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Introduction 

THE n-LOOP STRING AMPLITUDE 

Stanley Mandelstam 

Department of Physics 
University of California 

Berkeley, California 94720, U.S.A. 

In this talk I shall review some of the work of the last eighteen 

months on the derivation of an explicit perturbation series for string and 

superstring amplitudes. I shall concentrate on the light-cone approach which 

I have used personally and which, in my opinion, leads most directly to expli-

cit formulas. I shall also mention some of the work on the Polyakov approach 

and shall indicate ~oints ofcomparison between the two methods. 

The perturbationseries for the Bosonic string is now fairly well under-

stood. In fact, the· formula had almost been obtained during the previous 

incarnation of string theories, [1] but the models which were studied posses-

sed ghosts. I gave the formula for the current Bosonic string models in my 

Santa Barbara- lectures last year [2]; one point in the proof remains to be 

tightened ~p, but I believe the result is correct. Though the light-cone 

approach was used, the final formula is manifestly covariant. D'Hoker and 

Phong, (3] Belavin and Knizhnik [4] and Manin [5] have presented formulas 

based on the Polyakov approach. Their expressions are mathematically well 

defined, but an explicit formula for some of the factors in the integrands 

is not known at present. 

No explicit formula for the n-loop superstring amplitude. has been ob-

tained to date. In the light-cone approach the difficulty was due to the 



fact that the functional integral contained operators at the joining points 

of the strings. A new formulation by Berkovits [6] shows that this diffi­

culty can be avoided if one integrates over supersheets instead of ordinary 

sheets. It should now be fairly straightforward to obtain an explicit formu­

la for the n-loop amplitude and, if the external particles are vector bosons, 

the result should be manifestly covariant. 

Some of the above-mentioned results on the Polyakov Bose string have been 

extended to the superstring by D'Hoker and Phong, [7] Friedan, Martinec and 

Shenker, [8] and Nelson, Moore and Polchinski. [9] 

There are certain technical difficulties with amplitudes containing 

external fermions; as far as I am aware, there is no existing method of cal­

culation, even for tree amplitudes, that does not break the manifest transverse 

rotational S0(8) invariance down to S0(4) x S0(2). Also, all the superstring 

calculations I have mentioned use the N.S.R. formalism; the manifestly super­

symmetric formalism has not yet been formulated as a functional integration 

over supersheets, and operators at the joining point appear explicitly. The 

difficulties, hopefully only technical, with external fermions and manifest 

spacetime supersymmetry should not stand in the way of a proof of the finite­

ness of the perturbation expansion. We have given handwaving arguments for 

such finiteness; we shall not repeat them here. 

Approaches to String Perturbation Theory 

Whether one uses the light-cone or Polyakov approach, one first performs 

the Gaussian functional integral for the general perturbation term; one 

thereby obtains the formula (for the Bose string) 
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(l) 

The points Zi (l~ i~ N) represent the N external particles, and the integra-

tion is over the Riemann surface, parametrized by a complex variable Z, which 

represents the world-sheet traced out by the string. (We shall write all 

our formulae for the case of closed strings.) The factor Pi •Pj in the 

exponential is the d-vector product (even in the light-cone approach) bet~een 

the ith and jth external momenta, and the function N is the Green's function 

of the Laplacian bet~een the points Zi and Zj. 

We still have to discuss the variables v and the factor M; all recent 

work has been concerned with these factors. A Riemann surface of genus g, 

corresponding to a g-loop amplitude, is parametrized to ~ithin conformal 

equivalence by 3g-3 complex parameters if g ~ 2 (and by one complex parahleter 

if g=l; all surfac~s with g=O are conformally equivalent). This fact wrs 

originally discovered by Riemann himself, but the parameters are known as 

Teichmliller parameters, since Teichmliller initiated the recent mathematical 

work on the subject. There is no uniyersally accepted "best way" of speci-

fying the Teichmliller parameters, and the formula (1) leaves this question 

open. The measure function M depends on the choice of the v's. The only 

difference between the light-cone and Polyakov ap~roaches is in the calcula-

tion of M. 

