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Structural Basis for Sequence Specific DNA Binding and
Protein Dimerization of HOXA13
Yonghong Zhang1, Christine A. Larsen2,3, H. Scott Stadler2,3, James B. Ames1*

1 Department of Chemistry, University of California Davis, Davis, California, United States of America, 2 Department of Molecular and Medical Genetics, Oregon Health and
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Abstract

The homeobox gene (HOXA13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls
expression of genes during embryonic morphogenesis. Here we present the NMR structure of HOXA13 homeodomain
(A13DBD) bound to an 11-mer DNA duplex. A13DBD forms a dimer that binds to DNA with a dissociation constant of 7.5
nM. The A13DBD/DNA complex has a molar mass of 35 kDa consistent with two molecules of DNA bound at both ends of
the A13DBD dimer. A13DBD contains an N-terminal arm (residues 324 – 329) that binds in the DNA minor groove, and a C-
terminal helix (residues 362 – 382) that contacts the ATAA nucleotide sequence in the major groove. The N370 side-chain
forms hydrogen bonds with the purine base of A5* (base paired with T5). Side-chain methyl groups of V373 form
hydrophobic contacts with the pyrimidine methyl groups of T5, T6* and T7*, responsible for recognition of TAA in the DNA
core. I366 makes similar methyl contacts with T3* and T4*. Mutants (I366A, N370A and V373G) all have decreased DNA
binding and transcriptional activity. Exposed protein residues (R337, K343, and F344) make intermolecular contacts at the
protein dimer interface. The mutation F344A weakens protein dimerization and lowers transcriptional activity by 76%. We
conclude that the non-conserved residue, V373 is critical for structurally recognizing TAA in the major groove, and that
HOXA13 dimerization is required to activate transcription of target genes.
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Introduction

Homeobox (Hox) genes encode a conserved family of

transcription factor proteins that are critically important in

vertebrate development [1]. In humans, the Hox genes are

distributed into four linkage groups (HOXA, B, C, D) comprising

39 genes located on chromosomes 7, 17, 12, and 2 (Fig. 1).

Recently, mutations in HOXA13 have been associated with

Hand-Foot-Genital-(HFGS) and Guttmacher syndromes (GS),

autosomal dominant disorders that profoundly affect limb and

genitourinary development causing defects in the digits, carpal/

tarsal bones, uterus, bladder, Mullerian ducts, and the external

genitalia [2,3,4]. In mice, loss of function studies have confirmed a

conserved role for HOXA13 in limb and genitourinary develop-

ment and also identified a novel function for HOXA13 in the

developing murine placenta, where it regulates the expression of

Tie2 and Foxf1a to facilitate the formation of the placental vascular

labyrinth [5,6,7].

While it is well-established that HOXA13 is essential for the

formation of many different tissues, it is less clear how HOXA13

mediates the tissue-specific expression of its target genes. To

address this question, a SELEX approach was used to identify a

consensus sequence of 59-AAATAAAA-39 preferred by HOXA13

[8]. The core sequence in the major groove (59-ATAA-39) is

somewhat different from the corresponding sequence (59-ATCA-

39) recognized by most other HOX proteins [9]. Another unique

feature of HOXA13 is that it binds tightly to specific DNA targets

(Kd = 3.7 nM) without the aid of any cofactors [8]. This is in stark

contrast to other known HOX proteins that require MEIS-class

[10,11] and/or PBC-class cofactors [12,13] to enable high affinity

DNA binding. An atomic-resolution structure of HOXA13 bound

to duplex DNA is therefore needed to elucidate its sequence-

specific DNA binding and provide a structural basis for

understanding how mutations in HOXA13 cause HFGS and GS.

Here we report the NMR structure of the murine HOXA13

DNA binding domain (residues 314–386, called A13DBD) bound

to an 11-residue DNA duplex. Interestingly, the A13DBD forms a

dimer in solution bound to two molecules of duplex DNA, forming

a 2:2 complex called, (A13DBD)2-(DNA)2. The structure contains

a positively charged N-terminal arm that forms electrostatic

contacts in the minor groove of DNA. Exposed residues on the C-

terminal helix make sequence-specific contacts in the major

groove. N370 forms critical hydrogen-bonds with the purine base

of A5* (astericks indicates base paired with T5, see Fig. 1B for

duplex base pair numbering). V373 makes a cooperative network

of hydrophobic contacts with pyrimidine methyl groups in the

major groove and thus explains the specific recognition of 59-

TAA-39 in the core sequence. Exposed protein residues, R337 and

F344 contact each other at the protein dimer interface. Mutating

F344 weakens protein dimerization and diminishes the transcrip-

tional activation function. We propose that homodimerization of

HOXA13 might promote multi-valent DNA contacts to help bend
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the DNA template and recruit the transcriptional machinery

needed to regulate target gene expression.

Results

NMR-derived Structure of A13DBD
The 1H-15N HSQC NMR spectrum of A13DBD [14] exhibited

the expected number of amide resonances with good chemical shift

dispersion and uniform intensities, indicative of a folded protein

[14]. Sequence specific NMR assignments of A13DBD were

analyzed and described previously (BMRB no. 16252). The

assigned NMR resonances represent main chain and side chain

amide groups that serve as fingerprints of overall conformation.

Three-dimensional protein structures derived from the NMR

assignments were calculated on the basis of NOE data, chemical

shift analysis, and 3JNHa spin-spin coupling constants (see Methods).

The final NMR-derived structures of A13DBD are illustrated in

Fig. 2 (atomic coordinates have been deposited in the RCSB Protein

Databank, accession no. 2l7z). Table 1 summarizes the structural

statistics calculated for 15 lowest energy conformers with an RMSD

of 0.4 Å (main chain atoms) and 1.15 Å for all heavy atoms.

The main chain structure of A13DBD adopts a canonical

homeodomain fold with a positively charged N-terminal arm

(residues 321–327) and three a-helices: a1 (residues 329–341), a2

(residues 347–356) and a3 (residues 362–379) shown schematically

in Fig. 1A. The first two helices form an antiparallel helical hairpin

with electrostatic salt bridges between the two helices at E334/

R352 and E338/R350. A long C-terminal helix lays perpendicular

to the hairpin helices. Exposed residues on the C-terminal helix

(I366, N370, V373, K377, K381) correspond to DNA binding

residues in the structures of other homeodomain proteins, Hoxb1

[9], Pdx1 [15], antennapedia [16,17], engrailed [18,19], and

Hoxa9 [20].

