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THE n-LOOP STRING AMPLITUDE

Stanley Mandelstam
Department of Physics

University of California
Berkeley, California 94720, U.S.A.

Introduction

In this talk I shall ?eview some of the work of the last eighteen
months on the derivation of an explicit perturbation series for string and
superstfing amplitudes. I shall concentrate on the light-cone approach which
I have used personally and which, in my opinion, leads most directly to expli-
cit formulas. I shall also mention some of the work on the Polyakov approach
and shall indicate points of comparison between the two methods.

The perturbationseries for the Bosonic string is now fairly well under-
stood. In fact, the  formula had almost been obtained during the previous
incarnatioﬁ of string theories, [1] but the models which were studied posses-
sed ghosts. I gave the formula for the current Bosonic string models in my
Santa Barbara. lectures last year [2]; one point in the proof remains to be
tightened up, but I believe the result is correct. Though the  light-cone
approach was used, the final formula is manifestly covariant. D'Hoker and
Phong, (3] Belavin and Knizhgik (4] and Manin [5] have presented formulas
based on the Polyakov approach. Their expressions are mathematically well
defined, but an explicit formula for some of the factors in the integrands
is not known at present.

No explicit formula for the n-loop superstring amplitude has been ob-

tained to date. In the light-cone approach the difficulty was due to the



fact that the functional integral contained operators at the joining points

pf the strings. A new formulation by Berkovits [6] shows that this diffi-

culty can be avoided if one integrates over supersheets instead of ordinary

sheets. It should now be fairly straightforward to obtain an explicit formu- v
la for the n-loop amplitude and, if the external particles are vector bosons,
the result should be manifestly covariant.

Some of the above-mentioned results on the Polyakov Bose string have been
extended to the superstring by D'Hoker and Phong, [7] Friedan, Martinec and
Shenker, [8] and Nelson, Moore and Polchinski. [9]

There are certain technical difficulties with amplitudes containing
external fermions; as far as I am aware, there is no existing method of cal-
culation, even for tree amplitudes, that does not break the manifest Zransverse
rotational SO(8) invariance down to SO(4) x SO(2). Also, all the superstring
calculations I have mentioned use the N.S.R. formalism; the manifestly super-
symmetric formalism has not yet been formulated as a functional integration
over supersheets, and operators at the joining point appear explicitly. The
difficulties, hopefully only technical, with external fermions and manifest
spacetime supersymmetry should not stand in the way of a proof of the finite-
ness of the perturbation expansion. We have given handwaving arguments for
such finiteness; we shall not repeat them here.

Approaches to String Perturbation Theory

Whether one uses the light-cone or Polyakov approach, one first performs

T

)

the Gaussian functional integral for the general perturbation term; omne

thereby obtains the formula (for the Bose string)
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The points Z; (ls is N) represent the N external particles, and the integfa—
tion is over the Riemann surface, parametrized by a complex variable Z, which
represents the world-sheet traced out by the string. We shall write zl1

our formulae for the case of closed strings.) The factor Pi'Pj in the
exponential is the d-vector product (even in the light-cone approach) between
the ith and jth external momenta, and the function N is the Green's function
of the Laplacian between the points Z; and Zj.

We still have to discuss the variables v and the factor M; all recentc
work has been concerned with these factors. A Riemann surface of genus g,
corresponding to a g-loop amplitude, is parametrized to within conformal
equivalence by 3g-3 complex parameters if g 2 2 (and by one complex paraueter
if g=1; all surfaces with g=0 are conformally equivalent). This fact wrs
originally discovered by Riemann himself, but the parameters are known és
Teichmiiller parameters, since Teichmiiller initiated the recent mathematical
work on the subject. There is no universally accepted "best way" of speci-
fying the Teichmiiller parameters, and the formula (1) leaves this question
open. The measure function M depends on the choice of the v's. The only
difference between the light-cone and Polyakov approaches is in the c;lcula—
tion of M.

