Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title

THE CURRENT EXPERIMENTAL SITUATION IN HEAVY-ION REACTIONS

Permalink

https://escholarship.org/uc/item/7f33v25k

Author

Scott, David K.
Publication Date
2011-03-18

This mport mit prepared at an adeocat of wook tponswed by the Uatited Srutes Gomeramant. Sedthet the Upormed Sutei nor the Ufited Stales Depalmanat of lincap. nom anj of Uheir employeet, mant smy of thens contration, subsontrastors. or theu ecrppoperes. mates
 lability or rexpuntuility for the accuraty. completerems

 unfrige pritalelyomed nght

THE CURREWT EXPERTJENTAL SITUATION IN HZAVY-ION REACTIONS

David K. Scott
Lawrence Berkeley Laboratory University of California Berkeley, California 94720

NOTIEE

nantinms of this report are illegible it
hax :3 ب! ! 40 parmik the broadest possible avail-能湤,

INTRODUCTION

Let us begin on a grandiose note by comparing heavy-ion collisions, which occur on the shortest scales of time and space in the Universe $\left(10^{-23} \mathrm{sec}\right.$ and $\left.10^{-13} \mathrm{~cm}\right)$, with the collisions of galaxies (ther both exponents are positivel). Figure 1 ; 1 shows the spectacular NGC 5194 spiral nebula in Canes Venatici, ${ }^{1}$ with the satellite nebula NGC 5195. The analysis of this type of cosmological event uses a simple potential model with gravitational forces folded over the mass density distributions. 2,3 The collision of two equal mass

galaxies, where one has some initial symmetric distributicn counter to the parabolic orbit of the incident galaxy, is shown in Fig. 1.2. As time passes, we see the build-up of a tidal wave which eventually spews out mass in the "target fragmentation region," leaving behind some hot, residual system which seeks a stable mode. Now compare the collision of ${ }^{20} \mathrm{Ne}$ on $23 \mathrm{~B}_{\mathrm{U}}$ at incident relgtivistic energies of

Figure 1.3
XBL 777-9763
$250 \mathrm{MeV} / \mathrm{nucleon}$ and $2.1 \mathrm{GeV} /$ nucleon in Fig. 1.3; these pictures were generated by solving the hydrodynamic equations, ${ }^{4}$ and show nuclear rather than galactic matter streaming out, as the wounded nuclei try to recover. (The hydrodynamic equations have also been solved for star-star collisions.5,6)

The relevance of heavy-ion collisions to cosmological events may be even more profound. In Fig. 1.4 is shown the temperature reached in the nuclear fireball (the region of matter dispersed between the target and the projectile in Fig. 1.3) as a function of the incident energr of two colliding ions, ${ }^{7}$ for two assumptions about the hadronic mass spectrum. The curve labeled "experimental" corresponds to a mass spectrum containing essentially the known particles, while that labeled "Hagedorn" corresponds to the bootstrap hypathesis of an exponential growth of hadrons. In this model the temperature limits at $\approx 140 \mathrm{MeV}$ (and such a limit may have been observed ${ }^{8}$), a temperature approaching the limit reached at the earliest recognizable moments of our Universa, in the Cosmic Big Bang. ${ }^{9}$ After this beginning to our lectures, let us hope that we do not end with a whimper!

These examples demonstrate that there is considerable interest throughout the whole of physics in the collisions of structured objects, especially insofar as the phenomena may be explained in the context of a microscopic theory. In the most general sense, this motivation justifies the enormous effort and expense poured into providing heavy-ion beams as massive as urenium up to energies of $2 \mathrm{GeV} / \mathrm{nuc}$ leon for the study of nuclear interactions. (Useful sources on developments in the field are contained in Refs. 10-30.) A more specific motivation becomes evident when we take a panoramic view of the stability diagram ${ }^{31}$ for nuclear species in Fig. 1.5.

Figure 1.4

Figure 1.5
KBL 7779479
There are 300 stable nuclear species. During the last half century only some 1300 additional radioisotopes have been identified and studied. It is estimated that in tie interaction of $U+U, 6000$ new species could be formed. The historic role of heavy-ion physics, through the study of these nuclei, will be to relax the limitations that have been imposed on the study of nuclear physics over its 60 year history - limitations of nuclear charge and mass number, limitation of spherical shape, limitations of "normal" temperatures and pressures and reaction mechanisms. The influence of very heavyion accelerators is already beginning to be felt in theoretical chemistry, in atomic physics, and quantum electrodynamics as well as in nuclear physics itself. Over the last few years, a wave of enthusiasm has caused nuclear physicists to focus on research with heavy ions, and the view both near and far is one of increasing excitement which has pervaded the conference halls and the research laboratories, dominated the research proposals and preoccupied the funding agencies. It shows no signs of abatement.

In these lectures I shall attempt to give a survey of the present experimental situation in Heavy-Ion Physics. I shall draw heavily from a similar course of lectures delivered last year, 30 updated by the many new trends which have emerged since that time - or which were unknown to me then! In order to chart a navigable course through the vast territory of heavy-ion literature, I shall make a division into three continents, named (a) Microscoria, (b) Macroscopia, and (c) Asymptotia, which will deal in turn (a) with the simple excitation of discrete states in elastic scattering, transfer and compound nuclear reactions; (b) with more drastic perturbations of the nucleus high in the continuum through fusion, fission and deeply-inelestic scattering; and (c) with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. However, it will be one of the goals of these lectures - and my selection of material is so guided - to
show that there are definite signs of a Continental dmift, with a merging of the microscopic, macroscopic and asymptotic approaches. When they finally become a Trinity, no doubt we shall find Utopia, but I am afraid we shall not reach it in these lectures. However, the very fact that we are gathered here to discuss both heavy-ion ara pion physics is also an indication of the reunification of the many branches into which nuclear physics has become divided. Perhaps we could do well to reflect on Benjamin Franklin's injunrtion to his colleagues, "Gentlemen, let us all hang together, or we may all hang separately," In other words, make out of necessity a golden opportunity to strike down artificial barriers in physics, 32 providing a better perspective on many aspects of nuclear dynamics. ${ }^{32}$

1. MICROSCOPIA

We shall begin by derining some of the parameters of heavy-ion reactions, and then use this knowledge th describe the characteristic features of elastic scattering. The status of optical potential.s is then treated, followed oy their incorporation into the DWBA formalism for simple transfer reactions. A survey of more complicated multinucleon transfer leads us to heavy-ion compound nuclear reactions, from which most of our knouledge of new types of states excited in heavy-ion collisions is presently being gleaned. Througncut this, and the subsequent lectures, the emphasis will be on heary-ion collisions at energies well above the barrier, sirce this refion is the wave of the future.

1.1 Characteristics of Heavy-Ion Collisions

In the collision of nuclei with charge and mass numbers $?_{1}$, A_{1} anc Z_{2}, A_{2}, some useful quantities are defined in fig. 1.6^{1}

Reduced mass $\mu=\frac{m A_{1} A_{2}}{A_{1}+A_{2}}, \quad m=$ nucleon mass.

Relative velocity $=v$,

$$
\begin{equation*}
\frac{v}{c}=\sqrt{\frac{E_{1 a b}}{469 A_{1}}}, \quad \mathrm{E} \text { in MeV. } \tag{1.2}
\end{equation*}
$$

Kinetic energy of relative motion $E=\frac{1}{2} \mu v^{2}$.
Half distance of closest approach in head-on collision

$$
\begin{equation*}
a=\frac{Z_{1} z_{2} e^{2}}{\mu v^{2}}=\frac{z_{1} z_{2}}{2 E_{c m}}\left(\frac{e^{2}}{\mathrm{nc}_{c}}\right) \hbar c \tag{1.5}
\end{equation*}
$$

Sommerfeld parameter $n=k a=\frac{Z_{1} z_{2} e^{2}}{h_{v}}$
Classical impact parameter = b.
Assoriated angular momentum $=k b=\ell$ (partial wave).
Scattering angle $=\theta$.
Strong interaction radius $R=R_{j}+F_{2}=r_{0}\left(A_{1}^{1 / 3}+A_{2}^{1 / 3}\right)$.
For a Ruinerforà orbit,

$$
\begin{align*}
d & =a(1+\operatorname{cosec} \theta / 2) \\
& =a+\sqrt{a^{2}+b^{2}} \\
& =\eta / k\left(1+\sqrt{1+(\ell / \eta)^{2}}\right. \tag{1.7}
\end{align*}
$$

Critical scattering angle θ_{g} or θ_{c} when $\mathrm{d}=\mathrm{B}$,

$$
\begin{align*}
\sin \frac{\theta_{c}}{2} & =\frac{a}{R-a} \tag{1.8}\\
b_{c} & =R \sqrt{1-2 a / R} \tag{1.9}\\
\ell_{c} & =k b_{c}=k R(1-2 \eta / k R) \tag{1.10}
\end{align*}
$$

Heavy-ion reactions are characterized by large values of $k R=R / \lambda \gg 1$. Such considerations lead us to the concept of a semi-classical trajectory, associated with different impact
paraneters. Indeed the very features that complicate numerical calculations for heavy-ion interactions, high orbital angular momenta $\ell=k R$ and large Sommerfeld parameter η, are just those that may be turned to advantage in semi-classical analytical computations. Referring to Fig. 1.6, we can write for a given point on the orbit, by conservation of angular momentum ana energy:

$$
\begin{array}{r}
\mu r^{2} \dot{X}=\ell=\mu v_{0} b \\
\frac{1}{2} \mu \dot{r}^{2}+\frac{1}{2} \mu r^{2} \dot{X}^{2}+v(r)=E={ }^{1} 2 \dot{\psi} v_{0}^{2} \tag{1.12}
\end{array}
$$

Then

$$
\begin{equation*}
\frac{d x}{d r}=\frac{\mathrm{dX} / \mathrm{dt}}{\mathrm{dr} / \mathrm{dt}}=\frac{\dot{x}}{\dot{r}}=\frac{\ell}{r^{2}} \frac{1}{\sqrt{E-V(r)-\ell^{2} / 2 \mu r^{2}}} \tag{1.13}
\end{equation*}
$$

and we can calculate the scattering angle

$$
\begin{equation*}
\theta(\ell)=\pi-2 \int_{d}^{\infty} \frac{\ell}{r^{2}} \frac{d r}{\sqrt{2 \mu E-2 \mu V(r)-\ell^{2} / r^{2}}} \tag{1.14}
\end{equation*}
$$

since $9=\pi-2 X$. Here $V(r)$ is the total potential, comprising Coulomb + nuclear. Equation (1.14) enables us to construct a scattering diagram and a deflection function diagram, whicin typicelly looks like Fig. 1.7.

For large impact parareter b the trajectory follows a Counomb oubjt, and as b decreases θ initially decreases. At smaller impact peremeters the attractive nuclear potential pulls the trajectory forward so there is a maximum scattering angle $\theta_{r}^{(C) \text {, called the }}$ Coulomis rainbow angle, beyond which scatterine is forbidden classically. The attraction pulls the trajectories round to a mayimum negative arple, after which still smeller impact parametert wair scater to smeller anefes. This negative maximur is calied the nuclear rainbow ancele, $\theta_{r}^{(1) . ~ T h e ~ t r e n d ~ i s ~ c o n c i s e l y ~ r e p r e s e n * ~ r e ~}$ in the drflection function diagram at the bottom. One of the con rasts betweer light- and heavy-ion scattering is the prominence of nuclear rainlows in the former ard Coulomb rainbows in the latier. ${ }^{3 ?}$ These considerations lead us to prediet an elastjc enatterini dietribution (Fig. 1.8).

Figure 1.8

The scaterinf follows the Rutherford pattern up to the grazine trujectory. Boyord that, is the shadow refion, where classically no particles protetrate. Note, however, that a similer picture cer. be penerated by strong absorption inside the grazine trajectory. Then the shadow is generated by an imaginary rather than the real potentias. 34

We compare these zfroth order predintions with the two staniam: forms occurring experimentaily in Fig. 1.9, which shows the scettreine of 160 of $10 \mathrm{MaV} / \mathrm{muc}$ leon on 208 Pt and 12 C .

Figure 1.9

These are examples of Fresnel and Frauthoffer diffraction. In the case of $16_{0}+20 \mathrm{E}_{\mathrm{Pb}}$, the scattering is Coulomb dominated and the averane trend is indeed as in Fig. 1.8. An interpretation of the dirffantion patterns is possible in the semiclassical picture by iriruducine complex traiectories, 35,36 and is discussed by R. rchseffer in this lecture series.

1.2 More Formal Treatment of Elastic Scattering

F'ne scattering amplitude can be written

$$
\begin{equation*}
f(\theta)=\frac{1}{i k} \sum_{\ell}(2 \ell+1) F_{\ell}(\cos \theta)\left(e^{i i \delta_{\ell}}-1\right) \tag{1.15}
\end{equation*}
$$

i'si:i smi-classical ideas: ${ }^{37,38}$
a) Trolace ℓ by con:inuous variable L, $\ell+l_{2} \rightarrow L$.
b, Assume continuous variatior: of phase shift $\delta(i)$ with L.
c) Eeplace $\mathrm{P}^{\prime}(\cos \theta)$ by an asymptotic form for laree i.
d) Replace Σ by δ.

Whe:

$$
\begin{equation*}
n^{\prime} \theta=\frac{1}{i k} \int 1 d L J_{0}\left(\therefore \sin (\theta)\left(e^{2 i j(i)}-1\right)\right. \tag{1.14}
\end{equation*}
$$

is: vail: iff $\leq \pi / 6$.

$$
\text { Wo sost. } \quad \begin{array}{rlrl}
e^{\operatorname{cin}(1)} & =1, & L & <L_{c} \\
& =0, & L<L_{c}, \tag{1.17}
\end{array}
$$

(i.f., ne reattering if $L>L_{c}$, complete absorption if $L<L_{c}$), the irticprad car. be evaluated to give the diffractive cross sectio:

$$
\begin{equation*}
\sigma_{D}(\theta)=\left(k R^{2}\right)^{2}\left[\frac{J_{1}(k R \theta)}{k R \theta}\right]^{2} \tag{1.18}
\end{equation*}
$$

where $L=k R$. This diffraction cross section has a charecteristic oscillatory behavior with spacing

$$
\begin{equation*}
\Delta \theta_{D} \approx \pi / k R \tag{1.19}
\end{equation*}
$$

In order to discover the predicted trend of differential cross sections we tabulate some values of parameters in Table l.1. We see that tue ${ }^{16} 0+{ }^{12} \mathrm{C}$ reaction at 168 MeV has a small Sommerfeld parameter η and has similar values of $\eta, k R, \lambda, a, R, \theta_{c}$ to the reaction $\alpha+{ }^{94} \mathrm{Zr}$ at 104 MeV . There is therefore nothine mysterious
about the almast exactif eimilar differential cross seretions show: in Fig. 1.9(b), of the predirt"] Frauntrfer diffrartion sfacinp, :. $\%$.

$$
\text { with } r_{r}=1.6 \mathrm{fm}
$$

1)n\%	${ }^{3}$	$\stackrel{\mathrm{P}}{(\mathrm{fm})}$	λ	$\begin{gathered} E \\ (M \in V) \end{gathered}$	v/2	7	$\stackrel{\circ}{6}$	N	is,
$12+{ }^{94} 98$	0.577	9.81	9.8:	104	0.735	$\because 47$	7.17	1.7	1. 5.5
16:1+129,	0.479	7.69	0.203] 6.8	0.Js	\cdots	$\cdots \cdot 6$	35	1.7.0
	1.6.8	12.51	¢. $\mathrm{rar}^{\text {a }}$	31	rart	$\therefore \because$.	$\because \cdots$:7	5.9
	5.1.1:	19.83	0.333	$\therefore 890$	0.03:	11 (f).	lic.er,	res	3.32

 wars from valurs of L near L_{θ} riven by

$$
2\left(\frac{d \delta(L)}{d L}\right)_{\theta}= \pm \theta
$$

[Note: This is an equation for L_{θ} : for Coulomb phase shifte gives $\left.L_{\theta}=\Pi \cot (\theta / 2).\right]$

Expand $\delta(\mathrm{L})$ about L_{θ} :

$$
\begin{align*}
\delta(L) & =\delta\left(1_{\theta}\right)+\left(\frac{d \delta}{d L}\right)\left(L-L_{\theta}\right)+I_{2}\left(\frac{d^{2} \delta}{d L^{2}}\right)\left(1-L_{\theta}\right)^{?}+\ldots \tag{1.20}\\
\therefore 2 \delta(L) & =2 \delta\left(L_{\theta}\right)+\theta\left(L-L_{\theta}\right)+t_{2}\left(\frac{d \theta}{d L}\right)\left(L-L_{\theta}\right)^{2}+\ldots \tag{1.23}
\end{align*}
$$

F'aking out slowly varying functions, and replacing the iower limit of intersation by L_{c} (i.e. shary cui-off model):

$$
\begin{equation*}
C(a)=\frac{1}{k} \sqrt{\frac{L_{\theta}}{2 \pi \sin \theta}} e^{i \alpha(\theta)} \int_{L_{c}}^{\infty} d L \exp \left[\frac{i}{\partial}\left(\frac{d \theta}{d^{*} .}\right)_{\theta}\left(L-L_{\theta}\right)^{\gamma}\right] \tag{1.24}
\end{equation*}
$$

Tits is just the Fresnel integral (compare Fif. 1.9'a)).
Introducing a new variable x by

$$
\begin{align*}
& \pi x^{2}=\left(\frac{\partial \theta}{\partial I}\right)_{\theta}\left(\Sigma-\varepsilon_{\theta}\right)^{\prime} \tag{1.25}\\
& f(\theta)=\frac{1}{k} \sqrt{\frac{L_{\theta}(d \Sigma / d \theta)}{2 \sin \theta}} e^{i \alpha(\theta)} \int_{x_{c}}^{\infty} d x \exp \frac{i \pi}{2} x^{2} \tag{1,c,6}
\end{align*}
$$

Tr. $\quad \therefore$., ,ral can be evaluated, remacints $x_{c} \rightarrow-\infty$, i.e. $L_{c}<L_{\theta}$, $t:=\underbrace{i \pi / 4}$. Then

$$
\begin{equation*}
\because \because=\frac{\frac{1}{k}}{\frac{L_{\theta}(d \mathrm{~L} / \mathrm{d} \theta)}{\sin \theta}} e^{i \bar{\alpha}(\theta)} \text { where } \bar{\alpha}=\alpha+\frac{\pi}{4}\left(\frac{d \theta}{d L}\right)_{\theta} \tag{1.27}
\end{equation*}
$$

ind

$$
\begin{equation*}
\sigma(\theta)=|f(\theta)|^{2}=\frac{1}{\sin \theta}\left(\frac{b d b}{d \theta}\right) \tag{1,28}
\end{equation*}
$$

witer $:_{y_{j}}=k i_{\partial}$, which is just the classical scettering formula.
How we note that if x_{c} is set equal to zero, i.e., $L=L_{c}$, we fave the simple result that at the aritical angle θ_{c},

$$
\begin{equation*}
\frac{\sigma(\theta)}{\sigma_{R}(\theta)}=\frac{1}{4} \tag{i,29}
\end{equation*}
$$

which is the onigin of the famous "quarter-point" recipe. 39 We shall see that this point (and others closely related) dominate most heavy-ion elastic scattering experiments. To make further progress we either have to introduce more elaborate parameterizations of the phase shifts 38 (which can be done, e.g. smooth cut-orf instead of sharp cut-off) or resort to the common practice of dressing everything up by an opticc: potential.

1．A Optical ：rodr－finalysis of Elastic Ecatterine

Mort analyses fever used a Saxon－Woods nurlear opticaj fotential． （Thr．Com：cmat ard centrifugzl peteritals must also be incluried．）

$$
\begin{equation*}
\left.U(r)=-V\left(0^{x}+j\right)^{-1}-i W^{\prime} x^{\prime}+1\right)^{-1} \tag{1.3r}
\end{equation*}
$$

wherr．

$$
\begin{aligned}
& x=(r-k) / a \\
& \mathrm{H}=\mathrm{r}_{n}\left(\mathrm{H}_{1}^{3 / j}+\mathrm{A}_{2}^{j / j}\right) \\
& x^{\prime}=\left(r-\Psi^{\prime} / H_{1}^{\prime} \quad \quad H^{\prime}=r_{r_{1}}^{\prime}\left(1 / 3+H_{4}\right] ;\right.
\end{aligned}
$$

 extreme taill of the potential．

 thres potentials which fit tise 192 MeV dat．
 t．in：ohe uctual value of the nuclear rot fotial at this f．：

 sumt：simniticance as the Fresnel $\frac{1}{4}$ point，di：cused froviodsly． Ir fact，from Fige．I．IO（a），$\theta_{1_{4}}=31.4^{\circ}$ ．Them，

$$
\begin{align*}
\mathrm{I}_{1_{4}}=\eta \cot \left(\theta_{\mathrm{I}_{4}} / 2\right) & =105 \\
\eta & =29.5 \tag{1.19}
\end{align*}
$$

ばう

$$
\begin{equation*}
\mathrm{H}_{\mathrm{t}}=n / k\left(1+\sqrt{1+(1 / n)^{2}}\right)=\because f_{m} \tag{1.3'}
\end{equation*}
$$

whinh is close to the 12.5 fm of the cross－over．The point also coincides with the radius associated with the \＆－value at which the ootical model transmission coefficient drops to ${ }_{2},\left(\mathrm{R}_{2}\right)$ ，and $\mathrm{L}_{\frac{1}{2}}=106$ in the above example．This distance is typicaliy \vec{a} or 3^{2} fim larger than the sum of the radij of the two ions，at which their densiuies fall to one－half of the central value． 41 Even when absorption is almost complete，only the 10% regions overlap． From classical perturbation theory it can be shown ${ }^{42}$ that elastic scat＋ering mainly devermines the real part of the optical potential at a point slightly inside the distance of closest approach for a

Fifure : 10 (0)
i astic scattering

Figure 2.jo(3)

Figure 1.11
trajectory leading to a rainbow angle, and this distance should berome constant at high energies. A detailed analysis of the data for the ${ }^{160}+{ }^{208} \mathrm{~Pb}$ system ${ }^{4}$ shows that from 90 MeV to 190 MeV , the scattering is indeed refractive, with $\mathrm{R}_{2}^{\frac{1}{2}}$ roughly constant. Fesertly the elascic scattering has been extended to 31s MeV (see Fig. l.ll) suggesting rather that the distance continuer. to decrease, and that higher energies may be able to prove the puential deeper inside the nucleus.

Higher bombarding energies have boen used in ${ }_{4}{ }_{4}{ }_{2}$ attempt to resolve the ambiguities in the ${ }^{1 \epsilon_{0}}+{ }^{2} \bar{E}_{S i}$ system. ${ }^{44}, 45$ The data at 215 MeV are shown in Fig. 1.12. The idea is to take data beyond the rainbow angle, where an exponentially decreasing cross section will be observed if the real potential is sufficiently weak. Too

18. N.. 1.0

Figure 2.12
much absorption will always give rise to a diffractive pattern. The data are clearly diffractive, and call for potentials with $\mathrm{V} / \mathrm{W}<0.5$ (in contrast to those for light ions for which $\mathrm{V} / \mathrm{W} \approx$ 5.0), assuming $\frac{a}{46}$ energy independence; this is expected to be small for heavy-ions. ${ }^{46}$ The solid curve is for $V=10, W=23, r_{0}=1.35$, $r_{0}^{\prime}=1.23, a=0.618$ and $a^{\prime}=0.552$, whereas the dashed curve is for a dgep potentjal of 100 MeV . The potentials extracted for $1 \mathrm{C}_{\mathrm{c}}+\mathrm{Cl}_{\mathrm{Ci}}$ are quantitatively very similar.

Given the abrupt change in character of potentials for light ions (e.e., alpha particles) and heavy ions as light as ${ }^{12} \mathrm{C}$, Coviously one must look in between, say ac ${ }^{5}$ Li. In fact the resultsit in Fig. 1.13 have a pronounced nuclear rainbow similar to $\alpha-s c a t t o r i n g, ~ c o m p l e t e l y ~ a t ~ v a r j a n c e ~ w i t h ~ s h a l l o w ~ 10 ~ M e V ~ d i f-~$ frantive potentials, but unable nonetheless to pin down the real potentiai to better than between 150 and 200 MeV (with $\mathrm{W} \approx 40 \mathrm{MeV}$ in both cases). How the search is on with 9 Be , and no doubt Nother Nature will be clever enough to hide the sudden transition between light and heavy ions in the nucleus $8_{\text {Be! }}$ The suddenness of the transition is a challenge to fundamental theoretical derivations of heavy-ion potentials and we end our discussion of elastic scatterinp with a catalogue of some of these approaches.

1. . Nore General Approach to licay-Ton Potentials

is we have seen, the study of heavy-ion potentials is hamperei in general ty the insensitivity of elastic scattering te all but the value of the potential at the strong irteraction radius. natural therefore that both exneriment and theory should turr \cdots methods which determine the potential at closer distances. A. $:=$ distance where the nucleus-nucleus interaction is established can be estimated from the liquid drop model. This is the distance

Figure 1.13
corresponding to the sum of the half-density radii R_{1} and R_{2} where the attractive force is: 48

$$
\begin{equation*}
F=4 \pi \gamma \frac{R_{1} R_{2}}{R_{1}+R_{2}}, \quad R_{1}+R_{2}=R_{0} \tag{1.33}
\end{equation*}
$$

where $\gamma \approx 0.95 \mathrm{MeV} \cdot \mathrm{fm}^{-2}$ is the surface tension coefficient. The previously determined sensitive radius and the value of the potential at this point, together with the value of the force:

$$
\begin{equation*}
\left(\frac{d v}{2 r}\right)_{r=R_{0}}=\frac{V}{4 a}=4 \pi r \frac{R_{1} R_{2}}{R_{0}} \tag{1.34}
\end{equation*}
$$

determine the two parameters V and a. The sum of the half density radii $H_{1}+k_{\text {? }}$ can be evaluated using expressions of the form: 49

$$
\begin{equation*}
H_{1}=1.12 \mathrm{~A}^{1 / 3}-0.86 \mathrm{~A}^{-1 / 3} \tag{1.35}
\end{equation*}
$$

(The deviation from strict proportionality to $A^{1 / 3}$ comes from purely geometrical considerations of a spherical distribution with a diffuse surface.) Using these equations, the nuclear potential can be caiculated for any target projectile combination, and iead typically to potentials 60 MeV deep, of diffuseness 0.85 fm .

These simple considerations have been generalized by the incximiti, Force Theorem which states: 50
"The force between rigid gently curved surfaces is proporticnal to the potential per unit area between flat surfaces."
For frozen, spherical density distributions, tile force betveen two nucici as a function of distance s between their surfaces is

$$
\begin{equation*}
F(s)=2 \pi \frac{R_{1} R_{2}}{\hat{R}_{1}}+(s) \tag{1.36}
\end{equation*}
$$

where $e(s)$ is the potential energy per unit area, as a function of the distance between flat surfaces. The touching of two flat surfaces results in a potential energy gain per unit area equal to twice the surface energy coefficient,

$$
\therefore e(0)=-2 \gamma
$$

leading to the same maximum force as above. (The force becomes repulsive as the two density distributions overiap.)

For the potential we obtain,

$$
\begin{equation*}
U(s)=2 \pi \frac{R_{1} R_{2}}{R_{1}+R_{2}} \int_{s}^{\infty} e\left(s^{\prime}\right) e_{s} \tag{1.37}
\end{equation*}
$$

where

$$
s=r-\left(R_{1}+R_{2}\right)
$$

The interaction is given in terms of a universal function e(s); once known or calculated : r one pair or nuclei, we immediately have information about other pairs. Although based on a liquia drop model, the formula is actually very general. Suppose that the interaction energy is represented by a folding formula with a δ-function interaction:

$$
\begin{equation*}
U=A \rho_{1}\left(r_{1}\right) \rho_{2}\left(r-r_{1}\right) d r_{1} \tag{1.29}
\end{equation*}
$$

It' the jensities ρ_{1}, ρ_{2} have Saxon-Woods shapes

$$
\begin{equation*}
\rho=\frac{\rho_{0}}{\left[1+\exp \left(\frac{r-R}{a}\right)\right]} \tag{1.39}
\end{equation*}
$$

then the integral can be evaluated: ${ }^{51}$

$$
\begin{equation*}
U(s)=2 \pi A \rho_{0}^{2} \frac{R_{1} R_{2}}{r_{1}+R_{2}} \int_{s}^{\infty} \frac{s^{\prime} d s^{\prime}}{\exp \frac{s^{\prime}}{2-1}} \tag{土.40}
\end{equation*}
$$

where $s=r-\left(R_{1}+R_{2}\right)$, and has the proximity form with . particular expression för e(s). This result begins to link for \therefore the microscopic and macroscopic approaches to potentials.

To compare with experiment, we write $U(s)$ in the form

$$
\begin{equation*}
u=4 \pi \gamma \frac{R_{1} R_{2}}{R_{1}+R_{2}} b \phi(\zeta) \tag{1.41}
\end{equation*}
$$

where $\zeta=s / b, b=1 \mathrm{fm}$, and $\gamma \approx 0.95 \mathrm{MeV} \cdot \mathrm{fm}^{-2}$. The universal function ϕ has been evaluated using the nuclear Thomas-Fermi method. We find:

$$
\begin{align*}
& \phi(\zeta<1.25)=-\frac{1}{2}(\zeta-2.54)^{2}-0.85(\zeta-2.54)^{3} \tag{1.42}\\
& \phi(\zeta>1.25)=-3.437 \exp (-\zeta / 0.15)
\end{align*}
$$

Figure 1.14
ard is plotted in Fig. 1.14. 52
The theoretical proximity function $\phi(\xi)$ in the extreme tail region has been compared with nuclear potentials deduced from an analysis of elastic scattering data, leading ta values of ϕ from 0 to -0.26 , and are reproduced in the figure by circles. We see (as expected) that elastic scattering tests the potential over ϕ at large values of ζ, i.e., radial distances near the strong absorption radius.

As we shall see in later sections, inelastic processes probe the potential to much smaller radii. ${ }^{34}$ Values derived in this way are shown as triangles. The theoretical proximity potential is in good agreement with the data over the entire range of distances. A similar global comparison is discussed in Ref. 53, where the potential is tested at distences where rriction effects are important, but this subjeat leads us into Macroscopia.

Many other approaches are taken to the theoretical deriyation of heavy-ion potentials; for example, the folding model, $54-56$ and the energy density formalism 5 , 58 Perhaps it is appropriate to conclude with a comparison ${ }^{12}$ in Fig. 1.15 of some of these patentials, evaluated at the sensitive radius with the Saxon-Woods potential for a wide range of interasting systems. Equally good agreement is produced by the empirical potential of proximity type:

$$
V(r)=50 \frac{R_{1} R_{2}}{R_{1}+R_{2}} \exp \left(\frac{r-R_{1}-R_{2}}{\alpha}\right)
$$

with $K_{1}=1.233 A_{i}^{1 / 3}-0.978 A_{i}^{-1 / 3}$ and $a=0.63 \mathrm{fm}$.

Fipure 1.15

1.5 Transfer Reactions

The resurgence of interest in microscopic heavy-ion reactions around 2970 was largely (and rightly) triggered by the great hope that multinucleon transfers (which are possible only via heavy ion reactions) would reveal a rich spectrum of new types of states in nuclei, e.g., nuclear quartets. 12,59 The ideal scenario is to take the optical potentials from the elastic scattering studies of the previous sections, compute distorted waves in the initial and final channels, plug them into the DWBA transfer amplitude to get the cross sections for transfer. Since 1970 , however, inany studies of one, two, three and four nuclear transfers $60-62$ (some of which are also possible with light ions!) indicate that the mechanisms are complicated by high order coupled channels and multistep effects. The whole subject has become bogged down in a welter of computational details. Let me try to show that the situation is not quite as black as it is often painted, and that heavy-ion reactions can still make an attack on nuclear structure problems. 64

Look at a nucleus such as ${ }^{20} \mathrm{Ne}$ in which the sphericai-basis shell model generates rotational like spectra described as ($2 \mathrm{~s}, 1 \mathrm{l}$). ${ }^{4}$ A clear "rotational band" is predicted in agreement with experiment (Fig. 1.16), not only for level positions but also for E2 transition strengths (those in brackets are collective model, the others are shell model). It seems that the shell model is winning, because of the fall off of E 2 strength for the higher spin states. The shell model also predicts that the band should terminate at $J=8$, whereas the collective model, as classically conceived, goes on forever, to states of $10,12 \ldots$... If the band did run on, it would be a triumph for the collective model, but it would not be the end of the shell model. We would argue that as the excitation increases, so does the tendency to loosen the 160 sore so that the configurations such as $1 p^{-2}(2 s, 1 d)^{6}$ creep in, bringing higher angular

Figure 1.16
momentum. (Such nerging of single particle and collective aspects will be taken up is our discussion of much higher angular momenta in nuclei, int the lecture on Macroscopia). If the band stops at $J=6$, the argument for the truth of the shell model as against the classical rotational model becomes very strong.

The states of the band shound be strongly populated by attaching en α-particle to the 160 core, and the same is trie for the configurationaily equivalent case in ${ }^{16} 0$, by α-trans $f t=$ on lic into the band beginning at $6,05 \mathrm{MeV}$. Now take a look at the spectrum ${ }^{65}$ for the ${ }^{12} \mathrm{C}\left({ }^{\left.11_{\mathrm{B}}, 7_{\mathrm{Li}}\right)}{ }^{16} \mathrm{O}\right.$ reaction at $11^{4} \mathrm{NeV}$ in Fig. 1.17. We j magine the α-particle popped onto the ${ }^{12} \mathrm{C}$ surface, bringing in an angular momentum of several units due to its linear motion in the ${ }^{1 l_{B}}$. The striking feature of the spectrum is the axtreme selectivity. Only a few states appear up to 21 MeV excitation which can be identified with members of the rotational band

Figure 1.17
uy to θ^{+}(arir also a negative parity band up to 7^{-}). Femember they the Jevel derait. in $2 G_{0}$ arourd 20 HeV is many tens of levelelve\%. "there ir 7 it tle sign of 10^{+}and 12^{+}levels whiek tine Ej $=1,2 / 2$. I(itl) rotstional scheme would plece arounc 29 ard 39 isev. so tri. : imple swectrum, rinoes by inspertion, already strengtiera sur :hainf that the shell model is wrobinly an exceliert fitut ordar rescription of nuciear structure and thet the collective mocele sur probably to te regarded as much more convenient refresentatic.a. c: aome aspectiz rif the shell model, tut secondary to it, rather than mordele that eontain truths beyond those to be distilied from

 \because, \cdot

Mi:; model ${ }^{6,6}, 67$ assumes that the particles move an classica. irifectories, as illustrated in Fig. 1.18. (The transfer is dea: : wi.n quartum-mechanically, There are three kinematical corditior.i : Le satisfied if the transfer probability of the cluster m 'a nu:lear or group o: nuclears) is to be lerge. (We shall retura : Fi.ia thenry in Lecture 3 an Deeply-Inelastic Scattering.) The

$$
\begin{aligned}
& L_{2}=r_{0}-\frac{\lambda_{1}}{h_{1}}-\frac{\lambda_{2}}{R_{2}}=0 \\
& r_{r}=\frac{m v}{h_{1}}
\end{aligned}
$$

where γ is the speed of the particle at the transfer poirt.

