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ABSTRACT OF THE DISSERTATION 

 

An Optimal Sensor Design Framework for Structural Health Monitoring 
 
 

by 
 
 

Yichao Yang 
 
 

Doctor of Philosophy in Structural Engineering 
 
 

University of California San Diego, 2021 
 
 

Michael D. Todd, Chair 
 
 
 

 Over the life cycle of large civil infrastructure, there is often significant degradation in 

capability and design performance due to extend usage and, in many cases, deferred maintenance. 

The ultimate limit states in this case can result in unexpected failure, with potentially large 

economic or life-safety consequences. Structural health monitoring (SHM) is a framework for 

monitoring the structure over its life cycle, and this field has expanded rapidly in the past two to 

three decades due to the urgency of infrastructure aging beyond its design life. One of the critical 

challenges in a monitoring process is obtaining the most valuable information from the structure 

responses in the field under a continuous monitoring paradigm. This dissertation will present a 
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new optimal sensor design framework, using Machine Learning (ML) techniques, including 

Gaussian Process Regression (GPR), Bayesian inference, uncertainty quantification, and Bayesian 

optimization, that guides risk-informed SHM system design. In particular, this dissertation: (1) 

demonstrates a framework for optimal sensor design using Bayes risk as the objective function; 

(2) further explores the framework using risk-weighted f-divergence functions and implements it 

in a real miter gate problem as a case study; (3) investigates the effects of sensor reliability over a 

life-cycle monitoring of the miter gate for informing optimal sensor arrangement.  
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Chapter 1  
 
INTRODUCTION 
 

Structural Health Monitoring (SHM) generally makes assessments and maintenance 

decisions for the current structural state/performance, with implementation of damage 

identification strategies, by analyzing the obtained in-situ measured data from the field (Dawson 

1976; Farrar and Worden 2007; Brownjohn 2007). In real-world engineering systems, many aging 

infrastructure systems require an efficient SHM system that can help to infer their current state 

before experiencing unexpected failures, which could lead to large economic or life safety impact 

(Cross 2013; Li and Ren 2016; Sony and Laventure 2019). In one example, the United States Army 

Corps of Engineers (USACE) maintains the country’s inland waterway navigation corridor, 

corresponding to hundreds of billions of capital investment necessary to empower the transport of 

goods and services nationwide. The current maintenance strategy for these assets is periodic 

dewatering and inspection, which leads to downtime losses in commercial transport; unscheduled 

shutdowns due to unexpected failure leads to downtime losses several times higher (Foltz, 2017). 

The design and deployment of an SHM system promises to enable the minimization of these 

downtime costs by providing accurate estimates of the current asset which can inform maintenance 

and operations decisions.  

In addition to this and other civil engineering applications, SHM system design is also 

widely being adopted in other engineering systems, such aerospace engineering, for life-safety 

justification (Sohn and Farrar 2003). Other motivations or benefits of a SHM system includes (but 

not limited to) predicting probabilities of failure and estimating the remain useful life in long term 

asset management, assuming the SHM diagnostics are coupled to a predictive model. 
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1.1. Structural Health Monitoring (SHM) System 

The three fundamental components in a SHM system are: 1) in-situ measurements of 

structural performances, 2) data-to-information transformations, and 3) decision-making process 

based on the obtained information. A basic SHM system must be able to process from collecting 

the raw data all the way to making an operational decision regarding a target structure. To 

implement these components in a SHM system, a statistical pattern recognition process has 

evolved into the general modern paradigm of how SHM is done (Farrar 2000). The paradigm 

involves four main steps: operational evaluation, data acquisition, feature extractions, statistical 

modeling of the feature discrimination.  

 

1.1.1 Operational Evaluation 

Before designing and deploying an SHM system, it is critical to do a cost-benefit analysis 

of its value. In many civil engineering applications such as big waterway infrastructures, the 

maintenance costs have grown dramatically due to the degradation of the structural components 

over time under flat or reduced maintenance budgets (Foltz 2017; Modares and Waksmanski 

2013). As with the inland waterway corridor, both unexpected shutdowns due to catastrophic 

structural failure and frequent unnecessary maintenance actions that induce downtime would have 

significant economic impact to nationwide transportation. One of the goals of the SHM system is 

to optimize the maintenance frequency and process based on a conditional basis rather than the 

current time-based maintenance (Vega, Hu, and Todd 2020). An active SHM system gathers 

effective information about the structural behavior so that unscheduled downtime (and thus costs) 

would be reduced while structural lifespan would be extended. Thus, SHM can be an important 

contributor to total cost reduction for an asset’s life cycle. 
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Defining damage or failure modes of interest dictates what types of sensing and raw data 

might be most useful for monitoring the structural states (Pozzi and Der 2011). Defining the failure 

mode is highly application-dependent in the engineering fields. In much of the SHM literature, 

various damage modes (e.g. crack, corrosion, shear, and etc.) have been defined and estimated 

(Hayo and Frankenstein 2011; Boscato and Dal Cin 2014; Taha and Lucero 2005). On an aircraft, 

the most relevant failure mode might be corrosion or metal fatigue cracking, while for a concrete 

bridge over water, the most relevant failure mode might be pier scour or roller bearing wear (John 

2016). In chapters 2 and 3 of this dissertation, a simple 2D beam-spring problem and a real-world 

Greenup miter gate problem will be presented as case studies. In the beam-spring problem, the 

damage state is defined as existences of springs connecting the cantilever beam to the wall, which 

leads to a binary damage state. In the miter gate problem, the most common damage mode is 

known as the “gap size” (or loss of contact in the quoin block) between the gate and the wall (Eric 

and Treece 2018). The “gap” produces stress re-distributed through the gate and induces failure. 

In both problems, strain gauges are installed as hardware equipment to measure strain responses 

of the structures under various loading scenarios.  

Environmental conditions must be considered when installing sensors for the SHM system. 

For a miter gate partially submerged in water, the sensors must be waterproof and able to withstand 

harsh weather conditions. All sensors installed on a bridge for monitoring must be able to deal 

with large changes in temperature without distorting data. The response to the structure can be 

affected by water levels, changes in boundary conditions, or temperature effects inducing 

shrinking or swelling in the structure (Foltz 2017). A limitation of the SHM system could be the 

location of where the sensors are installed. For instance, sensors cannot be installed on the 

upstream side of the gate. Besides, sensor merged under the water level could have lower reliability 
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compared to those located above the water level. More discussions on sensor reliability will be 

illustrated in chapter 4. 

 

1.1.2 Data Acquisition and Feature Extraction 

Damage-sensitive features are quantities extracted from the measured response system data 

that could be used to indicate whether damage has been detected in the structure. If appropriate 

features are chosen, the pattern recognition and machine learning process can be easy, in which 

the presence of damage can be clearly inferred from changes in the features (Catbas and Gul 2008; 

Young Noh 2011). In contrast, if features chosen are not directly correlated with damage, it will 

be much more difficult to distinguish damage based on the changes in the features. When selecting 

features, ideally, one would select a feature that is sensitive to damage in the structure and 

insensitive to operational variability. However, often issues arise as features that are sensitive to 

damage in the structure are also sensitive to the environmental variables (such as, temperature, 

wind, moisture). For example, Farrar, in 1994, performed vibration tests on the I-40 Bridge and 

explored that the bridge’s fundamental frequencies with respect to the four damage levels did not 

trend as expected due to large temperature gradient changes on the structure. As the damage level 

increased and the stiffness of the bridge decreased, the magnitudes of the bridge’s natural 

frequencies were expected to reduce as well. In these situations, more complex pattern recognition 

and machine learning techniques can be used to help prevent these issues. Accelerometers and 

strain gauges are examples of sensors that could be used to gather data on features. Accelerometers 

can gather data to perform modal analysis, and strain gauges do the same to indicate excessive 

loading conditions. In the miter gate problem, strain responses from the miter gate are considered 
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as features for detection of gap length. The measured data is combined with observation noises 

that will be analyzed in chapter 3.  

 

1.1.3 Damage Detection and Statistical Modeling  

Damage detection requires data obtained from the structure responses. The supervised 

learning approach accrues data from the undamaged and damaged system, or among many damage 

levels if more than a binary choice is desired. This differs from the unsupervised learning approach, 

in which data is available only from the undamaged system (Pao and Sobajic 1992). In the majority 

cases in civil engineering, it would be difficult to obtain data from the damaged state. For this case, 

the undamaged state would be considered as the current baseline state of the structure. Damage on 

the structure would be accounted for when changes are observed in the structure with respect to 

this current baseline state (Rose and Croall 1991; Fugate and Sohn 2000). Unfortunately, using the 

unsupervised learning approach does not provide necessary information to determine what type 

and to what extent of damage is present. The type and extent of damage can only be determined 

through classification and regression analysis, both falling under the supervised learning approach 

(Lewis and Catlett 1994; Gathercole 1998).  

To be able to perform supervised learning approach, Finite Element (FE) modeling is 

popular among researchers to generate the measurement data from various damaged states, 

particularly for civil infrastructure (Ren and Chen 2010; Liu and Edberg 2013). These physical-

based FE models are generally complicated “forward” models that simulate the response 

measurement data from various input variables (e.g., damage level, loading conditions). These FE 

models are usually complex enough to be able to describe the real structure, subject to model 

validation or updating (Friswell and Mottershead 2001; Lin and Zhu 2006; Mottershead and Link 
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2011). On the other hand, these models are usually computationally expensive in damage detection 

problems because it becomes an “inverse” problem requiring estimates of the damage states from 

given measurements. Especially, in Bayesian calibration strategy, the model must run many 

samples in a random walk-based method for the mean value of the responses (Yang, 

Madarshahian, and Todd 2019). More discussions will be in Section 1.3. 

 

1.2. Optimal Design Process in SHM  

 In the early days of SHM (before 1990’s), no clear objective functions were really defined 

for designing an optimal SHM system (Kidder 1973; Berman 1979). A basic SHM system 

indicates damage based on comparing the prior undamaged or damaged data to a new observed 

data set, which uses quantitative models to provide a statistical estimate of the condition of a 

structure. A bad design of SHM could possibly mislead the maintenance processes which would 

create a tremendous cost in economic and even life-safety. Designing an SHM system, like any 

system, must invariably start with a well-defined objective function, and the optimal design should 

maximize the utility of the objective. Among the first well-defined objectives was formulated in 

1991, when Kammer (Kammer 1991) implemented an optimal sensor placement problem for the 

purposes of modal identification by minimizing a Fisher information matrix (Behboodian 1972; 

Kleinman and Rao 1977). Other researchers eventually proposed using objective functions such 

as signal-to-noise ratio (Madu and Madu 1999; Bae and Flachsbart 2004; Pabari and Willson 

2011), probability of detection (Peh and Liang 2007; Markmiller and Chang 2010; Bhattacharjee 

and Das 2015), estimation error minimization (Joshi and Boyd 2008).  
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None of them have taken the economic loss due to the detection decisions into 

consideration. A more advanced design technique (not originally intended for SHM but rather for 

design of statistical experiments), Bayesian Experimental Design (BED) (Chaloner and Verdinelli 

1995), can be exploited to design a SHM system by minimizing the total risk or cost (Flynn and 

Todd 2010). The design implementation as applied for SHM usually includes four steps: i) 

evaluating the economic benefits, damage states, environmental conditions of the structure 

(essentially ‘operational evaluation’ from above), ii) obtaining useful features from the 

periodically sampled measurement data, iii) setting up the classification or binary decision 

hypothesis test, iv) transforming the decision statistics into making the most economical decisions 

(e.g., no action/maintenance/replacement) based on the minimizing the risk-based cost functions. 

Another advantage of Bayes risk-based strategy is that it accounts for the prior information of a 

damage state in the optimization process.  

The optimal design of a SHM system has various perspectives; the optimization involves 

sensor acquisition parameters (Lukosi and Rust 2019; Li and Zhao 2019; Costas-Perez and Lago 

2008), feature space (Iswandy and Koenig 2006; Gui and Pan 2017; Lin and Tsai 2015), and \ 

sensor locations (Padula and Kincaid 1999; Krause and Leskovec 2008; Ostachowicz and Soman 

2019; Yi and Li 2011;), the latter of which have been the most studied as a design problem. This 

thesis is also going to focus on the optimal design of sensor locations based by minimizing multiple 

cost functions, both risk-based and information-based, in SHM. More explanations will be 

provided in Section 1.3 and chapters 2 and 3.  
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1.3. Optimal Sensor Design for SHM  

Sensors essentially serve as a communication medium between structural response and 

human decisions regarding their behavior. Within the modern paradigm of SHM, sensors are the 

first step of the process, required to measure the in-situ responses of the structure under various 

loading conditions. In the early days (1990s) of the SHM field, the primary design strategy of 

traditional structural monitoring systems was to place as many sensors as possible on the structure 

to collect data without regard to the actionable information they collected, which was relatively 

inefficient and expensive; there was little early effort put into how to optimize such a design, 

according to some objective.  

Optimal sensor placement is now widely studied and explored by researchers in many 

engineering systems including electrical engineering (Jung and Song 2015; Brandisky and 

Sankowski 2012), mechanical engineering (Jeon and Das 2021; Zabel and Kirchhof 2015), 

computer science engineering (Singh 2018), civil engineering (Liu and Yao 2005; Teng and Zhu 

2011), aerospace engineering (Ye and Ling 2012; Khatami 2021). For instance, Tesla needs to 

optimally arrange its sensors around the vehicle to have the best or most accurate real-life response 

from the road in different situations. In civil engineering, infrastructure such as locks and dams for 

the inland waterway corridor requires an effective SHM system with to prevent unscheduled 

shutdowns, as mentioned above (Daniel 2000). Optimal sensor design becomes an important part 

in this cost minimization process, maximizing the value of any information gathered by the SHM 

system (Yang and Chadha 2021).  

The key idea of optimal sensor placement is to design sensor locations over space in 

purpose to maximize the valuable information obtained from the structures with a minimum cost. 

When designing an optimal sensing system for a structure such as miter gate, the process integrates 
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feature extractions, damage diagnosis, risk-based cost functions, uncertainty quantifications, and 

optimization techniques. Figure 1.1 shows the steps of designing a risk-based SHM system.  

 

 
Figure 1.1: Risk-based SHM sensor design steps (process) 

 

The framework involves, 1) surrogate modeling using Machine Learning (ML) strategies 

(Dupuis and Jouhaud 2018; Kim and Boukouvala 2020; Lu and Ricciuto 2019), 2) Bayesian 

inference for damage identification (Yan and Chronopoulos 2020; Yang, Madarshahian, and Todd 

2019), 3) Risk-based objective functions (Chadha, Hu, and Todd 2021), and 4) Bayesian 

optimization techniques for optimal sensor placement (Wang and Zoghi 2013; Garnett and 

Osborne 2010).  
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1.3.1 Surrogate Modeling  

During the calibration process, due to the high computational cost of the FE models, 

surrogate models (or meta-models) must be built. The goal of a surrogate model is to build a “run 

time” map from inputs and outputs. Machine learning techniques are widely deployed in building 

computationally efficient surrogate models. There are existing many different surrogate models 

that have been used in the literature such as support vector regression (SVR) (Xiang and Li 2017; 

Maolin and Liye 2020), neural networks (NN) (Tripathy and Bilionis 2018; Vega and Todd 2020), 

and Gaussian process regression (GPR) (Su and Peng 2017; Williams and Heng 2019). The data-

driven surrogate model usually runs significantly faster than the physical-based FE model. For 

instance, in our optimal sensor design for the miter gate, the GPR method is used to build a forward 

surrogate model instead of frequently running the “ground truth” FE model to predict the strain 

gauge values from input parameters. The output of the surrogate model usually has a very large 

dimension. The single value decomposition (SVD) technique (Van Loan 1976) reduces the high-

dimensional correlated output space to low-dimensional uncorrelated features to overcome the 

problem. The digital surrogate model computes 50000 times faster than the original FE model 

without sacrificing much accuracy. Figure 1.2 indicates the performance of surrogate model by 

plotting the predicted latent space value and true latent space value for each feature at each 

dimension. 
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Figure 1.2: Accuracy test for surrogate model in Latent space 

 

Figure 1.2 shows that the true values of the important features in latent space are almost 

same as the predicted values from our surrogate, as all the plots are almost diagonal for all four 

dimensions. Chapter 3 will explain the surrogate modeling in more detail.  

 

1.3.2 Bayesian Inference  

In damage detection process, Bayesian inference method is widely implemented for 

calibrating the damage state from the observed measurements (Box and Tiao 2011). The main 

advantage of Bayesian calibration is it offers a probabilistic estimation of damage by gathering 

prior information with obtained data. Chapter 2 will explain a deterministic solution for computing 

the likelihood in the inference process. Chapter 3 will illustrate the particles filter or sequential 

Monte Carlo (SMC) method (Lopes and Tsay 2011; Lee and Cohen 2002) to perform Bayesian 

inference for the continues variable gap length given observation data.  

 

1.3.3 Bayes Risk  

Bayes risk is an objective function that plays a critical role in the sensor optimal design 

framework. Generally, Bayes risk, in a design space, includes information from prior information, 
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posterior damage state prediction from observed data, and associated costs (or risks) with the 

decisions made from the estimated damage states. The primary goal is to find the best design over 

the entire design space that minimizes the total costs. The Bayes risk functions can be constructed 

in various ways depending on the type of objectives and decisions engineers want to achieve. 

Chapter 2 will show a linear binary decision-to-cost in the Bayes risk function design. The cost 

function includes intrinsic costs and extrinsic costs. Extrinsic costs include all consequences of the 

SHM system decisions, both correct and incorrect. Intrinsic costs include sensor design, 

installation, and maintenance. Chapter 3 will show a Bayes risk function mainly optimizes the 

information gain (f-divergences) of posterior estimation from prior distributions of the damage 

state.  

 

1.3.4 Uncertainty Quantification  

In the process of evaluating the Bayes risk, there are uncertainties from the input variables 

(damage level and loading position) and observation data (Smith 2013; Sullivan 2015). As part of 

formulating the risk function and extremizing it, we need to calculate its expected value. There are 

multiple methods of computing the expected costs. The first approach is sampling-based method 

(Gelfand 1996; Janson and Schmerling 2015). Basically, it generates inputs 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 number of times 

and compute posterior probability of damage and the corresponding costs  𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 number of times. 

The expected cost is just the average value of these costs. The second approach is mean value 

approximation (or 0th order Taylor expansion) (Huang and Du 2008). This method just evaluates 

the 0th term of the Taylor expansion of the expected costs, which equals to evaluate the inputs 

variables at mean values. The third method is called univariate dimension reduction with Gaussian 

Hermite integration (Rahman and Xu 2004). This method neglects all terms with dimension two 
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and higher in the Taylor expansion and approximate the integral with Gaussian Hermite points. 

Chapter 2 compares and contrasts the tradeoff between computational efficiency and estimation 

accuracy for all three methods.  

 

1.3.5 Optimal Sensor Placement 

The basic idea of the proposed optimal sensor design is to select the best arrangement of 

sensors that produces minimum Bayes risk, as discussed in Section 1.3.3. The searching process 

for an optimal design is computationally expensive because it must be evaluated over the ranges 

of all the uncertain variables. As a result, machine learning techniques becomes a significant part 

of the optimization process. In the sensor optimization design, there are approaches such as 

gradient descent that can find an optimal point quickly (Nagarajan and Kolter 2017; Zhang 2019; 

Mustapha and Mohamed 2020). However, the main drawback of that is it can easily stack at a local 

optimum. To find the global optimal point it needs more computational efforts. The main 

motivation of using Bayesian optimization is locate the optimal solution by minimizing the 

sampling points in order to hasten the optimization process (Brochu and Cora 2010; Garnett and 

Osborne2010; Lisicki and Lubitz 2016). Bayesian optimization looks for the global optimum in 

minimum number of steps. It incorporates prior belief about objective function and updates the 

prior with samples drawn from the objective function to get a posterior that better approximates 

the function. One of the critical components of the Bayesian optimization is building a surrogate 

function using GPR. 
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1.4. Role of Sensor Reliability over the Life Cycle  

Structures such as the miter gates employed herein as a case study generally degrade over 

time due to the aging of structural components. The sensors themselves can also degrade, also 

increasing their own probabilities of failure. In a life-cycle optimal sensor design framework, the 

time-dependent sensor reliability has critical impact on the optimization process. The acquired 

data can be biased if sensors are damaged, and then the inferred damage level (i.e., "gap" between 

the miter gate and the supporting wall) would be inaccurate. On top of the discussed optimal sensor 

design framework in Section 1.2, it is critical to account for changing of the sensor reliability when 

designing sensor locations multiple life cycle time-steps. More discussions of this study will be 

demonstrated in Chapter 4. 

 

1.5. Research Objectives, Organizations of Thesis and Contributions:  

The overarching objective of this thesis is to develop a risk-based optimal sensor design 

framework. Towards this goal, there are some challenges as: 

1) Build the optimal sensor design framework based on evaluating Bayes risk in a manner 

that overcomes the heavy computational effort over multiple time steps (the life cycle). 

2) Develop and implement the framework on the real miter gate problem with an 

informative cost function. 

3) Extend the optimal sensor design framework in SHM to account for sensor reliability 

and to consider the structure state changes over time. 

The remainder of the dissertation will be introduced by the order of the challenge tasks 

listed above. Chapter 2 will demonstrate a complete, well-constructed, and computationally fast 

framework for optimal sensor design in SHM using Bayes risk. A simple beam-spring problem is 
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used to show the power and effectiveness of the framework. Chapter 3 will show the framework 

in a real-world problem. The framework from Chapter 2 is further developed in terms of Bayes 

risk function, employing the information gain during Bayesian inference, and minimizing the 

computational expense in the optimization process. Chapter 4 will illustrate a life cycle sensor 

optimization design accounting for sensor reliably in SHM that integrates a structural degradation 

model. 

The main contributions presented on the following chapters can be summarized as:  

1) Developed a surrogate modeling approach with high prediction accuracy to overcome 

the lack of real-life data from various damage/loading conditions and heavy 

computations efforts of the physical-based FE model. 

2) Implemented Bayesian inference in estimating the damage level probabilistically, 

including prior information. 

3) Constructed two Bayes risk functions for the beam-spring and miter gate problems 

based on their different engineering demands. 

4) Computed the uncertainties of the inputs and noise using a relatively accurate and 

efficient estimation method, called univariate dimension reduction with Gaussian 

Hermite integration. 

5) Developed and deployed the Bayesian optimization strategy for sensor optimization, 

which includes surrogate modeling and expected improvement algorithms. 

6) Designed and developed a reliability model for sensors. 

7) Integrated sensor reliability with life cycle degradation in SHM system design process. 
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Chapter 2  
 
AN OPTIMAL SENSOR PLACEMENT DESIGN 
FRAMEWORK FOR STRUCTURAL HEALTH 
MONITORING USING BABYES RISK 
 

2.1. Abstract 

This chapter presents a novel generalized framework for optimal sensor placement design 

for structural health monitoring (SHM) applications using Bayes risk as the objective function. 

Bayes risk considers the costs of consequences associated with making decisions and design 

selection (extrinsic cost) in the monitoring process, as well as intrinsic costs (e.g., sensor 

deployment and maintenance costs), which suggests that it is a natural choice for an SHM design 

objective function. The framework is intended to be sufficiently generalized to be applicable to 

any optimal sensor placement design used for SHM. To demonstrate the effectiveness and 

comprehensiveness of the proposed framework, it is applied to an example problem concerning 

the state detection of the boundary of a beam modeled by springs. I discuss in-depth the specific 

formulation of Bayes risk for this demonstration problem and detail multiple approaches to 

evaluate it. This work addresses the challenges encountered in optimal sensor design problem due 

to the computationally expensive physics-based model, and it considers various uncertainties 

through the investigation and integration of Bayesian inference methods, uncertainty 

quantification, and optimization strategies. The effect of the initial design assumption and the 

technique used to approximate the Bayes risk on the final optimal sensor design is discussed. 
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2.2. Introduction 

Structural health monitoring (SHM) may be generally defined as the process of making an 

assessment, based on appropriate analyses of in-situ measured data, about the current ability of a 

structural component or system to perform its intended design function(s) successfully.  When 

coupled with future predictive capabilities, a successful SHM strategy may enable significant 

ownership cost reduction through maintenance optimization, performance maximization during 

operation, and unscheduled downtime minimization, and/or enable significant life safety 

advantage through catastrophic failure mitigation. Such an SHM strategy inevitably must, for a 

sufficiently well-defined application, include in-situ data acquisition, feature extraction from the 

acquired data, statistical modeling of the features, and subsequent hypothesis-based synthesis of 

the feature probabilistic models to make informed decisions about what to do with the structural 

component or system. Clearly, an important underlying enabler for an SHM strategy is the design 

of the sensor system, as data acquisition is the initiator of this multi-part paradigm (Farrar Worden 

2012; Farrar and Park 2010). As no widely accepted sensing strategy in SHM has been adopted 

for use, this chapter will propose and demonstrate the implementation of minimal Bayes risk as a 

natural target objective for SHM system design. 

The application case that will be used in this chapter is taken from the inland waterway 

infrastructure. The locks and dams that comprise the inland waterways infrastructure require an 

effective SHM system to prevent their unexpected failure and continuous monitoring to prevent 

huge economic losses (Richardson 1964; Daniel 2000). The United States Army Corps of 

Engineers (USACE) spends billions of dollars in maintaining and operating this infrastructure, 

where unscheduled shutdown of these assets and dewatering for inspection or repair is very costly 

(Parno and Connor 2018; Schwieterman and Field 2010; Yang and Madarshahian 2020; Foltz 
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2017). The need for SHM to help facilitate maintenance and operations appears strong, but highly 

constrained budgets suggest SHM system allocation efforts must be optimized to meet risk-based 

goals. Within the navigation lock systems, miter gates are one of the most common locking gates 

used; their most common failure mechanisms include long-term corrosion and loss of load-

transferring contact in the quoin block (boundary related damage) (Eric and Treece 2018). As 

many of these structures have been operational for over 50 years, many are presently potentially 

operating in a higher-risk profile without engineers knowing their real structural capability 

(Wilkins 1956); current practice involves engineering elicitation via inspection, followed by lock 

closures if the inspection so warrants. Since this process is based on the varied experience and 

interpretation of field engineers, it bears high uncertainties and variability (Vega and Todd 2020).  

The use of SHM could potentially reduce those uncertainties, but the value of information obtained 

depends upon its design (Thöns and Faber 2013).  In general terms, the first step of the SHM 

system design is to decide what suitable sensors (e.g., strain-gauges, accelerators, etc.) provide 

measurements from which the extracted features are correlated to the type of damage or state to 

be inferred. The second step is then to obtain a sensor network design (e.g., number of sensors, 

location/placement, duty cycle, etc.) that provides the most valuable information at a minimal cost 

(Nath and Hu 2017; Padula and Kin 1999; Malings and Pozzi 2017). 

Numerous seminal contributions have been made in optimal sensor placement design for a 

wide class of SHM applications (Chan 1997; Yi and Li 2011; Peddada and Tannous 2020). The 

overall goal of choosing the best sensor design is to let the monitoring system gather the most 

effective information from in-situ monitoring to detect the target state (Akbarzadeh and Lévesque 

2014). During the optimization process, an optimality criterion or an objective function is used to 

evaluate the effectiveness of the design. The best sensor design for a considered application, 
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therefore, depends on the optimality criterion or objective function chosen. Thus, engineers from 

different fields may have different criteria for defining this to obtain the best design that leads to 

the most effective information use. In other words, the engineers look for the best objective 

function that is in line with the primary goal of the monitoring system, and it evaluates the value 

of that information in some way. Some classic such objective functions include the probability of 

detection (POD), and the probability of classification (Peh and Liang 2007). For instance, in the 

aviation sector, engineers maximize the probability of detection because the cost of life is assumed 

invaluable (Maul and Kopasakis 2008). Papadimitriou et al. (Papadimitriou and Beck 2000) have 

proposed sensor placement design by minimizing entropy focusing on the applications of structural 

model updating. Similarly, Udwadia (Unwadia 1994) and Basseville (Basseville and Benveniste 

1987) have used the Fisher information matrix to maximize the parameter identification through 

SHM. 

In many SHM systems used for large civil infrastructure such as the application area 

considered in this chapter, the primary goal of the SHM system is to minimize the long-term 

monitoring and maintenance costs (Parno and Connor 2018). In this context, optimal sensor design 

is tied to the rate of incorrect decisions (e.g., the probability of false alarms for a binary decision 

case) and the costs/consequences associated with those wrong decisions. Flynn and Todd (Flynn 

and Todd 2010; Todd and Flynn 2011) first introduced Bayesian experimental design (Chaloner 

and Verdinelli 1995) by minimizing expected loss or risk (also termed as Bayes risk) incurred as 

a consequence of making a decision (choosing optimal design in their case). They demonstrated it 

in an ultrasonic guided wave sensor design problem. Bayes risk is proposed as a suitable choice of 

the objective function because it considers the costs of consequences associated with making 

decisions (parameterized by the monitoring design variables), known as extrinsic costs, as well the 
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cost of sensors system design, deployment, and maintenance, known as intrinsic costs. The optimal 

sensor design essentially demands arriving at the sensor network design that minimizes the 

expected losses incurred as a consequence of making a decision, or equivalently, that minimizes 

the losses in an average sense (the idea adapted from Bayesian experiment design and Bayesian 

decision theory).  

Because the monitoring process is subject to many sources of noise and variability, 

structural state determination is inherently stochastic. Thus, the goal is to arrive at a sensor network 

design that considers all the uncertainties and the consequences of inferring the structural state 

using the data gathered by the design of interest. The prediction of the structural state bears a 

cost/risk. For example, if the predicted structural state is not the same as the true state (unknown), 

there will be an associated penalty in the form of planned or unplanned maintenance costs, 

operational availability losses, or even structural failure costs. The design that leads to the least 

expected loss/risk due to making structural state decisions is the optimal design. Since I am 

operating in an uncertain domain, arriving at an optimal design that minimizes Bayes risk is the 

best one can do. In this chapter, Bayes risk will be used as an objective function in a strain-based 

measurement sensor optimization problem; however, I note that the framework proposed herein 

can also be applied to any SHM by formulating an appropriate form of Bayes risk constrained to 

that particular problem. 

A common approach to function optimization includes iteratively evaluating the optimal 

value of the function locally guided by the steepest gradient descent. This approach has been used 

in machine-learning (Bottou 2010) and in developing an optimal sensor network (Ram and  Nedic 

2007). Akbarzadeh (Akbarzadeh and Lévesque 2014) used a gradient descent algorithm in sensor 

optimization by deriving derivatives at each step, which requires less computational effort. 
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However, in many problems, the exact analytical derivatives are not available. Agarwal (Agarwal 

and Ezra 2009) used the greedy algorithm to find a minimum number of sensors for covering a 2-

dimensional space. The main shortcoming of the greedy algorithm is that it chooses the ``current 

best'' at each step so that it can easily converge to a local optimum instead of a global optimum. 

Heuristic algorithms are also widely used in the existing literature; for example, Jin (Jin and Zhou 

2003) used a genetic algorithm to minimize the communication distance of sensors, while Yi et al. 

(Yi and Li 2011) utilized a genetic algorithm to obtain optimal sensor placement for a high-rise 

building monitoring system. However, the main drawback of these optimization strategies is that 

they must run many samples, and hence are computationally expensive to arrive at the global 

optimal value of the objective function. In complex large-scale civil structures SHM applications, 

the sensor design space is potentially colossal. This coupled with the fact that obtaining and 

evaluating Bayes risk is computationally expensive and I do not have its derivatives, Bayesian 

optimization is the most suitable technique to apply. Bayesian optimization can optimize objective 

functions parameterized by high-dimensional design spaces with relatively low computational 

effort (Jones and Schonlau 1998; Hu and Nannapaneni 2017; Frazier 2018). This chapter details a 

general Bayesian optimization framework for obtaining the optimal sensor network design for 

SHM applications by using Bayes risk as the objective function. I address three implementation-

based challenges: (1) Bayesian calibration of the discrete parameters defining the damage state; 

(2) the expensive evaluation of Bayes risk; and (3) the global optimization of an extremely high-

dimensional design space informing Bayes risk.   

After laying the theoretical foundation of Bayes risk and Bayesian optimization, I detail 

the general framework. I believe that the best possible way to demonstrate our sensor optimization 

framework is through an example that by itself doesn't pose tremendous uninformative challenges, 
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is relatively simple to conceive, and has all the essential elements to utilize and showcase the 

optimization framework presented. To this end, I apply it to an example problem concerning the 

boundary condition detection state of a beam structure. This example was considered because it 

covers a broader spectrum of detection and inference-type problems that are common in SHM. 

One instance of a resembling but slightly different problem is that of contact loss detection between 

the quoin blocks of the miter gate. Moreover, the demonstration example is sufficiently complex 

to highlight the sensor optimization framework and the associated challenges while not inducing 

computational complexities and costs associated with more complex structural scenarios. 

The rest of the chapter is arranged as follows. Section 2.3 briefs the concepts of the Bayes 

risk functional and explains the four steps of the general sensor optimization framework. Section 

2.4 describes the demonstration problem and details the associated Bayes risk functional, followed 

by Section 2.5 that investigates three different approaches to evaluate the Bayes risk. Section 2.6 

discusses the optimal sensor placement design using Bayesian optimization in detail and presents 

the algorithm used. After a general discussion on Bayesian optimization, the remaining part of 

Section 2.6 discusses the effect of the initial design assumption and the approaches used to evaluate 

the Bayes risk on the final optimal sensor design for the demonstration problem. I present three 

methods to evaluate the Bayes risk functional: a sampling-based method, mean-value 

approximation, and univariate dimensional reduction with Gauss-Hermite quadrature. The 

sampling-based method yields the most accurate Bayes risk if large sample size is considered. 

Consequently, the sampling-based method suffers from a high computational cost. This drawback 

makes the sampling-based method unsuitable for sensor placement optimization. Secondly, as is 

the inherent case with any Monte-Carlo based approach, the values of Bayes risk obtained from 

the sampling-based technique change as a different set of samples are chosen. The other two 
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methods overcome these challenges and disadvantages. However, the mean-value approximation 

of the Bayes risk does not yield accurate values. The univariate dimensional reduction with Gauss-

Hermite quadrature is fairly accurate and has acceptable computational speed. Therefore, I use this 

third approach to evaluate Bayes risk, and then Bayesian optimization follows. Finally, Section 

2.7 concludes the chapter and Section 2.8 provides a preview to the next chapter. 

 

2.3. Bayes risk and general optimization framework 

I first present some preliminary definitions and notations. The real number space is 

represented by ℝ . A random variable 𝑋𝑋  is a real-valued function defined on a discrete or a 

continuous sample space 𝑆𝑆𝑋𝑋  and the measurement space Ω𝑋𝑋  such that 𝑋𝑋: 𝑆𝑆𝑋𝑋 ⟶ Ω𝑋𝑋 ⊂ ℝ. Let x 

represent the realization of the random variable 𝑋𝑋 , such that 𝑥𝑥 ∈ Ω𝑋𝑋 . The probability density 

function and the cumulative density function is represented by 𝑓𝑓𝑋𝑋(𝑥𝑥 ∈ Ω𝑋𝑋) and 𝐹𝐹𝑋𝑋(𝑥𝑥 ∈ Ω𝑋𝑋). The 

expected value of a function 𝑔𝑔(𝑥𝑥) is denoted by 𝐸𝐸𝑋𝑋[𝑔𝑔(𝑥𝑥)]. Lastly, a random variable 𝑋𝑋 following 

Gaussian distribution, with the mean 𝜇𝜇𝑥𝑥 and standard deviation 𝜎𝜎𝑥𝑥 is denoted by: 

𝑓𝑓𝑋𝑋(𝑥𝑥) =
1
𝜎𝜎𝑥𝑥
𝜙𝜙 �

𝑥𝑥 − 𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

�

𝐹𝐹𝑋𝑋(𝑥𝑥) = Φ�
𝑥𝑥 − 𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

�

𝑋𝑋 ∼ 𝑁𝑁(𝜇𝜇𝑥𝑥,𝜎𝜎𝑥𝑥)

 (2.1) 

 

2.3.1 Bayes risk for decision-making 

For a problem concerning Bayesian decision-making, the goal is to arrive at a decision that 

minimizes the expected risk (also referred to as Bayes risk in this chapter) or expected loss. The 

idea is that I have information about the system in the form of observable measured data. The goal 
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is to learn the behavior of the system from the data (called training) and then use the learned model 

to predict the outcome. Primarily, the outcomes can be categorized by detection, classification, and 

regression. For instance, detecting if the structure is damaged or not damaged given the measured 

strain gauge data is an example of detection; grouping the raw grades of the class into the letter 

grades is an example of classification; developing a digital twin/surrogate of a non-linear system 

is an example of regression. The goal is to make a decision that minimizes the expected loss or 

risk that arises associated with making a decision (every action/decision has a consequence). 

Therefore, the optimality criterion used in this chapter is the expected loss/risk, which is also 

referred to as Bayes risk functional and is a problem-dependent quantity. The strong similarity of 

Bayes risk with the action functional in variational structural mechanics is not surprising. 

