
Lawrence Berkeley National Laboratory
LBL Publications

Title

Genome-Scale 13C Fluxomics Modeling for Metabolic Engineering of
Saccharomyces cerevisiae

Permalink

https://escholarship.org/uc/item/7f40s6vv

Authors

Ando, David
García Martín, Héctor

Publication Date

2019

DOI

10.1007/978-1-4939-8757-3_19

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7f40s6vv
https://escholarship.org
http://www.cdlib.org/

Chapter 19

Genome-Scale 13C Fluxomics Modeling for Metabolic
Engineering of Saccharomyces cerevisiae

David Ando and Héctor Garcı́a Martı́n

Abstract

Synthetic biology is a rapidly developing field that pursues the application of engineering principles and
development approaches to biological engineering. Synthetic biology is poised to change the way biology is
practiced, and has important practical applications: for example, building genetically engineered organisms
to produce biofuels, medicines, and other chemicals. Traditionally, synthetic biology has focused on
manipulating a few genes (e.g., in a single pathway or genetic circuit), but its combination with systems
biology holds the promise of creating new cellular architectures and constructing complex biological
systems from the ground up. Enabling this merge of synthetic and systems biology will require greater
predictive capability for modeling the behavior of cellular systems, and more comprehensive data sets for
building and calibrating these models. The so-called “-omics” data sets can now be generated via high
throughput techniques in the form of genomic, proteomic, transcriptomic, and metabolomic information
on the engineered biological system. Of particular interest with respect to the engineering of microbes
capable of producing biofuels and other chemicals economically and at scale are metabolomic datasets, and
their insights into intracellular metabolic fluxes. Metabolic fluxes provide a rapid and easy to understand
picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing
metabolic flux analysis and modeling using the open source JBEI Quantitative Metabolic Modeling
(jQMM) library. This library allows the user to transform metabolomics data in the form of isotope labeling
data from a 13C labeling experiment into a determination of cellular fluxes that can be used to develop
genetic engineering strategies for metabolic engineering.
The jQMM library presents a complete toolbox for performing a range of different tasks of interest in

metabolic engineering. Various different types of flux analysis and modeling can be performed such as flux
balance analysis, 13C metabolic flux analysis, and two-scale 13C metabolic flux analysis (2S-13C MFA).
2S-13C MFA is a novel method that determines genome-scale fluxes without the need of every single
carbon transition in the metabolic network. In addition to several other capabilities, the jQMM library can
make model based predictions for how various genetic engineering strategies can be incorporated toward
bioengineering goals: it can predict the effects of reaction knockouts on metabolism using both the MoMA
and ROOM methodologies. In this chapter, we will illustrate the use of the jQMM library through a step-
by-step demonstration of flux determination and knockout prediction in a complex eukaryotic model
organism: Saccharomyces cerevisiae (S. cerevisiae). Included with this chapter is a digital Jupyter Notebook
file that provides a computable appendix showing a self-contained example of jQMM usage, which can be
changed to fit the user’s specific needs. As an open source software project, users can modify and extend the

Edward E.K. Baidoo (ed.), Microbial Metabolomics: Methods and Protocols, Methods in Molecular Biology, vol. 1859,
https://doi.org/10.1007/978-1-4939-8757-3_19, © Springer Science+Business Media, LLC, part of Springer Nature 2019

Electronic supplementary material:The online version of this chapter (https://doi.org/10.1007/978-1-4939-
8757-3_19) contains supplementary material, which is available to authorized users.

317

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-8757-3_19&domain=pdf
https://doi.org/10.1007/978-1-4939-8757-3_19
https://doi.org/10.1007/978-1-4939-8757-3_19
https://doi.org/10.1007/978-1-4939-8757-3_19

code base to make improvements at will, allowing them to share their development work and contribute
back to the jQMM modeling community.

Key words Flux analysis, Two-scale 13C metabolic flux analysis, -Omics data, Predictive biology,
Engineering biology

1 Introduction

The ability to genetically engineer and modify an organism’s DNA
has radically changed the nature of biology over the last few dec-
ades. Synthetic biology is an emerging field which applies genetic
engineering techniques toward the systematic design of biological
organisms toward specific design and engineering goals [1] using
traditional engineering principles such as the design–build–test–le-
arn (DBTL) cycle [2]. Initial efforts in the realm of repurposing
biological systems toward the production of biofuels and other
chemicals using synthetic and systems biology have succeeded in
producing a number of target molecules, although typically at low
titers of μg/L to mg/L [3]. However, only the biological produc-
tion of a few compounds, such as 1,3-propanediol [4], 1–4-buta-
nediol [5], and artemisinin [6], has been produced at high titers
and at a commercial scale. This relative scarcity of commercially
successful examples showcases the difficulties that the synthetic
biology field still faces, among them a lack of predictive tools and
models to guide the bioengineering process [7]. Improving the
yield, titer, and productivity of engineered bioprocesses to enable
commercialization requires detailed manipulation of many pro-
cesses including microbial physiology, stress response, and metabo-
lism. This chapter focuses exclusively on the particular field of
metabolic engineering, and will show how to use metabolomics
data to calculate how carbon and energy flow through the cell,
which is an effective piece of information to optimize [8] biopro-
duct formation [3].

The study of metabolic fluxes is of particular interest for engi-
neering microbes that can produce biofuels and other chemicals as
fluxes provide a mechanistic understanding for how carbon and
energy flow throughout the cell. While often a heuristic and non-
systematic approach is taken toward designing and genetically engi-
neering new organisms [3], metabolic fluxes offer the potential for
adding a powerful predictive capability to synthetic biology. Meta-
bolic fluxes can be readily transformed into actionable predictions
for improving bioproduct formation via the use of metabolic mod-
eling [8]. Metabolic models include the stoichiometry of an organ-
ism’s metabolic network and, using a variety of mathematical
methods (e.g., COBRA [9]), can predict how fluxes will change
through modifications of the metabolic reaction network arising
from specific genetic engineering strategies.

318 David Ando and Héctor Garcı́a Martı́n

The DBTL cycle is one of the common practices of engineering
transplanted into synthetic biology. This cycle starts with the design
(D) of a biological system in the form of a best guess, given initial
data and biological understanding, on how to achieve a desired
particular outcome (e.g., fuel production at a given yield). This
biological design is then built (B) in the next phase of the cycle from
DNA parts and an appropriate microbial chassis using the tools of
synthetic biology. The next phase involves testing (T) whether the
biological system performs as desired in the original design using a
variety of assays (e.g., production measurement or/and omics
profiling). Given the complex nature of biological systems, it is
extremely unlikely that the first design would behave as desired,
so further attempts will most likely be needed to meet the desired
specification. It would be desirable to use a validated predictive
model based on data generated in previous rounds to systematically
converge toward engineering goals more quickly. This task is
referred to as the learn (L) phase of the DBLTcycle and is, arguably,
the hardest and least supported step in current metabolic engineer-
ing practice [2]. However, given recent increasingly available high-
throughput workflows for data generation, there is an opportunity
to use these copious amounts of data to validate and create models
which can provide actionable items for metabolic engineers: that is,
suggestions that can be acted upon with the available synthetic
biology tools (e.g., to change a particular gene’s ribozyme binding
site (RBS) or knock out a particular gene in order to reroute
metabolic fluxes).