Figure 2.18

$$
\begin{align*}
& \therefore=\lambda_{2}-\lambda_{1}+\frac{1}{2} k_{0}\left(R_{1}-R_{2}\right)+x \in f \frac{R}{h v}=0 \tag{1.44}\\
& \text { Hff }=a-\left(z_{1}^{f} z_{2}^{f}-z_{1} z_{2}^{i}\right) e^{2 / K} \\
& f_{1}, k_{2}+\lambda_{2} \text { even. }
\end{align*}
$$

Tisse conaitions imply, respectively: conservation of the y --ranons of angular momentum of the transferret nucleon; con--": \because : $i=0$. © f angular momentum; and confinement of the transfer to $\because: \quad$ rec. in plane, i.e., the angles θ in the spherical harmonites ? the : infle particle wave functions are $\approx \pi / 2$. An approximate +xprosine Sor the transition probability is:

$$
P\left(\lambda_{2} \lambda_{1}\right)=S_{1} S_{2} P_{0}(R)\left|Y_{1}^{\lambda_{1}}\left(\frac{\pi}{2}, 0\right) Y_{2}^{\lambda_{2}}\left(\frac{\pi}{2}, 0\right)\right|^{2} \times \exp \left[-\left(\frac{R \Delta k}{\sigma_{1}}\right)^{2}-\left(\frac{\Delta L}{\sigma_{2}}\right)^{2}\right]
$$

w: : $:$ re (t) is determined by the radial wave functions at the filutex surface, anci σ_{1}, σ_{2} measure the spreads in $\Delta k, \Delta L$ from zere a: filowei by the uncertainty principle. The total transition rratility is then calculated by suming over the final magnetic sucs:ate: and averaging over the initial substates, weighted by anEw:ar momentum coupling coefficients end the spectroscopic fac-
 stetes. Hovever, the localization and semi-classical aspects of the trensfer usually mean that the reaction is "well matched" for a reatricted range of λ_{1}, λ_{2} and ℓ_{1}, ℓ_{2}. The spectroscopic amplitudes ir tice rotational band are very simple to calculate in the SU(3) n. del. They are just proportional to the intensities of the SU(3) (') representation in each state, which are equal for all members r: the band (at ebout 0.36). A comparison of the experimental ar: theoretical cross sections 65 for the positive parity band are given in Table 1.2. (Theory and experiment are normalized for the r^{+}state.) There is still some uncertainty about the location of the 8^{+}state ${ }^{68}$ but it is more likely to be associated with the brcad structure at 22 MeV excitation rather than at 20.9 MeV , which appears rather to be the 7^{-}member of the negative parity band. (Since the two states have roughly equal cross section, this ambiguity does not arfect our discussion of Table 1,2.) By continuing this type of study to higher incident energies, 69 so that possible 10^{+}and 12^{+}states are definitely not disfavored by the reaction dynamics, it may still be possible to make interesting statements about nuclear structure, with only a skeletal reaction theory.

By comparing one, two, three and four nucleon transfers on different targets, all leading to the same final nucleus, it is possible to bootstrap one's way up through a hierarchy of simple

OHtit $1 . \hat{A}$. Experimental and Fheoretical Cross Sections for the Reaction ${ }^{12} C\left({ }^{11} \mathrm{~B},{ }^{7} \mathrm{Li}\right)^{16}{ }_{\mathrm{C}}$.

$\because, . "$	$6.15,5^{+}$	$6.95{ }^{+}$		$16.63,6^{+}$	\%r, $\%$, ${ }^{+}$
$\frac{!}{\vdots}(x, y)$	≈ 0.0	0.006	0.019	0.250	○.\%\%
是 ' '7\%	0.000	0.007	0.088	0.0250	「.178

 two' : a of their separation, addine ur ais the nuclear-nvolotr


```
    fre ther imrressive demonstration tha few nurleor trer.ere
```



```
f* it with the precumed inverse process, r-mecay. Nuczei int the
la4} reiir,n are ideally suited to this teit. For example, it is
:roivit, to derive a "reduced \alpha-width" rate for 2l?Po (0.7%7 Me:,
+, sm: I'ro(es) states from their decey ts 208Pb, from fe
"mmala,
```

$$
\varepsilon^{5}=n / T i
$$

were τ is the mean life and P the penetrability. Then, $0^{2}\left(0^{+} ;\right.$
 ration $\int^{+}, / 5\left(0^{+}\right)=0.64$, dedueed rrom a direct reaction analys: r. ${ }^{208}:$ b $\left.^{160},{ }^{12} \mathrm{c}\right)^{212 \mathrm{Po}}$, leading to the conclusion that the basio guantities measured in al pha transfer and decay are homologous. 7 ,, 7 . There is, however, an intriguing problem that absolute values of the decay widths are underestimated by the shell model by a factur cr lo00--which may indicate substantial clustering of alphas in the surface region, 74,75 and therefore surface phenomena not presently described by the shell model.) However, one is encouraged to look for other alpha particle strengths, ${ }^{76}$ e.g., alpha vibrations, 77 analogous to pairing vibrations, so far with a gystifying lack of success. 76

This type of stimulus is surely what we should expect and demand of heavy-ion transfer reactions. After all we do not need heavy-ions to study one and two nucleon transfers! Many interesting possibilities remain, so far almost completely untapped. Three and four neutron transfers are available only by heavy-ion reactions but even today there has only been a handful of studies, ${ }^{78-81}$ Such reactions enable us to locate not only new configurations in
nuclei, but also new nuclei themselves. Frequently, just the knowleage that a nucleus exists, stable against decay by strong interactions, together with the ground state mass-excess, can lead to sew ruclear structure information, A striking case is the Na isotopes, which extend from ${ }^{19} \mathrm{Ne}$ to 33 Na , the widest range of ($\mathrm{N}-\mathrm{z}$)/A krown ta man (apart from He isotopes). This information lea ${ }^{82}$ tc tie frediction of a sudden shape change from spherical to deformea ir. the Na isotopes. Perhaps we should be devoting at least as much time to exploring these possibilities of testing our nuclear structure theories on exotic nuclei, as we spend on studying all the complexities of the reaction mechanism. Nevertheless, we must now spend sune time looking at these complexities!

The formal quantal evaluation of heavy-ion direct reactions ises the DWBA. Symbolically the reaction can be written ${ }^{8} 3$

$$
(a+c)+b \rightarrow(b+c)+a
$$

where a, b, are the heavy-ion cores and c is the transferred partinle. Then

$$
\begin{equation*}
T_{r i}^{D W B A}=\left\{x_{f} \phi_{b+c} \phi_{a}\left|v_{a c}\right| x_{i} \phi_{a+c} \phi_{b}\right\} \tag{1.47}
\end{equation*}
$$

wiere X_{f}, X_{i} are distorted waves, the scattering eigenfuxcions, and \& are the eigenfunctions of nuclear hamiltonians (see Fig. 1.29). The interaction $V_{a c}$ (or $V_{b c}$) cruses the transition (as usual one assumes that the core-core interaction $V_{a b}$ cancels the potential in the initial charinel).

Figure 1.19

Using the coordinates of Fig. 1.19,

$$
\begin{aligned}
T_{f i}= & \int d^{3} r \int d^{3} r^{\prime} \chi_{f}^{(-)^{*}}\left(k_{f} ; r-\frac{r^{\prime}}{A_{i}}\right) u_{f}^{*}\left(r^{\prime}\right) v_{d c}\left(r+r^{\prime}\right) \\
& u_{i}\left(r+r^{\prime}\right) x_{i}^{(+)}\left(x_{i} ; \frac{A_{i}-1}{A_{i}} r-\frac{r^{\prime}}{A_{i}}\right)
\end{aligned}
$$

where u_{i}, u_{p} are bound-state wave functions for c in the iriti:l $=1.2$
 Le cialnated exactly and the correct procedure for caledutirs tranfer reactions is: determine the distorted waves from an anialysis of elastic scattering where the potential is fixed oy
 the transfer integral. ${ }^{8 / 1}$ This preseriftion has had mery suecesses, tut we wish here to concentrate on fiturcs. Therefore, it is instructive to disentangle the various contrioutione t. the sixrimertisjonal integral.

A preat simplification occurs if "renoil ecfecte" sare trerra, i.e., r^{\prime} / A_{p} anil r^{\prime} / A_{j} are removed from the distortus wave. Then:

$$
\begin{aligned}
& \mathrm{i}_{1 i}=\int \mathrm{a}_{r} x_{f}^{(-)^{*}}\left(\underline{E}_{f} ; \underline{r}\right) x_{i}^{(+)}\left({\underline{x_{i}}} ; \frac{A_{i}-1}{A_{i}} \underline{r}\right){ }_{i r^{(r)}} \\
& a_{i f^{\prime}}(r)=\int d^{3} r^{\prime} u_{f^{*}}^{*}\left(\underline{r}^{\prime}\right) v_{a c}\left(\underline{r}+\underline{r}^{\prime}\right) u_{i}\left(\underline{r}+\underline{r}^{\prime \prime}\right)
\end{aligned}
$$

ard we have two 3-1 integrals. If, iri alition, we mase tice "ar range" approximation:

$$
G_{i f}(r)=u_{f}^{*}(-r) u_{i}(0)
$$

and

$$
T_{f i} \propto \int d^{3} r X_{p}^{*}\left(k_{r}, r\right) X_{i}\left(k_{i}, r\right) u_{f}^{*}(r)
$$

As an example, take an initial state where (a+c) and b are in $(=0$ while in final state c is bound to b with orbital angular momentum L. The angular momentum transfer is L. Thus $u_{f}^{*} \approx \psi_{L}^{*}(r) \mathcal{Y}_{L}^{M}(\hat{r})$. Simplifying still further to a ring locus model (strong absorption) with plane waves $e^{i k} \cdot r$, and if the z-axis is chosen perpendicular to the annuius, $0=\pi / 2$ in the spherical harmonics, then

$$
\begin{align*}
& T_{f i}^{L N}=F_{L}^{M}(\pi / 2) \int_{0}^{\pi} d \phi \exp \left[i\left(\underline{k}_{i}-\underline{k}_{f}\right) \cdot \underline{r}\right] \exp (i m \phi) \\
& -P_{L}^{M}(\pi / 2) \int_{0}^{2 \pi} d \phi \exp (i q f \cos \phi+i m \phi) \\
& =2 \pi \mathrm{P}_{\mathrm{L}}^{\mathrm{M}}(\pi / 2) \cdot \mathrm{J}_{\mathrm{M}}(\mathrm{qR}) \tag{1.51}
\end{align*}
$$

When the cross section is sumued over all M-substates, the lefendre function requires $L+M$ even, and therefore even L transfer wili :ave oscillatory angular distributions characierized by:

$$
\begin{equation*}
\sum_{M}\left[J_{M}(2 k R \sin \theta / 2)\right\}^{2} \tag{c}
\end{equation*}
$$

with eve:. K ; likewise odd L-transfer will have only odd M and we errive at the well-known phase rules.

It is found that the main contribution at low energies is esseciated with $|M|=L$. Classically this corresponds to the tramsferrec particle making the transition between orbits which are neariy perpendicular to the reaction plane; furthermore, as Fig. 7.20 shows, 60 if the initial value of m is t_{i}, the final value will be $\boldsymbol{l}_{\mathrm{f}}$ and the transfer is Jikely to ocaur with a large chane in the component of L along the z-axis.

XBL 777.9532
Figure 1.20

 studiey 4 , 68 MeV . The date for both reareirnce, shown in fir.

 tr ar derived rules, and ir contratiotior an any ramornab? ato

 wett turntions in heavy-ion trancerr, atrother sunt :ra: u\%

 tr: mouldei channels approsach to heavi-ion reantiris.

Pigure 1.21

Soumled Channel Effects
\therefore F.in leen sugeerted that in aiaition tc transferrire the

 iru.?. processea are two-strp and go beyund the first-order perturtiti:E treatment of the DrBA.) Some pnssibilities are illustrated i: F:F. …:. Por the stripoing reaction the ${ }^{\circ} \mathrm{Ca}$ gs can be reritel by ajring an r_{7} (particle to CO (a twansition from
 tif Lre-excited ${ }^{40} \mathrm{Ca}, 3^{-}$state $\left(\left(\ell_{i}+l_{2}\right)\right.$ to $\left.\left(\ell_{\mathrm{f}}+\bar{i}_{2}\right)\right)$. Remember, by
 yinitided by the optimum Q-valise ($Q_{C p t} \approx-\ln ^{2} \mathrm{~V}^{2}+\Delta V C$) which is not \because ver refrtive for neutron transfer, where $\Delta V_{c}=0$. (This expression for Gort can be derived easily from equs. 1.43, 1.44 by aseurine $j_{j}=0$ on the average, evaluating λ_{ρ} from equ. 1.43 and subs ituting in equ. 1.44.) Therefore the irclusion of these routes ices not have much effect un the stripping reaction (see Fig. 1.2.).
both arguments are reversed for pick-up, and we see that inclusion of 3^{-}and 5^{-}excitations improve the agreement of the phase of the oscillations. 90 This situation is not very satisfactory, becaluse there are many other routes that could be included, and in ferct inclusion of them all would fer exceed present computational techniques. Furthomore, the strength required for the inelastic routes appear to exceed those observed experimentally. 91 However, they are still too fev to produce the average couplings that we know how to handle via an absorptive potential.

The effects of coupled channels not only introduce additional transition routes to the final state; through the inelastic transitions they also modify the optical model wave functions of relntive motion. The influence is quite subtle, as illustrated by inalnstic scattering 9

XBL 785-8916

Figure 1.23

```
of 16}0\mathrm{ or }\mp@subsup{}{}{10}\textrm{Ca}\mathrm{ in Fig.
1.23. The INBA (dacl.эs
line) canmit, fii. :1]I
traneitions simu:+:^.*..
ously. Sirce traf "-
S+atee is strrep?y cory-&":
```



```
imaginary fart c: i&k
optical po+entiai ~A..
modifici to meprot.s.%
the elant:ce scis+f:O!a;
in a ccifinm rhanhem:
ra`rumatirw:rw loim.;
```



```
    Ostetr. 「..e \cdots
calculatirnc l&e: w \because
```



```
Iine), in war+\mp@code{u ar +a,*}
```



```
mnuclei. Tris ict.a\because:`-
is in contmadiot:•: *
the zerumitic.? Pentum:i.
macte in math tant, in a
direct reation ral:-l:-
tion fr: A pív-! trra-
siticn al? other mer-
directl% Nomplen at Enr.*!
can b* tront.c] -..re%ar?.
an Averefe at:orri!:%
potentian. Theser of ser-
vations moy serom* for
the Sailure or theri ir.
many lewwy-inm twn:.: Sry
:alculatimns, anm lrorem
fulyy vil] dicprase wi*!
the ad hoce chant"os: mat.
in opticas mose? fara-
meters.
```

The previous sccis : may have conveypij the impression tibat the present status of heavy-ion transfer rpactigns is a littl: bit Jike openirif Pandora's Box. ionetheless, it may be just ir these conpiexities tha: some of the injque, interesting hesiv-ion
physics lies for nuclear spectroscopy. Let us lcok at a striking example. Consider two-neutron transfer, stripping, and pick-up reactions, as illustrated in Fig. 1.24. In pick-up to the 2^{+}state, route ? is direct, and in stripping, 3 is direct. Routes 1 and 4 are branches of indirect routes which can also contribute to transfer via inelastic scattering in the initial and finel states. For virputional nuclei the sign of the amplitudes 2 and 3 is apposite and leads to opposite interference patterns with the indipect roctes.destructive in stripping and constructive in pick-up. ${ }^{93,94}$ A further refinement is introduced by the contribution of Coulomb ars nucleer terms to the indirect routes, which enter with opposite signs, and interfere differently with the direct routes.

In the pick-up reaction ${ }^{76} \mathrm{Ge}\left({ }^{16} 0,{ }^{18} 0,{ }^{74} \mathrm{Ge}\right.$, a very weak interference dip is observed 95 for the 2^{+}of $7 \mathrm{He}^{*}$ but npt of 18^{*}. It turns out that the direct transition to the 2^{+}of $74_{\text {Ge }}$ is negiigible, corresponding to the removal of two neutrons from the gs BCS superfluid vacuur of 76_{Ge}, leaving $7 \mathrm{C}_{\mathrm{Ge}}$ in the 2^{+}particle-hole vibration. The main population is from the two-step process, first by the removal of a neutron pair to the gs of ${ }^{4 /} \mathrm{Ge}$, followed by the creation of a quasi-particle pair of the 2^{+}. The dip is then caused by

Figure 1.24

YBL 785-8919

Figure 1.25

```
Coulomb-nuclear irter-
ferfnce in the inremstir
scatterinp, sectiol.. For
the strimpingr renction,
on the othor hara, t.he
direct tranmitirn t.
```



```
and interiromes dec r:a-
tively with: 'he :u=`es"
qmelitude of tlee irdjrect
roures, i,jvirar risp tr ध
```



```
braj-shanma ij:-6y*n+i::
```



```
in the two woite"i it,
sirme tisy unmwestre:
roughiy to time-r- :%....
proroeses. Thw from ru*i-
```



```
rion, drora.a&d y!m......
scotic ampli`:.: , r
ull trie sisus.. .r.aly%:
in the cou;^i:br. N...
```



```
that this :\&la--!.f:心
unique. ', hervy-i ,a 'reare-
fer-mbould becomt imar-
tant for ur!a|@a: inf
sensitive bet::..: ! + :.
Etruc:uregic ro:2: %j%t
stites.
    The cj+!: \thereforer % sim:-
lar pasr of trorvote=
reactions on i&mariur.
isotores, g: ] OC MrN m".
shown in Fig. 1.Л5. Here
the interference iz t!.:
oposite sicm trom the
Sm isotopes.99 The
theoretical curves are whe
```

first attempt to incorporate the dynamic deformation method with the CCBA formalism. This meihod is to be contrasted with an alternative attempt ${ }^{100}$ to explain these data with the boson expaneion methed. In this latter theory the nuclear deformation effects arise as a :esult of complex mixing of a large number of spherical boser: whereas in the DDM method the nuclear deformations are introciced in the single particle basis, and further the defome+ions are treated as dynamic variables (in B and Y). The striking. shape differences batween the $2_{1}{ }^{+}$distributions are however still not satisfactorily explained.

As an illustration of the scope for imaginaticn ir the st.j $\%$: heary-ion reactions, it is fascinating to note thet the interfe:s: 4 phenomena due to multistep processes can be described in a Fafpr icis
 barrier-top resonances of the entrance and exit channels, i.. a in mateled reaction. If the poles for the transfer are very die:erent from these, it is a clear sim that intermediate channels are irrertant, indicatine a multistep process. Another example comes fre - \quad. cld question of whether surface transparent imaginary fotentit: an necessary to fit the interference oscillations in two farticla rume fer reantions. 102 These diffractive osciliations are usuaijy a:iritated to interferences between a peripheral Coulombdominates cor it on one side of the target nucleus and a slightly penetratire orbi* on the fer side. Too strone an absorption reduces the penetratire :ixa and extinguishes the interference pattern. However, it is also possible that the Coulomb dominated orbit can be weakened dy multistet effects, and the final resolution is a very delicate balance.

There are severe technical problems both in the mecsuremer. and the computation of two nucleon transfer reactions of the trye described above. To resolve the low lying collective states and identify the two neutron transfer products from elastic scatterine is difficult. To calculate the absolute magnitude of two nentron trarsfer, complicated by problems such as simultaneous v. siccessive transfer, 103 is also no mean feat. We have only to look at the quality of both the data and the theory to wonder if our toola 10 . would not be of much poorer quality without the challenge of hear: ions.

However, problems are also showing up in the much simpler ": nucleon transfer reactions. Recently it has become possible to study heavy-ion transfer reactions over a wide engrey range fram sub-Coulomb up to $20 \mathrm{MeV} / \mathrm{A}$. An example is the ${ }^{208} \mathrm{~Pb}\left(160,{ }^{15} \mathrm{~N} 20 \mathrm{Na}_{\mathrm{i}}\right.$ reaction. Because of the variety of low-lying single particle states outside the doubly-magic ${ }^{208} \mathrm{~Pb}$, this reaction has almost become a standard for testing reaction theories.

Techniques for evaluating the finite-range recoil DWBA are available and have been applied to the $16_{0}+{ }^{2} 00_{P b}$ data as a function
of energy. ${ }^{105}$
Such a study is an ideal test of the reaction model, compared to data at a single or closely spaced energies, where deficiencies may be masked by the extreme sensitivity to extraneous details, e.g., the wave functions used to describe the initial and firal bound states.

The calculations used optical parameters, $V=51, \mathrm{~F}_{\mathrm{v}}=\mathrm{i} .1 \mathrm{i}$, $W=51, r_{w}=1.11, a_{v}=0.79$, and $a_{W}=0.74$. The bound states were: sonerated in Saxon-Woods wells with the depth adjusted to reproduce the binding energy: for $208_{\mathrm{F}} \mathrm{b}+\mathrm{p}, \mathrm{r}_{\mathrm{v}}=1.28, \mathrm{a}_{\mathrm{v}}=0.76$, $V_{\text {spin-orli: }}$ $=6 \mathrm{MeV}, \mathrm{r}_{\mathrm{SO}}=1.09$, and $\mathrm{a}_{\mathrm{SO}}=0.60$; for $15: \mathrm{i}+\mathrm{r}_{\mathrm{V}}=1.20, \mathrm{a}_{\mathrm{v}}=$ $0.65, v_{s o}=7 \mathrm{MeV}, \mathrm{r}_{\mathrm{sO}}=1.20$ and $\mathrm{a}_{\mathrm{SO}}=0.65$. The resultent spectroscopic factors, normelized to unity for the ground state are shown in Table 1.3 and compared with other reactions and with theory. The satisfactory agreement is typieal of the other beam enerfies when each set of data is treated in isclation.

When we compare experiment and theory as a function of enere: (using the theoretical spectroscopic factors with their ebsolute values, when $S\left(h_{g} / 2\right)=0.95$) a failure of the theory by almase a fartor of 10 is encountered from the sub-Coulomb enerey of 69 Me:'

Figure 1.26

TABLE 1.2 Spectroscopic factors for ${ }^{208} \mathrm{~Pb}^{2}\left({ }^{16} \mathrm{O},{ }^{15} \mathrm{~N}\right)^{201} \mathrm{Bi}_{\mathrm{Bi}}$ data at 312.6 MeV .

Sinte.	E	$s\left(^{16} 0,15 \mathrm{~N}\right)$	$S\left({ }^{12} C,{ }^{11} \mathrm{~B}\right)$	$\mathrm{S}\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$	S(Theory)
	0.00	1.00	1.00	1.00	1. ${ }^{\text {a }}$
20\%	0.90	0.85	0.96	0.67	0.49
$\cdots \mathrm{m}$	1.61	0.77	ก. 89	2.48	0.72
	2.84	0.77	0.64	0.75	0.69
* . '	3.15	0.71.	c. 8 ?	c. 57	r.en
ϑ_{3}	3.64	0.69	--	0.38	0. 2%

1if, t. $\because . \prime^{\prime}$. MeV (see Fig. 1.26). of course such disagrements couli le fatched up, energy by energy, by ad hoe variations of hemia state paremeters and optical potertials, secrificine if recescary the qualitative relationship of the bound state fientials to the rucleon-nucleon optical potential, as well as the faality of the optical model fits to the elastic scettering. Guc. strategems mis: the spirit of the model and even worse have no predictive power. Rather we should say that the method has tailed and lock for possible causes, as yet unknown.

1.6 Comemi wiclear Feactions

It may have come as a surprise that our discussice of tunsfer reactions had nothing to say about multinucleon transfers of mere than four nucleons. It was discovered that such reacticns usueliy proceed $b y$ the formation of a compound nucleus, ${ }^{106}$ with subsequent evaporation of a complex fragment. These reactions alsc have sowe striking characteristics. For example, the differential cross sections are symmetric about 90° with a form 16 sin θ, characteristir of emission from a high spin compound nucleus ${ }^{16 E}$:

$$
\left(\frac{d \epsilon}{d \Omega}+\frac{d \sigma}{d \theta} \cdot \frac{d \theta}{d \Omega} \rightarrow 1 / \sin \theta, \text { since } \frac{d \sigma}{d \theta} \text { is constant }\right)
$$

Sometimes the spectra show a highly selective excitation of high spin states (reminiscent of a direct reaction) and often they pre $24^{t i r e l y}$ featureless. Compare for example the reactions ${ }^{14} \mathrm{~N}^{1} 1 \mathrm{~L}_{\mathrm{N}, \mathrm{a}}$) 4_{Mg} and $10_{\mathrm{B}}\left({ }^{12} \mathrm{C}, \mathrm{d}\right)^{20_{\mathrm{Ne}}}$ in Fig. 1.27. 107,108

EXCITATION ENERGY (MEVI

OISTANCE ALONG PLATE [Cm1
XBL 777 9569B

Figure 1.27
It turns out that both the formation and decay of the compound nucleus are dominated by a few partial waves close to the grazing value, and therefore it is plausible that only those levels located inside or near the curve defined by legrazing and legrazing (which is a function of the Q-value and excitation energy of the reaction, i.e. $E_{f}=E_{C M}+Q-E_{X}$ and $\mathrm{L}_{\mathrm{Gut}}^{\mathrm{grazing}} \approx \mathrm{R}_{\mathrm{f}} \sqrt{2 M_{\mathrm{C}} \mathrm{E}_{\mathrm{f}}} ;$ will be strongly excited. The shape of the spectrum is determined by the overlap between this curve and the yrast line of the final nucleus, the lowest excitat: in possible in the nucleus for e given J . Above this locus the level density increases exponentially. So one expects for example, from Fig. 1.28 , that the (${ }^{12}$ C 10) reaction would be selective ${ }^{109}$ and the $\left({ }^{14} \mathrm{~N}, \alpha\right)$ reaction not, ${ }^{110}$ which is just the

Figure 1.28

experimental observation.
For a detailed quantitative treatment, Hauser-Feshbach calculations ere necessary, ${ }^{111}$ with many attendant technical and philosophical difficulties. In the formation of the compound nucleus, the surmation over angular momentum may have to be truncated, because the compound nucleus is unable to support large amounts before fission. The spin cut-off and level density parameters have to be determined. It turns out that the calculations of the ratio of two cross sections is relatively stable against all these multifarious uncertainties. The fits of the ratio of the statistical theory cross sections for states at $E^{*}=11.92$ and 12.14 in

Figure 1.29

The to the ratio of the experimental cross sections for aifferent chaices of the level density parameter "e" (curves 1 and 2 average "a" over shell effects (a $\sim A / 6$); curve 3 takes into account the Sinal nurfens shell effects) are shomm? in Fig. 1.29, as a func--ion $\because \because$ areular momentum cut-off, Jerit. Clearly this quantity
 reantion at las MeV. (We shall discuss the origins of Jerit in the rext lecture.) But clearly, having determined it for states of in. Ifin, the procedure can be turned around, and new spin acispmeate made from the observed relative cross sections. 'For it more letailed discussion see my lecture notes in Ref. 30.)

I: wh, wo licyond conventional apectroscopy and we discuss the w: : frrm for nuclear molecular states, which are formed by the tho …lisinf ions rotating in a dumb-bell configuration. ${ }^{113,114}$ These i.ave marifected themcelves as resonances in the excitation functigns c: teq\%-in elastic scattering ${ }^{115}$ and of reactions. For $10 \mathrm{C}+12 \mathrm{C}$ a.: $\because+C_{0}$ elastic scattering the resonances are showm ${ }^{11} \epsilon_{\text {in }}$

Fir. .. The There are wild oscillations which continue unabated te tis croses (the equivalent excitation enerey in $2{ }^{4} \mathrm{Mp}$ for the ((+1. . s, stem is $\left.E_{C M}+13.93 \mathrm{MeV}\right)$. At the lower energies the refomass have been interpreted as shape resonances and fitさedia7 with porertial of the form shown in Table l. 4 .

Thr Sits abtained have the correct characters (see Fig. 1. F1) a.? at certain energies are almost pure $\left[\mathrm{P}_{\mathrm{L}}(\cos \theta)\right]^{2}$. The values of

Figure 2.30

中路： 1.1 。

	V	R	e	W	F_{T}	！
＋${ }^{10}$	$?$ ？	6.18	0.35	0．1．$+.1 \%$	6.41	
$i r+y^{2 i}$	！ 7	6.8	0.49	$0.8 \pm 0.2 \mathrm{E}$	6.10	


```
!:mes+ os: tfe interacting muclej retair. their idertity for :
```



```
'!: : mi@r"soonic Justification of this trangfereney, sen :."
```

closer exemination of the excitetion furctina r.
+i.: ir qudition to the potential shope resonances therr is :

koer discrwerey in the excitation twetions of meny rea*ic: \because

Figure 1.32

Figure 1.33
for several different residua? ${ }^{\text {States }}$ in ${ }^{23} \mathrm{Na}_{\mathrm{Na}}$, and compared with other outgoing α, d chennels. ${ }^{120}$ The equivalent excitation energies of the compound ${ }^{24} \mathrm{Mg}$ system is show at the top. There exist pronounced narrow resonances at 11.4 , 14.3 and 19.3 MeV which ere strongly correlated in different channels. By comparing branching ratios, spins of $8^{+}, 10^{+}$and 12^{+}were assigned.

Another example is the ${ }^{12} \mathrm{C}\left({ }^{16} 0, \alpha\right)^{24} \mathrm{Mg}$ resction ${ }^{121}$ for which the energy spectrum, averaged over incident energies from 62-100 MeV , is shown in Fig. 1.33, and compared with other " α-particle" channels. Possibla correspondences in the spectra are indicated by the dashed lines. Because of the differing non-resonant background which can interfere with the resonant amplitude, the energy of the resonance is not necessarily the same in all channels; however the shift cannot be much larger than the width (note that in contradistinction to our discussion of this type of reaction earlier, there is evidence for direct aspects in the observed selec-tivity--e.g., there is a preponderance of positive parity levels, whereas positive and negative natural parity states in the $J=6$ to 12 h region are expected on the compound picture; these multinucleon transfers may therefore also be useful for populating states of particular structure in a direct process). We notice that the levels appear to be grouping themselves into clusters of a given 3^{π}.

A summary of all reported resonances ${ }^{114}$ appears in Fig; 1.34 ; the groups fall on a line constituting a Regge trajectory ${ }^{122}$, or quasi-molecular rotational band, where

Figure 1.34

X8L 777.9560

The resonances correspond to pockets in the patential for the different partial waves (see Fig. 1.31). The slope of the line in Fig. 1.34 corresponds to the $h^{2} / 2 f \approx 100 \mathrm{KeV}$, just the value we calculate for twc carbon nuclei in dumbell rotation at the grazing distance (see Fig. 1.35). (For comparison, the $h^{2} / 2 \mathcal{O}$ of the ground strite band is $\approx 200 \mathrm{KrV}$, i.e. a lower moment of inertia $\approx \frac{2}{S} \mathrm{MP}^{\prime}$. Extrapalation of the band to the 0^{+}member on the vertical axis shows that the band begins almost at the threshold for ${ }^{12} \mathrm{C}+12_{\mathrm{C}}$ in 24 Mg , as predicted in a cluster molecular model. 123 Pusring the picture still further, we obtain the value $2.6 \times 10^{21} \mathrm{sec}^{-1}$ for the fraquency of rotation corresponding, e.e. to the g^{+}resonance at $\approx \sim, \mathrm{MeV}$, and considering the envelope of all the 8^{+}resonances $(\approx 3 \mathrm{MeV})$ as the width of the molecular resonance, we obtain a lifetime of $4 \times 10^{-22} \mathrm{sec}$. Thus the two ${ }^{12} \mathrm{C}$ nuclei would perform. $\approx 1 / 1 r_{1}$ of a full rotation before either coalescing a spiliting into the ${ }^{10} \mathrm{C}+{ }^{12} \mathrm{C}$ exit channel. 124

The fact that the resonances of a given spin group and secondly that their centroids fall clo.e to the value of the Yale potential (Tabie 1.2) suggests that, because of the gross structure, windows exist for the specific angular momenta. These windows permit the carbon nuclei to be in close contact, to interact and thers y to framment into a number of narrow doorway state resonances. This interaction must be weak, because a stron one would have moved the resonances out of the window. Also the sumned widths of a resonance of given J is an appreciable fizaction of the gross structure width. Ceveral models of this fragmentation exist, 115 one of which involves the excitation of the $l^{2} \mathrm{C}$ nucleus to its $2^{+}, 4.43 \mathrm{MeV}$ level, or the double excitation of both nuclei. 125,126 A resonance occurs at an

Figure 1.35

$$
\begin{aligned}
\boldsymbol{y} & =2 \times 3 / 5 \mathrm{MR}^{2}+\mathrm{MR}^{2} \\
\mathrm{~h}^{2} / 2 \boldsymbol{f} & =100 \mathrm{keV} \\
\mathrm{P} & \geqslant 2.7 \mathrm{fm}
\end{aligned}
$$

energy such that after the excitation of the nuclei, they are in a quasi-bound state of the appropriate angular momentum. Thus the doorway state consist.s of excited l?c nuclei trapped in a potential well pocket. Another approach 124 lets the shock of the initiel collision lead to surface vibrations in the system, similar to B, γ vibrations. These split up the wide rotational resonance. Applying the first order rotation-vibration model 127 leads to a rather satisfentory agreement with the data (Fig. 1.36).

Support for the first picture of the resonances comes from a recent experiment 128,129 on the integrated cross sections for the reartions $12_{C}\left(12_{C},{ }_{+}{ }^{12} C^{*}\right) 12_{C *}$ where either of the final 12_{C} can be excited into the 2^{+}level at 4.43 MeV . Figure 1.37 shows that bot?