In the light-cone interacting-string picture one treats the strings as 

an ordinary quantum-mechanical system. In Fig. 1, one cuts the plane along 

the horizontal lines and identifies points above one another on adjacent 

horizontal lines (e.g., AA' ,BB', CC'). The diagram then represents an inter-

acting closed-string system; a parametrizes the string itself,while T is 

3 
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the light-cone time. The precise process depicted in the diagram is a two-to-

three scattering process with two loops. Along each dotted line one breaks 

the diagram, displaces the string on one side by an arbitrary twisting 

angle e, and reidentifies the points. 

In terms of the string-diagram variables, the measure is simply 

(2) 

where the 7i'~ are the time co-ordinates of all joining points but one, the 

ai's are the lengths of one of the strings in each loop, and the ei's are 

the twisting angles. The factor ~~~-(d-Z)/ 2 , where 1~1 is the determinant of 

the Laplacian for the string diagram, results from the original Gaussian 

functional integral. ~is the Feynman normalization factor, while -~is an 

external-line factor which corrects for the fact that we have omitted the 

term w~th i=j in the exponent of (1). We shall not give the form of~ 

(see ref. 2 for a full discussion); it diverges when the initial and final 

times became infinite, and it cancels an infinite factor in ~~~-(d-Z)/ 2 • 

It is easily checked that the number of variables of integration is 2N+6g-6, 

corresponding to the N+3g-3 complex variables of integration in Eq. (1). 

As we shall see shortly, it is convenient to express the string-diagram 

variables in terms of a different set of variables. The measure will then 

contain the Jacobian J of the transformation as an additional factor. Since 

the "lengths" of the strings are proportional to the momentum in the + direc-

tion, the shape of the string diagram will depend on the Lorentz frame and 

none of the factors .At, ~~~-(d-2 )1 2 and J will be Lorentz invariant. The 

product is Lorentz invariant if and only if d=26. 

In the Polyakov approach, one embeds the world-sheet in d-dimensional 
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space, puts a metric on the space, and integrates the Polyakov action over 

all embeddings and metrics. The integration over embeddings is Gaussian and 

was performed by Polyakov. One is left with the integration over metrics, with 

the function-space metric [10]: 

(3) 

One then has to factor out the gauge group, which consists of two classas 

of transformations: i) Diffeomorphisms of the co-ordinate system, and ii) 

Weyl conformal transformations ogab = ocr gab' 

Any infinitesimal change in g can be decomposed into a Weyl conformal 

change and a traceless change. Most traceless changes can be obtained from 

diffeomorphisms ~a+~a+oVa, with ova singZe-vaZued, followed by Weyl trans­

formations 

(4) 

However, not all traceless changes can be obtained in this way; one must 

supplement the changes (4) by a linear space of changes ogab' of dimenstion 

3g-3, in order to obtain all traceless changes. In mathematical terms, the 

operator P1 defined by (4) has a cokernel, or its adjoint P1 t has a kernel,of 

dimanison J~3. Thus, after factoring out the orbits of the gauge group, 

one is left with a (3g-3)-dimensional integral to perform. The 3g-3 para­

meters are precisely the Teichmliller parametars. (For a fuller account see 

ref. 11.) The measure M will then be the product of the measure in 

Teichmliller space induced by the metric (3), the Faddeev-Popov determinant 

from the Weyl gauge group, and a factor 1~1-d/Z which results from the ori­

ginal Gaussian integration over the embeddings. 

It must be emphasized that the Polyakov S-matrix, unlike that obtained 



from the light-cone picture, is not obviously unitary. It is clearly neces-

sary to prove unitarity before we know that we have an acceptable theory. 

