
O
ver the past decade, the growing

computational power and incre-

asing storage capabilities of per-

sonal devices have created the

need for tools that let users efficiently, directly,

and intuitively interact with multimedia con-

tent. Time-series data—such as audio files, vid-

eos, and sensor signals—constitutes a major part

of multimedia content, but enabling humans to

interact with such content requires tackling sev-

eral problems, including query-by-content, clus-

tering, and classification problems.1

Here, we deal with the query-by-content

problem in temporal data, addressing both

query by content and gesture following. (For

more information, see the related sidebar.)

Most of the research in this field can be catego-

rized into one of two methods: model-based or

sequence-matching.

Model-based approaches, such as hidden

Markov models (HMM),2 are common in

speech, audio, and video-object recognition. An

example of a sequence-matching approach is

the Guidage system for query by audio.3 Gui-

dage uses a structure called Audio Oracle (AO) to

represent an audio signal in a suffix structure.4

Guidage can efficiently retrieve subclips by tra-

versing the AO structure in a forward direction,

according to an input query. For symbolic sub-

sequence matching, one function absent from

AO is a solution for traversing the suffix links.

AO is the signal extension of Factor Oracle

(FO), which is a suffix automaton for symbolic

sequences.

In this article, we propose a new data struc-

ture, called the Variable Markov Oracle (VMO),

which extends AO and FO by combining the

strengths of each. Our work here expands our

previous results5 in both theoretical and practi-

cal aspects, exploring the online clustering

implication of VMO and gesture following,

respectively.

The problem of gesture following stems

from the development of interactive art and

performance applications.6 In gesture-follow-

ing scenarios, the focus is on providing contin-

uous updates of time progression, rather than

identifying one correct answer as in query-by-

content. Fr�ed�eric Bevilacqua has proposed a

variant of HMM designed for gesture follow-

ing,7 in which the transition probabilities

between hidden states, representing time pro-

gression, are fixed to allow for efficient real-

time algorithms. We propose gesture-following

algorithms based on VMO, exploiting its index-

ing structure for increased efficiency.

The Variable Markov Oracle
As noted, VMO is the successor of FO and AO.

FO was originally proposed8 for biosequence

pattern matching and later extended to gener-

ating symbolic music sequences.9 It is a com-

pressed suffix tree (suffix automaton) for the

fast retrieval of repeated substrings (factors) and

patterns (repeated suffixes) of a symbolic

sequence, Q.

FO could be constructed in linear time and

space, which is shown to be more appropriate in

real-time applications than two other variable-

order models based on incremental parsing and

probabilistic suffix trees.9 For a sequence of sym-

bol Q ¼ q1; q2; …; qt ; …; qT , FO is constructed

with T states, and each symbol qt is associated

with a state. Two kinds of links—forward and

suffix links—are created during FO construction.

There are two types of forward links in an

oracle structure:

� an internal link that is a pointer from state

t � 1 to t (labeled by the symbol qt),

denoted by dðt � 1; qtÞ ¼ t; and

The Variable
Markov Oracle:
Algorithms for
Human Gesture
Applications

Cheng-i Wang and Shlomo Dubnov
University of California, San Diego

The Variable Markov

Oracle (VMO) data

structure for

multivariate time-

series indexing can

identify repetitive

fragments and find

sequential similarities

between

observations to

support gesture

“query by content”

and gesture

following.

Experiments reveal

state-of-the-art

performance.

1070-986X/15/$31.00�c 2015 IEEE Published by the IEEE Computer Society

Multimedia Research and Applications

52

� an external link that is a pointer from state

t to tþ k (labeled by qtþk, where k> 1).

An external link dðt; qtþkÞ ¼ t þ k is created

in FO when qtþ1 6¼ qtþk; qt ¼ qtþk�1, and

dðt; qtþkÞ ¼1. In other words, we create an

external forward link when the most recent

internal forward link is unseen for the previous

occurrence of qt . The function of the forward

links is to provide an efficient way to retrieve

any of the factors of Q, starting from the begin-

ning of Q and following a unique path formed

by forward links.

A suffix link is a backward pointer that

points state t to k, where t> k. The link does not

have a label and is denoted by sfx½t� ¼ k. The

condition for when a suffix link is created is

sfx½t� ¼ k () the longest repeated suffix of

fq1; q2;…; qtg is recognized in k.

Suffix links are used to find repeated suf-

fixes in Q. To track the longest repeated suffix

at each time index t, the length of the longest

repeated suffix at each state t (denoted as

lrs[t]) is computed by the algorithm pro-

posed Arnaud Lefebvre, Thierry Lecroq, and

Jo€el Alexandre.10 FO construction could be

done incrementally by appending newly

appearing symbols to the end of Q. (The algo-

rithms for constructing FO are provided else-

where.10) Figure 1 shows an example of the FO

structure.

AO is the multivariate time-series extension

of FO. The input O[t] is a multivariate time ser-

ies sampled at discrete times. To extend the

domain of FO from symbolic sequences to a

time series, such as an audio signal, a threshold

h is introduced to determine if O[t] is similar to

states found in O[1…t � 1] by following suffix

links. h is associated with the metric over the

feature space given the time series. Two

samples, O[i] and O[j], are considered similar

if |O[i] � O[j]| � h. The metric should be

chosen according to the application domain

and features used. For the rest of the article,

we use L2-norm as the metric between feature

frames.

Online Construction Algorithm for VMO

As mentioned, AO resembles the suffix structure

of FO without symbols attached to states. This

fact prevents AO from having efficient navigat-

ing algorithms for states linked by suffix links.

Consequently, we devised VMO to improve AO

by explicitly assigning labels to frames linked by

suffix links during AO construction.