Fifure 1.37

19. 1 HS - Ag 2 C
the double and single excitation functions are dominated by broad resonances and underlying fine structure. The upper three resonanses fall nicely on the continuation of the moleculer band, with the same moment of inertia, and with suggested spins $14^{+}, 16^{+}$, 15^{+}'see Fif. 1. 34). The resonances also appear to line up with data on the fusion crose sectior. A partial width decomposition for the $J^{\top}=19^{+}, 12^{+}$, 14^{+}gross structure resonance is made by assumine that the experimental total width is given by:

$$
\Gamma=\Gamma_{0}+\Gamma_{2^{+}}+\Gamma_{2^{+1} 2^{+}}+\Gamma_{c n}
$$

an. that, 1.54

$$
\mathrm{c}_{i}=2(2 \mathrm{~J}+נ) \pi r^{2} \frac{\Gamma_{\mathrm{c}} \Gamma_{i}}{(\Gamma / 2)^{2}}
$$

(With: $i=?^{+}, 2^{+} \cdot 2^{+}$and en) relates the resonant total cross su-utions δ_{i} and the various partial wicths. The compound nucleus rors section $\sigma_{\text {on }}$ and width $\Gamma_{\text {en }}$ are identified with the resonert \cdots ronent of the fusion cross sectica. Cne of the resultant soitu$\because \because$:.: \because : the quadratic equations is given in Table i. 5 , and comm : raf: wirf the predicted total width of the quasimolecular mode?.

TARLIF. 1.5

$\therefore{ }^{\text {+ }}$	$\begin{gathered} E x \\ 2 L_{\mathrm{Mg}} \end{gathered}$	$\Gamma_{\text {rot }}$	Γ_{C}	$\Gamma_{2}{ }^{+}$	Γ_{2+2+}	T_{cn}	$\frac{\text { Moled }}{\text { Ex. }}$	$\frac{\text { Band }}{\Gamma_{\text {tot }}}$
10^{+}	22. 5	1.8	1.35	0.11	50.01	0.13	28.6	1.1
19^{+}	33.5	3.0	2.41	0.22	$\leqslant 0.04$	0.33	32.8	3.9
14^{+}	39.0	2.5	1.94	0.27	0.13	0.16	37.8	3.2

The extracted widths are somewhat less than those of the quasimolecular rotational band, indicating the intermediate structural nature of the states. It is also true that this type of intermediate structure, believed onge to be almost unique to the ${ }^{12} \mathrm{C}+12 \mathrm{C}$ system, is also emerging $130-132$ in the $12_{C}+160$ and, more excitingly, in much heavier systems, as we now discuss.

Recall the system ${ }^{16} 0+{ }^{28}$ Si which we discussed earlier (Section 1.3.1) as an example of elastic scatterings over a wide energy range to determine the optical potential. Recently ${ }^{\frac{1}{2}} 33$ angular distributions have been extended into the backwar hemisphere (Fig. 1.38), and reveals an oscillatory pattern, which is auite distinct from the forward angle Fresnel and Fraunhoffer diffraction patterns. In fact a continuation to backward ancles of the anfular

distribution: predicted by the "unique" potentials established in ser. Lion $1 . j$ leads to the dashed curve. The oscillations are characteristic of $\left|P_{\ell}=26(\cos \theta)\right|^{2}$, with $\ell=26$ close to the grazing partial wave, and may find a natural explanation in terms of a surface Regge pole resonance. ${ }^{101,134}$

It is therefore perhaps no surprise to find that excitation fundtons for $16_{0}+28$ Si and $22 \mathrm{C}+28_{\mathrm{Si}}$ also give rise to resonance structure ${ }^{13} 3,136$ very similar to the lighter systems we have been discussing, as the examples in Fig. 1.39 show. ${ }^{3} 35$ At each of the resonances, the differential cross sections have a fairly pure $\left|\mathrm{P}_{\mathrm{Q}}(\cos \theta)\right|^{2}$ form, and for the peaks in $160+28 \mathrm{Si}$ at $\mathrm{E}_{\mathrm{CM}}=21,26$, 32 and 35 MeV , the ℓ values are $9,17,22$ and 24 h . The irregular

- 241. 766-9172

Figure 1.39

Fifure (1.1.f)
spin sequence is very difficult to reconcile with the Regge molecular band, 137 which follows the grazing trajectory. However a calculation of shape resonances using a folding model potential leads to several rotational bands, all with moments of inertia smaller than the prazing trajectory. The observed irregular sequence could be due to the intersection of the Erazing trajectory (see Fig. 1. 40) with rotational bands of different principal quantum numbers. ${ }^{135}$ It wous

Figure 1.41
also be interesting to know whether interferences between the reflected waves from the inner, and outer potential barrier as have been recentiy discussed ${ }^{137(a)}$ might produce the structures. A very recent explanation has been given in terms of a parity-dependent potential.

Since we have primarily discussed elastic scattering and transfer reactions in this lecture, it is appropriate to end with a synthesis of the two, which gives a new direction towards the understanding of these resonances. If these phenomena indeed occur in the grazing partial waves, then similar effects might show up at forward angles in transfer reactions, where the contributing l-waves afe elso strongly surface peaked. The excitation function ${ }^{138}$ for the ${ }^{24} \mathrm{Mg}(160,12 \mathrm{C}){ }^{2} 8_{\text {Si reaction appears in Fig. 1. } 41 \text {. (Here }}$ the exit channel is one in which resonances in elastic scattering are observed.) There is indeed strong resonant behavior, which coincides with, elastic and inelastic channels. Are these also shape resonances, generated by surface transparent potentials, or are they evidence for more subtle effects in the structure of 40 Ca at high angular momenta? Perhaps the a-transfer plays a special role, and therefore many other channels have to be tested. It seems clear however that even complicated systems at very high excitation are revealing a most mexpected simplicity.

Z"ere is hope that this simplicity can be treated in a microscopic model which describes the fragnents by displaced oscillator shell model wave functions. 450 For $160+160$ and $+{ }^{40} \mathrm{Ca}$ the minima of the energy expectation values for various angular momenta ure in good agreement with the experimental resonance energies, confirming the concept of an underlying quasimolecular structure. A first test of this interpretation is provided by the fact that the intrinsic state of such a nuclear molecule has mixed parity. Whereas shell model states show a gap of $\approx \hbar \omega$ vetween positive and negative parity states, a nuclear molecule should have positive and negative perity states in a common band. Hence, if the concept of a nuclear molecule is applicable one should find little or no splitting between bands of positive and negative parity. For the system $\alpha+{ }^{40} \mathrm{Ca}$ the experimental splitting is less than 0.6 MeV . The microscopic description also yields resonances in the $16_{0}+40 \mathrm{Ca}$ system and therefore they appear to be a widespread feature of heavyion systems both experimentally and theoretically. The microscopic treatment shows that a description in the framework of a simple opticel potential must be non-local and energy dependent. This fact may explain the receft spurt of activity which "explains" the resonances in thr $160+28_{S i}$ system by a variety of unusual potentials, e.g., a parity dependent potential $137(\mathrm{~b})$ or an energy dependent, surface transparent potential. 451

Only a short time ago, the resonances in the ${ }^{12} C+{ }^{12} C$ system were believed to be unique, giving us only a glimpse of shape resonances and also the next stage in the hierarchy of increasing complexity of doorway stetes. The carbon nuclei avoided both the Scylla of being too easily polarizable and the Charybdis of not being polerizable at all. 114 Now we are through these straits, and the whole ocean lies ahead to explore for yoars to come. This exploration can be made with the lnw-energy, Tandem Accelerators scattered around the world. Compared with the mighty oceangoine Titanic of the Berkeley Bevalac, these "outboard motor boats" are inexpensive to run, and it is exciting that they continue to reveal fundamental aspects of the nucleus. Hopefully the Berkeley Bevalac will lead to its own fundamental discoveries, but that subject must wait until the last lecture. In the next lecture, we move on to much higher perturbations of the nucleus, beyond the rerion of discrete excitations, which has dominated our discussion of Microscopia.

2. MACROSCOPI/A (FUSION AND FISSION)

The last lecture esded on a hopeful note. By means of heavyion reactions, the possibility is at hand of observing nuclei under unusual conditions of rotation and shape: Already discrete states of $\operatorname{spin} 18 \mathrm{~h}$ have been observed in nuclei at excitation energies of over 50 MeV . The theoretical description of this state of motion presents a challenge comparable to understanding che rotation of homogeneous masses as idealized representations of planets and sters back in Newton's days. It is a challenge that has been met in a remarkable series of experimental and theoretical developments. In this lecture we convey some idea of violent changes of shape undergone by the nucleus as more angular momentum is added to the fused system. Eventuelly the nucleus cannot sustain the centrifugel forces and it flies apart in fission. This behavior has en important bearing on the problem of synthesizing superheavy elements, once reparded as the prime motivation for the construction or hearyion accelerators.

2.1 Nuclei at Figh Angular Momentum

Before embarking on a discussion of nuclei subjected to these extreme stresses, "e should note that the determination of nuclear matter and charge distributions of nuclei near their ground states has lone been an important stimulus to the development of nuclear structure theories. Information on the moments of the nuclear charge distribution comes from experiments with electromagnetic probes, whereas the nuclear matter distributions come from hadronic scattering experiments. The availability of high energy, heavy-ion beams has expanded the horizons for inelastic excitation by hadrons, because they display interesting interference effects between Coulomb and nuclear excitation. In the DWBA, the excitation of a collertive level is described in the interaction form factor $F_{L}^{C}(r)+F_{L}^{M}(r)$, where

$$
\begin{align*}
& F_{1}^{C}(r)=\frac{e Z_{1} 4 \prod_{1} \sqrt{B(E L)}}{2 L+1} \frac{1}{5 \bar{T}+1} \tag{2.1}\\
& F_{L}^{N}(r)=\beta_{L}^{N}\left(V_{R} R_{R} \frac{d f}{d r}+i W_{I} R_{I} \frac{d \varepsilon}{d r}\right)
\end{align*}
$$

Here I is the multipolarity of the transition and F^{C} and F^{N} are Coulomb and nuclear excitation forces. The latter is proportional to the derivative of the optical potential. β_{L}^{N} is the potential deformation. Since V_{R} is usually attractive, while the Coulomb potential is repulsive, there result minima in the scatterinf angular distribution of excitation functions.

From vact and beautiful literature on this subject, ${ }^{139,140}$ we select an -xample from the collision of very heavy nuclei, ${ }^{141} \mathrm{Kr}+$ Th and Ar + I! (Fip. 2.1). The excitation functions for backsotinros priticles in coincidence with the de-excitation y-ray carcude are chown. The solid line is the prediction of pure (cuamb excitation (using a semi-classical approach ${ }^{142}$), which agrees with thr low spin data. But there is a rich variety of interferesce phenomena due to Coulomb-Nuclear interference; the sicm, strangth and energy for onset are state dependent. The solid and iashed-dot lines use proximity nuclear potentials ${ }^{1}{ }^{3} \mathrm{c}$: the type we discussed in lecture 1 . Since these potentials fit acma states; but not others we infer that inelastia excitation Marries information about the nuclear potential beyond that con--ained i:a elustio scattering. It may therefore be possible to wite the ruajest surface directly, and we may learn even more at ut thr ielicate shape of nuclei such as $234, a^{4}$ present pnowr. + arry boty quadrupole $\left(S_{2}\right)$ and hexajecupole (B_{4}) der, atation. ':ie. 2.a). There are also some remarkable experiments or , fiomb excitation of low lying stateg in Pt with Te projectiles, that suegest rieji triaxial shapes 144 contradicting theories of y-:-f muciear picientia? surfaces. ${ }^{145}$

Aucther rener.t development in the study of deformeticns desarites the conimit exfitation of collective states by a lone ranfec ipaginary motertial. ${ }^{14}$. The remarkabl- merit of this epproach is tha: a nontrivial theory with no free farameters can be evaluate \ddagger without a cuparar, and gives specific cross-section predictions. ${ }^{14^{-}}$ Indeed the baaidy of both the above methods ic the rejiance on semiclassica?, analyticel methods, originally touted as the great virtue of hatary-ion cellisions, but which fell into dierevite for a few years, to return now with renewed vigor.

Figure 2.1

The discovery in 1971 of a pronounced irregularity around spin 1 Ch (called backbending) in the otherwise very regular behavior of the rotational sequence of even-even rare earth nuclei, has opened ur a vigorous research field in the study or high angular momentur. in nuclei. 149,150 an illustration of the backbending phenomenon appears in Fif. 2.3.

Figure 2.3

A slight discontinuity is evident in the plot of:

$$
\begin{equation*}
E_{J} \propto \frac{h^{2}}{2 \ell} J(J+1) \tag{2.2}
\end{equation*}
$$

at $J=14$. On the Variable Moment of Inertia model ${ }^{151}$ we write:

$$
\begin{equation*}
E_{J}=\frac{h^{2}}{2 f} J(J+I)+\frac{1}{2} C\left[\frac{f}{h^{2}}-\frac{\xi_{0}}{h^{2}}\right]^{2} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{4}{h^{2}}=\frac{d_{0}}{h^{2}}+\frac{3}{4 c}(h \omega)^{2} \tag{2.4}
\end{equation*}
$$

Therefore a plot of moment of inertia versus the rotationai frequency squared should yield a straight line. The Inset in Fig. 2.3 shows a marked departure from this trend, with a sudden increase in the moment of inertia.

Three effects have been given serious consideration as the causes for backbending. These are: 150

- a collapse of the pairing correlations; ${ }^{152}$
- a shape change, i.e. change of deformation; ${ }^{153}$
- en alignment of the angular momenta of two high j nucleons with that of the rotating core. ${ }^{154}$
The fact that the moments of inertia of a most deformed nuclei are about one-half of the rigid body value is attributed to pairing correlations, which partly prevent the nucleons from following the rotation. It now appears more likely that backbending is due to the breaking of one pair rather than total pairing collapse (the gradual reduction of pairing appears rather to account for the

Figure 2.4
variable moment of inertia up to the backbend). The physical process involved in breaking the pair is the Coriolis force which forces the angular momertum vector j of the particle to decouple from the deformation (symmetry) axis and align with the rotation axis. In the iga, erbit, for example, this effer elvi: in total of 1 h wi.ich coit replace an equal amount of core rotational anpular nomenturn.

On this model, at still higher angular momenta, additional pairs of high-j nucleons will tend to be aligned and just suche e discontinuity appears to be observed ${ }^{155}$ in the ${ }^{122} \mathrm{Sn}\left({ }^{\left.4 \mathrm{H}_{\mathrm{Ar}}, 4 \mathrm{n}\right)}{ }^{15} \mathrm{C}_{\mathrm{Er}}\right.$ reaction at 166 MeV , in which large amountc of ancilar momenta are deposited (Fig. 2.3). Here the second discontinuity at $J=$ Pin appears to make a further step towaris the fomation of an oblate nucleus in which ell the angular momenta is carriea by aligred particles. ${ }^{156}$ At the first backbend, two different rotational bands cross. Below the crossing, the levels belone to the ground state band, ani above they belong to a supertani with a larger moment of inertia. Another explanation of the sicord discontinuity operates from the assumption that if the superiand is really based on an al Ened two particle (high j) ${ }^{2}$ configuration, then the superband should cross the growna state band not once but twice. ${ }^{157}$ in this case, (see Fig. ?.4) beyond the second crossing, the lowest tanc is agein the pround state bard. A test of this model would be to foilow the ground state band beyond the first crossine to see how the energies of these levels compare with the prediction.

The existence of two bands has been demonstrated direct?: in some cases by following the grgund state band beyond the tackbentine repion. Such is the case in $1{ }^{64}$ Er for which, the γ-deexcitation spectra following Coulomb excitation with a ${ }^{130} \mathrm{Xe}$ beam, and the

Fipure 2.5

${ }^{164} \mathrm{Dy}(\alpha, 4 n)$ reaction, are compared ${ }^{158}$ in Fig. 2.5. The spectrum for ($\alpha, 4 n$) demonstrates how backbending manifests itself experimentally, when a gate is set on a certain (high-J) transition and the coincidence E2 cascade to the lower levels is observed. It is clear that the transitions labelled 16'-14 and 18'-16" are "out of sequence" compared to the regular spacing of the $4-2,6-4,8-6$ et.c. transitions. Note, however, that in the upper part of the spectrum from Coulomb excitation there are, in addition, regularly spaced transitions 16-14, 18-16 which are the continuation of the ground state band beyond the $J=16$ backbending region (compare Fig. 2.3). Only recently have sufficiently heavy deams become available to couiomb exrite very high spin states.

The rotation-alignment model actually predicts a series of fimitap rotation-aligned superbands. The lowest one discussed above has only even spin members, and evolves (in ${ }^{164}$ Er) from a $\mathrm{F}=\mathrm{O}^{+}$band (at $\operatorname{spin} 0$) to a structure at $\mathrm{I} \geqslant 16$ which is mainiz two $i_{13 / 2}$ quasineutrons coupled to $J=12$, aligned with the core rotation. The next two superbands are predicted to start out as E single $K=L^{+}$band, evolving into the lowest odd spin (yrast odd) and the second lowest even spin (yrare even) rotation-aligned bands. They still have a dominant ($\mathrm{i}_{13 / 2}$) configuration at high spin, and in the extreme limit, the rotation-alignment model predicts that prar+ even-spin (I), the yrast odd-spin (I-I) and the yrare evenspin (I-2) states all have the same rotational energy. The structure of the superbands can be probed by studying their interactions with the ground and γ-vibrational banis. The higher lying γ-band is an excellent probe because it intersects both the even and the odd-spin states of the superbands. All these bands have been sorted out by a variety of ($\mathrm{H} \cdot \mathrm{I}, \mathrm{xn}$) coincidence experiments ${ }^{159}$ (Fig. 2.6); an excellent and truly remarkable agreement between experiment (a) and theory (b) is observed.

Figure 2.6

Gujded by this introduction to high spin phenomena, let us no: speculate 160,161 on the possible behavior of nuclei as even larce amounts of energy and angular momentum are deposited (Fig. 2.7). The lower, aproximately parabolic, line is the yrast line so there are no levels in the nucleus below this. The upper line gives the f'ission barrier, which sets an upper limit to the study or levels of the nucleus. The intersection of the two gives the erfective maximum angular momentum for the nucleus. Nuclei in the rare eartr. region have prolate shapes near the ground state as a result of shell structure, and they have strone pairi"o correiations. The hatched region indicates where pairing correlations exist, which terminate as we have seen, eround $I=20$, where the two bends cross.

Some insight into the region above $I=20$ comes from the liauid arop model. A rigidly rotating charged drop prefers an oblate shape until shortly before fission. The large moment of inertia of oblate shapes minimizes the total energy. Although the nucleus cannot rotete about a symmetry axis, it has been shown ${ }^{62}$ that for a fermi eas the states obtained by aligning the angular momenta of individual particles along the symmetry exis is the seme as would be obtained by rigid rotation about that axis. These deformationaligned states in oblate nuclei therefore generally are lower than the rotation-aligned states in prolate nuclei. At high angular momentum the nucleus becomes oblate and the angular momentun is carried by aligned individual nucleons (region C in the figure). This region may be identified by the occurrence of isomeric states, 160 due to the absence of smooth rotational band structure. At the very highest spins the nucleus may become triaxial before rission. The increase in deformation and moment of inertia is predicted to be so rapid that the rotational frequency will decrease, leading to a "super-backbend." Between the prolate and oblate regions, nuclei are also expected to become triaxial. Wobbling motion is then

possible in ediation to rotation about the axis with largest moment of inertia, epd could give rise to a series of closely spaced parallel bands. 103 (Note that two aligned high-i orbits represent a triaxial bulae in prolate nuclei.)

How do we get an experimental handle on these new modes of notion of the nucleus? The problem is to learn about high spin states above $1=20$, as discussed above, especially those along the yrast line, where the nucleus is thermally cool and doer not have a high density of states. The remarkable feature of the (HI, yn) reaction is that it can locate us along different regions of the yrast ling $164-165$ This works as follows: in Fig. 2.8, the compourd nucleus 166 is formed with an angular momentum distribution from $J=0$ to $J=\ell_{\text {max }}$ at excitation energy $E_{C M}+Q \approx 60 \mathrm{MeV}$ by the partial cross sections:

$$
\begin{equation*}
\sigma_{\ell}=\pi x^{2}(2 x+1) T_{\ell} \tag{2.5}
\end{equation*}
$$

The successive evaporation of x neutrons from these states is assumed to remove practically no angular momentum and an average of 2 MeV finetic energy plus the bindire energy of $\approx 8 \mathrm{MeV}$. Neutron evaporation continues until the available energy above the ?"ast line is less than 10 MeV . Since

$$
\begin{equation*}
E_{y}=\frac{\hbar^{2}}{2 g} l(l+1) \tag{2.6}
\end{equation*}
$$

a given value of x occurs in the sharply defined "bin" l_{i} to ℓ_{f} where:

The partial cross section for the evaporation of x neutrons is then:

$$
\begin{equation*}
\sigma_{x}=\pi \pi^{2} \sum_{l_{i}}^{\ell_{f}}(2 l+1) T_{Q} \approx \pi r^{2}\left[\ell_{f}\left(\ell_{f}+1\right)-Q_{i}\left(\ell_{i}+1\right)\right] \tag{2.8}
\end{equation*}
$$

As long as $0<\ell_{i}<\ell_{f}<\ell_{\text {max }}$, it follows that

$$
\begin{equation*}
\sigma_{x}=\pi x^{2} \frac{2 \delta}{\hbar^{2}} \cdot 10, \text { independent of } x . \tag{2.9}
\end{equation*}
$$

(The largest and smallest bins can be truncated due to the limits $l_{i}=0, \ell_{f}=\ell_{\max }$.) Furthermore, the mean angular momentum $\overline{\mathbb{R}}$ of the states on which the neuron evaporation chains terminate is predicted for each bin:

$$
\begin{equation*}
\bar{l}=\frac{2}{3} \frac{Q_{f}^{2}+R_{f} l_{i}+Q_{i}^{2}}{R_{f}+l_{i}} \tag{2.10}
\end{equation*}
$$

Channels corresponding to different numbers of evaporated neutrons have different angular momentum ranges and the highest angular

Figure 2.10
momenta are in the channels with the fewest evaporated neutrons. These results have been demonstrated experimentally. ${ }^{166}$

A specific application is shown ${ }^{165}$ in Fig. 2.9 for the initial proauction of $A \sim 160$, with an Argon beam of 170 MeV . The initial excitation is 70 MeV and the 4 n channel drops dow to roughly 10 Mev above the yrast line, without removing much angular momentum. There is still a high density of levels, and there follows a highenergy statistical cascade of dipole transitions, which still do not carry off much angular momentum. Approaching the yrast line the level density becomes small; and the most likely mechanism is then stretched Ea transitions along the yrast collective bands. Erentually these run into the discrete levels of the ground state band ?like Fig. 2.5). By setting gates on the lines corresponding to the $4 n$ shannel one can look at the corresponding spectrum in several NaI counters placed around the target.

The observed continuum spectrum for the ${ }^{126} \mathrm{Te}^{40} \mathrm{Ar}$, $\left.^{4 n}\right)^{162} \mathrm{yb}$ reaction is shown in Fig. 2.10, by the hollow squares. ${ }^{167 \text { The dots }}$ show the corrected spectrum after efficiency unfolding. The exponential tail is associated with the statistical dipole emission, and the lower energy bump with the E2 cascade (confirmed by the anisotrophy shown at the top of the figure, obtained by comparing the spectra at 0° and 90°). The integral of the bump gives the number of gamma rays.

Then we determine the average angular monentum $\overline{\mathrm{R}}$ carried in the cascades as

$$
\ell=2\left(\bar{N}_{\gamma}+\delta\right)
$$

Firure a.ll

where δ is the number of statistical γ-rays removing no angular momentum. (Note however that some very recent measurements indicate that a dipoie component is present i, the yrast cascade, the precise origin of which is not understood. ${ }^{168 \text {) }}$ Our earlier thearems about the bins and the associated $\bar{\ell}$ of the different m reactions, now enable the construction ${ }^{165}$ of Fie. 2.1l. The slope is not extet? one half, but close at 0.43. If we also associate the bump edee with transitions from the states of highest spin in the bin, we can determine the moments of inertia at these high spins from the relation:

$$
\begin{equation*}
E_{Y}=\frac{h^{2}}{2 f}(4 I-2) \tag{2.11}
\end{equation*}
$$

describing the transition energies in a rotor,
The results are shown ${ }^{165,167}$ in Fig. 2.1 for ${ }^{162}$ Yo, plotted in the backbending fashion of Fig. 2.3. Since ${ }^{162}$ Yo has not been tracked completely through a backbend, ${ }^{160} \mathrm{Yb}$ is also shown (open circles). At the highest rotational frequency, the moment of inertia approaches the rigid sphere value with $A=162, \quad f=2 / 5 \mathrm{MR}^{2}$, $2 \% \hbar^{2} \approx 140 \mathrm{MeV}^{-1}$. The last point on the plot is associated with the ($40 \mathrm{Ar}, 4 \mathrm{n})$ reaction, which as we saw earlier, originates from angular momentum $\approx 35 \mathrm{~h}$. Since the derormed moment of inertia would be a little larger (by 10%) and since the measured values fall below this line, some residual pairing correlations may still persist even at this high angular momentum.

A great deal of experimental ingenuity is presently invested in methods for unravelling the information about nuclear shapes at still higher rotational angular monentum. A promising technique 169,170

Fieure 2.12

is to look at the multiplicity (the number of r-reys) associated with each transition in the continum. If there is some relationship, like:

$$
E_{\gamma}=\frac{1_{1}^{2}}{2 q} I(I+1)
$$

at work this will bs reflected as structure in the spectrum and imply a prolate nuclear shape. The absence of structure, on the other hand, is an indication of non culontive motion and hence spherical or oblate shapes. Ar. array o: NaI counters is placed eround the beam axis and the spectrum in ariviher detector is urfolded in coincidence with one, two, three....counters of the array. Examples of coincidence and singles spectra for three reactions are shown in Fig. 2.13. (The singles spectrum shows the yrast and statistical cascades just es in Fig. 2.10.) In coincidence the yrast cascade yields a bump in the $E_{\gamma} v$ multiplicity curve, the upper edge of which moves to higher energies as more angular momentum is brougit in at higher incident energies (remember $E \times I(I+I))$. The spectrum is well reproduced in (b) with a cascade of $1 / 2$ rotatioual transitions from spin I to 0 whose energies are,

$$
E_{Y}=\frac{h^{2}}{2 f}(4 I-2) .
$$

The data determine the moment of inertia to be 95% of the rigij sphere value. By contrast, the $100 \mathrm{Mo}+4 \mathrm{Ca}_{\mathrm{Ca}}$ example leads te nuclei in the $N=B 2$ closed shell region, and the absence of structure in the multiplicity spectrum remains up to high spins. The rotational competition starts only at 50h, implying that this system is still

Firure a.l?

xBL 7as.9015,
oblate up to this spin, and then becomes prolate. These trends are artually in agreement with detailed calcalations of potential enerev surfaces over the full (B, γ) plane, which use cranted modifiedoscillator potentials with a Strutinsky-type normalisation the the liquid drop!lil clearly we are on the way to rindine out about the dynamics of nuclear rotation at very high spins indeed.

For a nucleus with oblate s: se and with the angular momentur: oriented in the direction of the \leq, metry axes, we encounter a form of rotational motion which is radically different from the usual prolate rotation. In the oblate case, the average density and potential remain static. (See 7ig. 2.14.)

Figure 2.14

Each single particle orbit contributes a quantized eugular momentur in the direction of the rotation axis. The transitions from one state to the next along the yrast line involve successive rearrangements in the filling of single particle orbits, and the energies alone the yrast line exhibit irregularity, although on the average the y rest states have a rotational dependence of energy on spin with a mean effective moment of inertia equal to that of a ricid body rotating about the oblate axis of symmetry. Ine deviations from the mean, enhanced by shell effects, may cause large irregularities in the yrast sequence, and the nucleus may become trapped in isomeric states ${ }^{160}$ with lifetimes orders of magnitude longer than rotational transitions. A systematic search for such yrast traps has been undertaken with beams of Ar, Ti and Cu in a hundred different taret-projectile combinations. ${ }^{172}$ The γ-emission from the recoiling compound nuclei were studied by detectors selecting high multiplicity (see above). The survey identified an island of kifh-spin isomeric states centered around neutron number 84 with lifetimes in the region of a few to several hundred nanoseconds. The interpretation will be quite speculative until the spin and decay schemes are pinned dow, but it is fascinating to note that several theoretical calculations $171,173,174$ point to this reaion of isotopes as especially favorable for the occurrence of yrest traps based on the oblate coupling scheme.

So far we have concentrated on γ-emission for transmitting information about nuclei at high angular momentum. However, once formed the compound nucleus has to decay by particle emission, from which important properties of the compound system become accessible, such as the temperature, distribution of angular momenta, moments of inertia, and degree of equilibration. Analysis of the deta requires a comparison with the predictions of a statistical evaporation code. Remarkable progress has been made in refining the

Figure 2.15
XBL 786-9019

Figure 2.16
calculational ${ }^{175,176}$ and experimental techniques. Experimental data and evaporation residues (the remnant of the compound nucleus after particle decay) can be obtained for individual A, Z by an appar atus which measures $\triangle E$, E (to determine Z) and time-of-flight (to determine $\left.A E^{2} E\right)^{2}$. A "state of the art" example is show in Fig. 2.16 for $40_{A r}+48_{\text {Ca }}$ at $E=236 \mathrm{MeV}$. In this particular experiment 177 evaporation residues were not being measured, but the figure demonstrates that it is possible to resolve individual Z up to 30 (in fact, up to 65 has been achieved) and individual A up to 60 .

The messured evaporation residues in the reaction ${ }^{19} \mathrm{~F} \&{ }^{27} \mathrm{Al}$ at 76 Yev are compared wich statistical calculations 176 in the botiom part of Fig. 2.17. The upper sections decompose the

Figure 2.17

calculation into contributions from different angular momenta in the compound nucleus. It is clear that increased α-particle emission is associated with higher angular momentum and therefore these residues probe the region of the energy-angular momentur space closest to the yrast line of the compound nucleus. A reconstruction of the "decay scheme" of the compound nucleus is shown in Fig. 2.18. (It is clear from this figure that our eariier discussion of the particle emission down to the yrast line producing the γ-cascases was oversimplified for light nuclei--see Fig. 2.9.

An impertant input to the statistical calculations is the level density in the nucleus at (in this example) excitations up to 70 MeV , and angular momenta up to 40 H . Nuclei in this region are likely to behave like liquid drops, and the influence of individual shell structure of a nucleus on the level density and pairing energy vanishes. Based on theoretical predictions ${ }^{178}$ one assumes in those calculations 179,180 that above a given excitation energy, U (liquid drop model) $\approx 15 \mathrm{MeV}$, the shell effects disappear. An appropriate allowance for the deformability under rotation is made by using:

$$
\begin{equation*}
\delta=\delta_{0}\left(1+\delta L^{2}\right) \tag{2.12}
\end{equation*}
$$

In this way we obtain an yrast line deviating from that of a sphere, as show in the third section of Fig. 2.18. Because of the connection between the shape of the yrast line and the shape of the nucleus itself, information on the latter may be forthcoming from measuring the ratio between nucleon and $\alpha-p a r t i c l e ~ e m i s s i o n ~(s e e ~$ the left-hand sections of the figure). The quantitative analysis yielded $2 \times 10^{-4}<\delta<5 \times 10^{-4}$, which is to be compared with the
prediction of 2.5×10^{-4} for the detailed shape calculation (to be discussed it the next section).

Yet another method for extracting moments of inertia at high excitation and angular momentum is the measurement of coherence widths Γ. These can be evaluated in terms of the number of open

Figure 2.19 xal 785.5012
channels (hauser-Feshbach denominated) at a given compound nucleus J and of the level density in the compound system of (Ex,J) at excitation Ex. The slope of Γ versus $E x$ is primarily a function of the effective moment of inertia, via the spin cut-off parameter $\sigma^{2}=8 \mathrm{~T} / \mathrm{h} 2$, with T the nuclear temperature. ${ }^{183}$ For the ${ }^{12} \mathrm{C}\left(15_{\mathbb{N}}, \alpha\right)^{27} \mathrm{Al}$ system ${ }^{184}$ a comparison of C VEx in ${ }^{27_{A l}}$ is shown jn Fie. 2.19 for different statistical model predictions labelled by Y/h2. The moment of inertia of $/ h^{2}$ of $5.3 \mathrm{Mev}^{-1}$ ereatly exceeds 185 that extracted by fitting the low lying member of the ground state rotational band ($\approx 3 \mathrm{MeV}^{-1}$). It will certainly be exciting to learn more about the predicted exotic shapes that nuclei, under the influence of heavy-ion collisions, will assume from experiments such as those decribed in the section. Since our whole discussion presupposed the formation of the compound nucleus, we must now check this assumption.

2.2 To Fuse or Not to Fuse

That is certainly a question at the forefront of much modern research with heavy ions. It is well known that if a deformable fluid mass is set spinning it will flatten and eventually fly apart. 182 To discuss the equilibrium shapes of a rotating nucleus we set up an effective potential energy and look for configurations that are stationary:

$$
F . E=E_{\text {Coul }}+E_{\text {nue }}+E_{\text {rot }}
$$

where

$$
E_{\text {rot }}=\frac{h^{2} \ell(\ell+1)}{2 \gamma^{\left(\alpha_{2} \alpha_{3} \alpha_{4}\right)}}
$$

It is convenient to introduce two dimensionless numbers specifying the relative sizes of the three energy components. $182,186,187$ Choose ihe surface enerey of a spherical drop as a unit:

$$
E_{S}^{(0)}=4 \pi R^{2} \gamma=c_{2} A^{2 / 3}
$$

with $\mathrm{C}_{2} \approx 17.9 \mathrm{MeV}$. Then specify the amount of charge on the nucleus by

$$
x=\frac{\frac{1}{2} E_{C}^{0} C}{E_{S}^{c}} \approx \frac{1}{50} \frac{Z^{2}}{A}
$$

For the angular momentum, specify

$$
y=\frac{E_{r a t}^{o}}{E_{S}^{o}} \approx \frac{\frac{1}{2} \hbar^{2} l^{2}}{\frac{2}{5} M R^{2}} \cdot \frac{1}{C_{2} A^{2 / 3}} \approx \frac{2 l^{2}}{A^{7 / 3}}
$$

In terms of these parameters, Fig. 2.20 illustrates some shapes, in each case for the ground-state (stable) shape and the saddle point (unstable shape) - labeled H and PP respectively. As the rotation speed increases, the ground state flattens and the sadale point thickens its neck. In the bottom figure the ground-state pseudospheroid loses stability and becomes triaxial, resembling a

Figure 2.20

Firure ?.2l

flattened cylinder with rounded edges, beginning to merge with the saddle shape. At slightly higher ancular momenta the stable and unstable families merge and the fission barrier vanishes.

