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Stable isotope and hormone analyses offer insight into the health, stress, nutrition,
movements, and reproduction of individuals and populations. Such information can
provide early warning signs or more in-depth details on the ecological and conservation
status of marine megafauna. Stable isotope and hormone analyses have seen rapid
development over the last two decades, and we briefly review established protocols and
particular questions emphasized in the literature for each type of analysis in isolation.
Little has been published utilizing both methods concurrently for marine megafauna
yet there has been considerable effort on this front in seabird and terrestrial predator
research fields. Using these other taxa as examples, we offer a few of the major research
areas and questions we foresee as productive for the intersection of these two methods
and discuss how they can inform marine megafauna conservation and management
efforts. Three major research areas have utilized a combination of these two methods:
(1) nutrition and health, (2) reproduction, and (3) life history. We identify a fourth area of
research, examinations of evolutionary versus ecological drivers of behavior, that could
also be well served by a combined stable isotope and hormone analyses approach.
Each of these broad areas of research will require methodological developments. In
particular, research is needed to enable the successful temporal alignment of these two
analytical techniques.

Keywords: stable isotope, hormone, mammal, turtle, cetacean, pinnipedia, marine

INTRODUCTION

Threats to marine megafauna continue to multiply, and management of these top predators is
complex, challenging, and costly. Some threats are relatively visible (e.g., ship strikes or decreased
sea ice), whereas others are more cryptic (e.g., ocean noise or climate change). Even the most
visible instances of natural or anthropogenic impacts are exceedingly difficult to quantify and
the population-level consequences for both lethal and non-lethal factors are usually unknown
(Taylor et al., 2000; Read, 2008; Robards et al., 2009). Despite substantial research effort to
monitor populations through traditional survey methods, major declines in population abundance
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are likely to go undetected (Taylor et al., 2007). To date, most
management actions are not proactive, but rather occur after a
deleterious or catastrophic event (e.g., Deepwater Horizon oil
spill or an unusual mass mortality event) when it is often too
late for feasible corrective options. Additionally, effects from
climate change pose a current and emerging threat with complex
and varied consequences, which can be difficult to predict
(Cai et al., 2014; Stock et al., 2014). Given the multitude of
risks facing marine megafauna and the limitations of current
management practices, there is an ever-increasing need to
understand responses of these taxa to natural stressors and
to anthropogenic activities (National Academies of Sciences,
Engineering, and Medicine, 2017).

Stable isotope and hormone analyses are two minimally
invasive methods that may allow for finer-scale characterization
of the severity, types, and consequences of megafaunal responses
to their changing environment. These methods use integrated
physiological biomarkers that can provide insight on the
health, stress, nutrition, movements, and reproduction of
individuals and populations. Such information can provide early
warning signs or more in-depth information on the ecological
and conservation status of marine megafauna. Consequently,
biologists can use these techniques in tandem to better target
strategies and timing for intervention, resulting in more
anticipatory species management.

Stable Isotope Ecogeochemistry
Analyses of stable carbon (δ13C) and nitrogen (δ15N) isotope
ratios of bulk tissues from marine organisms are used to
reconstruct habitat use and trophic ecology of animals that
are typically cryptic, difficult to monitor, and wide-ranging
in their migration and movement patterns (e.g., Kurle and
Gudmundson, 2007; Newsome et al., 2010; Authier et al., 2012a;
Turner Tomaszewicz et al., 2017). These analyses are informative
because the δ13C and δ15N values from bulk tissues reflect the
underlying biogeochemistry driving the stable isotope values in
the primary production at the base of the food web (Peterson
and Fry, 1987; Trueman et al., 2012; Lorrain et al., 2014).
In addition, internal physiological processes in the consumer
result in their δ15N values increasing predictably relative to
those from their prey (Post, 2002; Kurle et al., 2014), and
these differences, or trophic discrimination factors, allow for
estimations of animal trophic position (DeNiro and Epstein,
1981; McMahon et al., 2015c). The stable isotope values, usually
δ13C and δ15N, from consumer and prey, can be plotted in
bivariate space or incorporated into various stable isotope mixing
models, to create a picture of population- or species-level isotopic
niche space (“isospace”), which allows for a better understanding
of an organism’s ecological niche (Figure 1; Newsome et al.,
2007b; Stock et al., 2018).

Hormones
Recent developments in hormone analysis provide critical
insights into aspects of marine megafauna biology, ecology, and
population health that have previously been nearly impossible
to obtain. Assessing the impacts of stressors on marine species
is often limited to counts of dead or injured animals, with

FIGURE 1 | Schematic illustrating potential factors influencing the stable
isotope niche space or isospace of marine megafauna in ocean systems.
Stable carbon isotope values provide information regarding animal foraging
location as these values most often reflect patterns at the base of the food
web (Rau et al., 1982; Fry, 2006; Ben-David and Flaherty, 2012). For
example, animals foraging offshore usually have lower δ13C values than those
foraging nearshore. The spectrum of productivity refers to conditions that
influence phytoplankton growth rates as higher nutrient inputs result in faster
growth rates leading to higher δ13C values for all levels of a food web (Bidigare
et al., 1997; Popp et al., 1998). Stable nitrogen isotope values inform animal
trophic position and reflect nitrogen processes at the base of the food web
that drive stable isotope values for all consumers within that system (see
overview in Rau et al., 2003; Somes et al., 2010; Allen et al., 2013; Kurle and
McWhorter, 2017; Turner Tomaszewicz et al., 2017). Here, we highlight the
natural nitrogen cycle influences on the base of the food web which create
differences across ecosystems, but anthropogenic nitrogen loading from point
and run-off sources on land can also alter nitrogen signatures of primary
producers (Costanzo et al., 2001; Lemons et al., 2011). Fractionation
between diet and consumer can vary across species for both carbon and
nitrogen and is likely due to diet composition, quality, trophic position, and
form of nitrogen excretion (Germain et al., 2013; McMahon et al., 2015b,c;
Nielsen et al., 2015; Kurle et al., 2014).