In the light-cone interacting-string picture one treats the strings as
an ordinary quantum-mechanical system. In Fig. 1, one cuts the plane along
the horizontal lines and identifies points above one another on adjacent
horizontal lines (e.g., AA',BB', CC'). The diagram then represents an inter- °

acting closed-string system; O parametrizes the string itself,while t is



‘the light-cone time. The precise process depicted in the diagram is a two-to-
three scattering process with two loops. Along each dotted line one breaks
the diagram, displaces the string on one side by an arbitrary twisting

angle 8, and reidentifies the points.

In terms of the string-diagram variables, the measure is simply

./K/I(fnd’fi Mda; Mas, |a|~d-2)/2, (2)

where the ?i%?are the time co-ordinates of all joining points but one, the

ai's are the lengths of one of the strings in each loop, and the ei's are
the twisting angles. The factor lAl-(d'z)/z, where IAI is the determinant of
the Laplacian for the string diagram, results from the original Gaussian
functional integral. .#is the Feynman normalization factor, while .# is an
external-line factor which correctsvfor the fact that we have omitted the
term with i=j in the exponent of (l). We shall not give the form of .4«

(see ref. 2 for a full discussion); it diverges when the initial and final
times became infinite, and it cancels an infinite factor in |A|-(d'z)/2.

It is eésily checked that the number of variables of integration is 2N+6g-6,
corresponding to the N+3g-3 complex variables of integration in Eq. (l).

As we shall see shortly, it is convenient to express the string-diagram
variables in terms of a different set of variables. The measure will then
contain the Jacobian J of the transformation as an additional factor. Since
the "lengths" of the strings are proportional to the momentum in the + direc-
tion, the shape of the string diagram will depend on the Lorentz frame and
none of the factors .4, |A|"(d'2)/2 and J will be Lorentz invariant. The

product is Lorentz invariant if and only if d=26.

In the Polyakov approach, one embeds the world-sheet in d-dimensional

Y
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space, puts a metric on the space, and integrates the Polyakov action over
all embeddings and metrics. The integration over embeddings is Gaussian and
was performed by Polyakov. One is left with the integration over metrics, with

the function-space metric [10}:

2 - 2 R
ldgabl = é d<¢ gigacgbd 08.158.4 (3)

One then has to factor out the gauge group, which consists of two classes
of transformations: i) Diffeomorphisms of the co-ordinate system, and ii)
Weyl conformal transformations 8g_, = 50 8.1

Any infinitesimal change in g can be decomposed into a Weyl conformal
change and a traceless change. Most traceless changes can be obtained from
diffeomorphisms §2+£3+8V3, with 6V? single-valued, followed by Weyl trans-

formations
8gap = [B1(8V) ] = vadvb+vb5va-(vcsv°)gab. (4)

ﬁowever, not all traceless changes can be obtained in this way; one must
supplement the changes (4) by a linear space of changes-dgab, of dimenstion
3g-3, in order to obtain all traceless changes. In mathematical terms, the
operator P, defined by (4) has a cokernel, or its adjoint Plf has a kernel, of
dimenison Jg~3. Thus, after factoring out the orbits of the gauge group,

one is left with a (3g-3)-dimensional integral to perform. The 3g-3 para-
meters are precisely the Teichmiiller parameters. (For a fuller account see
ref. ll1.) The measure M will then be the product of the measure in
Teichmiller space induced by the metric (3), the Faddeev-Popov determinant
from the Weyl gauge group, and a factor ]Al_d/z which results from the ori-

ginal Gaussian integration over the embeddings.

It must be emphasized that the Polyakov S-matrix, unlike that obtained



from the light-cone picture, is not obviously unitary. It is clearly neces-
sary to prove unitarity before we know that we have an acceptable theory.

