Then the coherence

function is defined as

ρ2
XY (ω) =

|SXY (ω)|2

SXX(ω)SY Y (ω)
. (1.2.1)
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Coherence ρ2
XY (ω) ranges from 0 to 1. It measures the strength of correlation and the

phase consistency between X and Y at frequency ω.

• Coherence between multivariate time series: general coherence

The concept of coherence has been generalized so that it can be computed for two

multivariate time series. Let X(t) ∈ Rm, Y (t) ∈ Rn denote two weakly stationary

multivariate time series, where X(t) = [X1(t), . . . , Xm(t)]′, Y (t) = [Y1(t), . . . , Yn(t)]′,

t = 1, 2, ..., T . Let SXX(ω) ∈ Rm×m be the spectral density matrix forX(t) at frequency

ω, where the (i, j)-th element of SXX(ω) is defined as SXiXj
(ω). The spectral density

matrix of Y (t), denoted by SY Y (ω) ∈ Rn×n, is defined in a similar way. The cross

spectral matrix between X(t) and Y (t) at frequency ω is defined as SXY (ω) ∈ Rm×n,

where the (i, j)-th element of SXY (ω) equals to SXiYj(ω). According to (Pascual-

Marqui, 2007b), the general coherence between two random vectors X(t) and Y (t) at

frequency ω is defined as:

ρ2
G(ω) = 1−

det[SY Y |X(ω)]

det[SY Y (ω)]
(1.2.2)

where SY Y |X(ω) = SY Y (ω)− SY X(ω)SXX(ω)−1SXY (ω).

Remarks:

– For univariate X(t) ∈ R and Y (t) ∈ R, the general coherence given by Equation

1.2.2 will be equivalent to the coherence defined in Equation 1.2.1.

– When X(t) and Y (t) are uncorrelated then SY Y |X(ω) = SY Y (ω) and therefore

ρ2
G(ω) = 0.

1.2.2 Partial Coherence

• Partial coherence between two univariate time series

To obtain the direct (as opposed to indirect) dependence between two time series
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Y1(t) ∈ R and Y2(t) ∈ R, we need to remove the linear effect of all other time series

from each of Y1(t) and Y2(t). One way to measure this is via partial coherence.

To illustrate this concept, consider the multivariate time series Y (t) = [Y1(t), Y2(t), Y3(t)].

Define the spectral matrix to be

S(ω) =


SY1Y1(ω) SY1Y2(ω) SY1Y3(ω)

SY2Y1(ω) SY2Y2(ω) SY2Y3(ω)

SY3Y1(ω) SY3Y2(ω) SY3Y3(ω)

 . (1.2.3)

Define the matrix Γ(ω) to be Γ(ω) = −M (ω)H(ω)M(ω), where H(ω) = S−1(ω) and

M(ω) is a diagonal matrix whose elements are 1√
Hnn(ω)

. The partial coherency between

time series Y1 and Y2 at frequency ω is the (1, 2) element of the matrix Γ(ω) denoted

Γ12(ω). Partial coherence between Y1 and Y2 at frequency ω is λ12(ω) = |Γ12(ω)|2.

Partial coherence λ12(ω) ranges from 0 to 1. It measures the coherence between signals

X and Y after removing linear effect of Z.

• Partial coherence between multivariate time series: Block partial coherence

Consider multi-variate time series X(t), Y (t) and Z(t), according to (Nedungadi et al.,

2011), the block partial coherence at frequency ω between X and Y , conditional on Z

is defined as

C
(B)
XY |Z(ω) = 1−

det[S[X,Y ]|Z(ω)]

det[SXX|Z(ω)] det[SY Y |Z(ω)]

If X(t), Y (t) and Z(t) are all uni-variate time series, C
(B)
XY |Z(ω) is reduced to the partial

coherence for the uni-variate time series.
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1.2.3 Granger Causality

The concept of Granger causality (GC) was first proposed in (Granger, 1969a). The basic

idea of GC states that for random variable X(t) and Y (t) with t = {1, . . . , T}, we say X

“Granger-causes” (GC) Y if Y can be better predicted using the past value of both X and

Y than it can using the past observation of Y alone. According to (Granger, 1980) the

causality relationship are based on two principles: (1.) the cause must happen prior to to its

effect (2.) the cause must contain unique information for predicting future values of the effect.

The limitation of Granger causality includes: (1) It does not necessarily mean physiological

causality; (2) GC can only account for linear relationship; (3) GC relies on the stationarity

of the analyzed the signals. Nevertheless, we shall explore its utility in this study given that

it is widely used in neuroscience.

To illustrate the idea of Granger-causality, consider the following two auto-regressive models

X(t) =

p∑
k=1

ΦkX(t− k) + ε(t) (1.2.4)

X(t) =

p∑
k=1

Φ′kX(t− k) +

p∑
k=1

Ψ′kY (t− k) + ε′(t) (1.2.5)

If model 1.2.5 is significantly better than 1.2.4, that is

E
[ T∑
t=P+1

(X(t)−
p∑

k=1

ΦkX(t− k))2
]
> E

[ T∑
t=P+1

(X(t)−
p∑

k=1

Φ′kX(t− k)−
p∑

k=1

Ψ′kY (t− k))2
]

then we can conclude that Y Granger-causes (GC) X.
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1.2.4 Partial Directed Coherence (PDC)

Partial directed coherence (PDC) has been introduced in making inference on frequency

specific connectivity between signals(Baccalá and Sameshima, 2001a). It is a directed mea-

surement of connectivity and is based on the vector autoregressive model of the signals.

Partial directed coherence can be treated as frequency description of Granger-causality.

Let X(t) = [X1(t), . . . , XM(t)] be a stationary M dimensional time series with mean zero.

A vector autoregressive (VAR) model with order p for X(t) is given by

X(t) =

p∑
k=1

ΦkX(t− k) + E(t) (1.2.6)

where Φk ∈ RM×M is the coefficient matrix of the VAR model at lag k; E(t) ∈ RM is a

Gaussian white noise process with with zero mean and covariance matrix ΣE. The causality

of X(t) requires the coefficient matrices satisfy det(I −
p∑

k=1

Φkz
k) 6= 0 for all z ∈ C and

|z| ≤ 1.

Let Φ(ω) = I −
p∑

k=1

Φk exp(−i2πωk/Ωs) be the Fourier transform of Φk at frequency ω,

where Ωs represents the sampling frequency. Then the partial directed coherence π2
ij(ω) for

the VAR process defined in Equation 1.2.6 can be represented as

π2
ij(ω) =

|Φij(ω)|2
N∑
k=1

Φkj(ω)Φ∗kj(ω)

(1.2.7)

π2
ij(ω) provides a measure of the linear influence of Xj on Xi at frequency ω. The partial

directed coherence π2
ij(ω) takes values from interval [0, 1] and satisfies

∑
i π

2
ij(ω) = 1, which

means each time series has unit outflow.

The connectivity measures mentioned above are summarized in table 1.2.
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Approach Model Based Data Driven Functional Connectivity Effective Conenctivity

DCM X X

Fourier Coherence X X

Wavelet Coherence X X

Granger Causality X X X

PDC X X X

DTF X X X

Table 1.2: Summary of Connectivity Measures

1.3 Outlines

The remainder of this dissertation is organized as follows. Chapter 2 explores the approaches

for analyzing high-dimensional time series through low dimensional embeddings. Chapter

3 introduces the proposed source-space factor VAR model and its application on making

inference on cortical connectivity from EEG observations. The last chapter, Chapter 4

discusses the conclusions and future directions.
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Chapter 2

Time Series Low Dimensional

Embeddings

In this chapter, we develop computationally efficient and theoretically justified tools for an-

alyzing high dimensional brain signals. Our approach is to extract the optimal lower dimen-

sional representations for each brain region and then characterize and estimate connectivity

between regions through these factors. This approach is motivated by our observation that

electroencephalograms (EEGs) from many channels within each region exhibit a high degree

of multicollinearity and synchrony thereby suggesting that it would be sensible to extract

summary factors for each region. Here, the summary factors are actual solutions to squared

error reconstruction error. We focus on two special cases of linear auto encoder and de-

coder. The first characterizes the factors as instantaneous linear mixing of the observed

signals. In the second approach, the factors are convolutions of the observed signals (which

is more general than the first). We implemented these methods in a Matlab toolbox XHiD-

iTS (https://goo.gl/uXc8ei). These methods were compared through simulations under

different conditions and the results provide insights on advantages and limitations of each.

Finally, we performed exploratory analysis of resting state EEG data and fMRI data. The
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spectral properties of the factors were estimated and connectivity between regions via the

factors using coherence measures were computed. The toolbox was utilized to investigate

consistency of these factors across all epochs during the entire resting-state period.

2.1 Introduction

Neuronal populations behave in a coordinated manner both during resting-state and while

executing tasks such as learning and memory retention. One of the major challenges to

analyzing brain signals such as electroencephalograms (EEGs) and functional magnetic reso-

nance imaging (fMRI) is high dimensionality. For example, there can be hundreds of channels

in a typical EEG recording, and the number of voxels in a fMRI recording can be hundreds

of thousands. Motivated by the typical fMRI analysis, our approach is to parcellate the cor-

tex into small set of regions based on some prior information of functional and anatomical

proximity, and then analyze clusters of signals within and between these regions. Depending

on the parcellation of the brain cortex, a cortical region could correspond to 15-25 EEG

channels (Wu et al., 2014). Empirical inspection of the resting-state EEGs in each region

in Figure 2.1 shows a high degree of collinearity and synchronicity. EEGs, which indirectly

measure electrical activity in the cortex, show high multicollinearity between channels due

to spatial filtering and volume conduction. Thus, it is sensible to reduce dimensionality in

each region by deriving some signal summaries. A näıve solution is to compute the average

across all channels. As we will demonstrate in this chapter, simple averaging is problematic

especially when some of the EEGs are out of phase. Here, we will use a data-adaptive filter-

ing (encoding) procedure to extract representative signals that is a solution to minimizing

the squared reconstruction error of the original high-dimensional signals.

Obtaining summaries for each brain region is the first step towards the next goal which is to

study connectivity between brain regions. Connectivity has been a focus of many studies both
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in cognitive science and clinical neuroimaging. In fact, disruptions in connectivity between

brain regions is associated with a number of neurological diseases such as schizophrenia,

obsessive compulsive disorder and Alzheimer’s disease. The common measure for brain

functional connectivity is correlations between multivariate signals measured from the brain

regions. The challenge when analyzing connectivity between large number of regions involves

estimation of a high-dimensional correlation structure. The signal dimensionality is often

comparable to or even larger than the sample size, where traditional estimators are known

to produce unreliable estimates.

Our approach to modeling and estimating the connectivity between brain regions is to first

derive low dimensional representation or simpler structure of the original signals based on

factor analysis for each brain region. We then study connectivity structure between brain

regions via the derived lower dimensional factor space. The proposed general framework is

illustrated in Figure 2.1. The focus of this chapter is on the first step of the approach and

to conduct an exploratory study of two general procedures for extracting a small number of

latent factors in multichannel EEGs. The first assumes the factors as an instantaneous mixing

and the second a linear filtering of the high-dimensional signals. This is a first step towards

dimension reduction which could lead to better statistical modeling and inference. It could

help to identify any potential irregularities in the signals (e.g. outliers, non-stationarities

across epochs). These derived summaries are useful for capturing the hidden features in high

dimensional signals. Moreover, the factors and the mixing matrix derived in the exploratory

analyses can be use to simulate realistic data that closely resemble real EEG signals. Finally,

since these EEG signals are recorded over several epochs, one should not ignore the possibility

that the underlying brain process has evolved across the entire experiment. Thus, one of our

goals is to develop a tool that explores how connectivity patterns might have evolved during

the experiment.

As noted above, the most natural approach to summarizing activity in one brain region
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is to simply take the average signal. In fact, connectivity analyses of functional magnetic

resonance imaging (fMRI) are usually conducted by taking the fMRI time series average

across voxels in a pre-defined region of interest. (See (Fiecas et al., 2013; Gott et al., 2015)

and references cited). While this approach is certainly intuitive and easy to implement,

it has a number of serious limitations. In fact, (Sato et al., 2010) already pointed the

pitfalls and suggests a data-driven approach via conventional principal components analysis

(PCA) which is essentially an instantaneous (or contemporaneous) mixing of time series.

Moreover, (Lila et al., 2016) developed a regularized PCA approach for functional data on

a two-dimensional manifold, where the regularization is applied on the curvature of the

function over the manifold. Also, (Lazar, 2008) discussed general concepts of handling

high dimensionality in fMRI via principal components. In order to deal with the high

dimensionality of fMRI data and complexity of the spatio-temporal covariance structure,

(Kang et al., 2012) proposed a procedure that transforms the (residual) fMRI time series in

each voxel into the Fourier domain. The rationale is that, under weak stationarity, the Fourier

coefficients are approximately uncorrelated (Shumway and Stoffer, 2010). Other approaches

for modeling brain connectivity from high-dimensional brain imaging data include Dynamic

Connectivity Regression (DCR) (Cribben et al., 2012), Dynamic Conditional Correlation

(DCC) (Lindquist et al., 2014), group independent component analysis (ICA) (Calhoun

et al., 2014; Calhoun and Adali, 2012), and sparse vector autoregressive (VAR) modeling

(Davis et al., 2015).

