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Test of Signi�cance when data are curves*

Jianqing Fan and Sheng-Kuei Lin

January 6, 1998

With modern technology, massive data can easily be collected in a form of multiple sets of
curves. New statistical challenge includes testing whether there is any statistically signi�cant
di�erence among these sets of curves. In this paper, we propose some new tests for comparing
two groups of curves based on the adaptive Neyman test and the wavelet thresholding techniques
introduced in Fan (1996). We demonstrate that these tests inherit the properties outlined in Fan
(1996) and they are simple and powerful for detecting di�erences between two sets of curves.
We then further generalize the idea to compare multiple sets of curves, resulting in an adaptive
high-dimensional analysis of variance, called HANOVA. These newly developed techniques are
illustrated by using a dataset on pizza commercial where observations are curves and an analysis
of cornea topography in ophthalmology where images of individuals are observed. A simulation
example is also presented to illustrate the power of the adaptive Neyman test.

KEY WORDS: Adaptive Neyman test, adaptive ANOVA, repeated measurements, functional
data, thresholding, wavelets.

SHORT TITLE: Testing sets of curves.

1 Introduction

With modern equipment, massive data can easily be scanned in a form of curves. More precisely, the

observations of individuals at di�erent time points are recorded. This kind of data is not uncommon.

Examples include seismic recordings of earthquakes and nuclear explosions presented in Shumway

(1988), a gait analysis in Rice and Silverman (1991), temperature-precipitation patterns in Ramsay

and Dalzell (1991), and brain potentials evoked by ashes of light in Kneip and Gasser (1992). These
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kinds of data are also called longitudinal data or functional data in the literature. See for example

recent monographs by Jones (1993), Diggle, Liang and Zegger (1994), Hand and Crowder (1996),

and Ramsay and Silverman (1997). The main di�erence between longitudinal data analysis and

functional data analysis is in dimensionality of data vector, though such a distinction is not always

clear. The dimensionality in functional data analysis is usually much higher and hence smoothing

techniques are needed.

1.1 Business commercial data
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Figure 1: (a) Scores of a pizza commercial at time slot 2 with n1 = 21. (b) Scores of the pizza
commercial at time slot 5 with n2 = 24. (c) The average and SD curves for time slots 2 and 5.
Thick curve is the average curve at time slot 2 and thin curve is the average curve at time slot 5.
The bars on the top or bottom indicate the estimated standard errors for the average scores at that
time point. (d) A similar plot to (c), but now in the Fourier domain. Only a part of the coe�cients
are plotted here.
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In evaluating business advertisements, evaluators are asked to dynamically assign scores to a com-

mercial as they are watching. The resulting observations are a collection of curves: the score of

the ith subject assigned at time tj of the commercial advertisement. Figure 1 presents this kind of

data on a pizza commercial. The commercial was played at studios at six di�erent time slots and

assessed by di�erent evaluators. Of interest is to test if there is any signi�cant time e�ect. For

simplicity, we �rst consider the pairwise di�erence between the time slots 2 and 5, the scores at

which are shown in Figures 1(a) and 1(b) respectively. The sample sizes are 21 for slot 2 and 24

for slot 5.

The observed curves are summarized in Figures 1(c). Presented in Figure 1(c) are the average

and their standard error curves, which are respectively the sample average at each given time and

the sample standard deviation at given time divided by the square root of sample size. There

are several naive approaches to handling this kind of testing problem. Firstly, from Figure 1 (c)

the time slot 2 is slightly preferred, though the evidence looks very weak since at each given time

point the standardized di�erence is less than 0.5. This approach of pointwise two-sample t-test

ignores completely the fact that at each given time point slot 2 is slightly preferred and when

these evidences are combined properly the P-value should be much smaller. The challenge is how

to combine these tests to yield a powerful overall test. The second naive approach is to treat

each sample curve as a long multivariate vector and then use a multivariate technique such as

Hotelling's T 2-test. This approach su�ers from two serious drawbacks: It ignores completely the

continuity of the scores assigned at neighboring time points and the dimensionality (200 for this

example) is typically much larger than the sample sizes. The third naive approach is to compute

the average score assigned by each individual and then apply a two-sample t-test. The average

of the average scores assigned at slots 2 and 5 are respectively 59.1 and 57.6, with an SD of 6.5

and 11.7, respectively. The two-sample t-test statistic is 0.54 resulting in a P-value of 58.9%. This

simple method ignores completely the fact that the average curve for time slot 2 is almost always

somewhat larger than that for time slot 5.

The scores assigned by each subject are undoubtly correlated. A common device for decor-

relating stationary data is to apply the discrete Fourier transform to each curve and obtain the

transformed data in frequency domain, which are nearly independent and Gaussian. One can now

summarize the transformed data in a similar way to Figure 1(c): At each given Fourier frequency,
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compute the sample mean and its estimated standard error. These summary statistics in the fre-

quency domain are presented in Figure 1(d). Shumway (1988) suggests to carry out a two-sample

t-test at each given frequency and look for the frequencies that have signi�cant di�erences between

the two samples. This approach, though useful as an exploratory tool, involves what is so-called

\data snooping" and does not combine the evidence at each given frequency to yield a more powerful

overall testing procedure.

An objective of this paper is to propose a simple and powerful approach to combine properly

the test statistics at di�erent time points or di�erent frequencies to obtain an overall test. This

is then extended to compare multiple groups of curves. These techniques will be illustrated, in

Sections 3.5 and 5.2, by using the pizza commercial data.

1.2 Other related work

There is large literature on longitudinal data analysis where various useful testing procedures have

been developped. See for example Jones (1993), Diggle, Liang and Zeger (1994), Hand and Crowder

(1996), Schimid (1996), among others. The procedures can also be applicable to our functional

data analysis setting. They usually treat longitudinal data as a multivariate vector and do not

incorporate a dimensionality reduction technique. For functional data analysis, the dimensionality

is high and hence dimensionality reduction techniques are required. While they are powerful for

analyzing longitudinal data, traditional tests for high-dimensional problems need some tuning.

Faraway (1997) proposes to conduct smoothing on the functional data �rst and then use traditional

ANOVA type of analysis.

As noted above, the dimensionality of curve testing problems is very high and some dimension-

ality reduction techniques are needed. The techniques used in this paper are based on orthogonal

transforms such as the Fourier transform and the wavelet transforms to compress signals. This

requires that data be sampled at equispaced design points such as those in Figure 1. For irregu-

larly spaced designs, one can use either binning or interpolation methods to preprocess the data.

See for example Cai (1996) and Hall and Turlach (1997) in a di�erent context. Once the data are

transformed by Fourier or wavelet techniques, useful coe�cients in the transformed domain are

then adaptively chosen to yield a test statistic. It remains to be seen how e�cient these simple and

crude methods are.
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Another possible technique is to use a smoothed principal component analysis (Besse and Ram-

say 1986 and Rice and Silverman 1991) and to project data on the �rst few important principal

directions. The question is then how many principal directions should be chosen. Our adaptive

Neyman test in Section 2 can be used for this purpose. The smoothed principal component ap-

proach involves choosing smoothing parameters and studying the e�ect of projected data on the

estimated principal axes. Further, the principal axes are not necessary an e�cient basis for com-

pressing mean functions and can be quite di�erent for two given sets of curves under alternative

hypotheses. The idea along this has not yet been developed and its power remains to be seen.