I focus on the classification type problem of which detection is a special case. Let Ω𝑋𝑋 

represents the measurement space, Ω𝑌𝑌 represents the true state (or outcome) space with 𝑀𝑀 classes 

(for detection as defined above, 𝑀𝑀 = 2 ), such that the feature/measurement/observable is 𝑥𝑥 ∈ Ω𝑋𝑋, 

true outcome (or decision) is 𝑦𝑦 ∈ Ω𝑌𝑌 = �𝑦𝑦0, 𝑦𝑦1, … , 𝑦𝑦(𝑀𝑀−1)� , and the predicted outcome (or 

decision) is 𝑔𝑔(𝑥𝑥) ∈ Ω𝐺𝐺 = �𝑔𝑔0,𝑔𝑔1, … ,𝑔𝑔(𝑀𝑀−1)� , where 𝑖𝑖 = {0,1, … , (𝑀𝑀 − 1)} . Let 𝑋𝑋,𝑌𝑌 , and 𝐺𝐺 

represent the random variables corresponding to the uncertain measurement space, the true 

outcome, and the predicted outcome respectively. Note that Ω𝐺𝐺 ≡ Ω𝑌𝑌, and the two representations 

of outcome space is to distinguish between the true (but unknown) and the predicted states. In fact, 

𝑔𝑔(𝑥𝑥) represents the trained model. For instance, in the case of a simple detection problem, 𝑦𝑦0 

denotes a true damaged state; and 𝑔𝑔0 is a prediction of a damaged state. Bayes risk is designed 

such that it minimizes the effects of incorrect decisions. This is done by incorporating a loss 

function 𝐿𝐿(𝑔𝑔(𝑥𝑥), 𝑦𝑦):Ω𝐺𝐺 × Ω𝑌𝑌 ⟶ ℝ. It defines the consequence-cost of deciding the outcome to 

be 𝑔𝑔(𝑥𝑥) when 𝑦𝑦 is the true outcome. Since our goal is to minimize losses, the Bayes risk (objective 
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functional) is defined as the expected loss, averaged over all possible (noisy) measurements and 

the true state 𝑦𝑦𝑖𝑖. Since the goal in this section is to estimate the state 𝑔𝑔(𝑥𝑥) when the true state is 𝑦𝑦 

using the measurement 𝑥𝑥, the Bayes risk Ψstate  is a function of the predicted outcome/state 𝑔𝑔(𝑥𝑥) 

which in turn is a function of newly acquired data 𝑥𝑥 ∈ Ω𝑋𝑋. The Bayes risk is then defined as: 

Ψstate (𝑔𝑔(𝑥𝑥))  = 𝐸𝐸𝑋𝑋𝑋𝑋[𝐿𝐿(𝑔𝑔(𝑥𝑥), 𝑦𝑦)] = �  
𝑀𝑀−1

𝑖𝑖=0

 �  
Ω𝑋𝑋
 𝑓𝑓𝑋𝑋𝑋𝑋(𝑥𝑥,𝑦𝑦𝑖𝑖)𝐿𝐿(𝑔𝑔(𝑥𝑥), 𝑦𝑦𝑖𝑖)d𝑥𝑥

 = �  
𝑀𝑀−1

𝑖𝑖=0

 �  
Ω𝑋𝑋
 𝐿𝐿(𝑔𝑔(𝑥𝑥), 𝑦𝑦𝑖𝑖)𝑃𝑃𝑋𝑋∣𝑌𝑌(𝑥𝑥 ∣ 𝑦𝑦𝑖𝑖)𝑃𝑃𝑌𝑌(𝑦𝑦𝑖𝑖)d𝑥𝑥

 (2.2) 

Bayes risk can also be written in terms of conditional risk 𝑅𝑅state (𝑔𝑔(𝑥𝑥)) , conditioned on 

measurement 𝑥𝑥, as: 

Ψstate (𝑔𝑔(𝑥𝑥)) = 𝐸𝐸𝑋𝑋[𝑅𝑅state (𝑔𝑔(𝑥𝑥))] = �  
Ω𝑋𝑋
 𝑓𝑓𝑋𝑋(𝑥𝑥)𝑅𝑅state (𝑔𝑔(𝑥𝑥))d𝑥𝑥, where, (2.3 a) 

𝑅𝑅state (𝑔𝑔(𝑥𝑥)) = �  
𝑀𝑀−1

𝑖𝑖=0

 𝐿𝐿(𝑔𝑔(𝑥𝑥),𝑦𝑦𝑖𝑖)𝑓𝑓𝑌𝑌∣𝑋𝑋(𝑦𝑦𝑖𝑖 ∣ 𝑥𝑥) (2.3 b) 

The conditional risk is defined as the expected loss averaged over all possible true states and 

considering (or conditioned on) fixed measurement 𝑥𝑥 . The optimal decision is the one that 

minimizes the expected loss, or, 

𝔤𝔤(𝑥𝑥) = arg min 
𝑔𝑔(𝑥𝑥)

𝑅𝑅state (𝑔𝑔(𝑥𝑥)) ∈ Ω𝐺𝐺 (2.4) 

The Bayes risk Ψstate (𝑔𝑔(𝑥𝑥)) defined in this section is an objective functional that is used to 

optimally predict the most likely state 𝑔𝑔(𝑥𝑥) given the measurement 𝑥𝑥 (hence the subscript state in 

Ψstate  and 𝑅𝑅state  ). However, among possible choices of an SHM system design, every design will 
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predict a unique state for a given set of measurements (obtained by Eq. (2.4)). Inversely, the 

predicted outcome is dependent on the sensor design. In the next section, I consider the problem 

of design selection that would warrant a different Bayes risk functional. The goal is to pick the 

design that leads to the least erroneous state estimation (the optimality criterion is defined in the 

next section). Unlike the problem of state-estimation, where Bayes risk was a function of the 

estimated state 𝑔𝑔(𝑥𝑥), the Bayes risk for the design selection, represented by Ψdesign (𝑒𝑒), will be a 

function of design 𝑒𝑒. 

 

2.3.2 Bayes risk for design selection and optimal sensing framework 

The primary goal of this chapter is to arrive at an optimal sensing design, and Bayes risk 

can accommodate this notion. Let Ω𝐸𝐸  represent the design/experiment space, such that 𝑒𝑒 ∈ Ω𝐸𝐸 

represents a design realization. Every design 𝑒𝑒 yields different measurement data 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋, and 

corresponding likelihoods 𝑓𝑓𝑋𝑋𝑒𝑒∣𝑌𝑌(𝑥𝑥𝑒𝑒 ∣ 𝑦𝑦) . Here, Ω𝑋𝑋𝑒𝑒  represents the measurement space for the 

design 𝑒𝑒, and 𝑋𝑋𝑒𝑒 denotes the corresponding random variable. Let 𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) represents the optimally 

estimated state obtained using Eq. (2.4) for the measurement 𝑥𝑥𝑒𝑒 corresponding to the design 𝑒𝑒 ∈

Ω𝐸𝐸. Therefore, the decision 𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) is also design-dependent. In other words, I now care about 

choosing the design with the least error/deviation in the decision 𝔤𝔤(𝑥𝑥𝑜𝑜; 𝑒𝑒) relative to the true value 

𝑦𝑦. Equation Eq. (2.4) can be used to arrive at the optimal state 𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) for a given design 𝑒𝑒; or 

equivalently, for each design 𝑒𝑒, a threshold (or a classifier) can be established using Eq. (2.4) in 

the measurement space Ω𝑋𝑋𝑒𝑒 that helps classify each realization of measurement 𝑥𝑥𝑒𝑒 into the optimal 

state 𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒). Therefore, Eq. (2.4) establishes a mapping between the continuous measurement 

parameter 𝑥𝑥𝑒𝑒 and the decision (discrete in case of detection problem) 𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒). This allows me to 
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write the Bayes risk for each design 𝑒𝑒 focusing on minimizing the deviation of the predicted 

outcome 𝔤𝔤�𝑥𝑥𝜌𝜌; 𝑒𝑒� relative to the true outcome 𝑦𝑦 as: 

Ψdesign (𝑒𝑒) = 𝐸𝐸𝐺𝐺𝐺𝐺[𝐿𝐿(𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒), 𝑦𝑦)]  = �  
𝑀𝑀−1

𝑖𝑖,𝑗𝑗=0

 𝐿𝐿�𝑔𝑔𝑖𝑖 , 𝑦𝑦𝑗𝑗�𝑓𝑓𝐺𝐺∣𝑌𝑌�𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) = 𝑔𝑔𝑖𝑖 ∣ 𝑦𝑦𝑗𝑗�𝑓𝑓𝑌𝑌�𝑦𝑦𝑗𝑗� (2.5 a) 

𝑓𝑓𝐺𝐺∣𝑌𝑌(𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) ∣ 𝑦𝑦) = ∫  Ω𝑋𝑋𝑒𝑒
 𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) ∣ 𝑥𝑥𝑒𝑒)𝑓𝑓𝑋𝑋𝑒𝑒∣𝑌𝑌(𝑥𝑥𝑒𝑒 ∣ 𝑦𝑦)d𝑥𝑥𝑒𝑒. (2.5 b) 

For a design 𝑒𝑒, the true state 𝑦𝑦, and the observed measurement 𝑥𝑥𝑒𝑒, the estimated state 𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) is 

one of the states in the set Ω𝐺𝐺. Equivalently, for a design 𝑒𝑒, the true state 𝑦𝑦, and the measurement 

𝑥𝑥𝑒𝑒 every state 𝑔𝑔𝑖𝑖 ∈ Ω𝐺𝐺 has a likelihood probability of 𝑓𝑓𝐺𝐺∣𝑌𝑌(𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) = 𝑔𝑔𝑖𝑖 ∣ 𝑦𝑦) to be selected as the 

optimal estimated state 𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) . The Bayes risk functional Ψdesign (𝑒𝑒)  defined in Eq. (2.5a) 

calculates the expected value of loss (or risk) considering all the possibilities of the estimated states 

𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) ∈ Ω𝐺𝐺 and considering all the possible true states 𝑦𝑦 ∈ Ω𝑌𝑌. Minimizing this function yields 

a design that leads to the best prediction of the state. I will adapt the Bayes risk defined in Eq. 

(2.5a) focusing on a detection-type problems common in SHM. The following paragraphs detail 

the generalized step-by-step procedure for the proposed optimal sensor framework. 

 

Step 1: Problem description 

The first step involves a well-defined problem description. I need to decide our decision 

and the true space (Ω𝐺𝐺 ,Ω𝑌𝑌), or what needs to be detected, and what is its true condition/state, 

respectively Both, the decision and the true space refer to the state of the structure defined 

accordingly. A discrete decision space in SHM answers the question "Is a structure critically 

damaged or not?", e.g., whether a bolted assembly is at design torque or not; a continuous decision 
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space, such as where regression may be utilized, might be to infer crack length. In this chapter, I 

focus on discrete decision spaces, but at the same time note that the framework can easily be 

extended to the continuous case. In theory, that would essentially replace the summation over the 

decision space in Eq. (2.5a) by an integral. In practice, the continuous decision space can be 

discretized by identifying the mutually exclusive and exhaustive subsets with a decision state. For 

instance, a corroded surface area < 10% of a bridge girder might be classified as not damaged, 

10% − 30% can be identified as moderately damaged, and > 30% can be considered as severely 

damaged. Secondly, I need to define the measurement of the observable quantity using which the 

structural state is inferred. The features used to infer the structural state can be extracted from the 

measured quantity, although the measured data itself can be the feature. The measurement space 

Ω𝑋𝑋𝑒𝑒  essentially is the space from which the decision is directly inferred; therefore, in current 

content, the measurement space is the feature space. Once know what needs to be measured (for 

example, strain values), the design space Ω𝐸𝐸 follows (e.g., all the possible arrangements of a strain 

gauge network). Therefore, the problem description consists of defining the decision space, the 

true state space, the measurement (or feature) space, and the design space. 

 

Step 2: Definition of the design dependent Bayes risk functional 

For a simple classification problem, Eq. (2.5) represents the Bayes risk functional. 

However, as the complexity of the problem evolves, suitable adjustments to the Bayes risk should 

be made For instance, in our demonstration problem described in detail later, where I am focusing 

on the problem of multiple load path changes through boundary connections, the space of 

collective true states of the springs (denoted by Ω𝐴𝐴 ) becomes important. Second, in the case of 

collective decisionmaking problems, some decisions are more preferred or weighed than others. 
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To incorporate such situations, I can assign weights to each of these decisions. Third, unlike the 

Bayes risk expression in Eq. (2.5) that incorporates the cost of making a decision or extrinsic cost 

only, the intrinsic costs (like the sensor deployment and maintenance costs) must be included in 

SHM applications. All these considerations lead to Bayes risk Ψdesign (𝑒𝑒) to bear a form defined in 

Eq. (2.9), with the extrinsic cost defined in Eq. (2.10) of Section 2.4.2. 

 

Step 3: Evaluation of the design-dependent Bayes risk functional 

For a Bayes risk of a simple classification or detection type problems represented in Eq. 

(2.5a), the first challenge is to evaluate the three probabilities present in Eq. (2.5): 

𝑓𝑓𝑌𝑌�𝑦𝑦𝑗𝑗�,𝑓𝑓𝑋𝑋𝑒𝑒∣𝑌𝑌(𝑥𝑥𝑒𝑒 ∣ 𝑦𝑦), and 𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) ∣ 𝑥𝑥𝑒𝑒). The quantity 𝑓𝑓𝑌𝑌�𝑦𝑦𝑗𝑗� represents the prior probability 

of the true state, and in absence of any information can be assumed as 0.5 for a detection type 

problem. The likelihood 𝑓𝑓𝑋𝑋𝑒𝑒∣𝑌𝑌(𝑥𝑥𝑒𝑒 ∣ 𝑦𝑦) is obtained using either a physics-based model or a digital 

twin. The posterior of the decision given the measurement 𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝔤𝔤(𝑥𝑥𝑒𝑒; 𝑒𝑒) ∣ 𝑥𝑥𝑒𝑒) is more involved 

to evaluate. For a binary detection problem it can be written using the law of total probability as: 

𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑖𝑖 ∣ 𝑥𝑥𝑒𝑒) = � 
2

𝑗𝑗=1

𝑓𝑓𝐺𝐺∣𝑌𝑌�𝑔𝑔𝑖𝑖 ∣ 𝑦𝑦𝑗𝑗�𝑓𝑓𝑌𝑌∣𝑋𝑋𝑒𝑒�𝑦𝑦𝑗𝑗 ∣ 𝑥𝑥𝑒𝑒� (2.6) 

The probability of making a decision given the true state 𝑓𝑓𝐺𝐺∣𝑌𝑌�𝑔𝑔𝑖𝑖 ∣ 𝑦𝑦𝑗𝑗� depends on the detection 

threshold evaluated for each design case using Eq. (2.4). The quantity 𝑓𝑓𝑌𝑌∣𝑋𝑋𝑒𝑒�𝑦𝑦𝑗𝑗 ∣ 𝑥𝑥𝑒𝑒� is anti-causal 

and can be evaluated using Bayes theorem as: 

𝑓𝑓𝑌𝑌∣𝑋𝑋𝑒𝑒�𝑦𝑦𝑗𝑗 ∣ 𝑥𝑥𝑒𝑒� =
𝑓𝑓𝑋𝑋𝑒𝑒∣𝑌𝑌�𝑥𝑥𝑒𝑒 ∣ 𝑦𝑦𝑗𝑗�𝑓𝑓𝑌𝑌�𝑦𝑦𝑗𝑗�

𝑓𝑓𝑋𝑋𝑒𝑒(𝑥𝑥𝑒𝑒)  (2.7) 
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The second difficulty in obtaining Bayes risk is to evaluate the integral in Eq. (2.5b). To 

approximate the integral, I first change the variable of the integral from the measurement space to 

the uncertain input space. For instance, in our demonstration problem, the load, its location, and 

the noise in the strain values are uncertain, causing randomness in the strain measurement. I realize 

that a unique value of the load, its location, and the noise in the strain gauge give a unique 

realization of the strain measurement. This allows me to change the variables of integration as 

defined in Eq. (2.17). The integral can then be numerically approximated. I discuss three different 

approaches to evaluate the integral in Section 2.5.4. 

 

Step 4: Obtaining the optimal sensor design using Bayesian optimization 

Once the problem is well defined (step 1) and the associated Bayes risk is obtainable (steps 

2-3). the question that I intend to answer for optimal sensor design is: "Given Ω𝐺𝐺 ,Ω𝑌𝑌,Ω𝑋𝑋, and Ω𝐸𝐸 

and given an assumed initial design 𝑒𝑒0, what is the design 𝑒𝑒∗ ∈ Ω𝐸𝐸 that minimizes the Bayes risk 

Ψdesign (𝑒𝑒)? " 

I very briefly detail the sensor optimization algorithm, which will be explained in great 

depth in section 2.6. I start with an initial design 𝑒𝑒0 consisting of 𝑁𝑁0 number of sensors. To obtain 

the optimal design 𝑒𝑒1 with (𝑁𝑁0 + 1) sensors, I search the entire design space for the (𝑁𝑁0 + 1)th  

sensor location. The (𝑁𝑁0 + 1)th  sensor location that maximizes the acquisition function 

constitutes the next additional sensor. In this chapter, I use expected improvement (Mockus and 

Tiesis 1978; Jones and Schonlau 1998) as the acquisition function. Similarly, I repeat the 

optimization process to arrive at the optimal design 𝑒𝑒𝑛𝑛𝑎𝑎𝑎𝑎 consisting of 𝑁𝑁0 + 𝑛𝑛as sensors (or 𝑛𝑛as 

number of additional sensors relatively to the initially assumed design 𝑒𝑒0). Finally, I pick 𝑒𝑒∗ =

arg min𝑒𝑒𝑛𝑛as  Ψdesign �𝑒𝑒𝑛𝑛as� as the most optimal design, where Ψdesign �𝑒𝑒𝑛𝑛as� represents the Bayes 
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risk associated with the design 𝑒𝑒𝑛𝑛as . Figure 2.1 illustrates the pipeline of the proposed Bayesian 

optimization framework.  

 
Figure 2.1: Bayesian optimization framework for optimal sensor network design 

Section 2.4 deals with the description of a demonstration problem and derives the associated Bayes 

risk (steps 1 and 2). Section 2.5 discusses the approaches to evaluate the Bayes risk pertaining to 

the demonstration problem (step 3). Finally, Section 2.6 details the Bayesian optimization 

algorithm for optimal sensor placement 1 for general detection-type problems and discusses the 

results concerning the demonstration problem. 

 

2.4. Demonstration problem description and the associated Bayes risk 

As I mentioned in the introduction, the primary motivation for choosing the following 

example problem as a case study to demonstrate this framework is that it resembles in behavioral 

characteristics a typical detection-type problem in SHM that has a discrete decision space: the loss 

of contact in the quoin block of a miter gate. As discussed in section 2.3.2, even the continuous 

decision space can be reasonably broken down into a rather more convenient discrete decision 

space. Hence, the presented framework is also suitable for problems involving crack propagation, 

corrosion, weld defect growth, etc. To demonstrate the framework, I consider a beam modeled by 

2D shell elements and focus on detecting the state of the boundary modeled using connecting 
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springs. This problem is complicated enough to highlight the Bayesian optimization framework 

for sensor placement and undemanding enough to implement the algorithms with a lower 

computational cost. The figure below shows similar types of problems in SHM where the presented 

sensor-design framework can be extended (although each specific problem would require its own 

carefully considered Bayes risk functional). 

 
Figure 2.2: Design optimization problems in SHM similar to the demonstration example presented 

in this chapter 
 

2.4.1 Demonstration problem description 

The demonstration problem consists of a cantilever beam supported by a roller on the left 

end and a free boundary on the right end. The Young's modulus of the beam is 2.1 × 109Nm−2. 

There exist 11 wall-to-beam springs with the stiffness 107Nm−1 connected to the left side of the 

2D shell element providing structural stability as shown in Fig. 2.3. The finite element model for 

the beam was build in OpenSees (McKenna 2011) with quadrilateral meshing. The entire beam 

was meshed finely to 22500 elements to capture accurate strain responses, particularly at the left 
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edge of the beam, where the springs are attached. The horizontal axial strain of the element is 

considered to be the strain gauge measurement. Therefore, there are 22500 possible strain gauges 

(with horizontal orientation). In the general case, the strain gauge may be discrete or continuous 

and can have any orientation (Chadha and Todd 2019). 

 
Figure 2.3: Schematic diagram of the 2D beam modeled by 2D shell elements 

 

 The problem statement is as follows: I aim to arrive at the best possible sensor placement 

design 𝑒𝑒 ∈ Ω𝐸𝐸, where Ω𝐸𝐸 is the design space, such that the existence of the springs on the left of 

the beam can be most optimally predicted ("detected"), given that the magnitude of the load 𝑝𝑝 and 

its location 𝑝𝑝loc ∈ [0,10] are uncertain. I also assume that the strain gauge readings are noisy. By 

sensor placement design, I mean the arrangement of the strain gauges (including the number used 

and their locations). To simplify the problem further, I fix the top six springs. Hence, I need not 

predict their existence. The goal is, therefore, to predict the existence of the remaining five springs 

𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4, and 𝑠𝑠5. 
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2.4.2 Bayes risk for the optimal sensor placement 

As discussed before, for each spring, our predicted decision space Ω𝐺𝐺 and the true outcome 

space Ω𝑌𝑌 consist of two possible outcomes, such that Ω𝐺𝐺 = {𝑔𝑔0,𝑔𝑔1} and Ω𝑌𝑌 = {𝑦𝑦0,𝑦𝑦1}, where 

 

𝑔𝑔0: Prediction is that the spring exists; 

𝑔𝑔1: Prediction is that the spring does not exists; 

𝑦𝑦0: True state is that the spring exists; 

𝑦𝑦1: True state is that the spring does not exists. 

(2.8) 

Recall that the problem has 5 critical springs 𝑠𝑠𝑛𝑛, with 𝑛𝑛 ∈ {1,2,3,4,5}. For 𝑛𝑛th  spring, I 

denote the predicted state by 𝑔𝑔𝑖𝑖|𝑛𝑛th𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑔𝑔𝑛𝑛𝑛𝑛, and the true state by 𝑦𝑦𝑗𝑗�𝑛𝑛th𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
= 𝑦𝑦𝑛𝑛𝑛𝑛, with 𝑖𝑖, 𝑗𝑗 ∈

{0,1}, such that 𝑔𝑔𝑛𝑛𝑛𝑛 ∈ Ω𝐺𝐺 and 𝑦𝑦𝑛𝑛𝑛𝑛 ∈ Ω𝑌𝑌. Since there are five springs, with each of them existing 

in the either of two possible states {𝑦𝑦0, 𝑦𝑦1}, there are 25 possibles states of the springs collectively. 

I define the collective true state of the five springs by a set of vectors Ω𝐴𝐴 , such that 𝐴𝐴𝑘𝑘 =

[𝑦𝑦‾1,𝑦𝑦‾2,𝑦𝑦‾3,𝑦𝑦‾4,𝑦𝑦‾5] ∈ Ω𝐴𝐴  and 𝑦𝑦‾𝑛𝑛 ∈ {𝑦𝑦𝑛𝑛0,𝑦𝑦𝑛𝑛1} = Ω𝑌𝑌 , with 𝑘𝑘 ∈ {1,2,3, … , 25} , and 𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘) =

2−5,∀𝑘𝑘. Similarly, I define the collective prediction state of the five springs by a set of vectors 

Ω𝑆𝑆, such that 𝑆𝑆𝑘𝑘 = [𝑔𝑔‾1,𝑔𝑔‾2,𝑔𝑔‾3,𝑔𝑔‾4,𝑔𝑔‾5] ∈ Ω𝑆𝑆 and 𝑔𝑔‾𝑛𝑛 ∈ {𝑔𝑔𝑛𝑛0,𝑔𝑔𝑛𝑛1} = Ω𝐺𝐺, with 𝑘𝑘 ∈ {1,2,3, … , 25}. I 

define 𝐴𝐴 and 𝑆𝑆 as the random variables corresponding to the space Ω𝐴𝐴 and Ω𝑆𝑆 respectively, such 

that, 𝐴𝐴𝑘𝑘 and 𝑆𝑆𝑘𝑘 represents the realizations of 𝐴𝐴 and 𝑆𝑆 respectively. 

For the considered sensor placement design 𝑒𝑒, the Bayes risk specific to this problem 

consists of intrinsic and extrinsic costs. The intrinsic cost Ψdesign-in (𝑒𝑒) includes the expenses 

associated with the sensor installation and maintenance. On the other hand, the extrinsic cost 

Ψdesign-ex (𝑒𝑒) accounts for the cost of making a decision and the design selection. It resembles the 

form of Eq. (2.5). Therefore, the total Bayes risk is defined as: 
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Ψdesign (𝑒𝑒) = Ψdesign-in (𝑒𝑒) + Ψdesign-ex (𝑒𝑒) (2.9) 

I now focus on constructing the extrinsic cost Ψex-design (𝑒𝑒) . I denote the cost 𝐿𝐿(𝑔𝑔𝑛𝑛𝑛𝑛 ,𝐴𝐴𝑘𝑘)  : 

Ω𝐺𝐺 × Ω𝐴𝐴 ⟶ ℝ, defining the regret of making the decision 𝑔𝑔𝑖𝑖 for the strain gauge 𝑛𝑛, when the true 

collective state is 𝐴𝐴𝑘𝑘. I further define the cost function: 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐿𝐿�𝑔𝑔𝑛𝑛𝑛𝑛 ,𝐴𝐴𝑘𝑘(𝑛𝑛) = 𝑦𝑦𝑛𝑛𝑛𝑛�, and assume 

that it is independent of the selected design 𝑒𝑒. For the fixed spring 𝑛𝑛, the cost 𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛 = 𝐶𝐶𝑖𝑖𝑖𝑖 is defined 

as: 

Table 2.1: Cost Function 

 
 

The cost values 𝐶𝐶𝑖𝑖𝑖𝑖  assign penalty/losses to each predicted state 𝑔𝑔𝑖𝑖  when the true state is 𝑦𝑦𝑗𝑗 . 

Consider the case where the spring exists in reality, i.e. the state 𝑦𝑦0. If the prediction is correct, i.e. 

𝑔𝑔0, there is no loss since no action is warranted, or 𝐶𝐶00 = 0. On the contrary, if the prediction is 

𝑔𝑔1 (spring not existing), then the engineers would decide to perform unnecessary inspection and 

service leading to a loss of 𝐶𝐶10. However, as a consequence of this incorrect decision, there would 

be no major failure since the spring exists in reality. Similarly, consider the case where the spring 

does not exist, represented by 𝑦𝑦1 (the boundary is actually damaged). If I estimate (from strain 

gauge data) that spring does not exist (correct decision), then there will be cost (denoted by 𝐶𝐶11 ) 

incurred to inspect and repair the spring (or the boundary). However, if the spring is predicted to 

exist, when it is non-existent (incorrect decision), it can lead to the most expensive mistake since 

the structure can potentially fail if appropriate actions are not taken. This leads to the maximum 
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cost of 𝐶𝐶01. For simplicity, I assume 𝐶𝐶01 = 200 dollars and assume other costs to be fraction of 

𝐶𝐶01, such that 𝐶𝐶10 = 0.1𝐶𝐶01 and 𝐶𝐶11 = 0.25𝐶𝐶01. Individual costs 𝐶𝐶𝑖𝑖𝑖𝑖 are defined in Table 2.2. 

Table 2.2: Assumed cost function values 

Cost Definition Breakdown Assumed 
Dollars 

𝐶𝐶00 True positive cost Zero cost, as no action is needed 0 

𝐶𝐶10 False positive cost Cost due to service and inspection 20 

𝐶𝐶01 False negative cost Cost due to service, failure, and 
replacement 200 

𝐶𝐶11 True negative cost Cost due to service and repair 50 
 

In cases of problems involving multiple decisions, there may be instances where the 

consequences of making some decisions are more important or weighed for some cases than the 

others (like some springs being more important than the others). To incorporate these kinds of 

situations, I assume that the top two springs (𝑠𝑠4, 𝑠𝑠5) are more important than the bottom three 

(𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3). I incorporate this assumption by assigning weights to each of these springs as 𝑤𝑤 =

[1,1,1,1.5,1.5] . The goal is to define the extrinsic Bayes risk functional, considering the 

importance of the consequence of decisions associated with each spring, as a quantity that 

minimizes itself with the most optimal sensor arrangement 𝑒𝑒. Along the similar lines of Eq. (2.5), 

the extrinsic Bayes Risk is defined as: 

Ψdesign-ex (𝑒𝑒) = � 
5

𝑛𝑛=1

𝑤𝑤𝑛𝑛𝐸𝐸𝐺𝐺𝐺𝐺�𝐿𝐿(𝑔𝑔𝑛𝑛𝑛𝑛 ,𝐴𝐴𝑘𝑘)�

= � 
5

𝑛𝑛=1

𝑤𝑤𝑛𝑛�  
32

𝑘𝑘=1

�  
1

𝑖𝑖=0

𝐿𝐿(𝑔𝑔𝑛𝑛𝑛𝑛 ,𝐴𝐴𝑘𝑘)𝑓𝑓𝐺𝐺∣𝐴𝐴(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝐴𝐴𝑘𝑘)𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘) 

(2.10) 
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In the equation above, 𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘) = 2−5 is the prior probability of the collective state of springs being 

𝐴𝐴𝑘𝑘 . Secondly, 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒  represents the measured/observed data. For instance, 𝑥𝑥𝑒𝑒  can be strain 

measurements for any design 𝑒𝑒 . For the 𝑛𝑛th  spring, the quantity 𝑓𝑓𝐺𝐺∣𝐴𝐴(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝐴𝐴𝑘𝑘) represents the 

probability of predicting the state 𝑔𝑔𝑖𝑖 for the spring 𝑛𝑛, when the true collective state is 𝐴𝐴𝑘𝑘. This is 

a difficult bit to evaluate, and like Eq. (2.5b) can be broken down into more manageable pieces: 

𝑓𝑓𝐺𝐺∣𝐴𝐴(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝐴𝐴𝑘𝑘) = �  
Ω𝑋𝑋𝑒𝑒

𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒) ⋅ 𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘)d𝑥𝑥𝑒𝑒 (2.11) 

The likelihood 𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒) depicts our belief of deciding the state of the spring 𝑛𝑛 to be 𝑔𝑔𝑖𝑖 for a 

given measurement 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒. I obtain the likelihood using Bayesian inference (detailed in the next 

section). 

 

2.5. Evaluating Bayes risk for a fixed design 

To perform Bayes optimization that yields the most optimal sensor placement design, I will 

have to start with a design that evolves/improves with every iteration of the optimization process 

At every iteration, for a suggested design 𝑒𝑒, I need to obtain the Bayes risk defined in Eq. (2.10). 

Therefore, in this Section, I detail on calculating the Bayes risk for a design 𝑒𝑒 consisting of 30 

sensors, the arrangement of which was obtained using Latin Hypercubic Sampling (LHS) 

technique (McKay and Beckman 2000). The first step of the process is to evaluate the likelihood 

of making a decision given the measurement, 𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒).  
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2.5.1 Analytical formulation to obtain the likelihood  

The goal is to obtain 𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒). Recall that 𝑆𝑆𝑘𝑘 ∈ Ω𝑆𝑆 defines the collective prediction 

state of the springs. I can therefore write: 

𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒) = � 
32

𝑘𝑘=1

𝑓𝑓𝐺𝐺∣𝑆𝑆(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑆𝑆𝑘𝑘) ⋅ 𝑓𝑓𝑆𝑆∣𝑋𝑋𝑒𝑒(𝑆𝑆𝑘𝑘 ∣ 𝑥𝑥𝑒𝑒) (2.12) 

Note that: 

𝑓𝑓𝐺𝐺∣𝑆𝑆(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑆𝑆𝑘𝑘) = �1  if 𝑆𝑆𝑘𝑘(𝑛𝑛) = 𝑔𝑔𝑛𝑛𝑛𝑛
0  otherwise 

 (2.13) 

To evaluate the distribution 𝑓𝑓𝑆𝑆∣𝑋𝑋𝑒𝑒(𝑆𝑆𝑘𝑘 ∣ 𝑥𝑥𝑒𝑒) in Eq. (2.12), I assume that to make a decision given the 

measurement data, I have a non-conflicting threshold or boundary to make a prediction of the 

spring state, such that 𝑓𝑓𝑌𝑌∣𝑋𝑋𝑒𝑒(𝑦𝑦𝑛𝑛0 ∣ 𝑥𝑥𝑒𝑒)  and 𝑓𝑓𝑌𝑌∣𝑋𝑋𝑒𝑒(𝑦𝑦𝑛𝑛1 ∣ 𝑥𝑥𝑒𝑒)  do not intersect. This also implies 

𝑓𝑓𝐺𝐺∣𝑋𝑋(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒) = 𝑓𝑓𝑌𝑌∣𝑋𝑋𝑒𝑒(𝑦𝑦𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒). With this assumption, I have 𝑓𝑓𝑆𝑆∣𝑋𝑋𝑒𝑒(𝑆𝑆𝑘𝑘 ∣ 𝑥𝑥𝑒𝑒) = 𝑓𝑓𝐴𝐴∣𝑋𝑋𝑒𝑒(𝐴𝐴𝑘𝑘 ∣ 𝑥𝑥𝑒𝑒). 

 I note that the quantity 𝑓𝑓𝐴𝐴∣𝑋𝑋𝑒𝑒(𝐴𝐴𝑘𝑘 ∣ 𝑥𝑥𝑒𝑒) is anti-causal, as it is asking for the true state of the 

springs when the measurement 𝑥𝑥𝑒𝑒 is given. I use Bayes theorem to write it in a more desirable 

and causal form: 

𝑓𝑓𝐴𝐴∣𝑋𝑋𝑒𝑒(𝐴𝐴𝑘𝑘 ∣ 𝑥𝑥𝑒𝑒) =
𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘) ⋅ 𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘)

∑  32
𝑙𝑙=1  𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑙𝑙) ⋅ 𝑓𝑓𝐴𝐴(𝐴𝐴𝑙𝑙)

=
𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘)

∑  32
𝑙𝑙=1  𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑙𝑙)

 (2.14) 

The likelihood 𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘) remains to be evaluated for all 𝑘𝑘. For a fixed collective spring state 

𝐴𝐴𝑘𝑘, and a design 𝑒𝑒 with 𝑁𝑁sg(𝑒𝑒) number of strain gauges, 𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘) is the joint distribution of 

the 𝑁𝑁sg(𝑒𝑒) strain measurements. 
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Although the true strain values of different strain-gauges are related due to the underlying 

physics, the noise in strain gauge measurements is taken to be statistically independent. I also 

assume (for modeling purposes) that the randomness in the strain gauge readings, primarily due to 

noise and uncertainties in loading, follows a Gaussian distribution. Let 𝑥𝑥𝑒𝑒𝑒𝑒 represent the observed 

strain measurement in 𝑛𝑛-th strain-gauge of the design 𝑒𝑒, such that 𝑥𝑥𝑒𝑒 = {𝑥𝑥𝑒𝑒𝑒𝑒} with 𝑛𝑛 ≤ 𝑁𝑁sg(𝑒𝑒). 

For the selected spring state 𝐴𝐴𝑘𝑘 and the design 𝑒𝑒, if 𝑥𝑥𝑒𝑒𝑒𝑒, 𝜇𝜇𝑒𝑒𝑒𝑒, and 𝜎𝜎𝑒𝑒𝑒𝑒 represent the measurement 

of the strain gauge 𝑛𝑛 (a random variable), its mean value, and the standard deviation respectively, 

I can write the following: 

𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘) = �  

𝑁𝑁sg(𝑒𝑒)

𝑛𝑛=1

1
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2 �
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𝜎𝜎𝑒𝑒𝑒𝑒
�
2
� = �  

𝑁𝑁sg(𝑒𝑒)

𝑛𝑛=1

1
𝜎𝜎𝑒𝑒𝑒𝑒

𝜙𝜙 �
𝑥𝑥𝑒𝑒𝑒𝑒 − 𝜇𝜇𝑒𝑒𝑒𝑒

𝜎𝜎𝑒𝑒𝑒𝑒
� (2.15) 

This gives all the pieces to obtain 𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒). I obtain the measurement data 𝑥𝑥𝑒𝑒 using Finite 

Element Model (FEM) developed using OpenSees (McKenna 2011) or using a surrogate model 

developed using Gaussian Process Regression (GPR) (Frazier 2018). 

I note that obtaining the likelihood 𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘) and the posterior 𝑓𝑓𝐴𝐴∣𝑋𝑋𝑒𝑒(𝐴𝐴𝑘𝑘 ∣ 𝑥𝑥𝑒𝑒) is not 

complicated for the chosen demonstration problem. Since our emphasis is more on the 

optimization framework, for simplicity I have assumed strain values to be uncorrelated and 

evaluation of the posterior can be done analytically as the decision space is discrete. However, for 

more complicated problems with correlated measurement values and continuous decision space, 

evaluation of the likelihood and the posterior will be more involved. For instance, in such cases, I 

use numerical techniques like Markov Chain Monte Carlo (MCMC), Sequential Monte Carlo 

(SMC) (Ramancha and Astroza 2020), or other methods to evaluate posterior. 



  40   

Remark 2.1: I note that the true strain values of different strain gauges are correlated (or 

functionally related) by the underlying physics of the problem. That is, each of the strain gauge 

readings embeds some information about the state of the structure. In this chapter, I use the Finite 

Element Model (FEM) as the ground truth (discussed more in the next section). This implies that 

the strain values obtained from the FEM are treated as the actual/true strain measurement that is 

impossible to be known since there will always be noise in observed strain readings. For a given 

load condition, I have a deterministic prediction of the mean value of the strain reading using the 

FEM model (or the respective digital surrogate constructed using strain data obtained from the 

FEM) which is considered to be the ground truth. However, the noise in the various strain gauge 

reading is statistically independent since the noise pertains to a given strain gauge itself. In this 

chapter, I have assumed a Gaussian structure to the noise. 

2.5.2 Finite element and Surrogate model  

Section 2.3 details the finite element model of the structure of interest built using shell 

elements. I consider that the loading in the beam is uncertain, such that, the concentrated load 𝑝𝑝 ∈

Ω𝑃𝑃 and its locations 𝑝𝑝loc ∈ Ω𝑃𝑃loc is represented by the random variables 𝑃𝑃 and 𝑃𝑃loc respectively. I 

run the FE model for 5000 samples of random input data consisting of seven quantities: the true 

state of the springs 𝐴𝐴𝑘𝑘 ∈ 𝐴𝐴 (consisting of states of 5 springs), the magnitude of the load 𝑃𝑃 ∼

𝑁𝑁�𝜇𝜇𝑝𝑝 =  1000 newton, 𝜎𝜎𝑝𝑝 = 100  newton), and the location of the load 𝑃𝑃loc ∼ 𝐻𝐻𝐻𝐻(𝜇𝜇loc =

10 m,𝜎𝜎loc = 1 m) Here, 𝐻𝐻𝐻𝐻(⋅,⋅) represents the half normal distribution. For each input sample, I 

obtain 22,500 strain responses. From here on Ω𝑍𝑍 represent the space of input sample, such that 𝑧𝑧 ∈

Ω𝑍𝑍. 



  41   

I would like to note that in many machine learning problems, physics-based models are 

unavailable, and the engineers must rely on fitting a numerical model using the data obtained from 

the experiments. In our case, I obtain the data from the finite element model, which I consider as 

"ground truth". Although I have the luxury of utilizing the finite element model, the computational 

cost is restrictive, and therefore, not the best option with which to carry out Bayesian optimization 

For Bayesian calibration, metamodels or surrogate models are preferable, e.g., Support Vector 

Regression (SVR) (Moustapha and Bourinet 2018), Gaussian Process Regression (GPR) 

(Moustapha and Bourinet 2018; Frazier 2018), Neural Network (Yu and Wang 2009), and 

Polynomial Chaos Expansion (PCE) (Capellari and Chatzi 2018). Models like PCE and SVR yield 

a point prediction of the output. Therefore, they are computationally cheaper than approaches like 

GPR that also predicts the uncertainties in the output. I use GPR to build our surrogate model 

which turns out to be 5000 times faster than the FEM model. The output of the surrogate model 

usually has a very large dimension. I overcome the issue of high-dimensional output space using 

the Single Value Decomposition (SVD) technique that reduces the high-dimensional correlated 

output space to low-dimensional uncorrelated features. I transform the strain response from 22500 

dimensions to lower 28-dimensional latent space using SVD. These 28 important features cover 

99.2% of the total information of the data. These 28 features can be inverted to obtain the complete 

strain gauge response. I have built the surrogate model for each of these 28 features using GPR. 

One-third of the 5000 data points were used for training the GPR, whereas the remaining was used 

for validation to verify the accuracy of the surrogate. Fig. 2.4 illustrates the discussion carried out 

so far. 

The Figures 2.5a and 2.5b show the nearly identical strain field obtained for FEM and the 

surrogate model for a random input sample. Fig. 2.6a shows the error in the prediction of the strain 
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values using the FEM and GPR model for the bottom 100 strain gauge locations at the left 

boundary of the beam Overall, the absolute prediction error is of the order 10−7, and the relative 

error is of the order 10−3 However, a relatively high prediction error is observed at the locations 

of springs. Similarly, Fig. 2.6b shows the distribution of the absolute prediction error across the 

beam for a random input sample Once again, relatively higher errors are observed at the spring 

locations and the location where the concentrated load acts. 

 
Figure 2.4: Flowchart describing strain data generation using FEM, and prediction using GPR 

surrogate model 
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Figure 2.5: Comparison of the strain fields obtained using FEM and GPR model 

 

 
Figure 2.6: Error in the strain values obtained using FEM and GPR model 

 

2.5.3 Revisiting Bayes risk  

As seen in Section 2.5.2, the measurement 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒  depends on the load 𝑝𝑝 ∈ Ω𝑃𝑃 , its 

location 𝑝𝑝loc ∈ Ω𝑃𝑃loc . The randomness in the strain values (observations) 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒 are primarily 

due to the noise in strain gauge, uncertainties in the concentrated load, and its location. I assume a 

zero mean Gaussian noise structure 𝜁𝜁 ∼ 𝑁𝑁(𝜇𝜇𝜀𝜀 = 0,𝜎𝜎𝜀𝜀 = 5 × 10−7). Let 𝜀𝜀 represent the realization 

of noise and Ω𝜁𝜁 represent the noise space, such that 𝜀𝜀 ∈ Ω𝜁𝜁. 