A13DBD Binding to 11-mer DNA
An 11-mer oligonucleotide (59-CAAATAAAATC-39) was the

minimal DNA sequence containing the ATAA core [8] that

formed a stable duplex and exhibited high affinity and sequence

specific binding to A13DBD (see Fig. 1B for duplex base pair

numbering). The binding of the 11-mer DNA duplex to A13DBD

was quantitatively measured by isothermal titration calorimetry

(Fig. S7). The ITC isotherm shows that A13DBD binds

exothermically to the duplex (DH = 230.1 kcal/mol) with an

apparent dissociation constant of 7.5 nM and stoichiometric

binding ratio of one (Fig. S7). The binding stoichiometry of one

was confirmed by NMR titrations that monitored spectral changes

Figure 1. Primary sequence of HoxA13 and 11-mer duplex DNA. (A) Amino acid sequence alignment of HOXA13 with other homeodomain
proteins: HOXA9, HOXB13, HOXB1 and Pdx1. Residues at the DNA binding interface are highlighted bold and residues at the dimer interface are
colored red. (B) Nucleotide sequence of 11-mer duplex DNA. The sense oligonucleotide strand is numbered from 1 to 11 in the 59 to 39 direction and
the complementary strand is numbered from 1* to 11* in the 39 to 59 direction. The thymine bases that interact with V373 are highlighted bold.
doi:10.1371/journal.pone.0023069.g001

Structure of HOXA13 Dimer Bound to DNA
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of characteristic DNA imino resonances as a function of added

A13DBD (Fig. S1).

Molar Mass of A13DBD/DNA Complex
The molar mass of the A13DBD/DNA complex in solution was

determined by measuring its molecular diffusion by NMR. 15N

NMR relaxation measurements on the A13DBD/DNA complex

(R2/R1 = 35.4) indicate an average rotational correlation time of

18-ns at 37uC, consistent with a spherical mass of 3564 kDa

(Figure S2 and Table 2). NMR pulsed-field gradient diffusion

studies [21] determined a translational diffusion coefficient

(D = 9610211 m2/s) consistent with a molar mass of ,35 kDa.

Lastly, the molar mass of the A13DBD/DNA complex in solution

was determined to be 3565 kDa based on size-exclusion

chromatography (SEC) calibrated using molecular mass standards

and multi-angle light scattering (MALS) analysis (Table 2). The

observed mass at 3564 kDa indicates that a dimer of A13DBD

(,20 kDa) must bind to two DNA duplex molecules (,7 kDa

each), giving an expected total mass of 34 kDa. Two 11-mer DNA

duplex molecules bound to a protein dimer gives a binding

stoichiometry of 2:2, hereafter designated as (A13DBD)2-(DNA)2.

The dimerization of A13DBD determined above is somewhat

inconsistent with previous analytical ultracentrifugation studies

that suggest A13DBD is a protein monomer bound to a single

DNA hairpin [22]. The A13DBD dimerization may have been

disrupted or weakend in the sedimentation studies due to its

binding to a DNA hairpin instead of duplex DNA that was used in

the current study. The SEC mass analysis measured above as a

function of protein concentration indicates a dissociation constant

of A13DBD dimerization to be ,500 nM, suggesting that

(A13DBD)2-(DNA)2 should be quite stable and remain intact

under physiological conditions.

Structure of A13DBD bound to duplex DNA
After characterizing the DNA binding properties above, we next

set out to determine the NMR structure of (A13DBD)2-(DNA)2.

We have previously reported the NMR spectra and assignments of

(A13DBD)2-(DNA)2 [23]. The backbone chemical shifts, residual

dipolar couplings (Fig. S9), and inter-helical NOE patterns

(involving L335, I353 and V364) all demonstrate that the overall

main chain structure of A13DBD in the complex is quite similar to

the structure of the free protein above. Minor structural changes

induced by DNA-binding are observed in the N-terminal arm

(residues 323–329) and the C-terminal helix in the complex

becomes elongated by one helical turn (see Fig. 1A, residues 362–

382).

Figure 2. NMR-derived structures of A13DBD in solution. (A)
Superposition of main chain atoms of 15 lowest energy structures with
RMSD of 0.4 Å (main chain atoms). (B) Ribbon representation of the
energy-minimized average main chain structure. The three a-helices are
highlighted magenta (a1, residues 329–341), cyan (a2, residues 347–
356), and green (a3, residues 362–379).
doi:10.1371/journal.pone.0023069.g002

Table 1. Structure Statistics for NMR-derived Structures of
A13DBD.

NOE restraints (total) 778

intra (i – j = 0) 139

medium (1 # i –j #4) 564

long (i – j .4) 75

dihedral angle restraints (w and y) 86

hydrogen bond restraints in a–helical regions 54

RMSD from ideal geometry: bond length (Å) 0.008960.00014

RMSD from ideal geometry: bond angle (deg) 1.9660.0097

Ramachandran plot: most favored region (%) 70.1

Ramachandran plot: allowed region (%) 28.3

Ramachandran plot: disallowed region (%) 1.5

RMSD: a-helical regions (main chain) (Å) 0.460.089

RMSD: a-helical regions (non-hydrogen) (Å) 1.1560.11

doi:10.1371/journal.pone.0023069.t001

Table 2. Molecular Mass of A13DBD (WT and F344A) bound
to 11-mer DNA Duplex.

Method Mass (kDa)

15N NMR Relaxation for WT (R2/R1 = 35.4) 3564 (tc = 18 ns at 310 K)

15N NMR Relaxation for F344A (R2/R1 = 18.8) 2063 (tc = 9.8 ns at 310 K)

SEC1 for WT 3565 (at 277 K)

SEC1 for F344A 2464 (at 277 K)

1H NMR gradient-echo2 3565 (D = 9610-11 m2/s at
310 K)

1Size-exclusion chromatography (SEC) using Superdex-75 HR/30 column
calibrated using molecular mass standards as described by [54].

2The lateral molecular diffusion coefficient (D) was measured using pulsed-field
gradient spin-echo NMR experiments as described by [55].

doi:10.1371/journal.pone.0023069.t002

Structure of HOXA13 Dimer Bound to DNA
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The NMR-derived structures of A13DBD bound to DNA were

calculated as described in the Methods using both intermolecular

NOEs (Fig. 3) and residual dipolar couplings (Fig. S9). The

residues of A13DBD at the DNA interface were first experimen-

tally probed by NMR chemical shift mapping. Chemical shift

perturbations due to DNA binding [23] were observed for N-

terminal residues (R321, R324 and Y327) and residues in the C-

terminal helix (I366, N370, V373, K376 and K377). To identify

DNA contacts at atomic resolution, isotope-filtered NOESY

experiments (see Methods) were performed on NMR samples

that contained 13C-labeled A13DBD bound to unlabeled DNA

(Fig. 3). The NMR chemical shift assignments for A13DBD in the

complex [23] served as the basis for analyzing intermolecular

NOE signals from key residues at the protein-DNA interface

(Fig. 3). Intermolecular NOEs in the complex were assigned

mainly to protein residues (I368, N370 and V373) on the solvent-

exposed surface of the C-terminal helix.

