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Abstract: The Game of Life (GoL) is a paradigmatic computer simulation that exhibits the emergence
of complex properties of the whole from relatively simple sets of heuristic rules operating at lower
organizational levels. Therefore, it is widely understood as a valuable tool for investigating global
properties of evolutionary processes. Cognizant of refined concepts that emerged in recent debates on
the central role of historical contingency (historicity) in evolution, we modify the original GoL rules
by introducing an updating feedback loop and a probability factor that reflect the degree of historicity
in pattern evolution as both stochastic path dependence and sensitivity to initial conditions. We
examine this trait in simulations of the emergence and breaking of bilateral and radial symmetries
commonly observed in the evolution of life, most prominently as evolving body plans. We show
that the implementation of historicity parameters leads to a more realistic sequential and gradual
alternating emergence and the breaking of new symmetries than the original set of rules. Apart
from its more realistic representations of evolutionary processes, the new approach allows for easier
exploration of the parameter space, demonstrates the sequential and gradual emergence and breaking
of symmetries, and provides a publicly available and modular simulation tool. We discuss the
exploratory potential of the modified GoL platform we designed as an extended thought experiment
to study the parameter space defining the historicity of biological processes.

Keywords: Game of Life; biological evolution; stochasticity; historical contingency; path dependence;
body plans; symmetry

1. Introduction

The original iteration of the Game of Life (GoL) relies on a set of simple deterministic
rules that drive the evolution of the system. The simulated evolutionary outcome depends
on both the configuration of the initial system and the chosen set of rules. While the
GoL is an exemplar of how complex properties can emerge from simple heuristic rules
at lower levels of organization, as a simulation, it often exhibits properties that are too
coarse-grained to allow it to be used as an analogy to natural systems whose evolutionary
principles it purports to reflect. Our hypothesis contends that GoL’s potential as a tool
for reflecting evolutionary processes has been underestimated, because earlier versions of
GoL leave out the most distinctive feature of evolutionary processes—their historicity. To
address this, in this paper, we modify the original rules by introducing a feedback loop to
the cell updates, thus disrupting the Markov chains in the simulation. Our modification is
aligned with the notion of historical contingency as both path dependence and sensitivity
to initial conditions introduced and developed in recent conceptual debates on historicity
in evolution, which we implement in this study through different structures and degrees
of stochasticity in the GoL rules. Given that historicity is one of the central themes of this
paper, and considering the ambiguities in the semantic determination of this concept in the
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literature, we find it appropriate to define it in the manner that will be used in this paper.
If there is a series of causally connected events, X0, X1 . . . Xn, that occurred at moments
T0, T1 . . . Tn, historicity represents the temporal depth of the causal relationship, which is
the number of preceding states connected causally. In the realm of modeling time series in
the field of machine learning, historicity would correspond to the concept of a “look-back
window”. Essentially, we fine-tune the GoL by introducing parameters that reflect key
aspects of historicity in evolutionary processes, such as path dependence, sensitivity to
initial conditions, and stochasticity. In this way, we create a simulation tool to explore the
evolutionary domain, including parameters’ interactions and the options defined by them.

We developed an independent, publicly available, and modular brute force simulation
software platform (the platform and the code are publicly available at https://github.com/
jtadic/GOL (accessed on 10 August 2024) that isolates GoL patterns exhibiting specific
properties (e.g., stationarity). Our platform accommodates three GoL simulation regimes:

(1) Simultaneous cell updates according to the classical rules.
(2) A historicity-driven feedback loop as a sequential update, where each individual cell

is updated based on varying degrees of “visibility” of updated and non-updated cells
in the environment.

(3) Stochastic (probability factor) variation in cell updates.

The Research Questions/Contributions that have been explicitly addressed in this
study are as follows:

How does the introduction of historicity and stochasticity into the GoL affect the
emergence and breaking of symmetries in the simulated patterns?

Can the modified GoL perhaps provide a more accurate representation of evolutionary
processes by incorporating path dependence and sensitivity to initial conditions?

What are the philosophical and theoretical implications of shifting from deterministic
to stochastic rules in the context of evolutionary simulations?

How do different degrees and structures of stochasticity influence the behavior and
stability of patterns in the GoL?

We philosophically and theoretically propose the introduction of regimes (2) and (3)
as closer to evolutionary processes driven by historical contingencies. We analyze the
philosophical implications of changing the set of rules (from deterministic to stochastic)
in terms of the instances obtained in simulations, the theoretical implications of the ob-
served properties, and the role of historicity and stochasticity in generating and breaking
characteristic initial patterns.

Our analysis of the emergence and breaking of symmetries in emerging patterns in
the GoL simulations reveals that regime (1) generates various symmetries (bilateral, radial,
etc.) commonly found in the evolution of life as body plans or molecular chirality, and
eventually stabilizes such symmetric patterns. Those symmetrical stable forms (attractors)
can result naturally from both symmetrical and asymmetrical initial patterns in this regime.
Yet, symmetry breakings in evolutionary processes are as crucial as the emergence of
functional symmetries. In fact, the sequential generating and breaking of symmetries is
a key characteristic of longer evolutionary processes. Regimes (2) and (3) reflect both
the constructive and the destructive roles of historicity in evolution, as emphasized by
biologists [1–3]. Stochastic factors certainly play a role in such sequences, but the question
is whether there is a general stochastic mechanism behind them. Regimes (2) and (3) offer
simulation options for sequential evolutionary changes in symmetries predicated on the
parameter space, as defined in the aforementioned debates.

To systematically explore all these ideas, this paper is structured as follows:
Section 2: Game of Life—provides an overview of the classical Game of Life (GoL),

discussing its traditional goals, methods, and how stochasticity can be introduced into the
model. It also explores the constraints involved in the discretization of evolution within
GoL simulations.

https://github.com/jtadic/GOL
https://github.com/jtadic/GOL
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Section 3: GoL, Stochasticity, and Historicity —examines the concept of historicity
in evolutionary processes and how it can be incorporated into GoL simulations to model
more realistic evolutionary dynamics.

Section 4: A Case Study: Generating and Breaking Symmetries in Living Systems—
presents a case study using GoL as a simulation tool to explore how symmetries emerge,
evolve, and break within this framework.

Section 5: The Platform— introduces the computational platform used in this study,
including the preliminary setup and the brute force pattern search method employed to
analyze GoL configurations.

Section 6: Conclusions— concludes the paper by summarizing the key findings and
discussing the implications of integrating stochasticity and historicity into GoL.

By following this structure, this paper aims to provide a comprehensive understanding
of how modifications to the GoL can serve as a more accurate analog to natural evolutionary
processes, emphasizing the critical roles of historicity and stochasticity.