Consider a design 𝑒𝑒 with 𝑁𝑁sg(𝑒𝑒) number of strain measurement locations. Let 𝜁𝜁𝑖𝑖 represent 

the random variable for the noise in the 𝑖𝑖th  strain location. It is reasonable to assume that the 
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�𝑁𝑁sg(𝑒𝑒) + 2�  random variables 𝑃𝑃,𝑃𝑃loc, 𝜁𝜁𝑖𝑖 ,⋯ , 𝜁𝜁𝑁𝑁sg(𝑒𝑒)  are statistically independent. I define a 

design dependent product space Ω𝜉𝜉𝑒𝑒 = Ω𝑃𝑃 × Ω𝑃𝑃loc × Ω𝜁𝜁1 × Ω𝜁𝜁2 × ⋯× Ω𝜁𝜁𝑁𝑁sg (𝑒𝑒) . The random 

vector 𝜉𝜉𝑒𝑒  consists of the realizations of the random variables 𝑃𝑃,𝑃𝑃loc, 𝜁𝜁𝑖𝑖 ,⋯ , 𝜁𝜁𝑁𝑁sg(𝑒𝑒).  The joint 

density function is then written as: 

𝑓𝑓𝜉𝜉𝑒𝑒(𝛽𝛽) = 𝑓𝑓𝑃𝑃(𝑝𝑝) ⋅ 𝑓𝑓𝑃𝑃loc(𝑝𝑝loc). �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

 𝑓𝑓𝜁𝜁𝑖𝑖(𝜀𝜀𝑖𝑖), where, 

𝛽𝛽 = �𝑝𝑝 ∈ Ω𝑃𝑃,𝑝𝑝loc ∈ Ω𝑃𝑃loc , 𝜀𝜀1 ∈ Ω𝜁𝜁1 , 𝜀𝜀2 ∈ Ω𝜁𝜁2 ,⋯ , 𝜀𝜀𝑁𝑁sg(𝑒𝑒) ∈ Ω𝜁𝜁𝑁𝑁sg(𝑒𝑒)� ∈ Ω𝜉𝜉𝑒𝑒 .

 (2.16) 

Noting that the randomness in the measurement space Ω𝑋𝑋𝑒𝑒 is by virtue of the uncertainty in Ω𝜉𝜉𝑒𝑒 

space, I rewrite Eq. (2.11) as follows, 

𝑓𝑓𝐺𝐺∣𝐴𝐴(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝐴𝐴𝑘𝑘) = �  
Ω𝜉𝜉𝑒𝑒

 𝑓𝑓𝐺𝐺∣𝜉𝜉𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝛽𝛽,𝐴𝐴𝑘𝑘) ⋅ 𝑓𝑓𝜉𝜉𝑒𝑒(𝛽𝛽)d𝛽𝛽 ,where, (2.17 a) 

𝑓𝑓𝐺𝐺∣𝜉𝜉𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝛽𝛽,𝐴𝐴𝑘𝑘) = 𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥) (2.17 b) 

The second equation holds because a fixed input sample 𝑧𝑧, and noise value, yields a determinate 

and unique value of the measurement 𝑥𝑥 ∈ Ω𝑋𝑋𝑒𝑒 . Substituting Eq. (2.17) into Eq. (2.10) yields: 

Ψdesign-ex (𝑒𝑒) = �  
Ω𝜉𝜉𝑒𝑒

 �  
32

𝑘𝑘=1

 ℒ(𝛽𝛽,𝐴𝐴𝑘𝑘; 𝑒𝑒)𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘)𝑓𝑓𝜉𝜉𝑒𝑒(𝛽𝛽)𝑑𝑑𝑑𝑑, where,  (2.18 a) 

ℒ(𝛽𝛽,𝐴𝐴𝑘𝑘; 𝑒𝑒) = � 
5

𝑛𝑛=1

 �  
1

𝑖𝑖=0

 𝑤𝑤𝑛𝑛𝐿𝐿(𝑔𝑔𝑛𝑛𝑛𝑛 ,𝐴𝐴𝑘𝑘)𝑓𝑓𝐺𝐺∣𝜉𝜉𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝛽𝛽,𝐴𝐴𝑘𝑘) (2.18 b) 
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I note that these random variables constituting 𝛽𝛽 can follow a generic distribution. I can always 

transform them to a standard normal random variable. Therefore, in an attempt to generalize. I 

transform the load 𝑃𝑃, its location 𝑃𝑃loc, and the noise 𝜁𝜁𝑖𝑖 into their respective standard normal forms. 

Since the load and the noise for the 𝑖𝑖th  strain gauge is Gaussian in our case, their standard normal 

forms can be written as 𝒰𝒰 (standard normal counterpart of 𝑃𝑃), and 𝒱𝒱𝑖𝑖 (standard normal counterpart 

of 𝜁𝜁𝑖𝑖 ), such that 𝑝𝑝 = 𝑢𝑢𝜎𝜎𝑝𝑝 + 𝜇𝜇𝑝𝑝, and 𝜀𝜀𝑖𝑖 = 𝑣𝑣𝑖𝑖𝜎𝜎𝜀𝜀 + 𝜇𝜇𝜀𝜀, where 𝑢𝑢 and 𝑣𝑣𝑖𝑖 are the realizations of 𝒰𝒰, and 

𝒱𝒱𝑖𝑖 respectively. I transform 𝑓𝑓𝑃𝑃loc 
(𝑝𝑝loc ) from Half Normal to a Standard Normal random variable , 

such that the cumulative density functions are equal: 𝐹𝐹𝑃𝑃loc 
(𝑝𝑝loc ) = 𝐹𝐹𝒰𝒰loc 

(𝑢𝑢loc ) , and 𝜇𝜇𝑝𝑝loc =

𝐹𝐹𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙
−1 �𝐹𝐹𝒰𝒰loc �𝜇𝜇𝑢𝑢loc ��. This operation transforms 𝜉𝜉𝑒𝑒 into a joint standard normal random variable ℬ𝑒𝑒 

(with a realization 𝒷𝒷, where 𝒷𝒷 ∈ Ωℬ𝑒𝑒 ), such that  

𝑓𝑓ℬ𝑒𝑒(𝒷𝒷) = 𝑓𝑓𝒰𝒰(𝑢𝑢) ⋅ 𝑓𝑓𝒰𝒰loc(𝑢𝑢loc). �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

 𝑓𝑓𝒱𝒱𝑖𝑖(𝑣𝑣𝑖𝑖), where, 

𝒷𝒷 = �𝑢𝑢,𝑢𝑢loc, 𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑁𝑁sg(𝑒𝑒)� .

 (2.19) 

I can now rewrite Eq. (2.18) as: 

Ψdesign-ex (𝑒𝑒) = �  
Ωℬ𝑒𝑒

 �  
32

𝑘𝑘=1

 𝜆𝜆(𝒷𝒷,𝐴𝐴𝑘𝑘; 𝑒𝑒)𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘)𝑓𝑓ℬ𝑒𝑒(𝒷𝒷)d𝒷𝒷, where,   (2.20 a) 

𝜆𝜆(𝒷𝒷 = (𝑢𝑢,𝑢𝑢loc , 𝑣𝑣𝑖𝑖),𝐴𝐴𝑘𝑘; 𝑒𝑒)

= ℒ �𝛽𝛽 = �𝑢𝑢𝜎𝜎𝑝𝑝 + 𝜇𝜇𝑝𝑝,𝐹𝐹𝑃𝑃loc 
−1 �𝐹𝐹𝒰𝒰loc 

(𝑢𝑢loc )� , 𝑣𝑣𝑖𝑖𝜎𝜎𝜀𝜀 + 𝜇𝜇𝜀𝜀 ,𝐴𝐴𝑘𝑘; 𝑒𝑒�� 
(2.20 b) 

Section 2.5.4 deals with evaluating the Bayes risk discussed in this section. To maintain generality, 

I present the formula for Bayes risk as an approximation of both, Eq. (2.18a), and Eq. (2.20a). 
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2.5.4 Evaluating the expected cost considering uncertainties in load and noise in the 

observed strains  

2.5.4.1 Obtaining the cost 𝓛𝓛 for a given input sample 𝒛𝒛 and noise structure 

Once having the GPR models, I can obtain 𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘) , and hence evaluate 

𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒) using Eq. (2.14). To demonstrate a simple case of the evaluation of posterior 

probability of spring existence, I ignore the uncertainties due to load and its location by fixing the 

load as: 𝑝𝑝 ∈ Ω𝑃𝑃 and 𝑝𝑝loc ∈ Ω𝑃𝑃loc . I consider a design with 𝑁𝑁sg (𝑒𝑒) strain gauges, picked randomly 

using Latin Hypercubic Sampling. Assuming that the true state of the springs is 𝐴𝐴, I consider the 

input sample as 𝑧𝑧 = (𝐴𝐴; 𝑝𝑝;𝑝𝑝loc ) ∈ Ω𝑍𝑍 . For the chosen design 𝑒𝑒 and the input sample 𝑧𝑧, I run 

multiple surrogate runs over different noise values in the Monte Carlo sense. The posterior can 

then be obtained using Eq. (2.15). Similarly, for the same fixed load and its location, the likelihood 

𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘) for all possible spring states can be obtained, yielding 𝑓𝑓𝐴𝐴∣𝑋𝑋𝑒𝑒(𝐴𝐴𝑘𝑘 ∣ 𝑥𝑥𝑒𝑒) using Eq. 

(2.16). Finally, I can obtain 𝑓𝑓𝐺𝐺∣𝑋𝑋𝑒𝑒(𝑔𝑔𝑛𝑛𝑛𝑛 ∣ 𝑥𝑥𝑒𝑒) using equations (2.12) and (2.13). Equations (2.17b) 

and (2.18b) yields ℒ(𝛽𝛽,𝐴𝐴𝑘𝑘; 𝑒𝑒). Fig. 2.7 illustrates the discussion so far. 

For this special example with a fixed load and its location, and that I have assumed a well-

defined noise structure with zero mean 𝜁𝜁 ∼ 𝑁𝑁(0,5 × 10−7) , I can obtain the likelihood 

𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘) without numerous surrogate runs. For the fixed input sample 𝑧𝑧, let 𝑥𝑥‾𝑒𝑒𝑒𝑒 represent the 

strain values at the 𝑛𝑛-th sensor locations obtained using either a forward FEM or a surrogate model. 

The closed form likelihood for such case can then be written as 𝑓𝑓𝑋𝑋𝑒𝑒∣𝐴𝐴(𝑥𝑥𝑒𝑒 ∣ 𝐴𝐴𝑘𝑘) =

∏𝑛𝑛=1
𝑁𝑁sg(𝑒𝑒)   1

5×10−7
𝜙𝜙 �𝑥𝑥𝑒𝑒𝑒𝑒−𝑥𝑥‾𝑒𝑒𝑒𝑒

5×10−7
�. 

I need to incorporate the cumulative uncertainties due to all the aforementioned entities 

into evaluating the Bayes risk. Evaluating Ψdesign-ex (𝑒𝑒) and calculating the associated integral in 
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Eq. (2.18a) is computationally expensive and not so trivial. I do this by using three techniques 

discussed in the next section: a sampling-based approach, mean value approximation, and 

univariate dimension reduction with Gauss-Hermite quadrature. 

 

 
Figure 2.7: Flowchart describing the approach to obtain the cost 𝓛𝓛 for a given design e and input 

sample z 
 

2.5.4.2 Approach 1: Sampling-based method 

This is a Monte Carlo based approach, where I generate large number of random samples 

of 𝐴𝐴𝑖𝑖 ∈ Ω𝐴𝐴 , and 𝛽𝛽𝑖𝑖 ∈ Ω𝜉𝜉𝑒𝑒 , with 𝑖𝑖 ∈ {1,2,3,⋯ ,𝑁𝑁mcs}. Here, 𝑁𝑁mcs  denotes the number of Monte 

Carlo samples. For the design 𝑒𝑒 , I can obtain the cost ℒ(𝛽𝛽𝑖𝑖 ,𝐴𝐴𝑖𝑖; 𝑒𝑒)  for each 𝐴𝐴𝑖𝑖  and 𝛽𝛽𝑖𝑖 , as in 

procedure detailed in previous Section 2.5.4.1. The Bayes risk is then approximated as: 

Ψdesign-ex (𝑒𝑒) ≈
1

𝑁𝑁mcs 
�  
𝑁𝑁mes 

𝑖𝑖=1

 ℒ(𝛽𝛽𝑖𝑖 ,𝐴𝐴𝑖𝑖; 𝑒𝑒) (2.21 a) 
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Ψdesign-ex (𝑒𝑒) ≈
1

𝑁𝑁mcs 
�  
𝑁𝑁mes 

𝑖𝑖=1

 𝜆𝜆(𝒷𝒷𝑖𝑖 ,𝐴𝐴𝑖𝑖; 𝑒𝑒) (2.21 b) 

The approximated Bayes risk depicted in the above equations is also called empirical risk. I recall 

here that Eq. (21a) and (21b) represents the approximated Bayes risk corresponding to Eq. (18), 

and Eq. (20) respectively. Fig. 2.8 illustrates a convergence plot for the sampling-based method 

obtained for a design 𝑒𝑒, with 𝑁𝑁sg(𝑒𝑒) = 30 strain gauges. The expected cost converges to 327.2 

(showed by the red line) around 𝑁𝑁mcs = 10000 samples with the average noise of 0.71. However, 

the evaluation of Bayes risk for 10000 samples takes 265 seconds. The optimization process 

demands an evaluation of the cost function around ten thousand times. Therefore, the sampling-

based method is computationally expensive. 

 
Figure 2.8: Convergence plot of Bayes risk obtained using sampling-based method  

 
2.5.4.3 Approach 2: Mean value approximation 

Here, I evaluate the Bayes risk as the cost ℒ(𝛽𝛽,𝐴𝐴𝑘𝑘; 𝑒𝑒) evaluated for all the spring states 𝐴𝐴𝑘𝑘 

at the mean value of the load, its location, and noise, weighted over by the probability 𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘), 

such that: 
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Ψdesign-ex (𝑒𝑒) ≈�  
32

𝑘𝑘=1

 ℒ �𝛽𝛽 = �𝜇𝜇𝑝𝑝, 𝜇𝜇𝑝𝑝loc , 𝜇𝜇𝜀𝜀1 , 𝜇𝜇𝜀𝜀2 ,⋯ , 𝜇𝜇𝜀𝜀𝑁𝑁sg(𝑒𝑒)
� ,𝐴𝐴𝑘𝑘; 𝑒𝑒� 𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘) (2.22 a) 

Ψdesign-ex (𝑒𝑒) ≈�  
32

𝑘𝑘=1

 𝜆𝜆 �𝒷𝒷 = �𝜇𝜇𝑢𝑢, 𝜇𝜇𝑝𝑝loc , 𝜇𝜇𝑣𝑣1 ,𝜇𝜇𝑣𝑣2 ,⋯ , 𝜇𝜇𝑣𝑣𝑁𝑁sg� ,𝐴𝐴𝑘𝑘; 𝑒𝑒� 𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘) (2.22 b) 

Since, 𝒰𝒰,𝒰𝒰loc , and 𝒱𝒱𝑖𝑖 are standard normal random variables, I have 𝜇𝜇𝑢𝑢 = 0; 𝜇𝜇𝑢𝑢𝑙𝑙𝑙𝑙𝑙𝑙 = 0; 𝜇𝜇𝑣𝑣𝑖𝑖 = 0 

∀𝑖𝑖 ≤ 𝑁𝑁sg(𝑒𝑒). 

2.5.4.4 Approach 3: Univariate dimensional reduction with Gauss-Hermite quadrature 

  Approach 1 is computationally expensive as it involves considering a large sample size, 

whereas approach 2 is feasible but not very accurate when there is large variability. I tackle these 

limitations using the current approach to evaluate Bayes risk. 

I assume a design 𝑒𝑒, with 𝑁𝑁sg(𝑒𝑒) number of strain gauges. I start by redefining Bayes risk 

in Eq. (2.20) as: 

Ψdesign-ex (𝑒𝑒)  = �  
Ωℬ𝑒𝑒

 ℎ(𝒷𝒷; 𝑒𝑒)𝑓𝑓ℬ𝑒𝑒(𝒷𝒷)d𝒷𝒷, where, 
 (2.23 a) 

ℎ(𝒷𝒷; 𝑒𝑒) = � 
32

𝑘𝑘=1

 𝜆𝜆(𝒷𝒷,𝐴𝐴𝑘𝑘; 𝑒𝑒)𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘) (2.23 b) 

Recall, that the vector 𝒷𝒷 = �𝑢𝑢,𝑢𝑢loc, 𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑁𝑁sg(𝑒𝑒)� consist of �𝑁𝑁sg(𝑒𝑒) + 2� variables. I now 

define the following vectors consisting of �𝑁𝑁sg(𝑒𝑒) + 2� elements: 
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𝑏𝑏0 = (0,0,0,0,⋯ ,0)
𝑏𝑏1 = (𝑢𝑢, 0,0,0,⋯ ,0)
𝑏𝑏2 = (0,𝑢𝑢loc, 0,0,⋯ ,0)
𝑏𝑏3 = (0,0, 𝑣𝑣1, 0,⋯ ,0)
𝑏𝑏4 = (0,0,0, 𝑣𝑣2,⋯ ,0)
 ⋮
𝑏𝑏�𝑁𝑁sg(𝑒𝑒)+2� = �0,0,0,0,⋯ , 𝑣𝑣𝑁𝑁sg(𝑒𝑒)�

 (2.24) 

Using the definitions above and univariate dimensional reduction (Rahman and Xu 2004), I 

approximate the function ℎ(𝒷𝒷; 𝑒𝑒) as: 

ℎ(𝒷𝒷; 𝑒𝑒) ≈ −�𝑁𝑁sg(𝑒𝑒) + 1�𝜆𝜆(𝑏𝑏0,𝐴𝐴𝑘𝑘; 𝑒𝑒) + �  

�𝑁𝑁sg(𝑒𝑒)+2�

𝑖𝑖=1

𝜆𝜆(𝑏𝑏𝑖𝑖 ,𝐴𝐴𝑘𝑘; 𝑒𝑒) (2.25) 

Substituting Eq. (2.25) into Eq. (2.23), 

Ψdesign-ex (𝑒𝑒) ≈�  
32

𝑘𝑘=1

�−�𝑁𝑁sg(𝑒𝑒) + 1�𝜆𝜆(𝑏𝑏0,𝐴𝐴𝑘𝑘; 𝑒𝑒)

+ �  

�𝑁𝑁sg(𝑒𝑒)+2�

𝑖𝑖=1

 �  
Ωℬ𝑒𝑒

 𝜆𝜆(𝑏𝑏𝑖𝑖 ,𝐴𝐴𝑘𝑘; 𝑒𝑒)𝑓𝑓ℬ𝑒𝑒(𝒷𝒷)d𝒷𝒷�𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘) 

(2.26) 

To simplify the expression above, firstly, I realize that 𝑓𝑓ℬ𝑒𝑒(𝒷𝒷) is the joint probability density 

function of statistically independent standard normal random variables. Therefore, 

𝑓𝑓ℬ𝑒𝑒(𝒷𝒷)  = 𝜙𝜙(𝑢𝑢) ⋅ 𝜙𝜙(𝑢𝑢loc). �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

𝜙𝜙(𝑣𝑣𝑖𝑖) = �  

𝑁𝑁sg(𝑒𝑒)+2

𝑖𝑖=1

𝜙𝜙(𝒷𝒷𝑖𝑖) = �  

𝑁𝑁sg(𝑒𝑒)+2

𝑖𝑖=1

�
1

√2𝜋𝜋
𝑒𝑒−

1
2𝒷𝒷𝑖𝑖

2
� (2.27) 
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In the equation above, 𝒷𝒷1 = 𝑢𝑢,𝒷𝒷2 = 𝑢𝑢loc, and 𝒷𝒷𝑗𝑗+2 = 𝑣𝑣𝑗𝑗, for 𝑗𝑗 ∈ �1,2,⋯ ,𝑁𝑁sg(𝑒𝑒)�. Secondly, I 

note that for any function of the form 𝑔𝑔(𝑥𝑥,𝑦𝑦),𝐸𝐸𝑋𝑋𝑋𝑋(𝑔𝑔(𝑥𝑥, 0)) = 𝐸𝐸𝑋𝑋(𝑔𝑔(𝑥𝑥, 0)), provided 𝑋𝑋 and 𝑌𝑌 are 

statistically independent random variables. This allows me to simplify the integral in Eq. (2.26) 

as: 

�  
Ωℬ𝑒𝑒

𝜆𝜆(𝑏𝑏𝑖𝑖 ,𝐴𝐴𝑘𝑘; 𝑒𝑒)𝑓𝑓ℬ𝑒𝑒(𝒷𝒷)d𝒷𝒷 =
1

√2𝜋𝜋
�  
𝒷̃𝒷𝑖𝑖
𝜆𝜆(𝑏𝑏𝑖𝑖 ,𝐴𝐴𝑘𝑘; 𝑒𝑒)𝑒𝑒−

1
2𝒷𝒷𝑖𝑖

2
 d𝒷𝒷𝑖𝑖 (2.28) 

Then, I realize that the Gauss-Hermite quadrature is a natural choice for approximating integral in 

the equation above. This is because Gauss-Hermite quadrature is meant to estimate integrals of 

form ∫ 𝑔𝑔(𝑥𝑥)𝑒𝑒−𝑥𝑥2 d𝑥𝑥, for any function g(x). Therefore, the integral above is approximated as: 

�  
𝒷𝒷
 𝜆𝜆(𝑏𝑏𝑖𝑖 ,𝐴𝐴𝑘𝑘; 𝑒𝑒)𝑓𝑓ℬ𝑒𝑒(𝒷𝒷)dΩℬ𝑒𝑒 ≈

1
√𝜋𝜋

�  
𝑛𝑛

 𝑤𝑤𝑛𝑛𝜆𝜆�𝑞𝑞𝑖𝑖,𝑛𝑛,𝐴𝐴𝑘𝑘; 𝑒𝑒�;

𝑞𝑞𝑖𝑖,𝑛𝑛(𝑗𝑗) = �
𝑏𝑏𝑖𝑖(𝑗𝑗) = 0 𝑖𝑖 ≠ 𝑗𝑗;
√2𝛼𝛼𝑛𝑛 𝑖𝑖 = 𝑗𝑗.

 (2.29) 

In the equation above, 𝑛𝑛 represents quadrature order, 𝑤𝑤𝑛𝑛 gives the weights, and 𝛼𝛼𝑛𝑛 gives the point 

of evaluation of the function. For my calculations, I use 𝑛𝑛 = 2, for which 𝑤𝑤𝑛𝑛 = 0.5√𝜋𝜋, and 𝛼𝛼𝑛𝑛 =

± 1
√2

. The approximated Bayes risk can now be written as: 
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Ψdesign-ex (𝑒𝑒) ≈�  
32

𝑘𝑘=1

⎝

⎜
⎛
−�𝑁𝑁sg(𝑒𝑒) + 1�𝜆𝜆(𝑏𝑏0,𝐴𝐴𝑘𝑘; 𝑒𝑒)

+ �  

�𝑁𝑁sg(𝑒𝑒)+2�

𝑖𝑖=1

 �  
𝑛𝑛

 𝑤𝑤𝑛𝑛𝜆𝜆�𝑞𝑞𝑖𝑖,𝑛𝑛,𝐴𝐴𝑘𝑘; 𝑒𝑒�

⎠

⎟
⎞
𝑓𝑓𝐴𝐴(𝐴𝐴𝑘𝑘) 

(2.30) 

The advantage of Bayes risk expressed in the form of Eq. (2.20) is clear from the discussion carried 

out so far. The expression of Bayes Risk in Eq. (2.30) can easily be extended to obtain Bayes risk 

in the form of Eq. (2.18). 

The table below compares the value of Bayes risk and the run time for various approaches 

discussed in this section. The sampling-based method is the most accurate when a large sample 

size is considered. However, it is computationally expensive. Secondly, irrespective of the sample 

size, the Bayes risk approximated using approach 1 changes with the new sample even with the 

same sample size, hence, is random and non-unique. Approach 2 is the most feasible but not so 

accurate. Approach 3 enjoys acceptable accuracy and computational speed. 

Table 2.3: Comparison of various approaches in evaluating  
Bayes risk for a design 𝒆𝒆 with 𝑵𝑵𝐬𝐬𝐬𝐬(𝒆𝒆) = 𝟑𝟑𝟑𝟑 

 Bayes risk Ψdesign-ex (𝑒𝑒) Run time in seconds 

Approach 1 (10 4 samples) 327.32 229.97 

Approach 2 309.81 0.82 

Approach 3 321.35 46.53 
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The discussion in this chapter so far was about evaluating the Bayes risk for a given design 

𝑒𝑒 . The next section will focus on the problem of optimal sensor placement using Bayesian 

optimization. I use approach 3 to evaluate the extrinsic Bayes risk Ψdesign-ex (𝑒𝑒) and assume an 

intrinsic cost of unity per additional sensor. 

 

2.6. Bayesian optimization: Optimal sensor placement design 

2.6.1 Optimal sensor placement design algorithm 

The primary objective is to obtain the optimal sensor placement design 𝑒𝑒∗ that minimizes 

the Bayes risk functional discussed in the previous sections. Mathematically, 

𝑒𝑒∗ = arg min 
𝑒𝑒

Ψdesign (𝑒𝑒) ∈ Ω𝐸𝐸 (2.31) 

In absolute terms, obtaining 𝑒𝑒∗ involves looking at every possible design combination, and picking 

the one with the least Bayes risk. In our case, if 𝑛𝑛 = 22500, this would be picking 𝑒𝑒∗ from the 

∑𝑟𝑟=1
𝑛𝑛   𝑛𝑛!

𝑟𝑟!(𝑛𝑛−𝑟𝑟)!
= (2𝑛𝑛 − 1) possible combinations of sensor locations. Clearly, sampling the entire 

design space Ω𝐸𝐸 , which consists of (222500 − 1) ≈ 106773  number of possible designs, is 

daunting even for this modest problem. The main motivation of using Bayesian optimization is to 

arrive at the optimal solution 𝑒𝑒∗ by minimizing the sampling points to fasten the optimization 

process. Bayesian optimization looks for the global optimum in a minimum number of steps. 

 Unlike gradient-based optimization methods, Bayesian optimization is a global 

optimization technique that does not require the derivative of the objective function. Having a 

black-box model (like a surrogate function) of the objective function suffices to perform the 
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optimization. It involves two primary elements. The first element is developing surrogate function 

using Gaussian process regression (GPR) of the objective function using randomly evaluated 

sample. Consider, for example in our case, I assume an initial design 𝑒𝑒0 ∈ Ω𝐸𝐸 , with 3 strain 

locations. To obtain the next optimal design with 4 strain gauges, I randomly sample, for instance, 

20 locations to be the candidate for the 4th  sensor. These locations yield 20 design samples 

𝑒̃𝑒(𝑘𝑘),∀𝑘𝑘 ≤ 20  each with four sensors. I obtain the exact cost Ψdesign (𝑒̃𝑒(𝑘𝑘)),∀𝑘𝑘 ≤ 20  using 

approach 3 discussed in previous section. Using the 20 set input data of the fourth sensor location 

𝑑𝑑 = (𝑥𝑥1, 𝑥𝑥2), and the output data of the exact cost, I train the surrogate function Ψ̂design (𝑑𝑑) ∼

𝑁𝑁(𝜇𝜇𝑑𝑑 ,𝜎𝜎𝑑𝑑). It provides a posterior probability that describes possible values for the cost at a 

candidate fourth location 𝑑𝑑, with the mean value 𝜇𝜇𝑑𝑑, and the standard deviation 𝜎𝜎𝑑𝑑. The second 

component is the acquisition function that helps me locate the next most valuable candidate for 

the fourth location based on the current posterior over the cost. I use Expected Improvement 𝐸𝐸𝐸𝐸 as 

our acquisition function. 

𝐸𝐸𝐸𝐸(𝑑𝑑) = �𝜇𝜇𝑑𝑑 − Ψdesign 
∗ �Φ�

𝜇𝜇𝑑𝑑 − Ψdesign 
∗

𝜎𝜎𝑑𝑑
� + 𝜎𝜎𝑑𝑑𝜙𝜙 �

𝜇𝜇𝑑𝑑 − Ψdesign 
∗

𝜎𝜎𝑑𝑑
� (2.32) 

Here, Ψdesign 
∗ = min𝑒̃𝑒(𝑘𝑘)  Ψdesign (𝑒̃𝑒(𝑘𝑘)) is the current best values of the objective function. For all 

the remaining (22500 − 20 − 3) = 22477 possible fourth location candidates, I evaluate 𝐸𝐸𝐸𝐸(𝑑𝑑). 

The candidate with maximum 𝐸𝐸𝐸𝐸 is the next most valuable location. Once I locate the next most 

valuable fourth location candidate, I get 21st  design sample. I re-train the GPR with 21 data points, 

and keep adding the next most valuable location until the maximum 𝐸𝐸𝐸𝐸 is less than a tolerance 

value 𝜀𝜀. For detailed understanding of Bayesian optimization, readers are recommended to refer 

to (Jones and Schonlau 1998) and (Frazier 2018).  
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To generalize our optimization algorithm, I define the initial sensor design as 𝑒𝑒0 ∈ Ω𝐸𝐸 with 

𝑁𝑁0 = 𝑁𝑁sg(𝑒𝑒0) number of strain gauges. If 𝑑𝑑(𝑖𝑖) = �𝑥𝑥1
(𝑖𝑖), 𝑥𝑥2

(𝑖𝑖)� represents the location of 𝑖𝑖th  strain 

gauge (𝑥𝑥1
(𝑖𝑖) and 𝑥𝑥2

(𝑖𝑖) denote the horizontal and vertical coordinates of the sensor 𝑖𝑖 ), I have 𝑒𝑒0 =

�𝑑𝑑(1),𝑑𝑑(2),⋯ ,𝑑𝑑(𝑁𝑁0)�. Let 𝑁𝑁as represent number of additional sensors that will be added one by 

one to 𝑁𝑁0 during the optimization process. Let 𝑒𝑒𝑛𝑛as represent the optimized sensor design with 

(𝑁𝑁0 + 𝑛𝑛as )  sensors, such that 𝑛𝑛as ≤ 𝑁𝑁as , and 𝑒𝑒∗ = arg min𝑒𝑒𝑛𝑛as  Ψdesign �𝑒𝑒𝑛𝑛as�.  Finally, 𝑁𝑁total =

22500 represents total number of strain gauge locations. Fig. 2.9 details the flowchart of the 

optimization algorithm 1 developed for obtaining optimal sensor placement. In Yang et al. (Yang 

and Chadha 2021), this algorithm was deployed to obtain a sensor placement design of a more 

complex real-world miter gate structure that had a different type of damage (unlike the detection 

type of problem here) and a different Bayes risk functional (quantifying the net relative gain in 

information). It shows the generality and applicability of the proposed algorithm. 

 
Figure 2.9: Flowchart of Bayesian optimization algorithm for optimal sensor placement design 
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2.6.2 Results and discussion 

2.6.2.1 Comparison of a Bayesian optimized sensor placement design with randomly chosen 
designs 

To numerically implement the optimization algorithm discussed in Section 2.6.1, I consider 

an initial design 𝑒𝑒0 with 𝑁𝑁0 = 3, with sensors picked randomly, and consider 𝑁𝑁as = 10 additional 

sensors. I fix 𝛼𝛼 = 20. Fig. 2.10a below shows the sensors constituting 𝑒𝑒0 by blue dots and the 

additional sensor location by red dots placed on the strain contour (for a random input sample) of 

the beam. For instance, the design 𝑒𝑒1 consists of all the three initially considered sensors along 

with the fourth sensor in red (marked by number 4). Fig. 2.10a also shows the strain field for a 

realization of load and its location. Fig. 2.10 b illustrates Bayes risk for the designs 𝑒𝑒𝑛𝑛as. I observe 

that the Bayes risk converges with 4 additional sensors, i.e., 𝑒𝑒4 can be considered as the optimal 

design. I also observe that almost all these additional sensors are concentrated close to the 

boundary where the springs are present. I observe in all the following convergence plots (Figures 

2.10 b, 2.13 b − 2.17 b) that the Bayes risk increases after the minimum value is attained because 

every additional sensor bears an intrinsic cost, which in this case was assumed to be unity per 

additional sensor. 

To demonstrate the fact that Bayesian optimization produces the optimal sensor placement 

design, I consider a random design 𝑒𝑒𝑟𝑟, with 𝑁𝑁sg(𝑒𝑒𝑟𝑟) = 13. Figure 2.11 a shows the arrangement 

of the sensors for design 𝑒𝑒𝑟𝑟. Although design 𝑒𝑒𝑟𝑟 has 6 more sensors than design 𝑒𝑒4, the Bayes risk 

for 𝑒𝑒𝑟𝑟 is much higher than that of the minimum Bayes risk for optimized design 𝑒𝑒𝑟𝑟 . The reason is 

that the new information acquired by adding the 5-th sensor or more does not add to the value of 

decision-making as much as it leads to the increase in the intrinsic cost due to the addition of more 

sensors. This is clear from Fig. 2.11b. 
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Figure 2.10: Optimized sensor placement and the associated Bayes risk obtained using approach 3 

 

 
Figure 2.11: Randomly selected sensor design 𝒆𝒆𝒓𝒓 and the associated Bayes risk obtained using 

approach 3 
I used approach 3 to evaluate Bayes risk while performing Bayesian optimization. Fig. 

2.12a and 2.12 b, compare the expected cost obtained using the sampling-based method (approach 

1 , with 104 samples) and approach 3 for designs 𝑒𝑒4 and 𝑒𝑒𝑟𝑟 respectively. As expected, the results 

obtained using approach 3 are very close to the sampling-based method (that can be assumed as 

ground truth) The plots also show the Kernel Density Estimate (KDE) for the sampling-based 

method. Finally, the deviation of Bayes risk in the case of random design 𝑒𝑒𝑟𝑟 as compared to the 

optimal design 𝑒𝑒4 is noteworthy. 
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Figure 2.12: Comparison of the Bayes risk evaluated using sample-based method (approach 1), and 

univariate dimensional reduction technique (approach 3) 
 

Remark 2.2: I note that obtaining new information (for example: strain gauge data) is consequential 

in making a better decision (for example: detecting the existence of springs). However, acquiring 

information through a mechanism 𝑒𝑒 bears cost, represented by Ψdesign-in (𝑒𝑒). Acquiring the new 

information is meaningful and economical if and only if the additional cost required to gather the 

information is outweighed by the reduction in the expected losses evaluated by considering the 

additional information (Chadha and Hu 2021).  Recall the expression of the Bayes risk Ψdesign (𝑒𝑒) 

in Eq. (2.9). The Bayes risk is defined as the sum of intrinsic cost Ψdesign-in (𝑒𝑒) and extrinsic cost 

Ψdesign-ex (𝑒𝑒). Increasing the number of sensors has the following effects: 

1 Every addition of the sensor increases the cost due to the intrinsic cost of the sensor, cost 

incurred to install and maintain the SHM system. Therefore, Ψdesign-in (𝑒𝑒) increases. 

2 Every addition of the sensor also adds to the new information about the state of the structure 

leading to better decision making. Therefore, with the increase in sensor count, 

Ψdesign-ex (𝑒𝑒) decreases. 
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With the addition of a new sensor up to the optimal design 𝑒𝑒∗, the Ψdesign-ex (𝑒𝑒) decreases more 

than the increase in Ψdesign-in (𝑒𝑒), leading Ψdesign (𝑒𝑒) to decrease overall. However, beyond the 

optimal design, with any new addition of the sensors, Ψdesign-ex (𝑒𝑒) decreases less than the increase 

in Ψdesign-in (𝑒𝑒), leading Ψdesign (𝑒𝑒) to increase overall. In other words, there comes a time when 

the benefit of the additional information obtained by adding an additional sensor is dwarfed by the 

cost incurred due to a sensor addition. This effect is observed in all the convergence plots presented 

in this section. 

2.6.2.2 Comparison of a Bayesian optimized sensor placement design with Bayes risk 
evaluated using various approaches 

Now, I focus on the performance of various approaches detailed in Section 2.5.4 used in 

evaluating the Bayes risk while performing Bayesian optimization. Figures 2.10, 2.13, and 2.14 

illustrate optimized sensor placement and the associated Bayes risk obtained using approaches 3, 

1, and 2, respectively. It is not surprising that the convergence rate depends on the approach picked 

to evaluate the Bayes risk. Approach 2 (mean value approximation of Bayes risk) is not accurate, 

and the sampling-based method, like any Monte-Carlo based approach, bears uncertainties because 

it attempts to evaluate the integral in Bayes risk functional by sampling it. For a different sample 

with the same sample size, the Bayes risk evaluated using approach 1 is different. This randomness 

in the evaluation of Bayes risk using approach 1 leads the acquisition function to pick different 

sensor locations. Unlike these approaches, approach 3 attempts to evaluate the integral, and rather 

quickly and consistently (unlike sampling-based method), using Gaussian-Hermite quadrature 

These inherent advantages of approach 3 catalyze the optimization code to converge faster. It can 

be observed that approach 3 finds the first 4 sensors to be well spread in the vertical direction. The 

first four additional sensor locations obtained by using the Sampling-based technique are 
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concentrated to the bottom-left, and the code is forced to arrive at sensors 5 and 6 at the middle 

and the top left of the beam, respectively. I also note that there are instances where the sampling-

based method converges faster than the other two approaches owing to the randomness in the 

prediction of Bayes risk by its very inherent nature. However, I note a commonality in the 

prediction by all three approaches. All the significant additional sensor locations (the first six 

additional sensors) are spread across the vertical direction near the left boundary of the beam, 

which is suitable for the spring detection problem. 

 
Figure 2.13: Optimized sensor placement and the associated Bayes risk obtained using sampling-

based method (approach 1) 
 

 
Figure 2.14: Optimized sensor placement and the associated Bayes risk obtained using mean value 

approximation (approach 2) 
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2.6.2.3 Comparison of a Bayesian optimized sensor placement design with different initial 
designs 

In this section, I compare the optimal sensor placement design evaluated using approach 3 

for different initial designs 𝑒𝑒0. Fig. 2.10 shows the sensor designs obtained when the initial sensor 

locations are well spread out across the beam. To demonstrate the effect of the choice of initial 

sensor designs, I then consider three extreme cases of 𝑒𝑒0 with the sensors concentrated on the 

bottom-left, bottom-right, and top-right, as shown in figures 2.15, 2.16, and 2.17. 

The Expected Improvement function defined in Eq. (2.32) guides the optimization 

algorithm to exploit and explore the design space to pick for the next sample. The algorithm 

exploits the strain locations at which the GP mean function is larger, and it explores the strain 

locations where the GP standard deviation is larger. For instance, in Fig. 2.15, the algorithm obtains 

the first 4 additional sensors by exploiting the strain locations with higher GP mean value, whereas 

in Fig. 2.16, with 𝑒𝑒0 consisting of concentrated bottom-right sensors, the algorithm obtains the 

additional sensors mostly by exploring the region of high GP standard-deviation. Since it evaluates 

the additional sensors 2, 3, 4, and 5 concentrated at the top left, it is forced to obtain sensors 6, 7, 

and 8 in the middle of the left end, leading to late convergence. Like the previous section, I do 

observe that irrespective of the initial design, the algorithm arrives at a sensor design that consists 

of additional sensor locations spread out across the left end. 

