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Segue Between Favorable and Unfavorable Solvation

Lutz Maibaum and David Chandler

Department of Chemistry, University of California, Berkeley, California 94720

(Dated: May 21, 2007)

Solvation of small and large clusters are studied by simulation, considering a range

of solvent-solute attractive energy strengths. Over a wide range of conditions, both

for solvation in the Lennard–Jones liquid and in the SPC model of water, it is shown

that the mean solvent density varies linearly with changes in solvent-solute adhesion

or attractive energy strength. This behavior is understood from the perspective of

Weeks’ theory of solvation [Ann. Rev. Phys. Chem. 2002, 53, 533] and supports

theories based upon that perspective.

I. INTRODUCTION

Some solute species dissolve in a liquid solvent over a large range of conditions. Others

demix or phase separate from the liquid solvent even at relatively low solute concentra-

tions. This paper focuses on mesoscopic and microscopic manifestations of these macro-

scopic phenomena. Our motivation is to understand the range of solvation behaviors that

are possible in aqueous solutions when hydrophobic species are altered to hydrophilic and

vice versa. We demonstrate that various physical quantities vary smoothly under such al-

terations, metaphorically akin to a segue that smoothly bridges two distinct musical move-

ments. While the motivation concerns this specific class of solutions, the physical principles

involved are relatively general.

The basic theory has been formulated by Weeks [1]. One first considers the effect of the
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solute in excluding a region of space from the solute. The average effect is described by

the response of the solvent to a so-called unbalancing potential. Unbalancing arises because

the excluded volume presents a region where solvent molecules lose adhesive forces. In a

homogeneous fluid, these adhesive forces tend to be in balance, often allowing their effects to

be described as a uniform field or chemical potential shift [2, 3]. Introducing a large enough

excluded volume, however, destroys this homogeneity, and the response can be very large,

particularly so if the liquid exists near coexistence with its vapor. Indeed, in the macroscopic

limit, the average liquid density adjacent to excluded regions bounded by a plane is βp, where

p is the pressure, and β−1 = kBT is temperature times Boltzmann’s constant [4]. In this

limit, therefore, the mean liquid density at the surface is a bulk property. It exhibits a phase

transition reflecting the bulk liquid-vapor phase transition. Weeks’ unbalancing potential

captures the effects of this transition in a mean molecular field approximation.

A typical solute does not exclude liquid from a macroscopic volume. Nevertheless, the

unbalancing potential can be substantial and the response to it significant, though not sin-

gular, provided the solvent-exposed surface area of the solute has low enough curvature and

large enough size. Weeks’ expression for the unbalancing potential shows that its strength

is roughly proportional to the surface area, A. Thus, to linear order in the response,

〈ρ(r)〉0 ≈ a(r)− Ab(r) . (1)

Here, ρ(r) denotes the solvent density field at position r, which we take to be outside the

excluded volume, and the pointed brackets indicate equilibrium ensemble average, with the

subscript 0 implying that only excluded volume forces act between solute and solvent. The

function a(r) and b(r) are properties of the solvent and the solute position and shape; a(r)

gives the response in the absence of unbalancing forces; Ab(r) is significant in size only

when the liquid solvent is close to phase coexistence with its vapor and A is comparable to
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or larger than the surface area of the critical nucleus for the phase transition; for positions

r that are beyond a bulk correlation length of the solvent, a(r) approaches the bulk liquid

density, and b(r) approaches zero.

Fluctuations around the average and the effects of forces beyond those of excluded volume

are captured in the second step of Weeks’ treatment. In this step, one notes that solvent

density fluctuations in a homogeneous liquid obey Gaussian statistics [5–7], and assumes this

statistics is more generally valid for all small length scale fluctuations in a liquid, even in the

presence of inhomogeneities. Therefore, if the solute attracts the solvent molecules with a

potential strength proportional to λ, the effect of the attraction on the mean solvent density

is linear in λ, i.e., 〈ρ(r)〉λ ≈ 〈ρ(r)〉0 +λS(r) , where S(r) is the net or integrated response of

the solvent density field at r to the attractions from the solute. If these attractions emanate

from interaction sites in the solute and are finite ranged, then S(r) will be approximately

linear in A, leading to

〈ρ(r)〉λ ≈ 〈ρ(r)〉0 + λAs(r) , (2)

where s(r) is a property of the solvent and the functional form of the attractive interaction.