The most striking intermolecular NOEs involve protein contacts

with pyrimidine methyl groups of thymine residues in the major

groove. The 11-mer DNA duplex in this study contains a total of 9

thymines. Each thymine methyl resonance was assigned by

generating a series of thymine-to-dexoyuridine (T-to-dU) mutants

(T5dU, T6*dU, T7*dU and T4*dU) in which the pyrimidine

methyl group for each thymine residue was replaced with a

hydrogen atom (see Fig. 1B for duplex base pair numbering).

Analysis of 2D 13C-filtered (F1 and F2) NOESY spectra that

specifically probed unlabeled DNA in these mutants (Fig. S8)

provided assignments for pyrimidine methyl groups and H6

resonances from all nine thymines, and H8 resonances in adjacent

adenines. The pyrimidine methyl resonances of T5, T6* and T7*

interact closely with both side-chain methyl groups of V373,

forming an intricate network of hydrophobic contacts (Fig. 3). The

T6* methyl is also close to the b-methylene group of N370. T3*

and T4* methyl groups interact closely with both methyl groups of

I366. Thus, the observed intermolecular NOEs (Fig. 3) represent

mostly hydrophobic interactions in the major groove and give rise

to a total of 38 intermolecular NOEs used in the structure

calculation described in the Methods.

The final NMR-derived structures of A13DBD bound to duplex

DNA are shown in Fig. 4 (RCSB Protein Databank accession no.

Figure 3. Slices from 1H-1H planes of a 3D 13C-edited (F1) and 13C-filtered (F3) NOESY-HSQC spectrum recorded on 13C,15N-labeled
A13DBD bound to unlabeled DNA. Representative two-dimensional planes are shown at different 13C chemical shifts and illustrate
intermolecular NOEs involving (A) I366 d1 methyl (F1: 13C = 14.4 ppm), (B) I366 c2 methyl (F1: 13C = 19.5 ppm), (C) N370 b methylene (F1: 13C = 39.0
ppm), (D) V373 c1 methyl (F1: 13C = 21.0 ppm), and (E) V373 c2 methyl (F1: 13C = 23.0 ppm).
doi:10.1371/journal.pone.0023069.g003

Structure of HOXA13 Dimer Bound to DNA
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2l5d; see movie S1 and structural statistics in Table 3). The

ensemble of structures consistent with the NMR data is shown in

Fig. 4A (RMSD = 0.67 Å). The energy minimized average

structure is shown as a ribbon diagram in Fig. 4B. The N-

terminal arm region (residues 324–329) of A13DBD makes

important electrostatic contacts in the minor groove of DNA.

Positively charged protein residues K322 and K323 form

electrostatic contacts with backbone phosphate groups of T8*,

T10, and C11. The R324 side-chain forms hydrogen bonds with

the purine base of A8 and electrostatic contacts with the T6*

backbone. The phenolic group of Y327 forms a hydrogen-bond

with the backbone phosphate of A5*. The exposed residues of the

C-terminal helix (residues I366, N370 and V373) of A13DBD all

make important sequence-specific contacts in the major groove

(Fig. 4C). The side-chain of N370 forms contacts with the

pyrimidine methyl of T6* and hydrogen-bonding contacts with the

purine base of A5*: The side-chain carbonyl oxygen and amide

proton of N370 are hydrogen-bonded to the amine group and N7

atom of A5*, respectively. Also noteworthy are the network of

hydrophobic contacts between the side-chain methyl groups of

V373 and pyrimidine methyl groups of T5, T6* and T7*.

Additional hydrophobic contacts are formed by the side-chain

Figure 4. NMR-derived structures of A13DBD bound to 11-mer DNA duplex. (A) Ensemble of 10 lowest energy structures with RMSD of
0.67 Å for A13DBD and 0.69 Å for DNA. The helices are colored as defined in Fig. 2. (B) Ribbon diagram of energy-minimized average structure of
A13DBD/DNA complex. The C-terminal helix (green) of the protein contacts the major groove in duplex DNA, and the flexible N-terminal arm
interacts with the minor groove. (C) Close-up of the binding interface in the major groove. The key residues are shown as sticks (green) and wires
(yellow). The two methyl groups of V373 are close to the methyl groups of T5, T6* and T7* of DNA, the O atom in N370 side-chain is hydrogen-
bonded to the amino group of A5*, and the two methyl groups of I366 are close to the pyrimidine methyl groups of T3* and T4*.
doi:10.1371/journal.pone.0023069.g004

Structure of HOXA13 Dimer Bound to DNA

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23069



methyl groups of I366 and pyrimidine methyl groups of T3* and

T4*, and H8 atom of A5*. Positively charged residues (R371,

R372 and K381) at the end of the C-terminal helix form

electrostatic contacts with the backbone phosphate group of A4,

T7* and T8*.

Mutagenesis of DNA Binding Site
To experimentally verify the sequence-specific DNA contacts

suggested by our structure (Fig. 4C), the following protein mutants

(I366A, N370A, and V373G) were constructed and characterized

for DNA binding and transcriptional activity. All of the mutants

are stably folded (see DSC data in Fig. S3) and retain the same

NMR spectrum and structure as the wildtype protein (Fig. S4).

DNA binding to each of the mutants was monitored by ITC (Fig.

S7 and Table 4). The N370A mutant binds to DNA with ,1000-

fold lower affinity compared to wildtype, whereas I366A and

V373G each bind to DNA with 3-4-fold lower affinity. The

corresponding mutants in the full-length HOXA13 protein

showed reduced activity in transcriptional reporter assays. The

N370A mutant showed a complete loss of reporter activity,

whereas I366A and V373G showed a 40 and 58 percent reduction

in reporter activity respectively (Fig. S5). These results confirm

that I366, N370 and V373 all participate in DNA binding and

have important biological effects on transcription.

DNA Binding Affinity and Sequence Specificity
The V373G mutation was further analyzed for its affinity to

bind various DNA sequences. Fluorescence polarization anisotro-

py assays were use to calculate the Kd values of wt and V373G

A13DBD with different DNA sequences (Table 5). When

compared to wildtype A13DBD, V373G exhibited greater than

10-fold less affinity for all DNA sequences, suggesting that V373 in

A13DBD is important for DNA binding.

Sequence-specific DNA binding was examined by changing T5

and T6* nucleotides and comparing affinity for the different

binding sites with wt A13DBD. A thymine-to-deoxyuridine change

at T5 in the A13 binding site resulted in a 2-fold change in affinity,

however when changed to a cytosine the affinity decreased by

approximately 20-fold. Similarly a thymine-to-deoxyuridine and

thymine-to-cytosine change at T6* resulted in a 3-fold and 7-fold

change in affinity, respectively. This suggests that both the methyl

at position 5 and the oxygen at position 6 in T5 and T6* are

important for DNA sequence recognition by A13.