Several recent papers study statistical issues when data are curves. Hart and Wehrly (1986) use

kernel regression approach to estimate the mean curve. The bandwidth can be chosen by a cross-

validation method, which is shown to be consistency by Hart and Wehrly (1993) even when curves

are sampled from a dependent Gaussian process. See Hart (1996) for an overview of smoothing for

dependent data. Besse and Ramsay (1986) investigate the principal component analysis of sampled

functions. Rice and Silverman (1991) and Ramsay and Dalzell (1991) study estimation of mean

curves and use principal component analysis to extract salient features of curves. Pezzulli and

Silverman (1993) show the weak consistency of the estimated eigenvalues and eigenfunctions in the

smoothed principal component analysis and study the e�ect of smoothing. Statistical problems

associated with curves sampled from a population with individual variations were investigated by

Kneip and Gasser (1992), Silverman (1995) and Capra and M�uller (1996). Leurgans, Moyeed and

Silverman (1993) extend the canonical correlation analysis to random functions and show that

smoothing is needed in order to give sensible analyses. Further developments on functional data

analysis can be found in the book by Ramsay and Silverman (1997) and the references therein.

The problems on hypothesis testing for curves were considered in the time series literature

(see for example Shumway 1988). However, nonparametric treatments of the problems appear

relatively new. The literature on nonparametric goodness-of-�t provides useful insights to our

study. Closely related idea to ours is the recent paper by Fan (1996) who introduces a few powerful

tests for high-dimensional testing problems. Hall and Hart (1990) propose a bootstrap test for

detecting a di�erence between two mean functions in a nonparametric regression setting. Eubank

and Hart (1992) and Eubank and LaRiccia (1992) consider the goodness-of-�t test problem based

on cross-validation. Bickel and Ritov (1992) provide illuminating insights into nonparametric tests.
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Data-driven methods for smoothed test were studied by Inglot, Kallenberg and Ledwina (1994),

Ledwina (1994), Inglot and Ledwina (1996) and references therein.

1.3 Outline

We begin with summarizing the key ingredient of high-dimensional hypothesis testing techniques

developed by Fan (1996). The key ideas on the adaptive Neyman test and wavelet thresholding

tests are discussed in Section 2. In Section 3, we show how these procedures can be applied to detect

di�erences between two sets of curves. We then develop in Section 4 the analysis of variance when

the dimensionality is high, leading to an adaptive high-dimensional ANOVA, called HANOVA. The

HANOVA is applied in Section 5 to test di�erences among multiple sets of curves. Some concluding

remarks are noted in Section 6. Technical proofs are given in the Appendix.

2 A review of the adaptive Neyman test and thresholding tests

This section is mainly excerpted from Fan (1996) except Table 1. Let X � N(�; In) be an n-

dimensional normal random vector. We wish to test

H0 : � = 0  ! H1 : � 6= 0: (2.1)

The maximum likelihood ratio test statistic for problem (2.1) is kXk2, which tests all components

of X. This test has approximate power

1� �

 
z1�� � k�1k2=

p
2np

1 + 2k�1k2=n

!
� 1� �

�
z1�� � k�1k2=

p
2n
�
; (2.2)

at the alternative � = �1, provided that k�1k2 = o(n), where � is the signi�cant level and z1�� =

��1(1 � �). The power tends to � even though k�1k ! 1 with k�1k2 = o(
p
n). The moral

is that testing too many dimensions accumulates large stochastic noise and hence decreases the

discrimability power of the test. The price is reected in the factor 1=
p
n at the right hand side of

(2.2).

2.1 Adaptive Neyman's test

Expression (2.2) suggests that it is not a good idea to test all components of the vector �. If there

is vague prior that large absolute values of � are mainly located on the �rst m components, then
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one would only test the �rst m-dimensional subproblem, leading to the test statistic
Pm

j=1X
2
j , or

equivalently its standardized form (2m)�1=2
Pm

j=1(X
2
j �1). The parameter m has to be determined.

Based on the power consideration, Fan (1996) proposes to use

m̂ = argmaxm:1�m�n

n
m�1=2

mX
j=1

(X2
j � 1)

o
:

This leads to the adaptive Neyman test statistic

T �AN = (
p
2m̂)�1

m̂X
j=1

(X2
j � 1) = max

1�m�n

n
(
p
2m)�1

mX
j=1

(X2
j � 1)

o
: (2.3)

This test is equivalent to rejecting H0 when

TAN =
p
2 log lognT �AN � f2 log logn+ 0:5 log log logn � 0:5 log(4�)g (2.4)

is too large. Let us call the distribution of TAN under H0 as Jn. The asymptotic distribution of Jn

is given by

PfTAN � xg ! expf� exp(�x)g; (2.5)

which is a corollary of a result in Darlin and Erd�os (1956). As noted in Fan (1996), the convergence

of (2.5) is very slow. Table 1 gives the �nite sample distribution of Jn based on one million

simulations.

Note that when X 0
is are not normally distributed, the constant factor 2 in (2.3) should be

replaced by var(X2
i ) under H0. In particular, when the model is replaced by Xi � td(�i), a

noncentral t distribution, one adjusts T �AN as

T �AN = max
1�m�n

ns(d� 2)2(d� 4)

2md2(d� 1)

mX
j=1

(X2
j � 1)

o
: (2.6)

To examine the robustness of the distribution of TAN with respect to the underlying distribution of

Xi, we simulated the distribution of TAN when Xi follows a Student t-distribution. When degrees

of freedom is 20, the results are close to Table 1 for 0:5 � � � 0:01

Fan (1996) has also shown that having to estimate m, the adaptive Neyman test performs at

least as good as the ideal Neyman test, which uses the knowledge of the optimal m, within a factor

of (log log n)1=2. See Theorem 2.2 of that paper. To obtain the required vague prior, one can apply

the discrete Fourier transform to the observations X before implementing the adaptive Neyman

test (2.3).
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Table 1: � upper quantile of the distribution Jyn
nn� 0.00001 0.00005 0.0001 0.00025 0.0005 0.001 0.0025 0.005 0.01 0.025 0.05 0.10 0.25 0.50

5 12.45 11.39 10.55 9.42 8.65 7.80 6.74 5.97 5.21 4.23 3.50 2.77 1.77 0.96
10 16.53 13.91 12.79 11.53 10.47 9.13 7.73 6.77 5.78 4.57 3.67 2.74 1.49 0.40
20 16.82 14.88 13.95 12.49 11.27 9.83 8.26 7.16 6.07 4.75 3.77 2.78 1.41 0.18
30 17.58 15.47 14.62 12.90 11.65 10.11 8.47 7.29 6.18 4.82 3.83 2.81 1.39 0.11
40 18.71 16.11 15.14 13.34 11.92 10.34 8.65 7.41 6.22 4.87 3.85 2.82 1.39 0.08
50 19.85 16.08 15.15 13.35 11.89 10.32 8.67 7.43 6.28 4.89 3.86 2.84 1.39 0.07
60 18.45 16.25 15.26 13.53 12.16 10.56 8.80 7.51 6.32 4.91 3.88 2.85 1.39 0.07
70 20.37 17.04 15.40 13.65 12.27 10.59 8.81 7.55 6.34 4.92 3.88 2.85 1.40 0.06
80 20.46 16.24 15.17 13.68 12.24 10.54 8.81 7.57 6.37 4.93 3.89 2.85 1.40 0.06
90 21.84 17.67 15.78 14.06 12.62 10.79 8.95 7.65 6.40 4.94 3.90 2.86 1.40 0.06
100 20.73 17.37 15.87 14.12 12.59 10.80 8.95 7.65 6.41 4.95 3.90 2.86 1.41 0.06
120 20.02 16.99 15.87 14.19 12.77 10.87 8.96 7.65 6.41 4.95 3.90 2.87 1.41 0.05
140 21.08 17.14 15.98 14.08 12.43 10.80 9.00 7.66 6.42 4.95 3.90 2.86 1.41 0.05
160 19.42 17.07 16.19 14.40 12.97 10.88 8.95 7.69 6.42 4.95 3.91 2.87 1.41 0.06
180 21.33 17.71 16.14 14.50 12.97 11.02 9.10 7.77 6.47 4.95 3.90 2.87 1.41 0.06
200 20.50 17.51 16.34 14.31 12.78 11.10 9.08 7.72 6.43 4.95 3.89 2.86 1.42 0.06
1 11.51 9.90 9.21 8.29 7.60 6.91 5.99 5.30 4.60 3.68 2.97 2.25 1.25 0.37

yThe results are based on 1,000,000 simulations. The relative errors are expected to be around .3% { 3%.