I note that the beam is so finely meshed that there exists a correlation between the strain 

values. Therefore, there are non-unique sensor locations that are sampled by the acquisition 

function, leading to non-unique sensor design depending on different initial design 𝑒𝑒0. 
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Figure 2.15: Optimized sensor placement and the associated Bayes risk obtained considering initial 

sensor design with three sensors concentrated at the bottom-left 
 

 
Figure 2.16: Optimized sensor placement and the associated Bayes risk obtained considering initial 

sensor design with three sensors concentrated at the bottom-right 

 
Figure 2.17: Optimized sensor placement and the associated Bayes risk obtained considering initial 

sensor design with three sensors concentrated at the top-right 
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2.6.2.4 Comparison of a Bayesian optimized sensor placement design for different noise level 
in sensors 

In this section, I compare the optimal sensor placement design evaluated using approach 3 

and considering initial design 𝑒𝑒0 with 𝑁𝑁0 = 3 for different noise levels as depicted in Table 4. Case 

1 to 4 represents various noise levels (standard deviation in the strain measurements) in ascending 

order. It is observed that the number of sensors in the optimal sensor design increases with the 

increase in noise level in the acquired data. This is an expected result since a large amount of data 

is required to compensate for the increased uncertainty due to higher noise levels. 

Table 2.4: Different cases of the noise level in strain gauges 
Cases Noise standard 

deviation 𝝈𝝈𝜺𝜺 
Figure representing 
the resulting design 

Number of sensors in 
optimal design 

Case 1 5.0 × 10−7 Fig. 2.18 4 

Case 2 1.0 × 10−6 Fig. 2.19 5 

Case 3 2.5 × 10−6 Fig. 2.20 9 

Case 4 5.0 × 10−6 Fig. 2.21 10 

 
 

 
Figure 2.18: Optimized sensor placement and the associated Bayes risk obtained for case 1 of noise 

level 
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Figure 2.19: Optimized sensor placement and the associated Bayes risk obtained for case 2 of noise 

level 
 

 
Figure 2.20: Optimized sensor placement and the associated Bayes risk obtained for case 3 of noise 

level 
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Figure 2.21: Optimized sensor placement and the associated Bayes risk obtained for case 4 of noise 

level 
 

2.7. Summary and Conclusions 

This chapter details an optimal sensor design framework for structural health monitoring 

applications where detection of a critical state is of prime importance.  The primary contribution 

of the chapter is to present a sensor optimization framework and an algorithm that obtains the 

optimal sensor design yielding the least regrettable decision/inference of the state detection. The 

optimality criterion or the objective function used for optimization is the expected loss (arising as 

a consequence of decision making), the term also referred to as the Bayes risk. It is advantageous 

to use Bayes risk as it helps me incorporate the consequence-cost/regret of making a decision 

(extrinsic cost), as well as the intrinsic costs (e.g., sensor costs and their maintenance costs). A 

Bayes risk (or the expected loss/risk) minimized design leads to a prediction of the state that 

minimizes losses in an average sense.   

 

The proposed optimal sensor placement design framework presented in this chapter can be 

summarized in four sequential steps as illustrated in Fig. 2.1. The optimization framework 
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proposed in this chapter is demonstrated on an example problem, where the existence of the 

boundary springs is in question (a binary decision problem). Noteworthy conclusions are: (1) 

Bayesian optimized sensor design is better than the random design since it leads to less expected 

loss/regret as a consequence of making a decision all the while using less number of sensors; (2) 

Generally, the Bayes risk functional has a non-linear integrand and is a high dimensional integral 

that demands sophisticated numerical approaches to evaluate it. Among the three approaches 

investigated, approach 3 (using univariate dimensional reduction with Gauss-Hermite quadrature) 

is the most desirable; (3) Irrespective of the initial sensor design, the proposed optimization 

algorithm arrives at a sensor design that is suitable for desirable decision making. In the proposed 

example problem, irrespective of the initial design, the optimal design consisted of additional 

sensor locations spread out across the left end close to the springs; (4) It is observed that the number 

of sensors in the optimal sensor design increases with the increase in noise level in the acquired 

data. 

 

2.8. Preview to Chapter 3 

This chapter has developed and explained in detail a Bayes risk-based sensor optimization 

framework. The framework has been implemented thoroughly to the simple 2D linear beam-spring 

case, which has shown the value of this design work compared to a randomly designed (or 

arbitrary) sensor arrangement system. However, the primary motivation of this study is to design 

a well-organized optimal sensor placement strategy that can be deployed directly to the SHM 

system in modern large-scale civil infrastructure, such as the Greenup miter gate in Mississippi. 

To make this framework more applicable to such infrastructure, there are still various challenges 

to be met.  First, in this work, a discrete binary damage mode is considered for simplicity. For 
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most civil engineering applications, the structure of interest is nonlinear with much more 

complexity, and damage could occur in multiple ways. For instance, as mentioned in Section 1.1.1, 

a most common damage in the miter gate is the loss of contact between the gate and the wall as it 

is hydrostatically loaded. Instead of a discrete damage state, a continuous state damage should be 

considered with a more complicated calibration method. Second, to have an optimal sensor 

arrangement, multiple objective functions should be studied and deployed in comparison for the 

best design. Third, the miter gate has a much higher dimension in design space that could cause 

tremendous computational burden. More numerical strategies should be investigated to accelerate 

the sensor design process in a SHM system. The next chapter will present a more efficient optimal 

sensor design framework to overcome these challenges, and thus demonstrated through the miter 

gate problem in detail.  

 

2.9. Remarks 

Portions of this dissertation have been published or are currently being considered for 

publication. Chapter 2 is accepted for publication in Mechanical Systems and Signal Processing, 

the dissertation author was the primary investigator and author of this paper: 

Y. Yang, M. Chadha, Z. Hu, and M. D. Todd, “An optimal sensor placement design framework 

for structural health monitoring using bayes risk,” Mechanical Systems and Signal Processing. 
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Chapter 3  
 
A PROBABILISTIC OPTIMAL SENSOR DESIGN 
APPROACH FOR STRUCTURAL HEALTH 
MONITORING USING RISK-WEIGHTED f-
DIVERGENCE 
 
3.1 Abstract 

This chapter presents a new approach to optimal sensor design for structural health 

monitoring (SHM) applications using a modified f-divergence objective functional. One of the 

primary goals of SHM is to infer the unknown and uncertain damage state parameter(s) from the 

acquired data or features derived from the data. In this work, I consider the loss of boundary contact 

(a "gap") between a navigation lock miter gate and the supporting wall quoin block at the bottom 

of the gate to be the damage state parameter of concern. The design problem requires the optimal 

sensor placement of strain gages to obtain the best possible inference of the probability distribution 

of the gap length using the data from the multi-dimensional strain-gauge array. Using the notion 

of f-divergences (measures of difference between probability distributions), a risk-adjustment is 

made by using functions that weigh the importance of acquiring useful information for a given true 

value of the state-parameter and using Bayesian optimization. For this case study of miter gate 

monitoring, a computationally expensive high-fidelity finite element model and its digital 

surrogate is employed to provide efficient, previously validated data. 

 

3.2 Introduction  

Structural health monitoring (SHM) is a multi-part paradigm that aims at assessing the state 

of the structural system and its ability to perform the desired design functionality by analyzing in-
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situ sensor measurement data. A well-designed SHM strategy enables the choice of optimal 

maintenance implementation, helps the structure achieve maximum performance, reduces 

ownership cost, minimizes unscheduled downtime, and potentially helps to avoid structural 

failures that can cause material or personal losses. Such an SHM system is desirable only if the 

benefits obtained from using the acquired information over the structure's life outweigh the cost 

of installing and maintaining that SHM system (Thöns and Faber 2013). Hence, the value of an 

SHM system essentially depends on its design; at the core of any well-designed SHM system is a 

data acquisition system that relies on (usually an array of) deployed sensors to initiate the 

information workflow from which ultimate decisions about operations, maintenance, and other life 

cycle actions will be made. Therefore, the optimal design of this sensor network-defined herein as 

the spatial arrangement of the sensor network-can significantly enhance the performance and life 

cycle value of the SHM system as a whole. Formulating and solving such an optimization problem 

is the central goal of this chapter. Of course, other design parameters (beyond spatial arrangements 

such as data acquisition rate or duty cycle) or constraints (such as power availability) will also play 

a role in any specific application, but such multi-objective don't fundamentally alter the ideas 

presented in this work. 

Due to the many sources of variability and noises in any SHM system's observations, the 

SHM process contains inherent uncertainties that need to be considered. The optimal sensor 

placement problem, therefore, aims to find a sensor configuration that gathers the information most 

useful for detecting the target state(s) subject to uncertainty (Akbarzadeh and Lévesque 2014; 

Parno and Connor 2018). The key element to this is the optimality criterion or objective function 

that is used to evaluate design utility. However, there is not a universal objective for sensor design, 

as each application has a distinct goal for the use of a particular SHM system. Consequently, 
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different objective functions have been proposed in the past for optimal sensor placement design, 

starting with mode identification and correlation in some of the original works in this area, which 

were not necessarily SHM applications (Kammer 1991; Kammer 1996; Shi and Law 2000; Yao 

and Sethares 1993; Gomes and de Almeida 2019). For example, in Ref. (Kammer 1991; Gomes 

and de Almeida 2019), the optimal sensor arrangement minimized the condition number of the 

Fisher information matrix corresponding to the target modes of dynamical structures. Sun et al. 

(Sun and Büyüköztürk2015) proposed optimal sensor design by maximizing dynamic information 

of the structure using a limited number of sensors and proposed an artificial bee colony algorithm 

to solve the optimization problem. Austin et al. (Downey and Hu 2018) used objective function 

formulated to reduce the type I and II errors and used adaptive mutation-based genetic algorithm 

for the sensor design. Similarly, Papadimitriou et al. (Papadimitriou, Beck 2000) proposed 

minimizing entropy focusing on structural modal updating. In one of the first SHM-focused 

studies, Udwadia (Unwadia 1994) and Basseville (Basseville and Benveniste 1987) have also used 

the Fisher information matrix to maximize the performance of SHM for structural modal 

identification. For some other application domains such as the aviation sector, decision-makers are 

more concerned with detecting outlier states of the structure, since the cost of failure is catastrophic 

(Maul and Kopasakis 2008). Such maximization of outlier state detection has led to objective 

functions such as the probability of detection (POD), probability of classification (Peh and Liang 

2007), and the Mahalanobis distance measure (Guratzsch and Mahadevan 2010). There are several 

other seminal contributions in optimal sensor placement design for a wide class of SHM 

applications found in Refs. (Chan 1997; Yi and Li 2011; Peddada and Tannous 2020).  

Given that decision-makers are the typical curators of SHM utility, the objective function 

may also be defined from the perspective of decision theory that defines loss as a consequence of 
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decision making (or the associated risk) by considering various prior information and uncertainty 

sources in the decision-making process. The loss/risk is a subjective quantity and is defined 

according to the problem. Optimal sensor design therein requires finding the sensor network that 

minimizes the losses or risk expressed by an objective function in an average sense; such an 

objective function is defined as Bayes risk. This is a more general definition of traditional Bayes 

risk, and it expands its applicability from a pure monetary-based standpoint to a more general 

optimization problem in the sense that risk is no longer confined to the likelihood of losing money, 

but rather can be thought of as a regret of making an undesirable decision or predicting undesirable 

outcomes. One such Bayes risk objective function for sensor placement design was developed by 

Flynn and Todd (Flynn and Todd 2010; Todd and Flynn 2011) in which Bayesian experimental 

design (Chaloner and Verdinelli 1995) is used for optimal sensor placement design by minimizing 

an appropriate Bayes risk functional. It was demonstrated in an ultrasonic guided wave sensor 

design problem that Bayes risk can minimize the total presence of either type I or type II decision 

errors in SHM. The use of expected Kullback-Leibler (K-L) divergence or expected utility in 

sensor placement design (Li and Kiureghian 2016; Argyris and Chowdhury 2018; Hu and Ao 

2017) can also be classified as a type of Bayes risk. While the idea of minimizing expected risk 

(or maximizing the utility of your desired outcome) using Bayes risk is powerful for optimizing 

sensor placement under uncertainty, its advantageously generic nature and currently unexploited 

benefits must be carefully considered. First, I note that the term risk is subjective and is somewhat 

open-ended to a desirable definition. The risk function or utility function can be formulated 

differently and will lead to different sensor placement designs, i.e., no utility function is generic to 

all problems. Second, current Bayes risk-type objective functions are incapable of incorporating 

human psychology or risk-perception of decision-makers in sensor network design 
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Using the monitoring of lock navigation gates as an application case, this chapter aims to 

address the two issues outlined above by expanding on the idea of Bayes risk-type objective 

functions to simultaneously evaluate the gain in information and consider the risk-perception of 

decision-makers in sensor network design. This is done by proposing a risk-weighted 𝑓𝑓-divergence 

functional for sensor placement design. Firstly, I investigate different types of 𝑓𝑓 -divergence 

measures to evaluate the information gain of a particular sensor network design. Since the 𝑓𝑓-

divergence gives a generic form to evaluate the distance (depicting gain information or information 

divergence) between two probability distribution functions, using different types of 𝑓𝑓-divergence 

helps to investigate and compare the effects of using different distance measures in the sensor 

placement optimization process. Secondly, the 𝑓𝑓-divergence is weighed with a risk-based weight 

function to incorporate a decision-maker's risk perception into sensor placement design. The 𝑓𝑓-

divergence is modified using weight functions that weigh in the importance of acquiring good 

information for a given true value of the structural damage state. Thirdly, the 𝑓𝑓-divergence is also 

weighted by prior knowledge of the structural damage state. The proposed objective function in 

this chapter is, therefore, the integral of the weighted 𝑓𝑓-divergence of the posterior distribution 

relative to the prior distribution, weighted over the prior distribution, and risk-based weight 

function, integrated over all the physically possible values of the structural damage states. The 

goal is to obtain the sensor network that maximizes the objective function (or maximizing the gain 

in the additional information or minimizing the risk or regret of inferring meaningless information 

regarding the damage states). The chapter also proposes two different approaches to incorporate 

the risk weights into the Bayes risk functional. In the first approach, the risk-weights are included 

explicitly inside the integrand of the Bayes risk functional, whereas in the second approach, the 
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risk weights are used to modify the prior damage distribution. Although mathematically 

equivalent, numerical evaluation of risk-weighted Bayes risk yields slightly different results.  

In addition to the objective function, another long-standing challenge in sensor placement 

design is how to effectively and efficiently solved optimization model. A common approach to 

optimization is iteratively searching for the optimal value guided by the steepest gradient descent 

This approach has been used in machine-learning (Bottou 2010) and in developing an optimal 

sensor network (Ram and Nedic 2007). For example, Akbarzadeh (Akbarzadeh and Lévesque 

2014) used a gradient descent algorithm in sensor optimization by deriving derivatives at each 

step, which requires less computational effort. However, in many problems, the exact analytical 

derivatives are not available. Heuristic algorithms have also been widely used in the literature; for 

example, Jin (Jin, and Zhou 2003) used a genetic algorithm to minimize the communication 

distance of sensors, while Yi et al. (Yi and Li 2011) utilized a genetic algorithm to obtain optimal 

sensor placement for a high-rise building monitoring system. However, the main drawback of these 

optimization strategies is that they must evaluate many samples, yielding a computationally 

expensive path to the solution. In complex large-scale SHM applications such as the civil 

infrastructure problems considered in this chapter , the sensor design space itself is potentially 

prohibitively large, and this is coupled with the fact that obtaining and evaluating Bayes risk even 

once may require tens of thousands of runs of expensive simulations (such as if a finite element is 

used). This chapter also proposes a novel numerical framework that seamlessly synthesizes 

Gaussian process regression (Hu and Nannapaneni 2017), dimension reduction techniques (Nath 

and Hu 2017; Rahman and Xu 2004), Bayesian optimization (Jones and Schonlau 1998; Frazier 

2018), and sequential Monte Carlo to break this computational challenge. In the proposed 

framework, once the desirable sensor measurements are obtained in one iteration of the 
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optimization, the predictive model need not be run in order to evaluate the observed sensor 

measurements at every optimization iteration. As shown in the result section, this significantly 

improves the computational efficiency of the sensor placement design optimization and allows for 

a reduction of computational time from years to hours. The review papers (Yi and Li 2012; 

Ostachowicz and Soman 2019; Tan and Zhang 2020) and the references therein serve as an 

excellent source of information on the optimal sensor network design and the computational 

methods to solve the optimization problems. 

The proposed risk-weighted 𝑓𝑓 -divergence functional and the efficient numerical 

framework to overcome the computational burden for sensor placement design will be 

demonstrated in a lock miter gate monitoring application. The United States Army Corps of 

Engineers (USACE) spends billions of dollars in maintaining and operating the USA's inland 

waterways navigation corridor, where the unscheduled shutdown of these assets and dewatering 

for inspection or repair is very costly (Parno and Connor 2018; Schwieterman and Field 2010; 

Foltz 2017) Within the navigation corridor, miter gates are one of the most common types of lock 

gates employed (Eick and Treece 2018). Many of these structures have been operational for over 

50 years, and without knowledge of their actual structural residual strength capacity, they could 

potentially be operating with a higher risk of failure. Current practice involves engineering 

elicitation via inspection, followed by lock closures if the inspection so warrants. Since this process 

is based on the varied experience and interpretation of field inspectors, it bears high uncertainty 

and variability (Vega and Todd 2020), and USACE is investigating the use of SHM to potentially 

reduce those uncertainties. In general terms, the first step of the SHM system design is to decide 

what sensors are most suitable (e.g., discrete or continuous strain-gauges (Chadha and Todd 2019), 

accelerometers, etc.) to provide measurements that are most correlated to the type of damage or 
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state to be inferred. The second step is then to obtain a sensor network design (e.g., number of 

sensors, location/placement, duty cycle, etc.) that provides the most valuable information at a 

minimal cost (Padula and Kincaid 1999; Pozzi 2017), as broadly elucidated above. To this goal, 

in this chapter, an optimal sensor network will be designed for a miter gate using the proposed 

framework. 

The primary contributions of this chapter may therefore be summarized as: (1) it proposes 

a risk-weighted 𝑓𝑓-divergence Bayes risk for sensor placement design and two different approaches 

to incorporate the risk weights into the Bayes risk functional; (2) it investigates and compares 

different types of 𝑓𝑓-divergence measures in the objective functional for sensor placement design; 

(3) it proposes a novel numerical framework that drastically reduces the required computational 

effort in sensor placement design by integrating Bayesian optimization, surrogate modeling, 

univariate dimensional reduction, and Sequential Monte Carlo; and (4) it demonstrates the 

proposed framework in a complex and practical miter gate monitoring application. 

The rest of the chapter is arranged as follows. Section 3.3 details the background of the 

miter gate SHM application and briefly discusses the proposed sensor placement design 

optimization framework. Section 3.4 details the associated Bayes risk functional, followed by 

Section 3.5 that investigates univariate dimensional reduction with Gauss-Hermite quadrature 

approach to evaluate the Bayes risk. Section 3.6 discusses the optimal sensor placement design 

using Bayesian optimization in detail and presents the novel algorithm used to overcome the 

computational burden. After a general discussion on Bayesian optimization, the remaining part of 

Section 3.6 discusses numerical results. Finally, Section 3.7 concludes the chapter. 
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3.3 Problem Description 

Some preliminary definitions and notations are first necessary. The real number space in 𝑑𝑑 

dimension is represented by ℝ𝑑𝑑 , with ℝ1 ≡ ℝ. A random variable 𝑋𝑋 is a real-valued function 

defined on a discrete or a continuous sample space 𝑆𝑆𝑋𝑋  and is assumed to take values in a 

measurement space Ω𝑋𝑋 ∈ ℝ𝑑𝑑 , such that 𝑋𝑋: 𝑆𝑆𝑋𝑋 ⟶ Ω𝑋𝑋 ∈ ℝ𝑑𝑑 . Lower case letters 𝑥𝑥  represent 

realizations of the random variable 𝑋𝑋, such that 𝑥𝑥 ∈ Ω𝑋𝑋. The probability density function and the 

cumulative density function are represented by 𝑓𝑓𝑋𝑋(𝑥𝑥) and 𝐹𝐹𝑋𝑋(𝑥𝑥). The expected value of a function 

𝑔𝑔(𝑥𝑥) is denoted by 𝐸𝐸𝑋𝑋[𝑔𝑔(𝑥𝑥)]. Lastly, a random variable 𝑋𝑋 following a Gaussian distribution, with 

the mean 𝜇𝜇𝑥𝑥 and standard deviation 𝜎𝜎𝑥𝑥 is denoted by: 

𝑓𝑓𝑋𝑋(𝑥𝑥) =
1
𝜎𝜎𝑥𝑥
𝜙𝜙 �

𝑥𝑥 − 𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

�

𝐹𝐹𝑋𝑋(𝑥𝑥) = Φ�
𝑥𝑥 − 𝜇𝜇𝑥𝑥
𝜎𝜎𝑥𝑥

�

𝑋𝑋 ∼ 𝑁𝑁(𝜇𝜇𝑥𝑥,𝜎𝜎𝑥𝑥2)

 (3.1) 

No symbolic distinction is made for different dimensions 𝑑𝑑 of the measurement space and the 

random variable. The vector-dimensionality of a random variable is contextual and is defined as 

needed. 

Finally, let Ω𝐸𝐸 represent the exhaustive sensor design space and 𝑒𝑒 ∈ Ω𝐸𝐸 represent a design 

realization. Let 𝔈𝔈(𝑒𝑒):Ω𝐸𝐸 ⟶ ℝ denote the Bayes risk functional. The goals of this chapter  are: (1) 

to appropriately define the Bayes risk 𝔈𝔈(𝑒𝑒); (2) to devise a computationally-efficient approach to 

numerically evaluate the value of Bayes risk for a given design 𝑒𝑒; (3) to arrive at the most optimal 

design 𝑒𝑒∗ ∈ Ω𝐸𝐸, such that: 

𝑒𝑒∗ = arg max 
𝑒𝑒∈Ω𝐸𝐸

𝔈𝔈(𝑒𝑒) (3.2) 
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Evaluating the Bayes risk would require observable strain data under various damage scenarios. 

The sensor data is obtained using a validated finite element model. Therefore, the Bayes risk 𝔈𝔈(𝑒𝑒) 

and the design space Ω𝐸𝐸  will both depend on a finite element model capable of estimating 

observable strains under various damage scenarios. 

3.3.1 Miter gate: Finite element model 

The Greenup miter gate, which is maintained and managed by USACE on the Ohio River 

in the USA, is considered for a case study. Fig. 3.1 shows the Greenup lock and the miter gate 

(image adapted from the USACE website and Eick et al. (Eick and Smith 2019)). Loss of contact 

in the quoin blocks is the most commonly observed damage mode in such systems (Foltz 2017; 

Vega and Todd 2020; Eick and Treece 2018). Loss of contact leads to a formation of a very thin 

gap between the gate and the wall quoin blocks at the bottom of the gate, which induces undesirable 

load redistribution in the system. The length of the of loss of contact at the bottom of the gate is 

referred to as gap length in this chapter; therefore, the gap length is considered as the continuous 

state-parameter 𝜃𝜃 ∈ ΩΘ (refer to Fig. (3.2)), such that ΩΘ = �𝜃𝜃low ,𝜃𝜃up �. Here, 𝜃𝜃low  is the lower 

bound of the gap length defining the existence of "damage", and 𝜃𝜃up  is the upper bound of the gap 

length defining critical damage of failure. This value is suggested by the USACE engineers based 

on their experience, past inspection data, or numerical simulation. In most cases, data related to 

the failure of the structure may not be available because decision-makers are risk-averse and 

prevent the gap length from approaching failure levels. In such scenarios, a rigorous high-fidelity 

numerical simulation should be performed to estimate the 𝜃𝜃up. . Based on feedback from the field-

engineers (Eick and Treece 2018), the upper bound of the gap length can be considered as 𝜃𝜃up =

180 inches for gates that have similar structural characteristics as the Greenup miter gate. If no 

value of 𝜃𝜃low is specified, it can be taken as 0 inch (indicating pristine state of the gate). 
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Figure 3.1: Greenup locks and miter gate 
 

 

Figure 3.2: Physics-based model of miter gate and the bearing gap 
 

The loss-of-contact part of the gate is always submerged in highly turbid water, and it 

consequently cannot be easily measured directly during normal operational conditions. Hence, gap 

length is an unknown parameter and must be inferred from indirect measurements. The Greenup 

miter gate is equipped with a strain gauge network that records the operational strain measurements 

in real-time and will be used to infer the gap length. The data acquisition process is simulated using 

a high-fidelity finite element model (FEM) of the Greenup miter gate previously validated in the 
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undamaged condition with the available strain sensor readings (Eick and Treece 2018). When the 

miter gate is new and pristine, the gap length could reasonably be presumed to be zero. As with 

any such model, its representative predictive value is only as good as its validation with regard to 

the real structure that it is modeling. In this case, the FEM was validated in the undamaged 

condition, but modeling of the damage itself could not be validated on actual data from the gate in 

a known damaged condition, so modeling bias in the damage state could exist. That does not 

invalidate the demonstration of the proposed approach or its utility but provides caution on 

interpreting the specific results for this case beyond the demonstration of the overall optimal sensor 

placement approach. With that caveat, the FEM will serve as the fundamental physical model for 

this study. 

 

Figure 3.3: Orientation and the location of the strain gauge and different type of shell elements used 
in FEM. 

 

To arrive at the optimal sensor placement design, I rely on the validated finite element 

model to obtain the observable strain values. A sensor-network can be designed by picking strain 



  81   

gauges from a countable set of strain-locations where I have observable strain data for different 

damage scenarios. In my case, it is a set of 64919 × 4 strain locations as discussed later. Although 

there are infinite possible locations where strain gauges can be placed on a real miter gate, the 

finite element model discretely covers the possible sensor locations using a countable number of 

strain gauges The finite element modeling itself is constructed using 3D quadrilateral and 

triangular shell elements in ABAQUS and consists of a total of 64919 elements. Every element 

has a local coordinate system {𝑑𝑑𝑖𝑖} defined in the undeformed state, and a global coordinate system 

{𝐸𝐸𝑖𝑖}. The thickness of the element is in the direction 𝑑𝑑3, and the top and bottom surface of the 

element is spanned by the vectors (𝑑𝑑1 − 𝑑𝑑2) as shown in Fig. 3.3. The strain gauges are attached 

to the top and bottom surface of each element, measuring uniaxial strains along the direction 𝑑𝑑1 

and 𝑑𝑑2. Each element is identified by its geometric centroid at the origin of the local coordinate 

system. Therefore, there are four possible arrangements of strain gauges on each element. These 

possibilities are identified using the following abbreviations: 

  TH: top element, horizontal orientation along 𝑑𝑑1; 

TV: top element, vertical orientation along 𝑑𝑑2; 

BH: bottom element, horizontal orientation along 𝑑𝑑1; 

BV : bottom element, vertical orientation along 𝑑𝑑2. 

 

(3.3) 

Based on the above abbreviations, for a typical element 𝑚𝑚, 𝑥𝑥𝑇𝑇𝑇𝑇𝑚𝑚  and 𝑥𝑥𝑇𝑇𝑇𝑇𝑚𝑚  represent the 

measurement of strain from gauges attached to the top surface and oriented along 𝑑𝑑1  and 𝑑𝑑2 , 

respectively. Similarly, 𝑥𝑥RH𝑚𝑚  and 𝑥𝑥RV𝑚𝑚  represent the measurements of strain from gauges attached 

to the bottom surface and oriented along 𝑑𝑑1 and 𝑑𝑑2, respectively. Therefore, any element 𝑚𝑚 has 

four candidate strain gauges attached to it, whose readings are represented by a four-dimensional 



  82   

vector 𝑥𝑥𝑚𝑚 = (𝑥𝑥TH𝑚𝑚 , 𝑥𝑥TV𝑚𝑚 , 𝑥𝑥BH𝑚𝑚 , 𝑥𝑥BV𝑚𝑚 ) . Hence, there is a total of 64919 × 4 strain locations to be 

considered for optimal sensor design. 

The gate is subjected to uncertain upstream and downstream hydrostatic loads quantified 

by the hydrostatic upstream and downstream heads; these are denoted by the random variables 

𝐻𝐻up  and 𝐻𝐻down , with realizations ℎup ∈ Ωℎup  and ℎdown ∈ Ωℎdown , respectively, where Ω𝐻𝐻up  and 

Ω𝐻𝐻down  represent the space of all possible values of upstream and downstream head, respectively. 

The water heads are modeled by a Gaussian distribution with their mean and variance reasonably 

assumed as 

ℎup ∼ 𝑁𝑁(552in, 102in2) (3.4a) 

ℎdown ∼ 𝑁𝑁(168in, 202in2) (3.4b) 

Independent zero-mean additive Gaussian noise, denoted by a random variable 𝜁𝜁𝑖𝑖  with the 

realization 𝜀𝜀𝑖𝑖, is assumed for each strain gauge, 

𝜁𝜁𝑖𝑖 ∼ 𝑁𝑁�𝜇𝜇𝜀𝜀𝑖𝑖 = 0,𝜎𝜎𝜀𝜀𝑖𝑖
2�  (3.5) 

The value 𝜀𝜀𝑖𝑖 represents the realization of noise, and Ω𝜁𝜁𝑖𝑖 represents the noise space, such that 𝜀𝜀𝑖𝑖 ∈

Ω𝜁𝜁𝑖𝑖  The standard deviation of the noise is assigned to be 𝜎𝜎𝜀𝜀1 = 5 × 10−6  in accordance with 

reasonable commercial strain gauge performance. 

The random nature of the water heads and strain gauge noise together make the observable 

strain values themselves random variables. Let Ω𝑋𝑋 = Ω𝑋𝑋TH ∪ Ω𝑋𝑋TV ∪ Ω𝑋𝑋BH ∪ Ω𝑋𝑋BV be the set of 

all the possible 64919 × 4 strain gauge locations. Here, Ω𝑋𝑋TH and Ω𝑋𝑋TV represents the space of all 

strain gauges attached to the top surface of element measuring strain in the direction 𝑑𝑑1, and 𝑑𝑑2 

respectively. Similarly, Ω𝑋𝑋BH and Ω𝑋𝑋BV represents the space of all strain gauges attached to the 



  83   

bottom surface of element measuring strain in the direction 𝑑𝑑1, and 𝑑𝑑2 respectively. Let 𝑋𝑋 denote 

the random vectors consisting of all strain measurements corresponding to Ω𝑋𝑋 space, such that 𝑥𝑥 ∈

Ω𝑋𝑋 represent realizations of the random vectors 𝑋𝑋 (see Eq. (3.9) for the relationship between the 

observed strain realization 𝑥𝑥, the strain output of FEM, and the noise in strain gauge). Finally, I 

denote the true values of the gap length, and hydrostatic heads as: 𝜃𝜃true ∈ ΩΘ,ℎup-true ∈ Ω𝐻𝐻up , 

ℎdown-true ∈ Ω𝐻𝐻down . 

3.3.2 Miter gate: Surrogate model 

Solving the optimization problem posed in Eq. (3.2) requires evaluating the Bayes risk 

(defined later in Section (3.4)) for various sensor network designs to arrive at an optimal design. 

As described below, each evaluation of the Bayes risk involves numerous FEM predictions to 

solve a Bayesian inference problem. This is computationally intractable, and I seek 

computationally efficient approximations to the FEM. For Bayesian calibration, metamodels or 

surrogate models are preferable, e.g., Support Vector Regression (SVR) (Moustapha and Bourinet 

2018), Gaussian Process Regression (GPR) (Moustapha and Bourinet 2018; Frazier 2018), Neural 

Network (Yu and Wang 2009), and Polynomial Chaos Expansion (PCE) (Capellari and Chatzi 

2018). Some such approaches like SVR or neural networks yield point estimates/prediction, while 

others like GPR also predict the uncertainties associated with an average estimate/prediction. GPR 

is used to build a surrogate model in this work, which turns out to be 50,000 times faster than the 

FEM model. The output of the surrogate model still has a very large dimension; this is addressed 

using principal components analysis, which can be efficiently computed using the singular value 

decomposition (SVD) that reduces the high-dimensional, highly-correlated output space to low-

dimensional, uncorrelated features This is analogous to the "linear model of coregionalization" in 

the Gaussian process literature. Of the possible 64919 × 4 strain readings in Ω𝑋𝑋, 64919 strain 
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measurements corresponding to each of the spaces Ω𝑋𝑋TH ,Ω𝑋𝑋TV ,Ω𝑋𝑋BH  and Ω𝑋𝑋BV  are considered 

independently. The 64919-dimensional strain response corresponding to each of the spaces 

Ω𝑋𝑋TH ,Ω𝑋𝑋TV ,Ω𝑋𝑋BH  and Ω𝑋𝑋BV  are transformed to lower 7,12,7,12  feature spaces, respectively. 

Equivalently, the 64919 × 4-dimensional strain response corresponding to the spaces Ω𝑋𝑋  are 

transformed to a lower 38-dimensional feature space that covers 95% of the total information of 

the strain data. I realize that the vertically oriented strain measurements have a larger number of 

features ( 12 features for both top and bottom strain gauges) than the horizontally oriented strain 

measurements ( 7 features for both top and bottom strain gauges) One possible reason is that the 

vertical strain responses are more sensitive to the dynamic loading considered in this  chapter  

(hydrostatic upstream and downstream loading) than their counterparts in the horizontal direction, 

and hence require a larger number of features. Inversely, the larger number of features required to 

represent vertical strain gauge measurements also implies that the vertically oriented strain 

measurements have higher complexity (that by itself is a subjective quantity as described in (Lloyd 

2001)) than the horizontally oriented strain measurements. These 38 features can be inverted to 

obtain the complete strain gauge response. Four surrogate models for 7,12,7,12  features 

corresponding to four strain measurement spaces Ω𝑋𝑋TH ,Ω𝑋𝑋TV ,Ω𝑋𝑋BH  and Ω𝑋𝑋BV  were built using 

GPR I used a squared exponential kernel and I evaluated the hyper-parameters using maximum 

likelihood estimation. Since the GP models for each of these features were trained independently, 

they have different hyper-parameters. One-third of the 1000 data points were randomly used for 

training the GPR, and the remaining two-thirds were used for validation to verify the accuracy of 

the surrogate. Fig. 3.4 illustrates the discussion carried out so far. Like the FEM, the GPR model 

yields the 64919 × 4 dimensional strain response, but at a much cheaper computational cost. 
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Figure 3.4: Flowchart describing strain data generation using FEM, and prediction using GPR 
surrogate model 

 

3.3.3 Brief introduction to risk-weighted f-divergence based Bayesian optimization 

workflow for sensor placement design 

Given the overall objective of an optimal sensing design, Ω𝐸𝐸 represents the design space, 

such that 𝑒𝑒 ∈ Ω𝐸𝐸  represents a particular design realization. The design 𝑒𝑒  consists of 𝑁𝑁sg(𝑒𝑒) 

number of strain gauge measurement locations. Every design 𝑒𝑒 yields different measurement data 

𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒 . Here, Ω𝑋𝑋𝑎𝑎 ⊂ Ω𝑋𝑋 represents the measurement space for the design 𝑒𝑒, and 𝑋𝑋𝑒𝑒 denotes the 

corresponding random variable (see Eq. (3.10)) that depicts how the observable strain realization 

𝑥𝑥𝑒𝑒 is obtained from the FEM and the strain gauge noise). Having defined the design space, four 

prominent steps are summarized below for the proposed risk-weighted 𝑓𝑓 -divergence based 

Bayesian optimization framework for sensor network design. 
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Step 1: Problem description 

This chapter's objective could be phrased as attempting to answer the question: "Given 

sources of uncertainty (noise in the sensors and the uncertain external conditions), which set of 

sensors should be chosen among the possible 64919 × 4 strain gauges measurements that yields 

the maximum relative gain in the information contained in the posterior distribution of the target 

damage (gap length) relative to the information contained in the prior distribution?" 

Consider a sensor network design 𝑒𝑒 ∈ Ω𝐸𝐸  with the measurement space Ω𝑋𝑋𝑒𝑒 . Before any 

new/additional information is available about the structure through the strain gauge measurements, 

the uncertainty in the gap length is described by its prior probability distribution 𝑓𝑓Θ(𝜃𝜃). When 

additional information or strain gauge measurements are observed, it informs the observer (or the 

engineer) about the current state of the structure. This new information translates into the further 

refinement of the understanding of the gap length, now described by its posterior distribution 

𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃 ∣ 𝑥𝑥𝑒𝑒). If the strain gauge readings are representative of the true state of the structure, the 

posterior distribution 𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃 ∣ 𝑥𝑥𝑒𝑒) draws closer to an understanding of the true description of the 

gap length as compared to the prior distribution. Mathematically, then, the goal here is to obtain 

the sensor-design 𝑒𝑒∗ ∈ Ω𝐸𝐸 that yields the maximum relative gain in the information contained in 

the 𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃 ∣ 𝑥𝑥𝑒𝑒) relative to the information contained in 𝑓𝑓Θ(𝜃𝜃). 

I very briefly describe the remaining three steps of optimization next. The details are 

omitted in this brief description because each of these steps demands a complete section on its 

own.  

 



  87   

Step 2: Definition of the design dependent Bayes risk functional 

The next step of the Bayesian optimization is to define the optimality criterion or the 

objective functional, which is otherwise known as Bayes risk. The Bayes risk is a function of the 

design 𝑒𝑒 ∈ Ω𝐸𝐸 and is denoted by 𝔈𝔈(𝑒𝑒). Bayes risk is a problem-dependent functional. I aim to 

define Bayes risk such that: 

1 The Bayes risk guides me to obtain a sensor-design that maximizes information gains on 

the gap length inferred from the sensor measurements. The gain in the information is 

quantified by the 𝑓𝑓 -divergence that evaluates the similarity between two probability 

measures. 

2 The Bayes risk incorporates the desire to obtain better information/description of the gap 

length when the structure approaches a higher degree of damage (an increased gap length 

approaching some critical size). This is accomplished by using a risk-based weight 

function.  

3 The Bayes risk also takes into account prior knowledge of the gap length. 

The Bayes risk for this chapter is defined as the integral of the weighted 𝑓𝑓-divergence of the 

posterior distribution relative to the prior distribution, weighted over the prior distribution, and 

risk-based weight function, integrated over all the physically possible values of the gap length. 

Section 3.4 is dedicated to detailing the Bayes risk functional. 

Step 3: Evaluation of the design-dependent Bayes risk functional 

Bayes risk is a non-linear functional. For a given design 𝑒𝑒 , evaluating the Bayes risk 

requires one to obtain the posterior of the gap length and risk-based weight functions. Section 3.4.3 
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delineated a line of reasoning for incorporating risk-based weight function in the definition of the 

Bayes risk. Theoretically, the posterior distribution can be evaluated using Bayes' theorem: 

𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃 ∣ 𝑥𝑥𝑒𝑒) =
𝑓𝑓𝑋𝑋𝑒𝑒∣Θ(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃)𝑓𝑓Θ(𝜃𝜃)

𝑓𝑓𝑋𝑋𝑒𝑒(𝑥𝑥𝑒𝑒)  (3.6) 

The quantity 𝑓𝑓Θ(𝜃𝜃)  represents the prior probability of the true state, and in absence of any 

information, it may be assumed to be a uniform (uninformed) distribution. The likelihood 

𝑓𝑓𝑋𝑋𝑒𝑒∣Θ(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃) is obtained using either a physics-based model or a digital twin. I note that the 

posterior does not follow a canonical distribution and expectations with respect to the posterior in 

(6) cannot be obtained analytically. This is because the relationship between strain measurements 

𝑥𝑥𝜌𝜌 and the gap length 𝜃𝜃 is highly nonlinear. I deploy numerical approximation of the posterior 

distribution by using particle filters, or specifically a sequential Monte Carlo (SMC) approach. 