an understanding that data collected from these individuals
represent a small unknown fraction of the total population
and may be biased toward those experiencing extreme stress.
In this way, hormone analysis of samples collected from free-
ranging individuals may provide earlier awareness of damaging
effects and more direct evidence of relationships between
stressors, and increases in dead or injured animals. Specifically,
reproductive hormones can reveal an animal’s sex, maturity,
and pregnancy status, enabling interpretations of demographic
structure, birth rates, and sex ratios, as well as the potential
to assess lost or infrequent pregnancies due to exposure to
harmful conditions (e.g., Rolland et al., 2012; Schwacke et al.,
2014; Kellar et al., 2017). Corticosteroid hormones (“stress
hormones”) can elucidate both acute (e.g., ephemeral predator
exposure) and chronic conditions (e.g., nutritional deficits)
(e.g., Sheriff et al., 2011), whereas thyroid hormones provide
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additional information about nutritive state (e.g., Atkinson et al.,
2015).

Our paper (1) briefly summarizes the contributions of
stable isotope and endocrine analyses to marine megafauna
conservation and management to date and the emerging
and developing applications of these methods, (2) identifies
opportunities for the combination of these methods, which may
reveal exciting new insights into the physiology, ecology, and
conservation of these species, and (3) outlines gaps and future
work required to advance these fields. In this review, we restrict
our discussion of marine megafauna to cetaceans, pinnipeds, and
sea turtles.

STABLE ISOTOPE ECOGEOCHEMISTRY
IN MARINE MEGAFAUNA RESEARCH

Applications of Stable Isotope Analyses
Estimating animal trophic levels and foraging locations has
been the classic application of stable isotope data measured
in animal tissues for ecological purposes (DeNiro and Epstein,
1978, 1981; Hobson and Welch, 1992). The development of
progressively more sophisticated analytical methods, such as
stable isotope mixing models (SIMMs) that incorporate multiple
parameters, including stable isotopes of elements besides carbon
and nitrogen such as sulfur, oxygen, and hydrogen, have allowed
for increasingly detailed estimations of animal ecological niche
space using stable isotope data (Jackson et al., 2011; Newsome
et al., 2012; Hopkins and Kurle, 2016; Rossman et al., 2016; Bowes
et al., 2017; Hopkins et al., 2017). There now exist a wide array of
modeling frameworks and metrics for categorizing diet, trophic
niche, and trophic structure (Bearhop et al., 2004; Layman et al.,
2007; Jackson et al., 2011; Newsome et al., 2012; Stock et al.,
2018).

Questions of competition and resource partitioning, foraging
plasticity, and maternal provisioning have also been investigated
with stable isotope methods (Borrell et al., 2006; Kiszka et al.,
2010; Fernández et al., 2011; Authier et al., 2012b; Ryan et al.,
2013). Ryan et al. (2013) found evidence of resource partitioning
amongst sympatric species of rorquals (Balaenopteridae) in the
North Atlantic through analysis of baleen isotopes, while Authier
et al. (2012b) investigated impacts of maternal feeding strategy
on pup weaning mass in southern elephant seals (Mirounga
leonine). Stable isotope analyses have also illuminated population
structure, examining ecological and trophic differences within
species (Witteveen et al., 2009a,b; Barros et al., 2010; Lowther
and Goldsworthy, 2011; Giménez et al., 2013). For example,
carbon, nitrogen, and sulfur isotopes were used to differentiate
putative population groups of bottlenose dolphins (Tursiops
truncatus) off Florida (Barros et al., 2010) and carbon and
nitrogen distinguished both breeding and feeding groups of
humpback whales (Megaptera novaeangliae) in the North Pacific
(Witteveen et al., 2009a,b).

Expansion of the ecological applications of stable isotope
analyses have allowed for reconstructions of temporal and spatial
variations in animal habitat use as species move along migration
routes or target specific feeding grounds throughout multiple

life stages (Hobson, 1999; Kurle, 2009; Vander Zanden et al.,
2010; Authier et al., 2012c; Allen et al., 2013; Carlisle et al.,
2014). For example, Turner Tomaszewicz et al. (2017) analyzed
the δ15N values from individual growth rings in humerus bones
collected from dead-stranded North Pacific loggerhead turtles
(Caretta caretta) to demonstrate their use of both oceanic and
neritic regions during their decades-long stage as juveniles.
The analyses of archived tissues allow for expanded temporal
reconstructions of animal diets and habitat use on the order
of decades or longer (Newsome et al., 2007a; Fleming et al.,
2016). Fleming et al. (2016) linked environmental variability
in the California Current System to variations in humpback
whale diets over 20 years using isotope values from whale skin.
However, temporal and spatial investigations of predator diet
and trophic level can be complicated by isotopic changes at
the base of the food web, which vary by region, season, and
year (Kurle et al., 2011). Thus, the degree of baseline variability
must be considered, and ideally estimated from lower trophic
level sampling, before interpretations of predator ecologies
and movements are drawn (Lorrain et al., 2014; Kurle and
McWhorter, 2017).