2.2 Thresholding tests

If we have vague prior that large coe�cients of the vector � lie only on a few components, then a

simple method for �nding these informative components is thresholding. Such a vague prior can

be obtained by a wavelet transform of the observation vector X. See for example Donoho and

Johnstone (1994).

A thresholding test statistic is de�ned by

T̂ �H =
nX

j=1

X2
j I(jXjj > �);

where � > 0 is called a thresholding parameter. It is shown in Fan (1996) that an approximate

level � test for problem (2.1) is to reject H0 when

T̂H = ��1n;H

�
T̂ �H � �n;H

�
> z1��; (2.7)

where with � =
p
2 lognan for some sequence an tending to zero at a logarithmic rate,

�n;H =
q
2=�a�1n �(1 + ��2); �2n;H =

q
2=�a�1n �3(1 + 3��2):

It is recommended to take �n =
q
2 log(n= log2 n) based on the considerations of both the power

of the procedure and the accuracy of the approximation (2.7). It is also shown there that under

some mild conditions, the testing procedure (2.7) performs within a logarithmic factor to the ideal

thresholding estimator. Minimax properties of the thresholding test can be found in Spokoiny

(1996).
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Fan (1996) observes that the power of the above thresholding test can be improved upon if � is

replaced by the hard-thresholding parameter:

�H =
q
2 log(nân); ân = min(4(Xmax)

�4; log�2 n);

where Xmax = max1�i�n jXij. The intuition for this is that under H0, Xmax � (2 logn)1=2, and it is

expected to be larger under the alternative hypothesis. A similar intuition leads to soft-thresholding

parameter:

�S =
q
2 log(nân); ân = min(flog(

nX
i=1

X2
i )g�2; log�2 n):

A speci�c version of the thresholding test is T̂ �H = max1�i�nX
2
i . This corresponds to a data-

dependent thresholding parameter �̂, which is the second largest order statistic among fX2
1 ; X

2
2 ; � � � ; X2

ng.
It is closely related to the Fisher (1929) g-test for harmonic analysis. The test is expected to be

powerful for alternatives with energy concentrated mostly on one dimension.

3 Comparing two sets of curves

We assume that the observed curves in the �rst group are a random sample from the model

Xj(t) = f1(t) + "j(t); t = 1; � � � ; T; j = 1; 2; 3; :::; n1; (3.1)

where the random variables "j(t) have mean zero. Similarly, the second group of curves are a

random sample from the model

Yj(t) = f2(t) + "0j(t); t = 1; � � � ; T; j = 1; 2; 3; :::; n2; (3.2)

with the random variables "0j(t) having mean zero. Of interest is to test

H0 : f1(t) = f2(t)  ! H1 : f1(t) 6= f2(t); (3.3)

based on the above two sets of curves.

3.1 Independent heteroscedastic errors

We assume further that the random variables "j(t) � N(0; �21(t)) and "0j(t) � N(0; �22(t)) are

independent for all j and t. Consider the summarized curves:

�X(t) = n�11

n1X
j=1

Xj(t); �Y (t) = n�12

n2X
j=1

Yj(t); (3.4)

9



and

�̂21(t) =
1

(n1 � 1)

n1X
j=1

fXj(t)� �X(t)g2; and �̂22(t) =
1

(n2 � 1)

n2X
j=1

fYj(t)� �Y (t)g2: (3.5)

Denote the standardized di�erence by

Z(t) = fn�11 �̂21(t) + n�12 �̂22(t)g�1=2f �X(t)� �Y (t)g (3.6)

and put Z = (Z(t); � � � ; Z(T ))T . When n1 and n2 are reasonably large,

Z(t)
a� Nfd(t); 1g;

where d(t) � fn�11 �21(t) + n
�1=2
2 �22(t)g�1=2ff1(t) � f2(t)g, and \

a�" means \distributed approxi-

mately". Note that when �21(t) = �22(t) is imposed, one can use the pooled variance estimate

�̂2(t) =
n1 � 1

n1 + n2 � 2
�̂21(t) +

n2 � 1

n1 + n2 � 2
�̂22(t)

in (3.6). This technique is particularly useful when n1 and n2 are small.

Now one can apply the Fourier transform to the standardized di�erence vector Z to compress

useful signals into low frequencies. Let Z� be the resulting vector. One then applies the adaptive

Neyman test statistic to the vector Z� and consults Table 1 for the P-value of the test. As noted

in Section 2.1, when the degrees of freedom are moderately large, with the adjustment (2.6) with

d = n1 + n2 � 2, the null distribution of the adaptive Neyman test is reasonably close to that for

normal errors. The adaptive Neyman test is useful when the population standardized di�erence

function d(t) is smooth.

In practice, one does not have to apply the adaptive Neyman test to the whole vector of Z�.

Indeed, when T is large (e.g. T = 200), the high frequency components of Z� are usually noises

(e.g. Z�(k) with k > 100 are noises). Using this prior, the power of the test can somewhat be

gained by only applying the adaptive Neyman test to the �rst T � components of Z� (e.g. T � = 100

and looking up Table 1 with n = 100 instead of 200). If there is no such a prior, then one needs to

use the whole vector Z�, i.e. T � = T .

When the population standardized di�erence function exhibits discontinuities and sharp aber-

rations, wavelet transforms can be a good family of orthogonal transforms for signal compression.

Once the wavelet transform is conducted on the vector Z, we can apply the thresholding test

outlined in Section 2.
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3.2 Impact of variance substitution on the null distributions

The aim of this section is to show that the impact of variance substitution on null distribution is

negligible when variances are estimated with good precision. For simplicity of technical arguments,

we assume further that �21(t) = �21 and �22(t) = �22 for t = 1; � � � ; T . As outlined in the appendix,

even for this simple case, the technical arguments are not trivial.

Under the homoscedastic error model, natural estimators for �21 and �22 are the pooled estima-

tors:

�̂21 = fT (n1 � 1)g�1
TX
t=1

n1X
j=1

(Xj(t)� �X(t))2;

and

�̂22 = fT (n2 � 1)g�1
TX
t=1

n2X
j=1

(Yj(t)� �Y (t))2:

Then, �̂21 and �̂22 are consistent estimators of �21 and �22 (as T ! 1). Denote the standardized

di�erence by

Z(t) = fn�11 �̂21 + n�12 �̂22g�1=2f �X(t)� �Y (t)g: (3.7)

Let � be an orthonormal transform and Z� = �Z. This can be in one case the discrete Fourier

transform and in another case a discrete wavelet transform. Let cT � T be a sequence of constants,

tending to in�nity. De�ne

T �AN = max
1�m�cT

n
(
p
2m)�1

mX
k=1

(Z�(k)2 � 1)
o
: (3.8)

This adaptive Neyman test uses the information contained in the �rst T � = cT coordinates. Fol-

lowing the discussions at the end of Section 3.1, this is hardly a restriction for practical purposes if

cT is large enough. Now, normalize T �AN as in (2.4) except replacing n by cT . We have the following

results:

Theorem 3.1 The asymptotic distribution of TAN under H0 is given by

P (TAN < x)! expf� exp(�x)g as T ! 1;

provided that cT = O(T= loga T ), for any a > 0.