Finally, as both b(r) and s(r) describe responses of the solvent near the solute and per unit

exposed area of the solute, one may expect that integrated or coarse-grained effects of the two

are approximately proportional. That is to say, b(r) ≈ λ∗ s(r), where the over-bar indicates

an integral or coarse-graining over some specified microscopic length scale. The value of the

proportionality constant, λ∗, depends upon the specific solvent, the specific solute-solvent

interactions, and the specific coarse-graining perscription. Adopting this proportionality

gives

〈ρ(r)〉λ ≈ a(r) + (λ− λ∗) As(r) . (3)

Equations (1), (2) and (3) are not generally true, as they do not properly account for
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saturation in either the limit of very large A or the limit of very large λ. The point of this

paper, however, is that these equations are good approximations in a variety of physically

pertinent circumstances. We demonstrate their accuracy in the next section by present-

ing results of computer simulation calculations of solvent density fields and solvation free

energies for solute clusters of various sizes and solvent-solute attractive energy strengths,

considering both the Lennard–Jones liquid solvent and water solvent. The results indicate

that variations from favorable to unfavorable solvation, i.e., the changes in solvation in pass-

ing from large λ to small λ, occur smoothly and in ways that are easy to anticipate. Further,

the results provide confidence in theories built from Weeks’ perspective. These implications

are discussed in Section III.

II. SIMULATION RESULTS

To elucidate the response of a liquid to the presence of a solute of general shape and

interaction strength, we consider a series of models for both solutes and solvent of increasing

complexity.

A. Spherical solutes in Lennard–Jones solvent

First we consider the case of a spherical solute immersed in the Lennard–Jones solvent,

i.e., a fluid of particles that interact through the pair potential

wLJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (4)

In this equation r denotes the distance between two solvent particles, and ε and σ define the

energy and length scales of the simulation. The solvent–solvent potentials are shifted so as to

be continuous and zero beyond the cut-off distance rc = 2.5σ. The reduced thermodynamic
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state conditions for the solvent are kBT/ε = 0.85, pσ3/ε = 0.022 and ρσ3 = 0.7, where ρ

is the bulk density. These conditions place this Lennard–Jones liquid with truncated and

shifted interaction potentials at or very close to liquid–vapor coexistence [8, 9].

The solute is a sphere of radius R, and its interaction with the solvent is that of a sphere

consisting of a Lennard–Jones material with homogenous density equal to that of the solvent.

A solvent particle at distance r from the solute center has the potential energy[10]

Φ(r) = περσ3
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+
1
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,

(5)

where r± = r±R, if r ≥ R, and φ(r) =∞ otherwise. This potential is minimal at a distance

rmin, and its minimum value Φmin = Φ(rmin) depends on the solute size R.

To systematically investigate the role of attractive interactions, we employ the scheme

introduced by Weeks, Chandler and Andersen (WCA) to partition the energy (5) into the

short–ranged repulsive and the long–ranged attractive part [3],

Φλ(r) = Φ0(r) + λΦ1(r), (6)

where

Φ0(r) =


Φ(r)− Φ(rmin) if r ≤ rmin

0 if r > rmin

(7)

and

Φ1(r) =


Φ(rmin) if r ≤ rmin

Φ(r) if r > rmin.

(8)

The parameter λ controls the strength of the attractive solute–solvent interactions.

We performed computer simulations using the Monte Carlo method at fixed pressure

and temperature for different values of the solute size R and interaction strength λ. The

number N of solvent particles ranged from 864 to 8192 depending the size of the solute.
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The solute–solvent interaction (6) was truncated and shifted at a distance r = R + 2.5σ.

We calculate the average reduced solvent density at position r,

g(r) = 〈ρ(r)〉 /ρ, (9)

in an ensemble where the solute position is fixed at r = 0. Due to the isotropic nature of

the solute this density depends only on the distance r = |r| from the solute center.

We find that the reduced density g(r) has generally a well–defined first peak corresponding

to the first solvation shell of the solute. The height of this peak, denoted gmax, is shown in

the top panel of Fig. 1 for different values of R and λ. This graph encompasses many of the

important effects of our understanding of solvophobic and solvophilic solvation.