In this work, we will use a more general approach where the factor-based signal summaries

are produced by filtering and hence utilizes temporal correlation structure of the data at

different lags rather than just the zero-lag. The factors are extracted by using spectral

PCA. In contrast to (Lila et al., 2016) we focus on capturing the spectral property of signals

like EEGs which are often not smooth and are characterized by oscillatory and high fre-

quency processes. This poses greater challenges than analyzing fMRI time series which are

dominated by low-frequency components with short dependence (often assumed to follow
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first-order autoregression). Our approach offers two advantages over other representative

signals in addressing these problems. First, due to its complexity, the underlying features of

a brain process is unlikely to be captured by a single summary such as the average. Second,

due to potential phase-shifts and lead-lag dependence among the channels, the averaged

signal could produce misleading results: averaging perfectly out-of-phase signals produces

“flat lines” and averaging shifted signals could produce higher-frequency artifacts. This is

discussed further in Section 2.3.2. On the other hand, factors extracted by conventional

PCA can account for the signal variability better than the simple averages. However, it is

less effective in capturing the lagged dependence compared to the spectral PCA.

The remainder of the chapter is organized as follows. Section 2.2 describes the methods for

dimensionality reduction for time series data, connectivity measurements and our implemen-

tation of the methods as an interactive Matlab toolbox. Section 2.3 presents the evaluation

results of the models based on simulated data and the results of an exploratory analysis on

a real resting-state EEG dataset and a fMRI dataset. In Section 2.4, we summarize the

conclusions and propose future directions.

Original	signal	within	
each	region

Summary	signal	with	
lower	dimension

Dependence	structure	captured
By	summary	signal

SMA

Left	PF

Left	Parietal

Figure 2.1: Illustration of the exploratory procedure. On the left are the EEG signals from
three different regions: supplementary motor area (SMA), left Pre-frontal cortex and left
parietal. The goals are (1.) to obtain summaries within each region and (2.) to compute
dependence between the brain regions through the factors.
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2.2 Methods

In this section, we describe our approach to performing exploratory analysis of high-dimensional

EEG time series. Let R be the number of regions on the scalp topography. Denote the EEG

signals in a region r ∈ {1, . . . , R} to be zr(t) which we assume to have dimension nr (i.e., the

number of channels within region r). Recall that EEG signals within a region appear to be

highly correlated which indicates that the EEGs can be represented by a more compressed

time series (i.e., the factors) with lower dimension. There are advantages to low dimensional

representation or embedding. (1.) The simplified structure helps in interpretation of the re-

sults. (2.) It takes advantage of the structure of data (e.g., high correlation for EEG signals

within the same region) and hence the low dimensional embedding serves a similar purpose

as imposing regularization. (3.) It enables the modeling estimation using a relatively small

training sample size-reduced number of parameters enables us to fit a less constrained para-

metric model with better accuracy, for example, allowing larger lags in vector autoregressive

(VAR) model allows us to capture more complex dependence structure; and (4.) Finally,

models with reduced dimension can be trained more efficiently requiring fewer signals in the

training dataset. This can significantly reduce the computational time especially when the

training time is higher than quadratic order of the dimension. For example, in computing

partial coherence, the inversion operation is faster and will have fewer problems resulting

from matrix inversion since the dimension is lower.

Substantial research has been established on dimensionality reduction of high dimensional

time series. Such methods include time-domain and frequency-domain PCA (Brillinger, 1964,

2001; Wang et al., 2016b; Stock and Watson, 2002); factor models (Durbin and Koopman,

2001; Harvey, 1990; Lam and Yao, 2012; Bai and Ng, 2002; Forni et al., 2012); canonical

analysis (Box and Tiao, 1977), and independent component analysis (Samworth et al., 2012).

. Here, we build on these foundations in two directions: we develop exploratory tools

that handle factor analysis of partitioned signals (rather than all signals as a whole) with
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extension to multiple-epochs (rather than just a single epoch). We then package these into

a toolbox that we hope would help neuroscientists to use a more data-adaptive approach

to investigating connectivity in high dimensional brain signals. The methods are based on

learning compressed representations of the original time series of higher dimension. There

are similar toolboxes which however focused on regularized estimation of high-dimensional

time series in the original space (e.g., the big-VAR model (Nicholson et al., 2014) and the

sparse-VAR model(Basu et al., 2015)).

This chapter will be mainly focused on two classes of approaches for extracting low dimen-

sional summaries both of which are based on principal component analysis or factor analysis

in a more general sense. We now describe the algorithm for deriving the factor activities for

each region r, denoted as fr(t), which has dimension mr that is much smaller than that of

the original signal nr (i.e., mr � nr). For consistency in notation, we use a lower case letter

for a scalar number; bold lowercase letter for a column vector; and uppercase letter for a

matrix. When it is clear from the context, we shall drop the subscript r when dealing with

the time series signals.

2.2.1 Auto encoder for time series data

The auto encoder algorithm is a general approach to learning compressed representations

of the input data (e.g., high dimensional time series). The general algorithm was first

introduced by (Rumelhart et al., 1985) and can be used to reduce the dimension of the time

series via learning a low dimensional representation. The algorithm consists of two parts,

namely, the encoder and the decoder. The encoder function Fen : Z → F is a mapping from

the original high-dimensional space Z to space F of lower dimension. The decoder function,

defined as Fde : F → Z is a mapping from the encoded (low-dimensional) space F to the

original high dimensional space Z.
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Consider time series z(1), . . . , z(T ) generated from process P (Z), the optimal mapping Fde

and Fen are the ones that minimize the expected reconstruction error defined as

L(Fde, Fen) = EP (Z)||Z − Fde(Fen(Z))||2F (2.2.1)

where || ∗ ||F is the Frobenius norm, which is defined as ||E||F =
√

Trace(EE ′).

We will consider special cases where the encoders and decoders are linear transformations

(either instantaneous mixing or filtered versions) of the original time series. For linear

encoder and decoders, i.e., both of Fen and Fde are linear functions, the solution is closely

related to principal component analysis under the Frobenius norm based on the squared

error of reconstruction. In this work, we will focus on two types of linear encoders and

decoders: the first is the instantaneous mixing encoder and the second is a linear filter of

the time series. The latter captures the entire temporal dynamics (lead-lag structure) of the

time series.

2.2.2 Method 1: The factor is an instantaneous linear mixture of

the time series z(t)

For a zero-mean stationary time series process z(t) ∈ Rn (we drop the subscript r for ease in

presentation), we consider the problem of learning a representation of lower dimension. For

the encoding function, we consider the mapping where the factor f(t) ∈ Rm is represented

as the instantaneous linear mixture of the original time series z(t). That is, f(t) = A′z(t).

Similarly, for the decoder function, we consider the mapping z(t) is the instantaneous linear

mixture of f(t) in the form ẑ(t) = Bf(t). For the purposes of keeping the parameters

identifiable, we shall assume that (a.) A′A = Im and (b.) Cov[f(t)] is a diagonal matrix,

i.e., the factors are uncorrelated. The optimal representation is considered as the one that

27



gives the best reconstruction accuracy, which can be derived using the following two steps.

• Step 1. Compute the eigenvalues-eigenvectors of Σz(0) as {(λs, es)}ns=1 where λ1 >

. . . , > λn and ‖es‖ = 1. When Σz(0) is not known, we use an estimator instead, which

can be computed as Σ̂z(0) = 1
T

∑T
t=1 z(t)z(t)′ assuming z(t) has zero mean.

• Step 2. The solution can be represented by

Â = B̂ = [e1, . . . , em] and f̂(t) = Â′z(t) .

The solution is identical to principal components analysis (PCA) on the input signals , using

the covariance matrix of lag zero, i.e., Σz(0) = Cov(z(t), z(t)). It is the one that accounts for

the most of the variation of the time series, among all the instantaneous linear projections

with the same dimension.

2.2.3 Method 2: The factor is a linear filter of the time series z(t)

Alternative to instantaneous mixing method, we consider a more flexible linear encoding and

decoding functions where the encoding function is a linear convolution of all z(t) ∈ Rn –

rather than merely an instantaneous linear mixture. The lower dimensional representation

(encoder function) can be written as

f(t) =
∞∑

h=∞

A(h)′z(t− h) (2.2.2)

where A(h) ∈ Cn×m with m < n, and fi(t) and fj(t) has zero coherency (in other words,

uncorrelated at all lags) for i 6= j. For the reconstruction (decoder) function, we consider
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the following form

ẑ(t) =
∞∑

j=−∞

B(j)f(t− j) (2.2.3)

where B(j) ∈ Cn×m is the transformation coefficient matrix. The optimal values of A(h)

and B(j) are chosen to minimize the reconstruction error defined in Equation 2.2.1. The

solution can be obtained via principal components analysis of the spectral matrix. Let

Szz(ω) be the cross spectral density for z(t) at frequency ω. Denote the eigenvalue of Szz(ω)

as {λ1 > λ2, . . . , λn}; denote the corresponding eigenvectors as {e1(ω), e2(ω), . . . , en(ω)},

then the solution can be obtained as

A(h) =

∫ 1/2

−1/2

A(ω) exp(i2πhω)dω (2.2.4)

B(j) =

∫ 1/2

−1/2

B(ω) exp(i2πjω)dω (2.2.5)

where B(ω) = A(ω) and A(ω) = [e1(ω), . . . , em(ω)].

The detailed algorithm is described in Algorithms (1) and (2). Note that this dimension

reduction procedure was originally described in (Brillinger, 1964). In this chapter, we shall

refer to this as the “Spectral-PCA” method.

2.2.4 Comparison of the encoding/decoding methods

Both encoder methods are based on projecting the original high dimensional signal onto

a space of lower dimension. Both methods are similar in the sense that the factors are

constrained to be linear functions of the original signal. However they differ in this respect:

the instantaneous mixing method produces factor f(t) which only explicitly depends on the
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signal at time t. Under this approach, temporal dynamics of z(t) is ignored. The spectral-

PCA method gives factors which are low dimensional filtered versions of the original signal.

The factors at time point t is obtained by using all data points z(t ± `). Thus it captures

temporal dynamics and lead-lag relationships in the original time series. We note here

that the first method is a special case of the second. In fact, by constraining A(h) = 0

and B(j) = 0 for all h 6= 0 and j 6= 0 then the linear filtered series is reduced to the

instantaneously-mixed signal.

The key advantage of the spectral-PCA method is that it is likely to give lower reconstruction

error because it uses all the information about the signal. The first method is particularly

problematic when there is some lead-lag relationships between the original signals which

could be completely washed out with the simplistic instantaneous mixing. It is also supported

by the simulation results, where the spectral-PCA method has better performance when the

time series has time shift in some channels (Figure 2.6 and 2.7).

In terms of computational complexity, the spectral-PCA needs to compute the eigenvalue

decomposition of the spectral matrices all the frequencies while the instantaneous mixing

method only needs to decompose the zero-lag covariance matrix. That means the sec-

ond method requires more computational resources (in both space and time), comparing

to method 1. It would be helpful to identify the method with suitable complexity for the

problem. In the simulation study, we applied the two models on time series data generated

from different distributions to gain better understanding of their performance.

A similar approach named generalized dynamic principal component analysis (GDPCA) has

been proposed in (Peña and Yohai, 2015). Unlike method 1 and method 2 where information

of zero lag or infinite lags are used, the encoding function for the GDPCA is a linear filter of

factors with finite lags, and thus the method can be adapted to non-stationary time series

as well. In GDPCA, there is no constraint of the form of the encoding function, therefore

the encoding can be non-linear. Unlike method 1 and method 2 where the explicit solution
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can be computed, in GDPCA, the solution is computed through an iterative algorithm and

there is no explicit form of the encoding function.

2.2.5 Measures of Connectivity

The brain connectivity may refer to structural, functional and effective connectivity (Fris-

ton, 1994), where the structural connectivity refers to the anatomical structure of the brain;

functional connectivity refers to undirected temporal correlations between neurophysiological

events and effective connectivity refers to the directed effects of one neural activity over an-

other. The effective connectivity measure by dynamic causal modeling (DCM)(Friston et al.,

2003), Granger causality modeling (GCM) (Granger, 1988), transfer entropy (Schreiber,

2000), partial directed coherence (PDC) and isolated effective coherence (iCoh). Functional

connectivity can be measured using coherence, generalized coherence and partial coherence.

Due to the identifiability issue of the sign of the factors, we use the magnitude of the con-

nectivity measures. This work will be focused on the functional connectivity between multi-

variate time series, specifically, the coherence between two time series. We demonstrate the

connectivity estimation by applying the methods on resting-state EEGs recorded in a motor

learning study. EEG signals from three regions (i.e., supplementary motor area (SMA), left

lateral parietal region (left latPr) and left medial parietal region (left medPr)) were selected

and the factors for each region were obtained via spectral PCA. Then we characterized the

connectivity by computing the coherency between EEG channels and between the factors.