The proofs of this and next result are given in the appendix. For the thresholding estimator

(2.7) with respect to the transformed data Z�, we have the following result.
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Theorem 3.2 Under H0, the asymptotic distribution of T̂H is given by

T̂H
L�! N(0; 1); as T !1;

provided that the thresholding parameter �T =
p
2 log(TaT ) with aT = c log�d T and d > 0:5.

3.3 Stationary Errors

When the error processes "(t) and "0(t) are stationary, the adaptive Neyman test is still applicable.

One needs to preprocess the data via the Fourier transform of each curve. The Fourier transform

serves two purposes here: Transform stationary errors into approximately independent Gaussian

errors (see e.g. Chapter 10 of Brockwell and Davis 1991) and compress useful signals into low

frequencies. Let fX�
j (k)gTk=1 and fY �

j (k)gTk=1 be the sets of the transformed data. More precisely,

X�
j (1) is the real part of the Fourier transform of the vector fXj(t)gTt=1 at the zeroth Fourier

frequency, X�
j (2) is the real part at the �rst Fourier frequency, X�

j (3) is the imaginary part at

the �rst Fourier frequency, and so on. An advantage of considering separately real and imaginary

parts is that we use fully the information contained in both amplitudes and phases. This marks a

di�erence between our approach and the technique outlined in Section 4.5 of Shumway (1988). As

shown in (3.15) in the next subsection, fX�
j (k)g and fY �

j (k)g satisfy approximately the models given
in (3.1) and (3.2). One can now apply the recipe given in Section 3.1 to fX�

j (k)g and fY �
j (k)g to

complete the analysis. The only di�erence is that one does not need to apply the Fourier transform

again to the standardized vector Z. Details of the procedure can be found in the next subsection,

where we will demonstrate the impact of stationary errors and of the variance substitution on the

null distribution is negligible.

For repeated measurements with stationary stochastic errors, Shumway (1988) outlined an

approach to test di�erences among multiple sets of measurements. Namely, for each given frequency,

a two-sample t-test statistic or more generally an ANOVA statistic is used to detect if the mean

curves have the same power spectrum at that given frequency. This results in a test statistic at

each given frequency. The innovation of our procedure is that it combines properly the separate

test statistics at di�erent frequencies and uses information from both amplitudes and phases to

yield a powerful overall test.

12



3.4 Null distribution under stationarity errors

We now show that the impact of stationarity and of variance estimates on the null distribution is

asymptotically negligible. The conclusion is also supported by our simulation study presented in

Example 2 of next subsection. To ease technical arguments, we assume that the stochastic errors

in (3.1) and (3.2) are stationary linear Gaussian process:

"j(t) =
P1

l=�1 alZj(t� l); with fZj(t)g i.i.d. N(0; 1)

"0j(t) =
P1

l=�1 blZ
0
j(t � l); with fZ 0

j(t)g i.i.d. N(0; 1):
(3.9)

Assume further
1X

l=�1

(jalj+ jblj)jlj1=2 <1: (3.10)

Let the discrete Fourier transform of a vector fXtgTt=1 be

JX(�) = T�1=2
TX
t=1

Xt exp (�i�(t� 1)):

This transform will be evaluated at the Fourier frequencies !j = 2�j=T for j = 0; 1; � � � ; [T=2].
Applying the Fourier transform to each of the sample curves in (3.1), we obtain

JXj
(!k) = Jf1(!k) + J"j (!k): (3.11)

By Theorem 10.3.1 of Brockwell and Davis (1987),

J"j (!k) = A(exp(�i!k))JZj
(!k) +OpfT�1=2g; with A(�) =

1X
j=�1

aj�
j: (3.12)

The uniformity of the Op-terms in k will be considered in the proof of Theorem 3.3. The sequence

fJZj
(!k)g[T=2]k=0 is a Gaussian white noise. Therefore, the transformed data become nearly indepen-

dent and approximately Gaussian. Analogously, by applying the Fourier transform to the curves

in (3.2), we have

JYj (!k) = Jf2(!k) + J"0
j
(!k) (3.13)

with

J"0
j
(!k) = B(exp(�i!k))JZ0

j
(!k) +OpfT�1=2g; with B(�) =

1X
j=�1

bj�
j : (3.14)

Let fX�
j (k)gTk=1 and fY �

j (k)gTk=1 be respectively the real and imaginary parts of the discrete

Fourier transforms fJXj
(!k)g and fJYj (!k)g, arranged as in Section 3.3. Then, from (3.11) { (3.14),

13



we have

X�
j (k) = f�1 (k) + "�j (k) +OpfT�1=2g;

Y �
j (k) = f�2 (k) + "��j (k) + OpfT�1=2g;

(3.15)

where f�1 (k) and f
�
2 (k) contains respectively the real and imaginary parts of the Fourier transforms

Jf1(!k) and Jf2(!k), and "�j (k) � N(0; �21(k)) and "��j (k) � N(0; �22(k)) are independent for all k.

Here the variance functions �21(k) and �22(k) can easily be derived respectively from A(exp(�i!k))
and B(exp(�i!k)).

Consider the di�erence of the sample means in the frequency domain. Denote by

D�(k) = n�11

n1X
j=1

X�
j (k)� n�12

n2X
j=1

Y �
j (k); for k = 1; � � � ; T; (3.16)

and let the standardized di�erence be

Z(k) = D�(k)=f�̂21(k)=n1 + �̂22(k)=n2g1=2; (3.17)

where �̂21(k) and �̂22(k) are estimators of �21(k) and �22(k), respectively. A natural choice would

be the sample variance of fX�
j (k)gn1j=1 and fY �

j (k)gn2j=1. For theoretical considerations, we wish to

determine how good the estimators of �21(k) and �22(k) should be in order not to a�ect asymptotic

analyses. For this purpose, we de�ne the sum of the maximum relative errors by

eT = max
1�k�cT

j�̂21(k)=�21(k)� 1j+ max
1�k�cT

j�̂22(k)=�22(k)� 1j; (3.18)

for some constant cT tending to in�nity with cT � T .

Let the adaptive Neyman test be

T �AN = max
1�m�cT

(2m)�1=2
mX
k=1

fjZ(k)j2 � 1g: (3.19)

De�ne the standardized adaptive Neyman test as

TAN =
p
2 log log cTT

�
AN � f2 log log cT + 0:5 log log log cT � 0:5 log(4�)g: (3.20)

Compare with (2.4).

In many applications, T is usually much larger than n1 and n2. For example, in the business

advertisement data, T is in an order of 200, while n1 and n2 are in an order of 20. Thus, our

asymptotic analysis is based on the assumption that T tend to 1 and n1 and n2 tends to 1 (at a

possibly slower rate than T ) as T !1. The following theorem describes the asymptotic result.

14



Theorem 3.3 Assume that cT = O(T a0) for some a0 < 1, and eT = OP (c
�1=2
T = logT ). If (3.9)

and (3.10) hold, then the asymptotic distribution of TAN under H0 is given by

P (TAN < x)! expf� exp(�x)g as T ! 1;

provided that n1 and n2 are of the same order.

The implications of Theorem 3.3 are that the impact of stationary errors on the null distribution

of the adaptive Neyman test is asymptotically negligible and that the impact of variance estimate

on the null distribution is also negligible.

To construct variance estimators having the prescribed accuracy, we can �rst compute the

sample variance in the frequency domain as in Section 3.3. Then, conduct a kernel smoothing on

the sample variances to improve the rates of convergence. The resulting variance estimators can

achieve the required accuracy when n1 and n2 are moderately large comparing with T . Since the

arguments are very technically involved, we omit the details here. See Section 4.8 of Lin (1997) for

details.