The integrand in the Bayes risk expression is integrated over the gap length (defined later 

in Section 3.4). The second difficulty in obtaining Bayes risk is to evaluate this integral. To 

approximate the integral, I first change the variable of the integral from the measurement space to 

the uncertain input space. For instance, in my problem, the hydrostatic heads and the noise in the 

strain values are the primary random input variables. Since there is a unique one-to-one 

relationship between an input realization and an output realization, this allows me to change the 

variables of integration in the Bayes risk. The integral can then be numerically approximated using 

univariate dimensional reduction and Gauss-Hermite quadrature. Section 3.5 discusses the 

approach to evaluate the Bayes risk. 
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Step 4: Obtaining the optimal sensor design using Bayesian optimization 

With the problem well-defined (step 1) and the associated Bayes risk optimality criterion 

formulated (steps 2-3), the problem becomes: "Given ΩΘ,Ω𝑋𝑋𝑒𝑒 ,Ω𝐸𝐸 ,Ω𝜁𝜁 ,Ωℎup ,Ωℎdown , given an 

assumed uncertainty structure (as in Eq.(3.4) and (3.5)), what is the design 𝑒𝑒∗ ∈ Ω𝐸𝐸 that maximizes 

the Bayes risk objective functional 𝔈𝔈(𝑒𝑒)?  " I carefully note that intuitively, "risk" must be 

minimized However, in this  chapter , Bayes risk represents relative gain in information, and 

therefore, must be maximized. I could have called the objective function "Bayes utility", but as 

noted in the introduction, I take advantage of the fact that "risk" is a subjective quantity. 

I very briefly detail the sensor optimization algorithm, which will be explained in great 

depth in Section 3.6. I start with an initial design 𝑒𝑒0 consisting of 𝑁𝑁0 number of sensors. To obtain 

the optimal design 𝑒𝑒1 with (𝑁𝑁0 + 1) sensors, I search the entire design space for the (𝑁𝑁0 + 1)th  

sensor location. The (𝑁𝑁0 + 1)th  sensor location that maximizes the acquisition function 

constitutes the next additional sensor. In this chapter, I use expected improvement (Mockus and 

Tiesis 1978, Jones, and Schonlau 1998) as the acquisition function. Similarly, I repeat the 

optimization process to arrive at the optimal design 𝑒𝑒𝑛𝑛𝑎𝑎𝑎𝑎 consisting of 𝑁𝑁0 + 𝑛𝑛as  sensors (or 𝑛𝑛as  

number of additional sensors relatively to the initially assumed design 𝑒𝑒0). Finally, I pick 𝑒𝑒∗ =

arg max𝑒𝑒𝑛𝑛0𝑠𝑠  𝔈𝔈�𝑒𝑒𝑛𝑛as�  as the most optimal design, where 𝔈𝔈�𝑒𝑒𝑛𝑛as �  represents the Bayes risk 

associated with the design 𝑒𝑒𝑛𝑛𝑎𝑎𝑎𝑎 .  Section 3.6 details the Bayesian optimization algorithm for 

optimal sensor placement. 

3.3.4 Bayesian inference of gap length for a given sensor design 

As discussed in the previous section, the state parameter is the gap length 𝜃𝜃, and for a given 

sensor-design 𝑒𝑒 , the measurement vector 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒  is the strain recorded at 𝑁𝑁sg(𝑒𝑒) number of 
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strain gauge locations. Therefore, 𝑋𝑋𝑒𝑒 is also a random vector. The measurements obtained from 

the strain gauges are used to infer the gap length 𝜃𝜃 using Eq. (3.6). In the context of inferring 𝜃𝜃, 

the evidence 𝑓𝑓𝑋𝑋𝑒𝑒(𝑥𝑥𝑒𝑒) is just a normalizing constant. Therefore, Eq. (3.6) may be written as: 

𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃 ∣ 𝑥𝑥𝑒𝑒) ∝ 𝑓𝑓𝑋𝑋𝑒𝑒∣Θ(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃)𝑓𝑓Θ(𝜃𝜃) (3.7) 

The distribution 𝑓𝑓Θ(𝜃𝜃)  reflects the prior knowledge about the parameter 𝜃𝜃  before any new 

information/measurements are obtained. Assuming only basic geometrical constraints on the gap 

length, I assume the prior to be a uniform distribution spanning over ΩΘ = �𝜃𝜃low ,𝜃𝜃up �, such that 

𝑓𝑓Θ(𝜃𝜃) = ��𝜃𝜃up − 𝜃𝜃low �
−1, 𝜃𝜃 ∈ ΩΘ

0,  otherwise 
 (3.8) 

Evaluating the posterior using Eq. (3.7) requires me to obtain the likelihood 𝑓𝑓𝑋𝑋𝑒𝑒∣Θ(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃) . 

Constructing the likelihood 𝑓𝑓𝑋𝑋𝑒𝑒∣Θ(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃) requires a model of the measurement process. I note that 

the design 𝑒𝑒 consists of the selected sensors chosen from a total of 64919 × 4 possibilities, or 

Ω𝑋𝑋𝑒𝑒 ⊂ Ω𝑋𝑋. For a given gap length and the hydrostatic heads, the FEM or GPR yields strain values 

for all of the 64919 × 4 sensors. Therefore, to detail the measurement model, I consider the total 

measurement space Ω𝑋𝑋. In this chapter, I use the following measurement model 

𝑥𝑥 = 𝑔𝑔�𝜃𝜃,ℎup, ℎdown� + 𝜀𝜀 (3.9) 

In the equation above, 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥64919×4) ∈ Ω𝑋𝑋  is a realization of the random vector 𝑋𝑋 

consisting of 64919 × 4 strain measurements, where 𝑥𝑥𝑖𝑖 represents the strain value corresponding 

to the 𝑖𝑖th  strain gauge. For a given gap length 𝜃𝜃, the digital surrogate 𝑔𝑔 yields 𝑔𝑔�𝜃𝜃, ℎup ,ℎdown � = 

�𝑔𝑔1�𝜃𝜃,ℎup ,ℎdown �,𝑔𝑔2�𝜃𝜃, ℎup ,𝑔𝑔down �,⋯ ,𝑔𝑔64919×4�𝜃𝜃,ℎup ,ℎdown �� at 64919 × 4 location of the 

strain gauges, where 𝑔𝑔𝑖𝑖�𝜃𝜃,ℎup ,ℎdown �  represents the strain response of the 𝑖𝑖th  strain gauge 
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obtained by the GPR surrogate model 𝑔𝑔. In the equation above 𝜀𝜀 ∈ Ω𝜁𝜁 is the realization of the 

random vector 𝜁𝜁 defining the noise in 64919 × 4 sensors. 

Equation (3.9) defines the measurement model considering all the sensor locations in Ω𝑋𝑋. 

However, a design 𝑒𝑒 consists of only 𝑁𝑁sg(𝑒𝑒) sensors with the measurement space Ω𝑋𝑋𝑒𝑒 . Utilizing 

the fact that Ω𝑋𝑋𝑒𝑒 ⊂ Ω𝑋𝑋, let 𝑔𝑔𝑒𝑒 define the true strain response for the sensors included in design 𝑒𝑒 

obtained by the GPR model, such that 𝑔𝑔𝑒𝑒�𝜃𝜃,ℎup, ℎdown� =

�𝑔𝑔𝑒𝑒1�𝜃𝜃, ℎup,ℎdown�,⋯ ,𝑔𝑔𝑒𝑒𝑁𝑁sg(𝑒𝑒)�𝜃𝜃,ℎup,ℎdown��  Similarly, let 𝑥𝑥𝑒𝑒 = �𝑥𝑥𝑒𝑒1 ,⋯ , 𝑥𝑥𝑒𝑒𝑁𝑁𝑠𝑠𝑠𝑠(𝑒𝑒)
� ∈ Ω𝑋𝑋𝑒𝑒 

denotes the observed/measured strain response. Here, 𝑔𝑔𝑒𝑒𝑖𝑖�𝜃𝜃, ℎup,ℎdown� and 𝑥𝑥𝑒𝑒𝑖𝑖  represents the 

true (obtained by the GPR model) and the observed strain response of the 𝑖𝑖th  strain gauge in the 

sensor design 𝑒𝑒, respectively. The measurement model for the strain gauges included in the design 

𝑒𝑒 is given by 

𝑥𝑥𝑒𝑒 = 𝑔𝑔𝑒𝑒�𝜃𝜃, ℎup,ℎdown� + 𝜀𝜀𝑒𝑒 (3.10) 

In the equation above, 𝑥𝑥𝑒𝑒 is one of the realizations of the random vector 𝑋𝑋𝑒𝑒. The vector 𝜀𝜀𝑒𝑒 is the 

realization of the random vector 𝜁𝜁𝑒𝑒 with 𝜀𝜀𝑒𝑒 = �𝜀𝜀1, 𝜀𝜀2,⋯ , 𝜀𝜀𝑁𝑁sg(𝑒𝑒)�. It represents the measurement 

noise/error vector for the design 𝑒𝑒, where 𝜀𝜀𝑖𝑖 denotes the error between the measurement output 

and GPR predicted response (assumed to be the true response) corresponding to the 𝑖𝑖th  strain 

gauge in the design 𝑒𝑒 as defined in Eq. (3.5). I assume that 𝜀𝜀𝑜𝑜  follows a zero-mean Gaussian 

distribution with independent components, i.e., the noise/error terms of all 𝑁𝑁sg(𝑒𝑒) strain gauges 

are assumed to be statistically independent. In addition, I assume that each strain gauge has same 

standard deviation 𝜎𝜎𝜀𝜀𝑖𝑖, such that 
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𝑓𝑓𝜁𝜁𝑒𝑒 �𝜀𝜀𝑒𝑒 = �𝜀𝜀1,⋯ , 𝜀𝜀𝑁𝑁sg(𝑒𝑒)�� = �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

𝑓𝑓𝜁𝜁𝑖𝑖(𝜀𝜀𝑖𝑖) = �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

1
𝜎𝜎𝜀𝜀𝑖𝑖

𝜙𝜙 �
𝜀𝜀𝑖𝑖
𝜎𝜎𝜀𝜀𝑖𝑖
� (3.11) 

 

Using the measurement model defined in Eq. (3.10), and the description of noise in Eq. (3.11), the 

likelihood of observing the strain measurement 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒 for the gap length 𝜃𝜃 can be written as 

𝑓𝑓𝑋𝑋𝑒𝑒∣Θ(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃) = �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

1
𝜎𝜎𝜀𝜀𝑖𝑖

𝜙𝜙 �
𝑥𝑥𝑒𝑒𝑖𝑖 − 𝑔𝑔𝑒𝑒𝑖𝑖�𝜃𝜃, ℎup,ℎdown�

𝜎𝜎𝜀𝜀𝑖𝑖
� (3.12) 

Having defined the prior and the likelihood in Eq. (3.8) and (3.12), I note that the posterior 

cannot be obtained analytically using Eq. (3.6). This is because the relationship between strain 

measurements 𝑥𝑥𝑒𝑒  and the gap length 𝜃𝜃  is highly nonlinear. One can rely on numerical 

approximation techniques like Markov chain Monte Carlo (MCMC) methods, particle filter, and 

sequential Monte Carlo (SMC) approach in recursive mode to solve the inference problem. As 

mentioned, because the evaluation of the likelihood 𝑓𝑓𝑋𝑋∧Θ(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃) at numerous values of 𝜃𝜃 using 

the full finite element model was too expensive, this was achieved by running instead the the GPR 

model 𝑔𝑔𝑒𝑒. Furthermore, I employ the particle filter method (or sequential Monte Carlo (SMC) in 

recursive mode) to obtain the posterior. 

I also simulate the measurement data numerically. For simulating such data, I obtain the 

response of the digital surrogate 𝑔𝑔�𝜃𝜃true ,ℎup-true ,ℎdown-true � parameterized by a chosen/fixed value 

of true gap length 𝜃𝜃true  subjected to chosen/fixed input loading �ℎup-true ,ℎdown-true �. This strain 

gauge response is now corrupted by Gaussian noise of standard deviation 𝜎𝜎𝜀𝜀𝑖𝑖 to mimic the real-
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world measurement noise. This corrupted strain response is now used as the 

measurement/observed data 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒 

Obtaining the posterior numerically using particle filtering requires evaluating the 

likelihood at numerous values of the gap length, called the particles. Usually, particle filtering is 

used for sequential updating of the posterior distribution for a dynamic system, i.e., the case where 

new information on the system is available as time evolves. However, in this case, I just have one 

set of data, and I aim at obtaining the posterior in a single step. The following summarizes the 

process of obtaining the posterior distribution of the gap length: 

(a) For the assumed true gap length 𝜃𝜃true  and the chosen/fixed input loading ( 

ℎup-true ,ℎdown-true �, simulate the observed/measurement strain data 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒. 

(b) I choose 𝑁𝑁particle = 5000 discrete values of the gap length, called particles. It is at these 

5000 particles for the likelihood is to be evaluated. 

(c) At each of these 5000 particles (or the gap length), and for a given loads ( 

ℎup-true ,ℎdown-true �, the GPR model yields the true strain value at the 𝑖𝑖th  strain location for the gap 

length particle 𝜃𝜃𝑗𝑗  is denoted by 𝑔𝑔𝑒𝑒𝑖𝑖�𝜃𝜃𝑗𝑗 ,ℎup-true ,ℎdown-true � , where 𝑖𝑖 ≤ 𝑁𝑁sg(𝑒𝑒)  and 𝑗𝑗 ≤ 5000 . I 

obtain the numerical value of the likelihood of the measurement given the gap length 𝜃𝜃𝑗𝑗 at the 

observed strain 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒 using Eq. (3.12) as: 

𝑓𝑓𝑋𝑋𝑒𝑒∣Θ�𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃𝑗𝑗� = �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

1
𝜎𝜎𝜀𝜀𝑖𝑖

𝜙𝜙 �
𝑥𝑥𝑒𝑒𝑖𝑖 − 𝑔𝑔𝑒𝑒𝑖𝑖�𝜃𝜃𝑗𝑗 ,ℎup, ℎdown�

𝜎𝜎𝜀𝜀𝑖𝑖
� (3.13) 

In the equation above, 𝑥𝑥𝑒𝑒𝑖𝑖 represents the observed strain value at the 𝑖𝑖th  strain gauge.  
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(d) Evaluate the weight 𝑤𝑤𝑗𝑗 for each particle as: 

𝑤𝑤𝑗𝑗 =
𝑓𝑓𝑋𝑋𝑒𝑒∣Θ�𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃𝑗𝑗�

∑  𝑁𝑁paricle 
𝑘𝑘=1  𝑓𝑓𝑋𝑋𝑒𝑒∣Θ(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃𝑘𝑘)

 (3.14) 

(e) Calculate the cumulative weights to observe big jumps. Resample the weighted particles 

to obtain unweighted samples of the posterior distribution over gap length. 

It is evident from discussion carried above that evaluating the posterior distribution of the gap 

length 𝜃𝜃 for a given sensor measurements 𝑋𝑋𝑒𝑒 requires obtaining the likelihood 𝑓𝑓𝑋𝑋𝑒𝑒∣Θ�𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃𝑗𝑗� for 

𝑗𝑗 ≤ 𝑁𝑁particles  This requires running the GPR model 𝑁𝑁particles  times. 

3.4 The objective functional, Bayes risk 

3.4.1 Bayes risk: Expected utility function 

Recall Step 2 of the Bayesian optimization framework discussed in section 3.3.3. There are 

three primary goals that I aim to achieve: (1) Maximize the relative gain in the information; (2) 

Obtain better information/description of the gap length when the true value of gap length is larger, 

or the state of the structure approaches a higher degree of damage; (3) Include the prior knowledge 

of the gap length. 

3.4.1.1 Relative gain of information: 𝒇𝒇-divergence 

We start with the first goal. As discussed before, the prior distribution of gap length 𝑓𝑓Θ(𝜃𝜃) 

quantifies my understanding of the gap length when no additional/new information on the system 

(through the strain gauge measurements) is available. When the new information or the sensor 

measurements 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒 are available, Bayesian inference allows me to refine my understanding 

of the gap length, now quantified by the posterior 𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃 ∣ 𝑥𝑥𝑒𝑒). In this section, for brevity, I denote 
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the posterior distribution as 𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃 ∣ 𝑥𝑥𝑒𝑒) = 𝑔𝑔Θ(𝜃𝜃) . Traditionally, the information divergence 

(similarity or dissimilarity) between two distributions, for example, deviation of the posterior 

𝑔𝑔Θ(𝜃𝜃)  from the prior 𝑓𝑓Θ(𝜃𝜃) , is quantified by the relative entropy or Kullback-Leibler (KL) 

divergence or i-divergence (i for information), defined by: 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑔𝑔Θ(𝜃𝜃) ∥ 𝑓𝑓Θ(𝜃𝜃)) = �  
ΩΘ

𝑔𝑔Θ(𝜃𝜃)log �
𝑔𝑔Θ(𝜃𝜃)
𝑓𝑓Θ(𝜃𝜃)�

d𝜃𝜃. (3.15) 

Since KL divergence is not symmetric, I prefer this form of information divergence because it 

quantifies the information gain in the posterior distribution of the gap length as compared to the 

prior distribution (refer to (Lindley 1956, Huan and Marzouk 2013)). Although KL divergence 

measures the distance between two probability distributions, it does not qualify as a statistical 

metric of spread because it violates the symmetric property and triangular inequality. However, 

KL divergence does satisfy the other two properties of a metric: non-negativity and the identity of 

indiscernible. Therefore, KL divergence of probability distributions may be loosely interpreted as 

a nonsymmetric analog of squared Euclidean distance. Like KL divergence, there are many other 

divergences used to evaluate the similarity and dissimilarity between probability distributions. 

Many of these divergences can be unified under the generic framework of 𝑓𝑓-divergence (Csiszár 

and Shields 2004). Therefore, i-divergence is a special case of 𝑓𝑓-divergence. For a convex function 

ℓ(𝑡𝑡) defined for 𝑡𝑡 > 0, with ℓ(1) = 0, the 𝑓𝑓-divergence of the posterior 𝑔𝑔Θ(𝜃𝜃) from the prior 

𝑓𝑓Θ(𝜃𝜃) is defined by: 

𝐷𝐷ℓ(𝑔𝑔Θ(𝜃𝜃) ∥ 𝑓𝑓Θ(𝜃𝜃)) = �  
ΩΘ
𝑓𝑓Θ(𝜃𝜃)ℓ �

𝑔𝑔Θ(𝜃𝜃)
𝑓𝑓Θ(𝜃𝜃)�

d𝜃𝜃 (3.16) 

Note that the constraint ℓ(1) = 0  implies that all the 𝑓𝑓 -divergences satisfy the identity of 

indiscernible. Table 3.1 lists some of the important and commonly used 𝑓𝑓-divergences; more 
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information may be found in (Csiszár and Shields 2004; Verdu 2016; Nielsen and Nock 2013; 

Osterreicher and Vajda 2003). Among all the 𝑓𝑓-divergences listed in Table 1 (see appendix 7), 

only the total variance satisfies all the properties of a metric: non-negativity, symmetry, the identity 

of indiscernible, and triangular inequality (Khosravifard and Fooladivanda 2007). 

Table 3.1: Common 𝒇𝒇-divergences 

 
 

In this chapter, the state parameter (the gap length) is a single-dimensional quantity. 

However, in many problems, the state parameter is a multi-dimensional vector. In such scenarios, 

evaluating the 𝑓𝑓 divergence becomes computationally expensive. Many approximation techniques 

for 𝑓𝑓-divergence have been proposed, like using higher-order Chi distances (Nielsen and Nock 

2013), penalized convex risk minimization (Nguyen and Wainwright 2008), and random mixture 

estimator (Rubenstein and Bousquet2019). For completion's sake and for ensuring generality, I 
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briefly present approximating 𝑓𝑓-divergence using Taylor series expansion and higher-order Chi 

distances (Nielsen and Nock 2013). The function ℓ(𝑡𝑡) can be expanded about the point 𝑡𝑡0 using 

the Taylor series as 

ℓ(𝑡𝑡) = � 
∞

𝑖𝑖=0

 
1
𝑖𝑖!

(𝑡𝑡 − 𝑡𝑡0)𝑖𝑖 ⋅
∂𝑖𝑖ℓ(𝑡𝑡)
∂𝑡𝑡𝑖𝑖 �

𝑡𝑡=𝑡𝑡0

 (3.17) 

The 𝑓𝑓-divergence defined in Eq. (3.16) can be written as: 

𝐷𝐷ℓ(𝑔𝑔Θ(𝜃𝜃) ∥ 𝑓𝑓Θ(𝜃𝜃))  = �  
ΩΘ
 𝑓𝑓Θ(𝜃𝜃)� 

∞

𝑖𝑖=0

 
1
𝑖𝑖! �

𝑔𝑔Θ(𝜃𝜃)
𝑓𝑓Θ(𝜃𝜃)

− 𝑡𝑡0�
𝑖𝑖

⋅
∂𝑖𝑖ℓ(𝑡𝑡)
∂𝑡𝑡𝑖𝑖 �

𝑡𝑡=𝑡𝑡0

 d𝜃𝜃

 = � 
∞

𝑖𝑖=0

 
1
𝑖𝑖!
∂𝑖𝑖ℓ(𝑡𝑡)
∂𝑡𝑡𝑖𝑖 �

𝑡𝑡=𝑡𝑡0

��  
ΩΘ
 
(𝑔𝑔Θ(𝜃𝜃) − 𝑡𝑡0𝑓𝑓Θ(𝜃𝜃))𝑖𝑖

𝑓𝑓Θ(𝜃𝜃)𝑖𝑖−1
 d𝜃𝜃�

 = � 
∞

𝑖𝑖=0

 
1
𝑖𝑖!
∂𝑖𝑖ℓ(𝑡𝑡)
∂𝑡𝑡𝑖𝑖 �

𝑡𝑡=𝑡𝑡0

.𝐷𝐷𝜒𝜒𝑃𝑃,𝑡𝑡0
𝑖𝑖 (𝑔𝑔Θ(𝜃𝜃) ∥ 𝑓𝑓Θ(𝜃𝜃))

 (3.18) 

 

Here, 𝐷𝐷𝜒𝜒𝑃𝑃ℓ0𝑖𝑖 (𝑔𝑔Θ(𝜃𝜃) ∥ 𝑓𝑓Θ(𝜃𝜃)) is the generalization of the 𝑖𝑖th  order Pearson-Vajda 𝑓𝑓-divergence. 

The equation above allows me to write any 𝑓𝑓-divergence as the weighted sum of the generalized 

𝑖𝑖th  order Pearson-Vajda 𝑓𝑓-divergence, which in turn can be approximated by the restricted class 

of exponential families that are easy to evaluate (Nielsen and Nock 2013). 

3.4.1.2 Implicit and explicit inclusion of the risk weights into Bayes risk 

The space of all the uncertainties in the current problem is defined as Ω𝜉𝜉𝑒𝑒 =

Ω𝐻𝐻up × Ω𝐻𝐻down × Ω𝜁𝜁1 × Ω𝜁𝜁2 × ⋯× Ω𝜁𝜁𝑁𝑁sg(𝑒𝑒)
, such that the random variable 𝜉𝜉𝑒𝑒  represents all the 

uncertainty sources considered to affect the design 𝑒𝑒. Let 𝛽𝛽𝑒𝑒 = �ℎup ,ℎdown , 𝜀𝜀1, 𝜀𝜀2,⋯ , 𝜀𝜀𝑁𝑁ca (𝑒𝑒)� ∈
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Ω𝜀𝜀𝑒𝑒 represents a realization of the random variable 𝜉𝜉𝑒𝑒. Secondly, since the strain measurements 

𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒 are representative of the physics of the miter gate, its value also depends on the gap 

length value 𝜃𝜃 ∈ ΩΘ. This fact is mathematically denoted by redefining the random variable 𝑋𝑋𝑒𝑒 to 

be a function of the uncertainties and the true gap length, 𝑥𝑥𝑒𝑒 = 𝑋𝑋𝑒𝑒(𝜃𝜃true ,𝛽𝛽𝑒𝑒). If there is no external 

noise and if the true value of gap length 𝜃𝜃true  exactly known, then 𝑥𝑥𝑒𝑒 represents true value of the 

strain measurements. However, since the true gap length can't be obtained under all the inevitable 

uncertainty, the best one can do is to define the Bayes risk as the expected value of risk-weighted 

𝑓𝑓-divergence averaged over the entire space ΩΘ and Ω𝜉𝜉𝑒𝑒, i.e., by considering the entire range of 

possible true values of the gap length and taking into account the uncertainties in strain gauge 

readings and external loads. I reasonably assume that the random variables Θ,𝐻𝐻up,𝐻𝐻down, and 𝜁𝜁𝑖𝑖 

are statistically independent. With all the necessary pieces defined, I first state the Bayes risk 

functional without including any risk weights as 

𝔈𝔈(𝑒𝑒) = �  
ΩΘ

�  
Ω𝜉𝜉𝑒𝑒

𝑓𝑓𝜉𝜉𝑒𝑒(𝛽𝛽𝑒𝑒)𝑓𝑓Θ(𝜃𝜃)𝐷𝐷ℓ�𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃true =𝜃𝜃,𝛽𝛽𝑒𝑒)(𝜑𝜑 ∣ 𝑥𝑥𝑒𝑒) ∥ 𝑓𝑓Θ(𝜑𝜑)�d𝛽𝛽𝑒𝑒 d𝜃𝜃 (3.19) 

In the equation above, the variable 𝜑𝜑 gets integrated out in the expression of 𝑓𝑓-divergence. The 𝑓𝑓-

divergence is a function of (𝜃𝜃true = 𝜃𝜃,𝛽𝛽𝑒𝑒), in the sense that 

𝐷𝐷ℓ�𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃true=𝜃𝜃,𝛽𝛽𝑒𝑒)(𝜑𝜑 ∣ 𝑥𝑥𝑒𝑒)||𝑓𝑓Θ(𝜑𝜑)� = �  
Ω𝜃𝜃
𝑓𝑓Θ(𝜑𝜑)ℓ�

𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃rue=𝜃𝜃,𝛽𝛽𝑒𝑒)(𝜑𝜑 ∣ 𝑥𝑥𝑒𝑒)
𝑓𝑓Θ(𝜑𝜑)

�d𝜑𝜑

= 𝒟𝒟ℓ(𝜃𝜃true = 𝜃𝜃,𝛽𝛽𝑒𝑒) 

(3.20) 

In the Eq. (3.19) and (3.20), the 𝑓𝑓-divergence 𝒟𝒟ℓ(𝜃𝜃true = 𝜃𝜃,𝛽𝛽𝑒𝑒) measures the divergence in the 

posterior distribution in the gap length relative to its prior distribution. 
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I consider two approaches to incorporate the risk weights in the Bayes risk. In the first 

approach, I explicitly weigh the integrand of the Bayes risk defined in Eq. (3.19) with the risk 

weights, such that 

𝔈𝔈explicit-risk (𝑒𝑒) = �  
Ω𝜃𝜃
�  
Ω𝜉𝜉𝑒𝑒

𝑓𝑓𝜉𝜉𝑒𝑒(𝛽𝛽𝑒𝑒)𝑓𝑓Θ(𝜃𝜃)𝑟𝑟(𝜃𝜃true = 𝜃𝜃)𝒟𝒟ℓ(𝜃𝜃true = 𝜃𝜃,𝛽𝛽𝑒𝑒)d𝛽𝛽𝑒𝑒 d𝜃𝜃 (3.21) 

The quantity 𝑟𝑟(𝜃𝜃true = 𝜃𝜃) weighs the risk-based importance factor for all the possible value of true 

gap length, i.e. ∀𝜃𝜃true = 𝜃𝜃 ∈ ΩΘ. The prior 𝑓𝑓Θ(𝜃𝜃) accounts for the prior knowledge of the gap 

length, and the distribution 𝑓𝑓𝜉𝜉𝑒𝑒(𝛽𝛽𝑒𝑒) accounts for all the uncertainties. Finally, I define the utility 

function ℒ(𝜃𝜃true = 𝜃𝜃,𝛽𝛽𝑒𝑒) as the risk-weighted 𝑓𝑓-divergence 

ℒ(𝜃𝜃true = 𝜃𝜃,𝛽𝛽𝑒𝑒) = 𝑟𝑟(𝜃𝜃true = 𝜃𝜃)𝒟𝒟ℓ(𝜃𝜃true = 𝜃𝜃,𝛽𝛽𝑒𝑒) (3.22) 

I understand that in the definition of the Bayes risk, I consider all the possible values of the 

true gap length. From here on, I omit writing 𝜃𝜃true = 𝜃𝜃 in the argument of utility or the weight 

function, such that Eq. (3.22) becomes 

ℒ(𝜃𝜃,𝛽𝛽𝑒𝑒) = 𝑟𝑟(𝜃𝜃)𝒟𝒟ℓ(𝜃𝜃,𝛽𝛽𝑒𝑒) (3.23) 

In the equation above, the argument 𝜃𝜃 represents one possibility of true gap length. 

With the simplified notation of 𝑓𝑓 -divergence and definition of the utility function, 

ℒ(𝜃𝜃,𝛽𝛽𝑒𝑒), and the Bayes risk explicitly considering the risk weights is compactly written as 

𝔈𝔈explicit-risk (𝑒𝑒) = 𝐸𝐸Θ𝜉𝜉𝑒𝑒[ℒ(𝜃𝜃,𝛽𝛽)] = �  
ΩΘ
�  
Ω𝜉𝜉𝑒𝑒

𝑓𝑓Θ(𝜃𝜃)𝑓𝑓𝜉𝜉𝑒𝑒(𝛽𝛽𝑒𝑒)𝑟𝑟(𝜃𝜃)𝒟𝒟ℓ(𝜃𝜃,𝛽𝛽𝑒𝑒)d𝛽𝛽𝑒𝑒 d𝜃𝜃 (3.24) 

Another mathematically equivalent approach to consider risk weighing is by modifying the prior 

distribution to 
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𝑓𝑓Θ̂(𝜃̂𝜃 = 𝜃𝜃) =
𝑓𝑓Θ(𝜃𝜃)𝑟𝑟(𝜃𝜃)

∫  𝜃𝜃up
𝜃𝜃low

 𝑓𝑓Θ(𝜃𝜃)𝑟𝑟(𝜃𝜃)d𝜃𝜃
 (3.25) 

such that 𝑓𝑓Θ̂(𝜃̂𝜃) is transformed prior probability distribution function of the random variable Θ ⟶

Θ̂ with the realization 𝜃̂𝜃 ∈ ΩΘ̂, such that ΩΘ = ΩΘ̂. The Bayes risk that implicitly incorporates the 

risk weight in the form of modified prior distribution is defined as 

𝔈𝔈implicit-risk (𝑒𝑒) = 𝐸𝐸Θ̂𝜉𝜉𝑒𝑒�𝒟𝒟ℓ�𝜃̂𝜃,𝛽𝛽𝑒𝑒�� = �  
Ω𝜃̂𝜃

�  
Ω𝜉𝜉𝑒𝑒

𝑓𝑓Θ̂(𝜃̂𝜃)𝑓𝑓𝜉𝜉𝑒𝑒(𝛽𝛽𝑒𝑒)𝒟𝒟ℓ�𝜃̂𝜃,𝛽𝛽𝑒𝑒�d𝛽𝛽𝑒𝑒 d𝜃̂𝜃 (3.26) 

The Bayes risk functional 𝔈𝔈implicit-risk (𝑒𝑒) implicitly considers the risk-weight 𝑟𝑟(𝜃𝜃). I note that the 

implicit Bayes risk 𝔈𝔈implicit-risk (𝑒𝑒) and the explicit Bayes risk 𝔈𝔈explicit-risk (𝑒𝑒) are proportional to 

each other, with a positive constant of proportionality, i.e., �∫𝜃𝜃low 

𝜃𝜃up  𝑓𝑓Θ(𝜃𝜃)𝑟𝑟(𝜃𝜃)d𝜃𝜃� : 

𝔈𝔈implicit-risk (𝑒𝑒) ∝ 𝔈𝔈explicit-risk (𝑒𝑒) (3.27) 

Therefore, either explicit or implicit Bayes risk can be used in the optimization problem. Finally, 

I note that the implicit and explicit Bayes risk converge when I assign a constant risk-weight 

(importance factor) to all the true gap length values, such that 

𝔈𝔈(𝑒𝑒) = 𝔈𝔈implicit-risk (𝑒𝑒)�
𝑟𝑟(𝜃𝜃)=1

= 𝔈𝔈explicit-risk (𝑒𝑒)�
𝑟𝑟(𝜃𝜃)=1

 (3.28) 

As shown in Eq. (3.24) Bayes risk is defined as the expected value of the utility function. 

Ideally, the goal is to maximize the utility, but due to the uncertainties in the system quantified by 

𝛽𝛽𝑒𝑒 ∈ Ω𝜉𝜉𝑒𝑒 and my inability to know the true value of the gap length, the best I can do is to pick a 

sensor design that maximizes the expected value of the utility averaged over all the possible values 

of the true gap length and the uncertainties. An optimal sensor design that maximizes the expected 

utility is the most optimal. The next Section 3.4.2 discusses the quantity 𝑟𝑟(𝜃𝜃true ) in detail. 
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Evaluating the 𝑓𝑓 -divergence 𝒟𝒟ℓ(𝜃𝜃,𝛽𝛽𝑒𝑒)  for a given true gap length 𝜃𝜃true = 𝜃𝜃  and the 

external uncertainties 𝛽𝛽𝑒𝑒 (consisting of hydrostatic heads and the noise in strain gauge readings) 

requires me to obtain the posterior distribution 𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃,𝛽𝛽𝑒𝑒)(𝜑𝜑 ∣ 𝑥𝑥𝑒𝑒) of the gap length for a given 

true-variables (𝜃𝜃,𝛽𝛽𝑒𝑒). Therefore, as was mentioned above, for a given measurement 𝑋𝑋𝑒𝑒(𝜃𝜃,𝛽𝛽𝑒𝑒), 

obtaining the posterior using particle filter requires running the GPR or digital surrogate model 

𝑁𝑁particles  times. However, since I am simulating the measurement data 𝑋𝑋𝑒𝑒(𝜃𝜃,𝛽𝛽𝑒𝑒), I need to run GPR 

model once as mentioned in Eq. (3.10). Therefore, evaluating the 𝑓𝑓-divergence 𝒟𝒟ℓ(𝜃𝜃,𝛽𝛽𝑒𝑒) (or the 

utility ℒ(𝜃𝜃,𝛽𝛽𝑒𝑒) ) requires running the GPR model ( 𝑁𝑁particles + 1 ) times. 

For the prior 𝑓𝑓Θ(𝜑𝜑) and the posterior distribution 𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃,𝛽𝛽𝑒𝑒)(𝜑𝜑 ∣ 𝑥𝑥𝑒𝑒), the 𝑓𝑓-divergence is 

numerically evaluated by approximating Eq. (3.20) as: 

𝒟𝒟ℓ(𝜃𝜃,𝛽𝛽𝑒𝑒) ≈
1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

𝑟𝑟(𝜑𝜑𝑖𝑖)ℓ �
𝑓𝑓Θ∣𝑋𝑋𝑒𝑒(𝜃𝜃,𝛽𝛽𝑒𝑒)(𝜑𝜑𝑖𝑖 ∣ 𝑥𝑥𝑒𝑒)

𝑓𝑓Θ(𝜑𝜑𝑖𝑖)
� (3.29) 

Fig. 3.5 illustrates a function or a module called "Evaluate the Utility ℒ(𝜃𝜃,𝛽𝛽𝑒𝑒)  "or" 

Evaluating the 𝑓𝑓-divergence 𝒟𝒟ℓ(𝜃𝜃,𝛽𝛽𝑒𝑒) " that obtains the 𝑓𝑓-divergence 𝒟𝒟ℓ(𝜃𝜃,𝛽𝛽𝑒𝑒) and the utility 

ℒ(𝜃𝜃,𝛽𝛽𝑒𝑒) for a given design 𝑒𝑒 and the input variables (𝜃𝜃,𝛽𝛽𝑒𝑒). Note that obtaining utility function 

is just a step away from the 𝑓𝑓-divergence. It does so in a three-step process that requires running 

the GPR model ( 𝑁𝑁particles + 1 ) times. The first step is to simulate observed/measurement data 𝑥𝑥𝑒𝑒 

for a design 𝑒𝑒 by assuming a true gap length 𝜃𝜃, hydraulic heads �ℎup ,ℎdown �, and a noise structure 

𝑓𝑓𝜁𝜁𝑖𝑖(𝜀𝜀𝑖𝑖) . The second step is to obtain the posterior distribution of the gap length given the 

measurement 𝑥𝑥𝑒𝑒 obtained in the first step using particle filter. Finally, the third step is to evaluate 

𝑓𝑓-divergence of the posterior (obtained in step 2) relative to the prior distribution of the gap length 

that ultimately yields the utility function. 
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Figure 3.5: Evaluating the f-divergence 𝓓𝓓𝓵𝓵(𝜽𝜽,𝜷𝜷𝒆𝒆) and the utility 𝓛𝓛(𝜽𝜽,𝜷𝜷𝒆𝒆) for a given case of true 
gap length 𝜽𝜽, uncertainties𝜷𝜷𝒆𝒆, and the risk-based weight function 𝒓𝒓(𝜽𝜽). 

 

3.4.2 Risk-based weight function 

In some applications, there is a well-defined limit state that defines damage criticality, and 

a given structural owner/stakeholder might want an SHM system to determine the proximity to 

that limit state. In the current application, there is no well-defined limit state, and the risk weight 

function 𝑟𝑟(𝜃𝜃trme ) can serve as a surrogate to that proximity by assigning relative importance to the 

values of true gap length 𝜃𝜃true  in terms of the degree of damage. For instance, 𝑟𝑟(𝜃𝜃true = 𝜃𝜃2) >

𝑟𝑟(𝜃𝜃true = 𝜃𝜃1) implies that the structural owner believes a gap length of 𝜃𝜃2 is more concerning with 

regard to criticality than when the true gap length is 𝜃𝜃1. This approach is inspired by the fact that 

different decision-makers mentally assign a different importance factor (or in economic terms: 

utility or risk-intensity) to the seriousness/urgency to take necessary actions with the increasing 

intensity of structural damage. For instance, given that the true state of the structure is moderately 

damaged, a decision-maker who is fearful of making any mistake leading to heavy losses, a risk-
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averter, might suggest major repair and continuous inspection. On the other hand, another 

decision-maker might suggest only minor repairs, a risk-seeker. Commensurate with the notion of 

subjective risk perception, I suggest risk weights 𝑟𝑟(𝜃𝜃true ) that follow the following two properties: 

1 The risk weights 𝑟𝑟(𝜃𝜃true ) must have a zero or positive slope. This is because, physically, 

an increase in gap length reflects higher damage to the structural state of the miter gate. 

Therefore. to satisfy this physical constraint, I can either assign constant or monotonically 

increasing risk weights for all the gap lengths. 

2 The risk weight need not be unique and can be selected based on a desirable optimization 

criterion. For example, if I decide to equally weigh all the values of true gap length, then 

the risk weight can be taken as a constant 𝑟𝑟(𝜃𝜃true ) = 1 (zero slope). On the other hand, if 

I desire to make a better prediction of the state of the miter gate at a higher gap length value 

that implies higher damage, I may pick a monotonically increasing risk weight. 