Convenient Variables for the n—lbogﬁProblem

Now let us examine the interacting-string picture in a little more
detail. We wish to replace the string-diagram variables by new variables

Z which have the property that the functions occuring in (l) can be calcu-

i’
lated explicitly. A canonical set of such variables makes use of the theory

of automorpric Functions [l2]. On the string diagram one draws g A-cycles

=]

Ar and g 8-cycles Br which have the property that A, intersects Br once, but

no other pairs of cycles intersect. One then cuts the diagram along the
A-cycles and transforms it conformally onto the complex plane with holes cor-
responding to the cut cycles (Fig. 2). A B-cycle thus takes us from one
hole to another. One identifies 'corvesponding points z and z' on corres-

ponding A-cycles by projective transformations; one for each A_ (lsrsg)

T

Az+B
1 T Cz+D

(4)

The g transformations T, thus carrespond to the B-cycles. They and.their
reciprocals generate an infinite group of projective transformations; we de-
note a general member of the group by Vg (lsm<=). One is only interested in
those groups of transformations whose fundamental region is a region exterior
to 2g holes as in Fig. 2. Such groups are called Schottky groups.

The transformation T, depends only on the ratios of the constants A, B,
C and D; one usually fixes them (to within a sign) by setting AD-BC=l. Each
transformation thus depends on three complex parameters. The generic pro-

jective transformation can be written in the form:

z'-z; z-2
7 =W (3)
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The parameter w is known as the multiplier, z, and z, are known as the
invariant points. By interchanging z; and z, if necessary we can ensure that
|wls 1, and we shall always do so.

Given one set of generators T, ...I,, one may change them in two ways

g’
without changing the string diagram. One may subject them all to a projec-
tive transformation, i.2., one mav define Té=A-lTrA, where A is a fixed pro-
jective transformation. One may also take a new set of A- and B-cycles; the
corresponding transformations of the T's are the modular transformations.
Poincaré and Klein made the fundamental conjecture, which was subsequently
proved by Koebe [12] that a conformal itransformation from a Riemann surface
(and, in particular, from a string diagram) into the complex plane in the

manner discussed above is always possible and is unique up to an overall pro-

Jective transformation and a modular transformation. Since each of the g

projective transformations has 3g paramecters and the arbitrary overall pro-

jective transformation has 3 parameters, the conformal class of the Riemann

surface is characterized by 3g-3 parameters, in agreement with Riemann's gener-
al result. We shall take as our Teichmiiller parameters the 3g vﬁriables
Wes Z1ps Zps with three of the z's fixed at arbitrary values.

Functions defined on the string diagram (or, in general, on & Riemann
surface) must be unchanged when z is subjected to a projective transformation
in the group. As in the theory of elliptic functions, it is of interest to
consider multi-valued functions which have simple transformation properties
when we traverse a cycle. 1In the z-plane, they must have simple transforma-
tion properties when z traverses an A-cycle or when it is subjected to a

projective transformation in the group. One ccnstructs such functions in the .

same way as one constructs the infinite series for the logarithm of the



Jacobi 8=-function (or, alternatively, the infinite product for the 8-function
itself). One starts with a given function, subjects it to a transformation in
the group, and sums over all group elements. We shall write down the series
for the functions we require; the verification that they have the desired
properties is not difficule.

It is known that there exist g linearly independent functions which
change by a constant when the variable traverses an A- or a B-cycle. The

canonical basis for such functions is formed by the functions vr(z), where

v, changes by Ziﬂérs when the variable traverses the sth A=-cycle. The
formula for v, is:
v (z) = £() gn 2Vmile (6)
T m

z2=-VmZ2r

the superscfipt (r) indicating that we omit those values of m for which Vg,
when expressed as a product of the generators Ty, has a factor T, or T;l at
its right=<hand end.

The differentials 3%; dvy = w, are the g single-valued holomorphic
differentials on the Riemann surface. For our purposes the v 's are more
convenient than the w;'s.