For the wavelet thresholding test, it is shown in Section 4.7 of Lin (1997) that the impact of

stationarity assumption on the thresholding test is also negligible. We do not reproduce the proof

here since it is lengthy and complicated.

3.5 Examples

The sets of curves discussed in this section are relatively smooth. Thus, the adaptive Neyman

test is employed throughout this section. Further, the Fourier transform are always employed to

preprocess the data, since the stochastic errors here are expected to be correlated.

Example 1 (TV commercial). The data collected are about a business commercial on pizza

(courtesy of Professors D. Hudge and N.M. Didow of the Kenan Flag Business School, University

of North Carolina at Chapel Hill). The aim of this study is to examine whether there is any time

e�ect on the commercial. For example, one wishes to know if the pizza commercial should be better

aired near the lunch/dinner hours. The advertisement was played at studios at 6 di�erent time

slots with di�erent evaluators. As they are watching, the assessors turn the knob of a device to

assign scores at a rate of one per second. The scale of the score ranges from 1 to 100 and the device

was originally set at 50.
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Figure 2: The standardized di�erence between slot 2 and 5 at each given frequency.

We now apply our new method to test whether there is any signi�cant time e�ect between slot

2 and 5 for the pizza commercial. Since the neighboring scores are expected to be corrected, we

apply the recipes outlined in Section 3.3 (Admittedly, the model here is only an idealization of the

data). Figure 1(d) depicts the averages and SDs of the Fourier transformed data. The transformed

coe�cient at the zeroth Fourier frequency is labeled as 0 at the x-axis of Figure 1 (d). The real

and imaginary part of the transformed data at the �rst Fourier frequency are labeled respectively

as 1 and 2 on the x-axis, and so on. We took the �rst 100 coe�cients for analysis. Namely, we

regard the data beyond the 50th Fourier frequency as noise. See also remarks at the end of Section

3.1. The standardized di�erence Z(k) in the Fourier domain, computed based on Figure 1(d),

is presented in Figure 2. The adaptive Neyman test is employed, resulting in the observed test

statistic TAN = 2:70 with m̂ = 66, and a P-value � 10:10% (From Table 1, it is about 10%). This

indicates in turn that there is some evidence for the time e�ect on the commercial, but the evidence

is somewhat weak given the available data. We will analyze this problem further in Example 4.

Example 2 (Simulation). This example is similar to example 1, except data are now simulated.

Let g1(t) and g2(t) be respectively the mean curve of the �rst (time slot 2) and second group (time

slot 5) given in Figure 1(c). We then generate a random sample of size n1 = 21 from model (3.1)

and of size n2 = 24 from model (3.2) with

f1(t) = g1(t) and f2(t) = g1(t) + �(g2(t)� g1(t)) (0 � � � 1:2):
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Figure 3: Plot of power function for the simulated models in Example 2.

The stochastic error is generated from an AR(1) process:

"(t) = 0:7"(t� 1) + �(t);

where f�(t)g are i.i.d. Gaussian white noise with variance chosen so that variance of " is approx-

imately the same as the sample variance in Example 1. More precisely, for the �rst group the

standard deviation of �(t) was taken to be 7.26 and for the second group, the standard deviation of

�(t) was chosen to be 11.65. Figure 3 depicts the power function at the signi�cant level 5% based

on 400 simulations. As expected, when � = 0 the power function is approximately the same as the

signi�cant level 5%. This supports our theoretical result that impact of stationarity on the adaptive

Neyman test is nearly negligible. When � = 1, the power is about 94%, which demonstrates the

excellent discriminability power of the adaptive Neyman test even when the two mean curves are

as close as those in Figure 1(c). This gives us a rough idea about the chance of making Type II

error if the data curves were generated from our models.

Example 3 (Cornea Topography). We briey describe measurements obtained by a kerato-

scopic device called \Keratron". See Cohen et al (1994) and Tripolli et al (1995) for more details.

The measurements used here are the heights of a cornea measured from the tangent plane of the

keratoscope's optical axis intersected with the cornea surface. These height measurements reect

the cornea pro�le and are measured at each of intersections of 26 rings with 256 radial directions
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Figure 4: (a) Schematic design of height measurements of a cornea surface. (b) and (c): Plot of
slope coe�cients along 256 radial directions for the normal and keratoconus group. The presented
curves are the smoothed version of the original data via a truncated Fourier method | the Fourier
coe�cients at frequencies higher than 20�=256 are set to zero.

on a keratograph. A schematic representation of the locations where the height measurements are

obtained is presented in Figure 4(a). For this kind of images as data, the �rst step is to extract

salient features. For each radial direction, a Legendre polynomial of order 7 was �tted to the 26

data points along this radial direction and 8 least-squares coe�cients were obtained. This process

is repeated for all 256 radial directions, resulting in a 256� 8 matrix. For each Legendre order (i.e.

each column), a Fourier transform is obtained and the Fourier coe�cients of the �rst 10 frequencies

are kept, resulting in a (2 � 10 � 1) � 8 matrix, called the feature matrix of a cornea topograph.

Let Li denote the i
th order Legendre polynomial. Note that the coe�cients of L1 and L2 in the

least squares �t reect the slope and curvature of a cornea surface along a radial direction. For

illustration purpose, we consider only the slope here. Of interest is to test whether there is any

statistical di�erence between two given clinical groups. In the study presented here, 42 subjects of

the normal cornea group and 52 of the keratoconus group were available for our analysis. The data

were kindly provided by Nancy K. Tripoli (M.A.) and Kenneth L. Cohen (M.D.) of Department of

Ophthalmology, University of North Carolina at Chapel Hill and analyzed with computing assis-

tance of Mr. Jin-Ting Zhang (M.S.) and advice of Ms. Nancy K. Tripoli. Figures 4(b) and (c) show

the smoothed version (via the Fourier inversion of the �rst 19 Fourier coe�cients in the feature
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matrices) of the slope coe�cients along the 256 radial directions. The adaptive Neyman test in

Section 3.2 is applied to this set of data. The result is highly statistically signi�cant, corresponding

to a P-value .06%. This in turn suggests that there is a statistical di�erence of cornea slopes be-

tween the normal and keratoconus group. The same statistical analysis was applied to compare the

di�erence between the right and left eyes of normal corneas. As anticipated, there is no statistical

di�erence between the left and right eyes. The corresponding P-value is about 14.41%.

4 High-dimensional Analysis of Variance

In the business commercial data, evaluations were conducted at six di�erent time slots. The

collected data are of form: fXij(t)g. Here, i denotes the index of groups (1 � i � I), j represents

the membership of each individual (1 � j � ni) and t is the index of the grid point that a value

of a curve is observed (1 � t � T ). Of interest is to detect if there is any signi�cant time e�ect.

This is clearly a generalization of the two-sample problem discussed in Section 3, and requires us

to generalize the adaptive Neyman test to testing multiple groups of curves.

We will assume throughout this paper that for a given j and t, Xij(t) are independently and

identically distributed. Namely, observations within each group at a given time are a random

sample from an unknown population.