The symbols formed by gathering states con-

nected by suffix links have the following

properties:

Query by Content and Gesture Following
There are two main differences between query by content

and gesture following. First, you need to decide whether

the reporting of the query results will be performed at the

end of the query or updated at each new incoming sample

of the query time series. Second, query by content asks

how closely the query input resembles other entries in the

collection, while gesture following considers the time pro-

gression of the query time series relative to a stored

sequence. Solving both of these problems becomes crucial

for helping humans interact with multimedia content, with

query by content enabling intuitive browsing of multime-

dia content, and gesture following providing instantaneous

feedback.

Time series query by content has its long history in time

series analysis research.1 Dynamic time warping (DTW) has

been the dominant distance metric used in the time series

query-by-content task by practitioners but is limited by its

quadratic computational complexity2 and monotonicity

conditions. In multimedia research, query by content

focuses on using media contents, such as images or audio,

as an input to a system in order to retrieve data from a col-

lection of stored samples, according to (or without) user-

specified criteria.

As far we know, query by content in multimedia remains

an active and relatively unexplored research area. This is

in contrast to more standard information retrieval

approaches,3 which focus on devising mid-level features

that would allow symbolic searching and matching accord-

ing to specific tasks. One example studied in recent years in

the audio/speech/music domain is query by humming or

query by audio.4

References

1. P. Esling and C. Agon, “Time-Series Data Mining,” ACM Com-

puting Surveys, vol. 45, no. 1, 2012, p. 12.

2. M. Cuturi, “Fast Global Alignment Kernels,” Proc. 28th Int’l

Conf. Machine Learning (ICML), 2011, pp. 929–936.

3. M. Worring et al., “Where Is the User in Multimedia

Retrieval?” IEEE MultiMedia, vol. 19, no. 4, 2012, pp. 6–10.

4. A. Kotsifakos et al., “A Survey of Query-by-Humming Similar-

ity Methods,” Proc. 5th Int’l Conf. Pervasive Technologies

Related to Assistive Environments, 2012, p. 5–8.

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
1
5

53

� pairwise distances between states con-

nected by suffix links are less than h;

� the symbolized signal formed by the oracle

could be interpreted as a sample from a var-

iable-order Markov model, because the

states connected by suffix links share com-

mon suffixes with variable length;

� each state is labeled by only one symbol,

because each state has only one suffix link;

and

� the alphabet size of the assigned symbols is

unknown before the construction and is

determined by h.

To explicitly keep track of the linked states

and to maintain the online nature of the con-

struction algorithm, the construction of VMO

combines FO and AO by treating the sequence

of assigned labels Q as the symbolic sequence

for FO. Pointers to O are tracked by introducing

a list of lists,
P
¼ ½r1 � � �rm � � �rM �, where M is

the number of labels formed and rm is a list con-

taining the pointers (frame numbers) for the

mth label. In summary, VMO accepts O as input

and returns an oracle structure, keeping track of

the cluster label sequence Q and also the lists of

pointers to O. The lists are stored in + and

indexed by Q.

Let O be the incoming signal and t the time

index. We use O[t] to represent the newly

observed value or vector at t. A forward link

from state i to state j, labeled by q, is denoted by

dði; qÞ ¼ j. A suffix link from state j to state i is

denoted by sfx[j] ¼ i without labeling. We use

Q ¼ q1;…; qT to denote the label sequence for

labels of observations O ¼ O[1] … O[T]. Algo-

rithm 1 (shown in Figure 2) provides VMO a

construction.

Algorithm 2 provides the incremental algo-

rithm for an incoming signal (see Figure 3). For

each new incoming sample O[t], a new state is

constructed with the newly created internal for-

ward link dðt � 1; qtÞ ¼ t. The cluster label qt

for O[t] is initialized as null. The while loop

(lines 5 to 15) in Algorithm 2 is the standard

process to assign external forward links and suf-

fix links.10 Lines 16 to 25 are the newly intro-

duced part of VMO that assigns the cluster label

Require: Time series as O = O[1]; O[2] … O[T]

 1. Create an oracle P with initial state p0

 2. sfxP [0] ← –1, Σ ← Ø, M ← 1

 3. for t = 1 : T do

 4. Oracle(P = p1 … pt), M ← Add-Frame(Oracle(P = p1 … pt–1), O[t], M)
 5. end for

6. return Oracle(P = p1 … pT)

Figure 2. Algorithm 1—Variable Markov Oracle construction. This algorithm provides online construction

of VMO.

0 1 2 3 4 5 6 7 8 9 10 11
a b b c a b c d a b c

0 0 1 0 1 2 2 0 1 2 3

b c
c d

d

Figure 1. An example of the Factor Oracle (FO) structure. FO of Q¼ “abbcabcdabc.” The forward links

include the labels of each symbol. (Each state has an associated symbol in FO.)

IE
E
E

M
u

lt
iM

e
d

ia

54

to qt , then appends the pointer of O[t] to rq
t
. In

this article, for the algorithms described in

pseudocode, we use X[i] when retrieving the

item from an array X in its ith location; [a; b]

when appending b to the end of a; Xi;j when

accessing the ith row and jth column of a

matrix X; and X(i, :) when retrieving the whole

ith row in a matrix X.

Online Clustering

The online construction algorithms build a

clustering of frames, storing the clustering in +.