When the variable traverses the sth B-cycle, vy will change by a quan-

tity wnich we denote be 2iwrr where

s’

¢ (”S)zn (215-Vqz1r) (225-V22r) &+ Sps it wel, (7)

(z15=Vmz2e) (225-Vp2iy)

Trs

g~

L
2iw

the superscript (r,s) indicating that we omit those Vg's which have T ' as

e
r
their right-most member or T;l as their left-most member; we must also omit
the identity transformation if r=s. The matrix of the t's is known as the

period matriz.
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Finally the Green's function is given by the formula:

N(z,z') = Ln |8(z,2"3], (8a)

en o' (z,2") = Ln ' (z;2")-(2m) "} Z, Re (v (2)=ve (2"} (In D7
Re {vg(z)-vg(z")}, (8%)

2 ¢(z,2") = (z=2)+1 Z gn (2-Vm2') (2'-Vn2), (8¢c)

m#L (z=Vgz) (2'=Vpz')
It is not quite true that N remains unchanged when z is subjected to a pro-

jective transformation T,; the change will be
8p,rz = = Ln|Crz+D|, (9)

where C, and D, are the C- and D-parameters of T,. The rignht-hand side of
(9) does not depend on z', and as a consequence, it is not difficult to show
that one obtains the correct result if one uses N, defined by Eq. (8), in
Eq. (1). The argument depends on momentum conservation.

We notice that the right-hand side of (8b) is not analytic. In fact,

the presence of a zero mode requires us to define N by the equation
8,N = - 2182(z=2"') + §(2") A (10)

There exists no function‘satisfying (10) with $=0.

The series (6), (7) and (8c¢c) are known to coverge absolutely in a sub-
region of the (3g-3)-dimensional space of the Schottky region. The question
whether they converge conditionally outside this sub-~region has not yet been
answered. If not, they must be defined outside the sub-region by analytic
continuation. In fact, if one multiplies all the wr's by a factor A, the
seriesvwill converge as long as A is sufficiently small. For larger values
of A the functions can be defined by a Padé approximation in the single

variable A.
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Measure Factor in the Interacting-String Picture

Now let us outline the calculation of the factor M in (1) and, in parti-

cular, of IAI. We use the formula
ja| = Exp {Tr &n 2}. (11)

The operator Zit & is singular when p=p', 0 being any local co-ordinate on a

Riemann surface:

n A = w‘llp-p'l‘z - (123)'1 R Knlp-p'! + non-singular terms, (12)
where R is the scalar curvature. To regularize we evaluate £n A at small
values of p-p', subtract the first two terms of (l2), and take the limit
p=0'=0., We also replace the joining point by a small region of large but
finite curvature. The regularization adds to the energy of the string a
term proportional to its "length" (i.e., to the + momentum), and also renor-
malizes the coupling constant. Neither of these changes is éhysically sig-
nificant. | |

Another infinite contribution to £n A arises from the zero mode. The
correct prescription is to replace the zero eigenvalue by /27, where
is the area of the string diagram.

We evaluate lA| by examining its change under an infinitesimal change of
the metric. The effect of conformal changes was considered several years ago
by McKean and Singer [13]; formulas based on their work are given in Refs.
{11] and [14]. To calculate the effect of a Teichmiiller transformation, we

shall consider a general diffeomorphism

p +p + &V(p, B). (13)

Notice that this change differs from that in Eq. (4) in several respects.

We change the local co-ordinates and keep the g's constant rather than
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vice versa, and we do not subtract out the change in the trace. More impor-
tant, we do 1ot require the V's to be single-valued, but we allow them to
change when the variables traverse a B-cycle. The change (13) is then suf-
ficiently general to include the Teichmiiller transformations.

Under atransformation (13), Tr &n A changes as follows:

§(Tr &n &) = Tr {So(u 3p M)+ BE(E S5N)  +2(8¢) AN} + M, (l4a)
where

u = 365\7, (14b)

28¢ = 3,8V + 35587, (léc)

and M is an extra term, which we shall not specify, and which is necessary
because of the limiting procedure used to define Tr £n A. The quantity u
is known as the infinitesimal Beltrami differential. The function N is the
Green's function, i.e., the reciprocal of A. |

We now insert the expression (8) for N into Eq. (l4). We emphasize that
we are evaluating IAl on the Riemann surface itseif and not in the z-plane;
the variable z simply identifies points on the Riemann surface. Let us first
consider the summation on the right of (8c), excluding the term &n(z-z').
As all the terms except {n(z-z') are non-singular when z=z', we can simply set
z equal to z'. The trace can then be evaluated by a slight adaptation of

a resummation procedure due to Selberg [15]. On integration we find that

lafy = T 11wyl (1)

where the product is over all conjugacy classes of elements v, of the
Schottky group of projective transformations, excluding the identity trans-
formation. (All elements in the same conjugacy class have the same value

of w.) Our remarks about the convergence of our previous summations apply
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equally to the logarithm of (l5).