This behavior can be translated into an angular momentum plot versus mass (Fig. 2.2l). For vanishing of the fission barrier the resultant curve is ℓ. No nucleus cen support more than 100%, and neither light nor heavy nuclei can support very many units. The dashed curve shows the $\begin{gathered}\text { ngular momentum required to lower the fission }\end{gathered}$ barrier to 8 MeV ; this curve is indicative of the maximum the nucleus could support and still survive the risk of fission in the deexcitation process.

By conservation of energy and anpular momentum, is follows that the closest distance of approach of projectile and target is given by $r_{\text {min }}$, where for impac: parameter b,

$$
\left(\frac{b}{r_{\min }}\right)^{2}=\left(1-\frac{v}{E}\right)
$$

which, for given $r_{\min }$, is a hyperbola for b^{2} versus E. If $r_{\min }$ is chosen as the strong interaction radius ($\mathrm{R}_{1}+\mathrm{R}_{2}$), this curve divides the plane (b v E) into two regions: distant collisions where the nuclei pass each other without appreciable interaction, and close collisions where the corresponding πb^{2} gives the reaction cross section. Because of diffuseness, this region is given some width in Fig. 2.22. The curves are constructed for $R_{1}+R_{2}+d$. The plane can be further subdivided by curves corresponding to the locus of fixed angular momentum ℓ :

Figure 2.22

$$
l=b \sqrt{2 \mu E}
$$

$$
\mathrm{b}^{2}=\frac{e^{2}}{2 \mu} \frac{1}{E}
$$

$$
\mu=\text { reduced mass }
$$

The value of y (or ℓ) at which the fission berrier vanishes car be inserted to construct the additional curves on Fig. 2.22 (both ior zero fission barrier and where it has become equal to the bindine energy of a nucleon, which marks where the de-excitation mode changes to nucleon emission and the compound nucleus would be detecteble).

To the left of $P_{f}=0$, a compound nucleus could form, and to the left of $\mathrm{E}_{\mathrm{f}}=11$ it would definitely survive, We shall see later however that the prediction o: the formation of a compound ruileus

Fifure 2.23
KBL 285-9011
is a dynamical question, beyond the scope of these consideratione. only if this critical curve lies totally atove ABC, can the nuryr: ABC represent the cross section for formation and survival of the compound rucleus. The figures are constructed for ${ }^{2} \mathrm{O}_{\mathrm{Ne}}+{ }^{107} \mathrm{AE}$. Now

The susion prolucte are experimentall: identified by detectire evanorationgresidues after evaporation of nucleons and alpha perticles ${ }^{189}$ and are shown in Fie. 2.23; the trend follows that of Fif. 2.22. The line $\mathrm{Bf}_{\mathrm{f}}=0$ is marked and also more precise calculations using, the computer code ALICE, which deals more properly with particle evaforation, and in perticular with the ancular momentic. they carry off (represented by A.J $=10$ etc). Detailed discissian: of the fucion of heave systems are given in the reviews cf Eefs. 15: ant 191.

In mary cases we find that the fusion crocs section is munt, less than the reaction cross section, although the fission barrier has, still not. disappeared. It appears that the ions have to react. a critical idotance of overlap of nuclear matter before fusion sete in. ${ }^{172}, 197$ To take into accourt the effects of a critical cistance we writelgh for the fusion and the total reaction
crose sections:

$$
\begin{aligned}
& r_{!}=\pi x^{2} \sum_{0}^{\infty}(2 \ell+1) P_{\ell} \\
& \sigma_{\mathrm{K}}=\pi x^{2} \sum_{0}^{\infty}(2 \ell+1)
\end{aligned}
$$

where fore the probabilities that fusion takes place atter thr berrier is passed. For I_{ℓ} we assume:

$$
\begin{aligned}
Y_{\ell}=1 & \ell \leqslant \ell \\
0 & \ell>\ell_{c r}
\end{aligned}
$$

Then the sumnation in Eq. 2.20 Jeads to

$$
\sigma_{\mathrm{f}}(E)=\pi x^{2}\left(\ell_{\mathrm{er}}+1\right)^{2} \approx \pi x^{2} \ell_{\mathrm{cr}}^{2}
$$

The turnine point for the partial wave $\ell=\ell_{c r}$ is deduced from the expression:

$$
E=\because\left(F_{n r}\right)+\frac{\hbar^{2} \ell_{c r}\left(\ell_{c r}+1\right)}{2 \mu R_{c r}^{2}}
$$

\therefore ai

Gub:itutinf Snr $\rho_{\text {er }}$ in Eq. 2.23, gives

$$
\sigma_{S}=\pi F=\left(2-\frac{V /_{F r}{ }^{\prime}}{E}\right)
$$

$$
\because \therefore:
$$

Itis expression is just equivalent to the usual formuia for thr reazticn cross section isee for exampie Eq. 2. IE) with Fcr retiace: : \because the interaction harrier radius F_{B} :

$$
\sigma_{F}=T F_{B}^{i}\left(1-\frac{V\left(R_{D}\right)}{E}\right)
$$

It turns out that $\mathrm{E}_{\mathrm{cr}} \approx 1.00\left(A_{1}^{3 / 7}+A_{2}^{1 / 2}\right)$ for a wide range \because ions. This interpenetration distance corresponds to the overlar 0 : the half lensity radii of the nucleai metter distributions. ist ree radius is marked ${ }^{96}$ on Fig. 2.24 for $100+48 \mathrm{Ca}$. Un to a certain critical energy, for all partial waves that simmount the ruter barrier, the two ions succeed in interpenetratine to the critical distance (assuming there is not too much radial friction near the barrier top -(dashed line) and fuse. Above this critical energy, however, the increasine centrifugal barrier does not allow the ions to penetrate for all partial waves, and the fusion cross section becomes smaller than σ_{R}. (This scheme is valid when the jynamical path for fusion lies inside the saddlepoint, a siturtion which is not usually fulfilled for heavy systems - see inp discussion in Ref. 30).

Fifure 2.24

Characteristic Energy Regians for Fusion.
Figure 2.25
XBL 7779660
تrom these equations we generate the schematic representa*:ca: ○: fusion and total reaction cross sections as a function o: $1 / \mathrm{E}$ ar. Fif. ‥?5. In region 2, the critical enerey is passed and the fusion cross section changes slope - it may increase, stay constar: or decrease, depending on the value of $V\left(P_{\text {cr }}\right)$ at this point. Ir. region 3 , the limit or maximun angular momentum in the compound system is surpassed. Just these features appear to be observed? in ${ }^{14} \mathrm{~N}+12 \mathrm{C}$ system shown in Fig. 2.26. If the data are represente: in terms of the critical angular momentum, as in Eq. $2.2 \geqslant$, then ti: value $\ell_{c r}\left(\ell_{c r}+1\right)=73 h^{2} 2$ does indeed correspond to the limit of 26.6h expected from Fig. 2.21 for $A \approx 26$. The preoicted sirage is that of a very deformed, triaxial nucleus with $R_{\max } \approx 2$ an an $R_{m i n} \approx 0 . h R$, with R the radius of the spherical ground state. It. view of these extreme shapes, it is perhaps more realis+ir to

considerl99 a critical deformation, or moment of inertia, which deternines whether fusion occurs or not; in a more formal derivation ${ }^{2 / 4} R_{c r}$ is introduced via the equation $\delta_{c r}=\mu R_{c r}^{2}$. The :"tuay of much heavier systems, beyond the liquid drop fission limit, should soon be possible with the higher energies becoming avalatie. 200
"ince the slope and intercept bevond the critical energy wetermine $v_{\text {cr }}$ and $R_{\text {er }} \approx 1.0\left(A_{1} / 3+A_{2}^{1 / 2}\right)$, these measurements car: te used to determine the potential at mich smaller distances than is rasible :rore elastic scattering 5 ? (we call $\mathrm{F}_{1 / 4}$ end P_{s} in lenturn ?), and indeed were used to construct some of the points in :̈f. b.jh. A thorcugh analysis of potentials, smonesizine itromation from the total reaction cross secticn, the rusion cross sentirn, eiastic and transfer reactions is give: in Rer. 3i; such a trproact ray help to remove the ambiquities we discussed for $1 h_{i}+\frac{\text { ri }}{}$ in lecture 1 . However if there is significant radial friction (and the next lecture will show that there is) then our ear: ier equations should contain ($1-\frac{V+E F}{F}$) rather than ($1-\frac{V}{E}$), where: F_{F} is the enerfy loss due to E friction on that E_{E} portion or the trajencory leading up to the barrier. Foughly we can see that neelect of rriction produces an underestimate of the potential, $\%$ At the eritical distence where frictional dissiyation is very stronc the whole method of analysis presented here becomes questionable. Nevertheless a variant of this analysis, 53 using a prrimity potential has been used to extract potential depths down to values of s (in Fig. l.14) which are negative, i.e., very strong overlap of the nuclear matter. A questionable assumption in many of these treatments is the suden approximation, i.e., a potential which conserves the structure of each nucleus. 201 at the opposite extreme is the adiabatic approach, which allows a continuous chanpe or potentia?. 20 U Ulimately a full dynamical calculation is required, in which the fusion cross section depends rot only on the static shapes but also on coupling to internal degrees of rreedom. $205-206$ In the classical limit this anoroach leads to an equation of motion with frictional forces. ${ }^{207}$ Then it becomes possible to describe in complete fusion events, or deeply-inelastic scattering; in the next lecture we shall see that these processes consume the missing cross section 208 of region 2 in Fig. 2.25.

2.3 More Microscopic (and Speculative) Aspects

In our introduction to these lectures we mentioned that the microscopic, and the macroscopic were not really distinct subjects, but so far in our discussion of fusion processes we have ignored ary effects of individual nucleons, the fundamental constituents of nuclei. In Fig. 2.27 is a plot of the ${ }^{40} \mathrm{Ca}+{ }^{40} \mathrm{Ca}$ fusion cross section, 209 plotted in our familiar framewori. In the notation of Eqs. 2.25, 2.26, the solid line uses the parameters,

Figure ?.a7

$$
\begin{aligned}
& Y\left(P_{1}\right)=51.5 \mathrm{MeV}, \quad F_{H}=1.49\left(A_{1}^{1 / 3}+A_{2}^{1 / 3}\right)=10.20
\end{aligned}
$$

'alr critinal motential is positive, which classiries the syster H:: "henvy" (compare Fif. ?.df, where it is nepative). Sinee this softem comprises two closed-shell nuclei, the tifhtness associatrof With shell efferts could manifest itself by a decrease of the radic parameter, compared with neighborine systems; such a comprison could give some information on the role of individual nu.leans in the fusion process. The dashed curve in fact corresponds to a calculation with a smaller critical distance determine: Srom Hartree-Fock densities for ${ }^{40} \mathrm{Ca}$. One physical internretation of the criuicel radius comes from the troocenter shell model. 21 , This is illustrated in Fie. 2. 28 for $160+160$; at distances less than $3 . h$ fm the lowest configuration becomes the ground state of $\%$ and at large distances it is the $16_{0}+16_{0}$ pround state. At the jevel crossing, stronge energy losses should occur. It would appear from Fif. P.id that there is no evidence for this closed-shell fereat. However, another doubly mafic system lisca+iobpb does

Figure 2.28

 Wh. ! ! lee winme nucleona artec the fusjon cross section via the

 querminar \because son sutemates we have described in section 2.2.

XBL 2:

Some extmbers are shown in Fig. 2. 30. The story becomes eurex wr... cubtle with the coservation that these oscillations are corrulate: with the reomanece apearine in the excitation functions

 wives, affrirs dubinue with the redent observation lis that thr carilation: are aino prosent in $\mathrm{it}_{r_{1}}+16_{0},{ }^{12} \mathrm{C}$.

 Mald prator the !'irst step in overnoming the shell pry be:or.

 roximi•y !rontial, artat the turning point or ther razial risite. tienimate anrer into vibrational and intrinsic moticn. Fus:ca tappenc predominant. cloce to the ortiting anedar momenta, and

Thr araller impact parameters tend to make the ions brorne cot cht anothar, a fenture which is also present in the time hepender. Hart rou-fock Model. $17-219$ So far we have been lareely concerned with the" "macrophysics" of nuelear matter. Or enurse this is ro: a new subjoct, since fission has been witt. us for a lone time. Eu there have not been many studies of the dynames of fission. It, has mastly been an attempt to understand the enorgetics and other yroperties of the fiscion barrier. ls it possible to get som ${ }^{\circ}$ understanding of all these processes in some microscopic frampwork? A convenient starting point is the mean field or hartree-Fo $\%$ approximation, which has enjoved preat suececs in the static ats.s. This. works because the density is hjef, the effective forces atystrone, and the Pauli principle inhibits collisions. In a imodependent peneralization the rate of chanpe of the mean riet: mu:* be small enough so that it does not projuce large excitatinas of the independent I ticles in a short time. The kinetic enera lar macleon should not be too large compared to the Fermi energ. ($\approx 20 \mathrm{MeV}$). The last lecture will carry us beyond this refime.

The TUH: equations for the sinfle particle wave functions ${ }^{n}$ are given by

$$
\begin{align*}
& i \frac{\partial}{\partial t} \psi_{n}(r, t)=H(t) \psi_{n}(\underline{r}, t) \\
& H(t)=-\frac{n^{?}}{\partial m} \nabla^{?}+V(t)
\end{align*}
$$

and $V(t)$ is an integral over the two-body interaction calculated

Figure 2.31
se: r-ransietent? with the single particle wave Eunctions. ft earn instrant x time one has to calculate a mean field produced by the influencr $c:$ all other particles. As the solutions are steppes ir. time, the selr-consistent field is simply the Hartree-Fock potentia? at the rrorious step. The initial systems are represented b; a product of : irgle particle wave functions calculated in a moving poterむial; after the collision, one needs a mixture of both sets of wave functions.
A compreter iisplay of the density distributions of these calcidations for ${ }^{40} \mathrm{Ca}+{ }^{40} \mathrm{Ca}$ at 8 Mev/nucleon in a head-on collision is shown in Fig. $2.31(\mathrm{a})$, as a function of time. 218 (Because of the symmetry the complete picture should be visualized with an identical pattern below the bottom axis and to the left of the vertical axis.) The contour stripes mark density intervals of 0.0.4 nueleons/fin ${ }^{3}$. We see that taking these caiculations at face vaive (whi sh is premature regarding the state of the art) the nuclei do not fuse, but separate arter $0.65 \times 10^{-21} \mathrm{sec}$ oscillatine in e predominantly octupole mode. In earlier stages of the diagrart. alj the aspects of fission dynamics, including the reck formation and scission, are in evidence. In Fig. 2.31(b), a "trajectory diagram" is constructed showing the final energ and scattering angle for different partial waves. The small waves "bounce" backwards up to $=30$. Some waves fuse and others go into partial orbitine with deflection to nefative angles. (This diagram is considerably more sophisticated than our sketch in Fig. 1.6, but it contains the same information.) As shown in Fig. 2.32, the calculation using TDHF Force III gives a reasonable description ${ }^{2} 21$ of the $\mathrm{Ca}+\mathrm{Ca}$ fusion data.

The possibility that low partial waves do not fuse (i.e., that there is a lower cut-off in partial wave as well as an upper) is an

 'Jhe exritation functions for a particular eraporatiferenre? ${ }^{t}$ i. are shown in tif. ?.33. We recall from the "tin sizorar" c: Eif". 2.9 that this channel shouid be associated with the far. raction encrgi rcizion of the compound nucleus, refardless o: low it war formed, but the evidence in Fie. 2. 3^{3} clearly indicater a shif. ix. the onset of this decay channel for the heavier proiectiles. 'F.f. thresholds are indeed found to be identice' for different. Lise* projectiles, ? O, and Ne.) Figurn ?.A also reminds us that + to lower enerev nart of the curve must be associatel with the jow


```
\prime\prime.
```



```
\because:י." :".. the Enst ln}ies war wronf. There were fier:%
```



```
Ir.ore: - :r- *.et turned un on the way: Without the elusive econ
    frr:%%%:lemests, ierhaps we woulc have missef scme os 1r.e
\therefore,%%& serribei in this lecture-and the next.
```

Sw: in intensive searches in mafor laboratories in the $\because .8 .$, $\because . \therefore \because .:$, ;rmmy and france, no evidence for superheavy elemente in raclear restions hove been found (for a recent review see Mr.fr. ; " \because, (brief successes ${ }^{2 ?}$ in Monazite inclusions were crort-livel. ") "froper limits for the cross sections are shom? on the left side of Fig. 2. 3 h . Most of the limits are obtained o Saiitre to detect any spontaneous fission activity; one eveni wedla correspond to the guoted cross sections, end it is questionalble whether the methods would make us believe one event. Some other experimental techniques, and their atteinable limits, are illustrater cr the ripht. It seems clear thet one must turn to methods caprble of exploring shorter lifetimes and (preferabiy) yielaine higher cross sections particularly since the most.

「7: 5 : 4
$\mathrm{T}_{1 / 2}$ (sec)
: i..........
",mbiart i r.

Firure 2.35

XBL 783 -7447

 + fee : +irn comir i: in units of $t=10^{-2}$ sec. It shows how the cornos:+ c:atem may oroneed towards comound nuclear formation, brecede. a: : c:rreaded ly particle emission, and possibly enting in symaetrin ficsion. isut therp is also a new rath, where the corposite system. nover fusen completelv; rather, it soparates on a relatively short. time scale into two fragments, reminiscent of the initial ions which wert into partial orbit. (Is there a connection with the

$\because: \quad \because \quad \cdot!$


```
!:
```



```
    !!"! ?-ッ,...
```


XBL. 779-2016 A
Figure 3.2

Firure 3.3
XBL 7779762

O. a rrazirir ancile, Coulomb dominated deflection. ${ }^{2 / 6}$ A eritica: marametar is the rehuced Bomerfeld oarameter,

$$
\eta^{\prime}=\frac{\%_{1} \gamma_{2} t^{2}}{\hbar v^{\prime}}
$$

: $:$ rex \because ' $i: ;$ the velocity of the twr ions at the interaction barricr,. The quantity is rourhly the ratio of the Coulomb force $Z_{1} Z_{2} e^{2 \text { p }}$? :nithr Srictional force (responsible for dissipatine the Initia? kinet.i enerfy which is moportional to the velocity and the
 -ivo rino tortiting whereas those witi η ' $\geq 250-300$ do not. Anottror imoortant darameter defininf the characteristic behavior i: the retic. "/Is of the center of mass cnerfy to the Coulomb :arrir.r. Come of the many extensive reviews on the subject of arrory-inciactic scattering are aiven in Refs. 249-254.)
:eforc roceedinf further with the loaical anelytical promictions of the rotating, dinuclear model, we must describe "~rn expreiments relatinf to direct experimente evidence for its viliat. fin important aspect is that these reactions are basically linary prncesces, and this has been established by coincidence reformenents of the projectile and tarfet-like framents (see

inrother consequence of Fig. 3.h is that the direction of rntation tr the quasi-elastic (positive anfle) and deedly-inelastic 'reat. : vo anfle) frapments should be opposite. Further, in a Mascienl picture of a perioheral collision, we expect the anfular ?....e:tur tr be oriented perpendicular to the reaction olane. For tif: quaji-crastic transfer, the semi-classical model discussed in :ertire ? rives some predictions 66,67 of the polarization. :vindatim λ, from the Eq. 1.43 and substitutine. Eq. 1.44 Eives:

$$
\therefore_{\text {eff }} \approx \frac{\lambda_{1} h v}{R_{1}}-\frac{h_{v}}{R^{\prime}} \frac{k_{0} R}{2} \approx \frac{\lambda_{1}}{F_{1}} h v-3_{\text {and }}^{2}
$$

©ince the incident nucleus is left in a hole state of the transferred particles, the sifn of its polarization should just be oposite te λ_{1}. Vanishinf nolarization is predicted at the "optimum Q-value", best satisryinp the semi-classical matchinf conditions:

$$
\partial_{\text {opt }}=-k \pi v^{2}+\left(z_{1} f_{2} f-Z_{1} z_{2}^{i}\right) e^{2} / R
$$

If $Q>Q_{\text {opt }}$, the polarization is aegative and if $Q<Q_{\text {opt }}$, it is positive. ${ }^{\text {pt }}$ (For a more detailed investigation using DWEA theory see ref. 256).

F1,

Finr the. "Or + he svoter at 300 MeV ouasi- and deecly inelarti. uremences are ciearly separated. The polarization ci the framert:

Figure 3.6
x 81 286-9069

Firtre 3.7

Fipure 3.8

Figure 3.9
XBL 777.068

Ir: serrchine fo a fast dissipative mode, we are led naturaily t- think of fiant multipole excitations. The dipole resonance nas = clarartoriatja time of $10^{-\hat{2}} 2 \mathrm{sec}$, and is one of the fastest ret. ... hn: wl: in nuclear physics. There are two characteristic tine: \because ! hera-ion collisions. The first is the time during whicit $+\therefore \therefore \cdot \therefore$ an in contact, i.e.

$$
\begin{equation*}
\frac{.^{-} j}{i}=\left[\frac{\dot{E}}{i}\left(2-\frac{\mathrm{e}}{E}\right)\right]^{-3} \mathrm{MeV}^{-1} \tag{3.3}
\end{equation*}
$$

- : art to Ear a? -we the barrier tric time is of the $\because: \because, \quad, \quad \because y^{-1}$ is $\left(\times 10^{-2 x}\right.$ ser $)$. The secont one measurer the :r.... \because : fat scity or the process, which is moncerned with the
 $\because \because . \because$. . in ionf tohar, mey be ar orier of meani"ude shorter
 an are zas. arine the collision, are therefre limited adia-

 \because-ncon: wore neal with these modes as the mechanism for

Er: • : A Exuerinental noint of riew ore mift.t hope to pet a \because.. a: : $:+$ h. mle a^{n} these modes hy lockine for stracture in the abtu: i.entictic sontinum. So far this has apneared as a reature-
 itrycximate:. : OD MeV, acquired with a magnetic spectrometer,

Fieure 3.10

Even more pragmatically, we might look for the direct excitation of fiant multivoles in inelastic heavy-ion scattering. The probability that either fragment will emerge in a single giant resonance depends, however, on the system. For heary systems, the large energy loss implies a dominance of multiple excitation, but for lighter systems, the shorter collision times and the hifher excitation, lead to stronfer single excitation. The E2 mode has been observed in $16_{\mathrm{O}}+27 \mathrm{Al}, 270{ }^{2} 160+20 \mathrm{E}_{\mathrm{Fb}}, 271,272$ and ${ }^{12} \mathrm{C}$, ${ }^{16_{\mathrm{H}}}$ $+2 \mathrm{r}, \mathrm{Pb} .273$ For the $16_{0}+27_{\mathrm{Al}}$ system, Fig. $3.11(\mathrm{a})$ shows the excitation probability for different regions of θ, together with the ratio (shaded) for excitgtion of the giant quadrupole resonance compared to everything else. ${ }^{274}$ Even for this light system the probability is unexpectedly small, and it remains to be seen if the quantitative modeis $26 \bar{\delta}^{\circ}$ account for the strenath. In (b) is shown a "Wilczynski plot" for the inelastic scattering (compare Fie. 3.4) which also shows the ridge, between -7 and -20 MeV , characteristic of deeply-inelastic scattering and negative angle scatterin.

Finally an example of E2 excitation for ${ }^{16} \mathrm{O}+{ }^{208} \mathrm{~Pb}$ at 315 MeV is shown ${ }^{272}$ in Fig. 3.12. Both at 140 MeV and at 315 MeV , the observed strenath apparantly exhausts the energy weighted sum rule; ${ }^{2 / .}$ therefore the multiple step excitation of the deeplyinelastic continuum (a cross section of 400 mb at $135 \mathrm{Mev}^{275}$) does not reduce the single excitation, possibly raising an element of doubt over the role of these resonances for the damping. Further comparisons at different energies are required. An interestinf feature of Fig. 3.12 is the appearance of higher lying structures. The frequency of oscillation of multipole modes can be derived ${ }^{2}$ frgm the liquid drop model to depend on the multipolarity as Q $3 / 2 / \mathrm{A}$: for quadrupole oscillations $\omega_{2} \cdot h \approx 0.8 \mathrm{kev}$. An evaluation of ω as a function of ℓ and A, tells us that the associated

x81 706-50379

Fifure 3.12
velocities, $v=\omega \cdot R$, will cail for collision speeds in excess of 2c l:evif for the excitation of higher lyine multipoles, which ma: therefore be appearing in Fig. 3.12. (The fiant quazruccle rescrance corresponds to the bump at 10.8 MeV.$)$

Mow let us turn to the alternative enerey dissirration werhan: vis sirple particle motion. In this picture, as the two naniei rotate in close contact, an exchange of nucleons takes rlace trwort. the window that opens up in the neck between them. consider the nuelei as containers in which the nuclei have a randor raticr. A. ru-leon in nucleus ? can escape throurh the neck and pe arsorle. a, nocleus 2, and vice yersa. i.et the area of the intersacen: the composite system be $A(t)$, and the window intefral in the reantion,

$$
\overline{\vec{A}} \Delta t=\int_{\text {orbit }} A(t) d t
$$

The probability per second that a nucleon crosses the interface :rn 1 to 2 is $n_{12} A$ and similarly from 2 to 1 is $n_{21} A$. These retes depend on dynamics and are functions of time. This denensence will be weak. if the number of transferred nucleons is much less than the total. So say $n_{i k}$ is constant. Then the variance of the nimber transferred is:

$$
\begin{equation*}
\delta n=\left[\left(n_{12}+n_{2]}\right) \int A(t) d t\right]^{\frac{1 / 2}{2}} \tag{3.5}
\end{equation*}
$$

while the flow of mass from 1 to 2 is

$$
\begin{equation*}
(n)=\left(n_{12}-n_{21}\right) \int A(t) d t \tag{3.r}
\end{equation*}
$$

and the normalized distribution of the number transferred mifht te expected to be a Caussian,

$$
P(n)=\frac{1}{\sqrt{2 \pi} \delta n} \exp -\left[\frac{(n-(n))^{2}}{2 \delta n^{2}}\right]
$$

INO a good fuess for the transfer rate is:

$$
n_{12} \approx n_{21} \approx \frac{1}{\zeta} \rho v
$$

where g_{2} is the nuclear matter density, 0.17 nucleons/r, and $\because \geqslant$ 0×10^{22} is the typical speed of a nucleon inside the nurleus. Nitt. an interrace area of $\bar{A}=10 \mathrm{~m}^{2}$ and a tyDigal direçt reactior time, of $t \approx 5 \times 10^{-22}$ sec for the collision of 40 Ar or $\mathrm{SO}_{\mathrm{Fi}}$ at $2=$ 'ev, ${ }^{177}$ we ret हn ≈ 5. The z and A distribution of Erartients in this reaction are illustrated in Fif. S. 13 (which were obtaine. ky con:binine the 2 and A information of Fip. 2.16) and we see that the spreas in A values is indeed the crder of $\delta \mathrm{n}$. (It is difricult tc see the Gaussian orofiles in the $2-D$ rot, but such indees are the ctserved shaves.)

Figure 3.13

3.3 More Formal Theory

The theory presented here will be only slightly more Formal, with an emphasis on the extraction of physical quantities from the data. Fiforous approaches are described in other lectures of this School. The generalization of the discussion in the previous section to diffusion processes in the rotating diquclear system. leas to the Fokker-Flanck equation $251,253,277,270$ for the doDulation distribution of a macroscopic variable x as a function or time, $P(x, t):$

$$
\begin{equation*}
\frac{\partial F(x, t)}{\partial t}=-v \frac{\partial P(x, t)}{\partial x}+D \frac{\partial^{2} P(x, t)}{\partial x^{2}} \tag{3.3}
\end{equation*}
$$

the solution of which is:

$$
r(x, t)=\frac{1}{\sqrt{4 \pi T h}} \exp \left[-\frac{x-v t)^{2}}{4 D t}\right]
$$

Fac rear value of the distribution moves with time at constant $\because e ?-\therefore i t y$, and the variance $\sigma^{2}=\langle x-\langle x\rangle\}^{2}=2$ pt increases linear? with time (see Fifo. 3.14). The transport coefficients v and B are fern.. ac the rift and diffusion coefficients. The Thing of the curve is Given from $\Gamma^{2}=16 \mathrm{l}_{\mathrm{n}} 2(\mathrm{Dt})$. Amonest the macroscopic :ariatles which have been measured are kinetic energy, the \because ' :erne n? freedom and the mass asymmetry degree of freedn: $\therefore-A_{2}+A_{Z}$.
$\therefore \therefore$ an example of how those methods work, 279,280 consider the chare distribution as a function of angle. This can be derived

Figure 3.14
from an analysis oí distributions of cross sections such as Fiv． S． 3 for each 2 ．They would be expected to have faussian distribu－ tions，

$$
\Gamma(z, t)=\frac{1}{\sqrt{4 \pi D_{z} t}} \exp \left[-\frac{\left(z-z_{o}-v_{z} t\right)^{2}}{4 D_{z} t}\right]
$$

where $z-z_{0}$ stands for the number of protons transferrei durife the interaction time t ．The auantities v_{z} and D_{z} represent avrrare proton drift and diffusion coefficients．In order ta relate arale information to time information we write，

$$
\begin{equation*}
r_{\text {int }}=\frac{1}{\bar{\omega}}\left(\theta_{E r}-\theta\right) \tag{3.22}
\end{equation*}
$$

where $\tau_{\text {int }}$ is the interaction time for the rotating dinuclear zyster，rotatine with mean rotational rrequency \bar{w} ．（The rotatior is meesured from the arazing anele．）Fiow，

$$
\bar{\omega}=\frac{h \ell}{y}
$$

where f is the moment or inertia of the system，and

$$
\bar{k} \div \frac{2}{3} \frac{Q^{3}-Q_{\text {crit }}^{3}}{Q_{r}^{2}-Q_{\text {crit }}^{2}}
$$

where we attribute deepl \forall－inelastic coilisicns to the tard n：rartif：

waves from ℓ_{8} crit (inside of which fusion takes place) to ℓ_{g} (see
Fig. 3.1).
For the reaction Ar + Th depictei in Fig. 3.3 at $388 \mathrm{Mev}, Q_{E}$ and $\mathbb{C}_{\text {crit }}$ have been determined as 222 and 94 respectively. ${ }^{2 i} 3^{\circ}$ For \ddagger we can assume rifid body rotation of the dinuclear commlea:

$$
\begin{equation*}
f=\frac{2}{5} M_{1} R_{1}^{2}+\frac{2}{5} M_{2} R_{2}^{2}+\mu R^{2} \tag{3.15}
\end{equation*}
$$

The plot of Γ^{2} versus θ in Fig. 3.15 can then be regarded as a olct of Γ^{2} versus $\tau_{\text {int }}=t$, and the slope $\Gamma^{2} / t \propto \mathrm{D}_{\mathrm{z}}$. In fact, the sane value of D_{z} is derived for the different reactions studied at different energies (on the figures, the t-scale is different for tie dilferent reactions, since this is transformed by $\bar{l} \bar{l})$. The de: ived value was $D_{z} \approx 10^{22}$ (charge units) ${ }^{2} / \mathrm{sec}$. other quantitigs can be determined by similar analysis. One finds typically: ${ }^{\text {a }}$

$$
\begin{aligned}
\text { Encray drift coefficient } v_{E} & \approx 4 \times 10^{23} \mathrm{MeV} / \mathrm{sec} \\
\text { Energy diffusion coefficient } D_{E} & \approx 4 \times 10^{24}(\mathrm{MeV})^{2} / \mathrm{sec} \\
\text { Charge drift coefficient } v_{z} & \approx 10^{21}(\text { charge units) } / \mathrm{sec} \\
\text { harge diffusion coefficient } D_{z} & \approx 10^{22}(\text { charge units) })^{2} / \mathrm{sec}
\end{aligned}
$$

These values are not expected to be verv accurate due to the crude methor of estimating the interaction time. In a more refined anproach 28 a better relation between impact parameter ($\equiv \ell$) and scattering angle is derived by constructing a proper deilection function. Enerey and angular momentum dissipation are taken into account. Inter \rightarrow tion times calculated in this way can vary ky a factor of 3 from the simple estimate.

A characteristic of the deeply-inelastic collision is the large energy damping. This energy loss also gppears to take rlace rapidly while the two icns are in contact. On a microscopic picture the energy loss could be mediated by particle-hole excitation and also by transfer of nucleons between the collidine ions. Such a nucleon, with mass m, deposits a momentum $\Delta p=m|\dot{r}|$, where \dot{r} is determined from the energy of the system prior to the ansfer, and the resultant eneray loss is therefore proportional to :'ie energy available ($\left.\delta \mathrm{E} \propto(\Delta \mathrm{D})^{2}\right)$. This arpument justifies the intrc duction 8 a frictional dampine force proportional to the velocity $279,283-285$

$$
\begin{equation*}
F_{t}=-k v \tag{3.16}
\end{equation*}
$$

Then we can write for the rate of energy loss:

$$
\begin{equation*}
\frac{d E}{d t}=\mu v \frac{d v}{d t}=v \cdot F=-k v^{2}=-2 \frac{k}{\mu} E \tag{3.27}
\end{equation*}
$$

Interratinf the expression,

$$
\begin{equation*}
\ln \left(\frac{E_{o}}{E}\right)=2 \frac{k t}{v} \tag{3.10}
\end{equation*}
$$

How we have just shown that a time scale is established by the relation $t=\Gamma_{z}^{2} / 2 D_{z}$, and therefore we expect that there should be a linear relation between $\mathrm{R}_{\mathrm{n}}\left(\mathrm{E}_{\mathrm{O}} / E\right)$ and Γ_{2}^{2} : the gradient $\mathrm{Vi} \in \mathrm{I}$ ds 280 \because Yue for $k / \mu D_{z}$. As Fig. 3.16(a) dramatically demonstrates, 280 there certainly is a clear correlation between the width of the charre distrihution and kinetic enerev loss, which is shown on this finue for successive 50 MeV wide bins in the reaction of $\mathrm{Bi}+\mathrm{Xe}$.