We conjecture how the construction algo-

rithms could be viewed as an online clustering

algorithm with Markov constraints. Online

clustering refers to incrementally aggregating a

datastream into clusters without observing all

of the data points in the first place. David Stork,

Peter Hart, and Richard Duda proposed the

leader-follower online clustering algorithm,11

Require: Oracle P = p1 … pt, time-series instance O[t + 1] and number of cluster M

1. Create a new state t + 1
2. qt+1 ← 0, sfxP [t + 1] ← 0
3. Create a new transition from t to t + 1, δ(t, qt+1) = t + 1
4. k ← sfxP [t]
5. while k > –1 do
6. D ← distances between O[t + 1] and O[δ(k, :)]
7. if all distances in D are greater than θ then
8. δ(k; qt+1) ← t + 1
9. k ← sfxP [k]
10. else
11. Find the forward link from k that minimizes D
 k’ ← (k; :)[argmin(D)]
12. sfxP[t + 1] ← k’
13. break
14. end if
15. end while
16. if k = –1 then
17. sfxP [t + 1] = 0
18. Initialize a new cluster with current frame index σM+1 ← t + 1
19. Σ ← [Σ; σM+1]
20. Assign a label to the new cluster, qt+1 ← M + 1
21. Update number of clusters, M ← M + 1
22. else
23. Assign cluster label based on assigned suffix link qt+1 ← qk'
24. σqk ←[σqk ;t+1]
25. end if
26. reture Oracle P = p1 … pt+1, M

Figure 3. Algorithm 2—the incremental algorithm for an incoming signal. For each new incoming sample

O[t], a new state is constructed with the newly created internal forward link dðt� 1; qtÞ ¼ t. Lines 16 to

25 show the newly introduced part of VMO that assigns the cluster label to qt, then appends the pointer of

O[t] to rqt.

Require: A data stream with x the incoming sample

 1. Initialize η,θ
 2. w1 ← x

3. while x is presented do

4. j ← argminj′║x – wj′║ (find nearest cluster)

5. if ║x – wj′║ < θ then

6. wj ← wj + ηx

 7. else
8. add new w ← x

9. ║w║ ← w/║w║ (normalize weight)

 10. end if

 11. end while

12. return w1, w2, …

Figure 4. Algorithm 3—leader-follower clustering.11 The clusters are formed

dynamically during the observation of a signal.

55

which we provide here as Algorithm 3 (see Fig-

ure 4).

Comparing Algorithm 2 to Algorithm 3, we

can observe that the suffix-link finding routine

in Algorithm 2 is similar to line 4 in Algorithm

3, where a possible cluster label is identified.

Then the label-assigning routine in Algorithm 2

is where either a label gets assigned or a new

label is formed, which is similar to the If-else

part in Algorithm 3. The h used in both algo-

rithms plays the same role in the sense that it

controls the number of clusters created. How-

ever, two major differences separate these two

algorithms.

First, the suffix-link finding routine in Algo-

rithm 2 places a Markov constraint on the states

to be considered as candidate states for the suf-

fix link of the incoming sample. Markov con-

straint refers to the constraints placed in a

constraint satisfaction problem (CSP) to enforce

Markov properties in the generated sequence

from solving the CSP.12 We borrow the concept

and use it to explain the effect of line 6 in Algo-

rithm 2 where, instead of having Markov con-

straint cost functions in an optimization

scenario of CSP, VMO directly limits only the

states sharing the same suffix with the incom-

ing observation to be considered as candidates

to which suffix links point. Then variable-order

Markov properties are injected because of the

shared suffixes.

The second difference is that VMO does not

parametrize the clustered frames in terms of

centroids or other statistics, because the clusters

in VMO are formed by assigning linkages

between incoming and existing frames or using

criteria related to distance or similarity meas-

ures. VMO is thus more like a variant of single

linkage hierarchical clustering.

Model Selection via the Information Rate

For an extreme h value, VMO can assign differ-

ent symbols to every frame in O if h is exces-

sively low, or VMO can assign the same symbol

to every frame in O if h is excessively high. In

these two cases, VMO can’t capture variable-

order dependencies in the time series. Figure 5

shows an example of the oracle structure with

extreme h values.

With different h values, VMO constructs

different suffix structures and different sym-

bolized sequences from the signal. To select

the one symbolized sequence with the most

informative variable-order structure, we use

information rate (IR) as the criterion in model

selection between different structures gener-

ated by different h values. IR is an information

theoretic measure capable of measuring the

information content of a time series4 in terms

of the predictability of its source process on

the present observation given past ones. VMO

uses the same approach as AO13 to calculate

IR. Let xN
1 ¼ fx1; x2;…; xNg denote time series x

with N observations, where HðxÞ ¼ �
P

PðxÞ
log 2PðxÞ is the entropy of x and the definition

of IR is

IRðxn�1
1 ; xnÞ ¼ HðxnÞ �Hðxnjxn�1

1 Þ: (1)

IR is the mutual information between the

present and past observations, which is maxi-

mized when there is a balance between

0

a a a a a a a a a a

1 2 3 4 5 6 7 8 9 10 11

b c
c d

d e
e f g h i j

j k
k

ihgf

a

a
0 1 2 3 4 5 6 7 8 9 10 11

Figure 5. Two oracle structures with extreme values of h. The characters near each forward link represent

the assigned labels. In the top oracle structure, the h value is 0 or extremely low. In the bottom oracle

structure, the h value is very high. In both cases, the oracles can’t capture any type of structure from the

time series.

IE
E
E

M
u

lt
iM

e
d

ia

56

variation and repetition in the symbolized sig-

nal. The value of IR could be approximated by

replacing the entropy terms in Equation 1 with

a complexity measure C associated with a com-

pression algorithm. This complexity measure is

the number of bits used to compress xn inde-

pendently using the past observations xn�1
1 .

Consequently,

IRðxn�1
1 ; xnÞ � CðxnÞ � Cðxnjxn�1

1 Þ:

Compror, a lossless compression algorithm

based on FO and the length of the longest

repeated suffix link (lrs) is provided elsewhere,6

as is the detailed formulation of combining

Compror, AO, and IR.13

For VMO, the online generation of code

words C is as follows6: When a new state is

added to an oracle structure at time (t þ 1), the

suffix link and length of the longest repeated

suffix for this state are retrieved. If the result-

ing suffix link points to state 0, that means no

suffix was found because the distance between

the new state and all previous states exceeded

the threshold h. In such a case, the new state

must be individually encoded. Otherwise, if a

suffix link pointing to a previous location in

the state sequence is found, and the length of

the longest repeating suffix is smaller than the

number of steps passed since the last encoding

event, then a complete preceding block of

states is encoded in terms of a pair (length,

position).