2. Game of Life
2.1. The Goals and Methods of Classical GoL

Cellular automata, such as the GoL, are deterministic dynamic systems capable of
generating or exhibiting very complex nonlinear phenomena. The GoL is based on a field
of cells resembling a chessboard, where time and space are discrete, and each cell simulta-
neously undergoes sequential evolutionary transitions depending on its current state and
a set of deterministic rules that take into account the state of the eight neighboring fields
(known as the Moore environment). In essence, cellular automata provide artificial uni-
verses that permit the creation and study of various phenomena, ranging from simulations
of the reproductive behavior of theoretical organisms and the evolution of their societies to
the molecular logic of living matter [4]. John Conway, a mathematician, constructed the
evolutionary rules of the GoL in a manner similar to the way Verhulst [5,6] and Robert
May [7] represented population growth in logistic equations and maps, respectively.

The applicability of the GoL to evolution can be broadly understood in two ways.
First, it may be reasonable to assume certain living individuals who depend on cooperation
or multiplicity have significantly reduced chances of survival in the event of general
population thinning or isolation from sexual partners. Second, overpopulation can create
excessive pressure on the resources of the ecological niche to which an organism belongs,
leading to pollution, degradation of quality of life, and poverty. However, life usually
thrives between these two extremes, as represented by the GoL’s requirement for a cell or
field to have at least three living neighbors to sustain its existence. Through implementing
the local evolution rules in each cell in the GoL, the entire field generates global distributive
(visualizable) patterns.

There are several variations of the GoL. Some occur along an asynchronous time
axis, while others feature continuous time transitions, instead of discrete ones, and
extended environments [8,9], or they are autoreproductive loops, such as Langton’s
loops and “evoloops”, which demonstrate the mutual relationship between genotype and
phenotype [10]. Another model has been developed to mimic the behavior of viruses [11],
where certain cells of the GoL can hibernate in an inactive state, awaiting specific external
conditions before activation. In the GoL, each set of rules can vary, allowing the simulation
to embody a wide range of logics and systems. These rules are uniquely defined and
can be articulated using logical or linguistic terms, reflecting our human approach to
conceptualizing and narrating complex behaviors.

The classical GoL exhibits the property of irreversibility, whereby the system’s previous
states cannot be uniquely determined from its current state and evolution rules alone [11,12].
This property aligns with the contemporary understanding of evolutionary processes as
having multiple pasts when run backward in a thought experiment [13,14].

The GoL also demonstrates the self-organizing properties of statistical stationary states
that emerge after any arbitrarily selected cell or field is perturbed. “Statistical stationary
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states” refer to stable patterns or configurations that emerge in a system after it has been
perturbed, and these states exhibit statistical regularities. In the context of the Game of
Life (GoL), when any arbitrarily selected cell or field is perturbed, the system tends to
reach certain stable configurations that persist over time. These stationary states are called
“statistical” because they are not rigidly fixed but exhibit certain statistical patterns. These
stationary states are independent of the initial configuration, and the system generates
order from chaos [12]. The “criticality” of such systems is manifested in the appearance
of avalanche effects at all spatial scales, whose frequency obeys the so-called “power-
law”. As with other critical phenomena, critical properties do not depend on the specific
characteristics of the rules themselves but are universal and determine the appearance of
patterns without local conservation laws, that is, at all scales [15]. In other words, no rule of
the Cellular Automaton holds that would allow us to predict which class of stationary states
the system will belong to, or with which it will converge [16]. Bak et al. [17] suggested that
the GoL spontaneously evolves into a self-organized critical state [15,17]. More precisely, at
all spatial scales, a global order has emerged from the nonlinear interactions of the system’s
constituents. Disagreement about whether the GoL leading to critical or slightly subcritical
states [18] arises as a result of the interpretation of boundary condition effects in the scaling
behavior of the GoL [19]. It has been found that the GoL is quasi-critical; that is, it shows
some but not all properties of a critical system. This idea has been confirmed by changes in
the fractal dimensionality at different scales [20]. Some suggest that Conway’s GoL is only
a special case of cellular automata in which the “dead” phase is slightly supercritical, or the
process of nucleation is slightly subcritical for the “live” phase [16]. This debate exceeds
the scope of this work.

While pattern evolution is an interesting aspect of the classical GoL, it does not fully
capture the unpredictable time-dependent pattern changes seen in biological evolution.
The evolution of the GoL should ideally mirror the evolutionary process—a process in
which replicator agents exhibit variations, and the most adapted individuals have a higher
probability of spreading and achieving dominance in a colony [10]. This is akin to the
conceptual treatment of evolutionary processes implemented in Avida-ED, one of the
most popular evolutionary simulators [21]. However, the replicators in the GoL, including
Langton’s loop, are morphologically and functionally designed by humans. Consequently,
their self-replication process does not increase their complexity, nor do they display robust
resistance to perturbations or unexpected external interactions [22].

The survival and stability of self-replicators face a significant obstacle since the typical
paths of both chaotic and stochastic processes appear to be irregular in time. Conway’s
(“classical”) GoL is defined by discrete states at discrete positions in space, with logical
rules dictating the dynamics (considered as degenerate Markov chains). Even when the
rules of the cellular automaton can be chosen in such a way as to “generate interesting
structures that appear from very large sets of possible rules”, in our view, this should not
be seen as “finding a way to directed evolution” [22,23]. Stochasticity of some kind is
necessary for directed evolution, and we explore how historicity enables this in Section 3.
Before doing so, however, we examine the ways stochasticity has been implemented in
the GoL.

2.2. Stochasticity in the GoL (An Overview)

GoL patterns do not exhibit non-exponential decay (non-exponential decay refers to
a decay process in which the rate of decay does not follow an exponential function) or
explosive behavior (become chaotic; “explosive behavior” in the context of complex systems,
such as cellular automata like the Game of Life (GoL), refers to a rapid and unbounded
amplification of certain characteristics or events within the system that implies a sudden
and extreme change or growth in some aspect of the system’s behavior), as the life and
death events in the system are highly correlated in both time and space, ultimately leading
to a critical or quasi-critical state as suggested by Bak et al. [15]. In the context of complex
systems, a “critical state” refers to a point where the system undergoes a phase transition or
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a critical transition, leading to a change in its overall behavior. This is often associated with
the emergence of self-organized patterns and structures. A “quasi-critical state” is similar
but may indicate a state that is close to criticality but not precisely at the critical point. This
critical or quasi-critical state is characterized by a balance between order and disorder,
where the dynamics of the system become complex and exhibit interesting features. In the
context of cellular automata and other complex systems, understanding critical states is
crucial for grasping the system’s behavior and its transition between different phases or
patterns. Critical states often signify a point of instability and sensitivity to initial conditions,
leading to the emergence of intricate and often unpredictable dynamics. Consequently,
the classical GoL lacks dynamic randomness over time: its dynamics propagate the initial
system configuration, which may eventually become random in its statistical properties
with respect to spatial distribution. In contrast, genuinely probabilistic (stochastic) cellular
automata generate randomness at each space–time point, producing positive entropy per
unit time and volume, as noted by Gaspard and Wang [23].