The contribution from the second term on the right of (8b) is also
evaluated without difficulty. The result is:
-t

lai, = |Ia < (16)

where |Im tl is the determinant of the imaginary part of the period matrix.

The contribution from the first term on the right of (8c), though in
principle the most straignhtforward, requires the most care because of limit-
ing processes involved. One must separate p and p' (or z and z'), include
the term M on the right of (l4a), subtract the changes in the regularization
terms on the right of (12), pass to the limit p=p', and integrate over the
Riemann surface. We find:

1

£n|A|3 = - m

fd?%z 3,099, (7

where o is the logariﬁhp:of:the ¢iiation in the conformal tféhé@hfﬁétiéﬁmffbm the
z-plane, with Euclidean metriec, to the Riemann surface. The integracion is

over one fundamental region of the z-plane. Eq. (l7) is reminiscent of, and
consistent with, the formula for the change of IAl under a conformal trans-
formation given in Ref. ll.

On integration by parts, Eq. (17) takes the form

nfaly = - 127

1 T _

e $dz (03,0) + 177 £d2z(03,339), (18)
where the first integral is over the curves bounding the fundamental region
in the z-plane and over small curves surrounding the external particles.

The integrand of the second term on the right of (18) is zero if the Riemann

surface is flat, so that the only contributions in a string diagram are from

the joining points. On evaluating the contributions from the joining points, as
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well as those from the circles surrounding the external particles in the
first term on the right of (18), we obtain the equation:

+ Lz i lasl,

Zn[A|3 - i ==l g dz(0d o) +-L L Ln 5 aq!

d-2 12w r4 24

dzo
dz?

(19)
where the integral is now only over the curves bounding the fundamental
region, the first summation is over all joining points and the second sum-
mation over all extermal particles. The last contribution includes that
from the factor «# in (2). We recall that 30/52z=0 at a joining point. 1In
Eq. (19) we have dropped constant terms from the joining points, since they
can be absorbed in the coupling constant.

The other factor in the measure M, eq. (1), is the-Jacobian of the trans-
formation from the string-diagram variables o and T to the new variables z.
As far as we can see, the Jacobian is too complicated to calculate directly,
but we can obtain it by making use of its analytic properties. The 2N+6g-6
variables of integration in (2) cannot be replaced by N+3g-3 complex variables,
so we proceed in two stages. We first transform to a new 'string diagram”,
conformally equivalent to the old, where the variables oj are regarded as
fixed but the time intervals above and below the loops can differ. This
means that the net twist 6§ on going around the loop is complex, and we can
replace our variables by N+2g-3 complex joining points p (=t+ic) and g complex
twists. The Jacobian from thé 0ld to the new string variables can be calcu-
lated explicitly.

The transformation from the new string variables to the vadriables

i, Wy, Z1p, 22r (with three z.'s held fixed) is analytic except for



14

isolated singularities. The Jacobian is thus the square of the modulus of
an analytic function j, again except for isolated singularities. It is not
too difficult to show that the first term on the right of (19), and there-~
fore the whole right-hand side of this equation, is the rezl part of a func- »
tion which is analytic except for isolated singularities and which we denote
by 2 £n §. By examining all possible isolated singularities one finds that,
apart from some simple factors, the singularities of j precisely cancel those
of 4, provided d-2=24. (The factors of 12 and 2% in the denominator of (19)
are thus cancelled.) Furthermore, the product f§ is invariant under modular
transformations; the proof of this fact is tricky and, at the moment, not
rigorous. Since an analytic, singularity-free, modular-invariant function on
the Teichmiiller space is a constant, these properties determine the result:

(d-2)/2

- - 2
It = k3|2 22278 |1m |7} (za-2p) (2p-2e) (ze=2a) |

3
=4 :
T lve(zremz20) |7 T eyl (20)
T
where z5, 2y and z. are the three z's which are kept fixed. The factor
|Im rl-l, which is not the modulus of an analytic function, arises from the
transformation from the old to the new string variables.