In this chapter we will show how to use metabolomic data
obtained from 13C labeling experiments to generate actionable
items to increase ethanol production in S. cerevisiae. We will dem-
onstrate how to use the Joint BioEnergy Institute (JBEI) Quanti-
tative Metabolic Modeling library (jQMM) [10] to calculate
cellular fluxes and make predictions. The jQMM library is currently
capable of measuring and predicting internal metabolic fluxes using
a variety of techniques: 13Cmetabolic flux analysis (13CMFA) [11],
flux balance analysis (FBA) [9], and two-scale 13C metabolic flux
analysis (2S-13C MFA) [12]. First, we will provide a brief back-
ground on metabolomics and more specifically 13C labeling experi-
ments, which consist of cellular cultures in which the feed source
(e.g., glucose) is labeled with carbon atoms that have an extra
neutron (i.e., carbon isotopes) at selected and specific positions.
We will then succinctly describe how tomeasure the ensuing carbon
isotope labeling in the metabolites of the studied. Next, we will
describe in detail how to use the labeling data from different
metabolites in the cell to determine the cell’s internal metabolic
fluxes through a technique called two-scale 13C metabolic flux
analysis (2S-13C MFA). 2S-13C MFA is a novel technique which
introduces the capability to use experimental 13C labeling data to
constrain comprehensive genome-scale models (rather than with

Metabolic Modeling with Saccharomyces cerevisiae 319

small models of central metabolism as done with traditional 13C
MFA) by taking into account the system-wide balances of metabo-
lites [8]. This is possible by assuming that flux flows from core to
peripheral metabolism and does not flow back. This assumption
stems from the bow tie structure of cellular metabolism [2], and is
further justified by the fact that traditional 13C MFA, using only
core metabolism models, can convincingly explain labeling patterns
for amino acids and intracellular metabolites for model organisms
[13–16]. We then perform an External Labeling Variability Analysis
(ELVA), a self-consistency test of this modeling approach which
gauges the effect of the ignored noncore reactions [12]. ELVA
finds the maximum impact that the unknown inflow metabolite
labeling can have on the measured labeling pattern, and provides
evidence of biophysical consistency of the calculated metabolic
fluxes. Finally, we will show how to use the COBRA (Constraint
Based Reconstruction and Analysis) [17] methods of MoMA (Min-
imization of Metabolic Adjustment) [18] and ROOM (Regulatory
On/Off Minimization) [19] to predict, based on the measured flux
profiles, which gene knock outs will increase acetate production in
S. cerevisiae.

2 Materials

The general workflow for determining and visualizing metabolic
fluxes of cellular systems is shown in Fig. 1. First, a microbial
culture is grown with 13C labeled glucose feed. Next, mass spec-
troscopy is used for the analysis of the distribution of 13C in
metabolites extracted from cell culture to obtain the Mass Distri-
butions Vectors (MDVs) [20] for each measured metabolite, which
give the relative frequency of isotopologs. Each isotopolog of a
metabolite has a different number of carbons with an extra neutron,
and each isotopolog can exhibit the heavy carbon(s) substituting
any of the carbon(s) located within the metabolite. For example, a
metabolite with five carbon atoms could have five different isoto-
pologs. The different labeling patterns for the measured metabo-
lites ultimately provides enough information to determine the
internal flux profile [12] via knowledge of how reactions in the
metabolic network rearrange carbon atoms within metabolites
(so called carbon transitions). MDVs then need to be then format-
ted for input into the jQMM, so that metabolic fluxes can be
calculated at the genome scale using the 2S-13C methodology.
For genome scale models, there are thousands of reactions, so we
recommend that fluxes be visualized andmore easily understood via
a plotting environment called “Arrowland” which is located at the
following website: http://public-arrowland.jbei.org. Fluxes can
also be more simply plotted within the jQMM.

320 David Ando and Héctor Garcı́a Martı́n

http://public-arrowland.jbei.org

2.1 Computational

Requirements

To calculate fluxes using the jQMM, a desktop computer or server
system that is capable of running heavy computational loads for
extended periods of time is necessary. The more available cores/
CPUs in the system the better, as calculations within the jQMM
library often take many hours to days (for a desktop computer),
although the library is parallelized and can leverage additional
cores/CPUs to reduce computation time. Windows, Mac, and
Linux operating systems are all compatible with running python
code, which the jQMM is written in. Error-correcting code RAM
(ECC RAM) reduces incorrect memory read and write operations
to system RAM and is recommended to reduce the probability of
faulty calculations over lengthy computations due to memory
access errors. Xeon processors from Intel, for example, are specially
designed for long continuous computations at high CPU load,
unlike the consumer series of desktop processors sold by Intel
such as the i7 and i5 series (circa 2016), and therefore we also
recommend the use of Xeon like processors.

2S-13C MFA computations require the following:

Culture grown with 13 C
labeled glucose

Mass Spec analysis of
metabolite mass

distributions vectors
(MDVs)

MDVs are formatted for
input into the jQMM

2S- 13 C Metabolic Fluxes
determined at genome scale

Fluxes plotted in the jQMM
or Arrowland

Fig. 1 Overview of the workflow for 13C two-scale metabolic flux analysis. The
test phase of the workflow is in blue while the learn phase steps are in light red

Metabolic Modeling with Saccharomyces cerevisiae 321

1. At least 32 GB of RAM and 500 GB of free disk space.

2. Ownership of both the GAMS and CONOPT solver licenses.

3. Python version 2.7 installed and configured.

2.2 Software

Installation

and Configuration

Use of the jQMM requires installation of accessory libraries (such as
numpy, as described below), which can be done in two different
ways: the traditional way, which includes a self-installation on the
hardware and operating system at hand, or via the use of a pre-
configured and preinstalled Docker container (http://www.docker.
com). We recommend using our preconfigured Docker container
for use of the jQMM as the flux modeling environment will be
immediately usable once a GAMS and CONOPT license are pur-
chased. However, for expert users or those who wish to use a
custom installation, a self-installation is readily achieved as follows.

2.2.1 Self-Installation First install the following jQMM dependencies to the Python 2.7
environment:

1. libSBML: available at http://sbml.org/Software/libSBML.

2. matplotlib: available at http://matplotlib.org/users/installing.
html.

3. numpy: available at http://www.scipy.org/scipylib/download.
html.

4. jupyter: available at http://jupyter.org/.

For self-installation see Note 1.

2.2.2 Preconfigured

and Preinstalled jQMM

Library

Docker (https://docs.docker.com/) is a technology that is based
on Linux containers that allows for the building, running, testing,
and deploying applications such as the jQMM library into a com-
plete file system that contains everything it needs to run: code,
runtime, system tools, system libraries, and supporting data files.
This guarantees that it will always run correctly and in the same way,
regardless of the system environment it is running in. The jQMM
docker container format is standardized and can be run on virtually
any cloud computing service such as AWS (Amazon Web Services),
Google Cloud Platform, Microsoft Azure, etc. Additionally, the
jQMM Docker container can be conveniently run on a personal
computer running either Microsoft Windows or the Mac operating
system, although we discourage this practice for anything other
than training purposes given how slowly the jQMM will run on
personal computers. For further information on web-based plat-
forms please see Note 2.

The prebuilt jQMM docker container, which is available for
download at https://github.com/JBEI/jqmm, has all of the soft-
ware needed to run the jQMM library preinstalled and preconfi-
gured to work out of the box. The GAMS and CONOPT solvers

322 David Ando and Héctor Garcı́a Martı́n

http://www.docker.com
http://www.docker.com
http://sbml.org/Software/libSBML
http://matplotlib.org/users/installing.html
http://matplotlib.org/users/installing.html
http://www.scipy.org/scipylib/download.html
http://www.scipy.org/scipylib/download.html
http://jupyter.org/
https://docs.docker.com/
https://github.com/JBEI/jqmm

(http://www.gams.com/, http://www.conopt.com/), are
required to do flux analysis, but their usage within the Docker
container will require purchase of GAMS and CONOPT licenses
separately. Once these licenses are included with the GAMS and
CONOPT solver installations the jQMM docker container will be
fully functional.

2.3 13C Labeling

Experiments and Mass

Spectrometry Data

Analysis

The initial step for any 13C based metabolic flux experiment is
performing a 13C labeling experiment with the organism of inter-
est. We will only give a brief description here, the reader can refer to
previously published protocols for more information [21, 22]. Cul-
tures should use minimal media to avoid nonlabeled carbon
sources, and can be grown using different types of labeling for the
feed (see Note 3). A common choice is to use 20% U-13C glucose
(universal labeling of carbon atoms) and 80% 1-13C glucose (first
carbon atom only is labeled) (for example see Note 4). Briefly, we
recommend that culture samples are prepared for measurement on
an LC-MS system by a rapid quenching step to halt cellular metab-
olism immediately after removing an aliquot of cells from culture,
which is then followed by extraction of intracellular metabolites and
LCMS sample preparation [21, 22].

