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Robust Online Monitoring of Signal Temporal Logic
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1 Toyota Technical Center,firstname.lastname@tema.toyota.com
2 University of California Berkeley,

{donze, shromona.ghosh, garvitjuniwal, sseshia}@eecs.berkeley.edu

Abstract. Signal Temporal Logic (STL) is a formalism used to rigorously spec-
ify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or
discrete components in interaction with a continuous environment or analog com-
ponents. STL is naturally equipped with a quantitative semantics which can be
used for various purposes: from assessing the robustness ofa specification to
guiding searches over the input and parameter space with thegoal of falsifying
the given property over system behaviors. Algorithms have been proposed and
implemented forofflinecomputation of such quantitative semantics, but only few
methods exist for anonlinesetting, where one would want to monitor the satis-
faction of a formula during simulation. In this paper, we formalize a semantics for
robust online monitoring ofpartial traces, i.e., traces for which there might not be
enough data to decide the Boolean satisfaction (and to compute its quantitative
counterpart). We propose an efficient algorithm to compute it and demonstrate
its usage on two large scale real-world case studies coming from the automotive
domain and from CPS education in a Massively Open Online Course (MOOC)
setting. We show that savings in computationally expensivesimulations far out-
weigh any overheads incurred by an online approach.

1 Introduction

Design engineers for embedded control software typically validate their designs by in-
specting concrete observations of system behavior. For instance, in the model-based
development (MBD) paradigm, designers have access to numerical simulation tools to
obtain traces from models of systems. An important problem is then to be able to ef-
ficiently test whether some logical propertyϕ holds for a given simulation trace. It is
increasingly common [13, 9, 12, 2, 15] to specify such properties using a real-time tem-
poral logic such as Signal Temporal Logic (STL) [7] or MetricTemporal Logic (MTL)
[10]. An offline monitoringapproach involves performing ana posteriorianalysis on
completesimulation traces (i.e., traces starting at time0, and lasting till a user-specified
time horizon). Theoretical and practical results for offline monitoring [10, 5, 7, 17] fo-
cus on the efficiency of monitoring as a function of the lengthof the trace, and the size
of the formula representing the propertyϕ.

There are a number of situations where offline monitoring is unsuitable. Consider
the case where the monitor is to be deployed in an actual system to detect erroneous
behavior. As embedded software is typically resource constrained, offline monitoring –
which requires storing the entire observed trace – is impractical. Also, when a monitor
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is used in a simulation-based validation tool, a single simulation may run for several
minutes or even hours. If we wish to monitor a safety propertyover the simulation,
a better use of resources is to abort the simulation whenevera violation is detected.
Such situations demand anonline monitoring algorithm, which has markedly different
requirements. In particular, a good online monitoring algorithm must: (1) be able to
generate intermediate estimates of property satisfactionbased onpartial signals, (2)
use minimal amount of data storage, and (3) be able to run fastenough in a real-time
setting.

Most works on online monitoring algorithms for logics such as Linear Temporal
Logic (LTL) or Metric Temporal Logic (MTL) have focussed on the Boolean satisfac-
tion of properties by partial signals [11, 8, 18]. However, recent work has shown that
by assigning quantitative semantics to real-time logics such as MTL and STL, prob-
lems such as bug-finding, parameter synthesis, and robustness analysis can be solved
using powerful off-the-shelf optimization tools [1, 4]. A robust satisfaction value is a
function mapping a propertyϕ and a tracex(t) to a real number. A large positive value
suggests thatx(t) easily satisfiesϕ, a positive value close to zero suggests thatx(t) is
close to violatingϕ, and a negative value indicates a violation ofϕ. While the recursive
definitions of quantitative semantics naturally define offline monitoring algorithms to
compute robust satisfaction values [10, 7, 5], there is limited work on an online moni-
toring algorithm to do the same [3].

The main technical and theoretical challenge of online monitoring lies in the defi-
nition of a practical semantics for a temporal logic formulaover a partial signal, i.e., a
signal trace with incomplete data which cannot yet validateor invalidateϕ. Past work
[8] has identified three views for the satisfaction of a LTL propertyϕ over a partial trace
τ : (1) aweak viewwhere the truth value ofϕ overτ is assigned totrue if there is some
suffix of τ that satisfiesϕ, (2) astrong viewwhen it is defined to befalsewhen some
suffix of τ does not satisfyϕ and (3) aneutral viewwhen the truth value is defined
using a truncated semantics of LTL restricted tofinitepaths. In [11], the authors extend
the truncated semantics to MTL, and in [3], the authors introduce the notion of apre-
dictor, which works as an oracle to complete the partial trace and provide an estimated
satisfaction value. However, such a value cannot be formally trusted in general as long
as the data is incomplete.

We now outline our major contributions in this paper. In Section 3, we presentrobust
interval semantics for an STL propertyϕ on a partial traceτ that unifies the different
semantic views of real-time logics on truncated paths. Informally, the robust interval
semantics map a tracex(t) and an STL propertyϕ to an interval(ℓ, υ), with the in-
terpretation that for any suffixu(t), ℓ is the greatest lower bound on the quantitative
semantics of the tracex(t), andυ is the corresponding lowest upper bound. There is a
natural correspondence between the interval semantics andthree-valued semantics: (1)
the truth value ofϕ is false according to the weak view iffυ is negative, and true oth-
erwise; (2) the truth value is true according to the strong view iff ℓ is positive, and false
otherwise; and (3) a neutral semantics, e.g., based on some predictor, can be defined
whenℓ < 0 < υ, i.e., when there exist both suffixes that can violate or satisfy ϕ.

In Section 4, we present an efficient online algorithm to compute the robust interval
semantics for bounded horizon formulas. Our approach is based on the offline algorithm
of [5] extended to work in a fashion similar to the incremental Boolean monitoring
of STL implemented in the tool AMT [18]. A key feature of our algorithm is that it
imposes minimal runtime overhead with respect to the offlinealgorithm, while being



able to compute robust satisfaction intervals on partial traces. In Section 5, we present
specialized algorithms to deal with commonly-used unbounded horizon formulas using
only a bounded amount of memory.

Finally, we present an implementation and experimental results on two large-scale
case studies: (i) industrial-scale Simulink models from the automotive domain in Sec-
tion 6, and (ii) an automatic grading system used in a massiveonline education initiative
on CPS [14]. Since the online algorithm can abort simulationas soon as the truth value
of the property is determined, we see a consistent 10%-20% savings in simulation time
(which is typically several hours) in a majority of experiments, with negligible over-
head (< 1%). In general, our results indicate that the benefits of our online monitoring
algorithm over the offline approach far outweigh any overheads.