4.1 Connections with high-dimensional ANOVA

Let fX�
ij(k)g be the discrete Fourier transform of the vector fXij(t)g for given i and j. As mentioned

before, this transform serves two purposes: compress signals into low frequencies and transform

stationary errors into nearly independent Gaussian errors. For simplicity of discussions, we �rst

assume the following model:

X�
ij(k) = f�i (k) + "�ij(k); (4.1)

where "�ij(k) are all independent and "�ij(k) � N(0; �2i (k)). Compare with (3.15). Of interest is to

examine whether there is any intergroup di�erence:

H0 : f
�
i (k) = f�(k); for i = 1; � � � ; I and k = 1; � � � ; T; (4.2)
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for some unspeci�ed function f�(�). Let �X�
i (k) be the average curve of the i

th group in the frequency

domain, namely

�X�
i (k) = n�1i

niX
j=1

X�
ij(k); (4.3)

and �̂�i (k) be the SD curve

�̂�2i (k) = (ni � 1)�1
niX
j=1

fX�
ij(k)� �X�

i (k)g2: (4.4)

Then,

�X�
i (k) � Nff�i (k); ��2i (k)=nig:

Note that �X�
i (k) and �̂�2i (k) are su�cient statistics under the ideal model (4.1). Our curve

testing problem becomes a high-dimensional (because T is large) ANOVA problem: testing (4.2)

based on the observations �X�
i (k) � Nff�i (k); ��2i (k)=nig and �̂�2i (k). Similar to discussions in

Section 2, a direct use of the ANOVA technique in such a high dimensional problem will accumulate

large stochastic errors and results in low discriminability power. Next subsection o�ers a method

to overcome this di�culty. The resulting test statistic is a generalization of the Adaptive Neyman

test.

4.2 Adaptive ANOVA

For simplicity of notation, we restate the high-dimensional ANOVA as follows: LetXij � N(�ij ; �2ij)

be independent random variables. Of interest is to test

H0 : �ij = �j for i = 1; � � � ; I; j = 1; � � � ; n; (4.5)

where n is large. Note that when f�ijg are unknown, the problem is a generalization of the famous

Behrens-Fisher problem and the maximum likelihood ratio test can not be explicitly determined.

Throughout this section, we assume that f�2ijg are known and f�jg in (4.5) are unknown.

Because of high dimensionality, testing all dimensions accumulates large stochastic noise and hence

results in low discriminability power. Thus, we need to select a few useful cells to test. Suppose

that we have vague prior knowledge that useful information is concentrated on the �rst m cells.

We then consider the subproblem

H0 : �ij = �j for j = 1; � � � ; m: (4.6)
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The maximum likelihood ratio tatistic for problem (4.6) is

X2 =
mX
j=1

IX
i=1

��2ij (Xij � �X�j)
2; with �X�j =

IX
i=1

��2ij Xij=
IX
i=1

��2ij :

It can easily be shown that

X2 � �2(I�1)m(�
2
m);

where �2m =
Pm

j=1

PI
i=1 �

�2
ij (�ij � ���j)

2 with ���j =
PI

i=1 �
�2
ij �ij=

PI
i=1 �

�2
ij . Thus, a level � test is

to reject H0 when

Fm =
1p

2(I � 1)m

8<
:

mX
j=1

IX
i=1

��2ij (Xij � �X�j)
2 � (I � 1)m

9=
;

� 1p
2(I � 1)m

f�2(I�1)m(1� �)� (I � 1)mg: (4.7)

Note that when the degree of freedom (I � 1)m is large, the test statistic Fm is approximately

normally distributed with mean ��2m = �2m=
p
2(I � 1)m and variance 1. Thus, the power is approx-

imately an increasing function of ��2m .

In practice, the parameter m needs to be determined. Since the power depends monotonously

on ��2m , following the idea of Fan (1996), we choose m0 that maximizes �
�2
m . Namely,

m0 = argmax1�m�n�
2
m=
q
2(I � 1)m: (4.8)

In practice, such an ideal m0 is not available to us. Since Fm is an unbiased estimate of ��2m , a

natural candidate is

m̂ = argmax1�m�nFm;

leading to the adaptive testing statistic

Fm̂ = max
1�m�n

1p
2(I � 1)m

8<
:

mX
j=1

IX
i=1

��2ij (Xij � �X�j)
2 � (I � 1)m

9=
; : (4.9)

For convenience, this ANOVA type of test statistic is called high-dimensional ANOVA (HANOVA).

Speci�cally, when I = 2, the test statistic reduces to

Fm̂ = max
1�m�n

1p
2m

8<
:

mX
j=1

(X1j �X2j)2

�21j + �22j
�m

9=
; ;

which is the adaptive-Neyman test for comparing two sets of curves. See (2.3) and (3.6).
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4.3 Null distribution and power

We now derive the distribution of the HANOVA test statistic Fm̂ under the null hypothesis. As in

(2.4), we consider the following normalization:

FI;n =
p
2 log lognFm̂ � f2 log logn + 0:5 log log log n� 0:5 log(4�)g: (4.10)

Recall that the distribution Jn is de�ned as that of TAN in (2.4) and is tabulated in Table 1.

Theorem 4.1 Under the null hypothesis (4.5), when n is large, the statistic FI;n is distributed

approximately as Jn and

lim
n!1

P (FI;n < x)! exp(� exp(�x)): (4.11)

In the proof of Theorem 4.1, we will show that the statistic FI;n has exactly the same form as

the de�nition of Jn (see (A.14)). The only di�erence is that in the de�nition of Jn the random

variables V 0
j = 2�1=2(Z2

2j � 1) in (2.3) instead of Vj = f2(I � 1)g�1=2PI
i=2(Z

2
ij � 1) are used, where

fZijg are standard Gaussian random variables. Note that both V 0
j and Vj have mean zero and

variance one, and when the number of groups is not too large, the shapes of the densities of V 0
j and

Vj are similar. Thus, it is expected that Jn is a closer approximation to the distribution of FI;n

than the limiting distribution given at the right hand side of (4.11).

We now consider the asymptotic power of the HANOVA test. Recall that the ideal m0 is given

by (4.8). By (4.7), the power of this ideal test is given by

P�fFm0
� ��2m0

� Cm0
(1� �)� ��2m0

g;

where

Cm0
(1� �) =

1p
2(I � 1)m0

f�2(I�1)m0
(1� �)� (I � 1)m0g:

Note that because of the asymptotic normality of Fm � ��2m as m ! 1, the sequence of random

variables fFm � ��2m g is stochastically bounded (tight) and hence fCm(1 � �)g is also a bounded

sequence. The following theorem shows that having to estimate m the HANOVA test pays at most

a price of log logn comparing with the ideal test.

Theorem 4.2 The power of HANOVA is at least

P�[Fm0
� ��2m0

�
p
2 log log nf1 + o(1)g � ��2m0

]:

In particular, when max1�m�n �2m=
p
2(I � 1)m!1, the HANOVA has the asymptotic power one.
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5 Hypothesis testing for multiple groups of curves

5.1 Testing di�erences among multiple groups of curves

Consider the observed curves from I di�erent groups: fXij(t); i = 1; � � � ; I; j = 1; � � � ; ni; t =

1; � � � ; Tg. We assume that

Xij(t) = fi(t) + "ij(t); (5.1)

where f"ij(t); t = 1; � � � ; Tg are stationary time series with mean zero. Of interest is to test

H0 : fi(t) = f(t); for i = 1; � � � ; I and t = 1; � � � ; T: (5.2)

Let fX�
ij(k)g be the discrete Fourier transform of the vector fXij(t)g for given i and j. Then,

fX�
ij(k)g satisfy approximately the ideal model (4.1) and the problem (5.2) is equivalent to (4.2).

Thus, the HANOVA technique in Section 4 can be used.

Suppose that the maximum number of dimensions to be tested is T �. This can usually be a

convenient number tabulated in Table 1 (e.g. T � = T=2 or simply = T ). As discussed before, this

choice does not alter the result very much, as long as T � is large enough so that high frequency cells

are basically noise. Applying the HANOVA and replacing the unknown variance by the sample

variance, we obtain the test statistic

Fm̂ = max
1�m�T �

1p
2(I � 1)m

"
mX
k=1

IX
i=1

ni�̂
�
i (k)

�2f �X�
i (k)� �X�(k)g2 � (I � 1)m

#
; (5.3)

where �X�
i (k) and �̂�2i (k) were de�ned respectively in (4.3) and (4.4), and

�X�(k) =
IX

i=1

ni�̂
�
i (k)

�2 �X�
i (k)=

IX
i=1

ni�̂
�
i (k)

�2:

Finally, one can normalize the test statistic as in (4.10), leading to the HANOVA test statistic:

THANOVA =
p
2 log logT �Fm̂ � f2 log logT � + 0:5 log log logT � � 0:5 log(4�)g: (5.4)

One can use Table 1 with n = T � to �nd P-values.