Compound Specific Stable Isotope
Analysis
More recently, advances in compound specific stable isotope
analysis of individual amino acids (CSIA-AA) allow for more
thorough explorations of trophic level and foraging location than
bulk stable isotope analyses. CSIA-AA enables differentiation
between isotopic variation due to different biochemical processes
at the base of the food web versus changes in a consumer’s
trophic level (Popp et al., 2007; Chikaraishi et al., 2009; Ruiz-
Cooley and Gerrodette, 2012; Lorrain et al., 2014; Ruiz-Cooley
et al., 2014; O’Connell, 2017). Thus, even without stable isotope
values from temporally or spatially linked lower trophic level
organisms, temporal and spatial shifts in predator diet can often
be determined. The δ15N values from so-called “source” amino
acids (essential amino acids for δ13C) show little change or
isotopic fractionation as they are transferred up the food web,
whereas other “trophic” amino acids (non-essential amino acids
for δ13C) fractionate with increasing trophic level. Comparison
of the isotope values from these two categories of amino acids
allows for more nuanced interpretation of stable isotope data.
This emerging technique has made most use of the δ15N
values from amino acids (Sherwood et al., 2011; McMahon
et al., 2015a), but ecological applications for the δ13C values
from amino acids are becoming more apparent, especially
for delineating amino acid sources in diets of consumers
(Larsen et al., 2009, 2013; Nielson and Winder, 2015). While
measurements of amino acid isotopes from marine megafauna
are increasing (Arthur et al., 2014; Ruiz-Cooley et al., 2014,
2017; Pomerleau et al., 2017; Zupcic-Moore et al., 2017), there
is a need for methodological development specific to these taxa
as their unique physiologies and isotopic fractionation patterns
necessitate different considerations than lower trophic level taxa
(e.g., zooplankton, corals) (McMahon et al., 2015b; McMahon
and McCarthy, 2016).
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The increasing use of CSIA-AA for modern and archived
samples will allow for greater understanding of mechanistic links
between patterns in oceanographic parameters, stable isotope
geochemistry, and marine megafauna responses. Variations
in the bulk δ13C and δ15N values from marine species
collected over time and space can be attributed to changes in
oceanographic measures that are in turn driven by climatic
conditions (Kurle et al., 2011; Ohman et al., 2012; Allen
et al., 2013; Kurle and McWhorter, 2017). For example, higher
ocean temperatures are related to less nutrient availability,
which in turn correlate to slower growth rates and lower
δ13C values for phytoplankton (Bidigare et al., 1997; Popp
et al., 1998; Schell, 2000; Figure 1). CSIA-AA of archived
marine samples covering longer time periods may therefore
allow for reconstruction of productivity and other trends
related to long-term climate patterns that may be driving
oceanographic properties of interest to bottom-up control of
food webs and impacts on top predators (Hückstädt et al.,
2017).

Physiological Considerations for Stable
Isotope Applications
The physiology and metabolism of protein utilization are
important to consider when using stable isotope analysis to
reconstruct foraging patterns in marine vertebrates. First, the
time required for full isotopic turnover varies across tissues
due to different rates of protein metabolism and can be on the
order of a few days (blood plasma, liver), months (muscle, red
blood cells), or longer (bones) (Kurle, 2009; Vander Zanden
et al., 2015). Accretionary tissues (e.g., vibrissae, ear plugs, and
tooth dentine) produce inert layers that preserve their original
chemical composition and allow for serial reconstructions over
multiple years or even lifetimes. Also to be considered, single
tissue types can have variable turnover rates across species and
within individuals. For example, sea turtles retain growth layers
in cortical bone but mammalian bone remodels and, therefore,
integrates multiple years of growth information (Snover et al.,
2011; Riofrío-Lazo and Aurioles-Gamboa, 2013). Within the
suborder Caniformia, isotopic differences were found between
cortical and non-cortical bones within individuals (Clark et al.,
2017). Therefore, stable isotope values from various tissues
reflect different time periods during which nutrients were
ingested and incorporated and should be considered when
using these analyses in conjunction with hormone studies
(Figure 2).

Second, animals undergoing nutritional stress must rely on
their own tissue catabolism or other mechanisms to maintain
function (see Elia et al., 1999; Aguilar et al., 2014; Borrell et al.,
2016), and these adaptations to resource limitation or starvation
can vary in their effect on the δ13C and δ15N values in tissues.
Much evidence points to an increase in the δ15N values of
tissues for animals undergoing protein catabolism when they
are starving (Hobson et al., 1993; Polischuk et al., 2001; Cherel
et al., 2005; Lohuis et al., 2007; Newsome et al., 2010; Bowes
et al., 2014). In contrast, mammals that appear to rely more
heavily on fat reserves or other processes that conserve protein

during times of fasting appear to demonstrate decreasing or
unchanging δ15N values when under nutritional stress (Das et al.,
2004; Lohuis et al., 2007; Gomez-Campos et al., 2011; Aguilar
et al., 2014). One explanation for these inconsistencies may be
related to the amount of lipid reserves stored by an organism
undergoing nutritional stress, as that appears to influence the
degree to which protein versus lipid is catabolized for energy
(Elia et al., 1999) and can thus influence an animal’s stable
isotope values (Aguilar et al., 2014). For mysticetes that are capital
breeders, gestation is thought to occur during periods of fasting
and requires substantial protein resources. Fetal development
may lead to a decrease in δ15N values for the mother throughout
the pregnancy as the fetus’s tissues increase in their δ15N values
relative to the mother (Borrell et al., 2016). Therefore, it is
important to consider the life history of the animal (e.g., capital
vs. income breeders) and the mechanisms responsible for the
potential inconsistencies in stable isotope markers for nutritional
stress.