First, for a fixed value of λ less than 0.9, the solvent density near the solute decreases

with increasing solute radius. It has been observed previously that the contact density near

a hard sphere solute decreases from values above the bulk liquid density at small solute sizes

to the equilibrium vapor density at large solute sizes, both for the Lennard–Jones solvent

[11] and water [10]. The creation of a liquid–vapor interface near large enough solutes is the

basis of our understanding of the hydrophobic effect [12]. Our simulations show that this

behavior persists for solutes with weak but finite attraction strengths λ.

Second, for any given solute size R, the density near the solute increases approximately

linearly with the attraction strength λ. This smooth response of the density to an attractive

field over a wide range of interactions strengths shows that the solvent properties do not

change significantly as λ increases. In particular it is consistent with Gaussian density

fluctuations for all attraction strengths.

Third, it is apparent that the slope ∂gmax/∂λ, while independend of λ, depends on the

radius R of the solute. In particular, there is a value λ∗ ≈ 0.9 of the interaction strength

where the mean density itself seems to be independent of the solute size. A similar result
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is suggested by Ashbaugh and Paulaitis for the density near methane clusters in water [13].

This behavior can be easily understood within the framework introduced in Section I. The

numerical value of λ by itself is not an accurate parameter to describe the strength of the

solute–solvent interactions. For the special case of the homogeneous Lennard–Jones solute,

a much more reliable indicator is the magnitude of the minimum in the potential energy,

λ|Φmin(R)|. The bottom panel of Fig. 1 shows that the density response is the same for all

solute sizes if the control parameter is chosen to be the actual magnitude of the solute–solvent

attractions.

Our results for this simple model solute serve as a useful illustration for the theory outlined

in Section I. We now turn to more complicated solutes, where the lack of isotropy demands

the analysis of more complicated density distribution functions. While these complications

can obscur the underlying physics, we will see that the basic picture of solvation presented

here remains correct.

B. Cluster solutes in Lennard–Jones solvent

We consider clusters of n particles solvated in the same Lennard–Jones fluid as before.

The clusters are the model solutes of Ashbaugh and Paulaitis [13]. Space filling views are

shown in Figure 2. The clusters are composed of n = 1, 13, 57, 135, and 305 hexagonally

close packed particles with nearest neighbor distance d = 21/6σ. The solute interacts with

the solvent molecules with the potential energy

Wλ =
N∑
i=1

n∑
α=1

wλ (|rα −Ri|) (10)
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where rα is the position of the αth cluster particle, Ri is the position of the ith solvent

particle, and

wλ(r) = w0(r) + λw1(r). (11)

Here, w0(r) and w1(r) are, respectively, the repulsive branch and the attractive branch of

the Lennard–Jones potential [3],

w0(r) =


4εs

[
(σs/r)

12 − (σs/r)
6 + 1

4

]
if r ≤ 21/6σs

0 if r > 21/6σs

(12)

and

w1(r) =


−εs if r ≤ 21/6σs

4εs

[
(σs/r)

12 − (σs/r)
6] if r > 21/6σs

. (13)

We choose σs = σ and εs = ε so that the interaction between a cluster particle and a solvent

particle is the same as that between two solvent particles at λ = 1.

The n = 1 solute is spherically symmetric, and the mean solvent density near it is

described by the isotropic radial distribution function g(r) as before. For the clusters with

n > 1, however, specification of the mean solvent density requires many more variables than

r, and it is natural to consider projections of the mean density. One such projection is the

so-called proximal distribution gprox(r), defined as the reduced density averaged over the

surface [13, 14] {
r′ ∈ IR3 : rprox (r′) = r

}
, (14)

where

rprox (r) = min {|r − rα| : α = 1, . . . , n} (15)

is the distance from a point r to the nearest cluster particle. While explicitly a function of

only one length, r, it is implicitly a multi–point distribution function [15], except in the case

n = 1. For that special case gprox(r) is the standard radial distribution function g(r).
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Figure 3 illustrates the behavior of the proximal distribution function for the model solutes

in the Lennard–Jones solvent. Ashbaugh and Paulaitis proposed the height gmax of the first

peak in gprox(r) as a meaningful measure of the solvent density near arbitrary solutes. In

the top panel we show that the behavior of this observable is qualitatively the same as that

shown in Fig. 1 for isotropic solutes. The response of the mean solvent density to changes in

solute-solvent attraction is proportional to that change. This result is as expected according

to Eq. (2). Another important point is that this proportionality leads to a coincidence of

curves at λ = λ∗, where in this case λ∗ ≈ 0.5. The existence of a coincident value of λ is

anticipated in Eq. (3).

