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Abstract 

This paper introduces a novel algorithm for detecting burst in voiceless stops in spontaneous 

speech.  This algorithm uses an exemplar-based approach for detecting aspiration noise, 

and avoids the normalization problem since the exemplars are inherently speaker-specific 

and environment-specific.  The algorithm is trained and tested on 19 speakers’ data.  The 

overall error is estimated to be under 5 ms.  We also show the wide range of variation in the 

phonetic makeup of stops in spontaneous speech and how the algorithm is improved to deal 

with the difficult cases.  

Keywords: automatic burst detection, VOT, spontaneous speech.  

 

 

1. Background  

 

1.1 Methodological issue in research on pronunciation variation 

     In recent years, as many large-scale speech corpora (TIMIT, Switchboard, the 

Buckeye corpus, among others) are made available, quantitative analysis of these 

corpora has become an active new research area.  In a seminal work, Keating et al. 

(1994) demonstrated two studies on the TIMIT corpus of read speech: a transcription 

study on segmental variation and an acoustic study using the audio signal.  Since 

then, a growing body of literature has developed in the area of pronunciation variation 

in spontaneous speech (Byrd 1993; Keating 1997; Jurafsky et al. 1998, 2002; Gregory 

et al, 1999; Bell et al 2003, to appear; Raymond et al, 2006; Gahl, 2008; among 

others).  However, the majority of these studies are limited to segmental and 

durational variation, such as shortening/lengthening, t/d deletion, flapping, and vowel 

alternation.  Acoustic signal analysis is relatively rare (maybe with the only 

exception of vowel formants).  This asymmetry in the literature is at least partly due 

to the fact that segmental/durational variation is easy to code as the information is 

already available in the transcription.   

However, as the research on pronunciation variation develops in both depth and 

breadth, it becomes necessary to go beyond the transcription files and enter the 

acoustic signal.  In order to do so, new methods need to be developed for extracting 

phonetically-important information from the speech data.   

     For many acoustic measures, there already exist automatic processing 
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techniques.  Nonetheless, these techniques are mostly developed for speech 

engineering and may not be directly applicable to the type of the research discussed 

here.  Among other things, the techniques used in speech engineering are often 

designed to aid speech recognition and therefore precision (either in time domain or in 

frequency domain) is not of the highest concern.  In pronunciation variation studies, 

however, precision is highly important, both because the acoustic measures are the 

actual objects of investigation, and that the size of the effect that researchers are 

looking for is often very small.  For instance, it is not uncommon that certain factors 

are found to correlate with less than 5% of the variation in the acoustic measure, 

which would require the random error in the acoustic measure to be well under 5%. 

 

1.2  The current study 

     In this paper, we report an attempt to address the above methodological issue, 

by presenting a case study on automatic burst detection in English voiceless stops.  

Automatic burst detection is widely used in speech engineering.  The prevailing 

algorithm is one that detects the point of maximal energy change in high frequencies 

(Liu 1996; Niyogi and Ramesh, 1998; Das and Hansen, 2004).  Liu (1996) reported 

an automatic burst detector as part of a larger landmark detecting system.  The 

detector was trained on four speakers’ read speech recordings (20 sentences per 

speaker) and was tested on two new speakers’ recordings of 20 new sentences.  In 

the training set, the detector had 5% deletion errors (i.e. missing real bursts) and 6% 

insertion errors (i.e. detecting spurious bursts) while in the test set, the rates are 10% 

and 2%, respectively.  Liu didn’t specify the temporal precision of the burst detector, 

but it was mentioned that of all landmarks (three different types altogether), 44% were 

detected within 5ms of the hand-labeled transcription, and 73% within 10ms.  

Though the system was not designed with high precision requirement, it still serves as 

a baseline model for the current study. 

Our system makes use of a different approach.  The general idea is that before 

burst (i.e. during closure phase), the spectrogram is similar to that of silence, while 

after burst (i.e. during aspiration phase), the spectrogram is similar to that of a 

fricative (see Figure 1).  Therefore, the program finds the point of burst by 

constantly comparing the spectra of a moving time window to the spectral templates 

of silence and fricatives and looking for the point where silence-like-ness suddenly 

drops and fricative-like-ness suddenly rises.  The system is trained and tested on 19 

speakers’ data from the Buckeye speech corpus (Pitt et al., 2007).  The average 

temporal error is estimated to be within 5ms.  The spectral template approach was 

first introduced in Johnson (2006), as an attempt to automatically analyze large 

speech corpora in a speaker-specific way.  The main advantage of this approach is 

that it is inherently sensitive to differences among talkers and recording environments 

and therefore is more generalizable to new data. 
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Figure 1. Spectrogram of a typical voiceless stop (the blue arrows mark the beginning and the end of the 

stop, while the red line marks the point of release.) 