In our method, we denote an individual

new state as a pair (0, position). Let us denote

j[i] as the array that contains the states where

encoding occurs during the compression pass.

An algorithm for computing j is described in

Algorithm 4 (see Figure 6), with lrs represent-

ing an array containing the length of repeated

suffixes of the oracle. lrs could be obtained

during the construction of an oracle. The

collection of code pairs Uj resulting from

Algorithm 4 is passed to the incremental IR

algorithm, as described in Algorithm 5 (see

Figure 7).

Figure 8 visualizes the sum of IR values ver-

sus different hs. When Algorithms 4 and 5 are

applied to VMO, the higher h value creates

higher CðxnÞ and Cðxnjxn�1
1 Þ, while lower h cre-

ates lower CðxnÞ and Cðxnjxn�1
1 Þ. Thus IR is

maximized with an intermediate h value when

CðxnÞ and the negative Cðxnjxn�1
1 Þ are balanced.

A VMO with a higher IR value captures more of

the repeating subclips (such as patterns, motifs,

themes, and gestures) than the ones with lower

IR values.

Matching Algorithms
Let R be the query observation indexed by n,

denoted as R ¼ R[1],…, R[n],…, R[N]. The

matching algorithm provided in Algorithm 6

(see Figure 9) takes R as input and matches it to

the target VMO, Oracle ðQ ¼ q1; q2;…; qT ;

O ¼ O½1�; O½2�;…; O½T �Þ, constructed by a tar-

get time series, O. The algorithm returns a cost

and a corresponding recombination path. The

cost is the reconstruction error between the

query and the best match from O, given a met-

ric on a frame-by-frame basis. The recombina-

tion path corresponds to the sequence of

indices that will reconstruct a new sequence

from O that best resembles the query.

Query-Matching Algorithm

Our proposed query-matching algorithm is a

dynamic programming algorithm. We separate

the algorithm into two steps: initialization and

decoding. In Algorithm 6, the initialization is

in lines 1 through 6. During initialization, the

size of the alphabet, M, is obtained from the car-

dinality of +. Then, the frame within the mth

list that is closest to the first query frame, R[1],

is found and stored. After the initialization

step, the decoding step (lines 7 through 13 in

Algorithm 6) iterates over the rest of the query

frames from 2 to N to find M paths, with each

path beginning with the state found corre-

sponding to the respective label in the initiali-

zation step.

Require: Array containing the length of repeated
suffixes for every state lrs[t]; t = 1 … T

 1. Create an array κκ with initialization κ = {1}
 2. for t = 1 to T do

3. if lrs[t + 1] < t – lrs[end] + 1 then

4. κ ← κ ∪ {t}
5. end if

6. end for
 7. return Vector κ

Figure 6. Algorithm 4—compression pass over VMO. j[i] denotes an array that

contains the states where encoding occurs during the compression pass. This is

an algorithm for computing j, with lrs representing an array containing the

length of repeated suffixes of the oracle.

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
1
5

57

The proposed query-matching algorithm is

similar to the Viterbi decoding algorithm for

HMM and max-sum inference algorithm for

graphical models14 in the sense that each

update in the decoding step depends only on

its neighboring findings. Thus, it’s efficient to

compute, and there is no need to search over

the whole state space. Figure 10 provides a visu-

alization of Algorithm 6 from initialization to

decoding for one path among the M paths.

Online Alternative

To fulfill the online requirement for the pro-

posed gesture-following task, we adapted the

query-matching algorithm described in Algo-

rithm 6. The online algorithms are provided in

Algorithms 7 and 8 (see Figure 11). The online

gesture following updates the current “time

progression” and “likelihood” on a frame-by-

frame basis instead of making one final back-

ward pass at the end of the query time series for

the offline version.

In Algorithm 7, M possible paths are initial-

ized according to the number of labels assigned

by VMO and the first entry for each path is

located according to the distance between the

first observation from the input stream to every

frame in each label. Algorithm 7 returns a path

vector P and a cost vector C and passes them to

the online following algorithm. In Algorithm 8,

the algorithm is run once to update P and C for

each path for each incoming sample, then

Parg min ðCÞ is returned as the found index in tar-

get time series O, indicating the best match

between the incoming time series R and stored

time series O.

A Probabilistic Interpretation

Here, we specify the analogy between the infer-

ence problem in HMM and the query-matching

algorithm used by VMO. Given an HMM

learned from O ¼ O[1], O[2],…, O[T]—specified

as initial probabilities pi of being at state i; tran-

sition probabilities aij for transitioning from

state i to state j; the hidden state at time step n

denoted by xn; and emission probabilities

P(R[n]|m) for the observed variable R[n] at time

step n generated by state m—and given an

observed time series R, then

V1;m ¼ PðR½1�jmÞ � pm; and

Vn;m ¼max m0

�
PðR½1�jmÞ � am;m0 � Vn�1;m0

�

Given VMO indexing O ¼ O[1], O[2],…,

O[T], we can replace the terms in the recurrence

relations in HMM with attributes in VMO.

First, we treat the clusters of frames

r1;…; rM stored in
P

as hidden states in an

HMM. With
P

available from VMO, initial

probability is replaced by an empirical fre-

quency estimation from VMO as

pi ¼
jrij
T
;

with jrij denoting the number of frames stored

in ri. The transition probability is replaced with

aij ¼
1
�
9dðt; jÞ; t 2 ri

�
jrjjXM

j 0¼1
1
�
9dðt; j 0Þ; t 2 ri

�
jrj 0 j

;

where 1() is an indicator function that returns

1 if the condition enclosed is true, or 0 other-

wise. The replacement for the transition proba-

bility is an approximation with conditional

empirical frequency estimation from transition

candidates by forward links. We replace the

emission probability with

PðR½n�jmÞ / exp
�dðR½n�jmÞ

a

� �
;

where d(R[n], m) � 0 and a � 0. Note that a is a

scalar controlling the variance, assumed to be

1, and d(R[n], m) is a cost function, which we

define as

Figure 7. Algorithm 5—incremental information rate (IR) from code U. The

collection of code pairs Uj resulting from Algorithm 4 is passed to the

incremental IR algorithm.