In the stochastic version of the two-dimensional (2D) GoL, the fate of each field
(cell) depends on the eight nearest neighbors, similar to its the deterministic counterpart.
However, the stochasticity is introduced by two parameters: the probability of survival
and the probability of birth [24,25]. While death is still determined by deterministic criteria
based on overcrowding and isolation, survival is affected by a probabilistic element. For
instance, a cell with two or three living neighbors may survive with a certain probability,
ps, whereas in the classical version, any dead cell would become alive if it had exactly
three living neighbors. Another rule introduces probability to the scenario: when there
are exactly two living neighbors, a new cell may not necessarily be born, depending on
the new condition, the probability pb. The probability parameters are chosen to ensure
that the stochastic GoL converges to Conway’s classical deterministic version when pb = 0
and ps = 1 [24,25].

A one-dimensional (1D) model of the stochastic GoL has three phases: living, extinct,
and overcrowded. The term “overcrowded” refers to a state where the cells or sites
in the automaton are densely populated, in this case beyond the GoL threshold. The
concept of overcrowding implies that there are too many living cells in close proximity,
leading to specific dynamics or behaviors in the system. Many critical edges are observed
at the irreversible phase transitions between extinction and life and between life and
overcrowding [24,25]. The extinct phase remains “frozen” in both the 1D and 2D models,
while the overcrowded phase is present only in the 1D model. Specifically, for small values
of pb, while keeping ps constant at 0.5, all living sites and their descendants eventually
die. However, as pb is increased, the emergence of life is observed in the abrupt increase
in the density of living sites (ρ > 0). Through varying the parameter space (pb, ps), a set
of critical points can be obtained that defines a critical curve, pc

b(ps). Within the living
phase, aperiodic behavior has also been identified, indicating a divergence of two initially
close trajectories [24–26].

Yaroslavsky’s [27,28] modification of the GoL introduces a different set of stochastic
rules. For example, the individual cells die with a probability pd ≤ 1. In addition, the
inclusion of 3 × 3 weight matrices, denoted as masks, provides non-uniformity of the
spatial impact of cells and their immediate eight-member environment. For instance,
isotropic masks correct the impact of cells in the environment based on their Euclidean
distances from the central cell. The corner cells of the environment are

√
2 times farther

from the central cell than those in the middle of the sides of the Moore square, so their
impact is normalized using a spatial distance. Yaroslavsky discovered, named, and studied
several new phenomena, including the formation of patterns resembling labyrinths as
fixed points in the model, “self-controlled growth”, “eternal life in a limited space”, and
“coherent compression”. Familiar with the stable and oscillating patterns of the classical
GoL, he labeled stable structures “entangled chaos” rather than “frozen”.As soon as the
probability of death (p_d) becomes only slightly less than 1, it seems likely that oscillating
formation characteristics of non-stochastic or classical GoL models occasionally collapse,
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producing chaotic clouds of living and dying cells that collide without any indication that
they will ever stabilize [27,28]).

Yaroslavsky observed that the square cells, or the “living space” for the probability of
death, pd, from 0.3 ≤ pd < 1 − ϵ (where ϵ is an arbitrarily small number), are gradually
filled with “eternal life”. When pd ≈ 0.5, groups of striped patterns of various dimen-
sions and orientations appear. When pd < 0.3, the boundaries of these groups stabilize
into square, labyrinthine structures with a seemingly random distribution of orientations
(vertical vs. horizontal) [27,28]. It would be interesting to investigate the relationship of
this phenomenon with the aperiodic behavior of the so-called living phase described in
the Monetti-Albano study [24–26]. In the same study, Yaroslavsky observed the patterns
of living cells that emerge stop growing if they do not touch another neighboring “pop-
ulation”. If they touch the neighboring “population”, the groups will join and continue
to grow until they take on a similar spatial shape, but with larger dimensions, called the
“mature state”. After achieving relative stability, or after a certain number of evolutionary
iterations, the communities begin to contract, that is, to recede from their own boundaries
and move inward, while maintaining their shape [27,28]. The existence of “static” and
“oscillating” life seems to be a byproduct of the deterministic rules applied to a square
grid, resulting in phenomena arising from the finiteness and boundedness of the given
space. As previously discussed, stochastic models of the GoL “produce chaotic clouds of
“live” and “dying” cells that collide with each other and give the impression that they will
never stabilize”.

It is noteworthy and pertinent to our investigation that the results mentioned above
were obtained through a single modification—the introduction of the probability of death
(pd)—and the use of square 3 × 3 masks that normalize the impact based on the Euclidean
spatial distance.

The stochastic models of the GoL discussed above do not appear to accurately repre-
sent any particular living system. Nonetheless, they demonstrate distinct aperiodic and
irreversible critical global behaviors that define biological systems [27,28] generated by
simple local rules in the simulation. As an illustration of the divergence of two initially
similar evolutionary trajectories, it could be argued that by adjusting these probabilities,
the dynamic behavior in the simulation can be changed over the long term from one in
which all cells are dead to one in which all are thriving [29].

Another way to implement a stochastic model in the GoL is to have individual cell
states evolve with a certain probability, rather than applying the rules simultaneously to all
cells, thus introducing asynchronous evolution into the model in discrete steps. This can
be achieved by either randomly selecting cells that will evolve or refreshing the cell state
based on an internal cell clock [30,31]. However, it has been suggested that most cellular
automata models, including the GoL, break down under such evolutionary conditions
(Peper et al. [8] commenting on Blok & Bergersen [19]).

The first model of this type was proposed by Blok and Bergersen in 1999 [19]. They
used an update scheme with 0 < p ≤ 1 and observed that for p → 0 , the model approx-
imates a time-driven method based on a Poisson random process. They found that “the
cellular automaton shows a second-order phase transition belonging to the universality
class of directed percolation” [19,30].

Lee et al. [31] and Peper et al. [8] improved the classical evolutionary rules and tracked
intermediate states in their resulting model, showing another phenomenon of potential
interest in the study of evolution; the existence of synchronization waves indicating which
cells are correlated during the collision of two gliders. Since there is an evolutionary
probability parameter that affects the speed of evolution and the reproducibility of certain
states in the GoL, the smaller the probability p, the more steps are needed to achieve the
same configuration as in the classical GoL with the same initial configuration, if this can be
achieved at all [8]. The authors also observed patterns evolving into alternating strips of
live and dead cells, as similarly found in previous studies [19,27,28]. Moreover, varying the
parameters of the evolutionary model and the initial patterns led to qualitatively different
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stable states, such as dead, frozen (low density and stabilized), and labyrinth phases [30].
The simulation platform we developed implements stochastic rules inspired by Fatès [30].