Ashbaugh and Paulaitis found in their study of methane clusters solvated in water that

at λ∗ not only the heights of the first peak in gprox(r) coincide for different cluster sizes,

but that the proximal distribution functions themselves are very similar. The bottom panel

of Fig. 3 establishes a similar result for our model system. From this behavior, Ashbaugh

and Paulaitis conclude that the solvation environment of a monomeric methane particle is

essentially the same as that of methane confined to a cluster of arbitrary size. Fig. 4 shows

that this conclusion is not justified. The contour lines of constant density do not coincide

with the surfaces of constant proximal distance for the n = 135 cluster. In particular, the

crevices of the solute, where the attraction strength is large, contain a much higher solvent

density than the proximal distribution function suggests. No such behavior exists for the

monomeric solute, where the density profile is isotropic.

As the strength of the attactive solute–solvent interaction increases, the clusters lose their

hydrophobic character until eventually they become hydrophilic. To quantify this process

we calculate the solvation free energy, or excess chemical potential, as a function of λ, which
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is given by

∆µλ = ∆µ0 +

∫ λ

0

dλ′ 〈W1 −W0〉λ′ (16)

where 〈. . . 〉λ indicates ensemble average with solute–solvent attractive force strength λ.

Solvation free energies due to excluded volume are approximately proportional to the

excluded volume for small solutes. Further, at large excluded volumes with small surface

curvature and no attractive solvent-solute forces, solvent density is depleted near the solute.

Therefore, for the solutes we have considered, ∆µ0 can be well approximated by the solvation

free energy for a hard sphere with the same excluded volume as the solute clusters [11].

Here we define the excluded volume as those spatial regions where the solute–induced field

is greater than the thermal energy kBT .

The result of this calculation is shown in Fig. 5. Over the range of interaction strengths

considered, the solvation free energies change from strongly positive to negative. In other

words, at large values of λ the clusters are not solvophobic. This transition occurs smoothly

and regularly. The shape of these curves is understood, because the attractive energy is

approximately proportional to λ times an integral over 〈ρ(r)〉λ, and the latter is a linear

function of λ, as noted in Eq. (2).

C. Cluster solutes in SPC water

In another series of calculations, the solvent is the SPC model for liquid water [16], and

the solutes are clusters of methane molecules in the united atom approximation of Ref.

17. As in Ref. 13 these clusters are hexagonally close–packed with a particle spacing of

d = 4.19Å. The methane molecules interact with the water oxygens through a Lennard–

Jones potential with σ = 3.448Å and ε = 0.895kJ/mol, which was truncated and shifted
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at a distance of 9Å. As before we use the WCA partition of the interaction potential to

obtain control over the strength of the attractions, given by the parameter λ. Electrostatic

interactions were calculated using Ewald summation. Molecular dynamics simulations were

performed using the LAMMPS program [18, 19] at temperature T = 298K and a box size

chosen to give the correct bulk density [13].

As noted above, Ashbaugh and Paulaitis [13] found that the proximal solvent density

distribution functions are very similar for different cluster sizes at the specific attraction

strength λ∗ ≈ 1, from which they concluded that the solvent density near a cluster of solute

particles is basically the same as that near a single solute particle. In Fig. 6 we show the

reduced water density near the n = 135 solute with an interaction strength λ = λ∗. For

this specific system the solvent density is indeed approximately constant along contours of

constant proximal distance, so that

〈ρ(r)〉 ≈ ρ gprox(rprox(r)) (17)

is a rather good approximation for the range of parameters considered. However, this agree-

ment is not exact, as deviations are visible in the crevices. In these regions adjacent to the

cluster, the solvent interacts with many solute particles, and the attractive potential well

reaches values as deep as −5kJ/mol. This value is to be compared with the average energy

of a water molecule in the bulk fluid, which is approximately 40kJ/mol [20]. Thus, the

cluster crevices are approaching hydrophilic character and can compensate for a fraction of

the average water–water interaction energy.