Competitive displacement experiments were performed to assess

the sequence specificity of DNA binding to wt and V373G

A13DBD (Fig. 5A). Labeled oligonucleotide was bound and

competed away from each protein by adding various amounts of a

corresponding non-labeled oligonucleotide (Fig. 5B). For all DNA

sequences, wt A13DBD was displaced more effectively when

compared to V373G, as expected from their large differences in

Kd. The relative specificity of the protein-DNA interaction for wt

versus V373G HOXA13 was inferred by comparing how much

scrambled oligonucleotide was needed to displace binding of the

consensus DNA sequence (Fig. 5C). Wt HOXA13 bound the

consensus DNA binding site strongly, and 1 mM or greater of

scrambled oligonucleotide was required to compete HOXA13

away. The V373G mutant protein bound much less tightly to the

consensus binding site and as little as 50 nM scrambled

oligonucleotide demonstrated the ability to compete for binding.

Protein Dimerization of A13DBD
The structure of the protein dimer in the (A13DBD)2-(DNA)2

complex could not be directly probed in our NMR experiments

due to spectral symmetry and an apparent lack of intermolecular

NOEs at the dimer interface, perhaps due to the dimerization off-

rate being faster than the NOE (T1) time scale. The NMR spectral

symmetry causes our experiments to view only half of the dimer

complex (i.e. one A13DBD molecule bound to one DNA duplex).

Therefore, we developed an alternative approach to infer the

structure of the protein interface by using a site-specific

Table 3. Structure Statistics for NMR-derived Structures of
A13DBD/DNA Complex.

Intermolecular NOEs 38

1DHN RDC 25

RDC Q-factor 0.078

Ramachandran plot: most favored region (%) 84.4

Ramachandran plot: allowed region (%) 14.1

Ramachandran plot: disallowed region (%) 1.5

RMSD (Å): Protein backbone atoms 0.67

RMSD (Å): DNA heavy atoms 0.69

RMSD (Å): Protein backbone + DNA heavy atoms 0.68

doi:10.1371/journal.pone.0023069.t003

Table 4. ITC parameters for DNA binding by A13DBD and mutants.

A13DBD WT WT WT WT I366A N370A V373A V373G V373G V373G

DNA WT T5U T5C T5UT6*U WT WT WT WT T5U T5C

Kd (nM) 7.5 14.5 285.7 40.3 43.7 862.1 18.7 137.2 236.0 617.3

DH(kcal/mol) -30.1 -24.3 -38.3 -23.3 -21.8 -0.01 -23.0 -1.6 -12.9 -25.1

T5U: T-to-dU DNA mutant (deoxythymine mutated to deoxyuridine).
T5C: T-to-C DNA mutant at 5 position of Strand 1 (Strand 1: 59-CAAACAAAATC-39, Strand 2: 59-GATTTTATTTG-39).
T5UT6*U: T-to-dU DNA mutant (deoxythymine mutated to deoxyuridine).
doi:10.1371/journal.pone.0023069.t004

Table 5. Kd values of A13DBD wt and V373G measured by
fluorescence depolarization.

DNA Sequence wt Kd (nM) V373G Kd (nM)

wt 2.1960.06 56.662.25

T5C 49.264.97 615.8656.1

T5U 4.0160.28 55.064.35

T6*C 5.9560.64 79.366.93

T6*U 16.462.07 200.4610.9

doi:10.1371/journal.pone.0023069.t005

Structure of HOXA13 Dimer Bound to DNA
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mutagenesis analysis. Inspection of the NMR structure of

A13DBD bound to DNA reveals a relatively small exposed

surface (solvent exposed surface area = 422 Å2) that would be

capable of forming a dimerization binding site. This exposed

surface contains a hydrophobic residue (F344) that very likely

might form a hydrophobic contact at the dimer interface. To test

this hypothesis, we made the mutant F344A that remains

structurally folded and does not affect DNA binding (Fig. S7).

Figure 5. Effects of site specific changes in the A13DBD DNA binding site and mutation of V373 on DNA binding affinity. Individual
mutations to the HOXA13 DNA binding site (Table S1) are depicted by each line or bar color. (A) Overlay plots show binding of wt A13DBD (left
panel) or V373G A13DBD (right panel) to various DNA mutants. (B) Competitive displacement assays, for wt (left panel) and V373G (right panel).
Wedges indicate an increasing amount of competitor DNA at concentrations of 0, 0.05, 0.1, 0.5, 1, 2.5, and 5 mM. (C) Displacement of the high affinity
consensus sequence by a scrambled oligonucleotide on wt (white bars) vs. V373G (gray bars). Wedges indicate an increasing amount of srcambled
competitor DNA at concentrations of 0, 0.05, 0.1, 0.5, 1, 2.5, and 5 mM. All data represent the average of three independent measurements for each
protein and oligonucleotide concentration. Error bars represent the standard deviation of the three independent experiments.
doi:10.1371/journal.pone.0023069.g005

Structure of HOXA13 Dimer Bound to DNA
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As expected, the F344A mutant dramatically weakens the

dimerization binding interaction as evidenced by SEC/MALS

data, indicating an apparent molar mass of 2564 kDa for the

F344A complex compared to 3565 kDa for that of wildtype (Fig.

S6). This result indicates that the F344A mutation weakens the

protein dimerization affinity (by at least 10-fold), consistent with

F344 being located in the dimerization binding site. We next

surveyed the available crystal structures of homedomains and

found that PDX1 forms a homodimer [15]. Interestingly, the

dimerization site on PDX1 contains an exposed tyrosine

(corresponding to F344 in HOXA13) that interacts closely with

a conserved arginine (corresponding to R337 in HOXA13). This

pair of residues was then mutated in A13DBD (R337A/F344A)

and tested for their effect on protein dimerization. The double

mutant does not affect DNA binding, but shows a pronounced

weakening of the dimerization affinity compared to that of F344A

(Fig. S6). Lastly, an exposed lysine (K343) next to F344 was

mutated (K343E), and this charge reversing mutation remained

structurally intact but lowered the dimerization affinity by ,5-

fold. In short, exposed residues (R337, K343 and F344) all

contribute to the dimerization binding energy and must be located

at the dimerization binding site.

These dimerization site residues (R337, K343 and F344) were

then used as unambiguous restraints to calculate the structure of

the dimer using HADDOCK (see methods). The calculated

structure of the dimer is very similar to the structure of a protein

dimer predicted by homology modeling based on the PDX1

crystal structure [15]. The structural model of the A13DBD dimer

is shown in Fig. 6A. In this dimeric structural arrangement, the

two duplex DNA molecules are bound at opposite ends of the

dimer (Fig. 6B). The structure of the A13DBD dimer therefore has

two exposed DNA binding sites that we suggest may bind to

multiple sites on the same DNA duplex or perhaps bind to two

separate DNA strands.