Convenient Variables for the n-loop Problem 

Now let us examine the interacting-string picture in a little more 

detail. We wish to replace the string-diagram variables by new variables 

Zi, which have the property that the functions occuring in (l) can be calcu-

lated explicitly. A canonical set of such variables makes use of the theory 

of automorphic functions [12]. On the string diagram one draws g A-c~cZes 

Ar and g B-cycles Br which have the property that Ar intersects Br once, but 

no other pairs of cycles intersect. One then cuts the diagram along the 

A-cycles and transforms it conformally onto the complex plane with holes cor-

responding to the cut cycles (Fig. 2). A B-cycle thus takes us from one 

hole to another. One identifies ·cor~esponding points z and z' on corres-

pending A-cycles by projective transformations; one for each Ar (l~r~g) 

z I = Az+B 
Cz+D 

The g transformations Tr thus correspond to the B-cycles. They and their 

(4) 

reciprocals generate an infinite group of projective transformations; we de-

note a general member of the group by Vm (l~m<=). One is only interested in 
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those groups of transformations whose fundamental region is a region exterior 

to 2g holes as in Fig. 2. Such groups are called Schottky groups. 

The transformation Tr depends only on the ratios of the constants A, B, 

C and D; one usually fixes them (to within a sign) by setting AD-BC=l. Each 

transformation thus depends on three complex parameters. The generic pro-

jective transformation can be written in the form: 

= w (5) 



\.} 

The parameter w is known as the multi?Zier~ z 1 and z2 are known as the 

invariant points. By interchanging z 1 and z2 if necessary we can ensure that 

lwl~ 1, and we shall always do so. 

Given one set of generators T1, .. Ja, one may change them in two ways 
0 

without changing the string diagram. One may subject them all to a projec­

tive transformation, i.e., one may define T~=A- 1 TrA, where A is a fixed pro-

jective transformation. One may also take a new set of A- and B-cycles; the 

corresponding transformations of the T's are the modular transformations. 

7 

Poincare and Klein made the fundamentalconjecture, which was subsequently 

proved by Koebe [12] that a con;ormal transformation from a Riemann surface 

(and~ in particular~ from a string diagram) into the complex plane in the 

manner discussed above is always ?OssioZe and is unique up to an overall pro-

jective transformation and a modular transformation. Since ea~h of the g 
. 

projective transformations has 3g para=ete~s and the arbit=ary overall pro-

jective transformation has 3 parameters, the conformal class o'f the Riemann 

surface is characterized by 3g-3 parameters, in agreement with Riemann's gener-

al result. We shall take as our Teichmliller parameters the 3g variables 

wr, zlr' Zzr• with three of the z's fixed at arbitrary values. 

Functions defined on the string diagram (or, in general, on a Riemann 

surface) must be unchanged when z is subjected to a projective transformation 

in the group. As in the theory of elliptic functions, it is of interest to 

consider multi-valued functions which have simple transformation properties 

when we traverse a cycle. In the z-plane, they must have simple transforma-

tion properties when z traverses an A-cycle or when it is subjected to a 

projective transformation in the group. One ccnstructs such functions in the . 

same way as one constructs the infinite series for the logarithm of the 

. " - .;_, 
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Jacobi a-function (or, alternatively, the infinite product for the a-function 

itself). One starts with a given function, subjects it to a transformation in 

the group, and sums over all group elements. We shall write down the series 

for the functions we require; the verification that they have the desired 

properties is not difficult. 

It is known that there exist g linearly independent functions which 

change by a constant when the variable traverses an A- or a B-cycle. The 

canonical basis for such functions is formed by the functions vr(z), where 

vr changes by 2i~crs when the variable traverses the sth A-cycle. The 

formula for vr is: 

( r) o z-VmZlr v (z) = E .(..i't 

r m z-VmZ2r 
(6) 

the superscript (r) indicating that we omit those values of m for which Vm• 

when expressed as a product of the generators Ts, has a factor Tr or T; 1 at 

its right-harid end. 

The differentials 1 
2i~ 

dvr = wr are the g single-valued holomor?hic 

differentials on the Riemann surface. For our purposes the vr's are more 

convenient than the wr's. 