 

 

2. Data 

 

2.1. Corpus 

The Buckeye Corpus contains interview recordings of 40 speakers, all local 

residents of Columbus, OH.  Each speaker was interviewed for about an hour with 

one interviewer.  Only the interviewee’s speech was digitally recorded.  At the time 

of this study, 20 speakers’ transcription was available, among which, one speaker’s 

data were not used due to inconsistencies in the transcripts.  The remaining 19 

speakers are nearly balanced in gender and age (10 female, 9 male; 10 above 40 years, 

9 under).  Non-linguistic sounds, including silence, noise, laughter, and interviewer’s 

speech, are also time-marked in the transcription.  Silence in a running speech flow 

is not transcribed as silence, but attributed to neighboring sounds.   

 

2.2. Target set 

     Since word-medial stops are often flapped in American English, we limit our 

target set to word-initial [p], [t] and [k], of which each speaker has from 231 to 1243 

tokens (see Table 1).      

  

Speaker F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 

N 674 572 777 900 1243 490 231 449 699 412 

 

Speaker M01 M02 M03 M04 M05 M06 M07 M08 M09 

N 514 931 624 793 657 406 541 557 628 

Table 1. Count of target tokens in all speakers (top: female speakers; bottom: male speakers). N= number of 

tokens 

 

3. Algorithm design 

     

In view of the pattern in Figure 1, we build spectral templates of silence and 

voiceless fricatives for each speaker, and use these templates as references for 
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evaluating how silence-like and fricative-like a certain chunk of acoustic data is.   

 

3.1. Building spectral templates 

Separate spectral templates are built for silence and voiceless fricatives of each 

speaker, using the following procedure.  First, find all tokens of the phone in the 

speaker’s speech data and discard the ones that are shorter than the medial duration 

(which would technically exclude half of the tokens).  For each remaining token, 

calculate a 1X60 Mel frequency spectral vector using a 20 ms analysis window 

centered at the center of the phone and average across all tokens.  The final template 

consists of an average Mel spectral vector, as well as the standard deviation of each 

dimension.  Figure 2 below illustrates the spectral templates of [f] and silence of one 

speaker as examples. 

 

 

 

Figure 2. The Mel spectral vector in the templates for [f] (left) and silence (right) of speaker F01. The X-axis 

represents 60 equidistant bins on the Mel scale from 0 to 8000 and the Y-axis is the value of the corresponding 

dimension. 

 

3.2. Calculating similarity scores 

A similarity score measures how similar the acoustic data in the current window 

(size=20ms) is to a spectral template.  It is calculated in two steps.  A distance 

measure is first calculated between the Mel spectral vector of the current window and 

the average Mel spectral vector the template (see (1)), and then normalized to be the 

similarity score (see (2)).   

 (1)  dx,u = 
60

)(

1
||

60

1 jj

jj
usd

ux∑
=

−

    

(where dx,u is the distance measure between the Mel spectral vector of window x and the template u; xj is the 

jth coordinate in the Mel spectral vector of x, and uj is the jth coordinate of the Mel spectral vector of 

template u; sd(uj) is the standard deviation of the jth coordinate in the Mel spectral vector of template u.) 
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 (2)  Si = e
-0.005di

   (where Si is the similarity score of the current window to template i. ) 

 

The window moves with a step size equal to 5ms.  Figure 3 below illustrates the 

similarity scores for silence and some fricatives during three example tokens of 

speaker F01.  It can be seen that in all three tokens, the fricative similarity scores all 

rise around the point of release whereas the silence score drops.   

   

   [p]       [t]       [k] 

Figure 3. Similarity scores and spectrogram of three stop tokens of F01: [p] (left), [t] (middle) and [k] (right).  A 

red bar marks the position of first release in every token.  Four similarity scores are shown: [h] (green), [s] (blue), 

[sh] (red) and silence (black). 