Our final formula for M, Eq. (l), is thus:
M= 278 {IAillAlz}-lz I, (21)

the factors being given by Egqs. (15), (l6) and (20). The extra factor 278

corrects for some double-counting we have performed [8], about which we

shall not elaborate. v
One must integrate the Teichmiiller parameters over one fundamental

region of the modular group,since different such regions correspond to the
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same string-diagram configurations with different choices of the A- and B-
cvcles. There is no simple formula for the change of our parameters

Wy, 2]y and zp, under a modular transformation. The period matrices change
by a Siegel modular transformation:

' = (AT +B)(Ct + D)'l, (22)

where A, B, C and D are g x g matrices with integral entries such that
AD-BC=DA-CB=1. The t's must be calculated from our parameters using Eq. (7);
one must then restrict the integration region to avoid two or more period
matrices related by (22).

Results of the Polvakov Approach

Let us now very briefly compare our results with those of D'Hoker and
Phong {3], Belavin and Knizhnik [4] and Manin [5]. These authors all use the
Polyakov approach. They do not make a specific choice of parametrization for
the Teichmiiller space, but they express their results in terms of one of the
canonical metrics used by mathematicians, the Weil-Petersson metric [l6].
As far as we are aware, there is no specific parametrization of the Teichmiiller
space which leads to a specific formula for the Weil-Petersson metric and
for the other factors in the integrand of the n-loop amplitude.

The expression for the measure function M given by D'Hoker and Phong

may lead to a proof of the unitarity of the Polyakov ansatz. Their result is:
M= [pli"plli la|'l3 d(Weil-Petersson). (23)

The first factor is the determinant of the tensor Laplacian Pf-Pl, where P)
is defined by Eq. (4). It may be regarded as the contribution from the
Faddeev-Popov ghosts. Each of the three factors in (23) depends on the metric

on the Riemann surface; the Weil-Petersson metric is defined with respect to
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the constant-curvature metric on the Riemann surface, which is the metric
used by D'Hoker and Phong. However, it would be possible to define a 'gen-
eralized Weil-Petersson metric'" in terms of any metric on the Riemann surface,
and thé product in (23) is independent of the latter metric. In particular,
we could use the string-diagrammetric, whers all the curvature is concentrated
at the joining points. With this metric, we suspect that the determinant
|P?1P1|é could easily be related to the determinant [A| of the ordinary
Laplacian, and that the Weil-Petersson metric could easily be evaluated.

The combination should yield the measure (2), thereby proving the unitarity
of the Polvakov ansatz. The proof would be analogous to the often used

proof of the unitarity of the Faddeev-Popov functional-integration formalism
in gauge theories, where one relates the formalism to an operator formalism
in a non-covariant gauge.

Extension to Superstrings

As we mentioned in the introduction, both approaches to the g-loop ampli-
tude can be generalized to superstrings, though no explicit results have been
obtained to date. All variables in (1) become replaced by super&ariables,
the Teichmiiller space becomes replaced by a super-Teichmiiller space,
automorphic functions become replaced by super-automorphic functions, and so
on. Obtaining a manifestly covariant amplitude with external fermions may
possibly be more than a staightforward technical problem. The deepest prob-
lem is probably to obtain an amplitude with manifest Lorentz invariance and
manifest space-time supersymmetry. Apart f;om that, we see no fundamental

unsolved problems in the perturbation expansion of string amplitudes.
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Figure Captions

Fig. 1. A string diagram.

Fig. 2. The z-plane of the

conformally transformed string diagram.
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