APPLICATIONS OF STRESS AND
REPRODUCTIVE HORMONE ANALYSES

Only recently have hormone data been employed regularly in
studies of marine vertebrate ecology and conservation. Since
their discovery, these biochemicals that signal between cells and
organ systems have been primarily measured in clinical settings
to help assess health and reproductive conditions of individual
animals. Numerous veterinary and human medical studies have
created volumes of information regarding their physiological
effects, biochemistry, reference ranges, and associated anomalies
(Pineda et al., 2003; Melmed et al., 2016). There was significant
work done in the second half of the 20th century analyzing
various hormones in marine megafauna to understand their
unique physiologies (Deroos and Bern, 1961; Malvin et al., 1978;
Liggins et al., 1979; St. Aubin and Geraci, 1988, 1989; Hochachka
et al., 1995). However, it was not until the 2000s that these
analyses became more common for marine wildlife researchers
to assess hormones for conservation and physiological ecology
studies, and many of these efforts were aimed at establishing
baselines (Mansour et al., 2002; Mashburn and Atkinson, 2004;
Rolland et al., 2005; Hunt et al., 2006; Kellar et al., 2006;
Blanvillain et al., 2011; St. Aubin et al., 2013). Thus, there
are relatively few examples of applied studies examining links
between animal hormone levels and exposure to potentially
harmful human activities or environmental conditions (Rolland
et al., 2012; Kellar et al., 2013; Schwacke et al., 2014; Williard et al.,
2015).

The specific molecules within steroid (e.g., progesterone and
cortisol) and amino-acid derived (e.g., epinephrine and thyroid
hormones) hormone classes are structurally identical across most
vertebrate species (Horton and Moran, 1996; Pineda et al., 2003;
Melmed et al., 2016). Because of this structural similarity among
diverse taxa and their stability despite a wide spectrum of harsh
field collection conditions, ecology and conservation efforts to
date have mostly focused on analyses of these two hormone
groups.
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FIGURE 2 | The retention times of stable isotopes vary by tissue type as isotopic incorporation and protein turnover rates differ among tissues (Kurle, 2009).
Similarly, the half-life of hormones varies across tissue type depending on each individual hormone and the matrices’ chemical characteristics. This schematic
illustrates the temporal scales captured by isotope or hormone analyses of multiple tissue types and some potential ecological applications of both stable isotope
and hormone analyses matched to these time scales. As noted in the text, these temporal scales may vary across taxa (e.g., mammal bone vs. turtle bone).

While the specific molecules are structurally similar across
taxa, their physiological roles can be quite different across
both individuals and species. Additionally, interpretation of
hormone levels and patterns varies by hormone type and
research question. For example, measurement of hormone levels
can indicate a physiological state controlled directly by the
measured hormones (e.g., hormonal controls on pregnancy and
maturation) (Theodorou and Atkinson, 1998; Owens, 1999;
Greig et al., 2007; Kellar et al., 2009, 2014; Perez et al., 2011; Vu
et al., 2015). Alternatively, hormone levels can be assessed as an
indicator of direct response to some external stimuli (e.g., fight-
or-flight responses) (Gregory et al., 1996; St. Aubin and Dierauf,
2001; Sheriff et al., 2011). In more recent years, there has been
another avenue of investigation into changes in hormone levels
due to secondary or indirect responses, such as those associated
with exposure to high levels of environmental contaminants
(Subramanian et al., 1987; Oskam et al., 2003; Trego et al.,
2018). The following paragraphs introduce the various types,
applications, and interpretations of hormones most commonly
used in marine megafauna research.

Sample Matrices
Marine megafauna have diverse sample matrices (tissues, body
fluids, and physiological end-products) from which hormones
are measured. Relative to hormone distribution patterns, the
matrices can be subdivided into three types: (1) those that
are in dynamic equilibrium (e.g., blood, blubber, most bone
tissue, and muscle) with the hormone concentrations generated
by the gland of production, (2) those that become relatively
static once formed thereby potentially offering a record of

previous hormone concentrations (e.g., laminated ear plugs, fur,
hair, whiskers, baleen, claws, laminated bone structures, and
potentially, teeth, tusks, and epidermal tissue), and (3) those
that are biological end products formed then expelled (e.g.,
blow particulate (“whale snot”), respiratory vapor, feces, urine,
saliva, egg shells, and milk). Moreover, as with stable isotopes,
each matrix has its own set of dynamics, integrating signals
over varying lengths of time depending on each individual
hormone and the matrices’ chemical characteristics (Figure 2).
Note that the processing of these matrices for hormone analysis
typically has two phases: (1) isolation of the target hormone and
(2) analytical measurement. The measurement procedures (e.g.,
immunoassays, chromatography, and mass spectrophotometer-
based analytical analyses) can theoretically be used with any of the
matrices; however, isolation procedures vary enormously as they
are tailored to each matrix’s specific composition and chemistry
relative to the target hormone.