5.2 An application

In this section, we use the business advertisement data in Example 1 to illustrate our HANOVA

technique.
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Figure 5: The average and SE curves of pizza commercial at di�erent time slots. (a) Thick curve
for time slot 1 and thin curve for time slot 3; (b) thick curve for time slot 4 and thin curve for time
slot 6. The bars on the top or bottom indicate the estimated standard errors of the average score
at that time point.

Example 4. We now use the data collected in all six time slots to test whether there is any

time e�ect. The sample sizes for six di�erent time slots are respectively 6, 21, 15, 7, 24, and 10.

Figure 5 depicts the average and standard error curves for time slots 1, 3, 4, and 6 (see Figure 1(c)

for slots 2 and 5). The HANOVA statistic is computed to be 8.12 with m̂ = 80 for T � = 100. This

in turns gives a P-value .355% (Table 1 gives a P-value between .25% { .5%)

To better understand the time e�ect, we apply the adaptive Neyman test as in Example 1 to

obtain pairwise comparisons between any two given time slots. The results are summarized in

Table 2. This example illustrates that even if the P-values are not very signi�cant for pairwise

comparisons, when the information is pulled, it can yield a highly statistical signi�cance result.

Table 2: P-values (in percents) for pairwise comparisons
of time e�ect of a pizza commercial

time slots 1 2 3 4 5 6
time slots sample size 6 21 15 7 24 10

1 3.15 35.6 34.1 6.10 4.60
2 22.2 64.1 11.1 0.24
3 21.6 66.3 29.8
4 69.8 4.16
5 6.10
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5.3 Extensions

The ideas outlined in Sections 4 and 5 can easily be generalized to more general ANOVA settings.

We consider a three-factor ANOVA problem as an illustration.

Suppose after preprocessing data as in Section 4.1 which includes using Fourier transform to

compress information into low frequencies, we have the cell averages

f �X�
ij(k); i = 1; � � � ; I ; j = 1; � � � ; J and k = 1; � � � ; Tg:

Assume that �X�
ij(k) � Nff�ij(k); �2ij(k)=nijg with known �2ij(k), where nij is the sample size at the

(i; j)-cell. In practice, the variances f�2ij(k)g can be estimated from the sample. Suppose that we

are interested in testing the hypothesis that

H0 : f
�
ij(k) = f�j (k); for i = 1; � � � ; I; j = 1; � � � ; J; k = 1; � � � ; T: (5.5)

Following the derivations in Section 4, we reject H0 when

Fm̂ = max
1�m�T �

1p
2(I � 1)Jm

2
4 mX
k=1

JX
j=1

IX
i=1

nij�ij(k)
�2f �X�

ij(k)� �X�
�j(k)g2 � (I � 1)Jm

3
5 ; (5.6)

where T � is the highest dimension (frequency) to be tested and

�X�
�j(k) =

IX
i=1

nij
�2ij(k)

�X�
ij(k)=

IX
i=1

nij
�2ij(k)

:

The normalized statistic is

THANOVA =
p
2 log logT �Fm̂ � f2 log logT � + 0:5 log log logT � � 0:5 log(4�)g;

which is distributed approximately as JT � tabulated in Table 1.

6 Concluding remarks

We have proposed the adaptive Neyman test and the wavelet thresholding tests for comparing two

sets of curves. When the underlying mean curves are reasonably smooth, one would employ the

adaptive Neyman test; otherwise the wavelet thresholding tests. We then extend the idea of the

adaptive Neyman test to detect the inter-group di�erence among multiple sets of curves, resulting in

an adaptive ANOVA for high dimensional data, called HANOVA. Extensions of wavelet thresholding
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tests to this setup are less straightforward, because the information in each set of curves is not

necessarily compressed into the same cells by a wavelet transform and hence a useful thresholding

rule is hard to de�ne.

While the adaptive Neyman test and the HANOVA are simple and powerful, their practical

use depends on the distribution of Jn. Table 1 is provided for convenience, but the explicit form

of the distribution Jn is hard to �nd. With computers exist virtually everywhere, this issue is no

longer so crucial. The distribution of Jn can easily be simulated. For example, based on 100,000

simulations, it took us less than 1 minute cpu time on an Ultra Sparc Station 1 or a Pentium 166

to complete Table 2.

We have C-code available for computing the distribution of Jn and Splus code for computing

the adaptive ANOVA test statistic, which includes the adaptive Neyman test as a speci�c example.

We would be happy to provide these codes upon request.

The dimensionality reduction techniques used in this paper are based on orthogonal transforms.

Other useful techniques include the functional data analysis methods in Ramsay and Silverman

(1997). Studies of these approaches are needed.

7 Appendix: Proofs

Proof of Theorem 3.1. Let �2n = �21=n1 + �22=n2 and U = (U1; U2; :::; UT)
T = �( �X � �Y )=�n.

Then, under H0, U � N(0; IT) and

Z� = (�n=�̂n)U; with �̂2n = �̂21=n1 + �̂22=n2:

By (3.8), we have

T �AN = max
1�m�cT

mX
j=1

�2n=�̂
2
nU

2
j � 1p

2m
= max

1�m�cT

mX
j=1

(
U2
j � 1p
2m

+

�
�2n=�̂

2
n � 1

�
U2
jp

2m

)
: (A.1)

Note that �2n=�̂
2
n � 1 = Op(T�1=2) and

mX
j=1

(�2n=�̂
2
n � 1)U2

jp
2m

=

 
�2n
�̂2n
� 1

!0@ mX
j=1

U2
j � 1p
2m

+

r
m

2

1
A :

By a result of Darling and Erd�os (1956), we have

max
1�m�cT

mX
j=1

U2
j � 1p
2m

= Op(
p
log log cT ):
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Therefore, we have

max
1�m�cT

mX
j=1

�
�2n=�̂

2
n � 1

�
U2
jp

2m
= Opf(cT=T )1=2g

and it follows from (A.1) that

T �AN = max
1�m�cT

mX
j=1

U2
j � 1p
2m

+ Op

�
(cT=T )

1=2
�
:

Thus, by Slutsky's theorem and the result of Darling and Erd�os (1956), the desired conclusion

follows.

Proof of Theorem 3.2. We continue to use the notation introduced in the proof of Theorem 3.1.

Let ĉT = �n=�̂n. Then ĉ2T = 1 +Op(T
�1=2). Now decompose T̂ �H as the following:

T̂ �H =
TX
j=1

jĉT j2jUj j21(jĉTUj j > �)

= (1 + Op(T
�1=2))

2
4 TX
j=1

jUj j21(jUjj > �) +
TX
j=1

jUj j2f1(jĉTUj j > �)� 1(jUjj > �)g
3
5

=
TX
j=1

jUj j21(jUjj > �) + Op(T
�1=2)�T + f1 +Op(T

�1=2)g�T ; (A.2)

where �T =
PT

j=1 jUj j21(jUjj > �) and �T =
PT

j=1 jUj j2(1(jĉTUj j > �)� 1(jUjj > �)). By Theorem

2.3 of Fan (1996), we have

�T = Op[TEfjUjj21(jUjj > �)g] = Opf(logT )1=2+dg;

and we will show that

�T = Op((logT )
�k) for any k > 0: (A.3)

Therefore, by (A.2), we obtain

T̂ �H =
TX
j=1

jUjj21(jUjj > �) +Op(T
�1=2(logT )1=2+d) +Op((logT )

�k):

By Slutsky's theorem and Theorem 2.3 of Fan (1996), the conclusion of Theorem 3.2 follows. It

remains to establish (A.3).