IE
E
E

M
u

lt
iM

e
d

ia

58

dðR½n�;mÞ¢ min
t 0 2rm

kR½n� �O½t 0 �k:

The definition of the cost function refers to

finding the closest frames in rm to the incom-

ing observation R[n] and returning their dis-

tance. If we take log on both sides of the

recurrence relations and combine the above

replacements, the recurrence relations could be

rewritten as

log ðV1;mÞ

¼ log exp ð�min t0 2rm
kR½1� �O½t 0 �kÞ: jrmj

T

� �

¼ �min t 0 2rm
kR½1� �O½t 0 �k þ log

jrmj
T

� �
;

log ðVn;mÞ

¼max m0 log

 �
exp

�
�min t 0 2rm

kR½n� �O½t 0 �k
�!

�
1
�
9dðt;mÞ; t 2 rm0

�
jrmjXM

j¼1
1
�
9dðt; jÞ; t 2 rm0

�
jrjj
� Vn�1;m0

!

¼min m0

min t 0 2rm

kR½n� �O½t 0 �k

þlog

1
�
9dðt;mÞ; t 2 rm0

�
jrmjXM

j¼1
1
�
9dðt; jÞ; t 2 rm0

�
jrjj
� Vn�1;m0

!!
:

ð2Þ

We can then compare this rewritten recur-

sive relation to the query-matching algorithm

proposed in Algorithm 6. We first notice that

Algorithm 6 not only identifies the hidden state

ðrm0 Þ but also the extracted frame O[t0] from

that hidden state, which is consistent with the

cost function min t 0 2rm
kR½n� �O½t 0 �k just pro-

posed. The next observation is that the proba-

bilities for transitioning to different rm is the

number of frames in rm proportional to the

sum of number of frames possible to transition

to from rm0 . Combining these two observations

could establish that the probability distribution

for candidate frames before considering the

emission probability is actually uniform. Thus,

we need to consider only the cost function in

Equation 2, which means logðV1;mÞ and

logðVn;mÞ are actually Cm in Algorithm 6.

Query by Content
The goal for the first part of the experiment is to

test the performance of Algorithm 6. We for-

malize the problem as follows: given a collec-

tion of time series data of the same type (such

as audio, video, or sensory data) categorized

into different categories (or types, genres, or

labels) and a query time series not included in

the collection, use the query time series to

search over the collection and return multiple

matches according to the query. The returned

matches are deemed correct if they belong to

the same category as the query.

For this experiment, we choose the MSRC-12

Kinect gesture dataset,15 which contains 6,244

annotated instances of both iconic and meta-

phoric human full-body gestures recorded

using XBox Kinect by 30 participants. The sam-

ple rate of the 3D joints is 30Hz and each frame

of the gesture instance is stored as a 3D 20-joint

skeleton. We treat the sequence of skeleton

frames as the query time series, with R 2 R3	20.

Figure 12 shows snapshots of example skeleton

frames. The length of each gesture sequence is

between 13 and 492 frames, and each partici-

pant performed 8 to 20 times for each gesture.

The experiment follows the leave-one-out

principle. First, all the instances are prepro-

cessed for storage in VMO structures. Then,

each time one instance from the collection is

set aside as the query, we use the skeleton

300
250
200
150
100

50
0
0.00 0.05 0.10 0.15 0.20

Threshold

IR

IR vs. Threshold Value (VMO)

0.25 0.30

IR values

Selected threshold

0.35

Figure 8. IR values are shown on the vertical axis, while h are on the horizontal axis. The solid blue curve

shows the relationship between IR and h, and the dashed black line indicates the chosen h by locating the

maximum IR value. Empirically, IR curves exhibit quasi-concave function shapes, so a global maximum

can be located.

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
1
5

59

sequence of the query as R in Algorithm 6 to

match the rest of the instances in the collection

stored as VMOs. Algorithm 6 returns the 10

entries with the lowest cost, C, for each query.

Every instance is used as a query once in this

experiment. We choose a smaller subset instead

of the full collection due to the large amount of

instances. The subset chosen contains the six

iconic gestures out of the 12 gestures performed

by five randomly chosen participants from the

full collection. The total number of instances of

the subset is 499. A list of the details of the sub-

set is provided in Table 1.

The results of the leave-one-out query-return

experiment are listed in Tables 2 and 3. In Table

2, a retrieved match is considered correct if it

belongs to the same category of the query for

each of the 10 retrievals of the query; if so, then

the precision for one type of gesture is calcu-

lated as the “counts of correct matches” divided

by the “total number of queries from that type

of gesture.” We compare the result in Table 2 to

the state of the art on reported precision on the

MSRC-12 dataset.16 The precision achieved

using the VMO query-matching algorithm (93.1

percent) reached a comparable level (93.6 per-

cent) on the subset chosen in this experiment.

Researchers have proposed a feature called

Cov3DJ,16 in which the covariances between

joints are used and a support vector machine

(SVM) is trained to recognize testing gestures.

SVM with Cov3DJ reaches the state-of-the-art

performance, but because Cov3DJ must be cal-

culated over all the data points of each gesture,

it is not possible for online applications. We

also compare our results to dynamic time warp-

ing (DTW), HMM, and experiments17 on the

MSRC-12 dataset.

DTWand HMM are both baseline approaches

for time-series query-retrieval experiments. Mal-

linali Ram�ırez-Corona, Miguel Osorio-Ramos,

Eduardo Morales17 used a feature for DTW and

HMM similar to ours, which is the time-series

data from the gestures. DTW performs the worst,

with 82.75 percent accuracy. The relatively

lower accuracy is caused by the fact that DTW

does not allow the query gesture to have “jitter”

behaviors, because DTW assumes linear time

relations between the query and target gestures.