When the variable traverses the sth B-cycle, vr will change by a quan-

tity which we denote be 2i~•rs' where 

1 
'rs = --2i;r 

(7) 

the superscript (r,s) indicating that we omit those Vm's which have T; 1 as 

their right-most member or T±l as their left-most member; we must also omit 
s 

the identity transformation if r=s. The matrix of the •'s is known as the 

per'iod mat'!'ix. 
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Finally the Green's function is given by the formula: 

N(z,z') = .f..n iljl(z,z') I, (Sa) 

.f..rt ¢' (z,z') = tn ¢' (z;z')-(211")-l L: 
r,s 

Re {vs(z)-v5 (z')}, (8b) 

tn ljl(z,z') = .f..rt (z-z')+! L: .f..rt {z-Vmz') (z'-Vmz). (8c) 
mri (z-Vmz)(z'-Vmz') 

It is not quite true that ~ remains unchanged when z is subjected to a pro-

jective transformation Tr; the change will be 

(9) 

where Cr and Dr are the C- and 0-parameters of Tr· The right-hand side of 

(9) does not depend on z', and as a consequence, it is not difficult to show 

that one obtains the correct result if one uses N, defined by Eq. (8), in 

Eq. (1). The argument depends on momentum conservation. 

We notice that the right-hand side of (8b) is not analytic. In fact, 

the presence of a zero mode requires us to define ~ by the equation 

(10) 

There exists no function satisfying (10) with ~=0. 

The series (6), (7) and (8c) are known to coverge absolutely in a sub-

region of the (3g-3)-dimensional space of the Schottky region. The question 

whether they converge conditionally outside this sub-region has not yet been 

answered. If not, they must be defined outside the sub-region by analytic 

continuation. In fact, if one multiplies all the wr's by a factor A, the 

series will converge as long as A is sufficiently small. For larger values 

of A the functions can be defined by a Pade approximation in the single 

variable A. 

. .. 
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Measure Factor in the Interacting-String Picture 

Now let us outline the calculation of the factor M in (l) and, in parti­

cular, of I D:l • We use the formula 

161 = Exp {Tr ln ~}. ( ll) 

The operator lit 6 is singular when p=p', p being any local co-ordinate on a 

Riemann surface: 

in 6 = "-1 IP-o' l- 2 - (12")-1 R lnlp-p' I +non-singular tarms, (12) 

where R is the scalar curvature. To regularize we evaluate in 6 at small 

values of p-p', subtract the first two terms of (12), and take the limit 

p-p'=O. We also replace the joining point by a small region of large but 

finite curvature. The regularization adds to the energy of the string a 

term proportional to its "length" (i.e., to the+ momentum), and also renor­

malizes the coupling constant. Neither of these changes is physically sig­

nificant. 

Another infinite contribution to in 6 arises from the zero mode. The 

correct prescription is to replace the zero eigenvalue by 1/2~~. where ~ 

is the area of the string diagram. 

We evaluate 161 by examining its change under an infinitesimal change of 

the metric. The effect of confo~az changes was considered several years ago 

by McKean and Singer (13]; formulas based on their work are given in Refs. 

(11] and (14]. To calculate the effect of a Teichmliller transformation, we 

shall consider a general diffeomorphism 

P. P + ov(p, p). (13) 

Notice that this change differs from that in Eq. (4) in several respects. 

We change the local co-ordinates and keep the g's constant rather than 
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vice versa, and we do not subtract out the change in the trace. More impor-

tant, we do not require the V's to be single-valued, but we allow them to 

change when the variables traverse a B-cycle. The change (13) is then suf-

ficiently general to include the Teichmliller transformations. 

Under a transformation ( l3), Tr in tJ. changes as follows: 

(14a) 

where 

ll = apov. (l4b) 

(14c) 

and M is an extra term, which we shall not specify, and which is necessary 

because of the limiting procedure used to define Tr .tn !J.. The quantity ll 

is known as the infinitesimal Beltrami differential. The function N is the 

Green's function, i.e., the reciprocal of !J.. 