Progesterone
Progesterone is a particularly informative indicator of cetacean
pregnancy status, which researchers have used to estimate
pregnancy rates in several populations (Bergfelt et al., 2013;
Kellar et al., 2013, 2014; Clark et al., 2016). In situations where
known stressors or atypical perturbations are of concern (e.g.,
exposure of dolphins to chase-and-encirclement fishery activity),
relationships between the frequency or magnitude of exposure
to these perturbations and pregnancy rates have been assessed
(Kellar et al., 2013). Similarly, reproductive success rates (rates of
known pregnancies producing viable calves) have been examined
with respect to poor prey availability (Wasser et al., 2017) or
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exposure to pollutants (Kellar et al., 2017). Progesterone levels in
pinnipeds have also been shown to aid in assessing the pregnancy
state of individuals (Gardiner et al., 1996, 1999; McKenzie et al.,
2005; Greig et al., 2007). However, in these species, there can
be overlap in hormone concentration between known non-
conceiving females and females predicted to be pregnant based
on progesterone concentrations such that the diagnostic power of
progesterone is more limited though still informative (McKenzie
et al., 2005; Beaulieu-McCoy et al., 2017). In these animals
(along with cetaceans and sea turtles), progesterone can aid in
maturity state assessments of females and help elucidate estrous
activity in conjunction with measurements of other hormones,
like estrogens (Licht et al., 1982; Pietraszek and Atkinson, 1994;
Gardiner et al., 1996, 1999; Kakizoe et al., 2010; Beaulieu-McCoy
et al., 2017). Progesterone concentration has not been widely
assessed in marine turtle experimental studies as this hormone is
at baseline levels until a reproductively active female commences
nesting activities (see overview in Blanvillain et al., 2011).

Androgens
Androgen concentrations, especially those of testosterone, have
been applied in a variety of ways in marine megafauna ecology
and conservation research. In marine mammals, testosterone
helps assess maturity states of individual males (e.g., in blubber,
Kellar et al., 2009) and, in more static matrices (e.g., laminated
ear plugs), it is used to estimate ages of sexual maturation
(Trumble et al., 2013). Testosterone measurements can
elucidate reproductive seasonality characteristics of populations,
information that can help identify time-of-year associated with
heightened vulnerability to potential stressors (i.e., periods
of breeding; Robeck and Monfort, 2006; Kellar et al., 2009;
Vu et al., 2015). More generally, pollutant exposure has been
linked to decreased levels of androgens, as well as estrogens,
in a number of marine megafauna species creating potential
impacts on development and reproduction (Subramanian et al.,
1987; Oskam et al., 2003; Trego et al., 2018). Finally, androgen
levels are utilized to help determine the sex of individual animals
(Allen et al., 2015; Corkeron et al., 2017). This is particularly
important for sea turtles as they display no genotypic markers for
sex or external secondary sexual characteristics until maturation
(males grow longer tails), and, because their sex is temperature
dependent, monitoring sex ratios of turtle populations using
testosterone can help identify potential negative impacts of
changing environmental conditions on their demography (Allen
et al., 2015; Braun McNeill et al., 2016; Jensen et al., 2018).

Since hormone concentrations in hatchling sea turtles are
minute, the ratio of estradiol to testosterone was used to predict
the sex of sacrificed, just-hatched sea turtles (Gross et al., 1995).
However, advances in hormone assay technology should allow
detection of hormone concentrations in small volumes of blood
collected from hatchlings without deleterious effects (e.g., death
or low survivorship), providing the opportunity to assess primary
sex ratios for all species of sea turtles.

Corticosteroids
In marine megafauna, the dominant corticosteroids (cortisol,
corticosterone, and aldosterone) serve as biochemical markers

of physiological stress response activity; specifically they are
most often interpreted as indicators of hypothalamic–pituitary–
adrenal (HPA) axis activation in response to perceived threats
(Gregory et al., 1996; St. Aubin and Dierauf, 2001; Sheriff
et al., 2011). For the HPA axis, glucocorticoids (GC), cortisol
and corticosterone, stimulate creation of additional glucose in
anticipation of increased energy needs in response to a stressor
(Palme et al., 2005; Busch and Hayward, 2009; Blanvillain et al.,
2011; Atkinson et al., 2015). GC concentrations have been
analyzed in numerous marine mammal and turtle species ranging
from individual responses to stressors like restraint or capture
of individual animals (Thomson and Geraci, 1986; St. Aubin
and Geraci, 1988, 1989; Gregory et al., 1996; Champagne et al.,
2012; St. Aubin et al., 2013; Williard et al., 2015; Hunt et al.,
2016a), to population-level responses to increased anthropogenic
activity (e.g., vessel traffic; Ayres et al., 2012; Rolland et al.,
2012). Glucocorticoid concentrations also vary with temperature
perturbations (Houser et al., 2011), nutritional deficits (Kellar
et al., 2015; Beaulieu-McCoy et al., 2017; Wasser et al., 2017),
and pollutant exposure (most notably oiling from the Deepwater
Horizon disaster; Schwacke et al., 2014). These may not be
stressors in the classical sense and are therefore often referred to
as types of “environmental stressors” as there is not necessarily
a perception of threat at an individual level. This distinction
is important as these conditions do not necessarily stimulate
cortisol production, especially as an anticipatory reaction, as
seen in a perceived threat-to-self response (also known as a
fight-or-flight response).

The other primary corticosteroid, aldosterone, mainly
controls the electrolytic composition of blood to regulate
blood pressure and blood volume (St. Aubin, 2001). In marine
mammals, aldosterone often shows responses to known stressors
that are similar to those of GCs (Thomson and Geraci, 1986;
St. Aubin and Geraci, 1989; St. Aubin et al., 1996; Houser
et al., 2011). A sea turtle study investigated the effects of acute
fresh water exposure and found no change in aldosterone
or corticosterone production and suggested that compared
to marine mammals, sea turtle response to a hypo-osmotic
environment might be delayed (Ortiz et al., 2000). Aldosterone
often shows greater relative increases compared to cortisol,
though at much lower total concentrations (St. Aubin and
Geraci, 1989). It is theorized that this may be due in part
to the importance of breath-hold diving (and the profound
accompanying changes in blood distribution) in these animals
as they respond to potential threats (Atkinson et al., 2015).
These observations are creating new interest in using aldosterone
as another marker of stress, and, though few studies have
examined aldosterone levels relative to known stressors outside
of experimental settings, this will likely change in the near future.