The quantification of relative cellular metabolite isotopolog
concentration, consisting of MDVs for metabolites in cellular
metabolism (see Fig. 2 for an example), is done by determining
the relative concentration of each metabolite’s isotopologs via mass
spectrometry. Once chromatograms from a mass spectrometry
instrument have been analyzed and integrated such that the relative
frequency of each metabolite’s mass distribution has been deter-
mined, these data need to be prepared and formatted for input into
the jQMM library so that metabolic fluxes can be determined.

2.4 Input Data

Preparation

2.4.1 13C Labeling Data

Once the measured MDVs have been determined and normalized
such that their sum is equal to one for each metabolite, they have to
be entered into a text document with the following format so that
the data can be read by the jQMM:

Amino acid Mass distribution

m0 m1 m2 m3 m4 m5 m6 m7 m8

Gly M-0 0.7426 0.0592 0.1982 - - - - -

Ala M-0 0.3903 0.3884 0.0221 0.1992 - - - -

Thr M-0 0.3260 0.3416 0.1670 0.1513 0.0000 - - -

Asp M-0 0.3192 0.3564 0.2003 0.1035 0.0206 - - -

The first two lines should remain fixed and are ignored by the
jQMM library, while the following lines need to include the MDV
information for every metabolite for which isotopolog data exists in
the following format:

Metabolic Modeling with Saccharomyces cerevisiae 323

http://www.gams.com/
http://www.conopt.com/

1. First the metabolite name using the metabolite abbreviation
used in the BIGG database (http://bigg.ucsd.edu) is specified
and followed by a tab character or space(s).

2. Next tab or space separated relative frequencies of each metab-
olite isotopolog are specified. The sum of all isotopolog fre-
quencies needs to add to 1 for each individual metabolite.

3. Isotopologs which do not exist for a particular metabolite,
should be represented by a “-” (dash), and must not be entered
as a zero value, which would indicate a different meaning in the
jQMM. Zero values indicate that an isotopolog can exist but is
not present in the sample.

2.4.2 Choose, Edit,

and Define the Metabolic

Model

To define a metabolic model for the jQMM to use in the modeling
of the particular organism being studied, we recommend using the
BIGG database (http://bigg.ucsd.edu) and downloading a SBML
version of the metabolic model which is appropriate to the problem
being studied. Smaller models run much faster in the jQMM, while
more comprehensive genome scale models are necessary for pro-
blems involving peripheral metabolism or which utilize the 2S-13C
MFA analysis methodology. Retooling of the jQMM library code
may be required for the library to understand metabolite names
which do not follow the naming convention used in the iMM904
metabolic model [23] format, although sample code is already
included in the jQMM for using metabolite names from the
iJO1366 [24] and iAF1260 [25] models, which is located in the
“sbmlio.py” python code file located in the jQMM “code/core”

Fig. 2 Plot of wild-type S. cerevisiae MDVs from Ghosh et al. [8]. Experimentally measured MDVs are plotted in
red bars for each metabolite, while the MDVs implied by the predicted fluxes are shown in the blue bars.
Computational and experimental data match closely implying that the model is quantitatively correct

324 David Ando and Héctor Garcı́a Martı́n

http://bigg.ucsd.edu
http://bigg.ucsd.edu

directory. Network reactions which come from a heterologous
pathway that has been engineered into a microbe should be manu-
ally copied into the downloaded SBML model.

2.4.3 Defining Exchange

Reaction Fluxes

Both measured fluxes through exchange reactions and the biomass
flux that correspond to the time that a sample was taken for 13C
isotopolog analysis are detailed in a FLUX.txt file. A sample
exchange flux file should be formatted as follows for input into
the jQMM library:

biomass_SC5_notrace: 0.24 [==] 0.24

GLCt1: 8.5 [==] 8.5

EX_glc(e): -8.5 [==] -8.5

EX_ac(e): 0.45 [==] 0.45

The Biomass flux is in units of 1/h and is normalized to equal
the growth rate while all other exchange fluxes are in units of
mMol/gdw/h (millimoles/grams of dry weight/hour). The glu-
cose uptake rate can be measured for example by a HPLC determi-
nation of glucose concentration at two different times around the
13C analysis sample time. If the glucose concentration is measured
as g1 and g2 (in millimoles/volume) at times t1 and t2, the glucose
flux can be approximated as (g2�g1)/gdw1/(t2�t1), where gdw1 is
the grams of dry weight of cells per unit volume at time t1. Similarly,
HPLC measurements can be used to determine fluxes of acetate,
lactate, and other organic acids excreted by the cell.

2.4.4 Defining Carbon

Transitions in the Metabolic

Model

Atom transitions can be used to represent the fate of each carbon in
a reaction [11]. In the example reaction:

A (abc) -> B (ab) + C (c)

Uppercase letters in a carbon transition reaction represent the
metabolites present in a reaction, while the lowercase letters in
parentheses represent the carbon atom transitions, see Note 5.
Irreversible reactions are denoted by a ’->’ or ’¼>’ arrow and
reversible reactions are denoted by a ’<->’ or ’<¼>’ arrow. In
the jQMM, multiple reactions are separated by carriage returns or
by placing a semicolon at the end of each reaction equation.

For example, in the following reaction from the iMM904
metabolic model for S. cerevisiae:

AKGDam akg_m --> sdhlam_m + co2_m abcde : bcde + a

akg (2-Oxoglutarate) gets split into sdhlam (Succinyldihydrolipoa-
mide) and co2 (carbon dioxide) in reaction AKGDam, with the last
four carbons going to sdhlam and the first carbon going to co2.

Metabolic Modeling with Saccharomyces cerevisiae 325

For 2S-13C based metabolic flux analysis in the jQMM, one
needs to create a REACTIONS.txt file which contains the carbon
transition information for core reactions in the metabolic network
and which has the following format:

Metabolic Exchange fluxes

&MLIST etoh 0

&MLIST glucon 0

&MLIST lac-L 0

Amino acid metabolite fluxes

&MLIST ala-L[c] 0

&MLIST asp-L[c] 0

&MLIST asn-L[c] 0

&MLIST gly[c] 0

&MLIST val-L[c] 0

&MLIST arg-L[c] 0

Carbon source

&SOURCE glcD[e]

Input Reactions

EX_glc(e) glc-D[e] <==> glcDEx abcdef : abcdef

GLCt1 glc-D[e] --> glc-D abcdef : abcdef

HEX1 glc-D --> g6p abcdef : abcdef

Carbon Transitions

PGI g6p <==> f6p abcdef : abcdef

PFK f6p --> fdp abcdef : abcdef

FBA fdp <==> g3p + dhap abcdef : cba + def

See Note 6 for metabolite abbreviations and Note 7 for addi-
tional REACTIONS.txt file specifications.

2.4.5 Defining Feed

Labeling

The type of labeled glucose used in the experiment, together with
its concentration relative to the amount of unlabeled glucose, is
detailed in a FEED.txt file. A sample feed specification file contains
the following line:

1.5% Glucose: 80% 1-C 20% U 0% UN

See Note 8 for file specification details.

3 Methods

An example Jupyter notebook which demonstrates metabolic flux
analysis on S. cerevisiae is included in the Supplementary Informa-
tion and can be run directly within the jQMM (see Electronic

326 David Ando and Héctor Garcı́a Martı́n

Supplementary Material, see Note 9). This notebook is also repro-
duced in this section as an example of how to use the FluxModels
module in the jQMM to do 2S-13C MFA and then predict the
outcomes on ethanol production of different reaction knockouts.
The Jupyter notebook provides a convenient way to reproduce
results and is easily modified to fit the user’s specific needs, and it
is divided into seven different steps for turning experimental data
into actionable predictions for increasing a targeted biochemical via
genetic engineering:

1. Setting up python environment.

2. Gathering input data.

3. Creating the Reaction Network.

4. Creating the two-scale metabolic model.

5. Calculating internal metabolic fluxes through 2S-13C MFA.

6. Performing an ELVA consistency check.

7. Visualizing flux profiles.

8. Predicting which genes to knockout using MoMA and
ROOM.

-- Jupyter Notebook Start --

13C-2S Metabolic Flux Analysis for S.cerevisiae with ELVA
methods: This Jupyter notebook presents a computable step-by-
step description of how to use metabolite data from 13C labeling
experiments to determine fluxes for S. cerevisiae with quality con-
trol of flux results via ELVA methods. We also use MOMA and
ROOM methodologies to produce actionable insights to improve
ethanol production.