 

3.3. Finding the point of release 

 

     As mentioned above, the general idea of the algorithm is to find the point 

within the stop where the silence similarity score suddenly drops and the fricative 

similarity score suddenly rises.  There are two issues that need to be resolved here: (a) 

which period of rise/drop should be used, and (b) which fricative sound(s) should be 

used in spectral comparison.  In the preliminary analysis, we found that the point of 

burst occurs most consistently after the point of fastest change in the similarity scores 

(i.e. maximal/minimal slope), and that using only one fricative score, the [sh] 

similarity score, is enough to capture the fricative-like-ness.  Thus our baseline 

algorithm (see (3)) makes use of the silence similarity score (hereafter the <silence> 

score) and the [sh] similarity score (hereafter the <sh> score). 

 

(3) Baseline algorithm 

Find the end point of the period of fastest decrease in <silence> score and the 

end point of the period of fastest increase in <sh> score, and return the 

midpoint of the two as the point of release.  If no decreasing period is found 

in <silence> score or no increasing period is found in <sh> score, exclude the 

- [h] 

- [s] 

- [sh] 

- silence 
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token from the data set.   

   

4. Testing and tuning   

 

Part of speakers F07 and M08’s data are used as developmental data.  These two 

speakers are selected because they differ from each other in all available dimensions.  

Speaker F07 is an older female speaker, with the lowest average speaking rate (4.022 

syll/s) of all 19 subjects, while speaker M08 is a young male speaker, with the highest 

average speaking rate (6.434 syll/s) (see Appendix I for all speaker’s average speech 

rate).  The developmental dataset consists of 231 tokens from F07 and 261 tokens 

from M08.  Each token is hand-tagged for the point of release, judging from both the 

waveform and the spectrogram.  If a stop token has no reliable trace for release, the 

beginning point of the phone is marked as the point of release, for the sake of 

calculating errors.  If the stop has more than one release, the first release point is 

recorded.   

Using the baseline algorithm, the root mean square (RMS) of error (calculated as 

the lag between estimated point and tagged point) for F07 is 7.22ms.  Moreover, 

errors are mostly distributed around 5ms, with a mean of 5.35ms (see Figure 4).  

This suggests that the estimated point is consistently earlier by about 5ms than the real 

point of release.  If 5ms is added to all estimated values, the RMS of error is further 

reduced to 4.85ms.  

 

        F07         M08   

Figure 4. Distribution of error values (in s) in F07 (left) and M08 (right). X-axis shows the error intervals in s, 

and Y-axis is the number of cases in the error interval.  Error is calculated as the lag between the estimated point 

and the tagged point 

 

When the baseline algorithm is applied to M08’s training data, the RMS of error 

is much bigger, exceeding 13ms.  The majority of errors are within 20ms, but there 

are a number of outliers that are more than 50ms in absolute value (see Figure 4).  

Similar to F07’s data, most errors are positive, suggesting that the estimated point is 

consistently earlier than the real burst point.  However, when 5ms is added to the 

estimation, the RMS error goes up to 14ms, probably due to the negative outliers.  A 

closer examination of the outlier cases reveals three common types: cases with no 

release, cases with no closure, and cases of multiple releases (see Figure 5).   
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 a. no release       b. no closure      c. multiple release 

Figure 5.  Illustration of three problematic cases in M08: (a) no release, (b) no closure and (c) multiple 

release. The duration of the target stop token is highlighted. <sh> score is shown in red and <silence> score is 

shown in black. 

 

In Figure 5a, the transcribed duration of [t] is basically all blank in spectrogram.  

In other words, the release happens as the following vowel starts, but not during the 

stop.  Figure 5b shows a case where the transcribed duration of the stop is all 

aspiration, with no closure portion.  Being an extremely fast and soft talker, M08 has 

many tokens like these in the training set (23 out of 261).  Since the points of release 

in these cases are hand-tagged as the starting point of the phone (for the purpose of 

calculating error), they greatly inflate the average error.  Figure 5c shows a 

word-initial [k] in speaker M08.  This velar stop is weakly (and doubly) released, 

which corresponds to two faint lines on the spectrogram around the mid point of the 

duration of the phone, with no noise-like distribution of energy following the release, 

which makes it hard for the program to recognize.   

 

4.1 First rejection rule 

In view of the first two types of problematic cases (see Figure 5a and 5b), we 

implemented the first rejection rule (see (4)) to reject cases that have insignificant 

changes in the similarity scores due to no obvious closure-burst transition.    