A recently published, intriguing technique for treating the square lattice asynchronously
by exchanging the positions of a randomly selected pair of “to become alive” and “to
become dead” cells (in the next time step), regardless of their distance, to satisfy the
conservation criterion of mass, requires something to die for something else to be born.
The authors call this the “no ex-nihilo” rule, and its goal is “to enforce conservation of the
number of cells of both types” [29]. This model and its predecessor [32] “changed the nature
of the lattice into a small-world network, obtained by replacing nearest-neighbour links
with long-range ones”. The authors discovered that “as the [local] density of dead cells
increased, [they] identified a discontinuous phase transition between an inactive phase, in
which the dynamics freeze after a finite time, and an active phase, in which the dynamics
persists indefinitely in the thermodynamic limit” [29]. Importantly for our study, they
stated that “although the conservative and random character of the dynamics does not
allow for the appearance of oscillatory or spaceship patterns, [they did] observe familiar
static patterns when the density of dead cells is large enough” [29].

2.3. Discretization of Evolution in GoL: The Simultaneous Update Approach and Related Constraints

The classical rules of GoL updates are relatively simple [15]. If there are fewer than
two or more than three live cells among the eight neighbors of a cell, that cell will die;
otherwise, it will remain alive. A new cell will appear in an empty field in the next iteration
only if the empty field has exactly three live neighbors.

One of the remarkable features of the original GoL is that the update, or discrete
evolutionary transformation of all cells, occurs simultaneously according to the all-cells-at-
once approach. This means cells are analyzed to determine which ones need to be updated
and then are all updated at the same time, constituting one generation in the simulation—a
process that is repeated in subsequent cycles. Although heuristic update rules are applied
independently to each cell to determine its fate, the actual change in all cells occurs in
a discontinuous manner, in discrete collective evolutionary steps. The system behaves
like a vector transformed by a linear algebraic evolutionary operator, i.e., a matrix that
moves the system vector through the evolutionary space. Intuitively, the application of
evolutionary rules independently for each cell and the transformation of all cells at once
create a discrepancy between the temporality of determining the fate of the cell and the
actual update.

The all-at-once approach to updating cells in the GoL presents a challenge to the GoL’s
representativeness as a paradigmatic analogy for evolutionary features observed in various
biological systems. In its original form, the GoL’s evolution depends solely on its rules and
current state, not on the history of its environment. Therefore, the evolution of each cell
is independent of its past and represents a Markov chain [33]. While this property is not
inherently advantageous or disadvantageous, it raises questions about whether biological
systems analogous to those simulated in the GoL are essentially Markov chains.

To illustrate our argument, consider a bacterial colony as an example. While sharing
some similarities with the Game of Life (GoL)—both involve survival, division, and death
of individual elements—there are notable distinctions. In bacterial colonies, unlike the
GoL, the fate of individual bacteria is not strictly time-dependent, and changes are not
synchronized in time. There is no universal external clock dictating the step structure
of the evolutionary process. In other words, the behaviors of individual bacteria are not
exclusively determined by specific points in time. Chemical signals dissipate not only
spatially but also temporally, extending beyond the immediate neighborhood in both space
and time. The persistence of residual signals and non-updated states expands the look-
back window, introducing a deeper historicity into the bacterial colony environment. This
divergence has significant implications. In an environment where updates do not occur
simultaneously, each bacterium partially interacts with a deeper history of its environment,
not simply with the state of its neighbors in the immediately preceding moment. We
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interpret time in the bacterial colony as discretized, drawing an analogy to the simulation.
In reality, introducing a discrete structure to time might be deemed unnecessary. However,
for the purpose of facilitating a meaningful comparison between the GoL environment
and a bacterial colony, we find it convenient, without adverse effects. The less probable an
update is for an individual bacterium at any given moment in the colony as whole, and the more
the simultaneity is violated, the more chance there is for the single bacterium to factor in the deeper
history of its environment during its own update. Thus, the colony evolves while retaining
residual memory of its past states, violating the Markov chain. We will demonstrate that
an analogous effect can be achieved in the GoL by introducing the probability of update
into the set of rules.

As a second example of a natural process that exhibits significant similarities to the
GoL but does not maintain strict simultaneity, we mention apoptosis [34,35]. Apoptosis,
also known as programmed cell death, is essential in organogenesis, inflammation, and
other biological processes. It occurs due to one of three factors: (1) the effect of activating
substances, (2) the absence of growth factors necessary for cell survival, or (3) the effect of
damaging substances on the cell. Signals are conveyed through two pathways, extrinsic
and intrinsic. The rules that initiate apoptosis are generally equivalent, so to speak, to
specifically designed or adapted rules of the GoL. Therefore, in principle, apoptosis could
be simulated by modifying the GoL’s rules. However, because of the absence of the absolute
synchronization of metabolic processes in cells and the delay in transmitting apoptotic
signals to various spatial distances in tissue (limited by diffusion or other forms of chemical
transport), a group of cells exposed to apoptotic signals will not react simultaneously (all at
once). In organogenesis, the successfully developed symmetrical body forms or functional
organs must be analogs of the GoL in which the simultaneity of updates is disrupted, but
the set of rules is such that, despite this disruption, the desired form, shape, or metabolic
outcome is ultimately generated.

3. GoL, Stochasticity, and Historicity
3.1. Historicity in Evolution

Over the last several decades, biologists have widely recognized the central role of
historicity in biological processes [2,36–38]. In addition to natural selection and various
mechanisms at different levels, a third general factor, “historical contingency”, also plays a
part in “determining properties of Earth’s biota” [38]. Although it has been acknowledged
that chance and initial conditions are key elements of historicity in biology, the details
of precisely what constitutes historicity in biology are still debated. The recognition that
evolution’s immense diversity of phyla, including various body plans, stems from the
accumulation of numerous improbable events [3], was a pivotal insight that underscored
the significance of historicity in evolutionary processes. Yet, it has been argued that this
does not necessarily point to the central role of history per se, but to the difficulty involved
in predicting the trajectories that biological processes take in the longer run. Conway
Morris [39] suggests evolutionary outcomes such as Homo sapiens are very predictable
precisely because they are contingent on myriad turns in evolution. Conway Morris argues
that the evolutionary outcomes, including the emergence of Homo sapiens, are not random
and contingent but, in fact, highly predictable. Conway Morris suggests that, despite the
contingent nature of specific events, the overall trajectory of evolution is biased and tends
toward certain outcomes. He emphasizes that certain features and body plans have a high
likelihood of evolving repeatedly due to the constraints and opportunities presented by
the structure of the evolutionary process itself. His views are based on the concept of
evolutionary convergence, where similar traits or body plans evolve in unrelated species
facing similar environmental challenges. In any case, a stronger claim has been defended:
there are multiple possible pasts of each evolutionary stage if the evolutionary processes
are run backward as a thought experiment [13].