3.1 Setup The first step involves specifying the correct path for the library to
be loaded:

In [1]:

%matplotlib inline

import sys, os

path = "/scratch/user"

pythonPath = path + "/quantmodel/code/core"

if pythonPath not in sys.path:

sys.path.append(path + ’/quantmodel/code/core’)

os.environ["QUANTMODELPATH"] = path +’/quantmodel’

We then need to import the needed classes for the notebook:

In [2]:

from IPython.display import SVG

import FluxModels as FM

Metabolic Modeling with Saccharomyces cerevisiae 327

import enhancedLists, ReactionNetworks, predictions, copy,

core, os

and then move to a defined working directory where output
and intermediate files will be kept:

In [3]:

cd ~/tests

Test that GAMS and CONOPT solvers are installed and
working:

In [5]:

status = os.system(’gams’)

if status == 0:

print "GAMS call working."

else:

print "GAMS is not installed."

GAMS call working.

3.2 Gathering

Input Data

As part of the test (T) phase of the DBTL cycle, we gather all the
relevant experimental data from the 13C labeling experiments (see
“Materials” Subheading 2). These data involve:

l A base genome-scale model that will act as the reference for all
other data types.

l Exchange fluxes containing the measured fluxes of metabolites
being exchange by cells with the environment.

l Transition information on the fate of each carbon in the core
reaction network.

l Metabolite labeling information in the form ofMass Distribution
Vectors (MDVs).

l Metabolite labeling error information.

l Feed labeling information on the type of labeled glucose the cell
culture was fed.

Discussion of these data types can be seen in Subheading 2.
For this demonstration, we will use the data from Ghosh et al.

[8] for the wild type strain grown using a glucose feed:

In [6]:

datadir = os.environ[’QUANTMODELPATH’]+’/data/tests/yeast2S/

wyr1/’

strain =’wyr1Glc’

#A base genome-scale model:

BASEfilename = datadir + ’SciMM904wyr1GlcTS.xml’

#Exchange fluxes

328 David Ando and Héctor Garcı́a Martı́n

FLUXESfilename = datadir + ’FLUX’+strain+’.txt’

#Transition information

TRANSITIONSfilename = datadir + ’REACTIONS’+strain+’-core-too-

small.txt’

#Metabolite labeling

MSfilename = datadir + ’LCMS’+strain+’.txt’

#Metabolite labeling error

MSSTDfilename = datadir + ’LCMSerr’+strain+’.txt’

#Feed labeling

FEEDfilename = datadir + ’FEED’+strain+’.txt’

3.3 Creating

the Reaction Network

Once we have gathered all the needed input files, we can condense
all this information into a single sbml file. We will do this using a
reaction network from the ReactionNetworks module in the
jQMM library. A reaction network contains all information related
to the metabolic reaction network used for the simulation:

In [7]:

Load initial SBML file

reacNet = ReactionNetworks.TSReactionNetwork(BASEfilename)

Add Measured fluxes

reacNet.loadFluxBounds(FLUXESfilename)

Add carbon transitions

reacNet.addTransitions(TRANSITIONSfilename,translate2SBML=-

True)

Add measured labeling information

reacNet.addLabeling(MSfilename,’LCMS’,MSSTDfilename,

minSTD=0.001)

Add feed labeling information

reacNet.addFeed(FEEDfilename)

Limit fluxes to 500

reacNet.capFluxBounds(500)

Create sbml file to store the two-scale model.

All input files are combined in a tuple of the type:

(fileName, string of contents)

SBMLfile = (’SciMM904’+strain+’TS.xml’,reacNet.write(’to-

String’))

3.4 Creating

the Two-Scale

Metabolic Model

The next step is to use the SBML file we just created to create a
two-scale model [12] that we will use to calculate fluxes through
2S–13C MFA:

In [9]:

TSmodel = FM.TwoSC13Model((’SciMM904’+strain+’TS.xml’,reac-

Net.write(’toString’)))

Metabolic Modeling with Saccharomyces cerevisiae 329

TSmodel now contains all the information needed to calculate
fluxes along with the methods to do this calculation and other
analysis [12].

3.5 Calculating

Internal Metabolic

Fluxes through

2S-13C MFA

We can now use the findFluxesRanges method in TSmodel to find
the fluxes that best fit the experimentally obtained metabolite
labeling data (MDVs) and find the ranges of fluxes compatible
with this labeling data and the corresponding experimental error:

In [10]:

%%time

fluxNames =

TSmodel.reactionNetwork.C13ReacNet.reactionList.getReaction-

NameList(level=1)

TSresult =

TSmodel.findFluxesRanges(Nrep=30,fluxNames=fluxNames,proc-

String=’proc’)Wall time: 1.75 hrs

Nrep represents the number of replicates used for the calcula-
tion. Since the problem to be solved is a nonconvex problem there
is no guarantee that a single run will find the best global fit. Hence,
we run 30 independent processes and keep the one that best fits the
data. fluxNames indicates the fluxes for which full flux confidence
intervals will be calculated. procString indicates that the data (for
this case) needs no derivatization correction. For large models,
especially with eukaryotic organisms, these flux calculations can
be lengthy (on the order of several hours).

We can check how accurate the model is by comparing the
measured labeling distribution (MDVs, red) with the one predicted
through the computational model (blue) by using the plotExpvs-

CompLabelFragment method:

In [11]:

TSresult.plotExpvsCompLabelFragment(titleFig=’WT-reference’)

See Fig. 2.

or by using plotExpvsCompLabelXvsY, if we prefer to see
these fits as an X vs. Y plot:

In [12]:

TSresult.plotExpvsCompLabelXvsY(titleFig¼’WT-
reference’)

See Fig. 3.

The closeness of the fit data and the experimental data validate
the use of this model.

Results are stored in a reaction network inside TSresult and can
be explored through the reactionList methods. For example, we
can print the fluxes that best fit the data:

330 David Ando and Héctor Garcı́a Martı́n

In [13]:

TSresult.reactionNetwork.reactionList.printFluxes(brief="-

True",names="exchange")

EX_co2_e_: 14.2007023028

EX_glc_e_: -8.5

EX_etoh_e_: 8.5

EX_h2o_e_: 7.11362355138 EX_o2_e_: -4.90795595138

EX_h_e_: 2.72395044862

EX_glyc_e_: 2.45 EX_nh4_e_: -1.3431504

EX_glx_e_: 0.999214848625

EX_ac_e_: 0.45 biomass_SC5_notrace: 0.24

EX_pi_e_: -0.0474479999997

EX_ttdca_e_: 0.03

EX_ddca_e_: 0.02

EX_so4_e_: -0.018552

EX_hdca_e_: 0.0143

EX_ocdca_e_: 0.00193

EX_for_e_: 0.0012408

3.6 Performing

an ELVA Consistency

Check

The 2S-13C methods assume flux flows from core metabolism to
reactions in the periphery, and does not flow back. This assumption
of one way flow out of central metabolism stems from the bow-tie
structure of cellular metabolism [2], and is further justified by the
fact that traditional 13C MFA, using only core metabolism models,

Fig. 3 Plot of experimentally measured MDVs versus the computationally
predicted MDVs in an x-y plot (different way to plot data in Fig. 2), which
demonstrates that experimental and predicted MDVs are comparable

Metabolic Modeling with Saccharomyces cerevisiae 331

can convincingly explain labeling patterns for amino acids and
intracellular metabolites for model organisms [13–16].

ELVA [12] is a test that checks that the error incurred by
ignoring noncore reactions is negligible. If the ELVA indicates
that the noncore contributions are large, then the core set of
reactions which include carbon transition information is expanded.
This is repeated until a self-consistent result is found that produces
ELVA flux ranges which are small and compatible with the
experimental data.