 

(4) First rejection rule 

A target word will be rejected if the most drastic changes found in scores are not 

drastic enough.  The delta criterion is defined as a rising rate of 0.02 per step (i.e. 

per 5 ms) for <sh> score and a dropping rate of 0.04 per step for the <silence> 

score.  If the <silence> score and <sh> score don’t meet the delta criterion, the 

case will be rejected, i.e. no release point will be estimated.   

 

- <sh> 

- <silence> 
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The two cutoff numbers, 0.02 and 0.04, are decided based on the observation 

from the training dataset.  By applying the first rejection rule, 28 cases in M08’s 

training data are rejected, 19 of which are hand-tagged for not having a reliable 

release point.  The RMS error in M08’s training data goes down to 9.27ms (see 

Figure 6).  When 5ms is added to the estimated point, the error goes down by 0.01ms.  

For comparison, when applied to F07’s data, the rule rejects 4 cases, and the RMS 

error goes down to 6.81ms.  When 5ms is added to the estimated points, the RMS 

error further goes down to 4.22ms.    

 

  

Figure 6.  Error distribution in M08 after the first rejection rule is applied 

 

4.2 Second rejection rule 

The first rejection rule is designed to tackle with cases with no obvious 

closure-burst transition, due to missing closure or release gestures.  What remains a 

problem are the cases with multiple releases.  The program is designed to find the 

most significant change in similarity scores, but not necessarily the first one.  This 

becomes a problem in multiple-release cases, since the first release is not always the 

most significant one.  Multiple-release happens most often in velar stops.  In fact, 

the case with the greatest error value (error = -60ms) in M08 is a multiply-released 

initial [k] in the word cause (see Figure 7).  Not only is the velar stop 

multiply-released but also the first three (or four) releases are widely apart.  Instead 

of finding the first release, the <silence> score tracker finds the second major release 

while the <sh> score tracker finds the third major release, and thus the program 

returns the mid point of the two, which is 60ms later than the first release.   
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Figure 7. Multiply-released initial [k] in the word cause of speaker M08.  First release is marked by the 

blue downward arrow; the candidate point found by the <silence> score is marked by the black upward arrow 

while the point found by <sh> score is marked by the red upward arrow; the final point of burst returned by the 

program is marked by the blue upward arrow in the middle   

 

It would be ideal if the program find all points of release during the stop and 

return the first one.  However, in practice, this is hard to do.  Among other things, 

this would potentially interfere with the rejection of spurious releases.  Therefore for 

the time being, we use a simple rule to reject cases of multiple releases, which 

partially addresses the problem.  The general idea is to exclude cases where the two 

candidate points of release, returned by the <silence> score and the <sh> score 

respectively, are too far apart, which is indicative of an unusual multiple-release.   

 

(5) Second rejection rule 

If the two candidate points, one located in the <sh> score and the other one 

located in the <silence> score, are apart by more than 20ms, the case will be 

rejected, i.e. excluded from the data set.   

 

By using the second rejection rule, the case shown in Figure 8 will be rejected 

because the two candidate points are apart by 40ms.  It should be noted that this rule 

only rejects a particular type of multiple-release cases, i.e. the two candidate points 

(returned by the silence score and the fricative score) represent two separate releases 

and the two releases are more than 20ms apart.  Even for this type, what the rejection 

rule does is simply exclude the case from the training set, without returning any 

release point. 

Applying the second rejection rule to M08’s data excludes 20 more cases and the 

RMS error is 5.64ms.  After adding 5ms to the estimate values, the error is reduced 

- <sh> 

- <silence> 
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to 3.44ms (see Figure 8).  Notice that the number of outliers (i.e. residual after the 

rejection rules) is reduced to only 2, one on the positive side and one on the negative 

side.  After applying the rule to F07’s data, 3 more cases are rejected, and the RMS 

error goes down to 6.02ms.  When 5ms is added to the prediction, the error is further 

reduced to 3.22 ms.   

  

 
Figure 8. Error distribution in M08 after the second rejection rule is applied 

 

4.3. Testing the algorithm on the rest of data 

We have shown that the two rejection rules significantly improve the performance 

of the algorithm in both speakers’ training data, especially in speaker M08’s.  Table 2 

summarizes the number of cases excluded and the decrease in RMS error in both 

speakers after applying the two rejection rules sequentially.  