In Fif. $3.16(b)$, the values of σ_{z}^{2} from Fie. $3.15(a)$ are flottec as a fanction of che interaction time $T(\mathbb{C})$ in units of $10^{-22} \mathrm{sec}$: ar. a arpear to increase linearly, i.e., $\sigma_{z}^{2}(Q)=2 D_{z}(Q) \tau(Q)$. The time reale on the figure was derived from the deflection function. Oris ieflection function was constructed by asslmine a share catcr. mote], where the cross section up to l_{j} is giver bv $\sigma_{j}=$ $\left.7^{5}(4,)^{+!}\right)^{2}$. Then using the experimental results on the cross sertion as a function of kinetic emergy loss, the anfilar momentir. cir le related 286 to the enerey loss by:

Figure 3.16(a)

st: Mn

Figure 3.16(b)

$$
\begin{align*}
& \text { Fifure } 3.16(\mathrm{c}) \\
& Q_{i}=\left[\left(\ell_{5}+1\right)^{2}-\frac{\Delta \sigma_{i, j}}{\pi x^{2}}\right]^{\frac{1 / 2}{2}}-1
\end{align*}
$$

where $\Delta \sigma_{i j}=\sigma_{j}-\sigma_{i}$ is the cross section in an energy window between E_{i} and E_{j} : The average scattering angle for a particular energy loss is $\begin{aligned} & \text { is } \\ & \text { a } \\ & \text { experimental quantity (see FiE. 3.4), so the curve }\end{aligned}$ cf B_{B} versis ℓ can be deduced as in Fig. 3.16(c). The angular momentum dependent interaction time is then calculated from the expression 287,288

$$
\begin{equation*}
\tau(\ell)=\frac{\Delta \theta(\ell) \mathscr{(Q)}}{h \ell} \tag{3.20}
\end{equation*}
$$

where $\Delta \theta$ is the difference between the Coulomb deflection angle (dashed) and the actual reaction angle. From these results we extract the values of Γ_{2}^{2} (the FWHM of the faussian functions in Fig. 3.16(a)) as a function of E and construct the plot shown in Fig. 3.17, which is indeed remarkably linear. Since we previous? y deduced a value of D_{2} we can now use these results to calculate the coefficient of friction $k=0.6 \times 10^{-21} \mathrm{Mev} 3 \mathrm{sec} \mathrm{Im}^{-2}$. (A much more sophisticated treatment involving deformation is fiven in Ref. 280.)

It $t_{i}{ }^{s}$ instructive to see how the large value of k can be understood, ${ }^{276}$ using the simple model of matter transfer discussed earlier in section 3.2. Suppose that the speed of nucleus 1 relative to 2 is tangential and equal to v_{t}. The rate of nucleon "hits" from 2 to 1 through the window is:

$$
\begin{equation*}
\frac{d n}{d t}=\frac{1}{2} \rho v A \cos \theta \rho(v) \tag{3.21}
\end{equation*}
$$

where A is the inclination of the nucleon speed v, of distribution $p(v)$. Each nucleon of mass m deposits the excess momentum $-m v_{t}$, and therefore the average force acting in the tangential direction is:

Finure 3.17
σ_{t}^{2}
xacimpion

$$
\begin{align*}
F_{t} & =-\frac{1}{2} m \rho A v_{t} \int_{0}^{\pi / 2} v p(v) \cos \theta \frac{d S}{2 \pi} d v \tag{3.2?}\\
& \approx-\frac{1}{4} m \rho A v_{t} \bar{v}
\end{align*}
$$

Ty identifying this expression with the fruction force $-k v$, we derive that

$$
k \approx \frac{?}{L} m \rho A \bar{v}
$$

Assume, as in Equ. 3.5 , a window area of $A \approx 10 \mathrm{fm}^{2}$, an the averare nucleon speed $\bar{v}=3 / 4 v_{F} \approx 3 / 16 \mathrm{c}$ and the nucleon density of nuclear metter, $0.1^{7} \mathrm{fm}^{-3}$. Then:

$$
\begin{equation*}
\mathrm{k} \approx 200 \mathrm{MeV} / \mathrm{sm} \cdot \mathrm{e} \tag{7.2!}
\end{equation*}
$$

i.e., $0.7 \times 10^{-21} \mathrm{MeV} \sec \mathrm{fm}^{-2}$, ir. good agreement with the value extracted from experiment: In fairness, however, we must note that comparable agreement can be reached 90 using the relation,

$$
\begin{equation*}
\frac{d E}{d t}=\frac{d E}{d n} \cdot \frac{d n}{d t}=\langle\Delta F\rangle \frac{2}{h_{1}} w \tag{3.25}
\end{equation*}
$$

where (ΔE 〉 is the averafe loss per collision, taken as a typica? piant resonance excitation and W is the imacinary optical potential, deduced from direct reactions (Lecture 1).

A more careful examination suggests that the afreement with
the one body dissipation mechanism may be less than perfect. ${ }^{291}, 292$ Remember that the basic tenet of this model is expressed via the relation: ${ }^{293,244}$

$$
\begin{equation*}
\delta E=\frac{m}{\mu} E \tag{3.26}
\end{equation*}
$$

where $\delta \mathrm{E}$ is the loss of kinetic enerey per nucleon exchange and E is the available energy at that time. (This equation is quite ennsistent with our earlier equations. Thus iis equ. 3.17 we car write $d F / \mathrm{dt}^{2}=\delta \mathrm{E}$ an/dt where $\mathrm{dn} / \mathrm{dt}$ is the nuclear flux, and by the analysis leading to equ. 3.22 this is just $2 \mathrm{k} / \mathrm{m}$; hence the above resuit for δE. The validity of the equation relies on weak couding os intrinsic and collegtive degrees of freedom, an assumption that
 mental data (Fig. 3.17) which essentiall, gives energy loss as a function of σ_{2}^{2}. Fegarding the nucleon exchange process as a random walk process, the number of protons exchanged is just $\mathrm{H}_{2}=$ o_{Z}^{2}. The experimental observation of the fast equilibraion of the wass to charge asymmetry degree of freedom indifates that neutron and proton exchange rates must be very similar ${ }^{242}$ and therefore the total number of nucleons exchanged is $\mathrm{N}=(\mathrm{A} / 2) \sigma_{2}^{c}$. Differentiation of the curve or $E v \sigma_{2}^{2}$ with respect to $(A / Z) \sigma_{2}^{2}$ leas to $\delta E=$ dE/A:I, which is plotted versus $\frac{\mathrm{TH}}{\mathrm{H}}$ in Fig. 3.18. The dashed line represents the one body dissipation of Equ. 3.26 and it arpears that this mechanism accounts for only 30% of the energy loss. Sefore attributing the additional loss to other mecherisms sush as the fast collective dissipation, discussed in section 3.1, the whole velidity of the analysis must be examined. It has been vointed out, for example, that the relation between anfular momentur and enera: implied hy eqn. 3.19 is oversimplified, 296 and a more ricorous treatment may remove the discrepancy with the one body dissidation mode?.

Figure 3.18

Figure 3.19
The simple approaches have ncnetheless given great encourafewent to the researchers on surerheavy elements, as we mentioned briefly at the end of Lecture 2. It has been found that the curve of energy loss v. $\sigma_{Z}{ }^{2}$ (represented in Fig. 3.19, with a disferent orinate from Fig. 3.17) is not universal. For $U+U$, as shown in the right hand portion, a much wider charge distribution is Sound. ${ }^{237}$ This observation has important repercussions for makine suderheavy elements, where the problem is to keed the excitation enerey \%ow enough for survival against fission. Consider 30 as an
 $\Gamma_{f}\left(\Gamma_{f}+\Gamma_{n}\right)$ of 50% the evecitation energy of the superheavy must ke atout 30 MeV . Assuming partition of the energy accordine to the mass (as we justified in Section 3.1) the Yb nucleus then carries 18 lieV and the total excitation energy is 48 MeV . The q-value for the reaction is -55 MeV , so we can tolerate a total enerry loss of 103 MeV and still have reasonable survival probability. Fror Fig. 3.19, the associated charge variance is $\sigma_{2}^{2}=14$. The cress section can then bo calculated from (114) $=0_{0}(92) \exp \left(-(\Delta Z)^{2} / 2 r_{z}{ }^{2}\right)$ for a total kinetic energy window of $\pm 10 \mathrm{MeV}$, $\sigma_{0}(92)$ is 4 mt anc with $\Delta z=22$, we obtain $\sigma(114)=10^{-34} \mathrm{~cm}^{2}$.

The hope of reaching the Holy Grail of superheavy elements will no doubt stimulate more accurate calculations of the production cross sections. There is much to be done. The mechanisms of dissipation we have discussed may be adequate for the early stages of deeply-inelastic reactions, where the window is open, i.e., whenever there is solid contact between the ions. There is also "two body" friction, analogous to viscosity in liquids. ${ }^{297}$ Mort Reneral?y, a frictign force of the type we have been discussinf can be represented ${ }^{298}$ as:

$$
F=-k \int d^{3} r \rho_{1} \rho_{2}|\dot{\bar{r}}|
$$

where ρ_{1} and ρ_{2} are the density distributions of the two nuclei and the intefral is taken over the overlad refion. The rate of dissipatic: has also been calculated using a orcximity formalism (rather similar to our discussion of proximity potentiais in Lecture 1), with the result $294,299,300$

$$
\frac{d E}{d t}=4 \pi \frac{n_{0}}{\mu} \frac{R_{T} R_{P}}{R_{T}+R_{P}} \quad b x\left(\xi_{0}\right) k
$$

where $n_{0}=2.5 \times 10^{-23} \mathrm{MeV} \cdot \mathrm{sec} \cdot \mathrm{fm}^{-4}$ is the cransfer flux density, R and b are the nuclear half-density radius and diffuseness, and $x\left(\xi_{0}\right)$ is a universal flux function. An arplication or this formalism to the above reactions for irr and Xe on heavy tarsets vields ${ }^{24}{ }^{2}$

$$
\frac{I}{E} \frac{d E}{d t} \approx 10^{21} x\left(E_{0}\right) \approx 0.7 \cdot 2.1 \times 10^{21} \mathrm{sec}^{-1}
$$

which is actually in very good agreement with the value $=: 2 \mathrm{~K} / \mathrm{i} \approx$ $2 \times 10^{21} \mathrm{sec}$ which follows irom Fig 3.17.

3.4 Dynamical Aspects

The previous section was intended to give the flawor of the approaches to unaerstanding the diffusion processes in deeniyinelastic scattering. The evidence stronaly suffests the idea c f an intermeãiate comolex consisting of two well defined rrapen*s in ecntact, undergoine equilibration, and the time constants of these relaxation processes have been detersined. Now we onsider the transfer of orbital angular momentum into the rotation of wie two fragments constitutine the comolex. The anrular momentur. transfer induced by the frictional forces passes throurh severa: stages. 298 Inisirily, a slidinf friction term makes the two bodies start to yoil on each other, and then a roliine friction term causes the two bodies to ret stuck in ririd rotation.

At the onset of slidin, the moment of inertis characterisinf the system js simply

$$
f_{\mathrm{NS}}=\mu \mathrm{R}^{2}
$$

Where μ is the reduced mass and R the distance between the centers of the fragments. For the sticking configuration (usinf the theorem of parallel axes) the moment of inertis is

$$
f_{5}=u^{2}+f_{2}+f_{2}
$$

$$
i_{i}-\theta_{a}=c \theta=\frac{\left(f_{s}-\delta_{m}\right)}{g_{n}} s_{i}
$$

which armorer s. intrinsic ar in o: the frarmetas. For exon mar.
 the mas asmanery, as show t below:

 have reached the sticking confiruration from an analysis of the final channel kinetic enerrier. The total kinetic energy of a rots tin- system at scission is riven by:

$$
E_{f}=V_{c}(E)+V_{N}(F)+\frac{L_{r}\left(L_{f+1}\right) n^{\prime z}}{2 \mu R^{2}} \quad \therefore z \cdot
$$

In classical friction models it is usual to rewrite the last ter. as $r^{2} \mathrm{Li}(\mathrm{Li}+1)_{1}^{2} / 2 \mu R^{2}$, where f is a numerical factor depending - :.
 and the value of f often leads ${ }^{303}$ to the experimental E_{f} values; using a value or $R=R_{\text {crit }}$ as discussed in lecture $?$.

A better test is to measure Δl from the γ-ray multiriicity associated with different framents arising from the decay of the complex. ${ }^{304}$-306 as discussed in Lecture 2 it is reasonable to assume that the intrinsic angular momentum is just twice the

 :孔"rintri arfle: the quasi-elastic componert disamoears ar: tre

 $\because . \bar{\prime}$: :or the deetly-inelastic comnonent. For comoariscr tio Fre:ictri velues for the cases of rollinf and stickinf are irem: :retwr \because tulues of entrance channel anfuler momenta (50\% ans oh T.f. \because ave $\mathrm{O}^{\prime \prime}$ is expectec from the sum of the known evaporaticr.
 ar.: the ieetly-inelastic cross section of 400 mb , usinf eiar

 \because

$$
A Y=\frac{2}{2} \rho_{i}=\tilde{c} O h \doteq 2 \because Y
$$

At 90°, where the rotatinn dinuclear complex has remaine: in : ant $\because *$:or a Jori time, the stickinr limit appears to we reache \mathcal{A}, witi: : hetween 50 and 70 . At more forward anfles the framments arrea: tr, ke still rolliur on each other. These data furnish strong evirience that the intermediate complex approaches ripid rotatio. : : a time comparable to the rotation period.
h similar experiment has been conducted 307 on the much sen:ie:
 hand side (quasi-elastic transfer) the multiplicities reflert simpie transfer reactions where the anmular momentum is trarsie?res by particles without the formation of the dinuclear complex.

Figure 3.21

ant \because is the incident mass. This formin leacs to the charentenistic V-shape in the figure. In contrast io our above exarcir.,

 is ts assume that the low 7 framents are preferential? \because nruine: :
 cirve: of potential enerry versus the 7 of the frarmer. for : similar sysien. in Fig. 3.22. At the Z of entrance channe? 'winne the potential is scaled to be zerc), tho potential s?rer tivar:symmetry fror small anfular momentum, becorine prorrescive? \because r.en: to.

Fipure 3.22

Q-Velue MeV
X 8 CL 786-9063

Figure 3.23
roxila:ion of framments much lighter than the projectile, a socalied "Eractionation of the angular momertum distritutic:."

Clearly a better test of the theories will cone fror measurjnit hizcer order quartities in the experiments. For exampie, a reser: experimerit ${ }^{308}$ with 86 Kr on 144 Sm at 490 KeV , in aditio. \because reascri: the mear mutiplicity \{M\} of γ-rays in coincjdence witt. gasi-arj deeply-inelastic scatterine, also measured the distribution ceriotpiisit: by using an array of γ-detectors (as we describe: in jeatiore a $\}$, when quantities such as the standard deviation $v=\langle\because\rangle-$ $(\because)^{\frac{T}{r}}$ ana the thewness $\left\{\left(M-(N)^{3}\right) / v^{3}\right.$ are accessiole, exarles: which are flotted in Fig. 3.23. The left part shows (\because) ard $v a$ a function of reaction Q-value. The right part shows th: siserness. For G-jalues close to zero, the shewness is positive indicatirr a preponderance of low ! ever.ts, with the reverse in the deepl: i:.elastic region. On a stickine model is it not possible ts ret the correct values of $(K), v$ ard the skewness simultaneously. mincthe: piece of experimental fine tuning comes from measurement of γ-ra:s ta discrete final states. These dete:mine the degree of alienme:. of the final rragments 309 wich can bs commared with the presicticna of the sticking model.
fnother classic experiment has capitalized on the fission decay mode (rather than γ-decay) which is dominant in heary systews. The experimental arrangement 310 in which $209 \mathrm{Bi}_{\mathrm{B}}$ was rombarded witt. $610 \mathrm{MeV}{ }^{86} \mathrm{Kr}$ ions is shown in Fir. 3.24(a). The ancular correlatiar. of one of the fission frapments, in coincidence with a rrofectilelike framment, was measured both in-plane and out-of-plane. Classical arfuments tell us that the fission framments shoula be most intense in the plane, if the tarpet-like frafment has a lare anfular momentum perpendicular to the reaction plane. The out-stolane correlation for the fission framents depends on the guantur number K , the projection of the total anfular momentur on the symmetry axis of the fissioninf, nucleus. Then,

Figure 3.2h(a)

- $41 / 1 / 3045$

Figure 3.i..ir.;
where

$$
\because M K(\phi) \text { a }\left(22^{\top}+1\right)\left|a_{\operatorname{TK}}^{\top}(\phi)\right|^{\prime}
$$

 finding the system with these quantum numbers. plo. (ex. ha determined from independent fission experiments. hs a first estimate we can also assume complete alirnment, $\mathrm{En} \mathrm{f}(\mathrm{Z})=-\left(\mathrm{T}^{1}\right.$ with $M=J$. To determine $P(T)$, the probability that a tare.-? ak, frament has angular momentum , T, is the foal or the experiment. Assuming that the amount of angular momentum transferred, is is proportional to the initial orbital momentum 8 ,

$$
?(3) \propto(2 J+j)
$$

 The distribution has an upper limit $J_{\max }$ to be determine i.

The results are shown in Fir. $3.24(b)$ and indicate that $J_{\max }=58 \mathrm{~h}$, from a simultaneous fit to the in-plane ane cot-or-slane correlations. (Note that a recent study of sequential fission in a similar reaction attributes the out-of-plane distribution to the deeply-inelastic process itself by the excitation of collective bending oscillations. ${ }^{311}$) For the $86_{\mathrm{Kr}}+{ }^{209} \mathrm{Bi}$ system, the fraction of the initial coital anfular momentum transferred is $0.29 \ell_{j}$ for sticking. The value of ℓ_{i} in this reaction is 2351 and therefore the measured value of $J=58 \mathrm{~h}$ is close to the sticking limit of 68 h .

This experiment is a refinement on the previously described γ-ray experiment, because in principle it could determine the angular romenturi asncciated with one of the fragments. Now the anrular:.srentur. is divided between the frapments as follows: 298

$$
\begin{align*}
& \because \text { stickinr: }\left(\frac{J_{1}}{J_{2}}\right)=\left(\frac{M_{1}}{M_{2}}\right)^{5 / 3} \\
& \because \text { rolling }:\left(\frac{J_{1}}{J_{2}}\right)=\left(\frac{M_{1}}{M_{2}}\right)^{1 / 3}
\end{align*}
$$

As the asymnetry becomes larfer, this becomes a hivhly sensitive "ethoi for distirfuishing between rollinf and stickine.

The seperation of γ-ray multiplicities betwen lirht and bear: \because :ar.o:.ts is possible in principle by measurinr ${ }^{312}$ the enerf: as if: : as the multiplicity. Then we can write:

$$
\begin{aligned}
& \left\langle\because_{\gamma}\right\rangle_{: ~}\left(\bar{r}_{\gamma}\right\rangle_{Z}+\left\langle M_{\gamma}\right\rangle_{L}\left(E_{\gamma}\right\rangle_{L}=\left\langle M_{\gamma}\right\rangle\left(E_{\gamma}\right\rangle \\
& \left\langle\because_{\gamma}\right\rangle_{U}\left(\because Y_{\gamma}=\left\langle M_{\gamma}\right\rangle\right.
\end{aligned}
$$

Ex: extract $\left\langle M_{\gamma}\right\rangle_{H}$ and $\left\langle M_{\gamma}\right\rangle_{L}$. The results for $237 \mathrm{MeV}{ }^{40} \mathrm{~A}_{\mathrm{H}}+{ }^{89} \mathrm{Y}$ $\therefore \because \in$ a ratio of $\left\langle N_{\gamma}\right\rangle_{L}\left\langle M_{\gamma}\right\}_{1}$ in the region of 12 for framments far rerovec from the initial channel. By the above equation this recult implies an approach to the sticking limit.

U'timately it will be necessary to make a rull solution of the dynamical equations of motion with conseryative and dissipative forces Cor comparison with the experiments. 298,313 For the $\because r+E_{j}$ case discussed above these equations have been solved usinf a tanfential friction component which was weak compared to the radial component 314 and resulted in a total ancular momentum transfer to both fragments of only 38 h , considerably below the experimental value.

3.5 The Limits of Space and Time

We have seen that in deeply-inelastic scattering, macroscoric concepts such as viscosity and rriction, are of great current interest. On the other hand, in conventional nuclear physics, the statistical model, which assumes thermodynamical equilibrium, has been feneralized to include pre-equilibrium behavior. 315 since enerry dissipation inclußes not only viscosity but also heat
conductivity 16 , ${ }^{i t}$ mav be possible to make a link betwern the twr approaches. 316,371 A new reneration of experiments is aiterd at. st:idyin the formation of "hot-spots" in nuclear matterf, "his ocr. cept, is very old. To quote from an historical paper, 3 H . If ${ }_{2}$ nuclear particle of enerey E, comparable with the nuclear intoraction enerry, strikes a nucleus, it will lose practically all itenerfy in the 'surface layer' of the rumess. This prostse wi:? cridar. intense lacal heating of the part of the nucleve atruct. "he 'hest' will then pradually spread orar the whale nurima." \therefore anculation ${ }^{319}$ of the heat condictivity, specific heat for. or riclear matter from a Fermi ras molel was al waly completmi ir. $\because 9.2$.

First gensifer some typical time scaler ne teewly-irelantir wotminna. jot Prr the rotational motion, we have an anr:iar re? ify ath an ancle of rotation 0 throurh which the Arareares rermit. ir. m-r.tart. Thererore:

$$
T_{:+} \approx \varepsilon / w: \quad \text { y... }
$$

ソinamerifret, Q ari f ran be estimatat, an we ran an,

$$
u=\frac{2 E_{i n t}}{h R} \quad \text { or } \quad u=\frac{h R}{f}
$$

to crtain w. For examble, a reasonatle estinate or k ic $; \because f_{i}$ corrermonine io rolline framents, anc $E_{\text {rot }}=$ Erit - Erom $+\cdots$.
 $Q=150$ 'see discussion of Equ. 3.15) so $w \approx 3 \times 1 n^{21}$ reter and $\tau \Rightarrow 3: 0^{-22}$ ses for a tyrical rotation antle of 1 rayiar.

We gan alsc est:mate the time it takes an equilitratei exat. \ddagger
 of corround nuclei for $A=20-100$ vields: 111

$$
\Gamma(\because e V)=] 4 \exp \left(-4.69 \sqrt{A / E^{*}}\right) \quad(3 . \therefore
$$

Felatine the temperature $\overline{7}$ to the excitation enerry $\mathrm{r} y \mathrm{r}:=\mathrm{a} \mathrm{Y}^{\prime}$, where a $\approx A / 8$, we have

$$
\tau_{\text {particle }}=0.5 \exp (13 / T) \quad \text { (ミ.... }
$$

where T is in MeV and T in units of $10^{-22} \mathrm{sec}$. An excitation energy of $3,25 \mathrm{MeV} / \mathrm{A}$ yields a temperature of 5 MeV and a lifetine $0 \therefore 7 \times 10^{-22} \mathrm{sec}$. If local temperatures of this marnitude should be produced in heavy-ion collisions, then the lifetime for particle emission is so shor't that the rotating dinuclear complex will emit particles before it scissions. We say local temperatures because
to ${ }^{1}$ al center of mass energies in deeply-inelastic experinents are < 20 MeV per projectile nucleon, and therefore the achievement or, say, $3 \mathrm{MeV} / \mathrm{nucleon}$ in some region requires a concentration of enerey intr a "hrt-spot."316-318

Delving slightly deeper we can write the relaxation time for issifatine the initial energy deposition as: ${ }^{316}$

$$
\begin{equation*}
\tau_{F}=\frac{R^{2}}{X}=\frac{R^{2}}{v_{F} \Lambda}, X=\frac{K}{\rho c_{p}} \tag{3.+5}
\end{equation*}
$$

Were V_{y} is the Fermi velocity, A is the mean free path for nucieorreclecn scattering, K is the thermal conductivity, ρ is the density an: cy the specific heat of nuclear matter. Expressions for K and $=_{1}$ can be derived from the Fermi gas model. 3l0, 200 Thus,

$$
\begin{equation*}
F=\frac{7}{-\varepsilon_{\pi} \sqrt{2}} \frac{\varepsilon_{F}^{\overline{2} / 2}}{m m_{2} T C_{Q}}, c_{P}=\frac{I_{2}}{\frac{\pi^{2} T}{\varepsilon_{F}}} \tag{3.15}
\end{equation*}
$$

Whare ${ }^{\circ} \mathrm{F}$ is the Fermi energy, T is the temperature and \hat{C} is the e.fecti*f nucleon-nucleon cross section. ($\approx 27 \mathrm{mb}$). For a temperature of $\approx \frac{1}{2} \mathrm{MeV}, \mathrm{T}_{\mathrm{R}}$ is $4 \times 10^{-22} \mathrm{sec}$. From the above equations, τ_{5} varies us T^{2} (essentially because the mean free path decreases is more nucleons are excited above the Fermi level), and, at high encurt terferatures, becomes loneer than the time for particle emissinn. These trends ere illustrated in Fie. 3.25 from an ald calcuiation 221 (left hand side) and a recent calculaticn. 322 Ta botr. calculetions as the incident energy (temperature) increases e e reack. y loint where the compound nuclear lifetime is less than the

Figure 3.25(a)

Figure $3.25(\mathrm{~b})$
 (Also shown on the right are the passinus times for two $A=50$ rus.e: , the nucleor-nuclean collision time.) The critical temperature appears to be around 8 MeV 323 . (We shall return to this towprestate in Lenture 1.)

Ceveral coincidence experiment; have recently letn percror.: with the feneral philosophy directed at observine hre-cpote.
 particles (e.e., alphas) in coincidence with the projecti:--like heavy frament emitted in quasi- or feeply-ineleatic scatierim: \boldsymbol{u}^{*}, a fixed ande A typical example 325 is shown in :jr. ject for reactions of $160+20 \mathrm{BPb}_{\mathrm{Pb}}+140 \mathrm{MeV}$ and 315 KeV . For a variat. projectile fragments, the correlations are very narroa and peak rourhly in the direction of the fragment (markei with an arrowi re cotweer this direction and the beam axis. !:ste that tra charre:
 reak, $a z$ expectea, but the other channels (e.r. $14+\pi$? riva \because or: zibilar overall distributions. The fact that all these ptottar...: Ere reminiscent of the decay of an excited projectile-ike crarrex* is also confirmed by a kinematic nontour plot. This is shem. i:.
 to 10_{E} arid a fracments. The two islande are consistent wi: t ar- \because of a preframent ${ }^{14}!0^{*}$ at an excitation of ≈ 1 lev (deroter: \because the cotted kirematic constraint) travelinf with a kinetio enerm \because ! $\approx 55 \mathrm{HeV}$ (dashed lines).

Firure 3.26

Figure 3.27
MaL 7ES-968
A possible interpretation of similar correlations of α-particles observed in reactions of $325+197_{\text {Au at }} 12 \mathrm{MeV} /$ nucleon ${ }^{327}$ is civen in Fig. 3.28. The ${ }^{32}$ S moves along the Rutherford trajectory up to the distance of closest approach. Then it enits an alpha from the surface in anypossible direction. The subsequent motion of the $\alpha,{ }^{28} \mathrm{Si}$ and 197 Au nuclei in the Coulomb riela is calculated numerically, generating two peaks in the correlation. Only the left hand peak appears in the data, which is associated with the region of the projectile between the prodegtile and target (i.e. a localized region). The first experiment 328 to reveal such a phenomenon (actually emitted from a "hot-spot" on the target) was the reaction $16_{0}+58_{\mathrm{Ni}}$ at 92 NeV . The confusing effects of projectile breakups were eliminated by searching for α-particles in coincidence with 16_{n} scattering. The rather detailed analysis 329 of this

Figure 3.28

XEL 786-9070

Figure 3.29
experiment assumes that a hot-spot is created on the surface G the tarfet, the α-emission from which has a high temperature component emitted outwards from the pole, and a low temperature sorponent from the diffusion of the α-particles through the nuclear ratter in the opposite direction. The final solution is cmplicates by Coulomb and nuclear deflections and by anguler momentur, whict. makes the hot spot rotate. Nevertheless, some idea of the resilits is conveyed in Fig. 3.29. The top part shows the α-correlaticn measured from an orifin in the direction of the projectile. sotk. tie fast and the slow modes lead to the narrow anguler correlatione, characteristic of all the experiments we have been discussinr. The bottom middle section displays contour plots of the eross sectior. in an $E \alpha-\theta \alpha$ diarram, the projections of which onto the E α axes (left and right) show the expected α-particle spectra. The hirh temperature component ($\approx 7 \mathrm{MeV}$) is close to the temperatures required for the observation of a hot-spot (see Fig. 3.25) whereas the low temperatures are characteristic of greater equiljbration. The experiment 3 yielded temperatures of $3-4 \mathrm{MeV}$ in the fomari direction. Using the expressions $E x=a T^{2}$ and the value cf Ex $=$ 28 MeV extracted from the experiment, the value of $\mathrm{a}=\mathrm{m} / 8$ river. $\mathrm{N} \approx 18$ particles. For a fully equilibrated system $N \approx i 0$ and the temperature would have been only 1.8 MeV . Such experiments can lead to a determination of the thermal conductivity and specific heat of nuclear matter, and are an alternative to preequalibriur: theories. 316,317

YBL 774-695
Figure 3.30
"here are several other experiments on the prociuctior of fast non-equilibrium light particles, $227,228,330 \mathrm{~m} 32$ with interpretations ranging cuer emissior from the neck between the collidine nuclei 330 (like tervary fission and maybe even like a hot-spot) to backward splashes of a particles accompanyine fusion. 228 the fun is just berinning. The thegretical possibilities are also diverse. A possible mechanism ${ }^{33}$ for the production of fast, nen-equilioriom a-particles is the strone radial friction dempine force, which ejects a particle on the opposite side of the nucleus fror where the projentile and target first make contact (see Fig. j. $3 \mathrm{~L} .$. This leads to a correlation with the α and the heavy frament on the same side of the nucleus which zould not be consistent with many of the above experiments. Another possibilit; is illustrated is. Fart (b) of the figure, ${ }^{325}$ which by similar arguments bould attwibute the α-production to strone tangential friction, certainly essential as we have seen to account for the results of γ-ray multipiicity and the fission fragment experiments. This picture can explain how in Fif. 3.26 alphe particles are observed in coincidence with heav: frabments that could not arise from simple projectile frafmentation, but which nevertheless bore close resemblances. This picture has also been said to represent a "sparkint process," $3{ }^{34}$ and is consistent with our discussion of "hot-spots" in this section, i.e., a zone of slifhtly higher complexity and concentration then cccurs in simple projectile excitation. he note in Fig. 3.26, however, that at the higher energy the relative importance of these more complicated channels diminishes and the pure framentation channel becomes
dominant. This simplification sets our path towerds Asymptotia, the subject of the last lecture.

4. ASYMPTOTI'A

In this lecture we leave behind the familiar territors of Mioroscopia, and even the still recognizable landmarks of Macroscol ia, to venture into the New World of Asymptotia, Before settin:out - t is just as well to have a navigation chart, 335 which appears ir. Fir. L.l. The abscissa is the projectile energy in $\because \mathrm{eV} /$ nuclers. and the ordinate is the projectile mass plotted as $A^{1 / 3}$. The shaded bands define regions of fundamental parameters such that when we cross a band, we can be confident that the underlyine physice will change. The three charecteristic center of mass enereies of $20 \mathrm{NeV}, 240 \mathrm{MeV}$ and 930 MeV are estimates of where the subsonic, mesonic and relativistic domains merge. Macroscopic phenorena co...e inte proninence when $A 1 / 3 \Rightarrow 1$. The band at $Z \approx \frac{3}{2}$ (ITO) is a rerinder of the changes that may occur when (22: fine structure constant) becomes large compared to unity. Most of this space is inexpiorec apart from the two ares, the left-hand side with the jo energ heavy-ion machines. and the horizontal axes with high energy, hasiron aceelerators. Althwn some possibility for explorine the remaining space (where most of the crossing bands liellhes_existei with lieture's own accelerators, the Cosmic radiation, 36,327 it it the development of hich energy, heavy-ion accelerators, suci as the Eerkelev bevalac, that has sharpened and focussec these stiaies. Combined with parallel developments on increasing the enerey of existing Cyclotrons (at Berkeley and Texes A and M) ur to 35 KeV rucieon, it is now possible to trace the evolution of heavy-icn reactiol. rechanisms across some of the critical bounderies of Fis. 4.] ie vefin with a discussion of this evolution in periphera: collisjuns, then deel with the more dramatic (possibly) ce:.:ra? cci:irions and end with a few words on exotic phenomena.

Figure 4.1

4.1 Evolution of Peripheral Ccllisions

In order to make a conceptual link with the last lecture, iet us consider how deeply-inelastic scatterine might evolve with enerf. 30 Imarine two nuclei with radii P collidifir with relative volocity u. The collective kinetic enerfor is

$$
\begin{equation*}
E=\left(\frac{h_{3}}{3} \pi R^{3} \rho\right) u^{2} \tag{2.1}
\end{equation*}
$$

(2e are dropping factors of order unity.) If the nuciei are in comranication through a window of area πa^{2} (as giscusser in iectrare 5 , equ. 3.2], etc.), we have

$$
\frac{d E}{d t} \approx T_{1} \Gamma \bar{v}\left(\pi_{a}^{2}\right) u^{2}
$$

where $\overline{\mathrm{v}}$ is the average intrinsic nucleon speed. Thererore the ctaracteristic dampinf or stoppine time is of order:

$$
t_{\text {stor }} \approx R^{3} 0 u^{2} / f \bar{v} a^{2} \approx\left(\frac{R}{a}\right)^{2}\left(\frac{R}{\bar{v}}\right) \quad: i .3
$$

We compare this time with the collision time, $t_{\text {coll }}=\mathrm{F} / \mathrm{u}$ to fi:e:

$$
\frac{t_{s t o p}}{t_{\text {coll }}} \approx\left(\frac{R}{a}\right)^{2}\left(\frac{u}{\vec{v}}\right)^{2}\left(\frac{R}{a}\right)^{2} \sqrt{\frac{\text { Energy/nucleon }}{\text { Fermi Energy }}}
$$

Therefore if "a" is not too small, as the incident energy epproaches the Fermi enercy, complete damping plays less of y role. We must then ask the question, what process takes over the large deeplyinelastic cross section?

It appears that multibody fragmentation phemomena replace the essentially two-body processes of deeply-inelastic scatterinf. 330 Below $10 \mathrm{MeV} / \mathrm{nucleon}$, the collision time is longer than the transit time of a nucleon at the Fermi level; consequently the whole nucleus can respond coherently to the collision, and the dominant phenomena are characteristic of the mean field. ${ }^{440}$ At relativistic enercies of $\mathrm{GeV} / \mathrm{nuc}$ eon, on the other hend, the reaction processes are dorinated by independent collisions of individual nucleons. ${ }^{34}$ The transition refion might be set by requiring the complete disjunctic: of the two collidinf nuclej in momentum space, i.e., at a few tens of MeV/nucleon. This transition, which could be labelled 323 "fror: nuclei to nucleons," has been observed in peripheral collisions.