We now insert the expression (8) for N into Eq. (14). We emphasize that 

we are evaluating lt:.l on the Riemann surface itself and not in the z-plane; 

the variable z simply identifies points on the Riemann surface. Let us first 

consider the summation on the right of (8c), excluding the term .tn(z-z'). 

As all the terms except in(z-z') are non-singular when z=z ', we can simply set 

z equal to z'. The trace can then be evaluated by a slight adaptation of 

a resummation procedure due to Selberg [15]. On integration we find that 

where the product is over all conjugacy classes of elements V of the 
m 

(15) 

Schottky group of projective transformations, excluding the identity trans-

formation. (All elements in the same conjugacy class have the same value 

of w.) Our remarks about the convergence of our previous summations apply 
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equally to the logarithm of (15). 

The contribution from the second term on the right of (8b) is also 

evaluated without difficulty.· The result is: 

I ; I 1-\ D.! 2 = Im 7 ~. (16) 

where \Im 1\ is the deter~inant of the imaginary part of the period matrix. 

The cont=ibution from the first term on the right of (8c), though in 

principle the most straightforward, requires the most care because of limit-

ing processes involved. One must separate p and p' (or z and z'), include 

the term M on the right of (14a), subtract the changes in the regularization 

terms on the right of (12), pass to the limit p=p', and integrate over the 

Riemann surface. We find: 

1 
121T 

(17) 

where a· is the logarithm of the dilation in the conformal transformation .from the 

z-plane, with Euclidean metric, to the Riemann surface. The integration is 

over one fundamental region of the z-plane. Eq. (17) is reminiscent of, and 

consistent with, the formula for the change of \D.\ under a conformal trans-

formation given in Ref. 11. 

On integration by parts, Eq. (17) takes the form 

1 
121T 

(18) 

where the first integral is over the curves bounding the fundamental region 

in the z-plane and over small curves surrounding the external particles. 

The integrand of the second term on the right of (18) is zero if the Riemann 

surface is flat, so that the only contributions in a string diagram are from 

the joining points. On evaluating the contributions from the joining points, as 
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well as those from the circles surrounding the external particles in the 

first term on the right of (18), we obtain the equation: 

=- - 1- !P dz(crazcr) +-1 E .tn\dd2 ~~ + 
1 

E t.n )a..-!. 
12n 24 z TI .... 

(19) 

where the integral is now only over the curves bounding the fundamental 

region, the first summation is over all joining points and the second sum-

mation over all external particles. The last contribution includes that 

from the factor ~in (2). We recall that ap/az=O at a jo~ning point. In 

Eq. (19) we have dropped constant terms from the joining points, since they 

can be absorbed in the coupling constant. · 

The other factor in the measure M, eq. (1), is the Jacobian of the trans-

formation from the string-diagram variables cr and T to the new variables z. 

As far as we can see, the Jacobian is too complicated to calculate directly, 

but we can obeain it by making use of its analytic properties. The 2N+6g-6 

variables of integration in (2) cannot be replaced by ~+)g-3 complex variables, 

so we proceed in two stages. We first transform to a new "string diagram", 

conformally equivalent to the old, where the variables ~i are regarded as 

fixed but the time intervals above and below the loops can differ. This 

means that the net twist 6 on going around the loop is complex, and we can 

replace our variables by N+2g-3 complex joining points p (=T+icr) and g complex 

twists. The Jacobian from the old to the new string variables can be ~alcu-

lated explicitly. 

The transformation from the new string variables to the variables 

Zi, wr, Zlr• Z2r (with three zr's held fixed) is analytic except for 
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isolated singularities. The Jacobian is thus the square of the modulus of 

an analytic function j, again except for isolated singularities. It is not 

too difficult to show that the first term on the right of (19), and there-

fore the whole right-hand side of this equation, is the raal part of a func-

tion which is analytic except for isolated singularities and which we denote 

by 2 ln 6- By examining all possible isolated singularities one finds that, 

apart from some simple factors, the singularities of j precisely cancel those 

of S, provided d-2=24. (The factors of 12 and 24 in the denominator of (19) 

are thus cancelled.) Furthe~ore, the product j6 is invariant under modular 

transformations; the proof of this fact is tricky and, at the moment, not 

rigorous. Since an analytic, singularity-free, modular-invariant function on 

the Teichmliller space is a constant, these properties determine the result: 

(20) 

where Za, zb and zc are the three z's which are kept fixed. The factor 

lim •l- 1, which is not the modulus of an analytic function, arises from the 

transformation from the old to the new string variables. 