  

 F07 M08 

 size error error+5 sd size error error+5 sd 

Baseline algorithm 231 7.22 4.85 4.85 261 13.11 14.00 13.17 

after 1st rejection 227 6.81 4.19 4.19 233 9.27 9.26 8.94 

after 2nd rejection 224 6.02 3.22 3.23 213 5.64 3.44 3.41 

 Table 2.   Results with speaker F07’s and speaker M08’s developmental data. Size is the number of cases; 

error is the RMS error value; error+5 is the RMS error after the estimates are shifted by 5ms to the right; sd is the 

standard deviation of error.   

 

Overall, 7 of 231 cases are dropped from F07’s data (rejection rate = 3.03%), and 

the RMS error is improved by 33.6%; in M08’s data, 48 of 261 cases are dropped 

(rejection rate = 15.05%), and the RMS error is improved by 75.4%.  For both 

speakers, the RMS error is further reduced when 5 ms is added to all estimated values, 

which suggests that the point found by the algorithm is consistently earlier than the 

real point of burst.  Both speakers achieved a RMS error lower than 3.5ms after 

applying the two rejection rules.  This is near-optimal, because given the step size of 

5ms when calculating similarity scores, the optimal error in theory is 5/2 = 2.5ms.  

However, the large difference in rejection rates, 3.03% vs. 15.05%, suggests that there 

is a great amount of individual differences, in terms of the detectability of stop 

releases.  Apart from gender and age, the most important difference between F07 and 

M08 is probably in speech style, as F07 is a relatively slow talker while M08 is 
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extremely fast and soft (though the softness might be due to recording conditions).   

We applied the baseline algorithm as well as the two rejection rules to all 

speakers’ data, and found that the rejection rate ranges from 3.03% to 30.5%, with the 

average value of 13.13% and a standard deviation of 8.6%.  (The details of rejection 

in all speakers are attached in Appendix II.)  We also conducted a second test, using 

a random sample of 50 target tokens from all speakers, in which about half of the 

cases were from speakers with a high rejection rate (>20%).  All 50 cases were 

hand-tagged for point of burst and the results were checked against the estimated 

values given by the program.  Altogether 7 cases were rejected.  In the remaining 

43 cases, RMS error is within 5ms; in the 7 cases that were rejected, 4 were rejected 

by the first rule and 3 the second rule.  Two rejected cases, one from each rule, were 

judged to be not strongly evidenced.   

The complete algorithm, together with two rejection rules, is illustrated in the 

flow chart below. 

 

 

 

 

 

 

 

 

 

 

 

               Y 

 

           N 
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           N 

 

               Y 

 

           N 

 

 

 

Figure 9.  Flow chart for finding the point of release 

 

 

 

Calculate <silence> score and <sh> score 

Calculate the slope in <silence> score and <sh> score 

In the duration of the stop token, (i)find the time point of largest positive slope in <sh> score, and 

store in p1; (ii)find the time point of smallest negative slope in <silence> score, and store in p2 

 

return (p1+p2)/2+ 5 

p1 = null or p2 = null 

|p1–p2|>= 20 ms  

slope (p1)<0.02 and  

slope (p2)>0.04 

reject the case 
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4. Summary of results 

 

Table 3 lists the estimated mean values and standard deviations of closure duration, 

VOT, and total duration across all speakers by place of articulation.  

 

 labial ([p]) alveolar ([t]) velar ([k]) 

N 2461  4142 3566 

Mean(Dc) 69.5 48.9 54.9 

Sd (Dc) 36.4 23.9 22.9 

Mean(Dr) 48.0 51.2 57.9 

Sd (Dr) 25.1 27.5 26.0 

Mean(Dt) 117.6 100.2 112.9 

Sd (Dt) 46.5 41.2 37.7 

Table 3.  Summary of duration values (in ms).  N = total number of tokens; Dc = closure duration; Dr = VOT; 

Dt = total duration 

 

Compared with the average durations found in Byrd (1993) for read speech in 

TIMIT (see Table 4), the Buckeye values are very similar, though the VOT values are 

a little bit longer.   

 

 labial ([p]) alveolar ([t]) velar ([k]) 

Mean(Dc) 69 53 60 

Sd (Dc) 24 29 26 

Mean(Dr) 44 49 52 

Sd (Dr) 22 24 24 

Table 4. Duration values (in ms) from Byrd (1993). Dc = closure duration; Dr = VOT; Dt = total duration 

 

5. General discussion 

 

We present in this paper a pioneer case study in burst detection in voiceless stops 

in spontaneous speech.  We use the exemplar-based spectral template approach, 

which was first proposed in Johnson (2006), and implement a burst detection program 

that finds the most likely point of burst within the duration of a voiceless stop in 

word-initial position.     