Functional Role of A13DBD Dimerization
Recognizing that the (A13DBD)2-(DNA)2 complex was highly

stable during its purification and NMR analysis, we hypothesized

that protein dimerization in this complex must exist under

physiological conditions and may be required to regulate target

gene expression. To test the functional role of protein dimeriza-

tion, wild type HOXA13 protein and mutant HOXA13 protein

bearing a substitution at the F344 dimerization site (F344A) were

evaluated for their capacity to regulate gene expression from the

EphA7 enhancer element that we previously identified to be

regulated by HOXA13 in vitro and was bound by full length

HOXA13 in embryonic tissues [22]. Analysis of normalized

luciferase expression confirmed that wt HOXA13 regulates gene

expression through the EphA7 cis-regulatory DNA element

(Figure 7). In contrast, substitution of the dimer-forming

phenylalanine residue with alanine at the position 344 generated

a mutant (F344A) that consistently reduced luciferase expression

from the same EphA7 cis-regulatory element by greater than

seventy five percent, confirming the importance of dimerization

and F344 in target gene regulation (Figure 7).

Discussion

In this study, we present the NMR structure of the A13DBD

dimer bound to duplex DNA (Fig. 4) and establish that HOXA13

dimerization is functionally important for activating transcription

(Fig. 7). The A13DBD dimer binds symmetrically to two separate

DNA duplex molecules at both ends of the dimer (Fig. 6B). At

each DNA binding site, the N-terminal arm of A13DBD (residues

324–329) makes electrostatic contacts in the DNA minor groove

(Fig. 4B), and a mutation in this region (R326G) is implicated in

Figure 6. A13DBD protein dimerization. (A) Main chain structure
of A13DBD dimer calculated by HADDOCK. Key residues at the dimer
interface (R337, K343 and F344) are highlighted. Mutating R337, K343,
and/or F344 dramatically weakens the dimerization affinity. (B)
Structure A13DBD dimer bound to two DNA duplex molecules.
doi:10.1371/journal.pone.0023069.g006

Figure 7. Luciferase assay in NG108-15 cells using a HOXA13
wt and F344A mutant. Percent luciferase activities (relative to wt
control) are indicated on the y axis. HOXA13 wt or F344A (normalized to
renilla and empty vector controls) are plotted on the x axis. Results are
the mean percent values calculated from three independent experi-
ments. Error bars represent the standard deviation of the three
independent experiments.
doi:10.1371/journal.pone.0023069.g007
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Hand-Foot-Genital syndrome [24]. The solvent exposed C-

terminal helix (I366, N370 and V373) makes sequence specific

contacts in the major groove (Fig. 4C), and mutations in the C-

terminal helix are linked to HFGS [3]. The N-terminal arm and

last four residues of the C-terminal helix are structurally

disordered in the absence of DNA (Fig. 2A). These disordered

residues adopt a rigid structure upon binding to DNA (Fig. 4A).

We suggest the dynamic disorder at the N- and C-termini may

facilitate an induced-fit mechanism of DNA target recognition to

help explain the very high DNA binding affinity and sequence

specificity. Another distinctive structural feature of A13DBD (not

seen in other known homeodomains) is that exposed hydrophobic

residues (I366 and V373) form an extensive network of

hydrophobic contacts with thymine methyl groups in the major

groove. Particularly striking are the cooperative hydrophobic

contacts between V373 and the methyl groups of T5, T6* and T7*

that explain the highly specific recognition of 59-TAA-39 in the

major groove. In most other homeodomains, V373 is replaced

with methionine that specifically contacts cytosine (instead of

thymine) in the major groove as seen in the crystal structures of

HOXB1 [9] and other known homeodomains [15,16,17,19,25].

This valine substitution may explain in part why cytosine is NOT

present in the core DNA sequence for HOXA13 (59-AATAA-39

[8]).

HOXA13 belongs to the Group 13 subclass of the abdominal B

hox genes which in humans and mice contain four conserved

members (Hoxa13, Hoxb13, Hoxc13 and Hoxd13) that share about

90% sequence identity in their homeodomain regions. As a result,

their structures and DNA sequence recognition should all be

similar. Indeed, V373 (that is critical for sequence-specific DNA

binding) remains invariant in all members of this Group 13-

subfamily, but is not conserved in many other well known

homeodomain proteins like HOXB1 PDX1, ENGRAILED, and

HOXA9 (Fig. 1A). Our structure of A13DBD reveals that the two

side-chain methyl groups of V373 are responsible for the

recognition of 59-TAA-39 in the major groove due to the network

of hydrophobic contacts it makes with pyrimidine methyl groups

of T5, T6* and T7* (Fig. 4C). By contrast, a methionine

substituted in place of valine at this position in HOXB1 makes

very different contacts in the major groove [9]. We suggest that all

members of the Group 13-subfamily (HOXA13-D13) may

recognize a similar 59-TAA-39 sequence element, because they

all contain valine instead of methionine at this key position. The

Group 13-subclass is unique in having valine conserved at this

position, while all other homeodomains are known to have either

methionine or alanine. Previous analysis of the full-length

consensus HOXA13 binding site indicates that DNA affinity and

specificity may also be influenced by the nucleotides flanking the

59-TAA-39 core sequences, which could explain how each of the

Group 13 homeodomain proteins can regulate different develop-

mental processes even in the same tissues. Indeed, while HOXA13

and HOXD13, are strongly co-expressed in the limb during

development, their loss of function phenotypes are remarkably

different, suggesting that each protein must regulate a unique

cohort of genes in the developing limb [6,26,27].

Our structural analysis reveals that A13DBD forms a protein

dimer in solution (Fig. 6), which is functionally important for the

regulation of HOXA13 target gene expression (Figs. 7–8).

Mutations that weaken HOXA13 dimerization (F344A and

R337A/F344A) also diminish the amount of transcriptional

activation (Fig. 7). Hence, the HOXA13 dimerization suggests a

mechanism to explain how HOXA13 can both activate and

repress target gene expression [28]. We propose that the

HOXA13 dimer can form multivalent contacts with two separate

sites on the same DNA strand (Fig. 8A). The dimerization of

HOXA13 in this context would cause a bending of duplex DNA

(Fig. 8A), which has been previously shown to affect transcription

[29]. Alternatively, the HOXA13 dimerization might connect two

separate DNA duplexes (Fig. 8B) and thus simultaneously activate

transcription at both sites. Conditions that induce dimerization of

HOXA13 (e.g. absence of a repressor molecule or high

concentration of HOXA13) are expected to activate transcription

(Fig. 8, right panel). Conversely, conditions that promote

dissociation of the HOXA13 dimer (e.g. binding to a repressor

protein) are predicted to inhibit transcription (Fig. 8, left panel).