In general, the ELVA optimization problem finds the maxi-
mum impact that the unknown inflow metabolite labeling can have
on the measured labeling pattern. ELVA determines if the fluxes
obtained from the fit are consistent with the two-scale approxima-
tion [12]. This extra step sets the method apart from standard 13C
metabolic flux analysis (MFA), which does not check the effect of
ignored reactions. ELVA considers only core metabolism with the
impact of noncore metabolism being represented through inflow
metabolites, dummy metabolites with unfixed labeling since their
labeling is, by definition, unknown. Essentially, using the previously
obtained genome-scale flux solution as a constraint, ELVA allows
the labeling for the inflow metabolites to vary and, for each metab-
olite with measured labeling, uses each element of the mass distri-
bution vector (MDV) as the objective function to be maximized or
minimized. By this method, we obtain a confidence interval that
represents the maximum possible difference in labeling that could
be attributed to noncore reactions for the current solution. The
reactions that contribute an unacceptable amount of uncertainty
are then added to the core set and the procedure can be repeated as
necessary, until a core set of reactions is found which fully justifies
the two-scale approximation. ELVA results can be calculated as
follows:

In [14]:

resultELVA = TSmodel.ELVA(TSresult)

ELVA results can be plotted in an x-y graph showing the
experimentally determined isotope labeling which defines a confi-
dence interval that represents the maximum possible difference in
labeling that could be attributed to noncore reactions for the
current solution. If there are reactions that contribute an unaccept-
able amount of uncertainty they can be added to the core set and
the procedure can be repeated as necessary, until a core set of
reactions is found which fully justifies the two-scale approximation.
In this example, 13 metabolites have large fluctuations as predicted
by computational labeling (y-axis error bars).

In [15]:

resultELVA.plotExpvsCompLabelxvsy(titleFig="WT",outputFileNa-

332 David Ando and Héctor Garcı́a Martı́n

me="ELVAComparisonWT.txt",save="ELVA-W.eps")

See Fig. 4.

The error bars in the y axis (computational error) are NOT of
the same order of magnitude as the experimental error, and there-
fore we need to rework the set of core reactions until we can satisfy
the two-scale assumptions of no flux back into the core network
[12]. We therefore add additional reactions to the REACTIONS
file, and repeat the two-scale modeling process. We can see from
Fig. 4 that there are 13 metabolites for which the fluctuation in
computational labeling was large, which are described in more
detail in an ELVAfluxReport that is generated by the jQMM.

The file “ELVAfluxReport.txt” is automatically saved to our
current working directory /~tests and indicates which metabolites
had large fluctuations. The format of the ELVAfluxREPORT file is
as follows: first a metabolite is listed, which is then followed by the
reactions that flow into it from noncore metabolism, then the
reactions which flow into that metabolite from core metabolism.

Fig. 4 ELVA plot that shows an x-y graph of the experimentally determined
isotope labeling versus the computationally predicted labeling. The vertical error
bars define the computational error that represent the maximum possible
difference in labeling that could be attributed to noncore reactions for the
current solution. In this example, several reactions display large computational
errors, indicating that noncore reactions do significantly contribute to core
metabolite labeling [12]. More reactions with carbon transition information
need to be added to the core reactions list to remedy this problem and satisfy
the two-scale assumptions

Metabolic Modeling with Saccharomyces cerevisiae 333

The following ELVA report has been truncated for space,
please see the full Jupyter notebook for complete details.

In [16]:

cat ELVAfluxReport.txt

RI3mob_c(0.0104):

----> Non Core:

3MOBtm [0.0881793]

----> Core:

IPPS [-0.0246753]

VALTA [-0.063504]

RIakg_c(0.0019):

----> Non Core:

HSTPT [0.015912]

----> Core:

AATA [0.068688]

ALATA_L [0.11842353]

ASPTA [-0.69541853]

GLUDyi [-1.1814192]

ICDHy [1.230851]

ILETA [0.046248]

LEUTA [0.071136]

PHETA1 [0.032136]

PSERT [0.1367712]

SACCD2 [0.068688]

TYRTAi [0.02448]

VALTA [0.063504]

RIhdca_c(0.0002):

----> Non Core:

FACOAL160 [0.01623]

HDCAt [-0.0143]

----> Core:

FAS180 [-0.00193]

RIpyr_c(0.0008):

----> Non Core:

ANS [0.006816]

----> Core:

AGTi [0.00831153]

ALATA_L [-0.11842353]

PC [-2.9406824]

PYK [12.82902984]

PYRDC [-9.54111443]

PYRt2m [-0.24393701]

RO3mob_m(0.0104):

----> Non Core:

3MOBtm [-0.0881793]

----> Core:

DHAD1m [0.13464]

IPPSm [-0.0464607]

334 David Ando and Héctor Garcı́a Martı́n

See Note 6 for metabolite abbreviations. As a result of the
ELVA report file which indicates that metabolites akg_c, co2_c,
co2_m, fum_c, g3p_c, pyr_c, accoa_m, asp_L_c, f6p_c, g6p_c,
glu_L_c, glx_c, and glyc3p_c produce large computational errors,
we have added the reactions for Valine and Isoleucine synthesis and
reactions 3C4MOPtm, 3MOBtm, OMCDCm to the REAC-
TIONS file containing carbon transitions for core reactions. After
expanding the core set of reactions we now need to rerun the
two-scale 13C MFA with the corrected core set of reactions.

In [17]:

datadir = os.environ[’QUANTMODELPATH’]+’/data/tests/yeast2S/

wyr1/’

strain =’wyr1Glc’

#A base genome-scale model:

BASEfilename = datadir + ’SciMM904wyr1GlcTS.xml’

#Exchange fluxes

FLUXESfilename = datadir + ’FLUX’+strain+’.txt’

#Corrected REACTIONS file with an expanded core set of reac-

tions

#Transition information

TRANSITIONSfilename = datadir + ’REACTIONS’+strain+’-fixed.

txt’

#Metabolite labeling

MSfilename = datadir + ’LCMS’+strain+’.txt’

#Metabolite labeling error

MSSTDfilename = datadir + ’LCMSerr’+strain+’.txt’

#Feed labeling

FEEDfilename = datadir + ’FEED’+strain+’.txt’

3.6.1 Re-Creating

the New Reaction Network

for Fixed Reactions File

Now that we have gathered all the needed input files for recalculat-
ing fluxes with the expanded set of core reactions, we again con-
dense all this information into a single SBML file. We will do this
using a reaction network from the ReactionNetworks module in
the jQMM library. A reaction network contains all information
related to the metabolic reaction network used for the simulation:

In [21]:

Load initial SBML file

reacNet = ReactionNetworks.TSReactionNetwork(BASEfilename)

Add Measured fluxes

reacNet.loadFluxBounds(FLUXESfilename)

Add carbon transitions

reacNet.addTransitions(TRANSITIONSfilename,translate2SBML=-

True)

Add measured labeling information

reacNet.addLabeling(MSfilename,’LCMS’,MSSTDfilename,

Metabolic Modeling with Saccharomyces cerevisiae 335

minSTD=0.001)

Add feed labeling information

reacNet.addFeed(FEEDfilename)

Limit fluxes to 500

reacNet.capFluxBounds(500)

Create sbml file to store the two-scale model.

All input files are combined in a tuple of the type:

(fileName, string of contents)

SBMLfile = (’SciMM904’+strain+’TS.xml’,reacNet.write(’to-

String’))

3.6.2 Re-Creating

the Two-Scale Metabolic

Model

We again use the SBML file we just created to create a two-scale
model [12] that we will use to calculate fluxes through 2S-13C
MFA:

In [22]:

TSmodel = FM.TwoSC13Model((’SciMM904’+strain+’TS.xml’,reac-

Net.write(’toString’)))

TSmodel now contains all the information needed to calculate
fluxes along with the methods to do this calculation and other
analysis [12].