The results displayed in Figure 2.2 are as expected, where the coherence between left latPr

and left medPr at 10 Hz is stronger than other region pairs, which can be shown in the

coherence estimate for the EEGs and can be summarized based on the factors.

31



2.2.6 Interactive Matlab toolbox for exploratory analysis

We implemented and actively maintain a Matlab toolbox (Exploratory High-Dimensional

Time Series (XHiDiTS) toolbox https://goo.gl/uXc8ei) with a graphical interface that

allows users to performance exploratory analysis easily. Figure 2.2 shows a screen shot of

the toolbox interface.

The option panels provide a rich set of options that allow users to select from by just one-

clicking. The options include (1.) subject-specific data; (2.) experimental conditions (resting

state vs task); (3.) specific regions (users can load their own channel location/ grouping files)

(4.) methods for learning lower dimensional representations and the complexity of the model

(e.g. number of factors); and (5.) methods for computing connectivity (e.g. partial directed

coherence, correlation matrix, coherence matrix and block coherence).

The visualization panels show (1.) the 2-d scalp, with selected regions highlighted and col-

ored, where the coloring is consistent with the title of the signal plot, allowing users to match

the plot and region easily; (2.) the signals and factors (low dimensional representations) for

selected regions; and (3.) the spectrum of the signals and the connectivity maps.

The toolbox has low latency in updating the results for datasets with reasonable sizes. For

example, for a 256-channel EEG data that contains 1000 time points for each channel and

200 epochs, the latency for updating the results for a new setup is within seconds (¡1s for

most of the methods). Users can also load their own datasets or add their own definition of

functions for connectivity and other quantities.
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Figure 2.2: The interface of the XHiDiTS toolbox: exploratory high dimensional time series
toolbox in Matlab. This is an interactive toolbox where the user selects the dataset to
be analyzed. From the dataset, the user can select specific regions of interest (ROIs) to
be analyzed. This toolbox supports a rich set of options and methods for visualizing and
analyzing high dimensional time series, including the methods presented in this chapter.
This toolbox is actively developed and maintained. It can be downloaded from https:

//goo.gl/uXc8ei. In this view, the top row includes (a.) channels on selected regions
(SMA, left latPr and left medPr), (b.) EEG time series on the 3 different regions and
(c.) summary factors time series of each region; bottom row includes (a.) the EEG power
spectrum density, (b.) the coherency between EEG channels and (c.) the coherency between
the corresponding factors.

2.3 Results and Discussion

2.3.1 Simulation

In this section, we apply the methods on simulated time series of various properties and

evaluate the performance of the proposed approaches for obtaining signal summaries. The

goal of these simulation studies is to provide a comprehensive evaluation of the methods
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including computational complexity, accuracy (the squared reconstruction error criterion)

and the application scope. The steps of the simulations are described as follows.

• Step 1: model training. Generate training time series data Ztr from ground-truth

generating process P (Z), and then fit the model using methods 1 and 2 based on Ztr.

• Step 2. model evaluation. Generate K iid test datasets Zte1 , . . . , ZteK from P (Z).

For each test dataset Zte, we evaluate the model using the normalized reconstruction

error in the form of
||Zte−Ẑte||2F
||Zte||2F

, where the reconstructed time series Ẑte is computed by

applying the trained model obtained in Step 1. The mean and the standard deviation

of the test error are computed over the K test sets and compared across models.

We performed multiple simulations using data generated from different ground-truth data

generating processes of different complexities. We first generate the source signal f(t) ∈ Rm

for t = 1, . . . , T . The observations are generated via

z(t) =
t−1∑
h=0

Q(h)f(t− h) + e(t) (2.3.1)

We will demonstrate here the advantages and potential pitfalls of the methods under different

application settings, by varying {Q(h)} and the distribution of {f(t)}. The comparisons

between two methods are performed on the time series of different spatial and temporal

correlation structures. The simulation setups are summarized in Table 2.1.
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Setting f(t) Q(h) spatial

corr

temporal

corr

phase shift

1. iid N(0, I20) Q(0) = I20 no no no

2. iid N(0, I2) Q(0) ∈ R20×2 yes no no

3. AR(1) Q(0) ∈ R20×1 yes yes no

4. AR(2) Q(0)[11 : 20, 1] ∈ R10×1

Q(40)[1 : 10, 1] ∈ R10×1

yes yes yes

5. AR(2) Q(80)[7 : 12, 1] ∈ R6×1

Q(40)[1 : 6, 1] ∈ R6×1

Q(0)[13 : 20, 1] ∈ R8×1

yes yes yes

Table 2.1: Summary of the simulation set up. Q(h)[i : j, k] denotes the elements located in
the k-th column and between row i and j (inclusive) of matrix Q(h). For the value of Q(h),
unless it is explicitly defined in the table, is set to 0 by default.

Setting 1: the multivariate time series are spatially and temporally independent

In this setting, we consider the distribution of the data P (Z) to be spatial independent and

temporal independent. In this case, the signals are spatially independent and therefore the

dimension reduction is less effective. Moreover, since the factors are also all temporally in-

dependent, these summaries should all reflect white noise properties. Our simulation studies

indeed verify these expected outcomes. It can be observed form Figure 2.3 that comparing

between two methods, the reconstruction errors evaluated on the test datasets are similar.

For both models, the reconstruct error appears to decrease linearly as the number of fac-

tors increases, which indicates that in the iid Gaussian case, all factors account for the same

amount of the total variation. The result is as expected because (1.) for iid Gaussian random

variable with identity covariance matrix, the projection on any direction will account for the

same amount of variation and (2.) there is no lead-lag relationship between observations at

different time points therefore in terms of predicting current observation, there is no gain of
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using observations from past or in the future. It can also be shown that in theory, method

1 and 2 will have the same solution when the signals are iid Gaussian with zero mean and

identity covariance matrix.
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(b) Reconstruction error

Figure 2.3: Independent time series. The reconstruction error (squared loss, i.e., the square
of the Frobenius norm of the residuals) appears to be decreasing linearly when number of
factors increases which means in the iid Gaussian case, all factors account for the same
amount of the total variation.

Setting 2: the multivariate time series are temporally independent but spatially

correlated

In this setting, we consider white noise time series where z(t) and z(t+ h) are independent

Gaussian variables for h 6= 0. With this setting, the covariance Cov z(t) has low rank (rank

is 2), which means that at time t, the channels are highly correlated. Figure 2.4 displays

reconstruction error as a function of number of factors. It shows that two factors are capable

of capturing all the dynamics of the input time series which is reasonable since since the

generated time series has no temporal dynamics (they are temporally independent even

though they have high spatial correlation).
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(c) Reconstruction error

Figure 2.4: Simulation result. The time series data have high spatial correlation but low
temporal correlation. The reconstruction error drops to zero when the number of factors is
greater than 2, for both methods. Two methods have similar reconstruction error evaluated
on the test data.

Setting 3: the multivariate time series has high spatial correlation and are tem-

porally correlated

In this set up, we consider the time series z(t) that has both high spatial correlation and

high temporal correlation. That is to say, z(t1) and z(t2) are correlated and zi(t) and zj(t)

are also correlated. z(t) is generated using Equation 2.3.1, where f(t) follows a first order

autoregressive process f(t) = 0.9f(t− 1)+ε(t), and Q(h) = 0 for all h 6= 0. In this setting, all

components of the z(t) are highly correlated and thus we expect that using factors with very

low dimension is capable of capturing most of the variation of the original signal. We also

expect the two methods have similar performance since the observations are synchronized.

The training time series plot and the reconstruction errors are displayed in Figure 2.5. Two

methods have similar reconstruction errors. The reconstruction error shows a decreasing

trend as the number of factors increases. When the number of factors reaches 20, which is

same as the dimension of the observations, the encoding-to-decoding procedure is equivalent

to an identity transformation.
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(b) Reconstruction error

Figure 2.5: Simulation result. The time series data have strong temporal and spatial corre-
lation.Two methods have similar reconstruction errors.

Settings 4 and 5: Components of the multivariate time series are phase-shifted

In this section, we performed simulations where the generated time series has phase-shift.

It is important to investigate shifts in time series because it is possible to have lead-lag

relationships between EEGs in a region. We consider the autoregressive source process

f(t) as described in Section 2.3.1. We generated two types of shifted time series following

the description in Table 2.1. Using this setting, we expect that method 2 will have better

performance comparing to method 1, as method 2 uses information from all lags, and thus is

more capable of capturing the temporal dynamics. It is observable from both Figure 2.6 and

2.7 that (1.) the time series plots show clearly clustered pattern, where within each cluster

the signals are more synchronized, (2.) the second model, where the factor is a filtered

version of the signal at all time points, gives a lower reconstruction error when the number

of factors is smaller than the number of shifted clusters, and (3.) after the number of factors

reaches the number of shifted time series clusters, the decreasing rate of the reconstruction

error drops dramatically and the two models have similar performance. The decreasing rate

of the reconstruction error can be useful in estimating the number of synchronized clusters

appeared in the time series data.
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Figure 2.6: Plot of shifted time series (two clusters) (left) and the reconstruction error
evaluated on the test data (right). The reconstruction results show that the second model
outperforms the first one when number of factors is 1 and that the two models have similar
performance when the number of factors is greater than 1.
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Figure 2.7: Plot of shifted time series (three clusters) (left) and the reconstruction error
evaluated on the test data (right). The reconstruction results show that the second model
outperforms the first one when number of factors is smaller than 3 and that the two models
have similar performance when the number of factors is greater than 3.

2.3.2 A systematic comparison of the first factor and the averaged

signal

Among the approaches for summarizing signals, the average across channels seems to be the

most simple and straightforward way. In this simulation, we compare the power spectrum

density of factor 1 and that of the averaged signal. We consider a source f(t) that follows

an AR(2) process defined by f(t) = 1.976f(t − 1) − 0.980f(t − 2) + ε(t). This process has

spectrum concentrated on the 8-12 Hertz frequency band. Then the observations, denoted
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by z(t) are generated via

s(t) = f(t) + η(t),

z(t) =
∑

Bjs(t− j) + e(t),

where η(t) and e(t) represent the Gaussian white noise, the loading coefficients Bj satisfy

B0(k) = 0 for k = 11, . . . , 20; B40(k) = 0 for k = 1, . . . , 10; and Bj = 0 for j 6= 0 or 40.

We repeat the procedure for 100 times and then the pointwise 95% confidence interval is

computed. The result is shown in Figure 2.8. It can be seen that in the case where the

signals are not well synchronized, the average fails to capture important spectrum features

of the original signals.

Figure 2.8: Estimated power spectrum density for the top factor (red) and the averaged
signal over all 20 channels (blue). The green curve is the true power spectrum density of
the AR(2) process that generates f(t). The shaded area is the point-wise 95% confidence
interval for the mean, computed using 100 simulations.

2.3.3 Exploratory analysis of the EEG data

In this section, we perform exploratory analysis on real EEG data. The key challenge in

analyzing EEG is the high dimensionality of the data. Computing dependence between

regions or channels can be difficult due to the high dimensionality. Our goal here is address

the dimensionality problem by deriving signal summaries (factors) of the EEGs in each region
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(e.g. SMA, left Pf) and then characterizing the dynamics and connectivity using the factor

signals and the encoding/decoding functions.

The data were recorded during a motor learning study performed in the Stroke Rehab lab-

oratory of our collaborator. The dataset contains EEG recordings for multiple subjects,

where for each subject, 180 trails of 1 second EEG signals were recorded. The sampling

rate of the data is 1000 Hz and number of channels is 256. The raw EEG data have been

pre-processed by (1.) applying low pass filter at 50 Hz and (2.) using visual inspection and

independent component analysis (ICA) to remove artifacts due to muscle activity, eye blinks

and heart rhythms. Various analysis have been performed on the dataset, including using

brain connectivity as predictor for ability of motor skill acquisitions (Wu et al., 2014) and

the analysis of curves of log periodograms using functional boxplots (Ngo et al., 2015). The

goal of the exploratory analysis is to gain better understanding of the EEG data as well as

the models that we used.

Computing regional summaries (factors)

It can be observed that the EEG signals are very highly synchronized, which means EEG at

channel i is highly correlated with EEG at channel j at the same time t. It also appears that

signals within the same region (e.g. SMA and left Pr) have higher correlation, comparing to

that of the signals in different regions. Due to these high spatial correlations, it is sensible to

represent these EEGs in terms of low dimensional summaries that capture the most variation

in these EEG signals. Figure 2.9 shows the reconstruction of EEGs at SMA region using

the linear convolution encoder. It can been seen that as the number of factors increases,

the magnitude of the residuals decrease. The top two summary signals (factors) computed

using EEGs from SMA region and left Pre-frontal region are plotted in Figure 2.10 and

the proportion of total variation accounted by theses factors are shown in Figure 2.11. The

results for both regions show that factors with very low dimension (less than 3) can represent
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most of the variation of the original signals. This is consistent with the fact that the EEGs

are highly correlated spatially due to volume conduction.