The HMM performance is similar to VMO.

The estimation of the number of hidden states

in an HMM is found by exhaustively searching

over a range of possible values, which in a sense

is similar to finding the optimal h value for

Figure 9. Algorithm 6—query matching. The algorithm returns a cost and a corresponding recombination

path. The cost is the reconstruction error between the query and the best match from O, given a metric on

a frame-by-frame basis. The recombination path corresponds to the sequence of indices that will

reconstruct a new sequence from O that best resembles the query.

IE
E
E

M
u

lt
iM

e
d

ia

60

VMO, but the expectation maximization (EM)

algorithm for estimating the HMM parameters

must iterate over each gesture for several times

until convergence, while the construction for

VMO requires only one pass through each ges-

ture, thus making HMM relatively inefficient

compared to VMO.

In Table 3, the criteria for a correct match

are stricter than the previous experiment; we

consider a match to be correct only if both the

gesture and the participant who performed

the gesture are the same as the query. The

results in Table 3 indicate that, given the sim-

ple frame-by-frame 3D skeletal joint data

points, the query-matching algorithm can

retrieve not only the same type of gesture, but

also the gesture that was performed by the

same participant who did the query gesture.

This result implies a possible solution to the

user identification problem in gaming con-

soles or mobile devices, which was not

addressed for the MSRC-12 dataset in previous

research.

Gesture Following
Based on the online gesture-following algo-

rithms proposed earlier, it is possible to track

where in the stored multivariate time series the

new observation should be mapped to. Figure

13 provides a visualization of such gesture

0 2 3 4 6 7 8 9

1

a
5

ab b c b c d b c
10 11

d

d
c
c

b

1
a

0
a

1 2 3 4 5
c

7
d

8 9 10
a
1 2

c
11

1

d

6
c a

c
c d

b
b b b b

0
a

1 2 3 4 6 7 9 10 118
a b
1 2

31

3

b b
c

b c cc a d
d

d

5

c

b

Figure 10. Decoding steps: (a) initialization and then decoding of (b) t¼ 2 and (c) t¼ 3. Consider the

target time series represented as the same VMO from Figure 1. In each subplot, parts marked black with

thick arrows indicate the path for the chosen state, dark gray circles with thick arrows represent possible

paths, and filled circles represent the candidate states. Numbers on the thick black arrows indicate the

steps. In this example, the query R is assumed to have three frames and the subplots demonstrate

hypothetic steps for the path started with frames in O in the cluster labeled “a” (among four possible

paths started via a, b, c, or d). Here, the visualization of the query time series is omitted and the path is

chosen generically to demonstrate Algorithm 6.

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
1
5

61

following. Figure 13a shows the result of the

gesture following (red dashed line) based on a

stored gesture (blue line) given unknown input

observations (green dotted line). Figure 13b

shows how the gesture-following result (red

dashed line) corresponds to its original

sequence (blue line) in terms of the matching

in time (as of frame indices). The original

Figure 11. Gesture following: (a) Algorithm 7 (initialization) and (b) Algorithm 8 (online update). In

Algorithm 7, M possible paths are initialized, returning a path vector P and a cost vector C. In Algorithm

8, Parg min (c) is returned as the found index in target time series O, indicating the best match between the

incoming time series R and the stored time series O.

Figure 12. Example frames of 3D skeletal joints. The length of each gesture sequence is between 13 and

492 frames, and each participant performed 8 to 20 times for each gesture.

IE
E
E

M
u

lt
iM

e
d

ia

62

Table 2. Precision for Kinect skeletal gesture retrieval considering only gesture type.

Approach Gesture Precision (%)

Variable Markov Oracle (VMO) Crouch or hide 99.9

Shoot with a pistol 90.6

Throw an object 84.6

Change weapons 98.4

Kick to attack 92.7

Put on goggles 92.2

Avg. 6 std. 93.1 6 5

Dynamic time warping (DTW)17 Avg. 82.74

Hidden Markov Model (HMM)17 Avg. 91.81

SVM with Cov3DJ (support vector

machine with covariances between

joints as features)16

Avg. 93.6

Table 3. Precision for Kinect skeletal gesture retrieval considering both type and participant.

Gesture

Participant

Total numberA B C D E

Crouch or hide 99 89.5 87.1 86.2 98.5 92 6 5.5

Shoot with a pistol 100 85 100 33.3 99.5 83.5 6 25

Throw an object 63.3 83 81 94.5 86.8 81.7 6 10

Change weapon 100 98.5 100 88.5 100 97.4 6 4.4

Kick to attack 100 90 100 51.1 95 87.2 6 18

Put on goggles 90 81.8 100 57 100 85.7 6 15

Avg. 6 std. 92 6 13 87.9 6 5.6 94.6 6 7.7 68.4 6 22.5 96.6 6 4.7 Avg. 6 std.

Table 1. Number of instances of the subset from MSRC-12 Kinect gesture dataset.

Gesture

Participant

Total numberA B C D E

Crouch or hide 20 20 21 21 20 102

Shoot with a pistol 20 10 22 9 20 81

Throw an object 9 10 10 20 22 71

Change weapon 19 20 20 20 20 99

Kick to attack 24 10 20 9 20 83

Put on goggles 10 11 12 10 20 63

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
1
5

63

sequence shown in the figure is part of a longer

sequence, in which multiple gestures sampled

from the MSRC-12 dataset were concatenated

into one longer sequence to resemble how it

would be used in a real world performance or

gaming environment. This long time series is

then projected onto its first principal compo-

nent for visualization.