Thyroid Hormones
Along with GC levels, thyroid hormones (thyroxine, T4 and
triiodothyronine, T3) can help in the assessment of individual
and population-level nutritional conditions (Atkinson et al.,
2015). T4 is a prohormone and typically is converted to T3, the
active form, to directly bind to receptors and produce biological
effects (St. Aubin, 2001; Melmed et al., 2016). These effects
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help control entire metabolic rates of individuals by regulating
numerous metabolic pathways. Limited food intake generally
inhibits the production and activity of thyroid hormones,
especially T3 (Pineda et al., 2003; Melmed et al., 2016). This
works by (1) blocking the conversion of T4 to T3 and (2) by
stimulating the conversion of both to another form, “reverse T3”
(rT3). In this form, rT3 still binds to T3 receptors, but produces
no biological effects thereby blocking the associated pathways and
lowering the overall metabolic rate (Horton and Moran, 1996;
Pineda et al., 2003). Though a number of studies have looked
at the effects of food limitations on the thyroid concentrations
of individuals (Moon et al., 1998, 1999; Rosen and Trites, 2002;
Rosen and Kumagai, 2008; du Dot et al., 2009), few have used
thyroid hormone measurements to help assess the population-
level impacts of limited prey availability in non-captive animals
(Moon et al., 1998; Ayres et al., 2012; Crocker et al., 2012; Wasser
et al., 2017).

INTEGRATED APPLICATIONS OF
STABLE ISOTOPE AND HORMONE
ANALYSES

In addition to the established and emerging applications of
both stable isotope and hormone analyses in marine megafauna
presented above, the combination and integration of these
two methods offer innumerable possibilities for academic and
conservation focused research. While little has been published
utilizing both methods concurrently for marine megafauna
(Hunt et al., 2014, 2016b; Clark et al., 2016), there has been
considerable effort on this front in seabird and terrestrial
predator research fields. Using these taxa as examples, we
offer a few of the major research areas and questions
we foresee as productive for the intersection of these two
methods and discuss how they can inform marine megafauna
conservation and management efforts. Three major research
areas have utilized a combination of these two methods: (1)
nutrition and health, (2) reproduction, and (3) life history. We
identify a fourth area of research, examinations of evolutionary
versus ecological drivers of behavior, that could also be well
served by a combined stable isotope and hormone analyses
approach.

Nutrition and Health
Numerous external influences on marine megafauna can impact
nutrition and health, including changes in prey availability
and/or quality, degraded or inconsistent habitat conditions (due
to natural variability or anthropogenic factors), competition,
disease, and direct anthropogenic impacts such as entanglement,
ocean noise, or ship strikes. To date, the research effort
combining stable isotope and hormone analyses has focused
largely on the impacts of variable prey and habitat conditions
(e.g., Barger and Kitaysky, 2011; Dorresteijn et al., 2012; Bryan
et al., 2013, 2014; Lafferty et al., 2015; Boggs et al., 2016). As
top predators, marine megafauna depend on abundant prey
and/or dense prey patches and they often capitalize on regions
of reliably high biological productivity (Hazen et al., 2009;

Santora et al., 2011). However, these areas are subject to climate-
driven environmental fluctuations that affect marine productivity
(e.g., Macklin et al., 2002; Bograd et al., 2009; Sherwood et al.,
2011; Stabeno et al., 2012), contributing to the potential for
episodic inadequate prey resources for megafauna that can induce
stress, increase competition, create nutritional deficits, and lead
to potential starvation. Understanding the linkages between
climate, habitat, prey availability, and marine mammal diets, and
predicting how these variables impact megafauna conservation
and management, is increasingly important in the face of ongoing
warming (e.g., Howard et al., 2013).

Currently, the influence of climate change on prey availability
for top ocean predators is a topic of considerable research
effort across various temporal scales (Wolf et al., 2010). To
understand the impacts of current and future changes in
climate on marine megafauna, analyses of interannual and
decadal patterns are often used as proxies to better understand
and predict future population responses to long-term change.
For example, Dorresteijn et al. (2012) examined impacts of
interannual climate variability and timing of ice retreat on food
availability for least auklets (Aethia pusilla), a seabird in the
Bering Sea. They combined assessment of changes in auklet
diet as measured by stable isotope analyses and regurgitated
chick meals with changes in the stress hormone, corticosterone,
in auklet blood to assess food availability (higher levels of
corticosterone are associated with lower food availability). The
combination of isotope, regurgitate, and hormone analyses
revealed a more in-depth understanding of the species response
than any method in isolation, as two different colonies were
found to respond differently to the changing climatic and
oceanographic conditions. Only one colony showed changes in
diet, but both colonies showed increased levels of corticosterone
during warm periods, indicating that, while the diet may not have
changed for both colonies, the relative foraging effort may have
(Dorresteijn et al., 2012). Such insights are particularly helpful
in a management context as they provide further metrics of the
consequences of environmental changes on top predators.