2 Background

Interval Arithmetic. We now review interval arithmetic. An intervalI is a convex
subset ofR. A singular interval[a, a] contains exactly one point. Intervals(a, a), [a, a),
(a, a], and∅ denote empty intervals. We enumerate interval operations below assuming
open intervals. Similar operations can be defined for closed, open-closed, and closed-
open intervals.

1. −I1 = (−b1,−a1)
2. c+ I1 = (c+ a1, c+ b1)

3. I1 ⊕ I2 = (a1 + a2, b1 + b2)
4. min(I1, I2) = (min(a1, a2),min(b1, b2))

5. I1 ∩ I2 =

{

∅ if min(b1, b2) < max(a1, a2)
(max(a1, a2),min(b1, b2)) otherwise.

(2.1)

Definition 1 (Signal).A time domainT is a finite or infinite set of time instants such
thatT ⊆ R

≥0 with 0 ∈ T . A signalx is a function fromT to X . Given a time domain
T , a partial signalis any signal defined on a time domainT ′ ⊆ T .

Simulation frameworks typically provide signal values at discrete time instants, usu-
ally this is a by-product of using a numerical technique to solve the differential equa-
tions in the underlying system. These discrete-time solutions are assumed to be sampled
versions of the actual signal, which can be reconstructed using some form of interpo-
lation. In this paper, we assume constant interpolation to reconstruct the signalx(t),
i.e., given a sequence of time-value pairs(t0,x0), . . . , (tn,xn), for all t ∈ [t0, tn), we
definex(t) = xi if t ∈ [ti, ti+1), andx(tn) = xn. Further, letTn ⊆ T represent the
finite subset of time instants at which the signal values are given.
Signal Temporal Logic. We use Signal Temporal Logic (STL) [7] to analyze time-
varying behaviors of signals. We now present its syntax and semantics. Asignal predi-
cateµ is a formula of the formf(x) > 0, wherex is a variable that takes values from
X , andf is a function fromX toR. For a givenf , let finf denoteinfx∈X f(x), i.e., the
greatest lower boundof f overX . Similarly, letfsup = sup

x∈X f(x). The syntax of an
STL formulaϕ is defined in Eq. (2.2). Note that✷ and✸ can be defined in terms of the
U operator, but we include them for convenience.

ϕ ::= µ | ¬ϕ | ϕ ∧ ϕ | ✷(u,v)ϕ | ✸(u,v)ϕ | ϕU(u,v)ϕ (2.2)

Quantitative semantics for timed-temporal logics have been proposed for STL in
[7]; we include the definition below.



Definition 2 (Robust Satisfaction Value).Therobust satisfaction valueis a function
ρ mappingϕ, the signalx, and a timeτ ∈ T as follows:
ρ (f(x) > 0,x, τ) = f(x(τ))
ρ (¬ϕ,x, τ) = −ρ(ϕ,x, τ)
ρ (ϕ1 ∧ ϕ2,x, τ) = min (ρ(ϕ1,x, τ), ρ(ϕ2,x, τ))
ρ (✷Iϕ,x, τ) = inf

τ ′∈τ+I
ρ(ϕ,x, τ ′)

ρ (✸Iϕ,x, τ) = sup
τ ′∈τ+I

ρ(ϕ,x, τ ′)

ρ (ϕUIψ,x, τ) = sup
τ1∈τ+I

min

(

ρ(ψ,x, τ1), inf
τ2∈(τ,τ1)

ρ(ϕ,x, τ2)

)

(2.3)

Here, the translation from quantitative semantics to the usual Boolean satisfaction
semantics is that a signalx satisfies an STL formulaϕ at a timeτ iff the robust satis-
faction valueρ(ϕ,x, τ) ≥ 0.

3 Robust Interval Semantics

In what follows, we assume that we wish to monitor the robust satisfaction value of
a signal over a finite time-horizonTH . We assume that the signal is obtained by ap-
plying piecewise constant interpolation to a sampled signal defined over time-instants
{t0, t1, . . . , tN}, such thattN = TH . In an online monitoring context, at any timeti,
only the partial signal over time instants{t0, . . . , ti} is available, and the rest of the
signal becomes available in discrete time increments. We define robust satisfaction se-
mantics of STL formulas over such partial signals using an interval-based semantics.
Such arobust satisfaction interval(RoSI) includes all possible robust satisfaction val-
ues corresponding to the suffixes of the partial signal. In this section, we formalize the
recursive definitions for the robust satisfaction intervalof an STL formula with respect
to a partial signal, and in the next section we will discuss anefficient algorithm to com-
pute and maintain these intervals.

Definition 3 (Prefix, Completions). Let {t0, . . ., ti} be a finite set of time instants
such thatti ≤ TH , and letx[0,i] be a partial signal over the time domain[t0, ti].
We say thatx[0,i] is a prefix of a signalx if for all t ≤ ti, x(t) = x[0,i](t). The
set of completionsof a partial signalx[0,i] (denoted byC(x[0,i])) is defined as the set
{x | x[0,i] is a prefix ofx}.

Definition 4 (Robust Satisfaction Interval (RoSI)). The robust satisfaction interval
of an STL formulaϕ on a partial signalx[0,i] at a timeτ ∈ [t0, tN ] is an intervalI such
that:

inf(I) = inf
x∈C(x[0,i])

ρ(ϕ,x, τ) and sup(I) = sup
x∈C(x[0,i])

ρ(ϕ,x, τ)

Definition 5. We now define a recursive function[ρ] that maps a given formulaϕ, a
partial signalx[0,i] and a timeτ ∈ T to an interval[ρ](ϕ,x[0,i], τ).



[ρ]
(

f(x[0,i]) > 0,x[0,i], τ
)

=

{

[f(x[0,i](τ)), f(x[0,i](τ))] τ ∈ [t0, ti]

[finf , fsup] otherwise.