A comprehensive of the theories of historical contingency is given in Turner and
Havstad [40]. Gould’s stance on contingency revolves around the argument that the
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shape of life’s contingency challenges the notion that natural selection alone can explain
macroevolutionary patterns [3,36]. He critiqued the overreach of evolutionary theory,
emphasizing natural selection, and advocated for theoretical pluralism. Gould’s critique
aimed to keep microevolutionary theory in check, asserting that if macroevolution is
contingent, natural selection becomes insufficient to explain life’s overall shape. His
arguments were often presented in non-binary terms, highlighting the relative significance
of causal forces. They contend that natural selection can itself be a source of contingency, as
evolutionary outcomes depend on initial conditions and exhibit path dependency. Gould’s
discussion underscores the need to establish that contingent patterns cannot be accounted
for by the theory in question, emphasizing the distinction between source-independent
and source-dependent accounts of contingency.

Recent work has drawn a few refined distinctions that help clarify the parameter space
of historical contingency. Desjardins [41] distinguishes two types of historical contingency
in evolutionary processes: dependence on (sensitivity to) initial conditions and path dependence.
Instead of presenting a sharp dichotomy, the two are on a continuum and characterize
relevant evolutionary processes as a matter of the degree of stochasticity. Degrees of path
dependence are also context- and instant-relative [41], and this is unavoidable, given the
complexity of the environments and targets of natural selection.

Turner [42] and Beatty [13] explore different evolutionary forces categorized under
“contingency”. Beatty focuses on microevolutionary processes like drift and mutation,
questioning the exclusion of drift by Gould. Turner, on the other hand, emphasizes the
macroevolutionary process of species sorting. The discussion revolves around whether
mutation, drift, or species sorting serves as a source of evolutionary contingency. Mutation
is highlighted for its role in providing variation for selection. Drift, a process indepen-
dent of environmental fit, influences gene frequency changes. Species sorting, akin to
macroevolutionary drift, involves the non-directed persistence or extinction of species.
Beatty includes mutation as contingent due to its impact on variation, excluding drift.
Turner, focusing on macroevolution, distinguishes contingency at the micro- and macro-
levels, excluding processes like mutation and drift. The disagreement revolves around
whether these processes contribute significantly to specific patterns of evolutionary change.
Source-dependency clarifies their differences. It involves identifying a causal process and
pattern, discussing their sufficiency in generating that pattern. Mutation, drift, and species
sorting can be sources of evolutionary contingency, depending on the pattern of change
considered. The key question is whether these sources are responsible for the observed
patterns, emphasizing empirical considerations. The paper concludes by highlighting the
importance of understanding which sources contribute to the patterns of evolutionary
change under consideration.

In a recent study, McConwell and Currie [43] explore the role of source-dependency in
understanding Gouldian arguments and contingency. They focus on empirical approaches
to test Stephen Jay Gould’s claim that macroevolutionary patterns are driven by processes
beyond the reach of natural selection. Investigative methods such as models of macroevo-
lutionary processes, lab-based experiments, and natural experiments are discussed. The
paper delves into biological convergence, using trichromacy in mammals as an exam-
ple. The authors argue that the sources of convergence and divergence are crucial for
evaluating Gould’s thesis. They emphasize that the ubiquity of convergence does not
necessarily contradict Gould’s view, as the focus should be on the causes of convergence.
The paper examines trichromacy in primates and marsupials, highlighting the sensitivity
of convergences to various descriptions and the importance of developmental resources
in explaining convergent traits. Additionally, the authors discuss a case of evolutionary
divergence between cephalopod and vertebrate eyes, emphasizing the role of common
history and developmental constraints in shaping traits. The paper concludes by asserting
the significance of source-dependent understandings of contingency in testing Gouldian
arguments and justifying Gould’s position on the insufficiency of microevolutionary theory
to account for macroevolutionary patterns.
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Building on S. J. Gould’s work, McConwell [1] recently argued that the stochastic
processes aspect of historicity causes structural diversity across biological levels, including
cells, genetic codes, and phyla. Thus, historical contingency as a stochastic process is bound
to cause diversity across biological levels [1], and plays both a constructive and a destructive
role, for example, in the emergence of body plans. McConwell provided various measures
and assessments of diversity to demonstrate the validity of this view.

These distinctions provide a parameter space within which to explore their inter-
dependence. Methodologically speaking, however, tracing these parameters is not easy.
Desjardins analyzed experiments with bacterial colonies that were prepared and developed
under the same conditions and followed their fitness trajectories over time to record the
potential exhibition of substantial differences [44]. Experiments are undoubtedly an ideal
tool for such purposes, but populations identical in terms of the key parameters are highly
unlikely to be found in nature. They are also hard to track in fossil records, while varying
relevant parameters in laboratories has serious limitations. Desjardins [41] also points to
a lack of realistic complexity in mathematical models and simulations. Another problem
we noted earlier is that simulations do not really match the target phenomena; instead,
they aim at exploring very general properties that may or may not converge with the
parameter space of actual biological processes. And often the more refined the parameter
space, the less hope there is for identifying helpful convergence or learning something of
biological interest.

Rectifying this limitation in a particular way to make GoL simulations more useful for
understanding evolutionary historicity is the basic goal of our work. More realistic simula-
tions can anticipate real phenomena and their properties within the matching parameter
space of historicity. Swan [45] suggested using these distinctions and notions to define a
parameter space, enabling the exploration of the interdependence of various parameters.
Within this framework, extended computer simulations of the Game of Life (GoL) can be
conducted as thought experiments to further this investigation.

3.2. Introducing Historicity in GoL Simulations

We consider the lack of stochasticity and the simultaneous change in all cells in
GoL to be unrealistic representations of the functioning of evolutionary and biological
systems, particularly in the long term. Therefore, we introduce an update protocol that
we consider substantially closer to historicity-driven evolutionary mechanisms, including
natural selection operating at various levels, and closer to biological mechanisms in general.
The underlying idea is that these mechanisms at the individual scale are dependent on the
local environment’s present state, which is determined by its history.

Our modified version of the GoL implements a feedback loop that performs sequential
history-sensitive cell updates. Instead of updating all cells at once (regime (1), discussed
below), our approach allows each cell to consider both updated and non-updated cells
in its environment (regimes (2) and (3)) when deciding whether and how to update itself.
Then, the update process moves on to another cell, factoring in the updates or the lack of
updates. Thus, both mapping and updating happen in one step, as each cell is immediately
updated without waiting for all the other cells to be updated. Therefore, the update of a
cell is determined not just by the states of its neighboring cells, but also by the current state
of the selected environment. This environment encompasses both cells that are updated
and those that are not, indicating that cell updates are influenced by a broader context than
merely the immediate neighborhood. This violates the Markov chain and introduces a
representative form of stochastic update as historicity.