Since the state estimation depends on the probabilistic description of the gap length, 

obtaining a better estimate of the miter gate damage intensity demands a better estimate of the 

probability distribution of the gap length. I aim at assigning an increasing importance factor to 

damage estimation as the value of the gap length increases. Therefore, for the sake of the 

optimization problem considered in this chapter, I consider a particular case of monotonically 

increasing risk-weight of the following form: 

𝑟𝑟(𝜃𝜃true ) = 𝑒𝑒−�
𝜃𝜃ruve −𝜃𝜃cricical 

𝑏𝑏 �
2

, for 𝜃𝜃low < 𝜃𝜃true < 𝜃𝜃up = 𝜃𝜃critical  (3.30) 

In the equation above, 𝜃𝜃critical  represents the critical value of gap length such that as the true gap 

length 𝜃𝜃true  approaches this critical value 𝜃𝜃critical , the risk-weight increases. I consider 𝜃𝜃critical =
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𝜃𝜃up  The factor 𝑏𝑏 controls how quickly the risk-weight decays as 𝜃𝜃true  deviates from 𝜃𝜃critical . Now 

with the Bayes risk functional fully defined, the next section deals with evaluating the Bayes risk. 

 

3.5 Evaluating the Bayes risk for a fixed sensor design 

3.5.1 Revisiting Bayes risk 

Section 3.4.1 defined the utility function ℒ(𝜃𝜃,𝛽𝛽𝑒𝑒), and the explicit Bayes risk was defined 

as the expected utility, i.e., averaged over all the values of the uncertainties 𝛽𝛽𝑒𝑒 ∈ Ω𝜉𝜉𝑒𝑒, and the 

possible true values of gap length 𝜃𝜃 ∈ ΩΘ. I note that these random variables constituting 𝛽𝛽𝑒𝑒 and 

𝜃𝜃 (or 𝜃̂𝜃 when Bayes risk considers the risk-weights implicitly) can follow a generic continuous 

distribution I can always transform them to a standard normal random variable. Therefore, in an 

attempt to generalize, I transform the true gap length 𝜃𝜃 (or 𝜃̂𝜃 ), hydrostatic heads ℎup ,ℎdown , and 

the noise 𝜁𝜁𝑖𝑖 into their respective standard normal forms denoted by a tilde (⋅̃) over the respective 

quantity. Since the hydrostatic heads and noise for the 𝑖𝑖th  strain gauge is Gaussian in my case, 

their standard normal forms can be written as ℎ̃up , and ℎ̃down , such that ℎup = ℎ̃up 𝜎𝜎ℎup +

𝜇𝜇ℎupp ,ℎdown = ℎ̃down 𝜎𝜎ℎdown + 𝜇𝜇ℎdown , and 𝜀𝜀𝑖𝑖 = 𝜀𝜀𝑖𝑖𝜎𝜎𝜀𝜀𝑖𝑖 + 𝜇𝜇𝜀𝜀𝑗𝑗 , where ℎ̃up, ℎ̃down  and 𝜀𝜀𝑖𝑖  are the 

realizations of standard normal random variables 𝐻̃𝐻up, 𝐻̃𝐻down, and 𝜁𝜁𝑖𝑖 respectively. I transform the 

prior 𝑓𝑓Θ(𝜃𝜃)  and the modified prior 𝑓𝑓Θ̂(𝜃̂𝜃)  to a standard normal random variable Θ̃  and Θ̃̂ 

respectively, such that the cumulative density functions are equal: 𝐹𝐹Θ(𝜃𝜃) = 𝐹𝐹Θ̃(𝜃̃𝜃), and 𝐹𝐹Θ̂(𝜃̂𝜃) =

𝐹𝐹𝜃̃𝜃(𝜃̃̂𝜃). This transforms 𝜉𝜉𝑒𝑒 into a joint standard normal random variable 𝜉𝜉𝑒𝑒 (with a realization 𝛽̃𝛽𝑒𝑒 

), such that 
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𝑓𝑓𝜉̃𝜉𝑒𝑒�𝛽̃𝛽𝑒𝑒� = 𝑓𝑓𝐻̃𝐻up�ℎ̃up� ⋅ 𝑓𝑓𝐻̃𝐻down�ℎ̃down� ⋅ �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

 𝑓𝑓𝜉̃𝜉𝑖𝑖(𝜀𝜀𝑖𝑖), where, 

𝛽̃𝛽𝑒𝑒 = �ℎ̃up, ℎ̃down, 𝜀𝜀1, 𝜀𝜀2,⋯ , 𝜀𝜀𝑁𝑁sg(𝑒𝑒)�

 (3.31) 

We can now rewrite Bayes risk in Eq. (3.24) as: 

𝔈𝔈explicit-risk (𝑒𝑒) = 𝐸𝐸Θ̃𝜉̃𝜉𝑒𝑒�ℒ̃�𝜃̃𝜃, 𝛽̃𝛽𝑒𝑒��, where, ℒ̃�𝜃̃𝜃, 𝛽̃𝛽𝑒𝑒� = ℒ(𝜃𝜃,𝛽𝛽𝑒𝑒) (3.32a) 

𝔈𝔈implicit-risk (𝑒𝑒) = 𝐸𝐸𝜃̃̂𝜃𝜉̃𝜉𝑒𝑒 �𝒟̃𝒟ℓ �𝜃̃̂𝜃, 𝛽̃𝛽𝑒𝑒�� , where, 𝒟̃𝒟ℓ �𝜃̃̂𝜃, 𝛽̃𝛽𝑒𝑒� = 𝒟𝒟ℓ�𝜃̂𝜃,𝛽𝛽𝑒𝑒� (3.32b) 

The next section approximates the Bayes risk defined in Eq. (3.32) by using univariate dimensional 

reduction and Gauss-Hermite quadrature to carry out the integration. 

3.5.2 Univariate dimensional reduction and Gauss-Hermite quadrature 

To obtain the optimal sensor placement design, I may either optimize 𝔈𝔈explicit-risk (𝑒𝑒) or 

𝔈𝔈implicit-risk (𝑒𝑒). Since these are both integrals, I will use Gauss-Hermite quadrature to approximate 

the Bayes risk. In this section, I in parallel detail the numerical approximation of 𝔈𝔈explicit-risk (𝑒𝑒) or 

𝔈𝔈implicit-risk (𝑒𝑒) . Recall that the vector 𝛽̃𝛽𝑒𝑒  consists of �𝑁𝑁sg(𝑒𝑒) + 2�  variables. To catalyze the 

derivation to estimate the Bayes risk using univariate dimensional reduction and Gauss-Hermite 

quadrature, I define the following spaces 

ΩΨ̃𝑒𝑒 = ΩΘ̃ × Ω𝜉̃𝜉𝑒𝑒, such that 𝜓̃𝜓𝑒𝑒 = �𝜃̃𝜃, 𝛽̃𝛽𝑒𝑒� = �𝜃̃𝜃, ℎ̃up, ℎ̃down, 𝜀𝜀1, 𝜀𝜀2,⋯ , 𝜀𝜀𝑁𝑁sg(𝑒𝑒)� ∈ ΩΨ̃𝑒𝑒 (3.33a) 

ΩΨ�̃𝑒𝑒 = ΩΘ̃̂ × Ω𝜉̃𝜉𝑒𝑒, such that 𝜓̃̂𝜓𝑒𝑒 = �𝜃̃̂𝜃, 𝛽̃𝛽𝑒𝑒� = �𝜃̃̂𝜃, ℎ̃up, ℎ̃down, 𝜀𝜀1, 𝜀𝜀2,⋯ , 𝜀𝜀𝑁𝑁sg(𝑒𝑒)� ∈ ΩΨ�̃ 𝑒𝑒 (3.33b) 

  

To distinguish between a variable with or without the hat (∗̂), refer to Eq. (3.25) for the definition 

of transformed gap length 𝜃̂𝜃 used in the expression of implicit-risk Bayes risk. Equation set (33) 

allows me to write the Bayes risk in a more desirable form 
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𝔈𝔈explicit-risk (𝑒𝑒) = 𝐸𝐸Ψ̃𝑒𝑒�ℒ̃�𝜓̃𝜓𝑒𝑒�� = �  
Ω𝜓̃𝜓𝑒𝑒

 𝑓𝑓Ψ̃𝑒𝑒�𝜓̃𝜓𝑒𝑒�ℒ̃�𝜓̃𝜓𝑒𝑒�d𝜓̃𝜓𝑒𝑒, where, ℒ̃�𝜓̃𝜓𝑒𝑒� = ℒ̃�𝜃̃𝜃, 𝛽̃𝛽𝑒𝑒� (3.34a) 

𝔈𝔈implicit-risk (𝑒𝑒) = 𝐸𝐸Ψ�̃ 𝑒𝑒 �𝒟̃𝒟ℓ �𝜓̃̂𝜓𝑒𝑒�� = �  
ΩΨ�̃ 𝑒𝑒

 𝑓𝑓Ψ�̃ 𝑒𝑒 �𝜓̃̂𝜓𝑒𝑒� 𝒟̃𝒟ℓ �𝜓̃̂𝜓𝑒𝑒�d𝜓̃̂𝜓𝑒𝑒 , where, 𝒟̃𝒟ℓ �𝜓̃̂𝜓𝑒𝑒�

= 𝒟̃𝒟ℓ �𝜃̃̂𝜃, 𝛽̃𝛽𝑒𝑒� 

(3.34b) 

  

Like Fig. (3.5), Fig. (3.6) illustrates a function or a module called "Evaluate the Utility ℒ̃�𝜃̃𝜃, 𝛽̃𝛽𝑒𝑒�" 

and 

 

Figure 3.6: Evaluating the utility𝓛̃𝓛�𝝍̃𝝍𝒆𝒆� = 𝓛̃𝓛�𝜽̃𝜽, 𝜷̃𝜷𝒆𝒆� or the f-divergence𝓓̃𝓓𝓵𝓵 �𝝍̃̂𝝍𝒆𝒆� = 𝓓̃𝓓𝓵𝓵 �𝜽̃̂𝜽, 𝜷̃𝜷𝒆𝒆� for a 

given �𝜽̃𝜽, 𝜷̃𝜷𝒆𝒆� , or �𝜽̃̂𝜽, 𝜷̃𝜷𝒆𝒆�, respectively 
 

"Evaluate the f-divergence 𝒟̃𝒟ℓ �𝜃̃̂𝜃, 𝛽̃𝛽𝑒𝑒� " that obtains the utility ℒ̃�𝜓̃𝜓𝑒𝑒� or the f-divergence 𝒟̃𝒟ℓ �𝜓̃̂𝜓𝑒𝑒� 

for a given design 𝑒𝑒 and the input variables �𝜃̃𝜃, 𝛽̃𝛽𝑒𝑒� or �𝜃̃̂𝜃, 𝛽̃𝛽𝑒𝑒� respectively. The module "Evaluate 

the Utility ℒ̃�𝜃̃𝜃, 𝛽̃𝛽𝑒𝑒� " is required to evaluate 𝔈𝔈explicit-risk (𝑒𝑒), and the module "Evaluate the 𝑓𝑓-
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divergence 𝐷̃𝐷ℓ �𝜓̃̂𝜓𝑒𝑒�  " is required to evaluate 𝔈𝔈implicit-risk (𝑒𝑒) . It does so by transforming the 

standard-normal variables back to their original form, i.e., �𝜃̃𝜃, 𝛽̃𝛽𝑒𝑒� ⟶ (𝜃𝜃,𝛽𝛽𝑒𝑒)  or �𝜃̃̂𝜃, 𝛽̃𝛽𝑒𝑒� ⟶

�𝜃̂𝜃,𝛽𝛽𝑒𝑒�, and then using the module "Evaluate the Utility ℒ(𝜃𝜃,𝛽𝛽𝑒𝑒) "or" Evaluate the f-divergence 

𝒟𝒟ℓ�𝜃̂𝜃,𝛽𝛽𝑒𝑒� " (illustrated in Fig. (3.5)) to obtain the respective quantities. 

The integrals in Equations (3.34a) and (3.34a) are high dimensional expectations in 

�𝑁𝑁sg(𝑒𝑒) + 3� dimensional spaces, making classic multivariate quadrature rules (e.g., quasi Monte 

Carlo or Smolyak sparse grids) prohibitively expensive. Monte Carlo approximations converge 

slowly and require a large number of samples to approximate the expectations. This is problematic 

because an expensive Bayesian inference problem needs to be solved to evaluate the integrands in 

Equations (3.34a) and (3.34a). To overcome these issues, I employ an approximation to the 

integrals in Equations (3.34a) and (3.34a) based on univariate dimension reduction. To do so, I 

define the following vectors, each consisting of �𝑁𝑁sg(𝑒𝑒) + 3� components: 

𝜓̃𝜓0 = (0,0,0,0,0,⋯ ,0)
𝜓̃𝜓1 = (𝜃̃𝜃, 0,0,0,0,⋯ ,0)
𝜓̃𝜓2 = �0, ℎ̃up, 0,0,0,⋯ ,0�
𝜓̃𝜓3 = �0,0, ℎ̃down, 0,0,⋯ ,0�
𝜓̃𝜓4 = (0,0,0, 𝜀𝜀1, 0,⋯ ,0)
𝜓̃𝜓5 = (0,0,0,0, 𝜀𝜀2,⋯ ,0)
 ⋮
𝜓̃𝜓�𝑁𝑁sg(𝑒𝑒)+3� = �0,0,0,0,0,⋯ , 𝜀𝜀𝑁𝑁sg(𝑒𝑒)�

 (3.35) 
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𝜓̃̂𝜓0  = (0,0,0,0,0,⋯ ,0)
𝜓̃̂𝜓1  = (𝜃̃̂𝜃, 0,0,0,0,⋯ ,0)
𝜓̃̂𝜓2  = �0, ℎ̃up, 0,0,0,⋯ ,0�

𝜓̃̂𝜓3  = �0,0, ℎ̃down, 0,0,⋯ ,0�

𝜓̃̂𝜓4  = (0,0,0, 𝜀𝜀1, 0,⋯ ,0);
𝜓̃̂𝜓5  = (0,0,0,0, 𝜀𝜀2,⋯ ,0)

 ⋮

𝜓̃̂𝜓�𝑁𝑁sg(𝑒𝑒)+3�  = �0,0,0,0,0,⋯ , 𝜀𝜀𝑁𝑁sg(𝑒𝑒)�

 (3.36) 

Note that 𝜓̃𝜓𝑖𝑖 are exactly same as 𝜓̃̂𝜓𝑖𝑖 except for 𝑖𝑖 = 1. Using the definitions above and univariate 

dimensional reduction (refer to (Rahman and Xu 2004)), I approximate the utility function ℒ̃�𝜓̃𝜓𝑒𝑒� 

or the f-divergence 𝒟̃𝒟ℓ �𝜓̃̂𝜓𝑒𝑒� as: 

ℒ̃�𝜓̃𝜓𝑒𝑒� ≈ −�𝑁𝑁sg(𝑒𝑒) + 2�ℒ̃�𝜓̃𝜓0� + �  

�𝑁𝑁sg(𝑒𝑒)+3�

𝑖𝑖=1

  ℒ̃�𝜓̃𝜓𝑖𝑖� (3.37a) 

𝒟𝒟ℓ �𝜓̃̂𝜓𝑒𝑒� ≈ −�𝑁𝑁sg(𝑒𝑒) + 2�𝒟̃𝒟ℓ �𝜓̃̂𝜓0� + �  

�𝑁𝑁sg(𝑒𝑒)+3�

𝑖𝑖=1

 𝒟̃𝒟ℓ �𝜓̃̂𝜓𝑖𝑖�
 

 

(3.37b) 

Substituting Eq. (3.37a) into Eq. (3.32a), I get, 

𝔈𝔈explicit-risk (𝑒𝑒)  ≈ −�𝑁𝑁sg(𝑒𝑒) + 2�𝐸𝐸Ψ̃𝑒𝑒�ℒ̃�𝜓̃𝜓0�� + �  

�𝑁𝑁sg(𝑒𝑒)+3�

𝑖𝑖=1

 𝐸𝐸Ψ̃𝑒𝑒�ℒ̃�𝜓̃𝜓𝑖𝑖��

 = −�𝑁𝑁sg(𝑒𝑒) + 2��  
Ω𝜓̃𝜓𝑒𝑒

 𝑓𝑓Ψ̃𝑒𝑒�𝜓̃𝜓𝑒𝑒�ℒ̃�𝜓̃𝜓0�d𝜓̃𝜓𝑒𝑒 + �  

�𝑁𝑁sg(𝑒𝑒)+3�

𝑖𝑖=1

 �  
Ω𝜓̃𝜓𝑒𝑒

 𝑓𝑓Ψ̃𝑒𝑒�𝜓̃𝜓𝑒𝑒�ℒ̃�𝜓̃𝜓𝑖𝑖�d𝜓̃𝜓𝑒𝑒

 = −�𝑁𝑁sg(𝑒𝑒) + 2�ℒ̃�𝜓̃𝜓0� + �  

�𝑁𝑁sg(𝑒𝑒)+3�

𝑖𝑖=1

 �  
Ω𝜓̃𝜓𝑒𝑒

 𝑓𝑓𝜓̃𝜓𝑒𝑒�𝜓̃𝜓𝑒𝑒�ℒ̃�𝜓̃𝜓𝑖𝑖�d𝜓̃𝜓𝑒𝑒
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(3.38) 

Similarly, substituting Eq. (3.37b) into Eq. (3.32b), I get, 

𝔈𝔈implicit-risk (𝑒𝑒) ≈ −�𝑁𝑁sg(𝑒𝑒) + 2�𝒟̃𝒟ℓ �𝜓̃̂𝜓0� + �  

�𝑁𝑁sg(𝑒𝑒)+3�

𝑖𝑖=1

�  
ΩΨ�̃ 𝑒𝑒

𝑓𝑓Ψ̃𝑒𝑒 �𝜓̃̂𝜓𝑒𝑒�𝒟𝒟ℓ �𝜓̃̂𝜓𝑖𝑖�d𝜓̃̂𝜓𝑒𝑒 (3.39) 

To simplify the expression above, firstly, I realize that 𝑓𝑓𝜓̃𝜓�𝜓̃𝜓𝑒𝑒�  and 𝑓𝑓Ψ�̃ 𝑒𝑒 �𝜓̃̂𝜓𝑒𝑒�  are the joint 

probability density function of statistically independent standard normal random variables. 

Therefore, 

𝑓𝑓Ψ̃𝑒𝑒�𝜓̃𝜓𝑒𝑒� = 𝑓𝑓Θ̃(𝜃̃𝜃) ⋅ 𝑓𝑓𝜉̃𝜉𝑒𝑒�𝛽̃𝛽𝑒𝑒� = 𝑓𝑓Θ̃(𝜃̃𝜃) ⋅ 𝑓𝑓𝐻̃𝐻up�ℎ̃up� ⋅ 𝑓𝑓𝐻̃𝐻down�ℎ̃down� ⋅ �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

 𝑓𝑓𝜁̃𝜁𝑖𝑖(𝜀𝜀𝑖𝑖) (3.40a) 

𝑓𝑓Ψ�̃ 𝑒𝑒 �𝜓̃̂𝜓𝑒𝑒� = 𝑓𝑓Θ̃̂(𝜃̃̂𝜃) ⋅ 𝑓𝑓𝜉̃𝜉𝑒𝑒�𝛽̃𝛽𝑒𝑒� = 𝑓𝑓Θ̃̂(𝜃̃̂𝜃) ⋅ 𝑓𝑓𝐻̃𝐻up�ℎ̃up� ⋅ 𝑓𝑓𝐻̃𝐻down�ℎ̃down� ⋅ �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

 𝑓𝑓𝜉̃𝜉𝑖𝑖(𝜀𝜀𝑖𝑖) (3.40b) 

 

Since all these random variables are standard normal, using the notation defined in Eq. (3.1) I can 

re-write Eq. (3.40) in a more desirable form as: 

𝑓𝑓𝜓̃𝜓𝑒𝑒�𝜓̃𝜓𝑒𝑒� = 𝜙𝜙(𝜃̃𝜃) ⋅ 𝜙𝜙�ℎ̃up� ⋅ 𝜙𝜙�ℎ̃down�. �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

 𝜙𝜙(𝜀𝜀𝑖𝑖) = �  

𝑁𝑁sg(𝑒𝑒)+3

𝑖𝑖=1

 𝜙𝜙�𝑏̃𝑏𝑖𝑖�

= �  

𝑁𝑁sg(𝑒𝑒)+3

𝑖𝑖=1

 �
1

√2𝜋𝜋
𝑒𝑒−

1
2𝑏̃𝑏𝑖𝑖

2
� 

(3.41a) 
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𝑓𝑓Ψ�̃ 𝑒𝑒 �𝜓̃̂𝜓𝑒𝑒� = 𝜙𝜙(𝜃̃̂𝜃) ⋅ 𝜙𝜙�ℎ̃up� ⋅ 𝜙𝜙�ℎ̃down�. �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

 𝜙𝜙(𝜀𝜀𝑖𝑖) = �  

𝑁𝑁sg(𝑒𝑒)+3

𝑖𝑖=1

 𝜙𝜙 �𝑏̃̂𝑏𝑖𝑖�

= �  

𝑁𝑁sg(𝑒𝑒)+3

𝑖𝑖=1

 �
1

√2𝜋𝜋
𝑒𝑒−

1
2𝑏̃𝑏𝑖𝑖

2
� 

(3.41b) 

In the equation above, 𝑏̃𝑏1 = 𝜃̃𝜃, 𝑏̃𝑏2 = ℎ̃up, 𝑏̃𝑏3 = ℎ̃down and 𝑏̃𝑏𝑗𝑗+3 = 𝜀𝜀𝑗𝑗, for 𝑗𝑗 ∈ �1,2,⋯ ,𝑁𝑁sg(𝑒𝑒)� with 

Ω𝑏̃𝑏𝑖𝑖 representing the respective space (for example: Ω𝑏̃𝑏1 = ΩΘ̃ ). Similarly, 𝑏̃̂𝑏1 = 𝜃̃̂𝜃, 𝑏̃̂𝑏2 = ℎ̃up  𝑏̃̂𝑏3 =

ℎ̃down  and 𝑏̃̂𝑏𝑗𝑗+3 = 𝜀𝜀𝑗𝑗 , for 𝑗𝑗 ∈ �1,2,⋯ ,𝑁𝑁sg(𝑒𝑒)� , with Ω𝑏𝑏�̃𝑖𝑖  representing the respective space (for 

example: Ω𝑏̃𝑏1 = Ω𝜃̃𝜃�. Secondly, I note that for any function of the form 𝑔𝑔(𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 = 0 ∈ 𝑌𝑌), 

𝐸𝐸𝑋𝑋𝑋𝑋(𝑔𝑔(𝑥𝑥, 0)) = 𝐸𝐸𝑋𝑋(𝑔𝑔(𝑥𝑥, 0)), provided 𝑋𝑋  and 𝑌𝑌  are statistically independent random variables. 

This allows me to simplify the integral in Eq. (3.38) and (3.39) as: 

�  
Ω𝜓̃𝜓𝑒𝑒

 𝑓𝑓Ψ̃𝑒𝑒�𝜓̃𝜓𝑒𝑒�ℒ̃�𝜓̃𝜓𝑖𝑖�d𝜓̃𝜓𝑒𝑒 =
1

√2𝜋𝜋
�  
Ω𝑏̃𝑏𝑖𝑖

  ℒ̃�𝜓̃𝜓𝑖𝑖�𝑒𝑒
−12𝑏̃𝑏𝑖𝑖

2
 d𝑏̃𝑏𝑖𝑖 (3.42a) 

�  
ΩΨ�̃ 𝑒𝑒

 𝑓𝑓Ψ�̃ 𝑒𝑒 �𝜓̃̂𝜓𝑒𝑒� 𝒟̃𝒟ℓ �𝜓̃̂𝜓𝑖𝑖�d𝜓̃̂𝜓𝑒𝑒 =
1

√2𝜋𝜋
�  
Ω𝑏̃𝑏𝑖𝑖

  𝒟̃𝒟ℓ �𝜓̃̂𝜓𝑖𝑖� 𝑒𝑒
−12𝑏𝑏

�̃𝑖𝑖
2
 d𝑏̃̂𝑏𝑖𝑖 (3.42b) 

I realize that the Gauss-Hermite quadrature is a natural choice for approximating the 

integrals in the equation above. This is because Gauss-Hermite quadrature is meant to estimate 

integrals of the form ∫𝑥𝑥 𝑔𝑔(𝑥𝑥)𝑒𝑒−𝑥𝑥2 d𝑥𝑥, for any function 𝑔𝑔(𝑥𝑥). Therefore, the approximations are 

�  
Ω𝜓̃𝜓𝑒𝑒

 𝑓𝑓Ψ̃𝑒𝑒�𝜓̃𝜓𝑒𝑒�ℒ̃�𝜓̃𝜓𝑖𝑖�d𝜓̃𝜓𝑒𝑒 ≈
1
√𝜋𝜋

�  
𝑟𝑟

𝑛𝑛=1

 𝑤𝑤𝑛𝑛ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛�, where 𝑞̃𝑞𝑖𝑖,𝑛𝑛(𝑗𝑗) = �𝜓̃𝜓𝑖𝑖(𝑗𝑗) = 0 𝑖𝑖 ≠ 𝑗𝑗
𝛼𝛼𝑛𝑛 𝑖𝑖 = 𝑗𝑗 (3.43a) 
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�  
ΩΨ�̃ 𝑒𝑒

 𝑓𝑓Ψ�̃ 𝑒𝑒 �𝜓̃̂𝜓𝑒𝑒� 𝒟̃𝒟ℓ �𝜓̃̂𝜓𝑖𝑖�d𝜓̃̂𝜓𝑒𝑒 ≈
1
√𝜋𝜋

�  
𝑟𝑟

𝑛𝑛=1

 𝑤𝑤𝑛𝑛𝒟𝒟ℓ�𝑞̃̂𝑞𝑖𝑖,𝑛𝑛�, where 𝑞𝑞�̃𝑖𝑖,𝑛𝑛(𝑗𝑗)

= �𝜓̃̂𝜓𝑖𝑖(𝑗𝑗) = 0 𝑖𝑖 ≠ 𝑗𝑗
𝛼𝛼𝑛𝑛 𝑖𝑖 = 𝑗𝑗

 

 

(3.43b) 

In the equations above, 𝑞̃𝑞𝑖𝑖,𝑛𝑛(𝑗𝑗) (or 𝜓̃̂𝜓𝑖𝑖(𝑗𝑗) ) represents the 𝑗𝑗th  component of the vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛 (or 𝜓̃̂𝜓𝑖𝑖 ); 

𝑟𝑟 represents quadrature order; 𝑤𝑤𝑛𝑛 gives the weights; and 𝛼𝛼𝑛𝑛 gives the point of evaluation of the 

function for 𝑛𝑛 ≤ 𝑟𝑟 . For my calculations, I use 𝑟𝑟 = 3, for which 𝑤𝑤1 = 2
3 √𝜋𝜋,𝑤𝑤2 = 1

6 √𝜋𝜋 , 𝑤𝑤3 =

−1
6√𝜋𝜋,𝛼𝛼1 = 0,𝛼𝛼2 = √6

2
, and 𝛼𝛼3 = −√6

2
. This choice of the quadrature order satisfies the 

computational accuracy that this problem demands and at the same time leads to a computationally 

efficient numerical estimation of Bayes risk. The approximated Bayes risk functions can now be 

written as 

𝔈𝔈explicit-risk (𝑒𝑒) ≈ −�𝑁𝑁sg(𝑒𝑒) + 2�ℒ̃�𝜓̃𝜓0� + �  

�𝑁𝑁sg(𝑒𝑒)+3�

𝑖𝑖=1

 �  
𝑟𝑟=3

𝑛𝑛=1

 𝑤𝑤𝑛𝑛ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛� (3.44a) 

𝔈𝔈implicit-risk (𝑒𝑒) ≈ −�𝑁𝑁sg(𝑒𝑒) + 2�𝒟̃𝒟ℓ �𝜓̃̂𝜓0� + �  

�𝑁𝑁sg(𝑒𝑒)+3�

𝑖𝑖=1

 �  
𝑟𝑟=3

𝑛𝑛=1

 𝑤𝑤𝑛𝑛𝒟̃𝒟ℓ�𝑞̃̂𝑞𝑖𝑖,𝑛𝑛� (3.44b) 

Figure 3.7 illustrates the algorithmic flowchart to obtain the explicit and implicit form of Bayes 

risk functional defined in Eq. (3.44). 
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Figure 3.7: Algorithm to evaluate both the explicit and implicit Bayes risk. 
 

As was noted in Eq. (3.27) that, mathematically, optimization using explicit and implicit Bayes 

risk functional should yield the same result. However, since I numerically estimate 𝔈𝔈explicit-risk (𝑒𝑒) 

and 𝔈𝔈implicit-risk (𝑒𝑒) using Gauss-Hermite quadrature in conjuncture with univariate dimensional 

reduction, optimization using these functional leads to a different sensor design. This is because 

evaluating 𝔈𝔈explicit-risk (𝑒𝑒) requires using observed strain measurements corresponding to the gap 

length values 𝜃𝜃 = 𝐹𝐹Θ−1 �𝐹𝐹Θ̃�𝜃̃𝜃 = 𝛼𝛼𝑛𝑛�� , whereas evaluating 𝔈𝔈implicit-risk (𝑒𝑒)  requires using a 

different set of observed strain measured corresponding to the true gap length values 𝜃̃𝜃 =

𝐹𝐹Θ̂
−1 �𝐹𝐹Θ�̃ �𝜃̃̂𝜃 = 𝛼𝛼𝑛𝑛��. In other words, since the cumulative distribution functions 𝐹𝐹Θ̃(𝜃̃𝜃) (obtained 

from the prior distribution of gap length) and 𝐹𝐹Θ�̃ �𝜃̃̂𝜃�  (obtained from the modified prior 

distribution of gap length) are different, the Gauss point 𝛼𝛼𝑛𝑛 maps to a different values of true gap 

lengths 𝜃𝜃 and 𝜃̃𝜃, and hence requires using different simulated strain data. I use implicit Bayes risk 
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as the objective functional because it shows the effect of risk-weights more prominently than 

obtained using the explicit Bayes risk. 

It is natural to address the question "How many times do I need to run the GPR model to 

obtain the Bayes risk 𝔈𝔈explicit-risk (𝑒𝑒) or 𝔈𝔈implicit-risk (𝑒𝑒) defined by Eq. (3.44) for a single design 

consideration e?" I show the calculation for the explicit Bayes risk and note that the number of 

GPR runs are the same for explicit or implicit Bayes risk functional evaluation. To start with, I 

realize that there are two sums in the expression of 𝔈𝔈explicit-risk (𝑒𝑒) in Eq. (3.44). Therefore, the cost 

function ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛� has to be obtained 𝑟𝑟 ⋅ �𝑁𝑁sg(𝑒𝑒) + 3� times for all the possible 𝑞̃𝑞𝑖𝑖,𝑛𝑛 , where 𝑖𝑖 ≤

�𝑁𝑁sg(𝑒𝑒) + 3� and 𝑛𝑛 ≤ 𝜇𝜇. For a fixed value of the index 𝑖𝑖 and 𝑛𝑛, the vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛 consist of some 

realization of the standard-normal quantities �𝜃̃𝜃, 𝛽̃𝛽𝑜𝑜� obtained by Eq. (3.43). From Remark 3.3, 

obtaining the utility function ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛�  for a fixed 𝑞̃𝑞𝑖𝑖,𝑛𝑛  requires running the GPR model 

�𝑁𝑁particles + 1� times. It can also be seen in the Fig. 3.7 that the utility ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛� is evaluated for 

every 𝑞̃𝑞𝑖𝑖,𝑛𝑛 by calling a function "Expected the Utility ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛� " that requires running GPR model ( 

𝑁𝑁particles + 1 ) times at every instance the function is called (refer to Fig. 3.5). Therefore, evaluating 

Bayes risk using Eq. (3.44) for a given design 𝑒𝑒 requires running the GPR model 𝑁𝑁GPR 1 times, 

such that: 

𝑁𝑁GPR1 = 𝑟𝑟 × �𝑁𝑁particles + 1� × �𝑁𝑁sg(𝑒𝑒) + 3� (3.45) 

These GPR model runs make evaluating Bayes risk computationally expensive. 

Bayesian optimization aimed at obtaining the optimal sensor network design consists of 

evaluating many such designs, denoted by 𝑒𝑒𝑖𝑖, consisting of 𝑁𝑁sg(𝑒𝑒𝑖𝑖) number of sensors. To obtain 

an optimized sensor placement design, I start with an initially assumed design, denoted by 𝑒𝑒0 that 
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consists of 𝑁𝑁sg(𝑒𝑒0) number of sensors. Starting with 𝑒𝑒0 , the subsequent sensor design 𝑒𝑒𝑖𝑖  with 

𝑁𝑁sg(𝑒𝑒𝑖𝑖) sensors is obtained by picking the most optimal sensor location from the available sensors 

and adding that sensor location to the previous design 𝑒𝑒𝑖𝑖−1 with 𝑁𝑁sg(𝑒𝑒𝑖𝑖−1) = 𝑁𝑁sg(𝑒𝑒𝑖𝑖) − 1 sensors. 

Picking the additional sensor required to update the design 𝑒𝑒𝑖𝑖−1 to the design 𝑒𝑒𝑖𝑖 requires 𝑁𝑁iter (𝑒𝑒𝑖𝑖) 

number of iterations. Since Bayes risk is the optimiality criteria, it needs to be evaluated at every 

iteration for the design 𝑒𝑒𝑖𝑖. Let 𝑒𝑒𝐼𝐼, with 𝑖𝑖 = 𝐼𝐼, represent the final optimal sensor network design. 

The total number of GPR runs to arrive at 𝑒𝑒𝐼𝐼 (starting from 𝑒𝑒0 ) is denoted by 𝑁𝑁GPR2, such that: 

𝑁𝑁GPR2 = � 
𝐼𝐼

𝑖𝑖=1

𝜇𝜇 × �𝑁𝑁particles + 1� × �𝑁𝑁sg(𝑒𝑒𝑖𝑖) + 3� × 𝑁𝑁iter (𝑒𝑒𝑖𝑖) (3.46) 

So far, I have taken two major steps to reduce the computational cost. First, I have used a 

digital surrogate (GPR) of the finite element model. Secondly, I have used SVD to reduce the 

dimension of the GPR model's output. In the next section, I propose a novel and innovative 

approach to further minimize the computational cost for evaluating the Bayes risk by minimizing 

the number of times I run the GPR model to evaluate the Bayes risk. 

3.5.3 An efficient computational approach to evaluate the Bayes risk 

In this section, I highlight the disadvantage of using the algorithm illustrated in Fig. 3.7 to 

obtain the explicit and implicit Bayes risk and propose an alternative novel approach that 

significantly reduces the computational cost of optimization. For the sake of discussion, I consider 

explicit Bayes risk functional. An approach to evaluate Bayes risk 𝔈𝔈explicit-risk (𝑒𝑒) for a given 

design 𝑒𝑒  as illustrated in Fig. 3.7 involves many repeated evaluation of GPR model 

𝑔𝑔𝑒𝑒�𝜃𝜃, ℎup ,ℎdown �  for same input arguments �𝜃𝜃,ℎup,ℎdown� . The computational cost can be 

significantly reduced by realizing that in the entire process of evaluating the Bayes risk, there are 
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only 7�𝑁𝑁particles + 1�  unique runs of GPR model. This follows from the following line of 

reasoning. The vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛 is a special case of the vector 𝜓̃𝜓𝑖𝑖 as defined in Eq. (3.35). The first three 

components of the vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛  constitute a sub-vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛(1: 3) = �𝜃̃𝜃, ℎ̃up , ℎ̃down �, the inverse 

standard-normal transformation of which are the argument of the GPR model 𝑔𝑔𝑒𝑒�𝜃𝜃, ℎup,ℎdown� =

𝑔̃𝑔𝑒𝑒�𝜃̃𝜃, ℎ̃up, ℎ̃down�.  The remaining 𝑁𝑁sg(𝑒𝑒)  components constitute a vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛�4:𝑁𝑁sg(𝑒𝑒) + 3� 

representing external noise. For any vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛, the sub-vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛(1: 3) = �𝜃̃𝜃, ℎ̃up , ℎ̃down � bears 

𝛼𝛼𝑛𝑛 as numerical value of one of the components and zero for others Therefore, I have a set of 7 

unique sub-vectors �𝜃̃𝜃, ℎ̃up , ℎ̃down �  of interest to us. From remark 3.1, Fig 3.5 and Fig 3.6, 

obtaining the utility ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛�  for each 𝑞̃𝑞𝑖𝑖,𝑛𝑛  requires �𝑁𝑁particles + 1�  GPR runs. Therefore, 

considering all the 7 unique arguments of GPR model, I essentially need to run GPR model only 

𝑁𝑁GPR3 times, such that: 

𝑁𝑁GPR3 = 7 × �𝑁𝑁particles + 1� (3.47) 

For each of these stand-alone GPR runs, I store the strain values in all the 64919 sensors 

constituting data of size 7 × �𝑁𝑁particles + 1� × 64919 in a matrix called "strain-data" and pick the 

strain measurements of the sensors constituting a design 𝑒𝑒. Therefore, even while carrying out 

Bayesian optimization that may consider many designs, the number of GPR runs remains 

7 × �𝑁𝑁particles + 1� cutting computational cost intensively. Figure 3.8 illustrates this process of 

storing the strain data. Once the matrix straindata is obtained independently, the utility ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛� can 

be evaluated by extracting the relevant sensor readings from the matrix strain-data as demonstrated 

in Fig. 3.9. Replacing 𝜃𝜃 with 𝜃̂𝜃, and 𝑞̃𝑞𝑖𝑖,𝑛𝑛 with 𝑞̃̂𝑞𝑖𝑖,𝑛𝑛 in the flowchart 8 gives the strain-data matrix 
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required to obtain the intrinsic Bayes risk and replacing them in in the flowchart 9 yields the f-

divergence 𝐷̃𝐷ℓ �𝜃̃̂𝜃,𝛽𝛽𝑒𝑒� required to obtain the intrinsic Bayes risk. 

The modified algorithm to evaluate the Bayes risk 𝔈𝔈explicit-risk (𝑒𝑒) is illustrated in Fig. 3.10. 

The most important difference between the algorithm in Fig. 3.7 and the one in Fig. 3.10 is that in 

the modified algorithm the GPR models are not run at every iteration step. 

 

Figure 3.8: Obtaining and storing the strain-data required to obtain Bayes risk 𝕰𝕰extrinsic-risk (𝒆𝒆) 
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Figure 3.9: Obtaining the utility 𝓛̃𝓛�𝒒̃𝒒𝒊𝒊,𝒏𝒏� 
 

 

Figure 3.10: Computationally efficient algorithm to evaluate the explicit and implicit Bayes risk. 
 

The Fig. 3.11 compares the number of GPR runs required for Bayesian optimization by 

considering two approaches used to evaluate Bayes risk as defined in Fig. 3.7 and 3.10. Carrying 
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out Bayesian optimization using first approach to evaluate Bayes risk (either extrinsic or intrinsic) 

Fig. (3.7) needs 𝑁𝑁GPR2 runs of GPR model that depends on the design 𝑒𝑒𝑖𝑖 considered as defined in 

Eq (3.46). I start by assuming 𝑁𝑁sg(𝑒𝑒0) = 3 number of initial sensors and update the design using 

upto 10 additional sensors. For simplicity, I assume a constant average number of iterations for 

each design 𝑁𝑁iter (𝑒𝑒𝑖𝑖) = 20. I assume 𝑁𝑁particles = 5000. I observe that number of GPR runs using 

modified algorithm illustrated in Fig. 3.10 is 𝑁𝑁GPR2 = 35007, which is order of magnitudes 

smaller as compared to 𝑁𝑁GPR2. For instance, 𝑁𝑁GPR2 = 2100420 for the first additional sensor, and 

𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺2 = 34506900 for ten additional sensors.  