The approach is to measure the production cross sections and enerey spectra of projectile-like frafments from ${ }^{16}$ incuced

reactiome on trorets suct. at Fb, fia as in ounction of incident
 incident enerejes of $340,218,250$ and 315 Mev are shown 34 in Fir. $\therefore . \bar{i}$. The spectra all nave a characteristic Gaussiar form, Fetueu ut an eneray (labelled Fp) correspondine to the fragment t'Evellinf with a velocity clase to that of the incident bear. At Eow enerfies, if two-body deeply-inelastic scatterinf is the relevent mecharis fragnints (compare the eneres, labelled F.s. in Fie. 4.2 , associater with the froduction of the nuclei in the mounc statesi. The continuum could aj $5 \frac{c}{5}$ corespons to transfer reactions to a hith density of states $34,3,6$ in the continuum, with an optimum b-value. $3 \vec{i}$

The continuum is a?so characteristic of multibody framentation at hieh energies. An exampie of similar spectra at 2.1 Gev/nucleon is shown ${ }^{34}$ in FiE. 4.3. Mere the spectrum is plotted in the projectile rest frame, so that a framment emerging with beam velocity wouid correspond to $P_{11}=0$, where P_{11} is the longitudinal momentum in the projectile irame. In fact, just as in Fie. 4,2 , the Gaussian shaped distributions are shifted slifhtly below this point. Both at 2.1 Gei/A and $20 \mathrm{MeV} / \mathrm{A}$ this shift $\left(\Delta F_{11}\right)$ is well accounted for by the separation enerfy of the projectile into the obseryed rrarment together with residual nucleons and alpha particles 34,350 (e.f. the arrow labelled Ef_{f} in the top part of Fir. 4.2). In Fif. I. 2 we observe that the vidths of the spectra increase rapidly with enerey, which is a manifestation of the transition in the nature

Figure 4.3
of the reaction mechanism.
First we use the concept of temperature to find systematic trends in the data. At low energies ($<10 \mathrm{MeV} / \mathrm{A}$) the production cross sections of isotopes, in reactions of the type reported here, have an exponential dependence, $351,352 \sigma \propto \exp (Q g g / T)$, where $Q g g$ is the two-body, transfer ground state g-value. A good example is shown in Fig. 4.4 for the system ${ }^{160}+{ }^{232} \mathrm{Th}$ (similar to ${ }^{160}+\mathrm{Au}$, Pb), in which the cross sections were obtained by integrating spectra similar to Fig. 4.2. The exponential dependence on Qge over five orders of magnitude would not be expected from a simple direct reaction model, 352 relating the cross section to the Q-value at the peak of the distribution, which might be 50 to 100 MeV more negative. The systematics do however have a natural explanation in terms of a

Figure 4.4

rotating dinuclear system undergoing partial statistical equibrium at temperature $T .{ }^{351}, 352$ In a statistical reaction, the cross section is given by: 352

$$
\begin{equation*}
\sigma \propto f_{f}\left(P^{*}\right) \propto \exp \frac{E^{*}}{T} \tag{4.5}
\end{equation*}
$$

proportional to the level density of states at excitation 5^{*}, which can be written $E^{*}=$ Qgg-Q, and the Q-value is made up of the changes of Coulomb energy, rotational enerey ani other excitation processes. Therefore,

$$
\begin{equation*}
\sigma=\exp \frac{\operatorname{QgE}-\Delta V c}{T} \tag{4.6}
\end{equation*}
$$

where we have included only the Coulomb term in Q, since some of the niners are not strongly coupled to the degrees of freedom participatine in the equilibration.

The temperatures derived from this approach for a variety of data incluging those of Fig, 4.2, and of the extensive anelysis of 16 , $35 N+232$ Th reactions ${ }^{3}{ }^{2}$) are shown in Fig. 4.5 ty the filled circles, plotted as a function of the incident enerey above the barrier (tof scale). The variation initially follows the trend of the Fermi fas equation of state, $E^{*} \approx\left(E_{C}-V\right)=a T^{2}$, where E_{C} is the center of mass energy, V the Coulomb barrier in the incident channel, ar. " a " is the level density parameter, equal ${ }^{354}$ to $A / 8$, witr. A the mass number of the intermediate complex. Hence T is proportional to $\sqrt{E_{c}-V}$, the variable used on the bottom scale.

At relativistic energies the concept of temperature has also been useful in explaining isotope production eross sectione, where

Figure 4.5

the "emitter" is the projectile rathe- than the dinuciear com! lex. $342,355-357$ Then $\sigma \propto \exp \left(G_{F} / T\right)$, with Q_{F} equal to the frapmentation ¢-value, and T is the projectile temperature. This apl "oach has been applied to the data in Fig. 4.5 at 315 MeV $(\approx 20 \mathrm{igeV} / \mathrm{A})^{343}$ and at $2.1 \mathrm{GeV} / \mathrm{A} ; 348$ the values of I are also iisplayed in Fir. 4.5. Followine the initial trend of the Fermi ras equation, a rapis rise sets in between 10 and 20 Mev/s, after which the temperature appears to saturate at approximately 6 lieV. fiove $15 \mathrm{MeV} / \mathrm{h}$, where the curve departs from the prediction of the Femi eas for heating the entire complex, naly a part of the total syster. can be heated (compare our jiscussior. of hot-spots at the er: O : the last Lecture). The saturation at 2 MeV could be interpreted by assming that $A^{\prime}(\ll A)$ nucleons participate and ctury less than $B A$ ' of excitation energy, where E is the tinding emer \quad of a nucleon ($\approx \beta \mathrm{MeV}$), for the system to survive to emit e comye: framment. If this subsyster is exciter likn a Fermi Ear, the result $T \approx 8 \mathrm{MeV}$ follows immeciately from the equatic: $E^{\prime} \prime^{\prime}=A^{\prime} / 8 r^{2}$. Since hicher temperatures would result in a aisinterration of the fragment, 339 it is natural to refer to this temperature as the "boiline point of nuclear matter" ? It is interesting to make an analogy with Fig. 1.4, where a limiting temperature is also observed for hadronic matter; this has also reen referred to as a boiling point of hadronic matter. 356

Although temperature is a useful conce; for orpanizing the data, and for understating the limiting behavior in the high energy refion ${ }^{\text {an }}{ }^{\text {ald }}$ lernative interpretation comes from the abrasion model 359,360 in which the primary fragments emerfe by the sudden shearinf of the projectile without prior excitation. The dependence $\sigma \sigma(\overline{\mathrm{F}} / \mathrm{T}\rangle$ can also be derived analytically with this model. 344 The dasic idea of this model is illustrated in Fir. 4.6 (top part). ${ }^{361}$

The incident projectile in the region of overlap with the target has a part sliced out. 362 The cross section for this process can be calculated using Glauber theory 363 or from geometrical considerations. The cut is not clean but creates a hot region which causes the remaining fragments to be highly excited, so that they proceed to evaporate additional particles (ablation). In the Glauber medel at high energies the nucleus-nucleus cross section for an evert in which n projectile nucleons are scattered out of the projectile A is:

$$
\sigma_{n}=\binom{A}{n} \int \dot{a}^{2} \underline{b}(1-P(b))^{n} P(b)^{A-n}
$$

wi.ere

$$
\because(b)=\int d z d^{2} \underline{s} \rho_{A}(s-b z) \exp \left[-A_{T} \sigma_{N N} \int d z \cdot \rho_{T}\left(s, z^{\prime}\right)\right] \quad \text { 1.. }
$$

Fere (l-? (b)) is the probability of finjing a projectile nucleon in the cverlep zone when b is the impact parameter. Equation 4.7 is then the cross section for n projectile nucleons to be in the overI ap and (A-n) outside. It turns out that σ_{n} changes very little between $20 \mathrm{NeV} / \mathrm{A}$ anc $2 \mathrm{GeV} / \mathrm{A}$ in spite of a Large change in σ_{KN}. :owever, at high energies the momentum transfer is sufficient to knoci nucleons out, but at low energies they appear to stay in the prefragrent and deposit their energy. The subsequent fate of the profectile frament (the ablation stage) is rather different in the two cases. This model ${ }^{364}$ appears to account both for the isotope ajferences and the element similarities observed in 0^{16} induced $r a c t i o n s$ at $20 \mathrm{MeV} / \mathrm{A}$ and $2.1 \mathrm{GeV} / \mathrm{A}$.

For the primary distribution of fragments, eq. 4.7, 4.8 lead to a distribution in mass and mass and isospin, we use the forralation of the abrasion model in Rer. 365 :

$$
0 \alpha \exp -\left[\frac{\left(a-a_{0}\right)^{2}}{2 \sigma_{t_{2}}^{2}}-\frac{\left(t_{3}-t_{30}\right)^{2}}{2 \sigma_{t_{3}}^{2}}\right]
$$

where $a=N+Z$, the number of nucleons abraded, ${ }^{*}{ }_{3}=(N-Z) / 2$ and σ_{a}, c_{t} are the dispersions around the mean valuss $a_{0}, t_{30^{\circ}}$ Trans forming to the viriables N, Q yields the distribution of isotopes about the mean:

$$
\sigma \alpha \exp \left[-\left(N-\omega_{o}\right)^{2}\left(\frac{1}{2 \sigma_{a}^{2}}+\frac{1}{8 \sigma_{t_{3}}} \dot{c}\right)\right]=\exp \left[-\frac{\left(N-N_{o}\right)^{2}}{\alpha}\right] \cdot 4.10
$$

Values of $\sigma_{a}, \sigma_{t_{3}}$ are derived from a model with correlations built into the nuc"ear ground state, viz. $\sigma_{t_{3}} \approx 0.24 \mathrm{Al} / 3, \sigma_{a} \approx 4.9 \sigma_{t_{3}}$ (see later).

In the production of a series of isotopes the changes in Q_{F} are determined primarily by the N-dependent terms in the liouid irop nase formula. For a fragment of mass A_{F} this term can be writt - ;

$$
\frac{a_{G}\left(A_{F}-2 N\right)^{2}}{A_{F}}-\frac{a_{5 S}\left(A_{F}-2 H\right)^{2}}{A_{F}}
$$

where a_{s} and $g_{s s}$ are the symmetry and surface symmetry coefficients reerectively. It is then simple to derive a quadratic dependence $\because \because_{\mathrm{F}}$ on $\left(\mathrm{H}-\mathrm{N}_{\mathrm{O}}\right)^{2}$, viz.

$$
Q_{F}=4\left(\frac{a_{s}}{A}-\frac{a_{5 S}}{A^{4 / 3}}\right)\left(N-N_{0}\right)^{2}=B\left(N-N_{0}\right)^{2}
$$

From Eqs. 4.10 and 4.12 we get,

$$
\sigma \propto \exp \left(\frac{Q_{F}}{\alpha E}\right)
$$

which is equivalent to the result of the thermal model, with T reclaced by $\alpha \beta$. By inserting the values 365 of σ_{a}, σ_{t}, and $c:$ the mess iormula coefficlents, 366 we deduce that $T=9 \mathrm{MeV}^{3}$ (or 5 MkV with values of σ neglecting 365 correlations). This derivation of isotope distributions ignores the subsequent redistribution by nucleon cpatire and evaporation, 364 but the value or 9 MeV is close tc the requiled saturation value of 8 MeV in Fie. 4.5. This parameter in the exponential dependence of σ on Q_{F} is, however, identified with the onset of the fast abrasion mechanism, rather than with the saturation of nuclear temperature in the slower, equilibrating process.

In the saturation region above $20 \mathrm{MeV} /$ nucleon, the abrasion model also accounts consistently for the momentum distribution of framments in the projectile rest frame, 356

$$
\frac{d^{3} \sigma}{d p^{3}} \approx \exp \left[-\frac{\left(p-p_{0}\right)^{2}}{2 \sigma^{2}}\right]
$$

where p_{C} is the momentum correspondine to the peak of the dictribution, of width:

$$
\sigma^{\hat{2}}=\sigma_{0}^{2} \frac{F(A-F)}{(A-1)} \quad \text { i.15 }
$$

\because, \therefore are the masses of the observed frapment and the projertile respectively. This value of σ^{2} is just related to the mean square romentum of f nucleons in the proiectile suddenly foinf. oft as a sinils rragment. Not surprisingly, therefore, it is also closeiy relates to the Ferni momentum by $p_{F}=\sigma_{0} \sqrt{5}$ which has been measuredin as $235 \mathrm{MeV} / \mathrm{c}$ for 16). The analysis of the heavy-ion epectra $\because i e l d s \sigma_{0} \approx \hat{\sigma} \mathrm{KeV} / \mathrm{c}$ or $\mathrm{p}_{\mathrm{p}}=192 \mathrm{MeV} / \mathrm{c}$. The Gaussian distritution shown in Fig. 4.3 is celculated with the ebeve equations. For the eneray distributions in the laborator: frame a- anrle e, transformation of Eq. L.il yields: 343

$$
\frac{{ }^{F} O}{\hat{A F O D}} \propto \sqrt{2 A_{F} E} \exp \left[-\frac{A_{F}}{\sigma^{2}}\left(E-2 a E^{1 / 2} \cos \theta+a^{2}\right)\right] \quad \because .2 E
$$

Where $e^{\bar{c}}=1 / 2 M_{p} v_{p}{ }^{2}, v_{p}$ is the velocity corresponding to the $f \in=0$ of the energy diftribution. This formula is used to fenerate tie theoretical curve in Fig, 4.2 for the top set of data at $E 2 \therefore$, \therefore, E河的 usine $\sigma_{c}=86 \mathrm{HeV} / \mathrm{c}$ in the expression for σ^{2}.

The energy distribution in Eq. 4.16 is also expecte: from a statistical model of frapment emission. 356 Ther fore, the formisa car equaly woll be applied to the lower enerey spectra in Fi:-.... where we he:e already shown thet equilibretion processes at tompereture m are relevent. Ey conservation of enerfy ani romer.:u", \because ara c_{c} are related 356 by

$$
\sigma_{0}^{2}=m m \frac{A_{P}-1}{A_{P}}
$$

where π is the nucleon mass in MeV. (For $\sigma_{0}=86 \mathrm{MeV} / \mathrm{c}, 7 \approx 8 \because \mathrm{~V}$, consistent with the two interpretations of the isotope aistributicns in the high enerey rerion). The values of T required to fit the data at all energies are shown in Fif. 1.2 by the open circles. Also included are data for nxyfen on nickel at 315 HeV and on tantalum 368 at 96 MeV . Althoufh only results for 12 C rrarments are presented, similar trends were observed in the enerfy spectra of other particles. 343 At low enerries ($<10 \mathrm{MeV} / \mathrm{nuc}$ lenn) the temperatures extrasted from the momentum and isotope distrioutions are in agreement, supportinf the temperature model. At hich enerries ($>20 \mathrm{MeV} /$ nucleon) the saturation of the widths of the momentum and isotope distributions at 8 MeV is consistent with a
fast abrasion mechenism, although the alternative interpretation of a localized thermal excitation is not excluded.

If we adopt the abrasion model for the descriptjon of the hirh enerpy data, then the sudden transition from equilitration to framnentation must contain iniormation on characteristic properties of nuclear matter, such as the relaxation time $50,136,317$ spreading the localized deposition of energy, or "hot-spot",
over the nucleus. The initial excitation may be in the form of uncorrelated particle-hole excitations, in which case this relaxation time is related to the Fermi velocity. On the other hand, if the initial excitation is carried by coherent, collective compressional modes, then this time is related to the frequency of these modes, which in turn depends on the speed of sound in nuclear matter. 369 Recent experiments, 370 determining the frequency of the monopole mode, lead 371 to a value of the compressibility coefficient $K \approx 300 \mathrm{MeV}$, and an implied velocity of sound $\nu_{S}=\sqrt{Y / 9 m}$ of $0.19 \mathrm{c}(\mathrm{m}$ is the nucleon rest mass). This velocity and the Fermi velocity in nuclear matter (equivalent to $36 \mathrm{Mev} /$ mucleon) are marked in Fig. 4.2. Although it would be premature to specify which (if either) defines the change of mechanism without a detailed modiel, the velocity of sound is certeinly close to the transition region.
A. formal approach to the break-up of nuclear matter was piven recently, ${ }^{3 / 2}$ by writing for the stress, s :

$$
\begin{equation*}
E=P=\frac{\partial E}{\partial V}=\rho^{2} \frac{\partial(E / A)}{\partial \rho} \tag{4.17}
\end{equation*}
$$

$w i+h$

$$
\begin{equation*}
\frac{E}{A}=\frac{h^{2}}{2 m} k^{2}+A \rho+E \rho^{2} \tag{1.16}
\end{equation*}
$$

In this equation the three terms represent the kinetic energy and the effects of the ardinary and velocity dependent nucleon nuclear. potentials. Then the stress becomes:

$$
\begin{equation*}
\frac{p}{\rho}=\frac{2}{5} h^{2} \frac{k_{F}^{2}}{2 m}\left(\frac{\rho}{\rho_{o}}\right)^{2}+A \rho+3 \mathrm{~b} \rho^{3} \tag{4.19}
\end{equation*}
$$

from which information on the tensile strength of nuclear matter is obtained in the condition of maximum stress $d P / d \rho=0$, which is equivalent to the classical condition of the sound velocity going to zero. In central collisions the energy per particle comes out at a few MeV/A. This appraach, if extended to the type of peripheral collisions we have discussed in above, could be a fruitful way of
studyinf continuun properties of nuclear matter.
The equivalence of two extreme models for the ${ }^{16} 0$-induced reactions is an intrikuinr problem. One model assumes thermal ealilitration whereas the other is a fast abrasion process fron the nuclear cround state. The degeneracy mimht be removed b; usine heavier projectiles such as $\mathrm{LO}_{\mathrm{Ar}}$, with which the deeply-inelastic scatterink processes at low enerkies are better develoded (as we discussed in Lecture 3). A new series of experiments to study the isctove production eross sections as a function of enerfy has beer. initiated. An example of the first experiment ${ }^{373}$ with $2: 3 \mathrm{kev} / \mathrm{A}$ Anfor on Thorium and arbon is shown in Fig. 4. 7. The identification o: isotopes was achieved by multiple $\triangle E-E$ identification in a Q everent detector telescope, and imposing $\frac{3}{7} x^{2}$-critericn that the idertifisatior be similar in all detectors. 37 All isotrpes up to Aron were resolved althoufh this is difficult to see in the iliustration.)

The momentur spectra for ${ }^{16}$, and ${ }^{31}$ a are shown in Fir. L.E.

 Fhese are representative of all the isotopes are chosen as examples ciose to and far removed from the projectile. The theoretical curves come from Equ. 4.14 and 4.16 , with values of $o_{0} \approx 90 \mathrm{Ve} / \mathrm{c}$ See Equ. 2.15). (The associated temperature is 8.9 Hev.: En $_{\text {n }}$ the we take it as confirmatory evidence for the fast abrasion aecharism.

Figure 4.7

Fifure 4.8
n the thermal equilibrium model we might conjecture thet tie temperature woula have come out lower than for $1 b_{0}$, as the initia: gocalized deposition is cooled more rapidly by the lerfer thermaj cafacity of the feavy projectile. 331 The erucial test iils cowe from the equivalent study of the iso tope distributions, since the parameter aß in Equ. 4.13 is A-dependent, whereas the Eermi romentum parameter σ_{0} which characterizes the momentum distri:uticr in the abrasion nodel is not.

Althourh the analytical comparison for the Ar!on reantions has not been completed, the preliminary results do indefd indicate that the "r" or "xß" parameter is quite different from ${ }^{10}$, altrourin it appears 375 to increase to approximately 12 MeV , rather than decrease as predicted by the (oversimplified) analyses of Equ. !. : 9-1.23. A value of 14 MeV in the expression $\sigma \times \exp (Q F / F)$ has heen deduces in a similar experiment ${ }^{376}$ with $250 \mathrm{MeV} / \mathrm{A}^{12} \mathrm{C}$ on CE in which the tar:ot fragmentation yields were measured by y-ray countink (tiois is effectively the inverse experiment). The predicted curve, usini only the leadinf fif value of Gmin is shown in fif. i. O (a). The likely success of the tatasion-ablation apwroach is also encourarinfrom the predictions 37 for the marnesiur isotope distribution ${ }^{3}{ }^{3}$ (hatched curve) in Fir. $1.9(\mathrm{~b}$) compared to the data (solis points'; the calculation reproduces the width of the distririation fairly we:?, althoumh the peak is shifted from the experimental maximum.

The widths of the isotope distributions in the abrasion noue: is of considerable interest in view of recent attempts to account for them by buildine correlations into the nuclear fround state. $365, ~ ₹ i=:$ In the absence of correlations the abrasion model just calcuates the dispersions (e.f., σ_{a} and σ_{t} in Equ. 4.9) in the number of frotons and neutrons removed as equitalent to the relative number of wavs of distributing neutrons and protons in an assembly of "a" nuveru.

Fifure i. 0 :
(see also Equ. 4.7). Fig. 4.10 shows some represertatige Erirara produet charge distributions for $12 \mathrm{C}+233_{\mathrm{U}}$ at 2.2 ;e $\because \because \mathrm{O}$. aata were acquired by the radiochemical method, as in Fi:- :.a. An alternative model for the dispersions essumes that thuntuatienc in the number of swept-out protons (see Fif. L. 6) arise froth zeroloint vibrations of the giant dipole resgnarice, which is an out-osphase vibration of protons and neutrons. 379 The rreaictive witt.
:IDF: rive a narrower width in better arrement with the experimente:

MASS DISTRIBUTIONS FOR FIXED b

Figure L.I.
data. The : ncorrelated calculation (hyperreometric) five : 00 large a width, essentially because it allows for unphysical possibilities such as removing alt "a" nucleons as neutrons anc protons alone. (The shift of the theory from the data is due to the neglect of the ablation stage.) Very similar considerations entered into the evaluation of the correlated widths σ_{a}, σ_{t} in Equ. 4.3. 4.10.

The subsequent ablation stage, in drifting the primary distrioution back to the valley of stability, tends to erase the efany of the primary. The effect is illustrated in Fig. 4.ll; the top sections display the primary abrasion distributions for (a) correlated, (b) uncorrelated and (c) unrealistic pround state motion. After the atlation stage (bottom) the distributions begin to look similar, but some influence of the primary persists. ${ }^{365}$ Feturning to experimertal data in Fif. $4.9(b)$, it is clear that very careful measurements will be called for, since the completely different delgly-inelastic reaction ${ }^{40} \mathrm{Ar}+{ }^{48} \mathrm{Ca}$ at $6 \mathrm{MeV} / \mathrm{A}^{177}$ and the $\mathrm{P}+238_{\mathrm{U}}$ reaction at 800 Mev ${ }^{380}$ give very similar distributions. (The points for both reactions were deduced from adding up counts from the published spectra and are thereby not very accurate.) Remember that the deeplyinelastic cross sections also arise from an equation like 4.9 (see 3.7), but the physics in the primary dispersions is quite different. What is clear however is the radical difference in the position 0 : the peaks of the distributions. A more graphic demonstration appears in Fig. 4.12 which shows that the \bar{N} / Z value for the deeply-inelastic reactions reflects more the value of the composite dinuclear system (due to the rapid equilibration of this degree of freedom, see Lecture 3) whereas at high energy the faster abrasion mechanism reflects the N / Z of the projectile, and the target acts as a "spectator." It is also clear that abrasion reactions such as ${ }^{40} \mathrm{Ar}+232 \mathrm{Th}$, or better ${ }^{48} \mathrm{Ca}+232 \mathrm{Th}$, at energies in the region of $200 \mathrm{MeV} / \mathrm{A}$ could be a powerful means of producing nuclei far fror.

Figure 4.12
stability, 365,373 where the detection problems are simplified by the hich emerging velocity of the fragments.

More detailed measurements as a function of energy for many systems must be made before a clear picture will emerge. Already departures from the skeletal framework of Fig. 4.5 may be çopping up in recent studies of $16_{0}+197 \mathrm{Au}$ reactions at $90 \mathrm{MeV} / \mathrm{A} .{ }^{381}$ One piece of evidence appears in Fig. 4.13, where the momentum widths of the framments are compered with the parabolic dependence inherent in Equ. 4.15 , evaluated with $\sigma_{o} \approx 86 \mathrm{MeV} / \mathrm{c}$ typical of tre other data in FiE. 4.5. The systematics are obviously grossly violated. The data at $20 \mathrm{MeV} / \mathrm{A}$ may not therefore reside in Asymptotia as sugcestei by our earlier discussion, and implied by some other features. Cne characteristic of asymptotic behavior is factorization of the ross

Figure 4.13

sections into a projectile and target term 382-384 A $+T \rightarrow F+$ Anything:

$$
\begin{equation*}
\sigma_{A T}^{F}=\sigma_{A}^{F} \quad \gamma_{T} \tag{4.20}
\end{equation*}
$$

This behavior is a logical consequence of the dependence $c \alpha$ $\exp \left(\Omega_{F} / T\right)$ but not of the de \leqslant ply-inelastic dependence

$$
\exp \frac{Q x g-\Delta V c}{T}
$$

of Equ. 4.6, since the substantial differences of Q-value for different targets would lead typically to an order of magnitude change between Pb and Au targets. The factorization appeared to hold at both $20 \mathrm{MeV} / \mathrm{A}$ and $2.1 \mathrm{GeV} / \mathrm{A}$ but not at $8 \mathrm{MeV} / \mathrm{A} .382$ A direct reaction model of pripheral fragmentation also leads to the observed factorization. 385 The phenomenon is also reminiscent of the Bohr independence hypothesis. 357,386 A dramatic illustration of the factorization and limiting fragmentation hypothesis (i.e., yields independent of energy ${ }^{38}$) is given in Fig. 4.14, which compares the yields of target fragments produced by protons at $3.9 \mathrm{GeV} / \mathrm{A}{ }^{14} \mathrm{~N}$ ions (upper curve) and 3.9 GeV protons (lower curve). (The data are displaced by a factor of 10 for display.) Other experiments also indicate that the distributions become similar for protons, of equivalent total energy as the heavy-ion, rather than of similar velocity. 389

Figure 4.14

4. \quad "entraj collisjons

Fu... tivistic erevties mark a chanpe ir tie ativity of a nucieor
 de?ay lrath appears t, frow to over 4 fre and Lecins to apmroki:ate r.oict ix irpysicnsi tife collidjn* nuciei could then pass rient
 detenifit n whether the collision is peripherel or centrai. Fí.

 \because rartisies, continuine in the projectile direction. for the cent...? no:ision in (b), there is a ster eyplosion 392 of Ar + Pr et $\ldots \because \because / A ;$ the total muliplicity of charged particles ranges up tr : : 5 uggesting that the initial system is completely disintefrated

Fipure 4.15
(far from passing through each other:). At lower enerries, we have seen that central collisions lead to fusion or fissior. Although the nature or the central collision is very differert it. the two regimes, it appears that the onset or these more catastrophic processes takes place at rauchiv the same overlap of ruciear matter densities. ${ }^{49}$ To see this $34,350^{\circ}$ we write the reactic. er ono section as the sur of peripheral and central cross sections:

$$
\sigma_{p}=a_{p}+\sigma_{c} \quad \quad \text { (...z? }
$$

ard compare values of σ_{c} deduced from this equation by suitractirf the surfed peripheral cross sections or all reaction products ir $.6 .+20 \mathrm{Fb}$ at $20 \mathrm{KeV} / \mathrm{A}$ and $2.1 \mathrm{GeV} / \mathrm{A}$ (last section) fron the reaction cross section, which has been measured directly at 2.? TeV/h ani has deduced from the optical model analysis of elastic reatterine gt $20 \mathrm{MeV} / \mathrm{A}$.

Enerin	Feaction	$\begin{gathered} \text { Peripheral } \\ \quad \sigma(\mathrm{mb}) \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { reactior } \\ & \sigma(\mathrm{mb}) \end{aligned}$	$\begin{aligned} & \text { Central } \\ & \sigma(-z) \end{aligned}$
$20 \times \square$	${ }^{16} 0+{ }^{208} \mathrm{~Pb}$	1295	3460	2169
こ.? \ev/A	$16_{\mathrm{Ct}} 208 \mathrm{~Pb}$	930	3100	2263

The reaction cross section has also been determined from ${ }^{16}$ ceactions in emblisions in the energy range $75-150 \mathrm{MeV} / \mathrm{A}$ and appeers to five similar values. 393 Such an energy independence would not be expected fram the known (large) variation of the nucleon-nucleon cross section over the same energy region. 304

In the central collisions of the type in Fif. 4.15(b), the most exctic features of high-energy heavy-ion collisions will the hidaen--one says hidden because they must be separated fror. the laree backeround of (possibly) trivial effects which are the outcome of the superposition of all the free nucleon-nucleon cross sections, properly folaed with the particle distributions of positi n and momentum. The basic layout of a system desifned to make quantitative studies or central collisions is shown in Fif. L.16, which co..2bines a particle identification telescope to icentify a particuiar. particle, with an array of plastic scintillators to determine the multiplicity of charced particles associated with each event. 305 a larce multiplicity is used as a sifnature of a central collision.

Proton enerey spectra from Ne and He bombardments of v are shown in Fif. 4.16 for anfles of $30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}$ and 150°

1日とT3t2-9933
Fieure 4.16

(excent for lie). The spectra have Maxwellian shapes correspcrinf to hink temperature. These spectra have been elefantsy expiainej with a íreball model, $395,396^{\circ}$ illustrated schematically in Fic. 4. $6(b)$. The model is an extension of the abrasion-ablation picture used previously for peripheral reactions. In the more central collision, nucleons swept out from the target and projectile form a quasimeguilibreted fireball at high temperature, equal to the availakle enerey per nucleon. The velocity of the firetsll is assumed to be that of the center of mass system of the nucjecas swept out. The fireball expands isotropically in its centev o: masc syster with ? Maxwellian distribution in enerr.

Assuming spherical nuclei and straight-line traiestories, tre participating volune of each nucleus is easily calculate: as a function of impact parameter. The number of participatine protors as well as the division between projectile and tarcet are show in Fif. L.l7 for Ne on U. At the bottom is the effective weifht, $2 \pi b{ }^{2}$ proton, given to each impact parameter. The velocity c: the center of mass of the fireball is then riven by,

$$
\beta_{c m i}=\frac{P_{l a b}}{E_{l a b}}=\frac{N_{p}\left[t_{i}\left(t_{i}+2 m\right)\right]^{\frac{3}{2}}}{\left(N_{p}+N_{t}\right) m+N_{p} t_{i}}
$$

where $P_{l a b}$ is the lab momentum, $E_{l a b}$ the total enerry, t_{j} the

Figure 4.17
projectile incident energy/nucleon, and m the nuclear mass. The t.jtal enerey in the center of mass of the fireball is

$$
\begin{equation*}
E_{c \pi}=\left[E_{l a b}^{2}-P_{l a b}^{2}\right]^{\frac{3}{2}} \tag{4.23}
\end{equation*}
$$

If one assumes there are sufficient degrees of freedom in the fireball, and that there is a mechanism to randomize the available energy, one can define a temperature T, which can be expressed (non-relativistically) by:

$$
\begin{equation*}
E=3 / 2 T \tag{L.E4}
\end{equation*}
$$

where ε is the available kinetic energy per nucleon in the center of mass, i.e., $E_{c m} / N_{t}+N_{p}$). The quantities B and E (calculated relativistically) are given in Fig. 4.18 as a function of impact parameter. The momentum distribution of the fireball nucleons in the center of mass is then:

$$
\begin{equation*}
\frac{d^{2} N}{p^{2} d p d \Omega} \times\left(2 \pi m^{2} T\right)^{-3 / 2} e^{-p^{2} / 2 m^{T} T} \tag{4.25}
\end{equation*}
$$

where p is the momentum of a nucleon in the center of mass. Using the earlier expressions this distribution can be transformed to an
enerey distribution in the laboratory, which must then be intefrated over impact parameter weirhted appropriately (Fig. 4.17). The resuitant distributions are shown in Fig. 4.16 (typical values of B and T can be derived from Fig. 4.18 at the point of maximum weight $(\beta \approx 0.25$ and $T \approx 50 \mathrm{MeV})$). Fairly satisfactory agreement with the data is obtained. (Note: the data shown in Fip. 4.IE have an error of absolute normalization, and the authors of Ref. $\$ 95$ should be consulted for rorrections.) Recently more ad,ance versions of the model sach as the diffuse firestreak 397 nave beer. developed, but its success is less obvious in view of the data errors. For a review of the various approaches, see Ref. 398.

- i is possible to advance further and explain the distributions of other framents heavier than the proton with a coaiescerce $\cdots \cdots 2 .{ }^{39}$ If any number of protons and nucleons correspondine to a bcind nucleus are emitted in the reaction with momenta differing by less than a "coalescence radius" p_{0} (a parameter to be adusted which comes out at $130 \mathrm{MeV} / \mathrm{c}$ typical of Fermi momenta), they ere assured to coalesce. The cross sections for these heavier nuclei are then trivially related to those for the proton. However, triere are also thermodynamic models wich extenc the fireball concept to the enission of complex rraments. 00

Framments from central coliisions may originate from several qualitatively aifferent subsystems, such as the fireball, the taret spectators, or even an explosion of the fusef tareet

Firure 4.18
projectile system. The detailed distrioution of the lonfitudira: and transverse momenta of all the framents eive information on these suhsystems. For this purpose it is convenient to characterize the distribution of longitudinal momentum by the rapidity variatic:

$$
\begin{equation*}
y=y_{2} \operatorname{n} \frac{\left(E+p_{\|}\right)}{\left(E-p_{\|}\right)} \tag{1}
\end{equation*}
$$

where E and p_{1} are the total enerer and longitudinal momer.tiv. of th particlo. (Tnis variatle is convenient in relativicti乞 soctems tecau.e it transforms in Galilean foshion in chanfine frames.) ontour blots of invariant cross sections, which are weasurea as a
 sur inclusive proton spectra for the reactions $401800 \% \mathrm{KV} / \mathrm{K} 20 ; \mathrm{ie}+$ Th $\rightarrow \mathrm{p}+x$. These data were taken with a taret centered rotatirir mametic spectroneter to obtain data at hieh F_{1} for production ancles $25^{\circ} \leqslant \theta_{c} \leqslant 145^{\circ}$ and proton momenta in the interval $0 . i \leqslant p \leqslant 2.4 \mathrm{CeV} / \mathrm{c}$. The half rapidity line that correspenis to the velocity of the nucleon-nucleor center of mass frame is marked. The mountain top of the cross section is found for $p_{\perp} \leq 200 \mathrm{he}: / \mathrm{c}$, $y \approx B \leq 5.1$. Most of the protons have small transverse momentur: anf come from a source that moves slowly in the laboratory 'target spectator decays). Towards hifh pl the contour lines move up ir. $:$ but allays bend round at a y smaller than $\left(y_{T}+y_{F}\right) / \varepsilon$. The apparer. proton source moves slower than the nucleon-nucleon center of mass. Over a wide ranfe of p_{1} the apparent source rapidity coincides witt. the firetall, which by equ. 4.22 , is arcund 0.4 for this ryater.. Similar studies for $\mathrm{Ne}+\mathrm{NaF}$ (i.e., an almost equal mass tarret and projectile) which should have $y=\left(y_{t}+y_{n}\right) / 2$, do not extire? support the elemental concept of the fireball but, at the ?etst, call for refinemerts that allow a continuar of sourcer-ieizeitie.