First, the user determines the exact nature of the loop itself, i.e., the order of the cells
in it and the “visible” environment. Then, depending on the decision on how to loop
through the cells, the cell will check out different parts of its environment for updates (or
lack of them). Figure 1 illustrates the update regime that includes a particular stochastic
component. This update regime is deterministic as far as the update rules go, and it leads
to a unique and reproducible outcome in each simulation step. Yet, it differs from the
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original GoL simulation in that it is not deterministic in every sense: the arbitrariness and
resultant stochasticity arise from the fact that the user pre-selects the update order, and each
order implies a different evolutionary pathway. The number of available choices equals the
number of permutations of all cells on the board, resulting in a limited and discrete set of
possibilities, but this set can be large in practical scenarios (i.e., for n cells, the number of
choices is n!).
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Figure 1. A visual representation of three alternative cell-updating orders, (A–C), arbitrarily chosen
under the modified update regime (regime (2)).

To summarize, the platform offers the user three regimes for the evolution of cells:
(1) the classical deterministic GoL rules; (2) historicity—a sequential implementation of the
classical rules based on the “visibility” of previous updates for each cell; and (3) cell update
depending on the update probability parameter.

In regime (3), cell updates are carried out by generating a random number between
0 and 1 using a flat distribution and comparing the number to a predetermined threshold.
If the generated number exceeds the threshold, and the criteria for updating the cell are
met, the cell will be updated. Conversely, if the generated number is less than or equal to
the threshold, the cell will remain non-updated even if the criteria for state change are met.
(We remind readers that this probability factor only applies to the two rules—the birth rule
and the death rule—wherein the state of the cell changes. It does not alter the third rule of
the classical GoL—the survival rule—as its application does not alter the state of the cell.)

The modifications outlined above have several consequences. Firstly, the environment
functions as a combination of immediate and more distant preceding steps, acquiring a
partial memory that reflects not only its current state but also its deeper history in previous
evolutionary steps. In regime (2), the depth of the environment’s history as part of the
update rules can be adjusted by manipulating the probability update parameter, thus
implementing the stochastic degree of path dependence. Our update rules amplify the
asynchronicity that already reflects path dependence to some extent in any non-classical
GoL. In regime (3), updates more akin to endogenous stochasticity, or “mutations”, can
affect the evolutionary trajectory. In both regimes, evolutionary trajectories are sensitive
to initial conditions manipulated either through historical depth (regime (2)) or through
level of endogenous stochastic oscillations (regime (3)). In either case, the implementation
of historicity into the evolutionary environment breaks the Markov chain during the
simulation by reflecting the non-simultaneity of evolutionary transitions and real biological
mechanisms. (Note that we are planning an update of the platform by adding the option
of switching between the classical rules (regimes (1) and (2)) based on a probabilistic
parameter. The modification would imply that the classical update rules are transformed
so that they are applied with a certain probability).
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4. A Case Study: Generating and Breaking Symmetries in Living Systems
4.1. Evolving Symmetries

We chose the case of evolving symmetries as a pilot explorative case because it po-
tentially represents functional biological properties, such as symmetries in body plans,
that are evolutionarily quite diverse, yet simply definable and easily visualizable. The
study of symmetries is invaluable in many areas of biology and evolution, and there is a
pressing need for their realistic simulation. Although symmetries that define body plans
are the most well-known and apparent [46,47], research also extends to the cellular [48],
molecular [49,50], and population levels [51].

Studying their evolution is crucial, as it defines the key morphological and functional
constraints, for example, in terms of feeding, movement, and metabolism. The causal,
functional, and other roles of various symmetries at the molecular, organismal, population,
and biosphere levels have been the subject of philosophical and theoretical studies, and
symmetry breaking points in evolution have been understood as crucial features of the
inception and evolution of life on Earth [52,53].

4.2. Simulating Symmetries with Classical GoL Rules (Regime 1)

The classical GoL rules are designed to be uniform, symmetrical, and isotropic (i.e.,
with no preferential treatment of any direction in space). They are applied uniformly to all
cells regardless of their location. Due to the uniformity of the update rules, it is intuitively
expected that symmetrical initial patterns will produce symmetrical outcomes or have
symmetrical evolutionary attractors. However, the situation is somewhat more complicated
for asymmetrical patterns, and it is theoretically possible to imagine asymmetrical patterns
in which a series of updates leads to the elimination of asymmetrical properties to generate a
completely symmetrical form. Figure 2 illustrates such a pattern and its evolutionary trajectory
from asymmetrical to symmetrical, as implemented in the platform’s classical regime (1).

In this regime, the initial pattern, marked with “1” in Figure 2, does not possess
symmetrical properties. In the fourth step of the GoL run on classical deterministic rules, the
asymmetric pattern takes on a form characterized by the point symmetry group. The point
symmetry group is one where an organism (shape) can be divided into two identical halves
by a single plane. Many living organisms belong to this group, including most invertebrates
and all vertebrates [54]. Bilateral symmetry is maintained in seven evolutionary steps, after
which the pattern transitions to another point symmetry group, radial symmetry. Radial
symmetry is defined as one in which an organism (shape) can be divided into two identical
halves by two or more planes passing through the center [55]. This type of symmetry is
particularly common in sessile organisms (like many plants) or those that move very little
(like invertebrates, starfish, sea anemones, jellyfish, etc.). After acquiring radial symmetry,
the pattern further evolves without changing the point symmetry group it belongs to,
ultimately taking on a stationary form after a total of 21 steps.

It is interesting to note that in the simulation depicted in Figure 2, the point symmetry
groups that the patterns take on are the two most dominant forms of symmetry in the living
world, and once they are realized, symmetrical forms cannot return to an asymmetrical
state. In other words, symmetry appears here as a form of evolutionary attractor that
spontaneously follows from the very construction of the classical rules of the GoL.

This seems to straightforwardly reflect the mechanism of emergence and the cause
of analogous symmetrical forms of life, given that the classical rules of the GoL were
intentionally designed to reflect the global features of natural evolution. However, there is
stochasticity and historicity in nature, and the patterns that evolve in a natural environment
will eventually evolve into symmetry, gradually lose that symmetric feature, and gradually
acquire another or disappear. The GoL patterns in regime (1), however, take on a form
that has a symmetrical attractor, or they are the precursors of symmetrical forms, which
then remain permanently trapped in abruptly changing rigid symmetric patterns. The key
question is to what extent the assumptions about abruptness and rigidity reflect relevant
biological and evolutionary processes?
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Figure 2. Under classical deterministic regime (1) of the GoL, a paradigmatic evolutionary sequence of
22 states in which the initial pattern undergoes two changes in the point symmetry group it belongs to.
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4.3. From Emergence to Breaking of Symmetries and Back: Realistic Evolutionary Trajectories and
Historicity in GoL

In assuming the deterministic and stationary nature of the GoL rules in regime (1), both
asymmetric and symmetric patterns can settle in symmetrical attractors, while symmetric
patterns can only have symmetrical attractors. This leads to a permanent symmetry of life
forms regardless of the initial state, for once achieved, they become irrevocable states in the
absence of stochasticity in pattern construction.