[ρ]
(

¬ϕ,x[0,i], τ
)

= −[ρ](ϕ,x[0,i], τ)

[ρ]
(

ϕ1 ∧ ϕ2,x[0,i], τ
)

= min([ρ](ϕ1,x[0,i], τ), [ρ](ϕ2,x[0,i], τ))

[ρ]
(

✷Iϕ,x[0,i], τ
)

= inf
t∈τ+I

(

[ρ](ϕ,x[0,i], τ)
)

[ρ]
(

✸Iϕ,x[0,i], τ
)

= sup
t∈τ+I

(

[ρ](ϕ,x[0,i], τ)
)

[ρ]
(

ϕ1UIϕ2,x[0,i], τ
)

= sup
τ2∈τ+I

min





[ρ](ϕ2,x[0,i], τ2),

inf
τ1∈(τ,τ2)

[ρ](ϕ1,x[0,i], τ1))





(3.1)

The following lemma that can be proved by induction over the structure of STL
formulas shows that the interval obtained by applying the recursive definition for[ρ] is
indeed the robust satisfaction interval as defined in Def. 4.

Lemma 1. For any STL formulaϕ, the function[ρ](ϕ,x[0,i], τ) defines the robust sat-
isfaction interval for the formulaϕ over the signalx[0,i] at timeτ .

4 Online Algorithm

Donzé et al. [5] present an offline algorithm for monitoringSTL formulas over (piece-
wise) linearly interpolated signals. A naı̈ve implementation of an online algorithm is as
follows: at timeti, use a modification of the offline monitoring algorithm to recursively
compute the robust satisfaction intervals as defined by Def.5 to the signalx[0,i]. We
observe that such a procedure does many repeated computations that can be avoided by
maintaining the results of intermediate computations. Furthermore, the naı̈ve procedure
requires storing the signal values over the entire time horizon, which makes it memory-
intensive. In this section, we present the main technical contribution of this paper:an
online algorithm that is memory-efficient and avoids repeated computations.

As in the offline monitoring algorithm in [5], an essential ingredient of the online
algorithm is Lemire’s running maximum filter algorithm [16]. The problem this algo-
rithm addresses is the following: given a sequence of valuesa1, . . . , an, find the maxi-
mum (resp. minimum) over all windows of sizew, i.e., for allj, maxi∈[j,j+w) ai (resp.
mini∈[j,j+w) ai). We briefly review an extension of Lemire’s algorithm over piecewise-
constant signals with variable time steps, given as Algorithm 1. The main observation
in Lemire’s algorithm is that it is sufficient to maintain a descending (resp. ascending)
monotonic edge (notedF in Algorithm 1) to compute the sliding maxima (resp. min-
ima), in order to achieve an optimal procedure (measured in terms of the number of
comparisons between elements).

We first focus on the fragment of STL where each temporal operator is bounded by
a time-intervalI such thatsup(I) is finite. The procedure for online monitoring is an
algorithm that maintains in memory the syntax tree of the formulaϕ to be monitored,
augmented with some book-keeping information. First, we formalize some notation.
For a given formulaϕ, let Tϕ represent the syntax tree ofϕ, and letroot(Tϕ) denote
the root of the tree. Each node in the syntax tree (other than aleaf node) corresponds to



Algorithm 1: SlidingMax((t0,x0), . . . , (tN ,xN ))

Input : Window: [a, b]
Output : Sliding maximumy(t) over times in[t0, tN ]

1 F := {0} // F is the set of times representing the monotonic edge

2 i := 0 ; s, t := t0 − b
3 while t+ a < tN do
4 if F 6= ∅ then t := min(tmin(F) − a, ti+1 − b) else t := ti+1 − b if t = ti+1 − b

then
5 while xi+1 ≥ xmax(F) ∧ F 6= ∅ do
6 F:= F−max(F)
7 F:= F ∪ {i+ 1}, i := i+ 1

8 else// Slide window to the right

9 if s > t0 then y(s) := xmin(F) else y(t0) := xmin(F) F:= F−min(F), s :=
t

✷[0,a]

[0]

∨

[0, a]

¬

[0, a]

✸[b,c]

[0, a]

y > 0

[0, a]

x > 0

[b, a+c]

Fig. 1.Syntax treeTϕ for ϕ (given in (4.2)) with each nodev annotated withhor(v).

an STL operator¬,∨,∧,✷I or ✸I .3 We will useHI to denote any temporal operator
bounded by intervalI. For a given nodev, let op(v) denote the operator for that node.
For any nodev in Tϕ (except the root node), letparent(v) denote the unique parent of
v.

Algorithm 2 does the onlineRoSI computation. Like the offline algorithm, it is a
dynamic programming algorithm operating on the syntax treeof the given STL formula,
i.e., computation of theRoSI of a formula combines theRoSIs for its constituent sub-
formulas in a bottom-up fashion. As computing theRoSI at a nodev requires theRoSIs
at the child-nodes, this computation has to be delayed till theRoSIs at the children ofv
in a certain time-interval are available. We call this time-interval thetime horizonof v
(denotedhor(v)), and define it recursively in Eq. (4.1).

hor(v) =







[0] if v = root(Tϕ)
I ⊕ hor(parent(v)) if v 6= root(Tϕ) andop(parent(v)) = HI

hor(parent(v)) otherwise.
(4.1)

We illustrate the working of the algorithm using a small example then give a brief sketch
of the various steps in the algorithm.

Example 1.Consider formula (4.2). We showTϕ andhor(v) for each nodev in Tϕ in
Fig. 1. In rest of the paper, we useϕ as a running example4.

ϕ , ✷[0,a]

(

¬(y > 0) ∨✸[b,c](x > 0)
)

(4.2)

3 We omit the case ofUI here for lack of space, although the rewriting approach of [5] can also
be adapted and was implemented in our tool.

4 We remark thatϕ is equivalent to✷[0,a]

(

(y > 0) =⇒ ✸[b,c](x > 0)
)

, which is a common
formula used to express a timed causal relation between two signals.



The algorithm augments each nodev of Tϕ with a double-ended queue, that we de-
noteworklist[v]. Letψ be the subformula denoted by the tree rooted atv. For the partial
signalx[0,i], the algorithm maintains inworklist[v], theRoSI [ρ](ψ,x[0,i], t) for each
t ∈ hor(v) ∩ [t0, ti]. We denote byworklist[v](t) the entry corresponding to timet in
worklist[v]. When a new data-pointxi+1 corresponding to the timeti+1 is available, the
monitoring procedure updates each[ρ](ψ,x[0,i], t) in worklist[v] to [ρ](ψ,x[0,i+1], t).