The combination of stable isotope and hormone analyses
has also been utilized to examine the interplay of intra- and
interspecies competition in relation to changing prey conditions.
Barger and Kitaysky (2011) demonstrated increasing dietary
separation (assessed by stable isotopes) among two species of
sympatric seabirds (Uria spp.) in response to food limitation
(supported by increasing concentrations of stress hormone) and
greater niche overlap when food was abundant. Within-species
resource competition was investigated by Bryan et al. (2014)
in grizzly (Ursus arctos) and black bears (Ursus americanus) in
the Pacific northwest through stable isotope Bayesian mixing
models and surveys of salmon (Oncorhynchus spp.) abundance.
In grizzly bears, cortisol increased in response to lower salmon
consumption. However, in black bears, cortisol increased in
response to lower salmon availability, which was tightly coupled
to increased competition, indicating a stronger link to social
competition in black bears. In both bear species, testosterone
decreased with increasing salmon availability, which the authors
interpreted as evidence of a less competitive environment.
Consequences of diet quality can also be investigated with a
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combination of hormone and stable isotope analyses. Fairhurst
et al. (2015) found that feathers from Leach’s storm petrels
(Oceanodroma leucorhoa) with higher δ15N values, an indication
they were foraging at higher trophic levels, were associated
with correspondingly lower corticosterone concentrations. Their
data suggested a physiological benefit in the form of either a
reduced foraging effort or a greater nutrient benefit associated
with consumption of higher trophic level prey by the petrels.

Further research directions on this topic could include
investigations of health conditions that may be distinct from
dietary inadequacies but could be mistaken for responses to
nutritional stress without more detailed data. For example,
energetic and endocrine responses to diseases resulting from
ecotoxicological or immunological factors may also be aided by a
combination of hormone and stable isotope analyses. While most
diseases in the wild may have a nutritional component, there may
be some instances of direct links to a disease or injury stressor
that may not be primarily mediated through prey or nutritional
stress. In these cases, assessing both hormone levels and stable
isotope values can allow biologists to rule out biologists to rule
out the potential for interactions between health and diet.

Reproduction
Reproductive behavior, biology, and rates are exceptionally
challenging to study in marine megafauna and, for many species,
the oceanic habitats in which these animals breed remain
unknown (Robeck et al., 2001; Blanvillain et al., 2011). For
taxa with more visible reproductive behaviors, such as sea
turtles and pinnipeds, there has been substantial examination
of hormone levels and patterns. However, we are aware of
little research combining hormone and stable isotope analyses
for better deciphering questions related to reproduction in
other marine species. One of the most fundamental research
topics that can be developed by the integration of these two
methodologies is baseline physiological patterns inherent to
particular reproductive or life history stages. For example, does
an individual’s ontogenetic stage influence diet and stress or diet
and reproductive endocrinology? Do the diverse metabolic needs
required at different reproductive or life stages lead to different
prey preferences or foraging efforts? Addressing these questions
will develop critical baselines from which other, more acute,
questions can be added.

Some investigations into reproductive questions using both
stable isotope and hormone analyses interpreted these analyses
separately, whereas others drew integrated conclusions. Both
approaches can add value to single discipline studies, however,
we encourage future research to consider the interactions and
background physiological conditions that may be driving both
the hormonal and stable isotope patterns. For example, Hunt
et al. (2016b) examined cortisol and corticosterone changes along
baleen plates from two female right whales (Eubalaena glacialis)
in relation to observed life stage/reproductive events. They used
stable isotope values to demarcate time along the baleen plate, as
these values change predictably with annual migration cycles, but
they did not consider the potential interplay between hormone
and stable isotope values. They found that corticosterone was
elevated during pregnancy and lactation, whereas cortisol had

more variable, brief spikes along the temporal record, suggesting
the two glucocorticoids react differently to stressors. Clark
et al. (2016) investigated humpback whale hormones and stable
isotope values throughout two feeding seasons to examine
pregnancy rates and the impact of pregnancy on stable isotope
values and found that pregnant females showed different isotope
values than males or non-pregnant females. This potentially
reflects changes in tissue synthesis, increased use of lipid stores,
and reduced excretion of nitrogenous waste, allowing for a
proposed model of predictable changes in hormone levels and
corresponding stable isotope values over the life of reproductive
female humpback whales.

Bird studies have made considerable progress combining
hormone and stable isotope analyses, especially to examine
the influence of provisioning on reproductive parameters. For
example, Barger et al. (2016) found that sympatric species of
murres (Uria spp.) changed their foraging behavior by traveling
to different areas to forage for alternative prey during the
energetically demanding periods of reproduction (incubation
and chick-rearing) to possibly reduce competition. Tartu et al.
(2014) found that luteinizing hormone may be impacted by
mercury load which was in turn influenced by diet and age in
snow petrels (Pagodroma nivea). Their findings support previous
research that mercury reduce luteinizing hormone, thereby
decreasing reproductive fitness, especially in long-lived birds
(Tartu et al., 2013; Goutte et al., 2014). Kouwenberg et al. (2013)
found that elevated corticosterone promoted foraging during
molt in puffins (Fratercula arctica) which led to consumption
of higher trophic level diet and increased egg mass during
reproduction.

Further research in this area could combine assessments
of body condition, stable isotope values, and hormone
concentrations in marine megafauna. For example,
photogrammetric information on body condition in cetaceans
and pinnipeds could be related to reproductive stage, isotopic
niche, and concentrations of stress hormones. Availability of
food resources for sea turtles could be examined in relation
to nesting frequency and reproductive output. Since various
reproductive stages are nutritionally demanding, combining
stable isotopes with both stress and reproductive hormone
analyses may provide greater insight on the extent of fat storage
utilization and nutritional condition throughout pregnancy and
lactation. These methodological combinations would enable
interesting comparisons across income and capital breeders.