3.6.3 Recalculating

Internal Metabolic Fluxes

Through 2S-13C MFA

We can now use the findFluxesRanges method in TSmodel to find
the fluxes that best fit the experimentally obtained metabolite
labeling data (MDVs) and find the ranges of fluxes compatible
with this labeling data and the corresponding experimental error:

In [23]:

%%time

fluxNames =

TSmodel.reactionNetwork.C13ReacNet.reactionList.getReaction-

NameList(level=1)

TSresult =

TSmodel.findFluxesRanges(Nrep=30,fluxNames=fluxNames,proc-

String=’proc’)

Again, Nrep represents the number of replicates used for the
calculation. Since the problem to be solved is a nonconvex problem
there is no guarantee that a single run will find the best global fit.
Hence, we run 30 independent processes and keep the one that
best fits the data.

We can now explore the new results through the reactionList
methods. For example, we can print some of the new fluxes:

In [24]:

TSresult.reactionNetwork.reactionList.printFluxes(brief="-

336 David Ando and Héctor Garcı́a Martı́n

True",names="exchange")

EX_co2_e_: 13.7769121853

EX_glc_e_: -8.5

EX_etoh_e_: 8.5

EX_h2o_e_: 6.90234889266

EX_o2_e_: -4.69606089266

EX_h_e_: 2.93522510734

EX_glyc_e_: 2.45

EX_nh4_e_: -1.3431504

EX_glx_e_: 1.21173030734

EX_ac_e_: 0.45

biomass_SC5_notrace: 0.24

EX_pi_e_: -0.0474479999999

EX_ttdca_e_: 0.03

EX_ddca_e_: 0.02

EX_so4_e_: -0.018552

EX_hdca_e_: 0.0143

EX_ocdca_e_: 0.00193

Again, we test to make sure that the assumptions used in
2S-13C MFA hold using ELVA.

In [25]:

resultELVA = TSmodel.ELVA(TSresult)

We now plot ELVA results as an x-y graph.

In [26]:

resultELVA.plotExpvsCompLabelxvsy(titleFig="WT",outputFileNa-

me="ELVAComparisonWT.txt",save="ELVA-W.eps")

See Fig. 5.

The error bars in the y-axis (computational error) are now of
the same order of magnitude as the experimental error (x-axis),
which implies that our carbon reactions for the core of metabolism
now satisfy the two-scale model assumptions [12]. We now have
biophysical consistency in the calculated fluxes and can move on to
analyzing and visualizing fluxes. If a metabolite still had large
fluctuations at this point in the analysis we would need to add
more reactions to the core set and repeat until fluctuations in the
ELVA plot were small.

3.7 Visualizing Flux

Profiles

Once the metabolic fluxes have been calculated they can be under-
stood visually via their plotting on a flux map. In the jQMM library
fluxes can be plotted via the commands:

In [27]:

TSresult.drawFluxes(’wt.svg’,svgInFileName=’SciMM904TKs.svg’,

Metabolic Modeling with Saccharomyces cerevisiae 337

norm=’EX_glc_e_’)

svgin: /scratch/david.ando/quantmodel/code/core/SciMM904TKs.

svg

where ’SciMM904TKs.svg’ is the base flux map contained in
the jQMM library [10]. The drawFluxes() method will indicate the
flux magnitude on the base flux map in two ways: visually by
changing the flux arrow width according to the flux magnitude
through a reaction, and also numerically by showing the net flux
value (with confidence intervals) next to the reaction:

The command ’SVG’ displays the flux map in the Jupyter
notebook which is contained in the svg file which was saved locally.

In [28]:

SVG(filename=’wt.svg’)

Out[28]:

See Figs. 6a and b.
Fluxes can also be displayed in a more sophisticated manner

using the web browser-based flux plotting library Arrowland
(http://public-arrowland.jbei.org).

Fig. 5 ELVA plot which shows an x-y graph of the experimentally determined
isotope labeling versus the computationally predicted labeling. Since more
reactions have been added to the core, all reactions now have only small
computational errors in predicted computational labeling, confirming that
noncore reactions do not significantly contribute to core metabolite labeling

338 David Ando and Héctor Garcı́a Martı́n

http://public-arrowland.jbei.org

3.8 Predicting Which

Genes to Knockout

Using MoMA

and ROOM

So far, we have used targeted metabolomic data from 13C labeling
experiments to infer the underlying internal metabolic fluxes in the
cell. We will now use these inferred fluxes along with two COBRA
methods to predict which genes to knock out in order to increase
the production of ethanol. These methods are MoMA (Minimiza-
tion of Metabolic Adjustment [18]) and ROOM (Regulatory
On/Off Minimization [19]). MoMA provides an approximate
solution for a sub-optimal growth flux state after a knockout has
been made to an organism, which is nearest in flux distribution to
the unperturbed state. On the other hand, ROOM aims to

Fig. 6 a) Entire flux map of SciMM904TKs.svg, which displays some of the key 2S-13C metabolic fluxes that
are calculated from the iMM904 model for S. cerevisiae. Reactions in the green box are those which are
located in the mitochondria. b) A zoomed-in plot of these fluxes focused on the upper glycolysis as calculated
by the jQMM library using the SciMM904TKs.svg base flux map for a wild type strain of S. cerevisiae from
Ghosh et al. [8]. This map can be interactively studied using Arrowland (https://publicarrowland.jbei.org/,
wry1Glc). Below each reaction is a single number in parenthesis which indicates the flux value which best fits
the experimental data, while the two numbers below the best fit flux represent minimum and maximum fluxes
compatible with the MDVs provided by the user

Metabolic Modeling with Saccharomyces cerevisiae 339

https://publicarrowland.jbei.org/

minimize the number of significant flux changes with respect to the
wild type to predict resultant fluxes from a knockout of a reaction.

First, we need to specify flexible flux bounds for the final
solution in order to avoid biasing the knockout predictions:

In [29]:

reactionNetwork = copy.deepcopy(TSmodel.reactionNetwork)

reactionNetwork.changeFluxBounds(’GLCt1’,core.fluxBounds

(0,10,False)[1])

reactionNetwork.changeFluxBounds(’EX_glc_e_’,core.fluxBounds

(-10,-0,True,True)[1])

reactionNetwork.changeFluxBounds(’biomass_SC5_notrace’,core.

fluxBounds(0,0.25,False)[1])

reactionNetwork.changeFluxBounds(’EX_ac_e_’,core.fluxBounds

(0,0.5,True,True)[1])

reactionNetwork.changeFluxBounds(’EX_etoh_e_’,core.fluxBounds

(0,10,True,True)[1])

Fig. 6 (continued)

340 David Ando and Héctor Garcı́a Martı́n

Then we can calculate the base flux profiles for MoMA and
ROOM:

In [30]:

TSresult = TSmodel.findFluxesStds(Nrep=30,Nrand=10)

We then specify a list of reactions to knock out and determine
resultant fluxes.

In [31]:

KOs = [’PYRt2m’,’RPI’]

For reference, we determine the amount of ethanol production
in the base WT strain:

In [32]:

fluxDict = TSresult.reactionNetwork.reactionList.getReaction-

Dictionary() print ’predicted ethanol flux = ’,fluxDict

[’EX_etoh_e_’].flux.net.best

predicted ethanol flux = 8.5

This implies that before any reaction knockouts that the base
strain is releasing 8.5 mmol/gdw/h of ethanol into the
environment.

Perform MOMA and ROOM predictions over the set of spe-
cified knockouts:

In [33]:

for KO in KOs:

print KO,’knockout:’

TS13CMOMA = predictions.predict(TSresult, KO, ’MOMA’, reac-

tionNetwork.getSBMLString())

TS13CROOM = predictions.predict(TSresult, KO, ’ROOM’, reac-

tionNetwork.getSBMLString())

fluxDict =

TS13CMOMA.reactionNetwork.reactionList.getReactionDictionary()

print ’ MoMA predicted ethanol flux = ’,fluxDict[’EX_e-

toh_e_’].flux.net.best

fluxDict =

TS13CROOM.reactionNetwork.reactionList.getReactionDictionary()

print ’ ROOM predicted ethanol flux = ’,fluxDict[’EX_e-

toh_e_’].flux.net.best

print ’--------------------’

print ’’PYRt2m knockout:

MoMA predicted ethanol flux = 8.48554566176

ROOM predicted ethanol flux = 8.756

--------------------RPI knockout:

MoMA predicted ethanol flux = 8.15179595791

ROOM predicted ethanol flux = 8.244

Metabolic Modeling with Saccharomyces cerevisiae 341

As can be observed, knocking out the PYRt2m reaction is
predicted to increase ethanol production by 3.0% according to the
ROOMmethodology and decrease ethanol production by less than
1% when using the MoMA methodology. As can be seen with an
RPI knockout, both MoMA and ROOM predict a decline in etha-
nol production.