In Fig. 3, we give an example of a run of the algorithm. We assume that the algo-
rithm starts in a state where it has processed the partial signalx[0,2], and show the effect
of receiving data at time-pointst3, t4 andt5. The figure shows the states of the work-
lists at each node ofTϕ at these times when monitoring the STL formulaϕ presented in
Eq. (4.2). Each row in the table adjacent to a node shows the state of the worklist after
the algorithm processes the value at the time indicated in the first column.

The first row of the table shows the snapshot of the worklists at time t2. Observe
that in the worklists for the subformulay > 0,¬y > 0, becausea < b, the data required
to compute theRoSI at t0, t1 and the timea, is available, and hence each of theRoSIs
is singular. On the other hand, for the subformulax > 0, the time horizon is[b, a+ c],
and no signal value is available at any time in this interval.Thus, at timet2, all elements
of worklist[vx>0] are(xinf ,xsup) corresponding to the greatest lower bound and lowest
upper bound onx.

To compute the values of✸[b,c](x > 0) at any timet, we take the supremum over
values from timest + b to t + c. As the time horizon for the node corresponding to
✸[b,c](x > 0) is [0, a], t ranges over[0, a]. In other words, we wish to perform the
sliding maximum over the interval[0+ b, a+ c], with a window of lengthc− b. We can
use the algorithm for computing the sliding window maximum as discussed earlier in
this section. One caveat is that we need to store separate monotonic edges for the upper
and lower bounds of theRoSIs. The algorithm then proceeds upward on the syntax tree,
only updating the worklist of a node only when there is an update to the worklists of its
children.

The second row in each table is the effect of obtaining a new time point (at time
t3) for both signals. Note that this does not affectworklist[vy>0] or worklist[v¬y>0],
as allRoSIs are already singular, but does update theRoSI values for the nodevx>0.
The algorithm then invokes Alg. 1 onworklist[vx>0] to updateworklist[v✸[b,c](x>0)].
Note that in the invocation on the second row (correspondingto time t3), there is an
additional value in the worklist, at timet3. This leads Alg. 1 to produce a new value of
SlidingMax (worklist[vx>0], [b, c]) (t3−b), which is then inserted inworklist[v✸[b,c]x>0].
This leads to additional points appearing in worklists at the ancestors of this node.

Finally, we remark that the run of this algorithm shows that at time t4, theRoSI
for the formulaϕ is [−2,−2], which yields a negative upper bound, showing that the
formula is not satisfied irrespective of the suffixes ofx andy. In other words, the satis-
faction ofϕ is known before we have all the data required byhor(ϕ).

Alg. 2 is essentially a procedure that recursively visits each node in the syntax tree
Tϕ of the STL formulaϕ that we wish to monitor. Line 4 corresponds to the base case
of the recursion, i.e. when the algorithm visits a leaf ofTϕ or an atomic predicates of the
form f(x) > 0. Here, the algorithm inserts the pair(ti+1,xi+1) in worklist[vf(x)>0] if
ti+1 lies insidehor(vf(x)>0). In other words, it only tracks a value if it is useful for the
computing the robust satisfaction interval of some ancestor node.

For a node corresponding to a Boolean operation, the algorithm first updates the
worklists at the children, and then uses them to update the worklist at the node. If
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t

−2

−1

0

1

2

t0

t3 − b

t1

t4 − c

a

t2

b

t3

c

t4

a+ c

t5

y

t

−2

−1

0

1

2

t0

t3 − b

t1

t4 − c

a

t2

b

t3

c

t4

a+ c

t5

Fig. 2. These plots show the signalsx(t) andy(t). Each signal begins at timet0 = 0, and we
consider three partial signals:x[0,3] (black + blue), andx[0,4] (x[0,3] + green), andx[0,5] (x[0,4]

+ red).

✷[0,a]

∨

¬✸[b,c]

y > 0x > 0

t0 = 0 t1 a

t2 [-1, -1] [2, 2] [2, 2]

t3 [-1, -1] [2, 2] [2, 2]

t4 [-1, -1] [2, 2] [2, 2]

t5 [-1, -1] [2, 2] [2, 2]

b t3 t4 a+c

t2 (xinf, xsup) -- -- (xinf,xsup)

t3 [-1, -1] [-2, -2] -- (xinf,xsup)

t4 [-1, -1] [-2, -2] [2, 2] (xinf,xsup)

t5 [-1, -1] [-2, -2] [2, 2] [2, 2]

t0 = 0 t1 a

t2 [1, 1] [-2, -2] [-2, -2]
t3 [1, 1] [-2, -2] [-2, -2]
t4 [1, 1] [-2, -2] [-2, -2]
t5 [1, 1] [-2, -2] [-2, -2]

t0 = 0 t3-b t4-c a

t2 (xinf, xsup) -- -- (xinf,xsup)

t3 [-1,xsup] [-2,xsup] -- (xinf,xsup)

t4 [-1, -1] [-2, -2] [2, 2] [2,xsup]

t5 [-1, -1] [-2, -2] [2, 2] [2, 2]

t0 = 0 t3-b t1 t4-c a

t2 [1,xsup] -- [−2,xsup] -- (xinf,xsup)

t3 [1,xsup] [1,xsup] [−2,xsup] -- (xinf,xsup)

t4 [1, 1] [1, 1] [-2, -2] [2, 2] [2,xsup]

t5 [1, 1] [1, 1] [-2, -2] [2, 2] [2, 2]

t0 = 0

t2 (xinf, xsup)

t3 (xinf, xsup)

t4 [−2,−2]

t5 [−2,−2]

Fig. 3. We show a snapshot of theworklist[v] maintained by the algorithm for four different
(incremental) partial traces of the signalsx(t) andy(t). Each row indicates the state ofworklist[v]
at the time indicated in the first column. An entry marked -- indicates that the corresponding
element did not exist inworklist[v] at that time. Each colored entry indicates that the entry was
affected by availability of a signal fragment of the corresponding color.

the current node represents¬ϕ (Line 5), the algorithm flips the sign of each entry in
worklist[vϕ]; this operation is denoted as−worklist[vϕ]. Consider the case where the
current nodevψ is a conjunctionϕ1 ∧ ϕ2. The sequence of upper bounds and the se-
quence of lower bounds of the entries inworklist[vϕ1 ] andworklist[vϕ1 ] can be each
thought of as a piecewise-constant signal (likewise forworklist[vϕ2 ). In Line 11, the al-
gorithm computes a pointwise-minimum over piecewise-constant signals representing
the upper and lower bounds of theRoSIs of its arguments. Note that if fori = 1, 2,
if worklist[vϕi ] hasNi entries, then the pointwise-min would have to be performed at
mostN1+N2 distinct time-points. Thus,worklist[vϕ1∧ϕ2 ] has at mostN1+N2 entries.
A similar phenomenon can be seen in Fig. 3, where computing amax over the worklists
of v✸[b,c](x>0)

andv¬(y>0) leads to an increase in the number of entries in the worklist
of the disjunction.