Figure 2.9: Signal compression using spectral PCA (method 2). Column one shows the
original EEG time series at SMA region, column two shows the factors computed via spectral
PCA, column three shows the reconstructed time series using different number of factors and
column four shows the difference between the original signals and the reconstructed signals.
Note that as the number of factors increases, the magnitude of the residuals decrease (i.e.,
the squared error of reconstruction decreases).
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Figure 2.10: Plot of the two factors in the SMA region (left) and the Left Pre-frontal cortex
(right) that give the lowest squared reconstruction error.
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Figure 2.11: Variance accounted by factor 1 only and factors 1 and 2 in the SMA region
(left) and the Left Pre-frontal region (right). Note that two factors explain around 90% of
the total variance in the high dimensional EEGs.
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Properties of the summary factors

Figure 2.12 shows the estimated power spectrum density of the top factors computed for

SMA region and left Pf region. It shows that factor 1 in both the SMA and Left Pre-frontal

regions capture the alpha oscillations (8-12 Hertz) and low beta (16-30 Hertz). Factor 2 has

more power in the delta and theta band oscillations (1-8 Hertz). The power spectrum across

100 EEG epochs are estimated and visualized in Figure 2.13. The results show that the

spectrum pattern for the top factors are consistent across trails, where factor 1 concentrates

more on alpha oscillations (8-12 Hertz) and factor 2 concentrates more on the delta and

theta band oscillations (1-8 Hertz). In order to study the temporal dependence between

the factors, we plot the cross-correlation between the top two factors, evaluated for multiple

epochs (Figure 2.14). The cross-correlation between factor 1 in SMA region and factor 1 in

left Pre-frontal region appears to be very consistent across epochs. The cross-correlation that

involves factor 2 also shows some consistent patterns across epochs, although the consistency

is weaker comparing to the cross-correlation between factor 1’s in two regions.
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Figure 2.12: Estimated power spectrum for the first two factors in the SMA region (left)
and the Left Pre-frontal region (right).
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Figure 2.13: Top: SMA region. Estimated power spectrum (log-scale) across 100 epochs
of the first factor (left) and the second factor (right). Bottom: Left Pre-frontal region.
Estimated power spectrum across 100 epochs of the first factor (left) and the second factor
(right).
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Figure 2.14: Cross correlation between factors in SMA region and Left Pre-frontal region
across 180 epochs. The correlations show consistent patterns across epochs.

We also estimated the power spectrum density (PSD) for the factors from 15 subjects, 100

trials for each subject. The PSDs were then averaged over trials. Figure 2.15 displays the

mean PSD and the standard deviation across subjects. It appears that the second factor has

larger variation in (PSD) across different subjects, comparing to the PSD of the first factor.

Both factors have high power around 10 Hz and less.
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Figure 2.15: Estimated power spectrum for factor 1 (left) and factor 2 (right) in the SMA
region, averaged across 15 subject and 100 trials. The shaded area represent the standard
error computed from 15 subjects.

2.3.4 Exploratory analysis of fMRI data

The focus of this study is the analysis of EEGs. As a comparison, we also applied the

proposed method to fMRI data which has higher dimension. Functional MRI (fMRI)

has been widely used in measuring brain activity. Comparing to EEG data, fMRI im-

ages have higher spatial resolution (∼ 105 voxels) but lower temporal resolution. Analyz-

ing the connectivity between ROIs by directly computing the connectivity for each voxel

pair is problematic because the number of parameters is a quadratic function of the di-

mension. We used a resting-state fMRI dataset which is available at NI-TRC (http:

//www.nitrc.org/projects/nyu_trt/). The voxel size is 3 × 3 × 3 and the recording

length for each voxel is 197 images with TR/TE=2000/25 milliseconds. The data has been

pre-processed with motion correction, normalization, nuisance signal removal and spatial

smoothing. The parcellation of the ROIs follows the Anatomical Automatic Labeling (AAL)

atlas. In this analysis, we mainly focused on two ROIs: left and right posterior cingulate

gyrus (PCC). Specifically, we computed ROI-specific summary signals and then estimated

the connectivity between ROIs.
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Summary signals

For each ROI, we computed the summary signals using (1.) the top 2 factors via method

1 in Section 2.2.2 and (2.) the averaged signal. We compared the signal summaries and

their corresponding spectrum estimates for ROIs left PCC and right PCC (Figure 2.16). For

both regions, the first factor accounts for about half of the total variation and the second

accounts for about 10%. It also appears that for this dataset, the first factor is very close to

the averaged signal. From the estimated power spectrum density, the activity in the fMRI as

expected occurs at the lower frequencies as compared to EEGs. It is observed that in both

ROIs, the second factor is able to capture additional information on components of higher

frequency, not revealed in the spectrum of the averaged signal.

Figure 2.16: Plots of the original time series (top), the summary signals (middle, factors are
normalized for easier comparison) and the corresponding spectrum estimated using multita-
per method (bottom), for ROIs left PCC (left) and right PCC (right). For left PCC ROI,
projection on factor 1 explains 45% of the total variation while the projection on factor 2
explains 10%. For the right PCC ROI, the projection on factor 1 explains 35% of the total
variation while the projection on factor 2 explains 14%
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Between ROI connectivity

To study the connectivity between ROIs of left PCC and right PCC, we computed the con-

nectivity between their summary signals (i.e., the first and second factor time series). Here

use the magnitude of the correlation as a measure of connectivity. The standard approach

which is gives the magnitude cross-correlation between the averaged time series gave a con-

nectivity measure of 0.6925. As demonstrated in the simulation studies and in EEG analysis,

there are advantages to using factors which are best represent brain activity in each region (in

the sense of producing the lowest squared reconstruction error). Connectivity using factors

can be characterized in a number ways. By characterizing connectivity between two regions

using only the first factors, we obtain a connectivity value of 0.8043. The connectivity from

the first factors is higher than that obtained from averaged fMRI time series (0.80 vs 0.69)

which could be due in part to the fact that the first factor is optimal at extracting the brain

signal in a region. The weights for the first factor are obtained data-adaptively rather than

constrained to be equal which is the case for the averaged time series. Note that the connec-

tivity between the second factors is 0.1814 which is capturing another facet of connectivity

beyond that explained by the first factor. Another approach to obtain a global measure

of connectivity jointly between the multiple factors from different ROIs (e.g. between two

factors in the left and right PCC) is to use the RV coefficient ((Escoufier, 1973)). It is a

multivariate version of the squared Pearson correlation and it will reduce to the standard

squared Pearson correlation when both variables are univariate. Given two random variables

z1 ∈ Rn1 and z2 ∈ Rn2 , the RV coefficient is computed as RVz1z2 =
Tr[Σz1z2Σ′

z1z2
]√

Tr[Σ2
z1z1

]Tr[Σ2
z2z2

]
, where

Σzizj = E[ziz
′
j]. Moreover, if we approximate z1 and z2 using the factor representation

described in Section 2.2.2, we will have ẑi = Bifi for i = 1, 2, where Bi is an orthogonal

matrix (i.e., B′iBi = I). Then the RV coefficient between z1 and z2 can be approximated

using the factor representation as RV ẑ1ẑ2 =
Tr[Σf1f2

Σ′
f1f2

]√
Tr[Σ2

f1f1
]Tr[Σ2

f2f2
]
, because Σẑiẑj = BiΣfifjB

′
j and

thus Tr[Σz1z2Σ
′
ẑ1ẑ2

] = Tr[BiΣfifjB
′
jBjΣ

′
fifj
B′i] = Tr[B′iBiΣfifjΣ

′
fifj

] = Tr[ΣfifjΣ
′
fifj

]. RV ẑ1ẑ2
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is equivalent to the weighted average of the squared correlations between f1 and f2 where

the weight is proportional to the product of the corresponding eigenvalues. Based on the

summary factors, the estimated RV coefficient between signals of left and right PCC ROIs

is 0.6003 (0.77482).

2.4 Conclusion and future work

In this work, we developed exploratory procedures for analyzing high dimensional brain sig-

nals under the presence of high multi-collinearity by using low-dimensional factor representa-

tions for pacellated brain regions. We considered two schemes for estimating the factors: the

conventional time-domain PCA and the spectral-domain PCA, which respectively assumes

the factors as an instantaneous mixing and a linear filtering of the high-dimensional mea-

sured signals. Compared to averaged signals typically used in ROI-based analysis of fMRI

data, the factors are able to characterize the variability and dependence across voxels, are

derived from a parametric modeling beyond simply a dimension reduction method. We eval-

uated (benchmark) the performance of the proposed methods via numerical experiments by

applying the models on simulated time series with different spatial and temporal correlation

structures. Besides, the spectral PCA is more advantageous than the conventional PCA,

in capturing the high-frequency oscillatory brain activities as measured by the EEGs, and

accounts for both the temporal and cross-correlation between regions. To the best of our

knowledge, we are among the limited studies to apply spectral PCA to analyze EEG and

fMRI data. We performed exploratory analysis on a motor-task EEG and a resting-state

fMRI data to assess the suitability of our method as compared to the traditional averaging

approach. The results for both of the simulation and exploratory analysis show that learning

low-dimensional representations (factors) has potential benefits for subsequent modeling of

the connectivity in high dimensional time series, because the factors are capable of capturing
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the dynamics of the data (i.e., temporal dynamics, variation) and the detailed spectral struc-

ture while reducing dimension (complexity) of the original problem. We also implemented

the methods in a Matlab toolbox with graphical interface that allows users to interactively

explore, process and analyze the data in a convenient way. Currently we only explored linear

projection or convolution in summarizing region-specific signals, where the solution can be

computed explicitly using eigenvalue decomposition. It may lack the ability to characterize

non-linear association. Our future work includes a comprehensive evaluation of the methods.

For example, we will evaluate the ability of the models in capturing the temporal dynamics

and at the same time, quantify the artifact that might be induced by the mixing. More-

over, to make the package more comprehensive, we shall include other emerging measures of

dependence such as isolated coherence (Pascual-Marqui et al., 2014; Ombao and Van Bel-

legem, 2008; Fiecas and Ombao, 2011; Wang et al., 2016a) and other more general (possibly

non-linear) methods for obtaining summary signals (Peña and Yohai, 2015).
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Chapter 3

Modeling Effective Connectivity in

High-Dimensional Cortical Source

Signals

To study effective connectivity among sources in a densely voxelated (high-dimensional)

cortical surface, we develop the source-space factor VAR model. The first step in our proce-

dure is to estimate cortical activity from multichannel electroencephalograms (EEG) using

anatomically constrained brain imaging methods. Following parcellation of the cortical sur-

face into disjoint regions of interest (ROIs), latent factors within each ROI are computed

using principal component analysis. These factors are ROI-specific low-rank approxima-

tions (or representations) which allow for efficient estimation of connectivity in the high-

dimensional cortical source space. The second step is to model effective connectivity between

ROIs by fitting a VAR model jointly on all the latent processes. Measures of cortical connec-

tivity, in particular partial directed coherence, are formulated using the VAR parameters. We

illustrate the proposed model to investigate connectivity and interactions between cortical

ROIs during rest. This chapter is a reprint with permission from Wang et al. (2016b).
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3.1 Introduction

Functional connectivity of a brain network, i.e., dependence between distinct brain regions of

interest (ROIs) in a network, has provided important insights on various brain functions and

abnormalities. Effective connectivity, which is a more specific measure of cross-dependence,

quantifies the directed causal influence of one neuronal region over another Friston et al.

(1994). Effective and functional connectivity are both usually inferred from brain signals

such as functional magnetic resonance imaging (fMRI) and multichannel electroencephalo-

gram (EEG) He et al. (2011). These two modalities measure different facets of brain activity:

hemodynamic by fMRI and electrical by EEG. While EEG has high temporal resolution (in

the millisecond scale), it suffers from limited spatial resolution. Nevertheless, EEG has been

widely used for studying brain activity for a number of good reasons: it captures fast tem-

poral dynamics in brain activity; it is non-invasive; it is relatively easy and inexpensive to

collect. Examples on the utility of EEG for studying brain function and detecting neurolog-

ical disorders are described in Grill-Spector et al. (2006); Schwartz et al. (2010); Wu et al.

(2014); Nunez and Srinivasan (2006b). However, the EEG signal captured by a specific sen-

sor on the scalp is not a direct measurement of activity of a single source (local subpopulation

of neurons) but rather the summation of synchronous activity of many sources (many pop-

ulations of neurons) over the entire cortex that are similarly oriented perpendicular to the

local cortical surface. Therefore, the EEG signals can be regarded as a mixture of underlying

cortical source signals plus some noise. This mixing effect may introduce spurious instanta-

neous correlations between EEG signals which may lead to misinterpretation of connectivity

estimates Nunez et al. (1997).

In this chapter, we consider this challenge of estimating effective connectivity on the (high-

dimensional) source space by developing a novel statistical model with rigorous estimation

method. Our novel procedure uses multichannel EEG to model and estimate effective connec-

tivity between regions on the brain cortical surface where the number of sources, as modeled
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by dipoles distributed on a densely voxelated cortical surface, is very large. The common

approach employs a two-stage procedure Ding et al. (2007); Babiloni et al. (2005); Astolfi

et al. (2005, 2007b, 2008); Hui et al. (2010): Stage 1: Source reconstruction from scalp EEGs

via the inversion of the mixing process, and Stage 2: Fitting the VAR model to the esti-

mated source signals. Estimates of various connectivity quantities such as Granger causality

Granger (1969b), partial directed coherence (PDC) Baccalá and Sameshima (2001b) and

directed transfer function (DTF) Kaminski and Blinowska (1991) are then derived from the

VAR model. Our proposed method also follows the two-step approach but differs at Stage 2.