Our final formula forM, Eq. (1), is thus: 

(21) 

the factors oeing given by Eqs. (15), (16) and (20). The extra factor 2-g 

correctsfor some double-counting we have performed [8], about which we 

shall not elaborate. 

One must integrate the Teichmliller parameters over one fundamental 

region of the modular group,since different such regions correspond to the 



same string-diagram configurations with different choices of the A- and B-

cycles. There is no simple formula for the change of our parameters 

wr, Zlr and Z2r under a modular transformation. The period matrices change 

by a Siegel modular transformation: 

-1 
c 1 = (AT +B)(C' +D) , 

where A, B, C and D are g x g matrices with integral entries such that 

(22) 

15 

AD-BC=DA-CB=l. The T's must be calculated from our parameters using Eq. (7); 

one must then restrict the integration region to avoid two or more period 

matrices related by (22). 

Results of the Polvakov Aoproach 

Let us now very briefly compare our results with those of D'Hoker and 

Phong [3], Belavin and Knizhnik [4] and Manin [5]. These authors all use the 

Polyakov approach. They do not make a specific choice of parametrization for 

the TeichmUller space, but they express their results in terms of one of the 

canonical metrics used by mathematicians, the Weil-Petersson metric [16]. 

As far as we are aware, there is no specific parametrization of the TeichmUller 

space which leads to a specific formula for the Weil-Petersson metric ~nd 

for the other factors in the integrand of the n-loop amplitude. 

The expression for the measure function M given by D'Hoker and Phong 

may lead to a proof of the unitarity of the Polyakov ~nsatz. Their result is: 

The first factor is the determinant of the tensor Laplacian P{ P1, where P1 

is defined by Eq. (4). It may be regarded as the contribution from the 

Faddeev-Popov ghosts. Each of the three factors in (23) depends on the metric 

on the Riemann surface; the Weil-Petersson metric is defined with respect to 
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the constant-curvature metric on the Riemann surface, which is the metric 

used by O'Hoker and Phong. However, it would be possible to define a "gen-

eralized Weil-Petersson metric". in terms of any metric on the Riemann surface, 

and the product in (23) is independent of the latter metric. In particular, 

we could use the string-diagrammetric, where all the ctirvature is concentrated 

at the joining points. With this metric, we suspect that the determinant 

lrtlpll~ could easily be related to the determinant 1~1 of the ordinary 

Laplacian, and that the Weil-Petersson metric could easily be evaluated. 

The combination should yield the measure (2), thereby proving the unitarity 

of the Polyakov ansatz. The proof would be analogous to the often used 

proof of the unitarity of the Faddeev-Popov functional-integration formalism 

in gauge theories, where one relates the formalism to an operator formalism 

in a non-covariant gauge. 

Extension to Superstrings 

As we mentioned in the introduction, both approaches to the g-loop ampli-

tude can be generalized to superso:ings, though no explicit results have been 

obtained to date. All variables in (1) become replaced by supervariables, 

the TeichmUller space becomes replaced by a super-TeichmUller space , 

automorphic functions become replaced by super-automorphic functions, and so 

on. Obtaining a manifestly covariant amplitude with external fermions may 

possibly be more than a staightforward technical problem. The deepest prob-

lem is probably to obtain an amplitude with manifest Lorentz invariance and 

manifest space-time supersymmetry. Apart from that, we see no fundamentaL 

unsolved problems in the perturbation expansion of string amplitudes. 

~-
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figure Captions 

Fig. 1. A string diagram. 

Fig. 2. The z-plane of the conformally transformed string diagram. 
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Figu-re 2 
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