The HOXA13 dimerization may also have a role in explaining

possible disease phenotypes linked to polyalanine expansion

mutants [30,31,32]. Wild-type HOXA13 and HOXD13 have

been suggested to be mislocalized when coexpressed with mutant

HOXA13 that contains polyalanine expansions in vitro [32]. The

presence of additional alanine residues in the polyalanine tracts of

HOXA13 have been suggested to cause protein aggregation [33].

If the polyalanine mutant of HOXA13 forms a dimer with

wildtype HOXD13, then this heterodimerization might sequester

HOXD13 in the cytoplasm, which could result in lower levels of

normal HOXD13 in the nucleus and cause disease [34]. However,

studies on transgenic mice suggest that HOXA13 polyalanine tract

mutants are rapidly degraded in the cytosol and may not

colocalize with HOXD13 [30]. More rigorous biophysical analysis

and co-localization studies are needed to directly probe a binding

interaction between HOXA13 and HOXD13, and characterize

any consequent sequestration by polyalanine tract mutants.

The R337A/F344A dimerization sites in HOXA13 might also

interact with co-factor proteins. Indeed co-factors such as MEIS-

and PBC-class proteins have been shown to interact with HOX

proteins, which promote DNA binding and regulate target gene

expression [10,11,12,13,35]. However, the typical interaction

motifs for the PBC-class co-factors are not apparent in HOXA13

[35,36]. It is conceivable that a cofactor protein might interact

with F344 and/or R337 at the dimerization site, which could

modulate the dimerization equilibrium of HOXA13 and/or help

recruit transcriptional machinery needed to regulate target gene

expression (Fig. 8, left). An important next step will be to probe the

interaction of cofactor proteins with the exposed residues at the

dimerization site (Fig. 6).

An important distinguishing feature of HOXA13 is its capacity

to bind and bend DNA in the absence of any co-factors. We

suggest that homodimerization of HOXA13 by itself may be

sufficient to regulate target gene expression. This self-sufficient

activation by HOXA13 should effectively increase the number of

tissues where HOXA13 can regulate target gene expression and

could explain why HOXA13 controls so many specific develop-

mental processes. A key question moving forward is to determine

what cellular conditions will promote and/or affect the HOXA13

dimerization. One possibility is that a repressor protein may

compete for binding at the HOXA13 dimerization site and

prevent dimerization as depicted in Fig. 8. Also, the dimerization

equilibrium might be highly reversible and controlled thermody-

namically by mass action or other changes in the cell. Future

studies are needed to identify specific binding partner proteins and

understand how the regulatory domain in HOXA13 might be

involved in modulating dimerization to control gene expression.

Materials and Methods

HOXA13 reference sequence
Amino acid sequence numbering was defined using the Mus

musculus HOXA13 protein sequence from GenBank Accession

number:AAB03322.1 (NCBI) (see Fig. 1).
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Protein Expression and Purification
HOXA13 DNA-binding domain (G320-S386) was subcloned

into the XhoI and BamHI restriction sites in the pET-15b

expression vector to make pHisA13DBD plasmid. All site-

directed mutation constructs were generated by using the

QuikChange mutagenesis kit (Stratagene), and the presence of

these mutations was confirmed by DNA sequencing. The

plasmids were transformed into BL21(DE3) competent cells for

protein over-expression. Un-labeled proteins were over-ex-

pressed in LB medium, and purified by following the standard

His-tag protein purification protocol. The pure His-tagged

proteins were cleaved by thrombin to remove His-tag, and then

purified by size-exclusion chromatography (Superdex-75). Uni-

formly 15N-labeled and 13C/15N-labeled were over-expressed in

M9 with 15NHCl and 15NH4Cl/13C-glucose by using high-yield

protein expression protocol [37], and purified as described

previously [14]. The identity and integrity of the final protein

sample was confirmed by SDS-PAGE.

Preparation of ProteinNDNA Complex
Single-stranded oligonucleotides (59-CAAATAAAATC-39 and 59-

GATTTTATTTG-39) and T-to-dU mutant oligonucleotides with

Figure 8. Schematic models of transcriptional regulation by HOXA13. HOXA13 (colored light blue) represses transcription when it is
monomeric (left) and activates transcription when it forms a homodimer (right). The HOXA13 homodimer can bind to two DNA sites (ATAA) within
the same DNA strand (A) or on two separate DNA molecules (B). The HOXA13 homodimerization activates transcription by bending the DNA that may
help to recruit the transcriptional machinery necessary to activate gene expression. Monomeric HOXA13 inhibits transcription (left) under conditions
that promote dimer dissociation (e.g. binding to a repressor molecule that blocks the dimerization site marked by R337 and F344).
doi:10.1371/journal.pone.0023069.g008
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HPLC purification were obtained from http://us.bioneer.com/,

Inc. For DNA duplex preparation, two single stranded DNA

oligonucleotides in annealing buffer (10 mM Tris-HCl, 100 mM

NaCl, 0.1 mM EDTA, pH 7.0) were mixed in 1:1 molar ratio,

and heated to 95uC for 5 min, then cooled to room temperature

over the course of several hours. Concentrations were measured

and calculated by absorbance at 260 nm. To make proteinNDNA

complex, protein was mixed with duplex DNA at 1:1 molar

equivalent amount, and the mixture was incubated at 15uC for

one hour. Finally the protein-DNA complex was purified by gel

filtration chromatography (Superdex-75) to remove any unbound

DNA.

Molecular Mass Analysis
Size exclusion chromatography (SEC) was performed on a

Superdex 75 HR 10/30 column (GE Healthcare) at 4uC. A 0.1 ml

aliquot of protein was loaded onto the column and eluted at a flow

rate of 0.5 ml/min. Molecular masses were analyzed by analytical

SEC performed in-line with a multi-angle light-scattering (MALS)

miniDawn instrument with a 690-nm laser (Wyatt Technologies,

Inc.) coupled to refractive index instrument (Optilab Rex, Wyatt

Technologies, Inc.). The molar mass of chromatographed protein

was calculated from the observed light scattering intensity and

differential refractive index [38] using ASTRA software (Wyatt

Technologies, Inc.) based on Zimm plot analysis using a refractive

index increment, dn/dc = 0.185 L g-1 [39]. Apparent molecular

weights were also calculated using a standard curve of Ve/Vo

versus the log of the molecular weights of standard proteins: b-

amylase (200 kDa), alcohol dehydrogenase (150 kDa), transferrin

(81 kDa), carbonic anhydrase (29 kDa), and myoglobin (17 kDa).

Vo is a void volume obtained using blue dextrane (2000 kDa) and

Ve is the elution volume.