Although bilateral and radial symmetry are dominant forms of the living world (not
to mention biradial and spherical symmetry), there are pervasive deviations from strict
symmetry. The Tasmanian giant crab (Pseudocarcinus gigas), shown in Figure 3, is an
example of bilateral symmetry disrupted by the disproportionately developed claws on the
left side. While most crabs have a strictly bilateral body form, a similar deviation is present
in a number of other species [56].
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Figure 3. In the Tasmanian giant crab (Pseudocarcinus gigas), the presence of a larger left claw breaks
the bilateral symmetry of the crab’s body.

Partial symmetry breaking can also be experimentally identified at the cellular level.
For example, during the transmission of neural signals, it has been observed that when the
signal (action potential) reaches the presynaptic terminal (axonal ending), the release of
neurotransmitters occurs with “probabilities the order of 0.25” (The term “all-or-nothing
event” in the context of neurotransmitter release (i.e., exocytosis) implies that, once started,
the process completes fully without any partial release. This characteristic is common in
many cellular processes, where a stimulus exceeding a specific threshold elicits a com-
plete response. However, the reference to a probability of 0.25 indicates that in the cited
experiments, exocytosis happens only one in four times under conditions conducive to
its initiation [57].). This represents a deviation from the deterministic nature of the rules
in the case of neural signal transmission and could be seen as an analog of the GoL in
stochastic regimes.

The strict bilateral body form of the crab can be achieved through deterministic,
symmetric, and stationary rules, which, as demonstrated, lead to the permanent trapping of
spatial patterns in symmetrical forms. However, the presence of stochasticity via historicity
may be crucial for the emergence of deviations from strict symmetry, as seen in numerous
similar cases at various levels [58]. A question then arises: How was this strict bilateral
body form disrupted? Regime (1) is not able to simulate such evolutionary, organismal, and
molecular processes. Introducing the historic–stochastic parameter as one of the update
conditions disturbs the strictly deterministic character of the evolutionary rules and allows
for the possibility of gradual deviation from rigidly symmetrical forms. This stochasticity
in the rules of updating serves as an available source of evolutionary advantage.
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Thus, simulation regime (2) can result in transitions between symmetries, but unlike
regime (1), it can also knock the pattern from its trajectory of strictly symmetric distributions
(Figure 3). This provides much more realistic long-term evolutionary scenarios, as well
as a diversity of possible trajectories that lead to sequential symmetry emergence and
breaking. For instance, in regime (2), pattern 6 in Figure 2 will be the same if it results from
pattern 5 and previous steps. However, the entry from a different updating feedback loop
could result in the same pattern, unlike in regime (1), or could skip it entirely. Symmetric
patterns can emerge but not necessarily stabilize, or they can eliminate symmetries for
longer periods or even entirely.

An intriguing preliminary result in regime (3) is that symmetry breaking occurs
only when the emerging pattern is symmetric but unstable when subjected to changes
according to the rules of regime (1). The probability factor appears to guarantee that the
evolutionary process is never too stable. Thus, the “bare” stochastic factor may serve
as a fundamental underlying factor that operates across the individual-environment net-
work, enabling constructive and destructive cycles of, for instance, body plan evolution
(see Figure 4).
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advantage. 

Thus, simulation regime (2) can result in transitions between symmetries, but unlike 
regime (1), it can also knock the pattern from its trajectory of strictly symmetric distribu-
tions (Figure 3). This provides much more realistic long-term evolutionary scenarios, as 
well as a diversity of possible trajectories that lead to sequential symmetry emergence and 
breaking. For instance, in regime (2), pattern 6 in Figure 2 will be the same if it results from 
pattern 5 and previous steps. However, the entry from a different updating feedback loop 
could result in the same pattern, unlike in regime (1), or could skip it entirely. Symmetric 
patterns can emerge but not necessarily stabilize, or they can eliminate symmetries for 
longer periods or even entirely. 

An intriguing preliminary result in regime (3) is that symmetry breaking occurs only 
when the emerging pattern is symmetric but unstable when subjected to changes accord-
ing to the rules of regime (1). The probability factor appears to guarantee that the evolu-
tionary process is never too stable. Thus, the “bare” stochastic factor may serve as a fun-
damental underlying factor that operates across the individual-environment network, en-
abling constructive and destructive cycles of, for instance, body plan evolution (see Figure 
4). 
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The simulation results obtained in regime (3) illustrate the consequences of the stochas-
tic nature of the underlying rules. Figure 4 portrays the first three evolutionary steps
(patterns 1–3), as well as steps 15 (pattern 4), 19 (pattern 5), and 21 (pattern 6). To demon-
strate the difference in evolutionary outcomes and trajectories after introducing stochasticity
to the original rules, we use the initial pattern 7 from Figure 2 as a starting point, while
maintaining an update probability of 0.5 (regime (3)). The symmetry observed in the initial
pattern is lost after the first step, but after a series of asymmetric transitional patterns, it re-
occurs in the 15th evolutionary step (pattern 4), matching the initial pattern. The symmetry
is lost again for 4 steps, before reoccurring in the 19th step (pattern 5). Finally, in the 21st
step (pattern 6), the evolution is permanently captured in one of the stable forms/attractors
(called “still life” in classical GoL). Regime (3) allows symmetry to appear and disappear,
unlike evolution governed by the classical rules, thus suggesting stochasticity plays a
significant role in the evolutionary process.

Transitions between symmetries are particularly interesting, and in regime (1), they
are abrupt with no visible transitional sequences. For example, the transition from
step 11 to step 12 is abrupt (Figure 2). However, the slow differentiation of symmetries and
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open trajectories are much more realistic scenarios. For instance, the abiogenetic processes
resulting in homochirality, i.e., the breaking of mirror symmetry at the molecular level of
homochiral L-amino acids in proteins and D-sugars in all nucleotides composing life, likely
emerged from a racemic mixture in a series of steps (plausibly representing families of
trajectories) [59]. The partial symmetric outcome in the crabs we described likely belongs
to such gradual transitions. Thus, the visible stepwise transitional differentiation of both
symmetry emergence and symmetry breaking is the key element of simulation, introduced
in regimes (2) and (3) via stochastic historicity. Finally, varied evolutionary processes could
accommodate switching between streamlined abrupt transitions and slow differentiation,
and another regime could simulate this via stochastic switching between regimes (1) and (2).
We introduced this through our platform.