Fig. 7 shows the solvation free energy of the methane clusters in water, calculated using

(16) as before. Again the clusters show a smooth transition from hydrophobic solvation at

small values of λ to hydrophilic solvation at large attraction strengths. For this particular

system, the crossover between these two regimes occurs at values of λ greater than λ∗.
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III. DISCUSSION

The results of the previous section show that the role of solvent-solute attractions on

solvation is significant but simple. In particular, while fluctuations of solvent density are

affected by the shape and size of the solute and the thermodynamic state of the solvent,

the mean solvent density changes only linearly with changes in the strength of adhesion

between solute and solvent. If, for example, a solute is small, the liquid solvent will be

constrained to be outside the solute’s excluded volume but otherwise behave as if it were

bulk. This conception is precisely the physics that underlies the Pratt-Chandler theory of

hydrophobicity [7, 21] and its contemporary variant [5]. On the other hand, if the solute’s

girth is such to exclude a volume with large low–curvature surface area, fluctuations of the

solvent are changed to reflect the formation of an interface [1, 12, 22]. To the extent there

is no solvent-solute adhesion, the interface is essentially the same as that between liquid

and vapor [23]. The role of attractions between the solute and solvent is not to change the

fluctuations, but to affect the average solvent density and the position of this interface. For

strong enough attractions, the effect is to pin the interface at specific positions, as seen in

Fig. 4, and to a lesser extent in Fig. 6.

This picture of the role of attractions in the context of hydrophobic solvation has been

discussed before [10, 12]. Simulation results of Werder et al. on the hydration of several

different models of graphite in water [24] can be viewed as illustrations of that role. Namely,

Werder et al. establish linear trends for hydration energies as functions of solvent-solute

attractive energy strength. The relative range of parameters is smaller in that work than

in ours, probably explaining why curvature in the linear trends is not apparent. Along

with demonstrating regularity and simplicity, Werder et al. also show that the trends are
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significant in that modest potential parameter changes result in models of “graphite” that

change from hydrophobic to hydrophilic. In one model, Werder et al. consider a Lennard–

Jones potential between graphite carbon atoms and water oxygen atoms with energy and

length parameters εCO = 0.39 kJ/mol and σCO = 0.32 nm. They establish that in this

model, line tension is positive and the contact angle between water and a planar graphite

surface is finite. In contrast, a similar model of a presumed hydrophobic surface, but with

εCO = 0.48 kJ/mol and σCO = 0.33 nm yields a negative surface tension between water and

the surface [25, 26]. This latter surface is therefore not hydrophobic.

An important consequence of the simplicity we emphasize regards the entropy of solvation.

To the extent that density fluctuations obey Gaussian statistics (i.e., the mean density

responds linearly to forces of adhesion), the entropy of solvation is independent of adhesive

energy strength. This idea is used in Ref. 27 to replace the hydration entropy of a protein

with that of a hard sphere occupying the same volume, even though the surface of the folded

protein is largely hydrophilic. By demonstrating linear trends for the mean density, our work

here provides explicit justification for this replacement.
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FIG. 1: Magnitude of the first peak of the solvent density distribution function around homogeneous

Lennard–Jones solutes of radii R/σ = 0.5, 0.7, 1, 2, 3, 5, plotted as a function of the bare attraction

strength λ (top) and the minimum of the solvent–solute potential (bottom). For large solute sizes

and small values of λ the reduced density distribution function did not have a well–defined first

peak, and no data is shown for those systems.
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FIG. 2: Space filling view of the solute clusters with particle numbers n = 1, 13, 57, 135, 305. The

clusters are spherical cuts of a hexagonally close–packed crystal.
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FIG. 3: Proximal solvent density distribution function around clusters of Lennard–Jones particles

immersed in the Lennard–Jones fluid. (top) Height of the first peak in gprox(r) for different cluster

sizes n and attraction strengths λ. (bottom) Proximal distribution functions for λ = λ∗ = 0.5.
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FIG. 4: Reduced solvent density around the n = 135 solute cluster immersed in the Lennard–Jones

fluid at λ = λ∗ = 0.5. Shown is a slice through the solute center of width 0.1σ with resolution

0.05σ, demonstrating that the solvent density does not follow the shape of the solute surface.
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FIG. 5: Excess solvation energy of solute clusters in the Lennard–Jones fluid. The symbols are

calculated from simulation using Eq. (16), and the lines are quadratic fits through the data.
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FIG. 6: Reduced water density around the n = 135 solute cluster at λ = λ∗ = 1. Shown is a

slice through the solute center of width 0.5Å with resolution 0.25Å. To a good approximation the

solvent density follows the shape of the solute cluster.
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FIG. 7: Excess solvation energy of methane clusters in water. The symbols are computed from

simulation with the aid of Eq. (16) and known solvation free energies of hard sphere solutes in

water [28]. The lines are quadratic fits to the data.