     A large part of the paper is devoted to the illustration of the wide range of 

variation in the realization of voiceless stops in spontaneous speech.  Little is 

reported on this issue in the current literature, but we believe that it is central to the 

success of any automatic burst detection algorithm, especially those designed for 

spontaneous speech.   We show in detail how different types of realization affects 

the performance of the algorithm, and how the algorithm can be improved to deal 

with the diversity.  Two rejection rules are implemented to exclude cases where there 

is no obvious closure-burst transition and cases with more than one releases.  

Altogether these two rejection rules reduce the error by about 33.6% and 75.4% in 

two speakers’ training data.  The final RMS error is around 3.22ms in the training 
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data, and is within 5ms in the 50 random test cases (for comparison, 44% of the 

landmarks in Liu [1996] are found within 5ms of the hand-transcription).  The 

estimated values of closure duration and VOT in this study are similar to previous 

results of corpus studies.  In particular, the estimated VOT values show the canonical 

pattern of increasing as the place of articulation moves from the lips to the velum (i.e. 

[p] < [t] < [k]).   

Further improvement of the algorithm can be made in the following aspects.  

First, in the current study, we only tested two speakers’ data in detail but didn’t 

explore the full range of speaker differences.  In the next step, we plan to test the 

algorithm more thoroughly, using all 19 speakers’ data (and presumably the other 21 

speakers in the corpus, whose data have been made available recently).  Second, the 

cases of multiple releases can be investigated in more detail.  The second rejection 

rule in the current algorithm doesn’t fully address this problem – it only excludes the 

most extraordinary cases of multiple-release, i.e. the cases where the silence score and 

the fricative score find two separate releases and the two releases are apart by more 

than 20ms.  Future work will focus on the modification of this rule by providing a 

way to identify all existing releases and return the earliest one.  Last but not least, the 

current algorithm is only trained and tested on word-initial voiceless stops.  It should 

be possible to extend the current program to stops that are word-medial or word-final, 

as well as voiced stops, for finding point of release and calculating VOT values.   
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Appendix I  Speakers’ average speaking rate and their relative rank in the group 

 

 Average speaking rate rank 

F01 5.8552 3 
F02 5.1846 10 
F03 5.7704 4 
F04 5.3442 8 
F05 5.3042 9 
F06 4.5032 16 
F07 4.0218 19 
F08 4.8831 12 
F09 5.3513 7 
F10 4.3584 18 
M01 4.4421 17 
M02 5.889 2 
M03 4.8757 13 
M04 4.6359 14 
M05 5.6882 5 
M06 4.6359 15 
M07 5.6137 6 
M08 6.4345 1 
M09 5.1081 11 

Mean 5.1525.1525.1525.152     
 

Average speaking rate = total number of syllables produced / total amount of time (in 

s) 

rank: the fastest (highest averaging speaking rate) is ranked 1, and second fastest 

speaker is ranked 2, and so on.   
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Appendix II  Rejection rates in all speakers 

 

 F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 

N 674 572 777 900 1243 490 231 449 699 412 

Rsil 2 1 0 0 4 0 0 1 0 0 

Rsh 1 1 1 0 1 0 0 0 0 0 

R1 46 48 207 28 75 24 4 29 21 14 

R2 12 30 29 33 48 31 3 18 15 18 

Ngood 613 492 540 839 1115 435 224 401 663 380 

R% 9.05 13.98 30.5 6.77 9.64 11.22 3.03 10.69 5.15 7.76 

 

 M01 M02 M03 M04 M05 M06 M07 M08 M09 

N 564 1027 784 865 724 512 636 618 718 

Rsil 0 0 0 1 0 0 0 0 0 

Rsh 0 1 0 0 2 0 1 0 1 

R1 31 94 7 48 93 53 3 54 7 

R2 12 128 39 27 98 21 12 44 20 

Ngood 521 804 738 789 531 438 663 520 690 

R% 7.62 21.71 5.86 8.78 26.65 14.45 2.51 15.85 3.89 

 

N = the total number of target cases 

Rsil = the number of cases where no decreasing period is found in <silence> score 

Rsh = the number of cases where no increasing period is found in <sh> score 

R1 = the number of cases rejected by the first rejection rule  

R2 = the number of cases rejected by the second rejection rule 

Ngood = the number of remaining cases after all rejection 

R% = 1- Ngood /N, the rejection rate 

 

Rejection is applied in the above sequence. 
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