Life History
Marine megafauna have complex and varied life history patterns
accompanied by specific physiological adaptations and behaviors
evolved to support these life histories. For example, long-
distance annual migrations are common amongst many taxa. Yet,
unraveling the specific determinants of these migrations has long
been a subject of much research and speculation. Diet, hormones,
offspring protection, thermal regulation, and other factors are
all potential contributors to the complex process of migration
(Brodie, 1975; Corkeron and Connor, 1999; Clapham, 2001),
and the combination of stable isotope and hormone analyses has
been used to better understand drivers of migration, especially
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in birds. For instance, Warne et al. (2015) examined potential
determinants of migratory timing in saw-whet owls (Aegolius
acadicus). They used stable oxygen (δ18O) or δ deuterium
(δ2H) isotope values to indicate location or arrival of owls on
breeding grounds, and they observed that corticosterone was
elevated in birds that migrated earlier. Higher corticosterone
levels in owl feathers and blood were related to increased foraging
and migratory preparedness/body condition which presumably
contributed to the early onset of migration in certain owls.
Covino et al. (2017) found that in combining analyses of stable
hydrogen isotope values, which indicate proximity to breeding
grounds, with testosterone concentrations, which correlate with
increased breeding preparation, they were able to decipher the
timing of breeding preparedness in male songbirds (Mniotilta
varia) in relation to their long-distance migrations. During
migration, these birds must devote energy to the journey, as well
as toward development of breeding characteristics that prepare
them for reproduction when they arrive at the breeding ground.
The δ2H values indicated that male songbird testosterone levels
increased as they approached the breeding area, whereas the
reproductive schedule for female songbirds did not show such
geographically linked timing and requires further exploration.

For many species of migratory marine megafauna, the ability
to fast for half the year is routine. Such fasting requires extreme
physiological adaptations that are currently poorly understood
and that could be greatly informed via combined hormone and
stable isotope analyses. Additionally, differences in physiological
responses that occur in animals evolved to experience routine
(e.g., migratory) fasting versus those forced to endure unexpected
and catastrophic fasting (e.g., declining productivity experienced
in certain marine systems during climate-induced warming
events) could be investigated through these combined methods.
For example, elevated δ15N values and corresponding high
cortisol levels measured in blood from starving animals may
indicate more extreme nutritional stress, whereas lower δ15N
values and higher cortisol levels may indicate normal fasting
conditions in a migratory capitol breeder. In the marine
environment, stable oxygen (δ18O), or δ deuterium (δ2H) isotope
values can provide additional gradients for tracking movements

in the ocean, especially between coastal and offshore habitats, and
polar and temperate latitudes (McMahon et al., 2013; MacAvoy
et al., 2017). In polar regions, the inclusion of δ2H may correlate
to sea ice concentration (deHart and Picco, 2015), offering
opportunities to examine migration, sea ice conditions, and stress
by combining stable isotope and hormone analyses. Finally, it
should be mentioned that other technological tools, such as
biologging and tagging devices, are natural complements to stable
isotope and hormone analyses for the study of migration and life
history.

Evolutionary and Ecological Drivers
In addition to the above areas of research, the subject
of evolutionary versus ecological determinants of population
parameters and behavior might also be explored with the
combination of stable isotopes and hormone analyses. Yet, to
our knowledge, nothing on this subject has been published thus
far. We suggest that future studies examine questions that begin
to address the topic of plasticity. For example, when resources
change, do individuals alter their reproductive or movement
behaviors in order to adapt to the new conditions or do they
maintain behaviors because they have evolved to do so? When a
population is declining or increasing, do they respond differently
to changes in their environment? Such questions are often
very challenging to address with observational data. Yet the
integration of hormone analyses and stable isotope methods,
along with other established and emerging population metrics,
may enable exploration of reproductive and ecological responses
to both external and internal drivers. Improved understanding
of individual and population responses to change would be a
valuable asset to conservation and management efforts.

CONCLUSION AND NEXT STEPS

Combined investigations using stable isotopes and hormones
could address questions at a variety of biological levels,
progressing from external (e.g., changes in habitat conditions or
prey availability) to internal (e.g., physiological) and individual

FIGURE 3 | Summary schematic of the numerous current and future research topics that could be further developed with the combination of stable isotope and
hormone analyses. The schematic is organized by biological level progressing from external variables impacting marine megafauna, to internal physiological drivers,
then to topics relating to individual animals as well as population-level investigations.
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(e.g., reproduction or migration) to population-level responses
(e.g., population abundance) (Figure 3). The combination of
these analyses in studies of marine megafauna can allow for
layering of multiple questions and lines of evidence to inform
management decisions or conservation issues. Each of these
broad areas of research (Figure 3) will require methodological
developments as the ecological, evolutionary, and life history
investigations evolve.

While there is a suite of methodological developments that
would be useful (e.g., further research on storage considerations
that enable both types of analyses on the same tissue, etc.),
there is one major topic that should be the focus of near-
term efforts to develop this field. More methodological research
is needed to enable the successful temporal alignment of
these two analytical techniques. For example, while hormones
have dedicated metabolic pathways that control their half-
life and concentration in each tissue type, stable isotopes
are metabolized coincident with the tissue they are in. Thus,
these two markers are both subject to, and reflect different
physiological processes and time scales which complicate
attempts to evaluate them in parallel. Consequently, research is
needed on the durations, amplitudes, and incorporation rates
of each signal compared to the other, across multiple matrices.

Quantification of the amounts of each incorporated marker,
their detectable levels, and the recording rate of each marker
will require controlled experiments. Researchers with access to
captive animals or large archival collections, such as those in
museums and zoological collections, are aptly poised to develop
such investigations. These will be pivotal to conservation and
management applications of integrated hormone and stable
isotope techniques.
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