5. The Platform
5.1. Preliminaries

Our study required the development of a simulation platform to test various rules and
patterns in the GoL. We developed the platform using the Matlab programming language,
version R2019a. The simulation platform is structured modularly to allow for the flexible
selection and construction of rules and initial patterns. The size of the simulation field
is determined ad hoc using a special argument of the simulation function. The initial
simulation pattern is also passed to the simulation function as an argument. To select
evolution rules from the current set of three options, the simulation function accepts a
numerical notation symbol to select among the current set of rules. This approach allows
researchers to easily switch between different rules without altering the underlying code
structure. This means that different rules can be tested and compared directly by simply
changing the rule parameter. The number of iterations in each simulation is also determined
ad hoc, using an argument of the simulation function. After the simulation is over, the
simulation function returns the resulting pattern. Throughout the simulation, the platform
visualizes the simulation field in real time with a delay of 0.2 s, allowing for the real-time
tracking of the simulation flow.

5.2. Brute-Force Pattern Search

As part of the simulation platform, we developed a pattern search tool in addition to
simulating the GoL using pre-defined or subsequently adjusted rules of evolution. The
evolution of patterns in this game depends on the initial state and the evolution rules, or
updates. Given the computational complexity and the large number (theoretically infinite)
of patterns and rules that can be constructed, finding patterns with characteristic properties
is a demanding and time-consuming process. Automating this process can significantly
speed up the search and isolation of characteristic patterns. Examples of characteristic
patterns include stationary patterns (which do not change at all—“still life”), oscillators
(which periodically return to their initial state after n steps), and mobile patterns (“gliders”
and “spaceships”) that move across the simulation field and may have an oscillatory
component during their movement. Importantly, the criteria for selecting characteristic
properties can be defined in any way. In our case study, we chose symmetrical properties
of patterns.

The developed tool searches for a characteristic pattern using a brute force approach
Brute-force algorithms exhibit both advantaged and disadvantages. Advantages: Brute-
force algorithms are straightforward to implement and understand. They do not require
complex logic or data structures. Since brute-force methods systematically explore all
possible solutions, they are guaranteed to find the correct solution if it exists. Disadvantages:
Brute-force search is often inefficient, especially for large problem spaces. It can be very
slow because it examines every possible solution, leading to high time complexity. As the
size of the problem increases, the time required for brute-force search grows exponentially,
making it impractical for large datasets or complex problems. We kept the computational
complexity of the problem small enough to allow for brute-force pattern search. It is
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implemented as a Matlab function that takes as inputs arguments the size of the simulation
field in which it will perform the search and the size of the pattern that will be tracked for
changes during evolution. The size of the pattern cannot exceed the size of the simulation
field minus one, as evolution does not occur on the edges of the field, in the last row of cells
on either side. For a given field size m × m, the search tool generates all possible variations
without repetition of three to m2 living cells in the given field, arranged in every possible
unique way, and then simulates the GoL and tracks the outcomes. The initial size of three
is chosen because patterns with one and two cells are simple and have been thoroughly
explored. Because larger patterns have memory management issues, it is impossible to
memorize all possible variations without repetition. Therefore, we developed a pattern
generator to pass the search tool one pattern at a time until the entire range of possible
patterns has been exhausted. During a simulation, the search tool saves the patterns in a
special Matlab data structure that it returns after the simulation.

A step-by-step explanation of the brute force pattern search is as follows: (1) initialize
parameters (input the size of the simulation field m × m, input the size of the pattern
p × p), (2) generate all possible patterns with a size between three and p, (3) iterate over
patterns (place the pattern in the simulation field and initialize the GoL simulation with
the pattern as the starting state), and (4) simulate the GoL (run the GoL simulation for a
predefined number of steps or until a stable pattern emerges and keep recording states of
the GoL at predefined checkpoints).

Figure 5 displays the outcome of a search for stationary patterns in the simulation field.
We chose a relatively small field to minimize computational demands, as searching for
patterns on excessively large fields exerts unnecessary pressure on computational resources
and prolongs the simulation. This simple case serves as a demonstration of the search
for stationary patterns. Unlike oscillators and mobile structures, stationary structures are
insensitive to the introduction of stochasticity into the evolution rules in the implementation
described here. Therefore, all three types of rules have common stationary patterns. In
future research, it would be interesting to investigate whether certain oscillating or mobile
patterns are insensitive to stochasticity, or to investigate those that arise due to stochasticity
in the evolution rules and are not present in the original simulation.
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6. Conclusions

In this paper, after reviewing previous studies of the GoL, we discuss relevant philo-
sophical and evolutionary–biological implications of the historicity of evolution and an
implementation of the historicity feedback loop of updates in GoL simulation. We devel-
oped a simulation platform with conveniently changeable rules and the ability to visualize
the evolution of the GoL on a field of arbitrary dimensions and a pattern searcher that
meets certain criteria, such as stationarity or oscillating patterns, in a certain period. In
the first regime, the initial set of rules that can be selected includes the classical Conway
rules. The second regime introduces sequential stochastic evolution that violates Markov
chains through historicity (the sequential update of cells based on the “visibility” of the
chosen environment, achieved via a feedback loop on already completed updates), and
the third regime includes probabilistic factors in updates. We discuss a convenient case
of symmetry emergence and breaking in evolution and in the GoL in relation to all three
simulation regimes on the platform. It turns out that bilateral and radial symmetry occur
as evolutionary by-products in regime (1), the classical GoL regime, but once achieved as
stable forms in classical GoL, they cannot be escaped. We argue that introducing stochastic-
ity via historicity (regimes (2) and (3)) leads to more realistic evolutionary and biological
scenarios. The introduction of stochasticity and historicity in regimes (2) and (3) allows
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for more dynamic and complex evolutionary scenarios. In these regimes, the feedback
loop and probabilistic factors disrupt the deterministic nature of the classical GoL rules.
This disruption enables the system to explore a broader range of configurations and pat-
terns, including those that break the symmetries observed in the classical regime. By
incorporating stochastic elements and historicity, the simulation can exhibit more realistic
evolutionary behaviors, including symmetry breaking. Symmetry breaking in this context
refers to the process where initially symmetric patterns evolve into configurations that
no longer maintain the original symmetry. This phenomenon is more representative of
real-world biological and evolutionary processes, where symmetry is not always preserved
due to varying environmental conditions and historical influences. The ability to observe
symmetry breaking through stochastic and historical updates provides insights into how
evolutionary processes might occur in natural systems. It reflects a more nuanced view of
evolution, where randomness and historical context play crucial roles in shaping patterns
and structures. This approach aligns with biological systems where symmetry is often
broken due to adaptive changes, environmental factors, and historical contingencies.
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