Figure 4.19

Pata obtained with the very different technigues of stacked Lexan foil detectors give evidence for emission of complex rragrentr from a scarce moving with low velocity and high temperature, which sanot be accomodated in the framework of a fireball. Theen framett: appear to originate from non-equilibrium erissior, from a 3. 0 ar ike the entire target, where the internal enerey doe: ac: have tr rach ihe value of $\frac{3}{2}$ fer nucleon. The radial arje. ior Ye:-jty in the source rrame is strongly correlatea with the is ar es velecjty. independent of the mass or the fragment obsprvec. Thif behevior is uncharacteristic of a thermalized source. 103 ysirue r opmritive, non-thermal processes can be jmarined, amones whicia are moryessional wave pheromena or the release of preeyistin. \because lirtan. These ideas will be the topir of the lant secticn, i. \quad.

The ireball model was introduced in relativistio hatre ad i.e. : sonsor that take place when heavy ionz collide. The zocic ir. cnow erdys unqualified suecess in ite own territory, lut it in : \therefore ary ice: to shed lifht on reactions at much irwer enerfy.

 inciaes: enerfy is decreased. It works at 250 NeV/A and it riri.t wret at MOU MeV/A. At still Iower ener-ies there cannot be a rirebai., ciearly separated from the intprsectire nuclei, bu: car: we imatire that the process depenerates into a joca heated recicn. "ne foscibility of the process depends on the reaction time compared \#r the time for transportinf the local excitation outwards into the surroundink nuclear media. As we have seen (Fif. 3.25) this tine increasec at hifh enerfies. Presumably this concef.t c: the "Sciarl" merees with the "hot-spot" discusset in section 3.5 ci iefture 3. Sone justification for the valiaity o: this epproacti at -sant acwn to 20 MeV/A comes from the successfud applicat ion of the Geater mudel to describe complex rragment yieles at 315 :ts
 sni low energy refimes, let us look apain at the fireball data of
 The simultaneous evolution of all projectile and target cascare farti les is followed. Pion production and absorption are jncheied
 the cutcome of two-body collisions. Diffuse nuelear surfaces, Fermi motion, the exclusion principle and binding energ effects are also included. The inner workines of these very expensive and complicated computer calculations are beyend the comprehention ot non-technicians, but they clearly do a cood job in describine the data. This success does not sifnal a defeat for the fireball nocel; because the cascade model shows that complete thermalization is achieved for central collisions (but not for larper impacts parameters!.

Firure 4.20

Compare now the proton energy spectra ${ }^{405}$ from the collision of Compare now the proton energy spectra from the colinion
$15 \sigma_{\mathrm{Fe}}$ at a total energy of 192 MeV (i.e. only $16 \mathrm{MeV} / \mathrm{A}$) $)$ in Fif. 4. 21 (a). The trend of the data is indicated by the solid lines, again the spectra are statistical in appearance, but by extendine with substential cross sections up to 70 MeV , requires a temperature far in excess of the compound nucleus. (The center Df mass energy of 130 MeV above the barrier gives rise to $\%=3.9$ fror. the expression $\mathrm{E}^{*}=\frac{A}{g} \mathrm{~T}^{2}$, and a resultant decrease of 105 in

Figure 4.21(a)

in cross section between 10 to 60 MeV compemed to the observed factor of $1 \rho^{2}$). These data are also fitted by a cascade calsulaticn ${ }^{406}$ open circles). An aralysis of the output sugeests that the protons are evaporated by the projectile, which is excited i: ti:e collision and sequentially decays. 407 The high enerey fretrag ere produced by the vector addition of the low velocity fou: ir the prosectile frame and the high projectile velocity.
ilacer investigation suppests that this explanation may have a Siri. The data 408 in Fif. $4.21(\mathrm{~b})$ for $160+288 \mathrm{~Pb}$ at 315 sev \because ve: \quad wider range of angles from 20° to 80°. Over this rerion - ie erent:a do not fall off sufficientiy rapidly to_be attributeri * :rriectile decay. On the other hand they fall off too quickly :r rairjrite from the compound nucleus. Rather the data eall for :r intermediate number of nucleons moving with an intermediate $\because+5-\infty t i$, iust as in the fireball. F'he solid lines are in fact $\therefore \therefore: t r$ the high enerey parts cf the spectra using eqs. $4.22-1.25$ i:t rer?acine the ideal E.35 (Eq. L.24) by the equivalent expression $\because: \&$ derenerate Fermi eas. The fits result in a temperature of t. $\because \in \because$ compared to the strict fireball prediction of 5.9 MeV) "ri.. a ziurce of approximately 30 nucleons muving with half the yrientisa reiocity. The tempereture of 6.9 MeV is almost the $\because-r \in$ as the value deduced for the arission of complex fragments at tir. sem indident energy (see the discussion of Fig. 4.5).

Pimisar descriptions of proton spectia have been reported in x-yartinde irduced reactions at energies or $25 \mathrm{HeV} / \mathrm{A}^{409}$ and (5) $\because e \cdot / A .410$ The formation of a localized hot spot has also beer. siccusse: i the andysis of a preequilibrium component in neutror. sfetura $5:$ 'Olie +150 Nd , leading to a temperature of 6 MeV and c 5 ratisipatine nucleons. 41 Yet another approach ${ }^{4} 12$ is to descrite

Figure 4.22

765 793.716E
Figure 4.2 ;
the enerfy spectra with an angle dependent temperature in reactions with 14 H on 209 Bi . Local heatinf takes place at the contact point, de to strong frictional forces, and alpha particles are eritted from the rotating surface (compare our discussion of hot-spots in Cection 3.5). We have already seen that the rotation angle is intimately related to reaction time, in deeply-inelastic phenomena. As the system rotates the temperature drops according to the conductivity and specific heat of nuclear matter. Figure l. 22 shows the temperature and number of participating nucleons as a function of angle. The values for a completely equilibrated compound nucleus are given by the dashed lines, which are approacheri after $3 / 4_{4}$ of a revolution.

There are other explanations in vogue for the explanation of enereetic light particle emission in heavy-ion reactions. For example, Fig. 4.23 shows 339 a heavy-ion reaction at relative speed V of nucleus l at the ion-ion barrier. A nucleon v movine from 1 to 2 has on arrival a velocity $\underline{v}_{2}=v_{1}+V$ where v is its velocity in nucleus 1 , with a maximum of $\vec{v}_{F}+\vec{V}$. The maximum kinetic enerfy is:

$$
E(\max)=E_{F}+E_{r e l}+2 \sqrt{E_{F} E_{r e l}}
$$

For a $20 \mathrm{MeV} /$ nucleon with $\mathrm{E}_{\mathrm{F}}=35 \mathrm{MeV}$, E reaches 108 MeV . An extension of the model to "Fermi-Jets" has recently been developed 413 and studied experimentally. ${ }^{414}$ The emission of fast light particles is also encountered in time-dependent-Hartree-Fock calculations ${ }^{4} 15$ and in hydrodynamic calculations. 416 A standing wave is set up and the nucleus fractures at the weakest point, which is a node of the standing wave located at a distance $\pi / \mathrm{K}_{\mathrm{F}}$ from the surface. The two types of calculations are compared in Fig. 4.24 for a collision

Firure ．．．A．．
XBL 783－7747
tran：$:_{i}^{\prime A}=100 \mathrm{NeV} / \mathrm{nucleon}$ ．The numbers at the right five the tire expressed in units of fro／c in the hydrodynamical calculations， art：En wits of 10^{-21} sec for the TDHF．In both calculations a ara．l firoe of nualear matter is ejected with hipher than beam． ッe：0．うち．．

In low enerfy light－ion reactions there are weit developed Frem，i．．itrium ther ies for fast particle emission（see rers．3ls－322 inl\％A critical question in these theories is the correct injtial axciton rumber tc use．For α－particle induced reactions there is evidence that the correct number is four，for two protons and two neutrone．${ }^{417}$ In heavy－ion reactions one riant assure that the henry ion，ef． 12 C ，breaks up into $6 \%+6 n$ ，and the numiver of excitonc would be i2．Calculations ${ }^{12} 7$ based on this hypothesjs ：ur

18．M．M．
the ${ }^{14]} 1 r\left({ }^{12} C, n\right)$ reaction are shown in Fif. H. $25(a)$. The dasher line for 100 化 $-\ddot{r}$ represents essentially compound nuclear evaporeticr. (dashed line) with a small preequilibrium component. How note the dramatic chanfe at 200 MeV , where the hufe increase of the preegri?ibrium emission leads to a cross section extending out tos very hirh enerfies, just as in the 12 C and 016 induced resctions of Fif. .. $\overline{2} l$. The preequilitrium enission tecomes important whey the excitation enersy of the compound system becomes comparaile with the particle bindinf eneray/exciton. A methoc of fincing oit the number of excitons is to plot 38 the lof of the differentia: cross section versus the ? of of the residual excitation axd the slone rives the (number of excitons-2). An example for u-intuces reactim: is fiven in Fig. l. $25(\mathrm{~b})$ on a variety of tarets; the Eiones, markea on the left hand side, are typically atout \equiv (a

A. . the atove Jenithy iscuseions, (which are a consicerabye SErersion from our description of central, relativistic hearlwor coinisions) are meant to emphasize that the questions of jocelization, hot spots, hish temperatures and the like are not wigue to the province of Asjmptotia. These phenomena are firi.? rooted throuphout the whole physiss of light and heavy-ior.
coliisions and their interpretatien will call for all tre toole of nuclear dynanics, whether microscopic or macroscopie, at hir. or low enerries. そe have to understand how the central colisi-n. at : ow eneraies evolve from fusion, fission and deeply-inelastiprocesses to the more catastrophic event of Fig. 4.75. There ars al ready intimations on how to treat these problems. $419, .42$

As a final illustration ${ }^{317}$ look at the two spectra in $\because i ., . .$. ,

Fipure 4.26
encreies ct 30 MeV . Soth spectra have a "los temperature" ecityrer. iin the $p+p$ rase $T \approx: \pi$ the limitinr temperature discussed in. the introdution to leeture l) and a "preeqiilibriun tail". "sth rar
 \therefore i the experimente proposed to measure ${ }^{\text {Li }} 21$ the size and iffet: $\because=$ of

 Fiteite, :. . t also be applied to the jower eneray recion. Fi.t

: An An.

... : ix :rymsik: -i.ines


``` rust j \(\because\) ament iz onter compare to searshire for slowere rath wosi-! \(\because\). Prorted by the bhite cueen. "You, my dear, mast iearr \(\because\) risio - \(\because\) imposible thinme," saic the dieen. "Eut that ir s"
```



``` resotiac," saic the iueen. "Why, wher 1 was your are, \(z\) alxa:s :t for aid howre per aay. Sometimes t've even thourht is ar
```



```
Ar. iry rtant tanic aest.on in inmplex nucieus-nuazen
```



``` redetions: The divererce fatwes these fictures is importurt.
```



``` be reirvant, ard eitheutive phenomesa are important, ana sise aready been ciaimed to be observed er but more rerent exrorimenta
```



``` prorrera, ard it is clear thst the reat marrity ut evente an it easiiy expluined in an indeperdont fucleon-nuc.eon ronde.." ". "ipye arm also sore indications in pion multipiocitien for rimutin: \(\because\) : strone nucleon correlation effects, , which hope tilliy may te a sirneture for shock waves. 361
```


It hes been supeested that a compressed zone of tigh energy density nay be cormed in a central collision, which propacates as a shock wave and could lead to the emission of enerpetic framents upon impinging at the nuclear surface. ${ }^{4} 30-43 \overline{1}$ Such a propapation of hich compression ($p>\rho_{0}$) and with velocities Vs > 0.20 has been called a "shock wave." The progress of this wave is illustrated in Fig. 4.27. In the initial phase a "splashinf tidel wave" is expected at a backward angle $\sin \phi_{l}=v_{t} / v_{i}$, where v_{t} is the expansion velocity of the shock compression zone. In the second stage a strong compression shock is created accompanier by a Mach cone traveling outwards in the direction $\phi_{2}, \cos \phi_{2}=v_{s} / v_{i}$, where v_{s} is the shock expansion velocity. In the final stage, matter is emitted in the directions $\phi_{1}($ splashing $)$ and ϕ_{2} (Nach).

In reality the projectile would slow down considerably and the simple Hach cone picture is distorted. The emission is then spreas out over a wider angular region, which actually appears to be a feature of hydrodynamical calculations of collisions of nuclea: matter, treated as a classical compressible fluid. 434 The criterion for compressibility is whether flow velocities are comparable to the speed of sound. For nuclear matter with an incompressibility $K(1 / \mathrm{eV})$ the speed of sound is 435

$$
v_{s}=(K / 9 \mathrm{mo})^{\frac{1}{2}}
$$

and the projectile energy/nucleon above the Coulomb barrier require? to reach such a velocity is:

$$
E / A=K / 18
$$

F_{1}. typical values of K between 150 and $300 \mathrm{MeV}, v_{S}$ is derived to be 0.13 and 0.19 c , 'or E/A of 8 and 17 MeV . Apparently compressibility will be important at the relativistic energies we have been discussing. For a hydrodynamic description to be valid, the mean free path of the microscopie particles should be small compared to the macroscopic dimensions. From the known nucleon-nucleon cross ss'tion cf' h mb at 2 GeV , we can estimate the mean free path $\lambda \approx 1 / 00 \approx 2 \mathrm{fm}$. So the criterion is only marginally fulfilied. The ih arodynamical equations have been solved 434 for collisions or $2 U_{\text {Iie }}$ on u (the reaction used for the fireball discussion) at $\% 50 \mathrm{MeV} / \mathrm{A}$. Figure 1.3 showed the time development of the density as represerted by the distributions of particles, for differeni imeset parameters. For the nearly central collision (labeled O.I) the reoy. penetretes intc the uranium nucleus and sets orf a strone st. . K w: e (clearly visible at $5.1 \times 10^{-23} \mathrm{sec}$). Subsequentiy nont of the enerey or the projertile is thermalized and the riveiens expands. The other two sections illustrate an intermediate impact formeter (whish should come close to the fireball sescriptis. , and a peripheral collision in which we see a pert of the :rofectile sheared off ijust as in the abrasion picture).
inte: ree enelular distributions for central collisions are computed Cro: the aictribution of nucleons in the final state they lead to rather ffetureless exponential forms, with ne sharp shock wave peas.

Arotroy way oi treatine the density problem. is by introducing statisti:al microscrpic cajculations. 436 These make Monte Cerlo ajwuletions of colliding samples of almost free point nucleors. 'The nucleot-rucleon scatterinf follows the known cross sections, conservecion of energy, momentur, and angular momentum. The praition and vejocity of each nucleon is known (in princifie) at each time. These calculations indicate that the transparanc: -ifects are too large to five high erouph compression to procuce sroct: wives.

Ifverti:eless, they have been searched for, ${ }^{4}{ }^{37}$ anc the first experimerts made extensive studies of high maltiplicity events in track ietectors using $A g C l$ crystals and emulsions. The distritutione of dofode were measured for events with more than 15 prones, anj a typica: example 437 appears in Fic. 4.28 (a). The share peak seemed to shift its position in a way characteristic of Mact: shacks with a proparation velocity,

$$
v_{s}=v_{i} \cos \theta(\text { peak }) \quad \quad 4 .=?
$$

and the peak moves backards with increasing energy. These peaks have not been found in other emulsion experiments, nor are the: present in the differential cross sections obtained with the live counter techniques. ${ }^{48}$ It seems that the peaks are due to

Figure 4.28
 xhioh were selected by the experimental technique at ijeserent preries. ${ }^{4} 39$ (Fif. 4.28(b) shows both corponents and the si...)
ther experimental searches for shock wares have not rie: ie: rositive results (see Ref. 337, p. 38 for a surrary and it wiot be concluled that there is no proof of their existence. Frua? \because, thourh it is not clear these experiments were capabie of establishine the existence of such effects, in that the: rere predoninantly single particle inclusive measurements, ackir.: essential information on multiplicities. This criterion carrey be levelled at a recent study of the ${ }^{4} \mathrm{O}_{\mathrm{Ar}}+\mathrm{Y}_{\mathrm{BE}}$ reanticn at i. \hat{C} rev/a. ${ }^{2} \mathrm{O}$ A test was made of the possible correlatints betwera \Leftrightarrow varticilar multiplicity M and the inclusive cross section $\therefore, \quad \mathrm{F}$ the ratio $r=W_{!}\left(\theta_{L}, Y_{L}\right) / W\left(\theta_{L}, Y_{L}\right)$ as a function of the iat rater:

ancle θ_{L} and the repidity γ_{L}. This ratio is shown for p, t, d in FiF. 4.29. The multiplicity requirement was that at least seven fracments are detected, by an Array of Cerenkov detectors. According to a shock wave model, ${ }^{4} 41$ the frafments from a shock wave in the projectile would peak at rapidities indicated by the shaded refion. The avidence is nerative.
niy tho first feneration of experiments have been completed, which have primarily looked at sinfle particle inclusive spectra. There are many refinements in procress to search for collective effects of nuclear metter at extreme density and p:essure craditions which are also probabiy realized in the interior of neutron stars. As an indication oi some of the excitine peraikilities aheac, Fif. 4.30 shows the anticipated equation cf stato. This equation, at densities above twice normal, can be afecte: $\because ;$ collective phase transitions to Lee-Wich abnorme: matter, \cdots.
 eertly teen discussed. In the absence of liese effects the ereray hould rimp increase morotonically with density. Since pressure Ir a heroy yaric models is proportional to dE/do, a change to nemetive s?npe above twice normal density would imply negative pressure, E.F. conderisetion to abnormal matter. The most favore prasikijity now is a transition to quark matter, in wich these ryponetical constituente of strongly interactine particies inaircns) wi.da net ie coneined to individual nucleons but insteat could move sepere: \because throint the nucleus. 145 A possible sienal for these rew state. : woter would be some unusual thermodynamic property of matter at lifin barron density. One proposal (discussed by Tleniovirim ir this itudy) extends the speculations about hetror: -trectare: $5=$ to the heavy-ion donair, raisinf the onssibility that

Figure 4.30 an a.

Henso natter might exhibit a limiting temperature $T^{2}{ }^{r} \sigma_{0}=140$: as we discussed ${ }^{7}$ at the berinninf of Lecture 1 , and whigh meny heve heen observed in hadron callisions. It has been said"4t, that "lj+U crilisions in the rerion of $4 \mathrm{GeV} / \mathrm{A}$ mirht produce important new :henomena, perhaps even practical applications. It should k.. noter that unlike hadron collisions thece effects are not jar.! irater in accessible astronmical processes. They would be - inilee y to occur except in rravitationally coilapinc obéects, ry in the irererse process to the $3 i \mathrm{e}$ bant. The lack of a.:tronomical Information means that we must depend on theoretica: ب弁imates to deduce the consequerces of the stability of matter witi rufernormal density. Evidently this could be a potentiai rarr: g* surce, since it could swallow up nucleons and diegrese ram: "rraez would de hard to control."

Figure 4.31

Whatever the theoretical speculations, the ultimate test will come from the experiments conducted on the present heavi-ion accelerasor. (sec Fig. 4.31) although some of these studies call for yot arother generation of accelerators, reaching energies of SO $\pm: I_{n}$ fev/nucleon, beyond even the range of the upgraded bevis. \because ith the last statement, 1 must surely have coveres at feait ix inpozible mings and I shail stop!

L. 4 Envoi

\therefore : fus lectures Z have attemptei to fiven en overview of crarat a"?ities in the diferent areas o: nuciear reaction. With hesti inns. Y sejection of material was fuided to scre exter. $\because \because \quad$ atterpt to show that the suitjects of Microscopia, $\because=\because \quad: \quad$ and Asymtctia are not separate and distinct. The rate ". exploration an development on all three continents is triay rimarkable, and jijspenses with the criticisms of mary "A. E+ir:- "hreses" in the ear-y days of heavy-ior research, whe insister thas the proresses would be so complicated as to ded: even \leftrightarrows qu: : iative underctaning. Nor shsuld we be deterrer hy tiet -itior tre insist that all the same phenomene can be stwied arere pari \because in hadran reactions. The fact is that they were not \because stulita motil stimuated by heavy-ion reseerch, and this is true of' innating high spin states in muclei or of icrming nu"ear firetalis. We have only to look at the quality of heavyicr data and the scphistication of our present microscopic theories of mullistep processes in deformed rare-earth nuciei, to wcnjer whether oir tools would be of poorer quality without the advert of heary inns.
1% leatures must seew a little like a helicopter tour crer the continental Juffes. We heve not fown very high fthis is the tati of other lecturers) but neither was your pilot skilitui ar haciritigable enough of the terrain to set down in the derse uncerirowtr. The metaphor of the Jungle is apt, because that is what experimental physics is like. Sinet this School is mainly E Theoretioal study we do well to recall Nax Born's wordstin on the relationship of Experimental Theory in Physics. "I believe there is io mhilosophical hieh road in Science, with epistemojofica: signposts. No, we are in a jungle and find our way by trial and by error, buildine our road behind us as we fo. We do not find sienposts at the crossroads, but our own scouts erect them to fuide the rest. Theoretical ideas may be such simposts. The difficulty is that they often point in opposite directions: two theories each claiminf to be built on "a priori" principles, but widely different and contradictory."

At the moment it is not clear where the many paths wijl iest in. heavy-ion physics, but wherever, we can be assured that we hase emtarked on one of the voyapes of the Century. The arialory is rituen mate that research in heavy-ions is like lnokint fror tlnwers arnon the weeds, and if any sifn of flowers are ryitret.

 "uit it. to, the many people whose researcin I have used, witr. :t !rytu incerrrotation or acknowledfement, let me enr witr a
 : : :ere: lewns and flower bels.

```
    "...c*urt eardens are not made,
    \because sinfiam: 'Oh, how beautiful!' arrl
            sittinr. in the shade,
    ifil:e better men than we go out and
        start their workinf. lives,
    \thereforet prubtine weeds from gravel pathe
        with troken kitchen knives.
    ''t, Adam wes a gardener and Gord
        who made him sees
            "'rat half a proper gardner's work is spent
        upon his knees,
    Co when your work is finished you can
        wash your hands and pray
    For the Glory of the Carden, that it may
        not pass away!
find the flory of the Garden it shall never
        pass awey!
```


ACKNOWLEDGMENTE

: wish to thank the many workers in the field of heavy-ion physics who have written excellent reviews which helped me to prepare these lectures, and the many individuals mentioned in the text who sent me preprints on recent developments. Also, I owe an elomious debt to my immediate colleagues in Berkeley, M. Fuenerd, M. Bini, F. Doll, C.K. Gelbke, D.L. Hendrie, J.L. Lavilie, \therefore Mahoney, G. Mantzouranis, A. Menchaca-Roche, M.C. Mermax, C. OL..er, 7..'.M. Symons, Y.P. Viyogi, K. Van Bibber, H. Wieman, P.J. Ciemens, K. Furagai, B.G. Harvey, F. Beiser, H. Crawiord, P.E. 'ireiner, H.H. Heckman, P. Lindstrom, G.D. Westfall, C. MicParland, ?.A. Che:ifin, e.V. Geaga, J.Y. Grossiard and L.S. Schroder. In adijtior $]$ have ebsorbed many ideas from the wider milie: of recearch and research workers at Berkeley. Finally it is a pleaswre tc thank: Shirley Ashley, Antoinette Czerwinski, Eiaine Thaver, anj Aike Saublitz of the Word Processing Dept; John Flambard and the rtaf: of the lllustration Dept.; Marty Casazza, Georef Fiarawe, Arm:id !ustke, Alma Federsen, Steve Jarborcugh, Rosert Patterecr, Churet, ieste and Steve Adams of the Fhotographic rept. They ai: we:foriod superhuman efforts cheerfully to get these ipetires 1 Manmi.

そi: hu:t was supported by the Departrent of Ererar.

References

The list of references is not scholarly either in its completeness, or in its attention to historical development. 'The references are illustrative, and were readily accessible or well known to the autror at the time of writing the Lectures. A careful readinf os them will nevertheless provide an excellent introduction to bearoion experiments:

1. Halton Arp, Atlas of Peculiar Galanies, published by Califorria Institute of Technology, 1966.
2. A. Toomre and 3. Toomre, Astrophys. Tournal 17P, 62: 197\%).
i. J.l. Vary, Second High Enerey Heavy-Ion Summer Stuay (Eerkeley, 1974), Lawrence Berkeley Laboratory Report LBL-3675, !. 37.
3. A.A. Amsden, F.H. Harlow and J.R. Nix, Phys. Rev. Clt, 2059 (1977).
4. F. Sieidl and A. Cameron, Astrophys. and Space Sci. 15, 42 (:972).
f., w. Scheid, J. Hofman and W. Greiner, Fef. 3, p. 1.
5. F.Y. Glendenning and Y. Karant, Phys. Rev. iett. L0, $=71$ (1978).
B. A.T. Laasanen, C. Ezell, L.J. Gutery, N.W. Schreiner, F. Schubelin, L. von Linden and F. Turkot, Phys. Rev. .et.土. I (1977).
6. 3. Weinberg, The First Thrce Minutes, A Modern View ©f the Oriein of the Universe (Basic Books, H.Y. 1977).
1. Proceedings of the International Conference on Nuc?ear Reactions Induced by Heavy Ions, editors R. Bock and W.R. Hering (North-Holland, Amsterdam, 1970).
2. Proceedings of the International Conference on Heavy-Ion Physics (Dubna, 1971), JINR Report D7-5769.
3. Symposium on Heavy-Ion Reactions and Many-Particle Excitations (Saclay, 1971), Colloque du Journal de Physique 32, C6 (197]).
4. Proceedings of the Symposium on Heavy-Ton Scattering (Arponne, 1971), Argonne Report ANL-7837.
5. European Conference on Nuclear Physics (Aix-en-Provence, 1972), Colloque du Journal de Physique 33, C5 (1972).
6. Proceedings of Heavy-Ion Sumer Study (Oak Ridge, 1972), Editor S.T. Thornton, USAEC Report CONF-720669.

1(. Proceedings of the Heavy-Ion Transfer Reaction Symposium (Areonne, 1973), Argonne Report P4Y-1973B.

3". Eroncedines of the International Conference on Nuclear Ihysias, editors J. de Boer and J.H. Mang (North-Hollend, Ansteriar, 2972).

2:. Treceedines of the International Conference on Reactions between Complex Nuclei, editors P.L. Fobinson, F.K. Mcrowen, ㄱ.E. Bell and J.H. Hamilton (North-Holland, Amsterdam, Joph).
99. Ecconc High Energy Heavy-Ion Summer Stuly (Ererke? ey, ;97i.), Lawrence Berkeley Laboratory Report LBL-3675.
U. \because Oncedings of the Symposium on Classical and Quantum Mecharial Aspects of heavy-Ion Collisions, editors H.L. Harney, T. Prann-Munzinger and C.K. Gelbke, Lecture Notes in Fhysies ': Or inger, Berlin/Heidelberg/New York, 1975).
il. Froceedings of the INS-IPCR Symposium on Cluster Etructurf ca Itulei and Transfer Reactions Induced by Heavy Tons (eas. : : Zanitsubo, I. Kohno and T. Marumori) Tokyo, 1975, IPop Progress Report Supplement 4.
$2 \therefore$ Proceedings of the Symposium on Macroscopic Features of HearrIon Collisions (Argonne, 1976), Argonne Report AllL/PHY-76-2.
č. I'kird Sumer Study of High Energy Heavy Ions (Berkeley, 19?6!, Lawrence Terkeley Laboratory Report.

2l. European Conference on Nuclear Physics with Heavy lons 'Caer, 1976.), Colloque du Journal de Physique 37, C5 (1976).
cir. Theoretical Aspects of Heavy-Ion Collisions (Falls Creek, Tennessee, 1977), ORNL Report 77060.
26. Froceedings of the International Symposium on Nuciear Coliisions and Their Mieroscopic Description (Bled 1977), Fi:ika 9, Supp'ement 3 and 4 (1977).
27. Proceedings of the IPCF Symposium on Macroscopic Features of Heavy-Ion Collisions and Pre-Equilibrium Processes (Hakone, 1977), eds. H. Kemitsubo and M. Ishinera, IPCR Progress Report, Supplenent 6.
dR. lroneedings of the International Conference on Wurestr:"r.rture, ed. 7'. Narumori ('lokyo, 1977). Euprilementur, I. एr.r:Coc. Jaman lit (1978).

 at thr Scottish Universities : ummer Zahon] in Fhysio: " fuarews, 1977) ard the Latin fmerican Sumer Echori ir "tanie: '?reico City, .97\%), Lawrence Eerkele; tatoratory frer rirt $\because \therefore 1$ (1977i and to be pallished.

 (iromester, N.Y., 1977).
\therefore...C. :az, J.K. Alexander and E.H. huerbach; : .r. Va, ar. $\therefore \therefore$ Aloftider, to be published in Phys. Rev. C, :s\%

 1072.
 serjes of pafers I, TI and IIT ol the Generali:nt Fromed

ho. I.H. Ball, C.B. Fulmer, E.E. Gross, M.L. Halbert, !. . C.A. Pudemann, R.J. Saltmarsh and G.f. Satchler, ftac.. Ther. A5:… 208 (197c).
1.]. G.K. Satchler, Fer. 1R, p. 17].
4.' I.F. ('hristensen and A. Winther, Phys. Lett. Gk, 10 (10\%. .
43. C. Olmer, M. Mermaz, M. Euenerd, C.K. Gelbke, :.... :̈o...r:e, 3. Mahoney, D.K. Scott, M.H. Mac jarlane and S.C. Picyme, lawrence Eerkeley Laboratory Preprint LHL, 655 ?, to be published in Phys. Rev. C.
$\therefore \therefore$ D.A. Goldbert and S.M. Smith, Phys. Rev. Lett. 29, 500 ind7. \therefore C. Craner, R.M. DeVries, D.A. Goldbere, M.S. Zisman and '.F. Auruire, Phys. Rev. C14, 2158 (1976).
\therefore. :. . Tacksor and R.C. Johnson, Phys. Lett. 495, ph9 (1971.).
\therefore. F.l. Je:ries, D.A. Goldbere, d.W. Watson, l.... Eisman and .1.今. Cramer, Mhys. Rev. Lett. 39, 450 (1977).
.. ${ }^{-}$. I. Alczyrski and K. Jiwek-wilcrynsta, Phys. Lett. 55E, an

\therefore. Incki, J. Pandrup, W.J. Swiatecki and C.F. TBare, A:... :hus. 205, 427 (1977).
$\therefore \therefore$ Erink, Ref. 2l, p. C-47.
 $\because, ~ B r_{i}=5$, Phys. Rev. Lett. 39, 265 (1977).

¥. そ.G. :ove, Phys. Lett. 72E, I. (1977).
 (1970) and refs. therein.

9. ?.f. Lemaire, Phys. Peports 7C, 280 (1973).

6, \%. A.F. Fhillips, Rep. Prog. in Phys. hC, 3.5 (1977).

1. A.J. Ealtz and S. Kahana, Adv. Phvs. 9, 1 (1977).
F. \because. K.C. Lemaire, Proc, of Int, Coni. on Clusterine Aspects s: Nuclear Structure and Nuclear Reactions (Winnipeg, Manitoba, 1078).

E\%. H.T. Fortune, Ref. 28, p. 90.
6. D.K. Wilkinson, The Investigation or Nuclear Structure Problems at High Energy. Proceedings of the International School of Huclear Physics (Erice, 1974), ed. H. Schopper (North Holland, 1975), P. 1.
r'. A. Mechaca-rocha, L. Phil. Thesis, fuxford Univereity 'ig?.. i.
(\%. W. H. Krinis, Phys. Lett. dgis, 37 (197?).

 Orikov and V.A. Timofrev, Sriv. J. Nucl. Phys. 天h, l ligir,.

 :"s. therain.
 res. ©herein.
 us W. Mclatchie, Phys. Kev. Lett. ?5, R3: (19\%5).
\cdots. \because.'s. Davies, R.M. DeVries, G.C. Ball, J.S. Forster, th. Koctahie,
 (1.97r,).
 i.: (1976).

if. S.M. Ikevries, D. Shapira, M.R. Clover, E. Gove, .'. S. Cerre"' and G. Sorensen, Phys. Lett. 67E, 19 (1977).

$\because \because_{\text {. }}$ I.F. Scott, B.G. Harvey, D.I. Hendrie, L. Kraus, C.t. Mafuire, J. Mahoney, Y. Terrien and K. Yagi, Phys. Rev. Lett $\underset{\text { I }}{ }$, l Z.. : (1974).
79. G.'T. \#ickey, D.C. Weisser, J. Cerny, G.M. Crawley, A.f. Z.eller, T.P. Ophel and D.F. Hebbard, Phys. Rev. Lett. 37, 130 (1976).
80. G.C. Ball, W.G. Davies, J.S. Forster and H.R. Andrews, Phys. lett. 60B, ?65 (1976).

Ei. I. Paschopoúos, E. Mîller, H.J. Körner, I.C. Gebrich, ̌..E. Fehr. and J. Scheerer, Munich Preprint (1978), to be published in : tivs. Rev. C.

气. \because Campi, H. Flocard, A.K. Kerman and S. Koonin, Nucl. Fhyc. A'], 192 (1975).
5. F..t. Greiden, Ref. 10, P. 217.

ㄴ. Ne of the most recent techniaues for evaluating this intepm: i: Fi ven by D.H. Glockner, M.H. MacFarlane and S.C. Pieper, Arenne tiational Laboratory Peport A:IL-76-11 (197C).
f: F. . Pondi, C. Chasman, J.D. Garrett, C.K. Gelbke, O. Hansen, U., Tevine, f.Z. Schwartzchild and C.E. Thorn, Phys. Fe:. $\therefore \ldots!$. 3c, 300 (1976).
.i. :.". Fuller, Fhrs. Lett. 69E, 267 (1977).
F.. F.f. Seglie end D.J. Asciutto, Phys. Rev. Lett. 39, E呡 (19~7).

F5. 3. ielic, Z. Pruess, L.A. Charleton and N.K. Clendernine, 5t... Fev. Lett. 69B, 20 (1977).

Fo. Fi: A recent sumary, see. K.S. Low, Ref. 24, pCE-15.