NMR Spectroscopy
A13DBD (unlabeled, 15N- or 15N/13C-labeled) was exchanged

into NMR buffer (20 mM NaPO4, 10%D2O, pH 7.0) and

concentrated to about 200–700 mM. For A13DBDNDNA complex,

the combined fractions from gel filtration chromatography

(Superdex-75) containing pure A13DBDNDNA was exchanged to

NMR buffer (20 mM NaPO4, 5 mM MgCl2, 10%D2O, pH 6.0)

and concentrated to about 0.5 mM. All NMR experiments were

performed at 285K for A13DBD samples and at 310K for

A13DBDNDNA complex samples, on Bruker Avance III 600 or

800 MHz spectrometers equipped with a four-channel interface

and triple-resonance cryoprobe (TCI) with pulse field gradients.

The 15N-1H HSQC spectra were recorded on a sample of 15N-

labeled free A13DBD and a sample of 15N-protein labeled

A13DBDNDNA complex. The 3D experiments for NMR reso-

nance assignments of free protein and protein/DNA complex were

described previously [14,23]. Stereospecific assignments of chiral

methyl groups of valine and leucine were obtained by analyzing
1H-13C HSQC experiments performed on a sample that contained

10% 13C labeling of A13DBD [40]. NOE distance restraints for

the A13DBD structure calculation were obtained from the analysis

of 3D NOESY experiments including 15N-edited NOESY-HSQC

and 13C-edited NOESY-HSQC recorded at 800 MHz on 15N-

labeled A13DBD and 13C/15N-labeled A13DBD samples. For

A13DBD/DNA complex, a 13C/15N-labeled A13DBD bound to

unlabeled DNA was used to record 3D 13C-edited NOESY-

HSQC to probe all NOEs within the labeled protein. 3-D
13C/15N-filtered-(F3) and 13C-edited (F1) HSQC-NOESY [41]

selectively probed intermolecular NOEs, and 2D 13C/15N-double-

filtered NOESY selectively probed DNA intramolecular NOEs.

The NOE mixing time was 120 ms in all NOESY experiments.

NMR data were processed using NMRPipe [42] and analyzed

with SPARKY.

NMR Residual Dipolar Coupling Measurements
For the measurement of residual dipolar couplings (RDCs) of

A13DBD bound to duplex DNA, the filamentous bacteriophage

Pf1 (Asla Biotech Ltd, Latvia) was used as an orienting medium.

Pf1 (10 mg/ml) was added to the 15N-labeled A13DBD protein/

DNA complex sample at pH 6.0, to produce weak alignment of

the complex. The extent of alignment was checked by measuring

the splitting of the deuterium resonance from D2O (, 8 Hz). One-

bond HN RDCs were recorded using the in-phase/anti-phase

pulse sequence [43], with 512 complex t1 (15N) points for both the

isotropic and anisotropic samples. The alignment tensor compo-

nents were calculated by the PALES program [44]. All NMR

spectra were processed and analyzed using NMRPipe package.

15N NMR Relaxation Measurements
15N R1, R2, and 15N-{1H} NOE experiments were performed

on A13DBD at 285K and A13DBDNDNA at 310K using standard

pulse sequences described previously [45]. Longitudinal magneti-

zation decay was recorded using six different times: 0.00, 0.10,

0.25, 0.50, 1.00 and 2.00 s. The transverse magnetization decay

was recorded with eight different delays: 0.000, 0.008, 0.016,

0.024, 0.032, 0.048, 0.064 and 0.080 s. To check the sample

stability, the transverse magnetization decay at 0.016 s was verified

unchanged before and after each set of measurements of both 15N

R1 and R2 experiments. 15N-{1H} NOE values were obtained by

recording two sets of spectra in the presence and absence of a 3 s

proton saturation period. The NOE experiments were repeated 3

times to calculate the average and standard deviation of the NOE

values. The overall rotational correlation time for backbone amide

motion was determined using the protocol described previously

[46].

Structure Calculation
Backbone and side-chain NMR resonances were assigned as

described previously [14,23]. Analysis of NOESY data determined

nearly 800 interproton distance relationships throughout the free

protein [47]. The NMR-derived distances and dihedral angles

then served as constraints (see Table 1) for calculating the three-

dimensional structure of free protein using distance geometry and

restrained molecular dynamics. Structure calculations were

performed using the YASAP protocol within X-PLOR [48,49],

as described previously [50]. A total of 778 interproton distance

constraints were obtained by analysis of 13C-edited and 15N-edited

NOESY-HSQC spectra (120 ms mixing time) of 13C/15N-labeled

A13DBD. In addition to the NOE-derived distance constraints,

the following additional constraints were included in the structure

calculation: 86 dihedral angle constraints (w and y); 54 distance

constraints for 27 hydrogen bonds verified by identifying slowly

exchanging amide protons in hydrogen-deuterium exchange

experiments. Fifty independent structures were calculated, and

the 15 structures of lowest energy were selected. The average total

and experimental distance energy were 1658 6 19 and 125

kcalNmol-1. The average root-mean-square (rms) deviation from an

idealized geometry for bonds and angles were 0.0089 Å and 1.96u.
None of the distance and angle constraints were violated by more

than 0.4 Å and 4u, respectively.

The NMR structure of A13DBD bound to an 11-mer DNA

duplex (Fig. 1B) was calculated on the basis of intermolecular

NOEs and residual dipolar couplings using Haddock 2.0 [51]

(http://haddock.chem.uu.nl/). The starting structure of the DNA

duplex (B-form) was generated using 3D-DART [52]. The B-form
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duplex structure in the complex was experimentally verified by

observing characteristic NOE patterns from the DNA in the

complex. The NMR-derived structure of free A13DBD deter-

mined above was used as an initial starting structure in the

HADDOCK calculation. A few additional dihedral angle

restraints (generated by TALOS) were also included to extend

the length of helix 3 (residues 376–381), as determined by

chemical shift index [23]. A total of 38 intermolecular NOE

distance restraints from filtered NOESY experiments, including 25

unambiguous restraints and 13 ambiguous restraints (mainly from

three residues in the N-terminal flexible loop, K322, R324 and

Y327), were included in the HADDOCK calculation as well as

conformational restraints for the DNA. The structure calculation

protocol consists of three stages: rigid-body docking, semi-flexible

simulated annealing, and refinement in explicit solvent as

described previously [53]. After rigid-body docking, 200 lowest-

energy structures were selected for semi-flexible refinement using

all the NMR experimental restraints above. The protein side

chains from residues that exhibit intermolecular NOEs with DNA

were allowed to move in the semi-flexible annealing stage, and the

N-terminal unstructured residues (G320 to T328) were set to

remain flexible during the refinement. DNA bases (A4–A8 and

T4*–T8*) were defined as active, and considered to be flexible

during the semi-flexible annealing. The structures were further

refined in an explicit solvent including all NMR derived restraints.