 

Figure 3.11: Number of GPR runs for Bayesian optimization 
 

3.6 Bayesian optimization: optimal sensor placement design 

3.6.1 Optimal sensor placement design algorithm 

Given that my objective is to find the design 𝑒𝑒∗ that maximizes a Bayes risk functional, I 

will use the implicit Bayes risk form to solve 
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𝑒𝑒∗ = arg max
𝑒𝑒∈Ω𝐸𝐸

 𝔈𝔈implicit-risk (𝑒𝑒) (3.48) 

In general, obtaining 𝑒𝑒∗  involves looking at every possible design combination and 

choosing the one with the maximum implicit Bayes risk. In my case, where the total number of 

sensor locations is 𝑛𝑛 = 64919 × 4, this would be choosing 𝑒𝑒∗ from the ∑𝑟𝑟=1
𝑛𝑛   𝑛𝑛!

𝑟𝑟′(𝑛𝑛−𝑟𝑟)! = (2𝑛𝑛 − 1) 

possible combinations of sensor locations. Therefore, the exhaustive design space Ω𝐸𝐸 consists of 

(2259676 − 1) ≈ 1078170 possible designs, which is approximately 78090 orders of magnitude 

more than the number of estimated atoms in the universe. Given the intractable nature of 

exhaustive search, Bayesian optimization is used to look for a global optimum in a minimum 

number of steps, thus minimizing the sampling points to rapidly speed up the optimization process. 

Unlike gradient-based optimization methods, Bayesian optimization does not require the 

derivative of the objective function; having a black-box model (like a surrogate function) of the 

objective function suffices to perform the optimization. It involves two primary elements. The first 

element is developing surrogate function using another GPR of the objective function using 

randomly evaluated samples. The second component is the acquisition function that helps me 

locate the next most valuable candidate to update the design (Jones and Schonlau1998, Frazier 

2018).  

The process begins by choosing an initial design 𝑒𝑒0 = �𝑑𝑑(1),𝑑𝑑(2),⋯ ,𝑑𝑑�𝑁𝑁sg(𝑒𝑒0)�� ∈ Ω𝐸𝐸 

consisting of 𝑁𝑁sg(𝑒𝑒0) = 𝑁𝑁0 ≥ 0 sensors. Here, 𝑑𝑑(𝑙𝑙) represents the location of 𝑙𝑙th  strain gauge in 

the design 𝑒𝑒0. The next step is to obtain an updated design 𝑒𝑒1 by adding an additional sensor to 𝑒𝑒0, 

such that 𝑁𝑁sg(𝑒𝑒1) = 𝑁𝑁0 + 1. To obtain the optimal 𝑒𝑒1, I randomly sample 𝛼𝛼 sensor locations using 

Latin Hypercube Sampling (LHS), subjected to a space filling property, to be the candidate for the 

additional sensor from the unused sensors constituting the measurement space Ω𝑋𝑋. These locations 
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yield 𝛼𝛼 number of design samples 𝑒̃𝑒𝑘𝑘,∀𝑘𝑘 ≤ 𝛼𝛼 each with 𝑁𝑁sg(𝑒𝑒1) sensors. I obtain the exact cost 

𝔈𝔈implicit-risk (𝑒̃𝑒𝑘𝑘),∀𝑘𝑘 ≤ 𝛼𝛼  using approach discussed in the previous section. Using the set of 𝛼𝛼 

additional sensor locations as input data, denoted by 𝑑̃𝑑, and the exact cost as output data, I train 

my surrogate function 𝔈̂𝔈(𝑑̃𝑑) ∼ 𝑁𝑁�𝜇𝜇𝑑̃𝑑,𝜎𝜎𝑑̃𝑑
2� . This surrogate can be used to quickly estimate a 

posterior probability that describes possible values for the Bayes risk at a remaining candidate 

location 𝑑𝑑‾ spanning the entire design space, with mean value 𝜇𝜇𝑑𝑑𝑑𝑑‾  and standard deviation 𝜎𝜎𝑑𝑑𝑑𝑑‾ . I 

use Expected Improvement 𝐸𝐸𝐸𝐸  as my acquisition function that helps me locate the next most 

valuable candidate for the next sensor location based on the current posterior over the Bayes risk,  

𝐸𝐸𝐸𝐸(𝑑𝑑‾) = (𝜇𝜇𝑑𝑑‾ − 𝔈𝔈∗)Φ�
𝜇𝜇𝑑𝑑‾ − 𝔈𝔈∗

𝜎𝜎𝑑𝑑‾
� + 𝜎𝜎𝑑𝑑‾𝜙𝜙 �

𝜇𝜇𝑑𝑑‾ − 𝔈𝔈∗

𝜎𝜎𝑑𝑑‾
� (3.49) 

Here, 𝔈𝔈∗ = max𝑒̃𝑒𝑘𝑘  𝔈𝔈implicitrisk (𝑒̃𝑒𝑘𝑘) is the current best value of the objective function. For all the 

remaining possible additional sensor location candidates, I evaluate 𝐸𝐸𝐸𝐸(𝑑𝑑‾). The candidate with 

maximum 𝐸𝐸𝐸𝐸 is the next most valuable location. Once I locate the next most valuable sensor 

location candidate, I get (𝛼𝛼 + 1)th  design samples. I retrain the GPR with (𝛼𝛼 + 1) data points and 

keep adding the next most valuable location from the set of strain locations constituting Ω𝑋𝑋 until 

the maximum 𝐸𝐸𝐸𝐸 is less than a tolerance value 𝜀𝜀. 

Note that the aforementioned details update an initial design 𝑒𝑒0  to 𝑒𝑒1  by adding one 

additional sensor. I keep updating the designs by adding one sensor at a time until one of the 

following two conditions is reached: 

1 Bayes risk converges to a constant value, i.e., the design 𝑒𝑒𝐼𝐼 = 𝑒𝑒∗( with 𝑖𝑖 = 𝐼𝐼) can be 

considered as the most optimal design if 𝔈𝔈(𝑒𝑒𝐼𝐼) ≈ 𝔈𝔈�𝑒𝑒(𝐼𝐼−1)�. Given an updated design 𝑒𝑒𝑖𝑖 = 
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�𝑑𝑑(1),𝑑𝑑(2),⋯ ,𝑑𝑑�𝑁𝑁sg(𝑒𝑒𝑖𝑖)�� with 𝑁𝑁sg(𝑒𝑒𝑖𝑖) number of sensors, the aforementioned steps can be 

generalized to obtain the updated design 𝑒𝑒(𝑖𝑖+1) 

2 The total number of sensors in the design reaches the maximum number of sensors 

limited/constrained by the decision-maker or other factors. 

Given the design 𝑒𝑒𝑖𝑖 , the updated design 𝑒𝑒(𝑖𝑖+1)  can be obtained following similar exercise as 

described above. Let 𝑁𝑁total = 64919 × 4 represent the total number of strain-gauges attached in 

the structure (at top and bottom of each 64919 elements in both vertical and horizontal direction). 

Let 𝑒𝑒𝑛𝑛 wepresent  the optimized sensor design with (𝑁𝑁0 + 𝑛𝑛as) sensors, such that 𝑛𝑛as ≤ 𝑁𝑁as. Here, 

𝑁𝑁as represents the maximum additional sensors considered over the initially assumed number of 

sensors 𝑁𝑁0. The number of sensors int final design shall then be ≤ (𝑁𝑁0 + 𝑁𝑁𝑎𝑎𝑎𝑎 ).The optimal design 

𝑒𝑒∗ is then given by: 

𝑒𝑒∗ = arg max
𝑒𝑒𝑛𝑛𝑎𝑎𝑎𝑎

 𝔈𝔈implicit-risk �𝑒𝑒𝑛𝑛𝑎𝑎𝑎𝑎� (3.50) 

The following algorithm 1 demonstrates the Bayesian optimization procedure to evaluate the 

design 𝑒𝑒∗ 
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3.6.2 Results and discussion 

The initial design 𝑒𝑒0  consisting of 𝑁𝑁0 ≥ 0  sensors may be randomly obtained via LHS, 

predefined based on judgment/experience, or taken as 0 if no pre-defined design is available and 

if one does not want to assume a random initial design. I note in my case study that the miter gate 

finite element model is so finely meshed that there exists a spatial correlation between the strain 

values. Therefore, there are non-unique sensor locations that are sampled by the acquisition 

function, leading to non-unique and slightly different sensor designs depending on the different 

initial design 𝑒𝑒0. In this chapter, I numerically implement the optimization algorithm by fixing the 

initial design 𝑒𝑒0  with 𝑁𝑁0 = 0. Secondly, I consider 𝜃𝜃low = 70 inches, and 𝜃𝜃up = 180 inches. I 

reasonably assume the gap values below 70 inches do not represent significant damage to the gate, 

and the gap value of 180 inches represents the upper limit of the possible gap value beyond which 

the gate is considered critically damaged, based on discussions with USACE engineers. I perform 

the following studies: 

1 In Section 3.6.2.1, I investigate and compare the capability of predicting the posterior 

distribution of the gap length using a random design consisting of 10 sensors (obtained 

using LHS) vs. optimal sensor design obtained using Bayes risk 𝔈𝔈(𝑒𝑒) that ignores the risk 

weight and considers KL divergence as the choice of 𝑓𝑓 -divergence in the Bayes risk 

functional. 

2 In Section 3.6.2.2, I investigate and compare the capability of a sensor design in predicting 

the posterior distribution of the gap length obtained using Bayesian optimization of Bayes 

risk functional constructed using various 𝑓𝑓 -divergences, with and without the risk 
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weighting I consider 5 types of 𝑓𝑓-divergences in constructing the Bayes risk and compare 

their effectiveness in arriving at the optimal design. 

3.6.2.1 Comparison of an optimal sensor placement design based on KL divergence (no risk 

weight) vs. randomly chosen design 

Figure 3.13 illustrates the randomly chosen sensor design (left image), and the one arrived 

at by using KL divergence without risk weights in the Bayes risk functional (right image). I observe 

that all these sensors constituting the design obtained using KL divergence-based functional are 

concentrated close to the boundary of the quoin block and the gate. This location is desirable to 

capture the change in the strain values due to loss of contact between the quoin block and the gate 

(or for obtaining a better inference of the gap length), reflecting an unquestionable advantage of 

using Bayesian optimized sensor design over the randomly chosen design. It is also seen in Fig. 

3.12, from the strain field plot obtained for a fixed set of loading parameters, that there is a stress 

concentration near the gap length that intuitively justifies the fact that optimal sensor design should 

contain at least a few sensors near the gap. Secondly, from Fig. 3.14, I observe that sensor 

placement optimization significantly increases the effectiveness of Bayesian inference. This leads 

to a significant reduction in the uncertainty associated with the posterior distribution of the gap 

length for different realizations of the true gap values. Thirdly, as seen in Fig. 3.14b, the 

uncertainty in the posterior distribution is not equally/uniformly reduced for different realizations 

of true gap length. This is because the obtained optimal sensor design can reduce more uncertainty 

for certain true gap lengths and less for the other ones. Despite this local non-uniformity, the sensor 

design obtained using Bayesian optimization is optimal in a global sense. 
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Figure 3.12: Stress field plot of the miter gate structure obtained for a fixed set of load parameters 
 

 

Figure 3.13: Randomly chosen 10 sensor design (left) vs. KL divergence optimized (no risk weight) 
10 sensor design (right) 

 

 



  126   

 

Figure 3.14: Posterior distributions obtained using a randomly chosen 10 sensor design vs. KL 
divergence (no risk weight) optimized 10 sensor design 

 

3.6.2.2 Comparison of an optimal sensor placement design obtained using 𝒇𝒇-divergence with 

risk weights vs. without risk weights 

In this section, I compare the effectiveness of sensor design in Bayesian inference obtained 

using different kinds of 𝑓𝑓-divergences with and without the risk weight. I consider the 5 different 

𝑓𝑓-divergences: KL, Hellinger, total variation, Pearson, and Jensen divergence. The following 

subsections illustrate a set of three plots for each of the 𝑓𝑓-divergence considered: 

1 Figures 3.15, 3.18, 3.21, 3.24 and 3.27, illustrates the sensor design arrived by ignoring the 

risk weights (left figure), and by including the risk weights (right figure) in Bayes risk 

functional. 

2 Figures 3.16, 2.19, 3.22, 3.25 and 3.28, illustrates the posterior distribution of the gap 

length arrived for different realizations of the true gap length values by ignoring the risk 

weight (left figure) and by including the risk weights (right figure). 
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3 Figures 3.17, 3.20, 3.23, 3.26, and 3.29, illustrates the ratio of the maximum value of the 

posterior distribution of the gap length with and without the risk weights (left figure), and 

the ratio of the standard deviation of the posterior distribution of the gap length with and 

without the risk weights (right figure) for different realizations of the true gap length 

values. 

First, I recall that one of the criteria for the Bayes risk functional was to incorporate my desire to 

obtain better information/description of the gap length when the true value of gap length is larger 

or when the state of the structure approaches a higher degree of damage. As is seen in Figures 

3.16,3.19, 3.22, 3.25 and 3.28, the optimization using risk-weighted (implicit) Bayes risk 

functional allows me to have higher confidence in the inference results for larger value of true gap 

length (or for higher degree of damage). However, accomplishing better inference at a higher value 

of the true gap length leads to sacrifice in the performance of the Bayesian optimization at a lower 

value of the true gap length. This fact is reflected in Figures 3.17a, 3.20a, 3.23a, 3.26a and 3.29a, 

such that the ratio of the maximum value of the posterior with or without risk weight is higher at 

larger value of true gap length. Similarly, as seen in Figures 3.17b, 3.20b, 3.23b, 3.26b and 3.29b, 

the ratio of the standard deviation of the posterior with or without risk weight is lower at larger 

value of true gap length. Second, most of the sensors identified are in the horizontal direction (TH 

and BH), and only a few are in the vertical direction (TV and BV). Third, the optimization results 

are dependent on the choice of 𝑓𝑓-divergence. 

As observed in Fig. 3.15 for the risk-weighted KL divergence case (right figure) that one 

sensor (highlighted by a red circle) is far away from the gap (unlike the other sensors that are close 

to the gap). This is counter-intuitive and deserves an explanation. The algorithm searches the 

global domain for the next possible candidate. There are two possibilities of such selection: 
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1 The outlier (for example: BV sensor circled in red in Fig. 3.15) could have been selected 

in the initial iteration steps. It would have been an incorrect choice that the algorithm would 

self-correct by picking appropriate sensors in the next iterations. 

2 The outlier (for example: BV sensor circled in red in Fig. 3.15) was selected in the later 

iteration step (closer to the converging point). In that case, the information provided by the 

sensors selected in the preceding iteration steps was enough to capture the required 

information and the BV sensor did not add much value to the design. This was the case in 

selecting the BV sensor in Fig. 3.15 highlighted by red circle. 

Since the algorithm searches the entire space (global search), it may have been duped by the 

resembling and related strain information at different coordinates. However, the self-correcting 

nature of the algorithm would eventually select a combination of sensors (in the final design) that 

would capture the necessary information. 

For the case of optimization where risk-weights are ignored, it is observed from Figures 

3.16a, 3.19a, 3.22a, 3.25a, and 3.28a, that at a true gap length about 110 inches, the posterior 

distribution of the gap-length has higher variability than the distributions at other gap values 

slightly higher or lower to 110 inches. It can be seen with a closer look that there are some sensors 

near the 110 inch gap value in the final design (see the green circle highlighted portion of the left 

part of Fig. 3.15). These sensors may be relatively more sensitive to the gap value lower or higher 

than 110 inches partly because of their location and the component of the gate they are attached to 

(a gate is a complex structure consisting of many elements welded together). Although these 

sensors may not be as sensitive to 110 inches gap degradation, they certainly are sensitive to other 

gap values Since the optimization framework presented in this chapter chooses the optimal design 
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in an average sense, the relative advantage (optimal sensitivity to the overall damaged state) of 

these sensors is one possible reason for them to be picked by the optimization algorithm in the first 

place. 

(a) Comparison of an optimal sensor placement design obtained using KL divergence with 

vs. without risk weight 

 

Figure 3.15: Sensor placement design using KL divergence: without (left) and with (right) 
the risk weight 

 
 

 

 
Figure 3.16: Posterior distributions obtained using KL divergence 
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Figure 3.17: Ratio of the maximum value and the standard deviation of the posterior obtained 
using KL divergence with and without risk weight 

(b) Comparison of an optimal sensor placement design obtained using Hellinger divergence 

with vs. without risk weight 

 
Figure 3.18: Sensor placement design using Hellinger divergence: without (left) and with (right) the 

risk weight 
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Figure 3.19: Posterior distributions obtained using Hellinger divergence 

 

 

Figure 3.20: Ratio of the maximum value and the standard deviation of the posterior obtained 
using Hellinger divergence with and without risk weight 
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(c) Comparison of an optimal sensor placement design obtained using total variation 𝒇𝒇 - 

divergence with vs. without risk weight 

 
Figure 3.21: Sensor placement design using total variation 𝒇𝒇-divergence: without (left) and with 

(right) the risk weight 

 
Figure 3.22: Posterior distributions obtained using total variation 𝒇𝒇-divergence 

 
Figure 3.23: Ratio of the maximum value and the standard deviation of the posterior obtained 

using total variation 𝒇𝒇-divergence with weight and without weight 
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(d) Comparison of an optimal sensor placement design obtained using Pearson 𝒇𝒇-divergence 

with vs. without risk weight 

 
Figure 3.24: Sensor placement design using Pearson 𝒇𝒇-divergence: without (left) and with (right) 

the risk weight 

 
Figure 3.25: Posterior distributions obtained using Pearson 𝒇𝒇-divergence 

 
Figure 3.26: Ratio of the maximum value and the standard deviation of the posterior obtained 

using Pearson 𝒇𝒇-divergence with and without risk weight 
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(e) Comparison of an optimal sensor placement design obtained using Jensen 𝒇𝒇-divergence 

with vs. without risk weight 

 
Figure 3.27: Sensor placement design using Jensen 𝒇𝒇-divergence: without (left) and with (right) the 

risk weight 

 
Figure 3.28: Posterior distributions obtained using Jensen 𝒇𝒇-divergence 

 
Figure 3.29: Ratio of the maximum value and the standard deviation of the posterior obtained 

using Jensen 𝒇𝒇-divergence with and without weight 
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(f) Comparison of an optimal sensor placement design obtained using different 𝒇𝒇 -

divergences relative to KL divergence with and without risk weight 

Figure 3.30a illustrates the ratio of the standard deviation of the posterior distribution of 

the gap length obtained by various 𝑓𝑓-divergences without risk weight with respect to the standard 

deviation obtained using KL divergence without risk weight. Similarly, Fig. 3.30b represents the 

same ratio when risk weights are considered in the Bayes risk functional. 

I observe that among the 𝑓𝑓 -divergences studied for the application of optimal sensor 

design; Bayes risk functional considering KL divergence leads to the best sensor placement design 

for both with or without risk weights. 

 

Figure 3.30: Ratio of the standard deviation of the posterior obtained using various 𝒇𝒇-divergence 
relative to the standard-deviation obtained using KL divergence 

 

3.7 Summary and Conclusions 

This chapter details an optimal sensor design framework for structural health monitoring 

applications. It was demonstrated on a miter gate case study with the primary goal of arriving at 

the optimal strain gauge network design used to infer the posterior distribution of the loss-in-
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contact gap length (the damage state parameter). I arrived at such a design by maximizing an 

objective functional referred to as Bayes risk. The Bayes risk is designed to accommodate three 

crucial elements: first, it aims to obtain a design that maximizes the gains in the information on 

the gap length inferred from the strain-gauge measurements. This gain in the information is 

quantified by 𝑓𝑓-divergence that evaluates the similarity or dissimilarity between two probability 

measures by evaluating the distance (relative gain of information) between two distributions. 

Second, the Bayes risk incorporates my desire to obtain better information/description of the gap 

length when the true value of gap length is larger, or the state of the structure approaches a higher 

degree of damage. It is crucial for deciding the maintenance strategies and appropriate action 

preventing significant losses. It is accomplished by using a risk-weight. Third, the Bayes risk also 

takes into account my prior knowledge of the gap length. 

Arriving at the optimal sensing design was accomplished by minimizing risk or 

equivalently maximizing the utility (defined as the risk-weighted gain of information) in an 

average sense. In this regard, evaluation of the Bayes risk for a given sensor network design 

demands considering all the possible degrees of damage (indicated by the true gap length value). 

This requires obtaining a large set of simulated observation data and a quick Bayesian inference 

of the posterior distribution of gap-length for many different realizations of the true gap length 

values. Given a true gap length value and the loading parameters, the simulated strain gauge 

readings can be obtained using a high-fidelity finite element model (FEM). The randomness in the 

strain measurements is primarily due to uncertainties in the hydrostatic load parameters, and the 

noise in strain gauges. Since the high-fidelity finite element model is computationally expensive, 

I built a digital surrogate using Gaussian Process Regression (GPR), which is around 50000 times 

faster than FEM. I deploy numerical approximation of the posterior distribution by using particle 
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filters, or specifically the sequential Monte Carlo (SMC) approach. I define two approaches, 

intrinsic and extrinsic, to incorporate risk weights into Bayes risk functional. Although both, the 

intrinsic and extrinsic, definitions of Bayes risk are mathematically equivalent, the numerical 

evaluation of the intrinsic and extrinsic Bayes risk functional yields slightly different results. I use 

implicit Bayes risk because it shows the effect of risk weights more prominently than the result 

obtained using the explicit form of Bayes risk. Numerically evaluating Bayes risk expression 

involves evaluating a non-linear, multi-dimensional integral. I use univariate dimension reduction 

in conjuncture with the Gauss-Hermite quadrature. Apart from reducing the computational cost by 

using GPR, I also proposed a novel and innovative approach to further minimize the computational 

cost for evaluating the Bayes risk by minimizing the number of times I run the GPR model to 

evaluate the Bayes risk 

I observe that as compared to random sensor design, the optimal sensor design significantly 

increases the effectiveness of Bayesian inference and reduces the uncertainty in the posterior 

distribution of the gap-length value. Inclusion of the risk-weight in Bayes risk allows me to have 

higher confidence in the inference results for a higher degree of damage (as was intended). 

However, accomplishing better inference at a higher value of the true gap length leads to sacrifice 

in the performance of the Bayesian optimization at a lower value of the true gap length. Amongst 

the chosen 𝑓𝑓-divergences, I conclude that KL divergence is the most suitable choice for this 

particular class of problems. A future possible work can be to compare the efficiency and results 

obtained by the presented Bayesian optimization with other algorithms in the literature for the 

given problem The computational speed, as well as the final design, arrived using various 

optimization algorithms may depend on how the algorithm is engineered, and the constraints on 

the problem at hand, and it remains to be investigated. 
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3.8 Preview to Chapter 4 

Up through Chapter 3, I have successfully built up a complete efficient framework for 

optimal sensor design for a large civil infrastructure system, i.e., the miter gate. The challenges 

addressed in Section 2.8 have been solved thoroughly in this chapter. A new Bayes risk function 

is addressed with a combination of maximizing the information gain during the gap length 

inference process and creating a risk-weight related to the structural damage level. Various 

information gain functions are evaluated for comparing their performances in selecting the best 

sensor arrangement. Besides, a numerical strategy is introduced to reduce the computational 

expanse when calculating the expected values for the objective function in optimization process.  

Although the updated framework is capable of designing an optimal sensor placement, the 

current framework has not yet considered the time evolution of the structural performance or the 

reliability of the monitoring system itself (the sensors’ reliability). As discussed in Section 1.4, 

real systems degrade under loading over time and possible degradation in the sensor system itself 

can induce error into the data-to-decision SHM workflow. Sensors are more likely to be damaged 

or biased when they are merged under the water level (a harsh environment). However, sometimes 

sensors are installed in the water because they could be closer to the damage area, which could 

provide more information, implying a tradeoff. Thus, on top of the current framework, sensor 

reliability is an important factor to be considered in a sensor placement design. The next chapter 

will account for the sensor reliability in the optimal sensor design framework and extend to a 

structural life cycle analysis.  
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3.9 Remarks 

Portions of this dissertation have been published or are currently being considered for 

publication. Chapter 3 is composed of a first authored publication: 

Y. Yang, M. Chadha, Z. Hu, M. A. Vega, M. D. Parno, and M. D. Todd, “A probabilistic optimal 

sensor design approach for structural health monitoring using risk-weighted f-divergence,” 

Mechanical Systems and Signal Processing, vol. 161, p. 107920, 2021. 
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Chapter 4  
 
AN OPTIMAL SENSOR DESIGN FRAMEWORK 
ACCOUNTING FOR SENSOR RELIABILITY OVER THE 
STRUCTURAL LIFE CYCLE 
 

4.1 Abstract 

One of the most prominent goals of a structural health monitoring system (SHM) is to infer 

the state of the structure to inform appropriate maintenance actions that affect performance and 

safety over the lifecycle of the structure. An SHM system infers the structural state by acquiring 

measurement data that is expected to contain information about the structural state. This inference 

may be fundamentally flawed, however, if the sensing system that initiates the SHM workflow is 

unreliable. The operational and environmental load state that these sensors can face, in addition to 

normal manufacturing defects, result in varying functionality at different monitoring locations, at 

different times. Therefore, it becomes imperative to account for sensor reliability in the optimal 

sensor design process for the SHM system at the outset. This chapter details an optimal sensor 

design framework with a target of probabilistically inferring the structural state accounting for the 

reliability of sensors over the lifecycle of the structure. The generic framework is laid out and is 

finally demonstrated on a complex real-world miter-gate structure. 

 

4.2 Introduction  

At a global level, the primary goal of an SHM system is to infer the structural state by 

gathering in-situ sensor measurement data and converting it to actionable information. The benefits 

of a well-designed structural health monitoring (SHM) system are potentially meaningful, 
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including (but not limited to) reduction in ownership cost through data-driven optimal maintenance 

decision-making, performance maximization during operation, and mitigation of catastrophic 

failure to provide life safety margins. Since an SHM system monitors the structure by exploiting 

in-situ measurement data, data acquisition is one of the most important components of the SHM 

paradigm. Therefore, the optimal design of the sensor network–defined herein as the spatial 

arrangement of the sensor network in order to limit the scope appropriately–may significantly 

enhance the performance and life cycle value of the SHM system as a whole.  

In recent work (Yang and Chadha 2021), I investigated and proposed an optimal sensor 

network design framework using Bayesian optimization with the target of maximizing the gain in 

the information of the structural state when measurement data is available. The information gain 

was quantified by risk-weighted f-divergence of the posterior distribution of the state parameter 

(conditioned on newly acquired measurement data) relative to the prior knowledge of the structural 

state when new measurements are unavailable. It was assumed that the sensors were fully 

functional, and their measurements were unbiased and reliable. However, this is seldom the case 

when an SHM system is used to monitor the structure that is subjected to harsh and variable 

environmental conditions over its lifecycle. In the real world, parts of a structure may be exposed 

to different environmental conditions and loads. As a result, sensors have varying reliability and 

malfunctioning chances at different monitoring locations and at different times. Since the overall 

value of an SHM system depends on its design (Chadha and Hu 2021; Thöns and Faber 2013; 

Malings and Pozzi 2016), it is crucial to investigate and account for the reliability of sensors along 

with all the uncertainties (for example, varying load conditions and noise in the sensors) in an 

optimal sensor network design framework. This chapter focuses on extending my optimal sensor 
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design framework to a more realistic scenario that accounts for the reliability of sensors over the 

lifecycle of the structure. 

 

As mentioned in Yang et al. (Yang and Chadha 2021), there is not a universal objective for 

sensor design, as each application has a distinct goal for the use of a particular SHM system. Given 

that decision-makers are the typical curators of SHM utility, the objective function may also be 

defined from the perspective of decision theory that defines loss as a consequence of decision-

making (or the associated risk) by considering various prior information and uncertainty sources 

in the decision-making process. The loss/risk is a subjective quantity and is defined according to 

the problem. Optimal sensor design therein requires finding the sensor network that minimizes the 

losses or risk expressed by an objective function in an average sense; such an objective function 

is defined as Bayes risk. Readers are referred to research papers cited in (Yang and Chadha 2021) 

that use different objective functions suitable for various applications. When the sensors 

malfunction and the measurement data is not reliable (not representative of the true structural 

state), it runs the risk of incorrectly inferring the state parameter, i.e., there is a shift in the 

properties (such as the mean value) of the posterior distribution of the state parameter (conditioned 

upon newly acquired sensor data) farther away from the true state parameter. Since the primary 

target of the optimal sensor design process delineated in this chapter is to account for the reliability 

of sensors over the structure’s life cycle, the proposed objective function in this chapter is, 

therefore, the expected value of the aggregate absolute deviation of the mean value of the inferred 

posterior distribution of the state parameter from the true state parameter over the lifecycle of the 

structure, averaged over all the uncertainties (an example of Bayes risk).  
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In such complex sensor optimization types of problems, the objective function is usually a 

high-dimensional non-linear integral. Minimizing such a function is challenging and requires 

advanced numerical methods and computational techniques. Optimal sensor design has been a 

topic of significant interest in the SHM community, especially when it comes to implementing 

SHM for damage detection, classification, or inference in large and complex infrastructure (Flynn 

and Todd 2010; Meo and Zumpano 2004; Yi and Li 2012). Since each detection, inference, or 

classification problem is distinct and focuses on a unique target, different objective functions and 

various solution strategies have been proposed in a long list of seminal literature available in this 

research area (Friswell and Castro-Triguero 2015; Entezami and Sarmadi 2020; Li and Zhang 

2016; Yang and Liang 2019). Yang et al. (Yang and Chadha 2021; Yang and Chadha 2021) list 

numerous research work that describes various optimization approaches and lay the foundation of 

Bayesian optimization numerical algorithm that will be extended and used in this chapter. 

Bayesian optimization is the most suitable technique to apply complex large-scale civil structures 

SHM applications because the global sensor design space is huge, and therefore evaluating Bayes 

risk for each of these designs is computationally impossible (thus requires an iterative optimization 

approach) and I do not have the derivatives of the objective function that prevents me from using 

gradient decent types of approaches (Akbarzadeh and Lévesque 2014). 

The previous work (Yang and Chadha 2021; Yang and Chadha 2021) leading up to this 

chapter established a Bayesian optimization framework that targeted different optimization 

objectives. Yang et al. (Yang and Chadha 2021) aimed at obtaining a sensor design that maximizes 

gain in information, and (Yang and Chadha 2021) aimed at detecting discrete boundary conditions. 

Although the objectives were different, both of my previous work considered that the sensors were 

fully reliable and worked just as warranted. Mathematically, this behavior was modeled by 
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assuming a zero-mean Gaussian noise structure for sensor measurements. Although such construct 

allowed me to converge my focus on the optimization framework itself, it completely ignored the 

possibility of sensors malfunctioning. Inclusion of sensor reliability as a sensor design 

optimization criterion has been investigated for various applications, like fault and failure detection 

(Li and Upadhyaya 2011; Duan and Lin 2018;), communication reliability in wireless networks 

(Damaso and Rosa 2014; Zonouz and Xing 2014), reliability in corrosion rate sensor data (Marsh 

and Frangopol 2008), and on system reliability (Li and Sadoughi 2020; Kang and Song 2008). 

Coit et al. (Coit and Zio 2019) categorizes and discusses evolution of system reliability 

optimization in three era and also delineates potential challenges encountered in system reliability 

optimization. Needless to say, given that a structure is exposed to wide varieties of environmental 

conditions over its lifecycle, sensor reliability is crucial to consider while analyzing lifecycle 

performance of an SHM system. This chapter does exactly that. 

The chapter will first describe the sensor placement optimization framework accounting 

for sensor reliability, followed by application to a demonstration case study. The case study is a 

navigation lock miter gate that is managed and operated by USACE (Richardson 1964; Vega and 

Hu 2020; Vega and Hu 2021). This structure serves as an excellent demonstration example for two 

reasons. The first is that the damage parameter is the loss of boundary contact (a "gap") between 

the miter gate and its supporting wall quoin block at the bottom of the gate. It is reasonably 

assumed that the damage state is characterized by a one-dimensional continuous state parameter 

that is probabilistically inferred from the observable sensor. Although miter-gate is a significantly 

complex real-world structure, it is suitable to visualize, interpret, and evaluate the optimization 

results since it allows us to consider a single-dimensional state parameter. The second reason is 

that in terms of the reliability aspect, at any point in time, the miter gate may be conveniently 
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divided into two zones. The first zone is the part of the gate above the water level (called splash 

zone) and the second zone is the part of the gate that is submerged in the water (called the 

submerged zone). The sensors that are in the submerged zone for a majority of the time have a 

higher probability of malfunctioning than the sensors that are installed in the splash zone. 

Therefore, the miter gate case study captures the generic case of different sensor reliability zones 

in a structure, and hence, it is an excellent example that can be used to reveal and comprehensively 

understand the full potential of the proposed optimization algorithm that accounts for sensor 

reliability. 

The primary highlights and novelty of this chapter may therefore be summarized as: (1) it 

develops a framework to investigate the impact of sensor reliability on Bayesian inference-based 

damage detection of a structure. To the best of my knowledge, this is the first time that a study of 

such sort has been conducted; (2) it proposes a sensor placement optimization framework with the 

consideration of spatial and time-dependent sensor reliability. The consideration of the spatial- and 

time-dependent sensor reliability allows me to design a reliable sensor network such that it is 

robust and reliable to the hazards over space and during the sensor lifecycle. The objective function 

proposed and used in this chapter caters to the need of accounting for the reliability of the sensors 

over the lifecycle of the structure. The objective function used in this chapter is defined as the 

expected value of the aggregate absolute deviation of the mean value of the inferred posterior 

distribution of the state parameter from the true state parameter over the lifecycle of the structure 

(referred to as expected absolute mean deviation from hereon); (3) it incorporates the degradation 

of damage over time into the design of a reliable sensor network from the damage detection 

perspective. The designed sensor network is reliable for the whole lifecycle of the miter gate; (4) 

it extends the novel and efficient numerical framework established in my previous work (Yang 
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and Chadha 2021) to solve the computational challenges in the design of a reliable sensor network 

by integrating Bayesian optimization, surrogate modeling, univariate dimensional reduction, and 

Sequential Monte Carlo simulation. For the same reason, certain results are borrowed from (Yang 

and Chadha 2021); (5) finally, this work demonstrates the efficacy of the proposed novel sensor 

placement design framework on a complex and practical miter gate monitoring application. 

The rest of the chapter is arranged as follows. Section 4.3 details the generic Bayesian 

optimization framework focusing on accounting for sensor reliability over the lifecycle of the 

structure. Section 4.4 and 4.5 discusses the application of the proposed approach in a real-world 

miter gate structure. Finally, Section 4.6 concludes the chapter 

4.3 The sensor placement optimization framework accounting for sensor reliability 

4.3.1 A brief discussion on sensor reliability 

Sensor readings are inherently uncertain and possibly unreliable due to technical factors, 

practical limitations, and noise. Some causes of deviation in sensor measurements relative to the 

ground truth are primarily due to meteorological conditions, uncertainty in loading, noise in 

measurements, possible malfunctioning, unforeseen installation issues, improper or no periodic 

maintenance, or other stochastic influences, to name a few. Broadly, in the ascending order of 

sensor functionality, there are three scenarios to consider while accounting for uncertainty in 

sensor readings: 

 

Sensor reliability scenario 1–The sensor is perfectly functional (hence yields reliable 

readings) but has measurement noise: In this case, the measurement noise is modeled by a zero-

mean Gaussian white noise. The previous work (Yang and Chadha 2021; Yang and Chadha 2021) 
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falls in this category. It is assumed that the mean value of the distribution of observed sensor 

measurement is equal to the true sensor reading. 

 

Sensor reliability scenario 2–The sensor is partially malfunction and has measurement noise: 

The uncertainty in sensor reading now consist of two parts–measurement noise ignoring sensor 

reliability and reliability bias–collectively called as observation noise. As a consequence of sensor 

malfunction, the mean value of the distribution of observed sensor measurement can no longer be 

equated to the true sensor reading. This bias in measurement (i.e., a shift/deviation in the mean 

sensor reading relative to the ground truth) must be accounted for in such a case. Additionally, the 

probability of a sensor malfunction over time varies from one part of the structure to another. This 

is because parts of the structure may be subjected to different environmental or loading conditions. 

There are numerous ways to define the reliability of the sensor over time (Ebeling 2004). I adapt 

an exponentially decaying reliability model, generically defined as: 

𝑅𝑅(𝑡𝑡) = 𝑒𝑒−∫  𝑡𝑡0  𝜆𝜆�𝑡𝑡
′�d𝑡𝑡′ (4.1) 

In the expression above, 𝜆𝜆(𝑡𝑡′) denotes the failure rate at time 𝑡𝑡′ . The variable 𝑅𝑅(𝑡𝑡) could be 

interpreted as the probability of a sensor being reliable at time 𝑡𝑡 . An exponential decaying 

reliability model defined in Eq. (4.1) allows me to model a scenario where a sensor tends to 

malfunction at an accelerating pace as time passes. 

 

Sensor reliability scenario 3-The sensor has completely failed: when a sensor completely fails. 

there is an omission of a reading. In some cases, this can be easily recognized and rectified by an 

on-site repair/replacement. Completely missing readings can compromise information quality or 
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robustness, but the concept of completely missing data will not be considered within the scope of 

this paper, as it is a topic that has been considered by other researchers in SHM, e.g., (Tang and 

Bao 2020).  

As mentioned above, I focus on the second scenario of accounting for sensor reliability 

over the lifecycle of the structure in an optimal sensor placement framework. The goals of this 

section are as follows: 

1 To clearly describe the generic problem statement. 

2 To generically delineate the Bayes risk functional that accounts for sensor reliability over 

structure's lifecycle. 

3 To describe the optimization framework and all the related numerical pieces required to 

computationally solve the optimization problem. 

For a better understanding of the proposed framework and related concepts, I break down 

the framework into pieces, each described by a single subsection in the following write-up. I start 

with the mathematical description of the structural state and its evolution over time.  

 

Remark 1: To proceed further, I lay down common nomenclature used in this chapter. Let 𝑌𝑌 denote 

a random variable. Lower case letters 𝑦𝑦 represent realizations of the random variable 𝑌𝑌, such that 

𝑦𝑦 ∈ Ω𝑌𝑌 . Here, Ω𝑌𝑌  denotes the measurement space. The probability density function and the 

cumulative density function are represented by 𝑓𝑓𝑌𝑌(𝑦𝑦) and 𝐹𝐹𝑌𝑌(𝑦𝑦). The expected value of a function 
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𝑔𝑔(𝑦𝑦) is denoted by 𝐸𝐸𝑌𝑌[𝑔𝑔(𝑦𝑦)]. A random variable 𝑌𝑌 following a Gaussian distribution, with the 

mean 𝜇𝜇𝑦𝑦 and standard deviation 𝜎𝜎𝑦𝑦 is denoted by: 

𝑓𝑓𝑌𝑌(𝑦𝑦) =
1
𝜎𝜎𝑦𝑦
𝜙𝜙 �

𝑦𝑦 − 𝜇𝜇𝑦𝑦
𝜎𝜎𝑦𝑦

�

𝐹𝐹𝑌𝑌(𝑦𝑦) = Φ�
𝑦𝑦 − 𝜇𝜇𝑦𝑦
𝜎𝜎𝑦𝑦

�
 (4.2) 

No symbolic distinction is made for different dimensions of the measurement space and the 

random variable. The vector-dimensionality of a random variable is contextual and is defined as 

needed. 