The example in Figure 13 shows that the

online gesture-following algorithm can find the

correct segment in the stored gesture, matching

the input observations. For visualization pur-

poses, we omit the rest of the stored gesture

(blue line) where the other types of gestures are

stored. Also, we notice from time index evolu-

tion in Figure 13b that the gesture following is

consistent with the temporal relations of the

stored gesture (the red dashed line mostly fol-

lows the diagonal with time stretch or compres-

sion movements indicated by the nearly

vertical or horizontal lines).

We combine the aforementioned online ges-

ture-following algorithms into an interactive

dance/graphics system depicted in Figure 14. We

use VMO as the mapping interface between the

input dance movements and graphics/interac-

tion/effects rendering during a performance. We

implement VMO and the proposed algorithms

in Cþþ within the openFrameworks open

source environment (http://openframeworks.

cc). Snapshots of VMO gesture following work-

ing alongside computer-generated graphics in

openFrameworks are depicted in Figure 15. The

dance movements are captured by identifying

the infrared reflector tied on the dancer’s joints

using the Kinect camera.

We show an example of the raw depth image

along with the identified marker in Figure 16.

In Figure 15, the trajectory represents the stored

gesture (sequence of 2D points) with different

colors indicating mappings to different com-

puter-generated graphics. The bigger circle is

the input marker and the green small circle

along the trajectory is the current gesture-fol-

lowing position on the stored gesture corre-

sponding to the input marker. In this demo, the

system generates different graphics when the

Pr
oj

ec
te

d
Tr

aj
ac

to
ry

St
or

ed
 G

es
tu

re
 In

de
x

0 20

(a) (b)
40 60

Time Frame Index

Projected Gestures
Stored Gestures
Input Stream
Tracking Result

Stored Gestures
Tracking Result

Stored Gesture Index Evolution

80 100 120 0
0

20

40

60

80

100

120

20 40 60

Time Frame Index
80 100 120

Figure 13. A visualization of gesture following: (a) projected trajectory of the stored gesture (blue), input stream (green), and gesture

following result (red). (b) Time indices evolution of the gesture following result (red) compared to original gesture (blue).

Dance Movements
Renering Functionalities
- Audio & Video Playback
- Graphics
- Lights

Environment
- Projection
- Lights
- Sound System

Kinect Camera

Multiple IR
Marker Tracker

Action Graph
- VMO

Figure 14. Diagram of the proposed interactive dance/graphics system using

VMO. We use VMO as the mapping interface between the input dance

movements and graphics/interaction/effects rendering during a performance.

IE
E
E

M
u

lt
iM

e
d

ia

64

gesture following position (green circle) traver-

ses onto different segments of the stored ges-

ture, represented by different colors.

For the system proposed in this article, we

consider a scenario in which the rehearsal or

practice of a dancer is recorded and stored as

VMO. During a live performance the system

tracks the input dance movements and

matches them to the gestures stored in VMO

via Algorithms 7 and 8. For graphics/effects/

interaction rendering, the temporal mapping

between the live dance movements and the

stored gestures lets us evolve the incoming time

series by scrubbing another time series (such as a

video) that varies in time. Other details of this

interactive dance/graphics system are docu-

mented elsewhere.18

We envision extending our current prog-

ress in the study of VMO in both

theoretical and practical directions. For the the-

oretical aspect, we plan to explore the compari-

son between VMO and HMM in terms of

pattern-matching-based versus latent-model-

based sequential modeling. In comparison to

HMM, VMO relaxes the first-order Markov

model limitation of HMM to include the varia-

ble context by having suffix links, but it loses

generality in the absence of explicit emission

probability for actual observations given state

labels. Because the VMO estimation process

includes selecting a threshold to determine

the optimal model structure, we expect that

frames with the same label in VMO will have

implicitly probabilistic similarities as deter-

mined by the metric we use. We envision

discovering such underlying probabilistic

structures by relaxing HMM to its nonpara-

metric relatives, as in Hierarchical Dirichlet

Process HMM.19

We are also interested in exploring the possi-

bility of exploring how the VMO construction

algorithm might induce a metric using online

clustering. The possible induced metric should

help reveal the dynamic distribution embedded

in the VMO data structure.

For practical extensions, such as dealing

with the big data time-series problem, we are

investigating implementations of VMO in data-

bases (SQL, NoSQL, and so on) with efficient

query functionalities.20 Another line of

research is the control improvisation prob-

lem,21,22 in which human users can create new

multimedia content by either specifying navi-

gation rules for stored content using metarules

or recombining stored media content using an

input from other content. MM

Acknowledgments

Cheng-i Wang is funded by the Center for

Research in Entertainment and Learning

(CREL) at Qualcomm Institute through the

Office of Graduate Studies, University of

Pre-recorded/rehearsed
gesture stored in VMO

(a)

(b)

Figure 15. Snapshots of the openFrameworks application with embedded

VMO and gesture-following algorithms: (a) A particle emission showing the

trace of the input marker along the stored gesture trajectory; (b) grid particles

interact with the input marker.

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
1
5

65

California, San Diego. We thank Tammuz Dub-

nov and Fabi�a Serra Arrizabalaga for technical

support in developing the software needed to

fulfill this research project.

This special issue is a collaboration between

the 2014 IEEE International Symposium on

Multimedia (ISM 2014) and IEEE MultiMedia.

This article is an extended version of “Variable

Markov Oracle: A Novel Sequential Data Points

Clustering Algorithm with Application to 3D

Gesture Query-Matching,” presented at ISM

2014.

References

1. P. Esling and C. Agon, “Time-Series Data Mining,”

ACM Computing Surveys, vol. 45, no. 1, 2012, p.

12.

2. E. Unal et al., “Challenging Uncertainty in Query

by Humming Systems: A Fingerprinting

Approach,” IEEE Trans. Audio, Speech, and Lan-

guage Processing, vol. 16, no. 2, 2008, pp.

359–371.

3. A. Cont et al., “Guidage: A Fast Audio Query

Guided Assemblage,” Proc. Int’l Computer Music

Conf., 2007; https://hal.inria.fr/hal-00839071.