For nodes corresponding to temporal operators, e.g.,✸Iϕ, the algorithm first up-
datesworklist[vϕ]. It then applies Alg. 1 to compute the sliding maximum overworklist[vϕ].
Note that ifworklist[vϕ] containsN entries, so doesworklist[v✸Iϕ].



Algorithm 2: updateWorkList(vψ, ti+1, xi+1)

// vψ is a node in the syntax tree, (ti+1,xi+1) is a new
signal time-point

1 switchψ do
2 casef(x) > 0
3 if ti+1 ∈ hor(vψ) then
4 worklist[vψ ](ti+1) := [f(xi+1), f(xi+1)]

5 case¬ϕ
6 updateWorkList(vϕ, ti+1 ,xi+1)
7 worklist[vψ ] := −worklist[vϕ]

8 caseϕ1 ∧ ϕ2

9 updateWorkList(vϕ1 , ti+1, xi+1)
10 updateWorkList(vϕ2 , ti+1, xi+1)
11 worklist[vψ ] := min(worklist[vϕ1 ],worklist[vϕ2 ])

12 case✷Iϕ
13 updateWorkList(vϕ, ti+1 , xi+1)
14 worklist[vψ ] := SlidingMax(worklist[vϕ], I)

A further optimization can be implemented on top of this basic scheme. For a node
v corresponding to the subformulaHIϕ, the first few entries ofworklist[v] (say up to
time u) could become singular intervals once the requiredRoSIs for worklist[vϕ] are
available. The optimization is to only computeSlidingMax overworklist[vϕ] starting
from u+ inf(I). We omit the pseudo-code for brevity.

5 Monitoring untimed formulas

If the STL formula being monitored has untimed (i.e. infinite-horizon) temporal op-
erators, a direct application of Alg. 2 requires every node in the sub-tree rooted at the
untimed operator to have an unbounded time horizon. In otherwords, for all such nodes,
the algorithm would have to keep track of every value over arbitrarily long intervals. For
certain untimed operators and the combinations thereof, weshow that we can monitor
the formulas using only a bounded amount of information.

First, we introduce some equivalences over intervalsa, b, c that we use in the theo-
rem and the proof to follow:

min(max(a, b),max(a, c)) = max(a,min(b, c)) (5.1)

min(a,max(b, c)) = max(min(a, b),min(a, c)) (5.2)

max(max(a, b), c) = max(a, b, c) (5.3)

min(max(a, b), a) = a (5.4)

Theorem 1. For each of the following formulae, whereϕ andψ are atomic predicates
of the formf(x) > 0, we can monitor interval robustness in an online fashion using
constant memory: (1)✷ϕ,✸ϕ, (2)ϕUψ, (3)✷(ϕ∨✸ψ), ✸(ϕ∧✷ψ), (4)✷✸ϕ,✸✷ϕ,
and (5)✸(ϕ ∧✸ψ), ✷(ϕ ∨ ✷ψ).

Proof. In what follows, we use the following short-hand notation:

pi ≡ [ρ](f(x)>0,x[0,n+1], ti) qi ≡ [ρ](g(x)>0,x[0,n+1], ti) (5.5)



Note that if i ∈ [0, n], thenpi is the same over the partial signalx[0,n], i.e., pi =
[ρ](f(x)>0,x[0,n], ti) (and respectively forqi). We will use this equivalence in several
of the steps in what follows.
(1)✷ϕ, whereϕ ≡ f(x) > 0. Observe the following:

[ρ](ϕ,x[0,n+1], 0) = min
i∈[0,n+1]

pi = min

(

min
i∈[0,n]

pi, pn+1

)

(5.6)

In the final expression above, observe that the first entry does not contain anypn+1

terms, i.e., it can be computed using the data pointsx1, . . . ,xn in the partial signal
x[0,n] itself. Thus, for alln, if we maintain the one interval representing themin of the
first n values off(x) as asummary, then we can compute the interval robustness of
✷(f(x)>0) overx[0,n+1] with the additional dataxn+1 available attn+1. Note for the
dual formula✸(f(x)>0), a similar result holds withmin substituted bymax.
(2)ϕUψ, whereϕ ≡ f(x)>0, andψ ≡ g(x)>0. Observe the following:

[ρ](ϕUψ,x[0,n+1], 0) = max
i∈[0,n+1]

min(qi, min
j∈[0,i]

pj) (5.7)

We can rewrite the RHS of Eq. (5.7) to get:

max

(

max
i∈[0,n]

min

(

qi, min
j∈[0,i]

pj

)

, min

(

min
j∈[0,n]

pj, pn+1, qn+1

))

(5.8)

Let Un andMn respectively denote the first and second underlined terms inthe above
expression. Note that for anyn,Un andMn can be computed only using datax1, . . . ,xn.
Consider the recurrencesMn+1 = min(Mn, pn+1, qn+1) andUn+1 = max(Un,Mn+1);
we can observe that to computeMn+1 andUn+1, we only needMn,Un, andxn+1. Fur-
thermore,Un+1 is the desired interval robustness value over the partial signalx[0,n+1].
Thus storing and iteratively updating the two interval-valuesUn andMn is enough to
monitor the given formula.
(3)✷(ϕ ∨✸ψ), whereϕ ≡ f(x)>0, andψ ≡ g(x)>0. Observe the following:

[ρ](✷(ϕ ∨✸ψ),x[0,n+1], 0) = min
i∈[0,n+1]

max

(

pi, max
j∈[i,n+1]

qj

)

= min
i∈[0,n+1]

max

(

pi, max
j∈[i,n]

qj , qn+1

) (5.9)

Repeatedely applying the equivalence (5.1) to the outermin in (5.9) we get:

max

(

qn+1, min
i∈[0,n+1]

max

(

pi, max
j∈[i,n]

qj

))