Note that

�T � max
1�j�T

jUj j2
TX
j=1

���1(jĉTUj j > �)� 1(jUj j > �)
���

= Op(logT )Op[TEfj1(jĉTUj j > �)� 1(jUjj > �)jg]: (A.4)
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Let �T1 = Efj1(jĉTUj j > �)� 1(jUj j > �)jg. Then,

�T1 = P (jĉTUj j > �; jUj j � �) + P (jĉTUj j � �; jUjj > �) � �T2 + �T3: (A.5)

We �rst deal with the term �T2. Observe that

�T2 � P (� � jUj j > �=(1 + b)) + P (jĉT j > 1 + b): (A.6)

Taking b = (logT )�f for some large f , it follows from the direct calculation that

Pf�=(1 + b) < jUj j � �g =
2p
2�

Z �

�=(1+b)
e�x

2=2dx

� 2(1 + b)

�
p
2�

Z �

�=(1+b)
xe�x

2=2dx

= O(��1e��
2=2b�2)

= Of 1
T
(logT )�f+1=2+dg: (A.7)

By Chebyshev's inequality,

P (jĉT j > 1 + b) = P
�
expf

p
T (1� jĉT j�2)g � exp[

p
Tf1� (1 + b)�2g]

�

� E expfpT (1� jĉT j�2)g
expf

p
T (1� (1 + b)�2)g :

Note that

jĉT j�2 = �21=n1
�2n

�̂21
�21

+
�22=n2
�2n

�̂22
�22

is a mixture of �2 distribution. By using the moment generating function of the �2-distribution, it

follows from tedious calculations that

P (jĉnj > 1 + b) = Ofexp(�2
p
Tb)g:

This and (A.7) show that �T2 = OP (T
�1 log�k T ) for any k > 0. Using a similar argument, we

can show that �T3 = OP (T�1 log
�k T ) for any k > 0. By (A.5), we establish (A.3). The proof is

completed.

Proof of Theorem 3.3. Denote the remainder Op-terms in (3.15) respectively by RXj(k) and

RY j(k). Then,

ERXj(k) = RY j(k) = 0:
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By the assumptions (3.9) and (3.10), it can be shown (see Section 4.3 of Lin 1997) that for any

integer m,

ERXj(k)
2m = O(T�m); ERY j(k)

2m = O(T�m): (A.8)

Using this, we now demonstrate

max
1�k�T

n�11

n1X
j=1

RXj(k) = oP (n
�1=2
1 T�a); for any a < 1=2: (A.9)

To see this, we note that for any � > 0,

Pf max
1�k�T

n�11

n1X
j=1

RXj(k) > �n�1=2T�ag

�
TX
k=1

Pfn�1=21

n1X
j=1

RXj(k) > �T�ag

�
TX
k=1

��2mT 2amEfn�1=21

n1X
j=1

RXj(k)g2m:

By (A.8), the last term is bounded by

O(TT 2amT�m);

which tends to zero if m is chosen largely enough. This establishes (A.9).

Let �2n(k) = n�11 �21(k)+n�12 �22(k). Then, by using (A.9) and a similar expression for fRY j(k)g,
we have

D�(k) = "�k + R�
k;

where

"�k = n�11

n1X
j=1

"�j (k)� n�12

n2X
j=1

"��j (k) � N(0; �2n(k));

and

max
1�k�T

R�
k = oP (n

�1=2
1 T�a); for any a < 1=2: (A.10)

Thus, by (3.15), we have

Z(k) =
D�(k)

�n(k)
f1 +Op(eT )g

= "k +Rk; "k � N(0; 1); max
1�k�T

Rk = oP (T
�a) +OP (eT log

1=2 T ); (A.11)
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where the factor log1=2T comes from the extreme value of the T independent Gaussian white noises.

Consequently,

T �AN = max
1�m�cT

(2m)�1=2
mX
k=1

f("k + Rk)
2 � 1g

= max
1�m�cT

(2m)�1=2f
mX
k=1

("2k � 1) + 2
mX
k=1

"kRk +
mX
k=1

R2
kg: (A.12)

By (A.11), the last term of (A.12) is bounded by

max
1�m�cT

(2m)�1=2
mX
k=1

R2
k = o(c

1=2
T T�2a) +OP (c

1=2
T e2T logT )

The second term of (A.12) is bounded by

max
1�m�cT

m�1=2
mX
k=1

"kRk � foP (T�a) +OP (eT log
1=2 T )g max

1�m�cT
m�1=2

mX
k=1

j"kj:

Observe that

max
1�m�cT

m�1=2
mX
k=1

j"kj � max
1�m�cT

(
mX
k=1

"2k)
1=2

� [c
1=2
T max

1�m�cT
m�1=2f

mX
k=1

("2k � 1) +mg]1=2

= [c
1=2
T Opf(log log cT )1=2g+ cT ]

1=2

= Op(c
1=2
T );

where we used (2.4) and (2.5) to obtain the Opf(log log cT )1=2g term.
Combining all we have shown so far, we have

T �AN = max
1�m�cT

(2m)�1=2
mX
k=1

("2k � 1) + oP (c
1=2
T T�a) +OP (c

1=2
T eT log

1=2 T )

= max
1�m�cT

(2m)�1=2
mX
k=1

("2k � 1) + oP (T
�(a�a0)=2) + log�1=2 T:

By choosing a > a0 and applying the result in (2.4) and (2.5) to the main term, we obtain the

desired result. This completes the proof.

Proof of Theorem 4.1. Note that under the null hypothesis, X2 de�ned after (4.6) is a central

�2 distribution with degrees of freedom (I � 1)m. Without loss of generality, assume �ij = 0. Set

30



Yij = Xij=�ij � N(0; 1) and a2j =
PI

i=1 �
�2
ij . Observe that

X2 =
mX
j=1

f
IX

i=1

��2ij X
2
ij � a2j

�X2
�jg

=
mX
j=1

f
IX

i=1

Y 2
ij � (

IX
i=1

��1ij Yij=aj)
2g (A.13)

Denote byYj = (Y1j ; � � � ; YIj)T . Let �j be an orthogonal matrix whose �rst row is (��11j ; � � � ; ��1Ij )=aj

and Zj � (Z1j; � � � ; ZIj)
T = �jYj . Then fZijg are independent and normally distributed with mean

0 and variance 1. By (A.13), we have

X2 =
mX
j=1

IX
i=2

Z2
ij :

This together with (4.9) and (4.10) lead to

Fm̂ = max
1�m�n

1p
2(I � 1)m

8<
:

mX
j=1

IX
i=2

Z2
ij � (I � 1)m

9=
;

= max
1�m�n

m�1=2
mX
j=1

Vj ; (A.14)

where Vj = f2(I � 1)g�1=2PI
i=2(Z

2
ij � 1) has mean zero and variance 1. By a result of Darlin and

Erd�os (1956), we obtain (4.11). Since Jn has also the same asymptotic distribution as FI;n, the

�rst conclusion follows.

Proof of Theorem 4.2. Let c� = � log(� log(1� �)). Then, the power of the HANOVA test is

given by

P�(FI;n > c�) = P [Fm̂ �
p
2 log log nf1 + o(1)g]:

Since Fm̂ � Fm0
, it follows that

P�(FI;n > c�) � P�[Fm0
� p2 log log nf1 + o(1)g]:

This proves the �rst conclusion. The second conclusion follows from the stochastic boundedness of

the random sequence fFm � ��2m g.
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