We do not directly fit a VAR model to the estimated source due to the high dimensionality

of the source space. To overcome this problem, our model takes the additional step by sum-

marizing source activity at a cortical region via a factor time series whose dimension is lower

than that of the source signals. Cross-regional dependency is then characterized through

the VAR model on the factors, and PDC is used as a frequency-domain measure of effective

connectivity between the ROIs. Compared to other approaches that summarize ROI-specific

activity by averaging signals Astolfi et al. (2007a), our model is more comprehensive because

it is able to characterize connectivity at both dipole level and region level.

Two classes of source reconstruction approaches have been developed. The first is the dipole

modeling technique which depends on the physical head forward model which assumes that

the EEG sources are equivalent dipole currents located on the cortical surface. However,

solving the ill-conditioned inverse problem poses a major challenge, which we address in this

chapter by identifying the optimal solution that minimizes the reconstruction error subject

to the regularization of the spatial smoothness of the source. The other class is the blind

source separation technique such as independent component analysis (ICA) Makeig et al.

(1996b); Onton et al. (2006) by assuming statistically independent sources. However, both

the source signals and un-mixing matrix need to be estimated and the current approaches are

based on the unrealistic assumptions including statistical independence and non-Gaussianity

of the sources and dimension of the source space to be no greater than the dimension of the
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observation space, to avoid the identifiability problem. A new family of integrated approaches

has recently been introduced. These combine linear mixing model of the sources to EEGs

and standard VAR model for the causal interactions between sources. The variants of this

single-step approach, which involve joint estimation of the mixing matrix and the VAR source

connectivity, include the convolutive ICA (CICA) Haufe et al. (2010) and the VAR+ICA

model formulated in the state-space form Gómez-Herrero et al. (2008); Chiang et al. (2012);

Cheung et al. (2010); Chiang et al. (2009). However, these do not take into consideration

the high-dimensionality of the source space, where the number of source signals are larger

or comparable to the number of time points.

In the first class of approach, the distributed source model assumes that each point on

the cortical grid has electrical signal that contributes to the scalp-recorded EEG Michel

et al. (2004). For a meshgrid of cortex area with 3 mm spacing, the number of grid points

(equivalent dipoles) can be greater than 104, which might be comparable to the number

of time points of the signal. This renders estimation and inference of the standard VAR

modeling for such high-dimensional source connectivity difficult, even for a moderately large

network, due to a large number of parameters. It is not feasible to fit a VAR model directly

on the high-dimensional source signals, since the dimension of the parameter space is in the

order of square of the dimension of the signals. The conventional least squares estimators

of the VAR parameters could be inconsistent. This leads to unreliable estimators for the

subsequently constructed frequency-based measures of directed connectivity between cortex

regions. One plausible solution proposed in Davis et al. (0) is to impose sparsity on the

VAR parameters. Conventional technique involves partitioning the source space into smaller

number of cortical regions of interest (ROIs) and extracting a mean source signal for each ROI

by averaging the magnitudes of all dipole currents within the ROI Babiloni et al. (2005);

Haufe et al. (2013). This approach that uses within-ROI-averaged-source as the factor,

while sensible, is ad-hoc and cannot handle multi-scale connectivity. It is useful only for

global (between-ROI) connectivity but not local (between-dipole) connectivity. Moreover,
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summarizing activity via simple averaging is not optimal because it assigns, a priori, equal

weights on all sources within an ROI. It implies loss of information on the degree of variability

of source activity with a ROI.

We adopt a model-based dimensionality-reduction approach using factor analysis to estimate

the large-scale effective cortical connectivity. We develop a multi-layer factor-analyzed VAR

model for the high-dimensional source signals estimated from EEGs, that allows simultane-

ously for (1) reliable and computationally-efficient estimation of directed dependence between

huge number of cortical sources, and (2) multi-scale analysis of hierarchical, modular con-

nectivity at both regional (within cortical ROI) and global (between cortical ROIs) level.

The proposed model generalizes the factor-VAR model developed for fMRI in our recent

work Ting et al. (2014) by partitioning the massive spatial dimension into lower-dimensional

sub-models. More precisely, the entire brain source space is first anatomically-parcellated

into a set of many ROIs. Moreover, to further reduce the dimensionality, we use a factor

model to represent each cortical ROI, where the source signals within each region are charac-

terized (summarized) by a small number of latent factors. This is based on the assumption

that low-rank (highly-correlated) source data within a region lies on a subspace that is

of lower dimension than the source space. We apply principal component analysis (PCA)

to the source signals (reconstructed via standardized low resolution brain electromagnetic

tomography (sLORETA)Pascual-Marqui et al. (2002)) within each region to estimate the

region-specific latent factors and the factor loadings. PCA can data-adaptively identify a

subspace of a lower dimension. It preserves most of the dipole-wise variation of the localized

source activity explained by the few principal components. This source activity cannot be

captured by taking the regional average signal Zhou et al. (2009). In contrast with many

other EEG-based cortical connectivity studies, we apply the PCA for dimension-reduction

on the source signals instead of on the EEGs, as a pre-modeling step Haufe et al. (2014).

To establish directed dependence between ROIs, the temporal dependency structure of com-
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bined factors over all regions will be characterized by a VAR model. Since the factors are

of much lower dimension compared to the original source space, it would be possible to fit a

VAR model with reasonably good accuracy. The estimated VAR parameters are then used

to construct the directed and non-directed coherence for both local (dipole) level and global

(between ROI) level.

The remainder of the chapter is organized as follows. Section II and III describe our proposed

multi-scale factor VAR model and the estimation procedure for analyzing high-dimensional

EEG source connectivity. Section IV presents the evaluation results on simulated source

signals generated using VAR parameters derived from reconstructed EEG sources. Section V

presents the evaluation results on a real resting-state EEG data set, followed by a conclusion

in Section VI.

3.2 Source-Space Factor VAR Model for Cortical Con-

nectivity Analysis

In this section, we develop the source-space factor VAR model which is a novel approach

to modeling effective connectivity in high-dimensional cortical source space. The approach

partitions the large cortical space into disjoint anatomical regions and then derives region-

specific factors via principal component analysis. Next, we fit a VAR model to the latent

factors which have lower dimension than the original source space. Thus, effective connec-

tivity in high-dimensional space can be efficiently estimated. Finally, the proposed model

gives a multi-scale analysis of both intra-region (between dipoles in a ROI) and inter-region

(between ROIs) directed cortical connectivity.
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3.2.1 EEG Signal Model

According to biophysical models, scalp EEG signals can be modeled as a linear mixing of

sources on the cortex. Let Z(t) = [Z1(t), . . . , ZN(t)]′ ∈ RN, t = 1, . . . , T be the electrical

signals of length T due to neuronal activity at N dipoles on the voxelated cortical surface.

The observed EEG signals X(t) ∈ RM can be represented as

X(t) = AZ(t) + N(t) (3.2.1)

where N(t) is the measurement and physiological noise; A ∈ RM×N is the mixing matrix

(which is also known as the lead field matrix). The above model for EEG (3.2.1) has been

widely used in EEG source reconstruction and studies on EEG source connectivity Hassan

et al. (2014); Grech et al. (2008); Baillet et al. (2001b).

3.2.2 Cortical Source Models

Factor Model for a Cortical Region

The entire cortex area can be parcellated into a finite number of disjoint regions of interest

(ROIs) according to the anatomical structure of the brain. Let R be the total number of

ROIs. We denote by Zr(t) ∈ Rnr the activities of nr dipoles at each region r ∈ {1, 2, . . . , R}

(
∑R

r=1 nr = N). To achieve further dimension reduction, we summarize activity in each

cortical region via a set of common mr latent factors. Specifically, we assume the source

activity Zr(t) at region r to be driven by factor activity fr(t) ∈ Rmr with loading matrix Qr,

where the dimension of fr(t) is much lower than that of Zr(t), (i.e. mr � nr). The factor

model at region r is given by

Zr(t) = Qrfr(t) (3.2.2)
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where Qr ∈ Rnr×mr is the factor loading matrix for region r and fr(t) represents factor

activity at time t. For identifiability or unique model decomposition, we assume the following

constraints on both Qr and fr(t): Q′rQr = Imr and Cov(fr(t)) is a diagonal matrix with

distinct positive diagonal elements.

Factor Model for the Entire Cortex

The source activity of the whole cortex area denoted by Z(t) = [Z1(t)′,Z2(t)′, . . . ,ZR(t)′]′

can be represented by a global factor model

Z(t) = Qf(t) (3.2.3)

where f(t) = [f1(t)′, f2(t)′, . . . , fR(t)′]′ ∈ RM and Q = diag{Q1,Q2, . . . ,QR} are, respectively,

the concatenated global M×1 factor signal and N×M loading matrix over all regions, with

M =
∑R

r=1mr. The factors within a cortical region are uncorrelated but the factors between

different regions can be correlated or dependent. Note that the uncorrelatedness within a

region only happens at an instantaneous time (lag zero), however, allows for correlations at

lags greater than zero. This lagged dependence will be modeled using an VAR process as

follows.

VAR Model for Factor Activity

According to the factor model (3.2.3), Z(t) is the instantaneous mixing of the factor activity

f(t). Therefore the temporal inter-dependence structure for Z(t) can be characterized by the

temporal dependence structure of factor f(t). We use a VAR model with order P (denoted
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VAR(P )) to characterize the temporal dependence structure in f(t)

f(t) =
P∑
`=1

Φf(`)f(t− `) + η(t) (3.2.4)

where Φf(`) ∈ RM×M represents the VAR coefficient matrix at lag ` with block structure

Φf(`) =


Φf1f1(`) . . . Φf1fR(`)

...
. . .

...

ΦfRf1(`) . . . ΦfRfR(`)

 .

The diagonal block Φfrfr(`) summarizes the lagged auto-correlation within each region, while

the off-diagonal block Φfjfk(`), where j 6= k, captures the cross-dependence between regions

j and k; and η(t) ∈ RM represents the Gaussian white noise with mean zeros and covariance

matrix Ση.

VAR Model for Source Activity

Note that the dimension of the parameter space for a VAR model grows quadratically with

the dimension of the signal. Therefore, a VAR model for an N− dimensional signal will have

P ×N2 parameters that could be much greater than the total number of observations NT .

In the EEG source study, given the high-dimensionality of Z(t), it would not be feasible to

fit a VAR model via ordinary least-squares (LS) without some regularization.

In our procedure, we construct a high-dimensional VAR model with a unique hierarchical,

block structure for the source space, based on the lower dimensional factor VAR model in

(3.2.4). We use a VAR model to characterize the temporal inter-dependence structure for

the factor activity f(t), as described in Section 3.2.2. We show that the temporal inter-

dependence structure for the high-dimensional source activity Z(t) can be characterized by

a VAR model with a special structure, which is derived from the parameter of the VAR

58



model for the factors, with the following steps.

At this point, we shall assume that Z(t) = Qf(t) (i.e., the significant activity in the sources

are captured by the factors). Substituting the VAR factor process (3.2.4) in the model

defined in (3.2.3) gives

Z(t) = Q
( P∑
`=1

Φf(`)f(t− `) + η(t)
)

(3.2.5)

=
P∑
`=1

QΦf(`)Q′Qf(t− `) + Qη(t) (3.2.6)

=
P∑
`=1

QΦf(`)Q′Z(t− `) + Qη(t). (3.2.7)

Finally, we have the following factor VAR model for Z(t)

Z(t) =
P∑
`=1

ΦZ(`)Z(t− `) + E(t) (3.2.8)

where ΦZ(`) = QΦf(`)Q′ ∈ RN×N is the global VAR coefficient matrix at lag ` for the entire

cortex, projected from a much lower-dimensional matrix Φf(`). This is a block matrix where

the diagonals ΦZrZr(`) = QrΦfrfr(`)Q
′
r and the off-diagonal block ΦZjZk

(`) = QjΦfjfk(`)Q′k

capture, respectively, the inter-dipole effective source connectivity within a region and across

different regions. E(t) = Qη(t) ∈ RN is a Gaussian white noise process with zero mean and

covariance matrix ΣE = QΣηQ
′.

3.2.3 Measures of Source Connectivity

In this section, we develop measures of brain source connectivity at different levels of or-

ganization: local (between dipoles in an ROI) and global (between ROIs). We use partial
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directed coherence (PDC) to quantify the directed connectivity between ROIs and between

dipoles within an ROI.

Inter-dipole Effective Connectivity

PDC has been introduced to infer frequency-specific effective connectivity between dipoles.

The inter-dipole PDC can be interpreted as the direct impact of a change in the amplitude

of an oscillatory activity (specifically at frequency ω) in one dipole on the amplitude of

oscillatory activity in another dipole (accounting for the effects of the oscillatory activity in

other dipoles). It can be treated as frequency-domain analogue of Granger causality. PDC

between the high-dimensional dipole sources can be constructed from our proposed factor

VAR model.