4. S. Dubnov et al., “Audio Oracle: A New Algorithm

for Fast Learning of Audio Structures,” Proc. Int’l

Computer Music Conf., 2007; https://hal.inria.fr/

hal-00839072/file/AudioOracle 5.pdf.

5. C.-i. Wang and S. Dubnov, “Variable Markov

Oracle: A Novel Sequential Data Points Clustering

Algorithm with Application to 3D Gesture Query-

Matching,” Proc. IEEE Int’l Symp. Multimedia (ISM),

2014, pp. 215–222.

6. A. Lefebvre and T. Lecroq, “Compror: On-Line

Lossless Data Compression with a Factor Oracle,”

Information Processing Letters, vol. 83, no. 1, 2002,

pp. 1–6.

7. F. Bevilacqua et al., “Continuous Realtime Gesture

Following and Recognition,” Gesture in Embodied

Communication and Human-Computer Interaction,

Springer, 2010, pp. 73–84.

8. C. Allauzen, M. Crochemore, and M. Raffinot,

“Factor Oracle: A New Structure for Pattern

Matching,” SOFSEM 99: Theory and Practice of

Informatics, Springer, 1999, pp. 295–310.

9. G. Assayag and S. Dubnov, “Using Factor Oracles

for Machine Improvisation,” Soft Computing, vol.

8, no. 9, 2004, pp. 604–610.

10. A. Lefebvre, T. Lecroq, and J. Alexandre, “An

Improved Algorithm for Finding Longest Repeats

with a Modified Factor Oracle,” J. Automata, Lan-

guages and Combinatorics, vol. 8, no. 4, 2003, pp.

647–657.

11. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classi-

fication, John Wiley & Sons, 2012.

12. F. Pachet and P. Roy, “Markov Constraints: Steer-

able Generation of Markov Sequences,” Con-

straints, vol. 16, no. 2, 2011, pp. 148–172.

13. S. Dubnov, G. Assayag, and A. Cont, “Audio Oracle

Analysis of Musical Information Rate,” Proc. Fifth

IEEE Int’l Conf. Semantic Computing (ICSC), 2011,

pp. 567–571.

14. M.J. Wainwright and M.I. Jordan, “Graphical Mod-

els, Exponential Families, and Variational

Inference,” Foundations and Trends in Machine

Learning, vol. 1, nos. 1-2, 2008, pp. 1–305.

15. S. Fothergill et al., “Instructing People for Training

Gestural Interactive Systems,” Proc. SIGCHI Conf.

Human Factors in Computing Systems, 2012, pp.

1737–1746.

16. M.E. Hussein et al., “Human Action Recognition

Using a Temporal Hierarchy of Covariance

Descriptors on 3D Joint Locations,” Proc. 23rd Int’l

Joint Conf. Artificial Intelligence, 2013, pp.

2466–2472.

17. M. Ram�ırez-Corona, M. Osorio-Ramos, and E.F.

Morales, “A Non-Temporal Approach for Gesture

Recognition Using Microsoft Kinect,” Progress in

Pattern Recognition, Image Analysis, Computer

Vision, and Applications, Springer, 2013, pp.

318–325.

18. T. Dubnov, Z. Seldess, and S. Dubnov, “Interactive

Projection for Aerial Dance Using Depth Sensing

Camera,” IS&T/SPIE Electronic Imaging, Int’l Soc.

Optics and Photonics, 2014; doi: .

19. Y.W. The et al., “Hierarchical Dirichlet Processes,” J.

American Statistical Assoc., vol. 101, no. 476, 2006,

pp. 1566–1581.

20. A. Charapko and C.-H. Chuan, “Indexing and

Retrieving Continuations in Musical Time Series

Fata Using Relational Databases,” Proc. IEEE Int’l

Symp. Multimedia (ISM), 2014, pp. 341–346.

Frame t – 1 Frame t

{xt–1, yt–1}

{xt, yt}

Figure 16. The green rectangles represent input identified markers on the

dancer’s ankle by processing the infrared images from the Kinect camera.

IE
E
E

M
u

lt
iM

e
d

ia

66

21. A. Donz�e et al. “Machine Improvisation with For-

mal Specifications,” Proc. 40th Int’l Computer Music

Conf. (ICMC), 2014, pp. 1277–1284.

22. C.-i. Wang and S. Dubnov, “Guided Music Synthe-

sis with Variable Markov Oracle,” Proc. 3rd Int’l

Workshop on Musical Metacreation, 10th Artificial

Intelligence and Interactive Digital Entertainment

Conf., 2014.

Cheng-i Wang is a PhD student in the Department

of Music at the University of California, San Diego.

His research interests include machine improvisa-

tion and music information retrieval. Wang received

his Master of Music in music technology from New

York University. Contact him at chw160@ucsd.edu.

Shlomo Dubnov is a professor in the Department of

Music at the University of California, San Diego. He

holds a doctorate in computer science from the

Hebrew University. He is a senior member of IEEE and

serves as a Director of the Center for Research in Enter-

tainment and Learning at UCSD’s Qualcomm Insti-

tute CALIT2. Contact him at sdubnov@ucsd.edu.

O
cto

b
e
r–D

e
ce

m
b

e
r

2
0
1
5

67

	ref1a
	ref2a
	ref3a
	ref4a
	fig2
	fig1
	fig3
	fig4
	deqn1
	fig5
	deqn2
	fig6
	deqn3
	deqn4
	deqn5
	deqn6
	deqn7
	fig7
	deqn8
	fig8
	fig9
	fig10
	fig11
	fig12
	table2
	table3
	table1
	fig13
	fig14
	fig15
	ref1
	ref2
	ref3
	ref4
	ref5
	ref6
	ref7
	ref8
	ref9
	ref10
	ref11
	ref12
	ref13
	ref14
	ref15
	ref16
	ref17
	ref18
	ref19
	ref20
	fig16
	ref21
	ref22