(5.10)

The innermin simplifies to:

max

(

qn+1,min

(

pn+1, min
i∈[0,n]

(

max

(

pi, max
j∈[i,n]

qj

))

))

(5.11)

Let Tn denote the underlined term; note that we do not require any data at timetn+1 to
compute it. Using the recurrenceTn+1 = max (qn+1,min (pn+1, Tn)), we can obtain
the desired interval robustness value. The memory requiredis that for storing the one
interval valueTn. A similar result can be established for the dual formula✸(f(x) >
0 ∧ ✷(g(x)>0)).
(4)✷✸(ϕ), whereϕ ≡ f(x)>0. Observe the following:

[ρ](✷✸(ϕ,x[0,n+1], 0) = min
i∈[0,n+1]

max
j∈[i,n+1]

pj (5.12)



Rewriting the outermin operator and the innermax more explicitly, we get:

min

(

min
i∈[0,n]

max

(

max
j∈[i,n]

pj , pn+1

)

, pn+1

)

(5.13)

Repeatedly using (5.1) to simplify the above underlined term we get:

min

(

max

(

pn+1, min
i∈[0,n]

max
j∈[i,n]

pj

)

, pn+1

)

= pn+1. (5.14)

The simplification topn+1, follows from (5.4). Thus, to monitor✷✸(f(x)>0), we
do not need to store any information, as the interval robustness simply evaluates to that
of the predicatef(x) > 0 at timetn+1. A similar result can be obtained for the dual
formula✸✷(f(x)>> 0).
(5)✸(ϕ ∧✸(ψ)), whereϕ ≡ f(x)>0 ψ ≡ ✸(g(x)>0)). Observe the following:

[ρ](✸(ϕ ∧✸(ψ)),x[0,n+1], 0) = max
i∈[0,n+1]

(

min

(

pi, max
j∈[i,n+1]

qj

))

(5.15)

We can rewrite the RHS of Eq. (5.15) as the first expression below. Applying the equiv-
alence in (5.2) and (5.3) to the expression on the left, we getthe expression on the
right.

max













min (p0,max (q0, . . . , qn+1))

· · ·

min (pn,max (qn, qn+1))

min (pn+1, qn+1)













= max













min(p0, q0), . . . ,min(p0, qn+1),

· · ·

min(pn, qn),min(pn, qn+1),

min(pn+1, qn+1)













(5.16)
Grouping terms containingqn+1 together and applying the equivalence in (5.2) we get:

max























max













min(p0, q0),min(p0, q1), . . . ,min(p0, qn),

min(p1, q1), . . . ,min(p1, qn),

· · ·

min(pn, qn)













,

min(qn+1,max(p0, p1, . . . , pn)),

min(pn+1, qn+1)























(5.17)

Observe that the first argument to the outermostmax can be computed using only
x1, . . . ,xn. Suppose we denote this termTn. Also note that in the second argument,
the innermax (underlined) can be computed using onlyx1, . . . ,xn. Let us denote this
term byMn. We now have a recurrence relations:

Mn+1 = max(Mn, pn+1), (5.18)

Tn+1 = max(Tn,min(qn+1,Mn),min(qn+1, pn+1)), (5.19)

whereT0 = min(p0, q0) andM0 = p0. Thus, the desired interval robustness can be
computed using only two values stored inTn andMn. The dual result holds for the
formula✷(ϕ ∨ ✷(ψ)).

Remarks on extending above result:The result in Theorem 1 can be generalized to allow
ϕ andψ that are not atomic predicates, under following two conditions:

1. Bounded horizon subformulae condition: For each formula, the subformulaeϕ and
ψ have a bounded time-horizon, i.e.,hor(ϕ) andhor(ψ) are closed intervals.
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Fig. 4. A depiction of the action of the procedure to update the summary while computing
[ρ](✷ψ,x[0,i], t0). Here,W(j) is shorthand for[ρ](ψ,x[0,i], tj) and W′(j) is shorthand for
[ρ](ψ,x[0,i+1], tj).

2. Smallest step-size condition: Consecutive time-pointsin the signal are at least∆
seconds apart, for some finite∆, which is knowna priori.

5.1 Generalizing Theorem 1

Let sub(ϕ) denote the set of all subformulas ofϕ exceptϕ itself. Let last(ϕ) be defined
as follows:

last(ϕ) , max
ψ∈sub(ϕ)

sup(hor(ψ)) (5.20)

The meaning oflast(ϕ) is as follows: the last time at which a data value ofx is
required to computeρ(ϕ,x, t), is t + last(ϕ). For the formulaϕ defined in Eq. (4.2),
last(ϕ) = a + c. For the formulaψ ≡ ✷(x > 0), last(ψ) = ∞. In general, for any
untimed formulaϕ, last(ϕ) is equal to∞. In Theorem 1, we show that certain classes
of untimed formulas can be monitored in an online fashion with bounded amount of
memory. We first define the following quantities:

∆ , min
i≥0

(ti+1 − ti) wϕ , max
ψ∈sub(ϕ)

last(ψ) kϕ ,
⌈wϕ
∆

⌉

. (5.21)

Here,∆ represents the smallest time-step in the monitored signal,wϕ is the largest
time horizon of all subformulas ofϕ, andkϕ is the largest number of discrete time-
points for the trace in anywϕ interval.

Theorem 2. If wϕ is finite, then for eachϕ listed below, we can monitorRoSI of ϕ in
an online fashion usingO(kϕ) memory.

1. ✷ψ (dually✸ψ) 2. ϕUψ

3. ✷✸ψ (dually✸✷ψ) 4. ✷(ϕ ∨✸ψ)(dually✸(ϕ ∧ ✷ψ)),

5. ✸(ϕ ∧✸ψ) (dually✷(ϕ ∨✸ψ)
(5.22)

Proof. We provide proof sketches. The main argument in each of the proofs is as fol-
lows: For any partial signalx[0,i], there are two cases: The first case is whent0 ≥ ti − wϕ.
By assumption, there are at mostkϕ time-points in the interval[t0, ti]. Thus, in this case,



Algorithm 3: ComputingRoSI for untimed Until

1 v1 := Sϕ, v2 := Sψ
2 foreach j ∈ [si + 1, i] do
3 v1 := min

(

v1, [ρ](ϕ,x[0,i], tj)
)

4 v2 := sup
(

v2,min
(

v1, [ρ](ψ,x[0,i], tj)
))

5 [ρ](ϕUψ,x[0,i], t0) := v2

the worklists at each of the nodesvψ corresponding toψ ∈ sub(ϕ) have to track at most
kϕ RoSI values in order to compute[ρ](ϕ,x, t0).