Let ΦZ(ω) = I−
P∑̀
=1

ΦZ(`) exp(−i2πω`/Ωs) be the Fourier transform of the VAR coefficient

matrix ΦZ = [Φij(ω)]1≤i,j≤N ∈ RN×N at frequency ω, where I is the identity matrix, and Ωs

is the sampling frequency. The PDC derived from the VAR model (3.2.8) is defined as

πij(ω) =
|ΦZ

ij(ω)|√
N∑
k=1

ΦZ
kj(ω)(ΦZ

kj(ω))∗

. (3.2.9)

Here, πij(ω) ∈ [0, 1]. It gives an indication of the strength of linear directed influence of

ω-oscillatory activity at the j-th dipole, denoted Zj(t), on the i-th dipole Zi(t), relative to

the total influence of Zj(t) on all dipoles. A value close to one indicates that the causal

influences originating from the dipole j on cortex are directed, for the most part, toward

the dipole i. A value of zero indicates no directed influences from dipole j to i. The matrix

π(ω) = [πij(ω)]1≤i,j≤N ∈ RN×N characterizes a network of directed interactions between

dipoles of the entire cortex at frequency ω.
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Inter-dipole Functional Connectivity

In cases where a measure of functional connectivity is desired we derive coherence from the

VAR model as follows. The spectral matrix of Z(t) at frequency ω is SZ(ω) = QSf(ω)Q′,

where Sf(ω) is the spectral matrix of f(t), which can be computed as

Sf(ω) = Hf(ω)Ση(H
f(ω))∗ (3.2.10)

where Hf(ω) = (Φf(ω))−1, Φf(ω) = I−
∑P

`=1 Φf(`) exp(−i2πω`/Ωs). The coherence between

dipoles i and j is then defined as

ρ2
ij(ω) =

|SZ
ij(ω)|2

SZ
ii(ω)SZ

jj(ω)
. (3.2.11)

Inter-ROI Effective Connectivity

To characterize connectivity between a pair of ROIs, we use the average value of pairwise

connectivity between dipole pairs at the two regions. Specifically, given regions r1 and r2,

the inter-region connectivity between the two, denoted by Cr1r2(ω) is computed as

Cr1r2(ω) =
1

|Ur1| |Ur2|
∑

i∈Ur1 ,j∈Ur2

πij(ω) (3.2.12)

where Ur1 and Ur2 are the sets of dipoles within regions r1 and r2 respectively, |Ur| represents

the cardinality of the set Ur therefore we have |Ur| = nr. Alternatively, the connectivity

between multivariate time series in frequency domain can be characterized using general

coherence Pascual-Marqui (2007a) or frequency decomposition of Granger causality Geweke

(1982).
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3.3 Model Estimation and Inference

We develop a two-step approach to estimate connectivity in high-dimensional source space.

Compared to the conventional VAR model (without the lower-rank representation), our pro-

posed approach has lower estimation error. Moreover, our approach is less computationally

intensive since the factor space usually has a much lower dimension. In Step 1, source activ-

ity on a densely voxelated cortical space is estimated. In Step 2, factors within each cortical

ROI are computed and then concatenated. A VAR model is fit to the concatenated factors.

From the estimated VAR parameters, connectivity between cortical ROIs and dipoles are

formulated and estimated.

3.3.1 Cortical Source Reconstruction

The primary sources of EEG are believed to be intracellular currents in dendritic trunks of

the pyramidal neuron in cerebral cortex. The cortex sources are not directly measurable

and hence need to be estimated from the observable EEG signals. It is an ill-conditioned

inversion problem when the number of EEG sensors (usually in the order of 102) is smaller

than the dimension of the cortex source space (which can be of order 104).

Obtaining the Source Mixing Matrix

The lead field matrix A in the EEG observation model (3.2.1) can be computed by applying

the boundary element method (BEM) on a discretized realistic head MRI template, as shown

in Fig. 3.1. In this work, we use the Colin 27 MRI head template Holmes et al. (1998).
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Figure 3.1: BEM head model computed from the Colin 27 head template. The BEM head
model is computed using the software package OpenMEEG(compute) Gramfort et al. (2010);
Kybic et al. (2005), and the discretized head is visualized using the software Brainstorm Tadel
et al. (2011)

Inverse Source Reconstruction from EEG

Given the lead field matrix A and EEG observations X(t), the cortical sources Z(t) are recon-

structed using standardized low resolution brain electromagnetic tomography (sLORETA)

method as described in Pascual-Marqui et al. (2002). It is a brain imaging method that com-

putes brain activity from EEG measurements. It provides an instantaneous linear solution

that has zero localization error under ideal conditions. The sLORETA method starts from

a solution of minimum norm estimate (MNE) Hämäläinen and Ilmoniemi (1994b) method

that minimizes the objective function of (3.3.1) with respect to Z(t) and c, given lead field

matrix A, EEG observation X and α.

F =
T∑
t=1

(‖X(t)− AZ(t)− c1‖2 + α‖Z(t)‖2) (3.3.1)

The solution of the minimization gives the estimate Ẑ(t) = GX(t), where G = A′H(HAA′H+

αH)−1 with H = I − 11′/1′1. The regularization parameter α is determined by cross-

validation, which is the same method as described in Pascual-Marqui et al. (2002). The

sLORETA estimation for the source is then obtained by standardizing Ẑ(t) using its vari-

ance estimate.
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3.3.2 Parameter Estimation

Principal component analysis (PCA), a commonly used dimension-reduction technique, projects

the original high-dimensional signal to a space of lower dimension while preserving as much

of the variation in the original signal. We apply PCA to the estimated regional source

Ẑr(t) to estimate the regional factor activity fr(t) and its loading Qr(t) in (3.2.2). Then

we concatenate these regional factor estimates to form the estimate for the global factor

model in (3.2.3) for the entire cortex. A VAR model for the factor space in (3.2.4) is fitted

on the estimated global factor time series, and then projected to the VAR model in source

space in (3.2.8) using the factor loadings. Various directed source connectivity quantities in

the frequency domain for both the dipole and regional level, are then constructed from the

source-space VAR parameters.

Let Ẑr = [Ẑr(1), . . . , Ẑr(T )]′ ∈ RT×nr be the reconstructed cortical sources for region r. Here

are the estimation steps.

• Compute the sample covariance matrix of Zr(t), denoted as Σ̂ZrZr :

Σ̂ZrZr = Ẑ′rẐr/T =
1

T

T∑
t=1

Ẑr(t)Ẑ
′
r(t) (3.3.2)

where Ẑr(t) has zero mean.

• Estimate the factor loading matrix Qr ∈ Rnr×mr and the factors fr(t) based on the

eigenvalue-eigenvector decomposition of Σ̂ZrZr . Let λ1 . . . λnr be the unique eigenval-

ues of Σ̂ZrZr , in decreasing order and let V1, . . . ,Vnr ∈ Rnr be the corresponding

orthonormal eigenvectors. The estimator of Qr can be defined as

Q̂r = [V1, . . . ,Vmr ] (3.3.3)
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where mr is the dimension of the regional factor activity fr(t) which can be determined

to be the smallest dimension that exceeds some prespecified amount of region-specific

variation explained by the factors.

• Compute the regional factor activity fr ∈ RT×mr

f̂r = ẐrQ̂r (3.3.4)

where f̂r = [̂fr(1), . . . , f̂r(T )]′.

• Compute the estimate of the VAR coefficient Φ̂f(`) for factor activity f(t) by least-

squares fitting on f̂r. The optimal VAR order P̂ is the minimizer of the Akaike infor-

mation criterion (AIC):

AIC(P ) = log |Σ̂η(P )|+ 2

T
PM2 (3.3.5)

where Σ̂η(P ) = T−1
∑T

t=1 η̂(t)η̂(t)′ is the residual covariance matrix without a degree

of freedom correction, where η̂(t) = f̂(t)−
P∑̀
=1

Φ̂f(`)f̂(t− `).

• Compute the VAR coefficient estimate for source activity Z(t) by substitution Φ̂Z(`) =

Q̂Φ̂f(`)Q̂′ where Q̂ = Diag{Q̂1, . . . , Q̂R}.

• Estimate the between-dipole source connectivity by computing the PDC π̂ij(ω) from

dipole j to dipole i via substitution of Φ̂Z(`) in (3.2.9).

• Estimate the between-ROI source connectivity Ĉr1r2(ω) by summarizing the estimated

inter-dipole PDC π̂ij(ω) over the region from r2 to r1 according to (3.2.12).
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3.4 Numerical Experiments

In this section, we evaluate the performance of our proposed factor-analytic VAR model for

estimating high-dimensional cortical effective connectivity. In our simulation, we study the

role of the length of the time series (relative to the dimension of the parameters) under the

setting where the VAR parameters are derived cortical sources estimated from the actual

EEG data using a realistic head model. Thus, the simulation setting was made to be as

realistic as possible by using EEG data-derived parameters. We benchmark our proposed

factor-VAR model-based estimator with the conventional least squares (LS) estimator and

the ridge estimator commonly used for large-dimensional VAR.

3.4.1 Data Generation

In order to generate time series that emulate dependence structure as the cortical sources

underlying EEGs, we first reconstructed the source signals, using sLORETA, from resting-

state EEG signals (This dataset was provided by Dr S. C. Cramer, Neurology, UC Irvine).

We used source signals Z(t) from a set of N = 120 dipoles from 6 cortical regions (20

dipoles per region, regions include LPF, RPF, LF, RF, LC and RC). The length of the EEG

recording used in the above source reconstruction was 1000 samples (corresponding to one

trial).

Next we fitted the factor VAR model of (3.2.8) on Z(t) to obtain the VAR coefficients

matrices ΦZ and the covariance matrix of residuals ΣE. The order of the VAR model was

selected by AIC with maximum lag equals to 4. We generated the simulated source time

series according to the model (3.2.8). The ΦZ was assumed known in this simulation study

and used as ground-truth to compare different estimators. We repeated the simulation for

100 times.
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3.4.2 Model Evaluation

We evaluated the accuracy of the model in estimating the directed connectivity in terms of

PDC in the source space. Let π̃(ω) be the connectivity matrix whose elements are given in

πij(ω) (as defined in (3.2.9)) and π̂(ω) be the estimated connectivity matrix, the error of the

estimation is evaluated using the Frobenius norm of the difference between the two. More

specifically, the estimation error denoted by Λ, is computed as follows

Λ(Ω) =
1

|Ω|
∑
ω∈Ω

‖π̂(ω)− π̃(ω)‖F
‖π̃(ω)‖F

(3.4.1)

where Ω is the set of frequencies of interest, here we used Ω = {ω = 0, . . . , 50}, which covers

delta (0-4 Hz), theta (4-8 Hz), alpha (8-16 Hz), beta (16-32 Hz) and gamma (32-50 Hz)

frequency bands, and ‖H‖F = tr (H′H)1/2 denotes the Frobenius norm of matrix H.

3.4.3 Results

We compared the performance of our factor VAR model-based estimator with the traditional

ordinary LS VAR estimator and the L2-regularized or ridge estimator, in recovering the

ground-truth connectivity from simulated signals. The ridge estimator which uses the L2

norm penalty on the large-dimensional vector of AR coefficients in the LS regression, is

better conditioned than the LS for estimation of large VAR models. The regularization

parameter was set λ = 0.1, as suggested by Korobilis (2013). We investigated the impact

of time series dimension on the estimation performance. We increased the length of the

simulated time series T with the fixed dimension N = 120, to create different scenarios of

dimensionality via the ratio of d = T/N with d < 1 (T < N), d = 1 (T = N) and d > 1

(T > N). Fig. 3.2 shows the comparison of the estimation errors for the different methods,

for increasing time series lengths relative to the dimension. The error bars were computed
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as the standard error of the estimation error over the 100 simulations. When T is smaller

or comparable to N , the factor-VAR estimator clearly outperforms both the LS and ridge

estimators, with substantially lower mean-squared estimation errors and standard errors.

This implies the proposed VAR estimator has an improved accuracy and consistency under

the high-dimensional small sample size settings. Nevertheless, the ridge estimator which

imposes a shrinkage prior on the large-dimensional VAR coefficients, slightly outperformed

the LS estimator. As expected, when the sample size T increases, the Frobenius norm error

decreases for all estimators. However, the proposed factor VAR model produced the fastest

rate of decline in the mean squared error. In addition, when T is sufficiently large, the LS

estimator is comparable to the factor-VAR and the ridge methods.
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Figure 3.2: Comparison of estimation error of the effective source connectivity by the least-
squares, ridge and factor-VAR estimator for increasing length of time series relative to di-
mension T/N .

3.5 Application to Resting-State EEG

In this section, we reconstructed the cortical source activity from EEG recordings obtained

for a subject during resting-state. We then studied both effective connectivity between

dipoles within each cortical ROI and the effective connectivity between cortical ROIs by
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fitting a factor VAR model on the reconstructed sources. Our model provides a more reliable

and computationally efficient tool for analyzing hierarchical, directed connectivity structure

in high-dimensional source signals.