91. F.I. Bond, I.J. Levine and C.E. Th.mn, Phve Lett. E95, 32: (1977).
O. O.E. Fehm, W. Henring, J.R. Erskine and D.G. Kovar, t. the :uElished in Phys. Rev. Lett. 40,3479 (197E).
0.: N. K. Glendenning, Rev. Mod. Phys. 47 , 659 (1975).
 C.F. Maguire, J. Mahoney, Y. Terrien, K, Yagi and h. K. Glendenning, Phys. Rev. Lett. 34, 895 (1975).
95. E.D. Bond, H. K. Körner, K.C. Lemaire, D. T. Pisanc and E.E. Thorn, Phys. Rev. Cl6, 177 (1977).
96. ㄷ.C. Peng, M.C. Mermaz, A. Greiner, N. Lisbona and K.s. Low, Phys. Rev. C15 1331 (1977).
97. M.C. Lemaire and K.S. Low, Phys. Fev. Clf, 18? (197i).
98. K.A. Erb, D.L. Hanson, R.J. Ascuitto, B. Sorensen, J.S. Vaagen and J.J. Kolata, Phys. Rev. Lett. 33, 1102 (1974).
99. C.F. Maguire, D.L. Hendrie, U. Jahnke, J. Mahoney, D.K. Scott, T.S. Vaagen, R.J. Ascuitto and K. Kumar, Phys. Rev. Lett. LIJ, 258 (1978).
100. B. Sorensen, Phys. Lett. 66B, 119 (1977).
101. K.W. McVoy, Proceedings of the Oaxtepec Symposium on Nuclear Physics (Mexico 2978); B.V. Carlson and K.W. McVoy, Nuel. Thys. A20: 310 (1.977).
102. A.et. Raltz and S. Kahana, Phys. Rev. Cl7, 555 (1978).
103. T. Tamura, Fhys. Reports 14C, 61 (1974).
10.. For a review of experimental techniques, see P. Armbruster, Ref. 2h, p. 161; the forthcoming issue of Muc. Inst. and Meth. on Spectroneter Detection Systems, ed. by D.A. Eromley; and B. Engeland, Lectures at Scottish Universities Summer School in Physics (St. Andrews, 1978).
105. C. Olmer, M.C.Mermaz, M. Buenerd, C.K. Gelbke, D.L. Hendrie, J. Mahoney, A. Menchacz-Rocha, D.K. Scott, M.H. Macfarlene and S.C. Pieper, Phys. Rev. Lett. 38, 476 (1977) and refs. therein.
106. T.A. Belote, N. Anyas-Weiss, J.A. Becker, J.C. Cornell, P.S. Fisher, P.N. Hud on, A. Menchaca-Rocian, A.D. Panagiotou and D.K. Scott, Phys. Rev. Lett. 30, 450 (1973).
107. H.V. Klapdor, H. Reiss and G. Rosner, Eighth Suwmer School on Nuclear Physics (Mikolajkj, Poland, 1975), Nukleonika 2l, 763 (1976).
108. H.V. Klapdor, G. Rosner and :t. Willmes, International Workshop y
 (Hirschegg, Austria, 19i'..
109. N. Marquardt, J. L'Ecuyer, C. Cardinal, R. Volders, and M.W. Greene, Ref. 17, Vol. l, p. 476.
110. H.V. Klapdor, H. Reiss, G. Rosner and M. Schrader, Phys. Lett. 498, 431 (1974).
111. M. Böhning, Ref. 10, p. 633; R.G. Stokstad, Ref. 18, p. 327.
112. H.V. Klapdor, H. Reiss and G. Rosner, Phys. Lett. 58B, 279 (1975).
113. D.A. Bromley, Second International Conference on Clustering Phenomena in Nuclei (Maryland, 1975); International Conference on the Resonances in Heavy Ion Reactions (Hvar, Yugoslavia, 197\%).
12.. H. Feshbach, Ref. 2^{24} p. C5-177; Europhysies Conference on Medium Mass Nuclei (September, 1977).
115. R.H. Siemssen, Ref. ${ }^{\sim}$, p. 233.
126. M.L. Halbert, C.B. Fulmer, S. Raman, M.J. Saltmarsh, F.H. Cnell and P.H. Stelson, Phys. Lett 515, 3LT (1974).
117. A. Gobbi, R. Wieland, L. Chua, D. Shapira and D.A. Erome ey, Phys. Fev. C7, 30 (1973).
115. E. Vandenbosch, M.P. Webb and M. 84? (1974).
119. K. 5. Low and T. Tamura, Phys. Lett. LOB, 32 (1972).
$1 \cdots{ }^{2}$. E.F. Cosman, T.M. Cormier, K. van Bibber, A. Spercuto, 3. Youne, T. Erskine, L.R. Greenwood and O. Hanser, Fhys. Re:. Lett. 35, 265 (1975).
221. A.J. Lazzarini, E.R. Dosman, A. Sperduto, S.G. Steadran, 3. Thoms and G.R. Young, to be published in Phys. Fev. Leti. (197P); A.H. Lumpkin, G.R. Morgan, J.D. Fox and K.k. Kemper, Dhys. Pev. Lett. LO, 104 (1978).
172. A. Arima, G. Scharff-Golohaber and F. K. MeVoy, Phys. Iett. !nE, (197?).
1.3. \%. Ikeda, Per. 21, P. 23.
 E. Folub, Y. Patin and S. Plattard, Phys. Rev. Lett. 30, 1185 (1977).
125. B. Imanishi, Nucl. Phys. A125, 33 (1969).

12C. H.J. Fink, W. Scheid and W. Greiner, Nucl. Phys. Al8尺, 259 (2072).
127. J. Eisenberg and W. Greiner, Nuclear Theory (North-Holland, 1975) Vol. 1, p. 149.
128. T.M. Cormier, J. Applegate, G.M. Berkowitz, P. Braun-Munzirger, F. Cormier, J.W. Harris, C.M. Jachcinski, L.L. Lee, J. Barretie and H.E. Wegner, Phys. Rev. Lett. 38, 9ho (1977).
129. T.M. Cormier, C.M. Jachcinski, f.M. Earkowitz,
P. Braun-Munzincer, P.M. Cormier, M. Gai, J.W. Harris, J. Barrette and H.E. Wegner, Phys. Rev. Lett. L0, 92L (1979).
130. C.M. Jachcinski, I'M. Cormier, F. Braun-Munzinger, G.M. Berkowitz, P.M. Cormier, M. Cai and I.W. Harris, Phys. Fers. Cig, 12C? (1979).
131. Ih. Shapira, R.M. IeVries, M.R. Clover, R.:. Boya and P.!!. Cherry, Phys. Rev. Lett. LO, 371 (197P).
1%. \because. Bolin, Fhys. Lett. $\mathrm{T}_{\mathrm{h}} \mathrm{F}, 23$ (1979).
3:\%. 5. Braun-Muninper, G.K. Berkowitz, T.K. Cormier, C.K. .'achejnski, J.W. Hurris, J. Rarrette and K.J. Levine, Phys. Per. !ett, 38, 014 (1977).

12!. そ.n. McVoy, Fef. 2), !. 127; Phys. Pev. C3, 1104 (1971).
I \because. . '. Earrette, K.J. Lerine, P. Eraun-Munziyger, G.K. Kerkowitz, K. 'rit, J.W. Harris and C.N. Jachcirski, Piys. Pev. Lett. US, L... (197 ${ }^{\circ}$).
l\%. F.F. Clover, P.M. : eVries, R. Ost, N.J.A. Rust, F.:. She: : and H.E. (iove, Phys. Rev. lett. ho, 1008 (197).
13. F. McVoy, Proceedings of the Symposium on Heavy Ion ElastiScattering (Rochester, 1977).

137(a). L.M. Erink and N. Takipawa, Nucl. Phys. A270, 150 '29?

137(b). D. Dennard, V. Schkolnik and M-A Franey, Fhys. Fer. : ett. 40, 1549 (1978).
138. M. Paul, S.J. Sanders, J. Cseh, D.F. Geesaman, W. Hennirf, D.G. Kovar, C. Dlmer and J.P. Schiffer, Phys. Rev. lett. Sr, 1310 (1978).
139. For some recent discussions of this field, see J.L.C. Ford, First Oaxtever Symposium on Nuclear Physics (Mexico, 197E).
140. D.L. Hillis, E.E. Gross, D.C. Hensley, C.R. Bingham, F.T. Baker and A. Scott, Phys. Rev. Cl6, 1467 (1977).
141. M.W. Guidry, P.A. Butler, R. Donangelo, E. Grosse, Y. El Masri, I. \because. Lee, F.S. Stephr..., R.M. Diamond, L.L. Fiedinfer, C.R. Bingham, A.C. Kahler, J.A. Vrba, E.L. Robinson and N.R. Johnscn, Phys. Rev. Jett. 10,1016 (1978).

14?. P. Donangelo, L.F. Dliveira, J.O. Rasmussen and M.W. Guidry, Lawrence Berkeley Laboratory I'reprint, LBL-7720 (1978): \because.̈. Gidry et. al, Nucl. Phys. A295, 482 (197E).

1: J. J. P. Eirkelund, J.R. Huizenga, H. Freiesleben, K.J. Wolf, \therefore. Vnik and V.E. Viola, Phys. Fev. Cl3, 1:3 (1976).

1!... I. Y. Lee, D. Cline, P.A. Butler, F.M. Diamond, ․o. Newton, r. . Simon, and F.S. Stephens, Phys. Rev. Let:. 39, 6Rh (1977).
? ! r. :. Yumar and M. Baranger, Nucl. Phys. Al22, 273 (196\%).
1!f. 天.i. love, T. 'reresawa and G.P. Satchler, Pucl. Phys. Arol,
 K. Pruess, Phys. Rev. Let+. Lo, 20 (1978).
 f. !emehaea-Rocha, D.K. Scott, T..'.M. Symons, Z. Van Ribter,
 l.mberatory Preprint iBL-7195 (1978).
 (29ㄺ).
-10. For a recent revieh, see A. Faessler, Ref. 1f, i. 4.37; [. wari,

-50. F.S. Ctephens, Comments on Nuclei and Particies VT, 173 (19-6.); International School of Physics (Varenna, Italy, 1976).
151. Z.A.e'. Mariscotit, G. Scharff-Goldhaber and 5. Buck, Phys. Fer. 178, 19F: (1969).
152. F.F. Mottelson and J.G. Valatin, Phys. Rev. Lett. 5, 511 i1ger'.
153. I. "hatterger, Phys. Lett. . 5 52, 417 (1973).
254. F.E. Stephens, Rev. Mou. Phys. 47, 43 (1975).
155. I. ̇. Lee, M.M. Aleonarã, M.A. Deleplanque, Y̌. El Mas ${ }^{\prime j}$, J.O. Newton, R.S. Simon, R.M. Diamond and F.S. Steṇhens, Phys. Rev, Lett. 38, 1h54 (1977).
156. S.M. Harris and P.J. Evans, Phys. Rev. Lett. 39, 1186 (1977).
157. L.K. Peker and J.H. Hamilton, Phys. Rev. Lett. 40, 744 (1978).
158. I.Y. Lee, D. Cline, R.S. Simon, P.A. Butler, P. Colombani, M.W. Guidry, F.S. Stepehns, R.M. Diamond, N.R. Tohnson and E. Eichler, Phys. Rev. Letr. $3 i$
159. N.R. Johnson, D. Cline, S.W. Yates, F.S. Stenhens, L.L. Riedinger and F.M. Fonningen, Phys. Rev. Lett. 40, 151 (1978).
160. A. Bohr and B.R. Mottelson, Phys. Scripta 10A, 1; (1974).
161. R.M. Diamond, Australian J. of Phys., to be published.
162. A. Bohr and E.P. Mottelson, Huc. Structure (Benjamin il.Y.). Vol. II.

16?. I.R. Mottelson, Proceedinge of the Nunlear Structure Symucsium of the Thousand lakes (Joutsa, Finland, 1970), Vol. IT, ․ . 148.
262. F. 2 . Stephens, Conference on Highly Fxcited States of Iuclei (Jïlich, Germany 1975).
16.5. R.S. Simon, M.V. Eanaschik, R.M. Diemond, J.G. Newton and T.S. Stephens, Nucl. Phys. A290, 253 (1977).

Iff. F..T. TGøm, F.S. Stephens, R.M. Diamond, J. de Eger and W.E. Meverhof', Phys. Rev. Lett. 32, 59; (1974).

1f7. F.S. Simon, M.V. Banaschik, P. Colombani, D.P. Soroha, F.S. Stephens and R.K. Diamond, Phys. Rev, Lett. 33, 59f, (1974).

IGE. J.O. Newton, S.H. Sie and G.D. Dracoulis, Phys. Rev. Lett. 110, 625 (1979).
169. M.A. Deleplanque, I.Y. Lee, F.S. Stephens, F.f. Diamonà ana M.M. Aleonard, Phys. Rev. Lett. 120, 629 (1978).
170. P.O. Tjøm, I. Espe, G.B. Hagemann, B. Herskini and D.i. Hillis, Phys. Lett. 72B, 439 (1978).

17l. G. Anderson, S.E. Larsson, G. Leander, F. Möller, S.G. Hilsson, I. Ragnarsson, S. Aberg, R. Bengtson, J. Dudek, E. Nerlo-Pomarska, K. Pomorski and Z. Szymanski, Nucl. Ph;s. A26B, 205 (1976).
172. J. Pedersen, B.B. Back, F.M. Bernthal, S. Biørnholm. .I. Borgereen, O. Christensen, F. Folkmann, B. Herskind, T.L. Khoo, M. Neiman, F. Pühlhof'fer and G. Sletten, Phys. Rev. Lett. 39, 990 (1977).
173. T. Dossing, K. Neergaard, K. Matsuyanagi and Hsi-Chen Chanc, Fhys. Rev. Lett. 39, 1395 (1977).
174. A. Faessler and M. Ploszjcai, Phys. Rev. Cl6, 2032 (1977).
175. M. Hillman and Y. Eyal, Ref. 24, p. 109.
176. F. Pühlhofer, Nucl. Phys. A280, 267 (1977).
177. J. Barrette, P. Braun-Munzinger, C.K. Gelbke, H.L. Harney, H.E. Wegner, B. Zeidman, K.D. Hildenbrand, and U. Lynen, to be published in Nucl. Phys. A (1978).
178. V.S. Remamurthy, S.S. Kapoor and S.K. Kataria, Phys. Pev. Lett. 25, 386 (1970).
273. F. Pühlhofer, W.F.W. Schneider, F. Eusch, J. Barrette, F. Eraun-Munzinger, C.K. Gelbke and H.E. Wegner, Fhys. Rev. C16, 1010 (1977).
180. - \therefore Cormier, E. R. Cosnan, A.u. Lazzarini, H.E. Beener, I.L. rarrett and \vec{F}. Pühlhofer, Fhys. Rev. Cl5, 654 (1977).
181. G. Sauer, H. Chandra and U. Mosel, Nucl. Phys. A261, E2I (1976).
122. S. Cohen, F. PIasil and h.J. S atecki, Ann, of Irys. E2, 5 5.7 (1974).
ī3. J. Comez del Campo, M.E. Ortiz, A. Dacal, J.L.C. Fori, R.L. Pobinson, F.H. Stelson and S.T. Thornton, lucl. Phys. A?ć?, 125 (2976).
184. J. Gomez del Campo, J.L.C. Ford, R.J. Robinson, M.E. Crtiz, h. Dacal and E. Andrade, Nucl. Phys. A29?, 125 (197e).

Ifs. U. Mosel and D. Glas, to be published.
196. W.J. Swiatecki, Ref. Ih, P. Cld-45.
187. W.J. Swiatecki and S. Björnholm, Phys. Reports $4 \mathrm{C}, 325$ (10:-).
188. F. Plasil, Phys. Rev. CIT, 823 (1978).
189. F. Plasil, R.L. Ferguson, H.C. Britt, R.H. Erkkila, F.D. Goldstone, R.H. Stokes and H.H. Gutbrod, Oak Ridge reprint (1978).
190. M. Lefort, Ref. 20, p. 274; Rep;rts on Prog. in Phys. 39, 129 (j976).
191. M. Lefort, Ref. 2h, p. C5-57.

1an. M. Lefort, J. Phys. A7, 107 (1974).
19\%. U. Galin, 1). Siderreau, M. Lefort and X. Tarrago, Phys. Pev, C9, 1r18 (1974).

19!. I. Clas and L. Mosel, Nucl. Phys. AP37, h29 (1375).

iof. \because Yiguor, Ref. 2\&, p. 95.
3\%. $\because \%$ kstad, Ref. 25.
 r. Ilmer and M.S. Zisman, Phys. Lett. 70E, 289 (1977).
 : f. (1977).

Mr. . I. Irtowitz, Rer. 25.
: J?. E. Oeglie, 1. Sperber and A. Sherman, Phys. Pev. Cl: 1227 (5975).
 (2974).
fis. P. Beck and D.H.E. Gross, Phys. Lett. h7E, 14? (1973).
204. D.H.E. Gross and H. Kalinowski, Phys. Iott. 48E, 20 (1974).

20r. I.F. Bondorf, M.I. Sobel and D. Sperber, Phys. Reports Cle, 93 (1974).
206. K. ©iwek-Wilczynska and J. Wilczynski, Hucl. Plys. APE4, 11 (1976); Nukleonika 21, 517 (1976).

万O7. J.R. Birkelund, J.R. Hu J.N. De ant D. Sperter, fhas. Rev. Lett. 40,1123 (1978).

OD. B.R. Back, R.R. Betts, C. Gaarde, T.S. Larsen, E. Michelsen and Trai Kuang-Hsi, Nucl. Phys. A285, 317 (1977).
209. H. Doubre, A. Gamd, J.C. Jacmart, N. Poffé, J.C. Roynette und J. Wilczynski, Phys. Lett. 73B, l35 (1978).
210. D. Glas and U. Mosel, Phys. Lett. $49 \mathrm{~B}, 301$ (1974); Nucl. Mys. ATh , ? 68 (1.976).

21]. D.J. Morrissey, W. Loveland, R.J. Otto and G.T. Seabore, Phys. Lett. 7 lib, 35 (1978).

21:. I. Kover, Rer. 27, p. 18.
\therefore : iarar, Colloque Franco-Japonais de Spectroscopie Nucléaire, TVGashima, Japan (Unjv. of Tokvo, 1977), p. 191.
$\because:-$ P. Everr, T.H. Braid, Y. Eisen, D.G. Kovar, F.W. Prosser, 1. \because. Schiffer, S.I. Tabor and S. Vigdor, Phys. Rev. Lett. $\xrightarrow{27}$, 321 (1976).
\because F. V. Freeman and F. Hass, Phys. Rev. Lett. iO, OR? (1978). F.A. Eroglia, C.H. Dasso, G. Pollarolo and A. Winther, Phys. 5er \because Lett. liC, 707 (1978).
: A. V. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).
\therefore :. Koonin, K.T.F. Davies, V. Marmh-Rezwani, H. Feldmeier, :..J. Krieger and J.W. Negele, Phys. Rev. Cl5, . 359 (1977).
$\because \%$ Sen alsc detailed reviews by A.K. Kerman, Proceedings of the Erries Fermi Summer School (Varenna, Italy, 1977) and Ref. c^{2}, … 7ll; P. Eonche, Ref. 2h, p. C5-21?; J.W. Negele, Fef'. 25, and this school.
$\therefore 0$. S. A . Bertsch and S.F. Tsai, Phys. Reports 1 PO (1975).
\therefore.
5. Fonche, B. Gramaticos and S. Koonir, Saclay Preprint [nh-T/DOC/77/128, to be published in Phys. Fev, C (1979).
ro? : : Gauvin, R.L. Hahn, i. Le Bevec and M. Lefort, Phys. Rev. 분, 722 (1974).
O. Cabot, H. Gauvin, Y. Ie Revec and M. Lefcrt. J. de. Phys. Iff, 289 (1976).
: \%. S. Della-Neara, H. Gauvin, H. Tungclas, Y. Le Geyec and : \because. Lefort, Z. Fhys. A282, 65 (1077).
at. P.C. Britt, B.H. Erkila, P.D. Goldstone, R.H. Stokes, B.E. Eaci, F. Folkmann, C. Christensen, B. Ferrandez, J.D. Garrett, 3.E. Hagemann, B. Herskind, D.L. Hillis, F. Plasil, R.L. Ferguson, M. Blann and H.H. Gutbrod, Phys. Rev. Lett. 39, J1.59 (1977).
?も. L. Kowalski, J.M. Alexander, D. Logan, H. Fajagopalan, M. Kaplan, M.S. Zisman and T.W. Debiak, Stony Braok Preprint, נ978.

2?7. 'J'. Inamura, M. Ishihara, T. Fukuda, T. Ehimoda and H. Hura;a, Phys. Lett. 681, 51 (1977).

OH. IV. Harn, H.A. Enge, A. Sperduto and A. Grane, Phys. Par. C17, 118 (1978).

\% 3). . T.M. Nitschke, Symposium on Superheavy Elements (Lubtonik, F(•xas, 1978), Lawrence Berkeley Laboratory Preprint, LEl,$7005(1978)$.
$\therefore \because . \%$ Keisdorf and P. Armbruster, International Meeting on treactions of Heavy Ions with Nuclei (Dubne, 1977). CDI troprint-Bericht-M-2-78.
Y. V. Gentry, 'T.A. Cahill, N.R. Fletcher, H.C. Kaufmann, L.... Medsker, J.W. Nelton and H. Flocchini, Fys. Rev. Lett. 38, 479 (197?).

F\%. C.t. Sparks, B. Reman, E. Ricci, R.V. Gentry and R.S. Yrayes, F'hys. Rev. Lett. 40,507 (1972).
i\%. W.T. Swiatecki and C.F. Tsang, Lawrence Berkeley Lat Preprint I.EI--6.66 (1971); R. Kalparchieva, Yu. Ts. Ogenessian, Yu. E. !raionzhkevich, H. Sodan and D.A. Civozdev, Thys. Let:- Gge, int (1977).
$\because थ$. E.K. Hulet, R.W. Lougherd, J.F. Wild, J.H. Landrum, F.i. Stevenson, A. Ghiorso, J.M. Nitschke, F.J. Otto, D... Horıissey, P.A. Baisden, E.F. Gavin, D. Lee, R.J. Silva, L.M. Fowler, and G.T. Seaborg, Phys. Hev. Lett. 39, ? (1977).

20f. Yu. T's. Oganessien, H. Bruchertseifer, G.V. Buklanov, $\because .$. Chepigin, Choi Val Sak, B. Eichler, K.A. Gavrilov, ::. Gaeggeler, Yu. S. Korotin, O.A. Crlova, T. Reeta, K . Keisi, G.M. Ter-Akopian, S.P. Tretyakova, and I. Zvara, Nuel. Phys. A?94, 213 (1978).
237. H. Sann, A. Olni, Y. Cirelekoglu, D. Pelte, U. Lynen, I. Stelzer, A. Gobbi, Y. Eyal, W. Kohl, R. Fenfordt, I. Fode, G. Rudlof, D. Schwalm and R. Bock, Ref. 25, p. 281; K.D. Hildenbrand, H. Freiesleben, F. Pühlhofer, W.F.W. Schneider, R. Bock, D.V. Harrach and H.J. Specht, Phys. Rev. Lett. 39, 1065 (1977).
738. G. Wolschin and W. Nörenberg, 7. Phys. AP84, 209 (1979).
239. V.F. Weisskopf, Thys. Todey lh, 18 (196L..
zic. H. Feshbach, Rev. Mod. Phy. 46, 1 (1974) and refs. thereir..
A... One of the earliest experiments related to this phenomeno is that of K. Kaufman and W. Wolfeang, Phys. Rev. 121, 192 (1961). ther early works include: f.F. Gridnev, V.V. Volkoy ant \because. Wilezynski, Nucl. Phys. Al42, 385 (1970); © T. Galin, L. Guerreau, M. Lefort, J. Péter and X. Tarrago, Nucl. Phys. A159, 461 (1970).
Z.t. For a recent review, see W.U. Schröder and T.F. Huizenca, Anr. Rev. Hucl. Sci. 27, 465 (1977).

A§. A.S. Artukh, G.F. Gridnev, V.l. Mikheev, V.V. Volkov ar. J. Wilczynski, Nucl. Fhys. A211, 299 (1973); A215, 01 (10i3).
C... \therefore. Milczynski, Phys. Lett. B47, 484 (1973).
C..5. :i.f. Deubler and K. Dietrich, Phys. Lett. 56E, 241 (1975).
i..t. : Eterlanger, f. Grangé, H. Hofmann, C. !tgo and T. Richert, Phy: Rev. C17, 1495 (1978).

Cin. \therefore. Talin, Rer. 2^{24}, p. C5-83.
 2. Fhys. A283, 24 ? (1977).

24G. 习.V. Volkov, Ref. 18, p. 363 and V.V. Yolkov, Sov. J. Thucl. Thys. E, 420 (1976).
250. У. $\%$ Volkov, Ref. 20, p. 253.
25.. I.fi. Moretto and R. Schmitt, Ref. 24, p. ©5-109.
aja. J. 'ialin, Rer. 2h, p. C5-83.
253. W. Norenbere; Ref. 24, p. C5-141.
254. H.A. Weidenmuller, Ref. 25.
255. R. Babinet, E. Cauvin, J. Girard, H. Nifenecker, B. Gatty, D. Guerreau, M. Lefort and X. Tarrago, Nucl. Phys. A966, 160 (1978).
256. F.L. Hond, Phys. Rev. Lett. LO, 501 (1978).
 Winamisono, M. Jshihara, Y. Tenaka and H. Yamissubr, lrya. Fev. i.ttt. 39, 323 (1977).
 : Y. 7:. lett. 7正, 281 (1978).

 1,f: 1977).

 "r"". 'n Fur. React. : Aecharisme (Varenra, Italy, 1977".
 : if ar: !'. Wamer, Phyr. Lett. 71E, 63 (1977).

fi.'. S. Fantsch and E.P. Tsai, lhys. Feoorts 18C, 1E6. 7975).
if. :- A. Uroflie, C.ll. Dasso and A. Winther, Phys. Wett. G1: 1]: (? 7 ($)$; R.A. Broclia, D. Civitarese, C.H. Dasso ani A. Winther, Phys. Lett. 73E, 1405 (1978). W. Takigawa, University U: Ainster Preprint, 1978.
$\because 69 . \quad$ K.f. liju and C.E. Brown, Nucl. Phys. A265, 385 (1976).
270. F.F. Betts, S.B. DiCenzo, M.H. Martensen and R.L. White, Fhys. Siev. Lett. 39, 1183 (1977).
271. L. Ashery, M.S. Zisman, R.B. Weisenmiller, A. Gutermen, D.K. Fcott and C. Maguire, Lawrence Berkeley Laboratory Annual Feport (1975), F. 97; A. Guterman, D. Ashery, J. Alster, D.F. Scott, M.S. Zisman, C.K. Gelbke, H.K. Wieman and D.L. Gendrie, to be published.

E72. P. Doll, D.L. Hendrie, J. Mahoney, A. Menchaca-Rocha, D.K. Scott, T.J.M. Symons, K. Van Bibber, Y.P. Viyoei and H.H. Wieman, to be published.
275. M. Buenerd, M. Lebrun, J. Chauvin, Y. Gaillard, J.M. loiseaux, F. Martin, G. Perrin and P. de Saintignon, Phys. Rev. Lett. :0, 11.82 (1978).
ci.. F.F. Letts, Private communcation, 1978.
 (Enrico Fermi), 1974.
:ic. ?.5. Eondorf, Ref. 18, p. 383.
$\because \cdots$. \because. \because renberf, Fhys. Lett. 525, 289 (1974).
\therefore. $\because \sim 1 s c h i n$ and W. Nörenbere, 2 . Fhrs. A284, 200 (197E) ar.a rots. thereir.
$\because \because . \quad \therefore$ ituizemra, Rer. 25.
 \because F. オiola, 「hys. Pev, Lett. 37 , 885 (1976).
"or a fliller discussion, see M. Lefort, Symposium on lew Aroupes in IVuclear Physics (Rehovot, Israe], 1a76).
3. Nolschin and W. Nörentere, Z. Fhys. A25l., 209 (1978) ani wer. therein.

F5:. F. Feck and D.H.E. Gross, Phys. Lett. Elty, $14 ;$ (1273).
 ह: (1974).

 V.E. Viola, Phyi. Rev. Cl6, 623 (1977).

Ff\%. \therefore I. Londorf, J.R. Huizenga, M.I. Sobel and D. Sperber, Ehys. :थev. Cll, 1265 (1975).
288. J.F. Huizenfn, Nukleonika 20, 291 (1975).
289. \therefore.N. De end I. Sperber, Phys. Lett 72B, 293 (1978).
290. E. Sinha, fhys. Lett. 71B, 243 (1977).

P91. N.U. Schröder, J.R. Huizenfa, T.R. Birkelund, K.L. Wolf and V.E. Viola, Phys, Lett 71H, :83 (1977).


```
Y.: vina, maimaity of tromster Fremrir: M-imp-2":
```



```
\because%"
```


\qquad

``` , . : , \(\cdots\).
```



``` \(1 \%\)
```



``` \(\because, \therefore, \quad\) ! \(!\).
```


$=O^{R}$. F.R. Christensen, F. Folkmann, O. Hansen, 0 . Nathan, :.. Trautner, F. Videbaek, S.Y. van der Werr, H.C. Eritt, $5 . \vdots$. Chestnut, fi. Freiesleben and F. Pühlhofer, Fhys. Pev. Iett. 19!.5 (1978).
 $\because \because_{i}$ and C. Flaum, Thys. Rev. Iot:. 3E, 23t. (19.7).
 Ziswan, Phys. Rev. Lett. 39, 302 (1977).

\therefore. Natowitz, N.N. Namboociri, P. Kasirai, F. Errere,. fider, P. Lonthier, C. Cerruti and \%. Aileman, Phrs. ts?. : ett. 40, 751 (1978).
 (1776); Hukleonika 21, 517 (1076).
\therefore : A.E. Gross and K. Kalinowski, Ref. 20, Y. ? H.
$\therefore 5 . \quad \because$. Elarn, Anr. Rev. Nucl. Sci. 25 (1975).
 Prys. Rev. Lett. 34, 1523 (1975).
317. R. Neiner, Phys. Rev. Lett. 32, 630 (107:.); Furs. Eav. D_A. 236: (1976).
: : Eethe, Enys. Rer. 53. 675 (1938).
\therefore : msnafa, Z. Phys. 110, 573 (1936).
 Chapter 8; A. Isihara, Statistical Pnysics (ncaderi, Prar: !! . 1971) Chapter 13.

3\%. J.Y. Sortt, From Nuciei tr: Nucleons, lst Caxteper Symein Cr Wuclear Physics (Mexico, 1978), Lawrence lierkeiey Labrratory Preprint LBL-7703 (1978).

32\%. Fifr a review, see J. Galin. Ref. 28, p. 683.


```
        \therefore\therefore,\mp@code{,品,}
```



```
    #%., \therefore.!. :..*, !rre. :%.
```



```
        #. Alrve, Tature.143, 4,5 (10%s:.
```



```
        Frepmint Nat,-6570 (1973), tu be publishes ita ism., E.?.
        Fure, Sci.
    3%. J. Mreki, Y. Boneh, J.F. Nix, J. Randrul, N. F.an:, A.:.
        Aierkud, W.J. Swiatucki, Lawrence Berkeley Lah. `:t r
        Frepriot LHL-6536, ti be jublished in An:. S Thys. iowe
    3%. J.P. :Mamre, Rer. :h, p. ó-195.
```

3.4. Э. Rertsch, Lecture Notes for the Les Houches Summer Schore (19:0).
34. F. F a recent review, see J.R. Nix, Los Alemrs Preprint -5-0-77-2952.
\therefore therd, C.F. Gèthe, L.F. Harvey, 2.之. Herdrif, t. Kaí: Aey, A. Nenchaca-Rocha, C. Oime and D.f. Seriet, Fow. Fiev. Lett. 37, 1191 (1976).

 \therefore... Savisie, T. Mheney, h. Menchsca-Rfuta, Z.C. Mermaz, ". ..mer, T.J.K. :ymens, Y.P. Viygé, K. Varbibber, :

 \because Y Shie and F, Yamitsube, Phys. Rev. Cl4, 1458 (1976).
 F. : incer, : mys. Rev. Lett. 35, 152 (1975).
I. Sasuia and F. Uchiyama, Phys. Rev. C15, i598 (19~~).
 : . . Mermaz and !. F. Sertt, Lawrence Berkeley Laboratory Preprint LEL-582G (1977), to be published in Phys. Reperts '1970).

シ.. V.V. Volkov, Sov. J. of Nucl. Phys, 6, 420 (1976).
35:. ‥P. Bondori, F. Dickman, D.H.E. Gross and P.J. Siemens, Fef. 12, p. C6-145; R. Eillerey, C. Cerruti, A. Chevarier, II. ©hevarier and A. Deneyer, 7. Phys. A28!, 389 (1978).
353. A. \because. Abul-Mard and K.l. El-Abed, Proe. Th. Phys. (Japan) 23, 480 (1975).
354. A. Eohr and E. Mottelson in Nuelear Structure (Benjamin, 1969), Vol. 1, p. 187.

" \because ".

: . - act.et.

\because. . $\vdots . \therefore$: :ractron, L.E. Greiner, H.H. Heckman, B. Cork and… : ieser, LEd-Freprint 3650 (1975).
Y:.... Mrrissey, W, ioveland, W.R. Marsh and G.T. Seabore, :is freprint 7718 (1978).
Z戶゙. U.i. Kniel, TAJ. Siemens, J.P. Bondorf and H.A. Bethe, !acel. Phys. A 251, 502 (1975).


```
    i. . : \ddots:", 嫁;
```

\qquad

``` , -
```



```
    * . ".. + !',
    \ddots . "!r:, :. .". &., . in,
```



```
    :.%. %心* t.
```

\qquad

``` ,
```



``` treprint (1978).
```



``` F.W. Larson and J.M. Hunt, OHNL Report Th-iaz 2. (197i4).
```

\qquad

 \therefore : Yeger ars f. F, Clark, thys, Eev. C10, 24]6 (1974).

 ©etiluelin, L. von iimaern and F. Turkot, Phys. Rev. lett 38, I $\vdots 157 \%$.
424. R. Stock, Meavy-Ion Collisions, Vol. 1, ed. R. Bock (North Holland), in press; Phys. Reports, in press.

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

!. i. :

bef. 25.

MrClelland, M.A. Nasser, H. Spinka, A.L. Sarle, V. Ferez-
Mendez, F. Talara, E.T.H. Whipple and F. Zarbakash, LEL
freprint 7278 (1978) to be published in Phys. Rev. Lett. (1978).


```
    :!.s:":, :.: !:"!:A:&, * ,'
```