The second case is whent0 < ti − wϕ; this implies that there is a largest timetsi
in [t0, t1, . . . , ti] such thattsi < ti − wϕ. For the partial signalx[0,i], at each timet ≤
tsi , there is enough information to compute the exact robustness value of each of the
subformulas ofϕ. The central step is that for each of the formulas mentioned above,
the robustness values in the interval[t0, tsi ] can besummarizedto a single robustness
value. Furthermore, the interval(tsi , ti] can have at mostkϕ time-points. Thus, the
computation of[ρ](ϕ,x[0,i], t0) can be split into tracking a summary for the interval
[tsi , ti] and tracking at mostkϕ RoSIs in the worklists of the immediate subformulas of
ϕ in the interval(tsi , ti]. We now explain how the summary information is maintained
for each formula.

(1) [✷ψ] We maintain the summaryS = infj∈[0,si][ρ](ψ,x[0,i], tj), i.e., the infimum
over all exact robustness values computable over the partial signalx[0,i]. When a new
time-point(ti+1,xi+1) becomes available,S is updated if there is a new timetsi+1 for
which [ρ](ψ,x[0,i], tsi+1) can be exactly computed; otherwise, the new value is used to
update all entries[ρ](ψ,x[0,i+1], tj) for tj ∈ [tsi+1, ti], and a new entry corresponding
to time ti+1 is added toworklist[vψ ]. Please see Fig. 4 for a depiction of this step. We
then establish the following: (1) There are at mostkϕ entries (each corresponding to
[ρ](ψ,x[0,i], tj) for tj ∈ (tsi , ti]) in worklist[vψ ]. This is true because there can be at
mostkϕ consecutive time-points that do not updateS in any interval of lengthwϕ. (2)
We show by induction that theinf of S and thekϕ entries inworklist[vψ] is equal to
[ρ](✷ψ,x[0,i], t0).

(2) [ϕUψ] We maintain the following two quantities as the summary:
(a)Sϕ = [ρ](✷[0,tsi ]

ϕ,x[0,i], t0) and (b)Sψ = [ρ](ϕU[0,tsi ]
ψ,x[0,i], t0). In worklist[vϕ]

andworklist[vψ]we store at mostkϕ values corresponding to[ρ](ϕ,x[0,i], tj) and[ρ](ψ,x[0,i], tj)
for tj ∈ (tsi , ti]. The crucial step is to combineSϕ andSψ with the entries inworklist[vϕ]
andworklist[vψ ] to obtain[ρ](ϕUψ,x[0,i], t0). We show that the iterative procedure in
Algorithm 3 can accomplish this. In itsjth iterationv1 is equal to inf

ℓ∈[0,j]
[ρ](ϕ,x[0,i], tℓ),

and we can show by induction thatv2 is equal to sup
m∈[0,j]

min

(

[ρ](ψ,x[0,i], tm), inf
ℓ∈[0,m]

[ρ](ϕ,x[0,i], tℓ)

)

.

Thus, at the end of the computation, the value computed inv2 is [ρ](ϕUψ,x[0,i], t0).

(3) [✷✸ψ] We show that we do not need any additional storage for monitoring ϕ.
Concretely, we posit that[ρ](✷✸ψ,x[0,i], t0) = [ρ](ψ,x[0,i], ti). We successively rewrite
[ρ](✷✸ψ,x[0,i], t0) = inf

j∈[0,i]
sup
ℓ∈[j,i]

[ρ](ψ,x[0,i], tℓ) as follows:



Algorithm 4: ComputingRoSI for ✷(ϕ ∨✸ψ)

1 v := S

2 foreach j ∈ [si + 1, i] do
3 v := sup([ρ](ψ,x[0,i], tj), inf(v, [ρ](ϕ,x[0,i], tj)))

4 [ρ](✷(ϕ ∨✸ψ),x[0,i], t0) := v

inf

(

sup
ℓ∈[0,i]

[ρ](ψ,x[0,i], tℓ), sup
ℓ∈[1,i]

[ρ](ψ,x[0,i], tℓ), . . . , sup
ℓ∈[i,i]

[ρ](ψ,x[0,i], tℓ)

)

(5.23)

inf

(

sup([ρ](ψ,x[0,i], ti), supℓ∈[0,i−1][ρ](ψ,x[0,i], tℓ))

sup([ρ](ψ,x[0,i], ti), supℓ∈[1,i−1][ρ](ψ,x[0,i], tℓ)), . . . , [ρ](ψ,x[0,i], tℓ)

)

(5.24)

In the above, to go from (5.23) to (5.24), we expand the innersup expressions, and
observe that the last term in theinf evaluates to[ρ](ψ,x[0,i], ti). For the final step, we
observe thatinf(I1, sup(I1, I2), . . . , sup(I1, In)) = I1, and thus, (5.24) simplifies to
[ρ](ψ,x[0,i], ti) By duality, a similar proof works for✸✷ψ.

(4) [✷(ϕ∨✸ψ)] We maintain one quantity as the summary information:S = [ρ](✷[0,si](ϕ∨
✸ψ),x[0,i], t0). Additionally, we store at mostkϕ entries corresponding to[ρ](ϕ,x[0,i], tj)
in worklist[vϕ] and at mostkϕ entries corresponding to[ρ](ψ,x[0,i], tj) in worklist[vψ].
To compute[ρ](ϕ,x[0,i], t0), we use Algorithm 4. To complete the proof we observe
that Algorithm 4 computes expression (5.25) that has nestedand alternatingsups and
infs:
sup

(

[ρ](ψ,x[0,i], ti), inf
(

[ρ](ϕ,x[0,i], ti), sup
(

[ρ](ψ,x[0,i], ti−1), . . . , S
)))

(5.25)

Using the identitysup(I1, inf(I2, I3)) = inf(sup(I1, I2), sup(I1, I3)), we can rearrange
the above expression to obtain:

inf







sup
(

[ρ](ψ,x[0,i], ti), [ρ](ϕ,x[0,i], ti)
)

,

sup

(

[ρ](ψ,x[0,i], ti), [ρ](ψ,x[0,i], ti−1),

inf
(

[ρ](ϕ,x[0,i], ti−1), sup
(

[ρ](ψ,x[0,i], ti−2), . . . , S
))

)






(5.26)

By repeated use of this identity on the expression in the second line, we get the expres-

sion inf
j∈[0,i]

(

max

(

[ρ](ϕ,x[0,i], tj), sup
ℓ∈[j,i]

[ρ](ψ,x[0,i], tℓ)

))

, which is equal to[ρ](ϕ,x[0,i], t0).