-- Jupyter Notebook End --

4 Notes

1. Self-installation of the jQMM can be achieved by first down-
loading the jQMM library from https://github.com/JBEI/
jqmm and unpacking the downloaded file. For reproducibility
we recommend that the jQMM be used through an interactive
python (iPython) notebook server called Jupyter Notebook
(http://jupyter.org/) which is a web application that allows
for the interactive execution, visualization, and documentation
of python code. This integrated computing format greatly
enhances repeatability and reproducibility of results within
the computational modeling community. Next, usage of the
jQMM library can begin by logging into the local Jupyter
server using a web browser and navigating to the jQMM folder,
and then running some of the example Jupyter notebooks
contained within the jQMM. If desired, the Jupyter server
can be run directly from the command line within a linux
terminal via the command “jupyter notebook”. Both GAMS
and CONOPT licenses are needed for the jQMM to be fully
functional and must be purchased separately.

2. If choosing to run the jQMM docker container on a web-based
platform one will avoid the upfront costs of having to purchase
an expensive high performance server system, but over the
lifetime of a purchased server it may be more inexpensive
than a web-based solution (depending on intended usage
intensity). Pricing for cloud computing services is typically
based on usage, which allows for the ability to automatically
adjust the usage of computational services to as much or as
little as needed, at any time. When choosing a type of instance
to use on a cloud based system we recommend instances which
focus on computational speed and not RAM size or disk drive
access speed. On the AWS, this includes the instances of type
M4 and C4, with the C4 instance currently featuring the high-
est performing processors and the lowest price/compute per-
formance ratio offered by AWS (circa 2016).

342 David Ando and Héctor Garcı́a Martı́n

https://github.com/JBEI/jqmm
https://github.com/JBEI/jqmm
http://jupyter.org/

3. Proper quality control of MDV data is crucial to proper deter-
mination of fluxes. Experiments should be designed to include
internal controls, and should include several biological and
technical replicates.

4. The use of labeled glucose of the form U-13C glucose (univer-
sal labeling of carbon atoms) together with 1-13C glucose (first
carbon atom only is labeled) in an 20:80 ratio is convenient
because the 1-13C glucose provides resolution on the activity of
the pentose phosphate cycle, while the U-13C glucose provides
insight into the activity of reactions which mix carbon back-
bones of substrates. The pentose phosphate pathway loses the
first labeled carbon as CO2, while other reactions within central
metabolism that mix carbon backbones can be resolved by
having a combination of U-13C and 1-13C glucose present.

5. It is not necessary to follow this naming convention of using
uppercase for metabolites and lowercase for atom transitions.
The parentheses delimit the start and end of each atom transi-
tion. Any alphabetic, numeric, or underscore character com-
prising the regular expression [a-zA-Z0-9] can be included in
the metabolite names and atom transitions.

6. Metabolite abbreviations used:

(a) akg, 2-Oxoglutarate,

(b) co2, carbon dioxide,

(c) fum, fumarate,

(d) g3p, glyceraldehyde 3-phosphate,

(e) pyr, pyruvate,

(f) accoa, acetyl-CoA,

(g) asp, aspartate,

(h) f6p, D-fructose 6-phosphate,

(i) g6p, D-glucose 6-phosphate,

(j) glu, glutamate,

(k) glx, glyoxylate,

(l) glyc3p, glycerol 3-phosphate,

(m) glc-D, glucose,

(n) fdp, D-fructose 1,6-bisphosphate,

(o) g3p, glyceraldehyde 3-phosphate,

(p) 3mob, 3-methyl-2-oxobutanoate,

(q) hdca, hexadecanoate.

7. Reactions that must be specified in the REACTIONS.txt file, in
terms of carbon atom transition information, are those that
utilize metabolites for which 13C isotopolog data are input into
the jQMM library and for reactions which are considered to be

Metabolic Modeling with Saccharomyces cerevisiae 343

at the core of the metabolic network. Finally, this file also
specifies a metabolite which serves as the 13C carbon source
(typically glucose, i.e., glcD[e], via the &SOURCE command)
and input reactions which bring this 13C labeled metabolite
into the cell.

8. The number (1.5% in our example FLUX.txt file) at the begin-
ning of a feed definition specifies the total glucose percentage
of the initial cell culture. The percentage of 1-C glucose, which
has its first carbon atom labeled, is specified next, together with
the percentage of U glucose, which is uniformly labeled among
all the glucose carbon atoms, and finally the percentage of
normal glucose which is completely unlabeled (UN).

9. Free open-source software tools, such as the jQMM, provide
for universal accessibility and unlimited modification and cus-
tomization. Overall, we wish that the community can also
support the jQMM’s further development by submitting bug
fixes to the github repo (https://github.com/JBEI/jqmm)
and including any functional extensions that different research
groups have achieved. Community driven development will
help in the adoption of fluxomics tools like the jQMM which
are free, flexible, and cater to the needs of the metabolic
engineering community.

Acknowledgments

This work was part of the DOE Joint BioEnergy Institute (http://
www.jbei.org) supported by the US Department of Energy, Office
of Science, Office of Biological and Environmental Research,
through contract DE-AC02-05CH11231 between Lawrence Ber-
keley National Laboratory and the US Department of Energy. The
US Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of
this chapter, or allow others to do so, for US Government pur-
poses; and the publisher, by accepting the chapter for publication,
acknowledges the same.

References

1. Kitney R, Freemont P (2012) Synthetic biol-
ogy—the state of play. FEBS Lett
586:2029–2036. https://doi.org/10.1016/j.
febslet.2012.06.002

2. Nielsen J, Keasling JD (2016) Engineering cel-
lular metabolism. Cell 164:1185–1197.
https://doi.org/10.1016/j.cell.2016.02.004

3. Chubukov V, Mukhopadhyay A, Petzold C,
Keasling J (2016) Synthetic and systems

biology for microbial production of commod-
ity chemicals: from target selection to scale-up.
npj Syst Biol Appl 16009:1–11. https://doi.
org/10.1038/npjsba.2016.9

4. Nakamura CE, Whited GM (2003) Metabolic
engineering for the microbial production of
1,3-propanediol. Curr Opin Biotechnol
14:454–459. https://doi.org/10.1016/j.
copbio.2003.08.005

344 David Ando and Héctor Garcı́a Martı́n

https://github.com/JBEI/jqmm
http://www.jbei.org
http://www.jbei.org
https://doi.org/10.1016/j.febslet.2012.06.002
https://doi.org/10.1016/j.febslet.2012.06.002
https://doi.org/10.1016/j.cell.2016.02.004
https://doi.org/10.1038/npjsba.2016.9
https://doi.org/10.1038/npjsba.2016.9
https://doi.org/10.1016/j.copbio.2003.08.005
https://doi.org/10.1016/j.copbio.2003.08.005

5. Yim H, Haselbeck R, Niu W et al (2011) Met-
abolic engineering of Escherichia coli for direct
production of 1,4-butanediol. Nat Chem Biol
7:445–452. https://doi.org/10.1038/
nchembio.580

6. Paddon CJ, Westfall PJ, Pitera DJ et al (2013)
High-level semi-synthetic production of the
potent antimalarial artemisinin. Nature
496:528–532. https://doi.org/10.1038/
nature12051

7. Van Dien S (2013) From the first drop to the
first truckload: commercialization of microbial
processes for renewable chemicals. Curr Opin
Biotechnol 24:1061–1068. https://doi.org/
10.1016/j.copbio.2013.03.002