3.5.1 Experimental Data & Cortical Parcellation

The original EEG data has 256 channels, of which 194 artifact-free channels have been

selected for analysis. The sampling rate was 1000 Hz but we only performed analysis from

the delta to the beta band (0-32 Hz). We analyzed 60 EEG epochs, each with T = 3000

observations (3 seconds).

The cortex area was first parcellated into 148 sub-regions according to the Destrieux atlas

using software package FreeSurfer Fischl et al. (2004). The Destrieux atlas was then grouped

to 14 cortex regions using software package BrainstormTadel et al. (2011), according to the

brain anatomy. The 14 cortical ROIs, as shown in Fig. 3.3, include left/right prefrontal (LPF,

RPF), frontal (LF, RF), central (LC, RC), parietal (LP, RP), temporal (LT, RT), occipital

(LO, RO) and limbic (LL, RL). The number of dipoles on the cortex used is N = 2800, where

each cortex region contains 200 dipoles. This poses a typical problem of high-dimensional

estimation with finite samples.

dorsal view ventral view

Figure 3.3: Cortical regions: left/right prefrontal (LPF, RPF), frontal (LF, RF), central
(LC, RC), parietal (LP, RP), temporal (LT, RT), occipital (LO, RO) and limbic (LL, RL).
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3.5.2 Resting-state Cortical Connectivity

While resting-state brain connectivity networks have been extensively investigated in fMRI

studies Smith et al. (2013), most studies on EEG focus on task-based source connectivity

(e.g., motor-imagery for brain-computer interface Haufe et al. (2014); and visual task Cheung

et al. (2010)). There are few studies on the resting-state brain networks based on EEG, e.g.

in Chen et al. (2008); Knyazev et al. (2011) that analyzed the default mode network at

different frequency bands. However, these are in the scalp-EEG sensor-space rather than

the source-space thus posing challenges in interpretations due to volume conduction. To the

best of our knowledge, our study is among the first to report results on large-scale resting-

state cortical connectivity from EEG sources, at different hierarchical scales along with the

additional measures of directionality.

We reconstructed cortex source activity from the observed EEG using the procedure de-

scribed in Section 3.3.1. Then we applied the proposed factor model to estimate the con-

nectivity in source space at the following two scales (1.) local: between-dipole effective

connectivity; and (2.) global: between-ROI effective connectivity.

Effective Connectivity Between Dipoles

We characterize the between-dipole effective connectivity via PDC that is estimated from

our factor VAR model. The estimation results for the four conventional frequency bands of

interest are shown in Fig. 3.4. The estimates using only small number of latent factors are

able to reveal the presence of complex interactions between a large number of dipoles (in

this case there were nr = 200 dipoles for each of the R = 14 ROIs, with the entire source

space dimension N = 2800). The number of latent factors used for each region is shown

in Table 3.1. The number of factors is determined such that they explain at least 95% of

the variation of the signal within the region. The total number of factors underlying the
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entire cortex only range from M = 45 to M = 49 across different epochs, which achieved

substantial dimension reduction, M << N .

Our method identified the modular organization of brain network during resting-state, where

dipoles within an ROI are more densely and strongly connected compared to that between

ROIs. Note that stronger effective connectivity is indicated by the intense-red color for the

connectivity blocks along the diagonals and weaker connections by the less-intense color on

the off-diagonals. This suggests that spatial proximity could play a role in the effective con-

nectivity. That is, directed dependence between sub-populations of neurons (whose activity

is summarized by a dipole) appears to be stronger when these sub-populations in closer prox-

imity that between sub-populations that are far away. This phenomenon is prevalent across

all frequency bands although there appears to be more spatially widespread between-ROI

PDC at the higher frequency bands (beta (16-32 Hz)), compared the lower frequency bands,

namely, delta (0-4 Hz), theta (4-8 Hz) and alpha (8-16 Hz). We note though that this ought

to be further investigated. Quite naturally there are challenges to extracting results from

high-dimensional time series but the proposed model could be a useful tool for this purpose.

The results from our analysis on effective connectivity is consistent with findings in other

fMRI studies of brain networksMeunier et al. (2010, 2009). This points to the ability of

the proposed method to reveal this modular brain structure based on the cortical sources

and thus provides a measure for the directionality of the connections between dipoles on the

cortex.

Effective Connectivity Between Regions

Fig. 3.5 shows the estimated between-ROI PDC, averaged over results from 60 epochs

(each epoch is a recording for 3 seconds). The first goal in this analysis was to determine

the average PDC in the default mode network (DMN) over the entire resting state of 180
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(a) Delta band (0-4 Hz) (b) Theta band (4-8 Hz)

(c) Alpha band (8-16 Hz) (d) Beta band (16-32 Hz)

Figure 3.4: Estimated inter-dipole effective connectivity measured by PDC for different
frequency bands, averaged across 60 epochs. For convenience of visualization, the value used
in the heatmap is computed as log(π̂ij), where i, j = 1, . . . , N with N = 2800

seconds.

The results suggest asymmetry between inter-region forward and backward causal flow.

Stronger directed connectivity occurred at the higher frequency bands such as the alpha

and beta rhythms, compared to lower frequencies. The figure clearly displays pronounced

bi-directional directed influences or information flows between the limbic, prefrontal, frontal
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Table 3.1: The min and max number of factors used for each region for the factor model
when applying on 60 time series segments. The number of factors was determined such that
at least 95% of the total variation was accounted.

Number of Factors (mr) for each Region

Region mr Region mr Region mr

LPF 3-3 LC 3-3 LO 3-3

RPF 4-5 RC 3-3 RO 3-4

LF 4-5 LP 3-4 LL 3-3

RF 3-4 RP 4-5 RL 4-4

LT 3-3 RT 2-3

and parietal regions (e.g., RL-LPF, RL-RPF, RL-LF and RP-RPF and LP-RF), which be-

longs to the DMN et al. (2001), one of the well-known resting-state networks (RSNs). We

can also see that the limbic regions are strongly inter-connected with many other brain re-

gions. Our method based on cortical sources has identified this dense connectivity of the

limbic region during the resting-state, in agreement with other findings based on fMRI. This

is the location of the posterior cingulate cortex (PCC) which is the major hub of the DMN

Fransson and Marrelec (2008). We also detected strong connectivity between regions of the

attentional networks which include the frontal-parietal sub-network et al. (2008) (e.g. RF-

LP) and the temporal-parietal junction areas (e.g. LT-RP). The estimates show increased

activation and correlated neuronal activities in these large-scale resting-state networks, as

reported in many fMRI studies van den Heuvel and Hulshoff (2010); et al. (2011).

The similarity of resting-state connectivity pattern as detected here in the EEG source activ-

ity with that in the BOLD fluctuations is illuminated by several studies on the relationship

between spontaneous EEG oscillations and BOLD activity during rest Mantini et al. (2007);

Britz et al. (2010). These studies demonstrated significant correlations between band-limited

EEG power spectra and the fMRI BOLD signals in brain regions partly associated with some

specific resting-state networks, albeit with rather mixed results. Some studies reported EEG

correlate of the DMN activity Mantini et al. (2007) while Britz et al. (2010) did not find any.

Moreover, these studies did not directly quantify the association between the between-region
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functional connectivity and the EEG power. Although our study does not investigate the

BOLD/EEG correlation, we found enhanced effective connectivity at areas of the DMN and

the attentional networks, based on reconstructed dipole sources which are less confounded by

volume conduction as the scalp-EEGs. Thus, the results of the analysis using our proposed

factor VAR model add to the current findings showing the electrophysiological signatures of

human-brain resting-state networks based on scalp-EEG or independent components, besides

the hemodynamic signature traditionally revealed by fMRI.

Time-Evolving Connectivity Across Epochs

Previous studies on the EEG source connectivity analysis assume temporal stationarity over

the entire time course of recordings Haufe et al. (2010); Chiang et al. (2012); Cheung et al.

(2010). The second goal in the analysis is to investigate the dynamics of brain effective

connectivity over the entire resting state recording of 180 seconds. In Fig. 3.6, we reshaped

(vectorized) the R×R PDC connectivity matrix to a R2×1 column vector with the connec-

tivity Cij located at row R∗ (j−1)+ i. Column i represents the connectivity estimated from

epoch i = 1, . . . , 60. This allowed a visualization of the dynamics of PDC across the entire

resting state period. We noted that there are two distinct patterns on the dynamics of PDC

over resting state. The first cluster consists of the following ROIs: LPF, RL and LT; and the

second cluster consists of all other 11 regions. Indeed, this cross-section clustering reflects

that in Fig. 3.5. It suggests the temporal regions (e.g. LT) has particularly low correlation

with other regions for the entire time course, compared to other resting-state connectivity.

In addition to spatial clustering, we also wanted to examine if the resting-state connectivity

was temporally stationary. Under stationarity, PDC should have remained constant across

the entire resting-state. What we observe, however, suggests “local” behavior of stationarity

in the effective connectivity structure. The PDC between cortical sources tend to congregate

into distinct quasi-stable states/regimes or ’microstates’, which remains constant within a
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short-time regime but with abrupt transitions across different regimes. This may imply a

rapid switching between distinct functional brain networks in the resting-state. In particu-

lar, the results show PDC estimates over, e.g. epochs 1-8; epochs 12-18 and epochs 22 -27

are approximately constant. However, since PDC evolved across resting-state, one should be

careful to not simply assume stationarity of cortical signals during resting-state. In contrast

with the recent microstate analysis of resting-state EEG based on scalp-topographic maps

Khanna et al. (2015), we analyzed state-related changes in the connectivity maps directly,

between underlying cortical sources.

3.6 Conclusion

We developed a procedure for analyzing effective connectivity between high-dimensional

dipole sources from a dense grid on the cortical surface. Our method, based on factor

analysis, first extracts a small number of factors or summaries of neuronal activity within

each cortical ROI. The rationale here is that different cortical sources within a ROI may

share common factors as each source is a mixture of these factors. From this commonality

we derive the connectivity between the sources. These factors, concatenated from different

ROIs, are then modeled as a VAR process. The proposed model provides a powerful tool for

dimensionality reduction of high-dimensional source signals.

The proposed factor-VAR model also provides a framework for analyzing effective connec-

tivity of high-dimensional times series at multiple levels or scales. At the dipole level in

the source space, the parametric estimate for the factor model can be back-projected to the

VAR model for the source space, which provides very powerful tools for subsequent analysis,

including effective connectivity such as partial directed coherence; directed transfer function

and Granger causality; and functional connectivity such as coherence and partial coherence.

At the regional level, effective connectivity can be summarized either by aggregating effec-

75



tive connectivity between all pairs of dipoles from the regions or directly from the VAR

parameters of the factor activities.

Future work involves incorporating the phase-slope index (PSI) Nolte et al. (2008) in the

proposed framework. This is promising because PSI is non-parametric and hence potentially

flexible in capturing directionality. Moreover, motivated by other improved versions of PDC

used in estimating connectivity between the high-dimensional EEG sensors (rather than the

sources), we will investigate generalized PDC (gPDC) Luiz A. Baccala (2014) and gener-

alized orthogonalized PDC (gOPDC) Omidvarnia et al. (2014), which are considered to be

more robust to noise mixing. The current work was illustrated only to a single-subject data

but the proposed framework will be generalized so that it can be used to test for differences

in effective connectivity between different experimental conditions; and various populations

(e.g., healthy controls vs. patients). Finally, we shall adopt the mixed effects vector autore-

gressive (ME-VAR) model by Gorrostieta et al. (2012) to account for the variation in effective

connectivity among different subjects even in a homogeneous group. Finally, as noted, PDC

appears to have evolved during resting-state which could indicate non-stationarity of the

cortical sources even during resting-state. One approach will be to adapt the novel model

developed in Fiecas and Ombao (2016); Samdin et al. (2016) for evolving brain processes to

the high-dimensional setting.
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(a) Delta band (0 - 4 Hz) (b) Theta band (4 - 8 Hz)

(c) Alpha band (8 - 16 Hz) (d) Beta band (16 - 32 Hz)

Figure 3.5: Band-limited inter-region effective connectivity (in log-scale) summarized from
the inter-dipole PDC blocks in Fig. 3.4.
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(a) Alpha band (8 - 16 Hz) (b) Beta band (16 - 32 Hz)

Figure 3.6: Epoch-specific estimates of inter-region PDC at the alpha band (8 - 16 Hz) and
the beta band (16 - 32 Hz), plotted across the 60 epochs each with a duration of 3s. In order
to visualize the time-variation of connectivity across epochs, we reshaped (vectorized) the
R × R connectivity matrix to a R2 × 1 column vector with the connectivity Cij located at
row R ∗ (j − 1) + i. We use thin horizontal lines to separate the regions, that is the line is
placed after each CRj, for j ∈ {1, . . . , R}. Column i represents the connectivity estimated
from epoch i = 1, . . . , 60.
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Chapter 4

Summary and Future Work

4.1 Summary

In summary, the contributions in the dissertation include (1.) we explored the approaches

for effectively reducing the dimensionality of high-dimensional time series while preserving

the lead-lag relationships; (2.) we implemented a Matlab toolbox with interactive interface

that help users to perform exploratory analysis of multivariate time series and (3) based on

the low dimensional embeddings, we proposed a factor based vector autoregressive (VAR)

model, which is capable of characterizing the lead-lag relationship in high-dimensional brain

cortical sources.