�

6 Experimental Results

We implemented Algorithm 2 as a stand-alone tool that can be plugged in loop with any
black-box simulator and evaluated it using two practical real-world applications. We
considered the following criteria: (1) On an average, what fraction of simulation time
can be saved by online monitoring? (2) How much overhead doesonline monitoring
add, and how does it compare to a naı̈ve implementation that at each step recomputes
everything using an offline algorithm?



Requirement Num. Early Simulation Time (hours)

Traces Termination Offline Online

ϕovershoot (ν1) 1000 801 33.3803 26.1643
ϕovershoot (ν2) 1000 239 33.3805 30.5923
ϕovershoot (ν3) 1000 0 33.3808 33.4369
ϕtransient (ν4) 1000 595 33.3822 27.0405
ϕtransient (ν5) 1000 417 33.3823 30.6134

Table 1.Experimental results on DEM.

6.1 Diesel Engine Model (DEM)

The first case study is an industrial-sized SimulinkR©model of a prototype airpath sys-
tem in a diesel engine. The closed-loop model consists of a plant model describing
the airpath dynamics, and a controller implementing a proprietary control scheme. The
model has more than3000 blocks, with more than20 lookup tables approximating high-
dimensional nonlinear functions. Due to the significant model complexity, the speed of
simulation is about5 times slower, i.e., simulating1 second of operation takes5 sec-
onds in SimulinkR©. As it is important to simulate this model over a long time-horizon to
characterize the airpath behavior over extended periods oftime, savings in simulation-
time by early detection of requirement violations is very beneficial. We selected two
parameterized safety requirements after discussions withthe control designers, (shown
in Eq. (6.1)-(6.2)). Due to proprietary concerns, we suppress the actual values of the
parameters used in the requirements.

ϕovershoot (p1) = ✷[a,b](x < c) (6.1)

ϕtransient (p2) = ✷[a,b](|x| > c =⇒ (✸[0,d]|x| < e)) (6.2)

Propertyϕovershoot with parametersp1 = (a, b, c) specifies that in the interval
[a, b], the overshoot on the signalx should remain below a certain thresholdc. Property
ϕtransient with parametersp2 = (a, b, c, d, e) is a specification on the settling time of
the signalx. It specifies that in the time interval[a, b] if at some timet, |x| exceeds
c then it settles to a small region (|x| < e) beforet + d. In Table 1, we consider
three different valuationsν1, ν2, ν3 for p1 in the requirementϕovershoot (p1), and two
different valuationsν4, ν5 for p2 in the requirementϕtransient (p2).

The main reason for the better performance of the online algorithm is that simula-
tions are time-consuming for this model. The online algorithm can terminate a simu-
lation earlier (either because it detected a violation or obtained a concrete robust satis-
faction interval), thus obtaining significant savings. Forϕovershoot(ν3), we choose the
parameter values fora andb such that the online algorithm has to process the entire
signal trace, and is thus unable to terminate earlier. Here we see that the total overhead
(in terms of runtime) incurred by the extra book-keeping by Algorithm 2 is negligible
(about0.1%).

6.2 CPSGrader

CPSGrader [14, 6] is a publicly-available automatic grading and feedback generation
tool for online virtual labs in cyber-physical systems. It employs temporal logic based



STL Test Bench Num. Early Sim. Time (mins) Overhead (secs)

Traces Termination Offline Online Naı̈ve Alg. 2

avoid front 1776 466 296 258 553 9
avoid left 1778 471 296 246 1347 30
avoid right 1778 583 296 226 1355 30
hill climb1 1777 19 395 394 919 11
hill climb2 1556 176 259 238 423 7
hill climb3 1556 124 259 248 397 7
filter 1451 78 242 236 336 6
keep bump 1775 468 296 240 1.2×104 268
what hill 1556 71 259 253 1.9×104 1.5×103

Table 2.Evaluation of online monitoring for CPSGrader. Each STL Test Bench has an associated
STL property.

testers to check for common fault patterns in student solutions for lab assignments.
CPSGrader uses the National Instruments Robotics Environment Simulator to gener-
ate traces from student solutions and monitors STL properties (each corresponding to a
particular faulty behavior) on them. In the published version of CPSGrader [14], this is
done in an offline fashion by first running the complete simulation until a pre-defined
cut-off and then monitoring the STL properties on offline traces. At a step-size of5 ms,
simulating6 sec. of real-world operation of the system takes1 sec. for the simulator.
When students use CPSGrader for active feedback generationand debugging, simula-
tion constitutes the major chunk of the application response time. Online monitoring
helps in reducing the response time by avoiding unnecessarysimulations, giving the
students feedback as soon as faulty behavior is detected.

We evaluated our online monitoring algorithm, on the tracesand STL properties
used in the published version of CPSGrader [14, 6]. These traces are the result of run-
ning actual student submissions on a battery of tests. For lack of space, we refer the
reader to [14] for details about the tests and STL properties. As an illustrative example,
we show thekeep bump property in Eq. 6.3:

ϕkeep bump = ✸[0,60]✷[0,5] (bump right(t) ∨ bump left(t)) (6.3)

For each STL property, Table 2 compares the total simulationtime needed for both
the online and offline approaches, summed over all traces. For the offline approach, a
suitable simulation cut-off time of60 sec. is chosen. At a step-size of 5 ms, each trace
is roughly of length1000. For the online algorithm, simulation terminates before this
cut-off if the truth value of the property becomes known, otherwise it terminates at the
cut-off. Table 2 also shows the monitoring overhead incurred by a naı̈ve online algo-
rithm that performs complete recomputation at every step against the overhead incurred
by Alg. 2. Table 2 demonstrates that online monitoring ends up saving up to 24% sim-
ulation time (> 10% in a majority of cases). The monitoring overhead of Alg. 2 is
negligible (< 1%) as compared to the simulation time and it is less than the overhead
of the naı̈ve online approach consistently by a factor of 40xto 80x.
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