In order to add the HN-N residual dipolar couplings into the

structure refinement, the ensemble of 10 lowest energy structures

generated from the first simulated annealing were used to calculate

the axial and rhombic components of the alignment tensor (Da and

Dr) using the PALES program [44]. The HN-N RDCs (total 25
1DNH RDC values in the structurally rigid region) were introduced

in the semi-flexible annealing and water refinement stages as direct

restraints (using the SANI statement). Ten structures having the

lowest HADDOCK energy were selected and went through

another stage of refinement using all NMR experimental

restraints. The ensemble of 10 final structures was superimposed

with a root-mean-squared deviation of 0.67 Å (A13DBD) and

0.69 Å (DNA) (see Table 3 for structural statistics). A Ramachan-

dran analysis of the ensemble of structures (evaluated by Procheck)

revealed 84.4% of residues in the most favored regions, 14.1% in

additional allowed regions, 1.5% in generously allowed regions,

and 0% in disallowed regions. Thus, the NMR-derived structures

of A13DBD bound to 11-mer DNA show good convergence and

are well defined by the NMR restraints.

Luciferase Assays
NG108-15 cells (ATCC#HB-12317) were maintained in

DMEM media (Gibco) supplemented with 10% FBS (Atlanta

Biologicals), HAT (Invitrogen) and 1% penicillin/streptomycin.

Cells (16105) were seeded in 12-well plates and grown for 24 h at

37uC with 5% CO2. Transfections were performed using

FuGENE6 transfection reagent (Roche), 0.1 mg pRL-CMV

Renilla, and 0.25 mg pCAGGS-HOXA13 wild type or mutants,

along with 0.5 mg of a pGL4.23 plasmid (Promega) containing an

EphA7 cis-regtulatory element previously shown to be regulated by

HOXA13 [22]. Empty pGL4.23 and pCAGGs expression vectors

were used as controls. The Dual-Glo Luciferase Assay system

(Promega) was used to detect luciferase activity 24 h post-

transfection in OptiPlate-96F black plates using a Fusion

Microplate Analyzer (Perkin Elmer). Six replicates of each

transfection were performed and the transfection assay was

repeated a total of 3 separate times. Results were normalized for

transfection efficiency using a Renilla luciferase expression vector as

described by the manufacturer (Promega). Because the pGL4.23

vector also contains several HOXA13 binding sites, background

activation of the empty pGL4.23 by HOXA13 was also subtracted

from the final luciferase levels after Renilla normalization.

Fluorescence Anisotropy
Fluorescence polarization anisotropy was performed using a

Beacon 2000 fluorescence polarization anisometer (Invitrogen).

Self-annealing oligonucleotides were synthesized carrying a

fluorescein via a hexyl linker (6-carboxyfluorescein) at the 59 end

and purified by high pressure liquid chromatography (Integrated

DNA Technologies). Oligonucleotide sequences are presented in

Table S1. Oligonucleotides were resuspended as a 100 mM stock

in Tris-EDTA buffer, diluted to 10 mM in 20 mM Tris pH 7.5, 80

mM KCl, 10 mM MgCl2, 0.2 mM EDTA. The oligonucleotides

were then denatured at 95uC for 10 min, and annealed by cooling

to room temperature for 30 min. DNA binding affinity was

determined using a fixed concentration of DNA (1 nM) and

increasing concentrations of HOXA13 DNA binding domain

(A13DBD). Wild type A13DBD protein (0–512 nM) or V373G (0–

4.9 mM) were added to a solution containing 1 nM fluorescein-

labeled DNA in 20 mM Tris pH 7.5, 80 mM KCl, 10 mM

MgCl2, 0.2 mM EDTA, 1 mM dithiothreitol, and incubated at

15uC for 20 min. Measurements were collected at 15uC with a 10-

s delay. The dissociation constants were calculated as previously

described [8]. All results are based on three independent

measurements for each protein and oligonuleotide combination.

In the competitive displacement assays, increasing concentrations

(0–5 mM) of unlabeled competitor DNA was added to either 400

nM wt A13 or 4 mM V373G protein bound to 1 nM labeled DNA.

Measurements were collected at 15uC with a 10-s delay and 3

independent experiments were performed.

Supporting Information

Figure S1 NMR titration of DNA binding to A13DBD. (A) 1H

NMR spectra of duplex DNA with stepwise addition of A13DBD

(molar ratio indicated on the right side) in 20mM phosphate buffer

(pH 6.0) with 80mM KCl, 5mM MgCl2 and 10%D2O at 285K.

(B) 1H NMR spectrum of A13DBD/duplex DNA complex in

20mM phosphate buffer (pH 6.0) with 80mM KCl, 5mM MgCl2
and 10%D2O at 310K. Spectral assignments of DNA imino

resonances are shown.

(DOC)

Figure S2 Molar mass of A13DBD/DNA complex determined

by 15N-NMR relaxation data. Spin-lattice relaxation rate

constants (A) and spin-spin relaxation rate constants (B) are

plotted versus residue number. All data were determined at

600MHz 1H frequency and 310K. Error bars are given as the

standard deviation of three independent measurements.

(DOC)

Figure S3 Differential scanning calorimetry thermograms of

A13DBD and mutants (see Methods).

(DOC)

Figure S4 Overlay of two-dimensional 1H-15N HSQC spectra of

A13DBD (black) and mutants I366 (blue), N370 (cyan) and V373

(red) at 285K.

(DOC)

Figure S5 Luciferase assays in NG108-15 cells using a series of

HOXA13 mutants. Percent luciferase activities (relative to wt

control) are indicated on the y axis, and the various pCAGGS-

HOXA13 mutants are plotted on the x axis. Values represent the

mean percent luciferase activity from three independent experi-
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ments. Error bars represent the standard error for the three

independent experiments.

(DOC)

Figure S6 Size-exclusion chromatography profiles of A13DBD

and mutants (F344A (red) and F344A/R337G (blue)) in complex

with duplex DNA.

(DOC)

Figure S7 Isothermal calorimetric titration monitoring

A13DBD binding to 11-mer DNA duplex as described in the

text. Representative ITC data are shown for wildtype (A) and

N370A (B) A13DBD.

(DOC)

Figure S8 NMR spectral analysis and assignment of DNA

resonances. (A) The superposition of 2D 13C-filtered (F1 and F2)

NOESY spectrum of 13C/15N-labeled A13DBD bound to

unlabeled duplex DNA (wildtype, black) and three T-to-dU

mutants, T5U (purple), T17U (red) and T19U (green), recorded in

99.9% D2O at pH 6.0. The 1H chemical shift of three pyrimidine

methyl groups (from T5, T17, T19) can be assigned unambigu-

ously as shown in the spectra based on T-to-dU mutants. (B)

Sequential NOE assignments from 2D 13C-filtered NOESY of
13C/15N-labeled A13DBD bound to unlabeled duplex DNA,

recorded in 99.9% D2O, showing the sequential NOE connections

between methyl protons of Ti and H6 of Ti-1 from T19 to T21 and

T14 to T17.

(DOC)

Table S1 Oligonucleotide sequences used in fluorescence

anisotropy assays.

(DOC)

Movie S1

(WMV)
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