In chapter 2, we developed exploratory procedures for analyzing high dimensional brain sig-

nals under the presence of high multi-collinearity by using low-dimensional factor representa-

tions for pacellated brain regions. We considered two schemes for estimating the factors: the

conventional time-domain PCA and the spectral-domain PCA, which respectively assumes

the factors as an instantaneous mixing and a linear filtering of the high-dimensional mea-

sured signals. Compared to averaged signals typically used in ROI-based analysis of fMRI
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data, the factors are able to characterize the variability and dependence across voxels, are

derived from a parametric modeling beyond simply a dimension reduction method. We eval-

uated (benchmark) the performance of the proposed methods via numerical experiments by

applying the models on simulated time series with different spatial and temporal correlation

structures. The simulation results also show that the spectral PCA is more advantageous

than the conventional PCA, in capturing the high-frequency oscillatory brain activities as

measured by the EEGs, and accounts for both the temporal and cross-correlation between

regions. To the best of our knowledge, we are among the limited studies to apply spectral

PCA to analyze EEG and fMRI data. We performed exploratory analysis on a motor-task

EEG and a resting-state fMRI data to assess the suitability of our method as compared to

the traditional averaging approach. The results for both of the simulation and exploratory

analysis show that learning low-dimensional representations (factors) has potential benefits

for subsequent modeling of the connectivity in high dimensional time series, because the fac-

tors are capable of capturing the dynamics of the data (i.e., temporal dynamics, variation)

and the detailed spectral structure while reducing dimension (complexity) of the original

problem. We also implemented the methods in a Matlab toolbox with graphical interface

that allows users to interactively explore, process and analyze the data in a convenient way.

In chapter 3, we developed a procedure for analyzing effective connectivity between high-

dimensional dipole sources from a dense grid on the cortical surface. Our method, based on

factor analysis, first extracts a small number of factors or summaries of neuronal activity

within each cortical ROI. The rationale here is that different cortical sources within a ROI

may share common factors as each source is a mixture of these factors. From this com-

monality we derive the connectivity between the sources. These factors, concatenated from

different ROIs, are then modeled as a VAR process. The proposed model provides a powerful

tool for dimensionality reduction of high-dimensional source signals. The proposed factor-

VAR model also provides a framework for analyzing effective connectivity of high-dimensional

times series at multiple levels or scales. At the dipole level in the source space, the parametric
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estimate for the factor model can be back-projected to the VAR model for the source space,

which provides very powerful tools for subsequent analysis, including effective connectivity

such as partial directed coherence; directed transfer function and Granger causality; and

functional connectivity such as coherence and partial coherence. At the regional level, effec-

tive connectivity can be summarized either by aggregating effective connectivity between all

pairs of dipoles from the regions or directly from the VAR parameters of the factor activities.

4.2 Future Directions

For the low dimensional embedding approaches of time series, we only explored linear pro-

jection or convolution in summarizing region-specific signals, where the solution can be

computed explicitly using eigenvalue decomposition. It may lack the ability to characterize

non-linear association. Our future work includes a comprehensive evaluation of the methods.

For example, we will evaluate the ability of the models in capturing the temporal dynamics

and at the same time, quantify the artifact that might be induced by the mixing. More-

over, to make the package more comprehensive, we shall include other emerging measures of

dependence such as isolated coherence (Pascual-Marqui et al., 2014; Ombao and Van Bel-

legem, 2008; Fiecas and Ombao, 2011; Wang et al., 2016a) and other more general (possibly

non-linear) methods for obtaining summary signals (Peña and Yohai, 2015).

In chapter 3, we proposed a parametric model (VAR) for the effective connectivity in cortical

sources. Future work involves incorporating the phase-slope index (PSI) Nolte et al. (2008)

in the proposed framework. This is promising because PSI is non-parametric and hence

potentially flexible in capturing directionality. Moreover, motivated by other improved ver-

sions of PDC used in estimating connectivity between the high-dimensional EEG sensors

(rather than the sources), we will investigate generalized PDC (gPDC) Luiz A. Baccala

(2014) and generalized orthogonalized PDC (gOPDC) Omidvarnia et al. (2014), which are
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considered to be more robust to noise mixing. The current work was illustrated only to a

single-subject data but the proposed framework will be generalized so that it can be used to

test for differences in effective connectivity between different experimental conditions; and

various populations (e.g., healthy controls vs. patients). Finally, we shall adopt the mixed

effects vector autoregressive (ME-VAR) model by Gorrostieta et al. (2012) to account for the

variation in effective connectivity among different subjects even in a homogeneous group.

Finally, as noted, PDC appears to have evolved during resting-state which could indicate

non-stationarity of the cortical sources even during resting-state. One approach will be to

adapt the novel model developed in Fiecas and Ombao (2016); Samdin et al. (2016) for

evolving brain processes to the high-dimensional setting.
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Hämäläinen, M. S. and Ilmoniemi, R. J. (1994b). Interpreting magnetic fields of the brain:
minimum norm estimates. Medical & biological engineering & computing, 32(1):35–42.

Hamalainen, M. S. and Sarvas, J. (1989). Realistic conductivity geometry model of the
human head for interpretation of neuromagnetic data. Biomedical Engineering, IEEE
Transactions on, 36(2):165–171.

Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter.
Cambridge university press.

Hassan, M., Dufor, O., Merlet, I., Berrou, C., and Wendling, F. (2014). EEG source con-
nectivity analysis: from dense array recordings to brain networks.

Haufe, S., Dähne, S., and Nikulin, V. V. (2014). Dimensionality reduction for the analysis
of brain oscillations. NeuroImage, 101:583–597.

Haufe, S., Nikulin, V. V., Müller, K.-R., and Nolte, G. (2013). A critical assessment of
connectivity measures for EEG data: a simulation study. NeuroImage, 64:120–133.

Haufe, S., Tomioka, R., Nolte, G., M’́uller, K.-R., and Kawanabe, M. (2010). Modeling sparse
connectivity between underlying brain sources for EEG/MEG. Biomedical Engineering,
IEEE Transactions on, 57(8):1954–1963.

He, B., Yang, L., Wilke, C., and Yuan, H. (2011). Electrophysiological imaging of brain activ-
ity and connectivity-challenges and opportunities. IEEE Trans. Biomed. Eng., 58(7):1918–
1931.

Holmes, C. J., Hoge, R., Collins, L., Woods, R., Toga, A. W., and Evans, A. C. (1998).
Enhancement of MR images using registration for signal averaging. Journal of computer
assisted tomography, 22(2):324–333.

Hui, H. B., Pantazis, D., Bressler, S. L., and Leahy, R. M. (2010). Identifying true cortical
interactions in MEG using the nulling beamformer. NeuroImage, 49(4):3161–3174.

87



Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., and Se-
jnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separa-
tion. Psychophysiology, 37(02):163–178.

Kaminski, M. and Blinowska, K. J. (1991). A new method of the description of the infor-
mation flow in the brain structures. Biological cybernetics, 65(3):203–210.

Kang, H., Ombao, H., Linkletter, C., Long, N., and Badre, D. (2012). Spatio-spectral mixed-
effects model for functional magnetic resonance imaging data. Journal of the American
Statistical Association, 107(498):568–577.

Khanna, A., Pascual-Leone, A., Michel, C. M., and Farzan, F. (2015). Microstates in resting-
state EEG: Current status and future directions. Neuroscience & Biobehavioral Reviews,
49:105–113.

Knyazev, G. G., Slobodskoj-Plusnin, J. Y., Bocharov, A. V., and Pylkova, L. V. (2011). The
default mode network and EEG alpha oscillations: an independent component analysis.
Brain research, 1402:67–79.

Korobilis, D. (2013). VAR forecasting using Bayesian variable selection. Journal of Applied
Econometrics, 28(2):204–230.

Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., and Papadopoulo, T. (2005).
A common formalism for the integral formulations of the forward EEG problem. Medical
Imaging, IEEE Transactions on, 24(1):12–28.

Lam, C. and Yao, Q. (2012). Factor modeling for high-dimensional time series: inference for
the number of factors. The Annals of Statistics, pages 694–726.

Lazar, N. (2008). The statistical analysis of functional MRI data. Springer Science & Business
Media.

Lila, E., Aston, J. A., and Sangalli, L. M. (2016). Smooth Principal Component Analysis
over two-dimensional manifolds with an application to Neuroimaging. arXiv preprint
arXiv:1601.03670.

Lindquist, M. A., Xu, Y., Nebel, M. B., and Caffo, B. S. (2014). Evaluating dynamic bivariate
correlations in resting-state fMRI: A comparison study and a new approach. NeuroImage,
101:531–546.

Luiz A. Baccala, K. S. (2014). Partial Directed Coherence. In Koichi Sameshima, L. A. B.,
editor, Methods in Brain Connectivity Inference through Multivariate Time Series Analy-
sis, chapter 4, pages 57–72. CRC Press.

Makeig, S., Bell, A. J., Jung, T.-P., Sejnowski, T. J., et al. (1996a). Independent compo-
nent analysis of electroencephalographic data. Advances in neural information processing
systems, pages 145–151.

88



Makeig, S., Bell, A. J., Jung, T.-P., Sejnowski, T. J., et al. (1996b). Independent compo-
nent analysis of electroencephalographic data. Advances in neural information processing
systems, pages 145–151.

Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., and Corbetta, M. (2007).
Electrophysiological signatures of resting state networks in the human brain. Proc. Natl.
Acad. Sci. U. S. A., 104(32):13170–13175.

Matsuura, K. and Okabe, Y. (1995). Selective minimum-norm solution of the biomagnetic
inverse problem. Biomedical Engineering, IEEE Transactions on, 42(6):608–615.

Meunier, D., Achard, S., Morcom, A., and Bullmore, E. (2009). Age-related changes in
modular organization of human brain functional networks. NeuroImage, 44(3):715–723.

Meunier, D., Lambiotte, R., and Bullmore, E. T. (2010). Modular and hierarchically modular
organization of brain networks. Frontiers in neuroscience, 4.

Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., and de Peralta, R. G.
(2004). EEG source imaging. Clinical neurophysiology, 115(10):2195–2222.

Mørup, M., Hansen, L. K., Arnfred, S. M., Lim, L.-H., and Madsen, K. H. (2008). Shift-
invariant multilinear decomposition of neuroimaging data. NeuroImage, 42(4):1439–1450.

Nedungadi, A. G., Ding, M., and Rangarajan, G. (2011). Block coherence: a method for
measuring the interdependence between two blocks of neurobiological time series. Biolog-
ical cybernetics, 104(3):197–207.

Ngo, D., Sun, Y., Genton, M. G., Wu, J., Srinivasan, R., Cramer, S. C., and Ombao,
H. (2015). An exploratory data analysis of electroencephalograms using the functional
boxplots approach. Frontiers in neuroscience, 9.

Nicholson, W., Matteson, D., and Bien, J. (2014). Structured regularization for large vector
autoregressions. Cornell University.

Niedermeyer, E. and da Silva, F. L. (2005). Electroencephalography: basic principles, clinical
applications, and related fields. Lippincott Williams & Wilkins.
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Appendix A

Appendix

A.1 Algorithms

Algorithm 1 Compute Spectral Matrix

1: procedure CrossPowerSpectrum({z(t)})
2: set nfft = T , m = [

√
T ], h` = 1

2m+1

3: //Remark 1: h` ≥ 0, h−` = h` and
∑

` h` = 1

4: //Remark 2: In order to make Ŝzz positive definite we need 2m+ 1 > p
5: for k = 0, . . . , T − 1 do
6: compute zω(k)←

∑T−1
t=0 z(t) exp(−i2πt k

T
) . transfer function: fft

7: compute Iω(k)← zω(k)z∗ω(k) . raw periodogram
8: end for
9: for k = 0, . . . ,m do . padding
10: Iω(−k)← I∗ω(k)
11: Iω(T + k)← I∗ω(T − k)
12: end for
13: for k = 0, . . . , T − 1 do . smoothing
14: compute Ŝzz(k)←

∑m
`=−m h`Iω(k + `)

15: end for
return {zω(k)}, {Ŝzz(k)}

16: end procedure
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Algorithm 2 Factor model - m components

procedure PCA({Ŝzz(k)})
2: for k = 0, . . . , T − 1 do

compute eigenvalues λ1(k) > λ2(k), . . . , λn(k)
4: compute corresponding eigenvectors e1(k), e2(k), . . . , en(k)

end for
return {λj(k)}, {ej(k)}

6: end procedure
procedure ComputeFactors({zω(k)}, {λj(k)}, {ej(k)})

8: for k = 0, . . . , bT/2c do
A(k)← [e1(k), . . . , em(k)]

10: end for
for k = bT/2c+ 1, . . . , T − 1 do

12: A(k)← A∗(T − k)
end for

14: for k = 0, . . . , T − 1 do
fω(k) = A∗(T − k)zω(k) . transfer function for f(t)

16: end for
for t = 0, . . . , T − 1 do

18: f(t) = 1
T

T−1∑
k=0

fω(k) exp(i2πt k
T

) . ifft

end for
return {f(t)}, {A(k)}

20: end procedure
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