8. Ghosh A, Ando D, Gin J et al (2016) 13C
metabolic flux analysis for systematic metabolic
engineering of S. cerevisiae for overproduction
of fatty acids. Front Bioeng Biotechnol 4:76.
https://doi.org/10.3389/fbioe.2016.00076

9. Lewis NE, Nagarajan H, Palsson BO (2012)
Constraining the metabolic genotype-
phenotype relationship using a phylogeny of
in silico methods. Nat Rev Microbiol
10:291–305. https://doi.org/10.1038/
nrmicro2737

10. Birkel G, Ghosh A, Vinay K et al The JBEI
quantitative metabolic modeling library
(jQMM): a python library for modeling micro-
bial metabolism. Microb Cell Factories In
review

11. Wiechert W (2001) 13C metabolic flux analy-
sis. Metab Eng 3:195–206. https://doi.org/
10.1006/mben.2001.0187

12. Garcia Martin H, Kumar VS, Weaver D et al
(2015) A method to constrain genome-scale
models with 13C labeling data. PLoS Comput
Biol. https://doi.org/10.1371/journal.pcbi.
1004363

13. Antoniewicz MR, Kraynie DF, Laffend LA et al
(2007) Metabolic flux analysis in a nonstation-
ary system: fed-batch fermentation of a high
yielding strain of E. coli producing
1,3-propanediol. Metab Eng 9:277–292.
https://doi.org/10.1016/j.ymben.2007.01.
003

14. Schaub J, Mauch K, ReussM (2008)Metabolic
flux analysis in Escherichia coli by integrating
isotopic dynamic and isotopic stationary 13C
labeling data. Biotechnol Bioeng
99:1170–1185. https://doi.org/10.1002/
bit.21675

15. Moxley JF, Jewett MC, Antoniewicz MR et al
(2009) Linking high-resolution metabolic flux
phenotypes and transcriptional regulation in
yeast modulated by the global regulator

Gcn4p. Proc Natl Acad Sci 106:6477–6482.
https://doi.org/10.1073/pnas.0811091106

16. Kajihata S, Matsuda F, Yoshimi M et al (2014)
13C-based metabolic flux analysis of Saccharo-
myces cerevisiae with a reduced Crabtree effect.
J Biosci Bioeng 120:140–144. https://doi.
org/10.1016/j.jbiosc.2014.12.014

17. Schellenberger J, Que R, Fleming RMT et al
(2011) Quantitative prediction of cellular
metabolism with constraint-based models: the
COBRA toolbox v2.0. Nat Protoc
6:1290–1307. https://doi.org/10.1038/
nprot.2011.308

18. Segrè D, Vitkup D, Church GM (2002) Anal-
ysis of optimality in natural and perturbed met-
abolic networks. Proc Natl Acad Sci U S A
99:15112–15117. https://doi.org/10.1073/
pnas.232349399

19. Shlomi T, Berkman O, Ruppin E (2005) Reg-
ulatory on/off minimization of metabolic flux
changes after genetic perturbations. Proc Natl
Acad Sci U S A 102:7695–7700. https://doi.
org/10.1073/pnas.0406346102

20. Suthers PF, Burgard AP, Dasika MS et al
(2007) Metabolic flux elucidation for large-
scale models using 13C labeled isotopes.
Metab Eng 9:387–405. https://doi.org/10.
1016/j.ymben.2007.05.005

21. Toya Y, Ishii N, Hirasawa T et al (2007) Direct
measurement of isotopomer of intracellular
metabolites using capillary electrophoresis
time-of-flight mass spectrometry for efficient
metabolic flux analysis. J Chromatogr A
1159:134–141. https://doi.org/10.1016/j.
chroma.2007.04.011

22. Zamboni N, Fendt S-M, Rühl M, Sauer U
(2009) 13C-based metabolic flux analysis. Nat
Protoc 4:878–892. https://doi.org/10.1038/
nprot.2009.58

23. Reed JL, Vo TD, Schilling CH, Palsson BO
(2003) An expanded genome-scale model of
Escherichia coli K-12 (iJR904 GSM/GPR).
Genome Biol 4:R54. https://doi.org/10.
1186/gb-2003-4-9-r54

24. Orth JD, Conrad TM, Na J et al (2011) A
comprehensive genome-scale reconstruction
of Escherichia coli metabolism--2011. Mol
Syst Biol 7:535. https://doi.org/10.1038/
msb.2011.65

25. Feist AM, Henry CS, Reed JL et al (2007) A
genome-scale metabolic reconstruction for
Escherichia coli K-12 MG1655 that accounts
for 1260 ORFs and thermodynamic informa-
tion. Mol Syst Biol 3:121. https://doi.org/10.
1038/msb4100155

Metabolic Modeling with Saccharomyces cerevisiae 345

https://doi.org/10.1038/nchembio.580
https://doi.org/10.1038/nchembio.580
https://doi.org/10.1038/nature12051
https://doi.org/10.1038/nature12051
https://doi.org/10.1016/j.copbio.2013.03.002
https://doi.org/10.1016/j.copbio.2013.03.002
https://doi.org/10.3389/fbioe.2016.00076
https://doi.org/10.1038/nrmicro2737
https://doi.org/10.1038/nrmicro2737
https://doi.org/10.1006/mben.2001.0187
https://doi.org/10.1006/mben.2001.0187
https://doi.org/10.1371/journal.pcbi.1004363
https://doi.org/10.1371/journal.pcbi.1004363
https://doi.org/10.1016/j.ymben.2007.01.003
https://doi.org/10.1016/j.ymben.2007.01.003
https://doi.org/10.1002/bit.21675
https://doi.org/10.1002/bit.21675
https://doi.org/10.1073/pnas.0811091106
https://doi.org/10.1016/j.jbiosc.2014.12.014
https://doi.org/10.1016/j.jbiosc.2014.12.014
https://doi.org/10.1038/nprot.2011.308
https://doi.org/10.1038/nprot.2011.308
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.1073/pnas.0406346102
https://doi.org/10.1073/pnas.0406346102
https://doi.org/10.1016/j.ymben.2007.05.005
https://doi.org/10.1016/j.ymben.2007.05.005
https://doi.org/10.1016/j.chroma.2007.04.011
https://doi.org/10.1016/j.chroma.2007.04.011
https://doi.org/10.1038/nprot.2009.58
https://doi.org/10.1038/nprot.2009.58
https://doi.org/10.1186/gb-2003-4-9-r54
https://doi.org/10.1186/gb-2003-4-9-r54
https://doi.org/10.1038/msb.2011.65
https://doi.org/10.1038/msb.2011.65
https://doi.org/10.1038/msb4100155
https://doi.org/10.1038/msb4100155

	Chapter 19: Genome-Scale 13C Fluxomics Modeling for Metabolic Engineering of Saccharomyces cerevisiae
	1 Introduction
	2 Materials
	2.1 Computational Requirements
	2.2 Software Installation and Configuration
	2.2.1 Self-Installation
	2.2.2 Preconfigured and Preinstalled jQMM Library

	2.3 13C Labeling Experiments and Mass Spectrometry Data Analysis
	2.4 Input Data Preparation
	2.4.1 13C Labeling Data
	2.4.2 Choose, Edit, and Define the Metabolic Model
	2.4.3 Defining Exchange Reaction Fluxes
	2.4.4 Defining Carbon Transitions in the Metabolic Model
	2.4.5 Defining Feed Labeling

	3 Methods
	3.1 Setup
	3.2 Gathering Input Data
	3.3 Creating the Reaction Network
	3.4 Creating the Two-Scale Metabolic Model
	3.5 Calculating Internal Metabolic Fluxes through 2S-13C MFA
	3.6 Performing an ELVA Consistency Check
	3.6.1 Re-Creating the New Reaction Network for Fixed Reactions File
	3.6.2 Re-Creating the Two-Scale Metabolic Model
	3.6.3 Recalculating Internal Metabolic Fluxes Through 2S-13C MFA

	3.7 Visualizing Flux Profiles
	3.8 Predicting Which Genes to Knockout Using MoMA and ROOM

	4 Notes
	References