4.3.2 The structural state and the prior damage evolution model 

Over the lifespan of the structure as quantified by the time-space Ω𝑇𝑇 = [0, 𝑡𝑡max], the 

structural state evolves, in the absence of any external actions such as maintenance/repair, from 

as-built to approaching a limit state, which very generally could be defined as the state in which 

the structure may no longer perform its intended design functions successfully. Let Θ(𝑡𝑡) denote a 

random variable representing the state-parameter vector at any time 𝑡𝑡 ∈ Ω𝑇𝑇. Let Θtrue (𝑡𝑡) denote 

the true/actual state-parameter vector at any time 𝑡𝑡. It is assumed that the true state of structure 

must be inferred probabilistically due to the various inherent uncertainties and stochastic 

processes. Since our goal is to consider the reliability of the sensors over the life cycle of a 

structure, we require a damage evolution model. Since the time evolution of structural state is also 

not precisely known, it is modeled probabilistically, such that, in the absence of any new sensor 

data, the damage evolution is defined by 𝑓𝑓Θ(𝑡𝑡)(𝜃𝜃(𝑡𝑡)), which denotes the prior distribution of the 

state parameter vector at time 𝑡𝑡. Availability of acquired sensor data from an SHM system allows 

an updated inference of the structural health; since entire life cycles of sensor readings must be 



  150   

obtained in order to evaluate such a framework, the observed sensor readings will be 

computationally simulated via a previously validated high-resolution finite element model. The 

following three subsections deal with modeling sensor measurement data and the Bayesian 

inference technique used for model-updating. 

4.3.3 The sensor design space and the ground truth 

Let Ω𝐸𝐸 represent the exhaustive sensor design space. Let 𝑒𝑒 ∈ Ω𝐸𝐸 denote a sensor network 

design realization consisting of 𝑁𝑁sg(𝑒𝑒) number of sensors with the measurement space Ω𝑋𝑋𝑒𝑒(𝑡𝑡), 

such that 𝑥𝑥𝑒𝑒(𝑡𝑡) ∈ Ω𝑋𝑋𝑒𝑒(𝑡𝑡) denotes a realization of an observed sensor measurement vector at time 

𝑡𝑡. For SHM related problems, realizations of observed measurement data can be simulated using 

a validated high-fidelity finite element model (FEM), denoted by 𝑔𝑔𝑒𝑒, or by a digital surrogate built 

using FEMgenerated data. Over its lifecycle, a structure is subjected to uncertain loading, 

generically denoted by the random vector 𝐻𝐻(𝑡𝑡), with a realization ℎ(𝑡𝑡) ∈ Ω𝐻𝐻(𝑡𝑡). At any time 𝑡𝑡, for 

the given true state 𝜃𝜃true (𝑡𝑡) and the load conditions ℎ(𝑡𝑡), the true/exact/ground-truth value of the 

sensor measurements constituting a design 𝑒𝑒  is obtained from the FEM model 

𝑔𝑔𝑒𝑒(𝜃𝜃true (𝑡𝑡), ℎ(𝑡𝑡); 𝑡𝑡). The observed sensor readings are not same as the true/exact of the sensor 

measurements. The next subsection discusses the model adopted to simulate observed data. 

4.3.4 The observed sensor reading model, and observation noise model  

As mentioned in Section 4.3.1, an observed sensor readings are corrupted by noise and 

reliability bias as a consequence of possible sensor partial malfunction, collectively called as the 

observation noise. Sensor reliability is directly affected by the functional state of a sensor which 

is probabilistic and depends on the zone/location where the sensor is attached. Usually, a structure 

is divided into various reliability-zones depending on parts of structures exposed to different 
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environmental and loading conditions. Environmental conditions (like part of structure submerged 

in water, or subjected to different temperatures), are modeled by their respective load terms (like 

hydrostatic load or thermal stresses). Therefore, I assume that a structure is zoned (or sub divided) 

based on various parts of structures being subjected to different loading conditions quantified by 

the load vector ℎ(𝑡𝑡) (or a subset of the load vector). Let Ω𝑆𝑆 = {𝑠𝑠unrel , 𝑠𝑠rel } denote the set of 

functional states of a sensor, such that 𝑠𝑠unrel  denote that a sensor is malfunctional and unreliable 

(reliability scenario 2 mentioned in Section 4.3.1), and 𝑠𝑠rel  represents a fully-functional and 

reliable functional state of a sensor (reliability scenario 1 mentioned in Section 4.3.1). The 

probability mass function 𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)|𝐻𝐻(𝑡𝑡)(𝑆𝑆unrel ∣ ℎ(𝑡𝑡))  and 𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)|𝐻𝐻(𝑡𝑡)(𝑆𝑆rel ∣ ℎ(𝑡𝑡)) = 1 −

𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)|𝐻𝐻(𝑡𝑡)(𝑆𝑆unrel ∣ ℎ(𝑡𝑡)), denotes the probabilities of 𝑖𝑖-th sensor being malfunctional or fully-

functional at time 𝑡𝑡 conditioned upon the loading-zone (defined in turn by the load vector and the 

sensor location of the 𝑖𝑖 -th vector in design 𝑒𝑒 ) respectively. Here, 𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)  denotes the random 

variable modeling the functional state of the 𝑖𝑖-th sensor in design 𝑒𝑒 at time 𝑡𝑡. Since the functional 

state of a sensor is dependent on the loading-zone the sensor is installed, the probabilities 

𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝑠𝑠unrel ∣ ℎ(𝑡𝑡)) and 𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝑠𝑠rel ∣ ℎ(𝑡𝑡)) are conditioned on the load vector ℎ(𝑡𝑡). The 

approach for evaluating these probabilities may vary from one problem to another. In this chapter, 

the probability of a sensor being fully functional at time 𝑡𝑡 takes the exponential decay form as 

described in Eq. (4.1). 

Let the random vector 𝜁𝜁𝑒𝑒(𝑡𝑡) represent observation noise in sensor readings at time 𝑡𝑡, such 

that 𝜀𝜀𝑒𝑒(𝑡𝑡) = �𝜀𝜀𝑒𝑒1(𝑡𝑡), 𝜀𝜀𝑒𝑒2(𝑡𝑡),⋯ , 𝜀𝜀𝑒𝑒𝑁𝑁sg(𝑒𝑒)(𝑡𝑡)� ∈ Ω𝜁𝜁𝑒𝑒(𝑡𝑡) is a realization of observation noise vector 

for the design 𝑒𝑒  at time 𝑡𝑡  (where 𝜀𝜀𝑒𝑒𝑒𝑒(𝑡𝑡)  denotes observation noise in the 𝑖𝑖 -th sensor). The 

observation noise in the 𝑖𝑖-th sensor in design 𝑒𝑒 also depends on the loading-zone where it is 
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attached. Let 𝑓𝑓𝜁𝜁𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝜀𝜀𝑒𝑒𝑒𝑒(𝑡𝑡) ∣ ℎ(𝑡𝑡)) denote the distribution of observation noise in 𝑖𝑖-th sensor 

conditioned upon the loading zone at which the sensor is installed (which is assumed to be defined 

in terms of the various loading situations), and 𝑓𝑓𝜁𝜁𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝜀𝜀𝑒𝑒(𝑡𝑡) ∣ ℎ(𝑡𝑡)) denote the joint distribution 

of observation noise in all the sensors constituting the design 𝑒𝑒. For the purpose of Bayesian 

inference, I need to model the conditional distribution of observation noise 𝑓𝑓𝜁𝜁𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝜀𝜀𝑒𝑒(𝑡𝑡) ∣

ℎ(𝑡𝑡)). I assume the following: 

1 The observation noise in sensors is assumed to be statistically independent of each other 

Although the true sensor measurements are related by virtue of the physics of the problem, 

noise in these readings can be reasonably assumed to be statistically independent. That is, 

𝑓𝑓𝜁𝜁𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝜀𝜀𝑒𝑒(𝑡𝑡) ∣ ℎ(𝑡𝑡)) = �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

𝑓𝑓𝜁𝜁𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝜀𝜀𝑒𝑒𝑒𝑒(𝑡𝑡) ∣ ℎ(𝑡𝑡)) (4.3) 

 

2 I assume that if sensors are fully reliable and functional, the observation noise follows a 

zero-mean Gaussian distribution (white noise). That is, when sensors are fully functional 

(scenario 1 mentioned in Section 4.3.1), let the random vector 𝜁𝜁‾𝑒𝑒(𝑡𝑡) represent noise in 

sensor readings at time 𝑡𝑡, such that 𝜀𝜀‾𝑒𝑒(𝑡𝑡) = �𝜀𝜀‾𝑒𝑒1(𝑡𝑡), 𝜀𝜀‾𝑒𝑒2(𝑡𝑡),⋯ , 𝜀𝜀‾𝑒𝑒𝑁𝑁𝑠𝑠𝑠𝑠(𝑒𝑒)(𝑡𝑡)� ∈ Ω𝜁𝜁‾𝑒𝑒(𝑡𝑡) is a 

realization of noise vector for the design 𝑒𝑒 at time 𝑡𝑡 (where 𝜀𝜀‾𝑒𝑒𝑒𝑒(𝑡𝑡) denotes observation 

noise in the 𝑖𝑖-th sensor). That is: 

𝑓𝑓𝜁𝜁‾𝑒𝑒𝑒𝑒(𝑡𝑡)(𝜀𝜀‾𝑒𝑒𝑒𝑒(𝑡𝑡)) =
1

𝜎𝜎𝜀𝜀‾𝑒𝑒𝑒𝑒(𝑡𝑡)
𝜙𝜙�

𝜀𝜀‾𝑒𝑒𝑒𝑒(𝑡𝑡)
𝜎𝜎𝜀𝜀‾𝑒𝑒𝑒𝑒(𝑡𝑡)

� (4.4) 

Here, 𝜎𝜎𝜀𝜀‾𝑒𝑒𝑒𝑒(𝑡𝑡) denotes the standard-deviation in reading of the 𝑖𝑖-th sensor in design 𝑒𝑒 at time 

𝑡𝑡. I note that 𝑓𝑓𝜀𝜀‾𝑒𝑒(𝑡𝑡)(𝜀𝜀‾𝑒𝑒𝑒𝑒(𝑡𝑡)) is not conditioned upon the loading-zones in which a structure 
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is divided since sensors are fully functional irrespective of the loading-zone they are 

attached to. 

3 I now consider reliability scenario 2 mentioned in Section 4.3.1. I model the reliability 

aspect of sensors by incorporating reliability bias in observation noise. The consequence 

of sensors malfunctioning is that the probability distribution of observation noise has a 

non-zero mean. The generic form of the probability distribution of observation noise 

𝑓𝑓𝜁𝜁𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝜀𝜀𝑒𝑒(𝑡𝑡) ∣ ℎ(𝑡𝑡))  is obtained as a weighted sum of the zero-mean probability 

distribution defined in Eq. (4.4) and the probability distribution of sensor reliability bias. 

The sensor reliability bias in the 𝑖𝑖-th sensor of design 𝑒𝑒 at time 𝑡𝑡 is modeled by sensor bias 

factor, denoted by a random variable 𝜂𝜂𝑒𝑒𝑒𝑒(𝑡𝑡). Let 𝑛𝑛𝑒𝑒𝑒𝑒(𝑡𝑡) denote a realization of 𝜂𝜂𝑒𝑒𝑒𝑒(𝑡𝑡). I 

model the sensor bias factor by a non-zero mean 𝜇𝜇𝑛𝑛𝑒𝑒𝑒𝑒(𝑡𝑡) Gaussian distribution with the 

standard-deviation 𝜎𝜎𝑛𝑛𝑒𝑒𝑒𝑒(𝑡𝑡). Therefore, a realization of observed sensor noise can be written 

as: 

𝜀𝜀𝑒𝑒𝑒𝑒(𝑡𝑡) = �𝜀𝜀‾𝑒𝑒𝑒𝑒(𝑡𝑡)  for sensor functional state 𝑠𝑠rel 
𝜀𝜀‾𝑒𝑒𝑒𝑒(𝑡𝑡) + 𝑛𝑛𝑒𝑒𝑒𝑒(𝑡𝑡)  for sensor functional state 𝑠𝑠unrel 

 (4.5) 

 

With all the pieces at hand, I obtain the distribution of the observation noise as:  
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(4.6) 

In the expression above, 𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝑆𝑆rel ∣ ℎ(𝑡𝑡))  and 𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝑠𝑠unrel ∣ ℎ(𝑡𝑡))  can be 

interpreted as weights assigned to observation noise weighing the possibility of the 𝑖𝑖-th 

sensor of design 𝑒𝑒 being reliable or unreliable at time 𝑡𝑡 respectively. It is these sensor 

functional state probabilities that makes the distribution 𝑓𝑓𝜁𝜁𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝜀𝜀𝑒𝑒𝑒𝑒(𝑡𝑡) ∣ ℎ(𝑡𝑡)) 

conditioned on 𝐻𝐻(𝑡𝑡). 

I obtain the observed sensor readings at time 𝑡𝑡 using the following measurement model: 

𝑥𝑥𝑒𝑒(𝑡𝑡) = 𝑔𝑔𝑒𝑒(𝜃𝜃true (𝑡𝑡), ℎ(𝑡𝑡); 𝑡𝑡) + 𝜀𝜀𝑒𝑒(𝑡𝑡) (4.7) 

Having decided on the observation noise model and observed sensor readings, I now investigate 

the impact of sensor reliability on Bayesian inference that will be later used to obtain posterior 

damage evolution model. This is discussed in the following subsection. 

 

4.3.5 Bayesian inference and the posterior damage evolution model 

Bayesian inference performed in my previous works (Yang and Chadha 2021, Yang and 

Chadha 2021, Chadha and Hu 2021) focused on reliability scenario 1 mentioned in Section 4.3.1. 

In this section, I expand the Bayesian inference to a more generic reliability scenario 2. As a result 
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of accounting for sensor reliability, it is not only vital to consider the observed measurements 𝑥𝑥𝑒𝑒(𝑡𝑡) 

obtained from sensors constituting the design 𝑒𝑒 at time 𝑡𝑡, but I must also consider the information 

about which loading-zone (or reliability-zone) each sensor in the design 𝑒𝑒 are attached to at time 

𝑡𝑡 for updating the posterior distribution of state parameter. Let 𝑓𝑓Θ(𝑡𝑡)∣𝑋𝑋𝑒𝑒(𝑡𝑡),𝐻𝐻(𝑡𝑡)(𝜃𝜃(𝑡𝑡) ∣ 𝑥𝑥𝑒𝑒(𝑡𝑡),ℎ(𝑡𝑡)) 

denote the posterior distribution of the state parameter conditioned on observed measurements 

𝑥𝑥𝑒𝑒(𝑡𝑡)  and the loading-zone decided by ℎ(𝑡𝑡) . In other words, 𝑓𝑓Θ(𝑡𝑡)𝑋𝑋(𝑡𝑡)𝐻𝐻(𝑡𝑡)(𝜃𝜃(𝑡𝑡) ∣ 𝑥𝑥𝑒𝑒(𝑡𝑡), ℎ(𝑡𝑡)) 

defines the posterior damage evolution model. To elaborate on the Bayesian inference of state 

parameter in this section, I fix time 𝑡𝑡 and omit explicitly mentioning the time dependence (for 

example, 𝜃𝜃(𝑡𝑡) is simply written as 𝜃𝜃 ). The Bayes theorem in current context may be written as: 

𝑓𝑓Θ∣𝑋𝑋𝑒𝑒,𝐻𝐻(𝜃𝜃 ∣ 𝑥𝑥𝑒𝑒 , ℎ) =
𝑓𝑓𝑋𝑋𝑒𝑒∣Θ,𝐻𝐻(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃, ℎ)𝑓𝑓Θ∣𝐻𝐻(𝜃𝜃 ∣ ℎ)

𝑓𝑓𝑋𝑋𝑒𝑒∣𝐻𝐻(𝑥𝑥𝑒𝑒 ∣ ℎ)  (4.8) 

I note the following two points: 

1 In the context of inferring state parameter, the evidence 𝑓𝑓𝑋𝑋𝑒𝑒∣𝐻𝐻(𝑥𝑥𝑒𝑒 ∣ ℎ) is just a normalizing 

constant. 

2 In practice, for time-evolving systems, the prior distribution used in the Bayesian inference 

should be obtained by using the prior damage evolution model 𝑓𝑓Θ(𝑡𝑡)(𝜃𝜃(𝑡𝑡)), observations 

from all the previous time steps, and the historic information about loading zone that the 

sensors in design 𝑒𝑒  were exposed to. That would essentially be model updating that 

incorporates all the historic data. However, Bayesian inference is a computationally 

expensive process, and performing historic data updating would exponentially increase the 

computational cost and complexity. As a consequence of this, I simply use the prior 
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distribution as the distribution obtained from the prior damage evolution model 𝑓𝑓Θ(𝑡𝑡)(𝜃𝜃(𝑡𝑡)) 

at time 𝑡𝑡. 

Therefore, the Bayes theorem now becomes, 

𝑓𝑓Θ∣𝑋𝑋𝑒𝑒,𝐻𝐻(𝜃𝜃 ∣ 𝑥𝑥𝑒𝑒 ,ℎ) ∝ 𝑓𝑓𝑋𝑋𝑒𝑒∣Θ(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃)𝑓𝑓Θ(𝜃𝜃) (4.9) 

Since the sensor noise is conditioned on the loading-zone (which in turn is decided by the loading-

vector ℎ(𝑡𝑡)), the likelihood of obtaining a realization 𝑥𝑥𝑒𝑒 of sensor readings is conditioned on the 

load vector ℎ(𝑡𝑡). This in turn is the reason for conditional dependence of the posterior distribution 

of state parameter on the load vector ℎ(𝑡𝑡). The likelihood 𝑓𝑓𝑋𝑋𝑒𝑒∣Θ,𝐻𝐻(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃,ℎ) can be obtained by 

using the observation noise model described in Eq. (4.6) and the measurement model described in 

Eq. (4.7), such that: 

𝑓𝑓𝑋𝑋𝑒𝑒∣Θ,𝐻𝐻(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃,ℎ)  = �  

𝑁𝑁sg(𝑒𝑒)

𝑖𝑖=1

 �𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒∣𝐻𝐻(𝑠𝑠rel ∣ ℎ)
1
𝜎𝜎𝜀𝜀‾𝑒𝑒𝑒𝑒

𝜙𝜙 �
𝑥𝑥𝑒𝑒𝑒𝑒 − 𝑔𝑔𝑒𝑒𝑒𝑒
𝜎𝜎𝜀𝜀‾𝑒𝑒𝑒𝑒

�

+𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒∣𝐻𝐻(𝑠𝑠unrel ∣ ℎ)
1

�𝜎𝜎𝜀𝜀‾𝑒𝑒𝑒𝑒
2 + 𝜎𝜎𝑛𝑛𝑒𝑒𝑒𝑒2

𝜙𝜙

⎝

⎛(𝑥𝑥𝑒𝑒𝑒𝑒 − 𝑔𝑔𝑒𝑒𝑒𝑒) − 𝜇𝜇𝑛𝑛𝑒𝑒𝑒𝑒

�𝜎𝜎𝜀𝜀‾𝑒𝑒𝑒𝑒
2 + 𝜎𝜎𝑛𝑛𝑒𝑒𝑒𝑒2

⎠

⎞

⎠

⎟
⎞

 (4.10) 

Since the relationship between the sensor measurement 𝑥𝑥𝑒𝑒  and the state parameter 𝜃𝜃 is highly 

nonlinear, I must rely on numerical approximation techniques like Markov chain Monte Carlo 

(MCMC) methods, particle filter, and sequential Monte Carlo (SMC) approach in recursive mode 

to solve the inference problem. I use the particle filtering technique in this chapter. Obtaining the 

posterior numerically using particle filtering requires evaluating the likelihood at numerous values 

of state parameter, called the particles. Usually, particle filtering is used for sequential updating of 

the posterior distribution for a dynamic system, i.e., the case where new information on the system 
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is available as time evolves. However, in this case, I just have one set of data, and I aim at obtaining 

the posterior in a single step. The following summarizes the process of obtaining the posterior 

distribution of state parameter: 

    (a) For the assumed true state parameter 𝜃𝜃true  and the chosen/fixed input loading ℎtrue , simulate      

an observed/measurement strain data 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒. 

    (b) I choose 𝑁𝑁particles  number of discrete values of the state parameter, called particles. 

    (c) At each of these 𝑁𝑁particles  particles, and for a given loads ℎtrue , the digital twin or the FEM 

yields the true strain value at the 𝑖𝑖-th strain location for the state parameter particle 𝜃𝜃𝑗𝑗  and is 

denoted by 𝑔𝑔𝑒𝑒𝑖𝑖�𝜃𝜃𝑗𝑗 ,ℎtrue �, where 𝑖𝑖 ≤ 𝑁𝑁sg(𝑒𝑒) and 𝑗𝑗 ≤ 𝑁𝑁particles . Using Eq. (4.10), I obtain numerical 

value of likelihood of the measurement 𝑥𝑥𝑒𝑒 ∈ Ω𝑋𝑋𝑒𝑒 given the state parameter 𝜃𝜃𝑗𝑗. 

    (d) Evaluate the weight 𝑤𝑤𝑗𝑗 for each particle as: 

𝑤𝑤𝑗𝑗 =
𝑓𝑓𝑋𝑋𝑒𝑒∣Θ,𝐻𝐻�𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃𝑗𝑗 ,ℎtrue �

∑  𝑁𝑁paricles 
𝑘𝑘=1  𝑓𝑓𝑋𝑋𝑒𝑒∣Θ,𝐻𝐻(𝑥𝑥𝑒𝑒 ∣ 𝜃𝜃𝑘𝑘,ℎtrue )

 (4.11) 

 

    (e) Calculate the cumulative weights to observe big jumps. Resample the weighted particles to 

obtain unweighted samples of the posterior distribution over state parameter. 

I now have all the pieces required to define the Bayes risk functional. 

4.3.6 Bayes risk functional accounting for reliability of sensors 

The proposed Bayes risk targets the following: (1) quantify the reliability of a sensor design 

over the lifecycle; (2) consider all the uncertainties in the sensor data, loading, and the prior 
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understanding of the state over the structure's lifecycle. Intending to eventually capture the 

reliability of a sensor design 𝑒𝑒 over the lifecycle Ω𝑇𝑇, I start with quantifying the reliability of a 

sensor design at time 𝑡𝑡 . I define sensor reliability risk at time 𝑡𝑡 , denoted by 

ℒ(𝜃𝜃true (𝑡𝑡),ℎ(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡); 𝑡𝑡), as the absolute deviation between the true structural state 𝜃𝜃true (𝑡𝑡) at 

time 𝑡𝑡 and the mean of the posterior distribution of structural state, denoted by 𝜇𝜇Θ(𝑡𝑡)|𝑋𝑋(𝑡𝑡)𝐻𝐻(𝑡𝑡), such 

that: 

ℒ(𝜃𝜃true (𝑡𝑡),ℎ(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡); 𝑡𝑡) = �𝜇𝜇Θ(𝑡𝑡)∣𝑋𝑋𝑒𝑒(𝑡𝑡),𝐻𝐻(𝑡𝑡) − 𝜃𝜃true (𝑡𝑡)� (4.12) 

Fig. (4.1) illustrates a function or a module called "Evaluate the risk ℒ(𝜃𝜃(𝑡𝑡),ℎ(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡); 𝑡𝑡) " that 

obtains the risk ℒ�𝜃𝜃(𝑡𝑡), ℎ(𝑡𝑡), 𝜀𝜀𝜌𝜌(𝑡𝑡); 𝑡𝑡�  for a given design 𝑒𝑒  at time 𝑡𝑡  and the input variables 

�𝜃𝜃(𝑡𝑡),ℎ(𝑡𝑡), 𝜀𝜀𝜌𝜌(𝑡𝑡)� The module does so in a three step process that requires running the FEM 

model or digital twin (𝑁𝑁Particles + 1) times. The first step is to simulate observed/measurement 

data 𝑥𝑥𝑒𝑒(𝑡𝑡) for a design 𝑒𝑒 by assuming a true state parameter 𝜃𝜃true (𝑡𝑡) (simply denoted here as 

𝜃𝜃(𝑡𝑡)), load vector ℎ(𝑡𝑡), and a noise structure 𝑓𝑓𝜁𝜁𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝜀𝜀𝑒𝑒𝑒𝑒(𝑡𝑡) ∣ ℎ(𝑡𝑡)). The second step is to obtain 

the posterior distribution of state parameter given the measurement 𝑥𝑥𝑒𝑒(𝑡𝑡) obtained in the first step 

using particle filter. Finally, the third step is to evaluate the absolute deviation of the posterior's 

mean from the assumed true state parameter 𝜃𝜃(𝑡𝑡). 

The expected sensor reliability risk at time 𝑡𝑡, denoted by 𝔈𝔈(𝑒𝑒; 𝑡𝑡):Ω𝐸𝐸 × Ω𝑇𝑇 ⟶ ℝ, is then 

defined as follows: 

𝔈𝔈(𝑒𝑒; 𝑡𝑡) = ∭ΩΘ(𝑡𝑡)×Ω𝜁𝜁𝑒𝑒(𝑡𝑡)×Ω𝐻𝐻(𝑡𝑡)
 𝑓𝑓Θ(𝑡𝑡)(𝜃𝜃(𝑡𝑡))𝑓𝑓𝐻𝐻(𝑡𝑡)(ℎ(𝑡𝑡))𝑓𝑓𝜁𝜁𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)(𝜀𝜀𝑒𝑒(𝑡𝑡)

∣ ℎ(𝑡𝑡))ℒ(𝜃𝜃(𝑡𝑡),ℎ(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡); 𝑡𝑡)d𝜃𝜃(𝑡𝑡)dℎ(𝑡𝑡)d𝜀𝜀𝑒𝑒(𝑡𝑡) 
(4.13) 
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Finally, the aggregate expected sensor reliability risk over the lifecycle, or simply the Bayes risk, 

denoted by 𝔈𝔈LC(𝑒𝑒):Ω𝐸𝐸 ⟶ ℝ, is defined as follows: 

𝔈𝔈LC(𝑒𝑒) = �  
Ω𝑇𝑇
𝔈𝔈(𝑒𝑒; 𝑡𝑡)d𝑡𝑡 ≈ �  

𝑡𝑡𝑘𝑘∈Ω𝑇𝑇

𝑘𝑘=1

𝔈𝔈(𝑒𝑒; 𝑡𝑡𝑘𝑘) (4.14) 

Here, the subscript LC in the notation of Bayes risk 𝔈𝔈LC(𝑒𝑒) represents life cycle. 

Remark 2: The figure 4.1 shows that to obtain the risk ℒ(𝜃𝜃true ,ℎ(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡); 𝑡𝑡) for a given instance 

of the design, time, and input parameters requires running the digital twin or the FEM a total of 

�𝑁𝑁particles + 1� times. 

 

Figure 4.1: A three step process for evaluating the risk 𝓛𝓛(𝜽𝜽true , 𝜺𝜺𝒆𝒆(𝒕𝒕),𝒉𝒉(𝒕𝒕); 𝒕𝒕) 
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4.3.7 Evaluating sensor reliability risk 

The Bayes risk, the sensor observation noise model, and by extension the Bayesian 

inference approach adopted in this chapter is different from the respective entities used in Yang et 

al. (Yang and Chadha 2020) primarily because the target optimization objectives of these papers 

are different. However, the numerical techniques used to approximate the risk function 𝔈𝔈(𝑒𝑒; 𝑡𝑡) 

fundamentally stay the same. I briefly delineate a more generic form of the approximation 

procedure that was initially proposed in Yang et al. (Yang and Chadha 2020). 

Its clear from expression Eq. (4.14) that calculating 𝔈𝔈LC(𝑒𝑒) requires evaluating 𝔉𝔉(𝑒𝑒; 𝑡𝑡) 

over different time instances spanning Ω𝑇𝑇 . Since 𝔈𝔈(𝑒𝑒; 𝑡𝑡) (as defined in Eq. (4.12)) is a high-

dimensional integral with non-linear integrand, numerical techniques are indispensable to 

approximate 𝔈𝔈(𝑒𝑒; 𝑡𝑡). This section deals with exploiting univariate dimensional reduction used in 

tandem with Gasuss-Hermite quadrature to evaluate 𝔈𝔈(𝑒𝑒; 𝑡𝑡) . The overall process can be 

summarized in three steps: 

1 Transform all the probability density functions in Eq. (4.13) into their standard normal 

form. 

2 Obtain an approximated form of the risk function ℒ(𝜃𝜃true ,ℎ(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡); 𝑡𝑡)  by using 

univariate dimensional reduction approximation. 

3 Obtain the approximated form of the integral in Eq. (4.13) using Gauss-Hermite 

quadrature. 
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4.3.7.1 Revisiting sensor reliability risk 

I redefine the expression of 𝔈𝔈(𝑒𝑒; 𝑡𝑡)  that is desirable for further simplifying it using 

univariate dimensional reduction and Gauss-Hermite quadrature. To use Gauss-Hermite 

quadrature approximation, I transforms the random variables Θ(𝑡𝑡), 𝜁𝜁𝑒𝑒(𝑡𝑡), and 𝐻𝐻(𝑡𝑡), into their 

standard normal counterparts denoted by a tilde (. ̃ ) over the respective quantity. Therefore, let 

Θ̃(𝑡𝑡), 𝜁𝜁𝑒𝑒(𝑡𝑡) , and 𝐻̃𝐻(𝑡𝑡)  denote the standard normal random variables that are counterparts of 

Θ(𝑡𝑡), 𝜁𝜁𝑒𝑒(𝑡𝑡), and 𝐻𝐻(𝑡𝑡), such that their realizations are denoted as 𝜃̃𝜃(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡), and ℎ̃(𝑡𝑡). I can 

redefine the sensor reliability risk as: 

𝔈𝔈(𝑒𝑒; 𝑡𝑡) = 𝐸𝐸Θ̃(𝑡𝑡)𝜁̃𝜁𝑒𝑒(𝑡𝑡)𝐻̃𝐻(𝑡𝑡)�ℒ̃�𝜃̃𝜃(𝑡𝑡), ℎ̃(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡); 𝑡𝑡�� (4.15) 

In the equation above, I have: 

ℒ̃�𝜃̃𝜃(𝑡𝑡), ℎ̃(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡); 𝑡𝑡� = ℒ(𝜃𝜃(𝑡𝑡),ℎ(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡); 𝑡𝑡) (4.16) 

The current form of 𝔈𝔈(𝑒𝑒; 𝑡𝑡), as expressed in Eq. (15), is suitable for its numerical approximation 

as detailed in the next subsection. 

4.3.7.2 Univariate dimensional reduction and Gauss-Hermite quadrature 

Let 𝑁𝑁𝐻𝐻 ,𝑁𝑁Θ , and 𝑁𝑁sg(𝑒𝑒)  denote the size of the load vector ℎ(𝑡𝑡)  (or ℎ̃(𝑡𝑡)  ), the state 

parameter vector 𝜃𝜃(𝑡𝑡) (or 𝜃̃𝜃(𝑡𝑡)), and the observation noise vector 𝜀𝜀𝑒𝑒(𝑡𝑡) (or 𝜀𝜀𝑒𝑒(𝑡𝑡) ) respectively, 

such that: 
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ℎ(𝑡𝑡) = �ℎ1(𝑡𝑡),ℎ2(𝑡𝑡),⋯ , ℎ𝑁𝑁𝐻𝐻(𝑡𝑡)�
ℎ̃(𝑡𝑡) = �ℎ̃1(𝑡𝑡), ℎ̃2(𝑡𝑡),⋯ , ℎ̃𝑁𝑁𝐻𝐻(𝑡𝑡)�
𝜃𝜃(𝑡𝑡) = �𝜃𝜃1(𝑡𝑡), 𝜃𝜃2(𝑡𝑡),⋯ , 𝜃𝜃𝑁𝑁𝜃𝜃(𝑡𝑡)�
𝜃̃𝜃(𝑡𝑡) = �𝜃̃𝜃1(𝑡𝑡), 𝜃̃𝜃2(𝑡𝑡),⋯ , 𝜃̃𝜃𝑁𝑁𝜃𝜃(𝑡𝑡)�;

𝜀𝜀𝑒𝑒(𝑡𝑡) = �𝜀𝜀𝑒𝑒1(𝑡𝑡), 𝜀𝜀𝑒𝑒2(𝑡𝑡),⋯ , 𝜀𝜀𝑒𝑒𝑁𝑁sg(𝑒𝑒)(𝑡𝑡)�

𝜀𝜀𝑒𝑒(𝑡𝑡) = �𝜀𝜀𝑒𝑒1(𝑡𝑡), 𝜀𝜀𝑒𝑒2(𝑡𝑡),⋯ , 𝜀𝜀𝑒𝑒𝑁𝑁sg(𝑒𝑒)(𝑡𝑡)�

 (4.17) 

The realizations of the random vector and their standard normal counterparts are related by the 

Rosenblatt transformation as follows (see Eq. (4.26) of (Rahman and Xu 2004)): 

ℎ(𝑡𝑡)  = 𝐹𝐹𝐻𝐻(𝑡𝑡)
−1 �𝐹𝐹𝐻̃𝐻(𝑡𝑡)(ℎ̃(𝑡𝑡))�

𝜃𝜃(𝑡𝑡)  = 𝐹𝐹Θ(𝑡𝑡)
−1 �𝐹𝐹Θ̃(𝑡𝑡)(𝜃̃𝜃(𝑡𝑡))�

𝜀𝜀𝑒𝑒(𝑡𝑡)  = 𝐹𝐹𝜁𝜁𝑒𝑒(𝑡𝑡)∣𝐻𝐻(𝑡𝑡)
−1 �𝐹𝐹𝜁̃𝜁𝑒𝑒(𝑡𝑡)∣𝐻̃𝐻(𝑡𝑡)(𝜁𝜁(𝑡𝑡) ∣ ℎ̃(𝑡𝑡))�

 (4.18) 

Here, 𝐹𝐹𝐴𝐴−1(⋅) is an inverse cumulative distribution function oa a generic random variable 𝐴𝐴. Let 

Θ𝑖𝑖(𝑡𝑡),𝐻𝐻𝑖𝑖(𝑡𝑡), and 𝜁𝜁𝑒𝑒𝑒𝑒(𝑡𝑡) denote the random variables corresponding to the 𝑖𝑖-th component of the 

random vector Θ(𝑡𝑡),𝐻𝐻(𝑡𝑡), and 𝜁𝜁𝑒𝑒(𝑡𝑡) respectively. It is assumed that the dimensionality of state 

parameter and load vector does not change with time. As a result of the Rosenblatt transformation 

transformation, collective components of the standard normal random vectors Θ̃(𝑡𝑡), 𝐻̃𝐻(𝑡𝑡), and 

𝜁𝜁𝑒𝑒(𝑡𝑡) are statistically independent. I obtain a further compacted form of 𝔈𝔈(𝑒𝑒; 𝑡𝑡) by defining the 

following space, 

ΩΨ̃𝑒𝑒(𝑡𝑡)  = ΩΘ̃(𝑡𝑡) × Ω𝐻̃𝐻(𝑡𝑡) × Ω𝜁̃𝜁𝑒𝑒(𝑡𝑡)

 = �ΩΘ̃1(𝑡𝑡) × ⋯× ΩΘ̃𝑁𝑁Θ(𝑡𝑡)� × �Ω𝐻̃𝐻1(𝑡𝑡) × ⋯× Ω𝐻̃𝐻𝑁𝑁𝐻𝐻(𝑡𝑡)� × �Ω𝜁̃𝜁𝑒𝑒1(𝑡𝑡) × ⋯× Ω𝜁̃𝜁𝑒𝑒𝑁𝑁sg(𝑒𝑒)(𝑡𝑡)�
 

(4.19) 

I note that ΩΨ̃𝑒𝑒(𝑡𝑡)  is �𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒)�  dimensional vector space. Let 𝜓̃𝜓𝑒𝑒(𝑡𝑡)  denote a 

realization of Ψ̃𝑒𝑒(𝑡𝑡), such that: 
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𝜓̃𝜓𝑒𝑒(𝑡𝑡)  = �𝜃̃𝜃(𝑡𝑡); ℎ̃(𝑡𝑡); 𝜀𝜀𝑒𝑒(𝑡𝑡)�

 = (𝜃̃𝜃1(𝑡𝑡), 𝜃̃𝜃2(𝑡𝑡),⋯ , 𝜃̃𝜃𝑁𝑁Θ(𝑡𝑡); ℎ̃1(𝑡𝑡), ℎ̃2(𝑡𝑡),⋯ , ℎ̃𝑁𝑁𝐻𝐻(𝑡𝑡); 𝜀𝜀𝑒𝑒1(𝑡𝑡), 𝜀𝜀𝑒𝑒2(𝑡𝑡),⋯ , 𝜀𝜀𝑒𝑒𝑁𝑁sg(𝑒𝑒)(𝑡𝑡)����������������������������������������������������
Total Length of 𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)

)

 = �𝑏̃𝑏1(𝑡𝑡),⋯ , 𝑏̃𝑏𝑁𝑁Θ(𝑡𝑡); 𝑏̃𝑏𝑁𝑁Θ+1(𝑡𝑡),⋯ , 𝑏̃𝑏𝑁𝑁Θ+𝑁𝑁𝐻𝐻(𝑡𝑡); 𝑏̃𝑏𝑁𝑁Θ+𝑁𝑁𝐻𝐻+1(𝑡𝑡),⋯ , 𝑏̃𝑏𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)(𝑡𝑡)�

 

(4.20) 

In the equation set above, semicolon is used to distinguish between sub-vectors corresponding to 

the random vectors Θ(𝑡𝑡),𝐻𝐻(𝑡𝑡), and 𝜁𝜁𝑒𝑒(𝑡𝑡) (consisting of 𝑁𝑁Θ,𝑁𝑁𝐻𝐻 , and 𝑁𝑁sg(𝑒𝑒) random variables 

respectively). The variable 𝑏̃𝑏𝑖𝑖(𝑡𝑡) represents the 𝑖𝑖-th component of the realization vector 𝜓̃𝜓𝑒𝑒(𝑡𝑡). Let 

Ω𝐵̃𝐵𝑖𝑖(𝑡𝑡) denote the space to which 𝑏̃𝑏𝑖𝑖(𝑡𝑡) belongs. Then, 

ΩΨ̃𝑒𝑒(𝑡𝑡) = Ω𝐵̃𝐵1(𝑡𝑡) × ⋯× Ω𝐵̃𝐵�𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)�(𝑡𝑡). (4.21) 

The sensor reliability risk can now be written as: 

𝔈𝔈(𝑒𝑒; 𝑡𝑡) = 𝐸𝐸Ψ̃𝑒𝑒(𝑡𝑡)�ℒ̃�Ψ̃𝑒𝑒(𝑡𝑡); 𝑡𝑡�� (4.22) 

As such, the integral in Eq. (4.22) is high-dimensional expectation in �𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒)� 

dimensional space, making classical multivariate quadrature rules (e.g., quasi Monte Carlo or 

Smolyak sparse grids) prohibitively expensive. I conquer this challenge by using univariate 

dimensional reduction and Gauss-Hermite quadrature to approximate the integral in Eq. (4.22). I 

start by defining the following vectors, each containing �𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒)� elements: 



  164   

𝜓̃𝜓0(𝑡𝑡) = (0,0,⋯ ,0; 0,0,⋯ ,0; 0,0,⋯ ,0)�������������������
Length 𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)

𝜓̃𝜓1(𝑡𝑡) = �𝜃̃𝜃1(𝑡𝑡),0,⋯ ,0; 0,0,⋯ ,0; 0,0,⋯ ,0�
𝜓̃𝜓2(𝑡𝑡) = �0, 𝜃̃𝜃2(𝑡𝑡),⋯ ,0; 0,0,⋯ ,0; 0,0,⋯ ,0�;
 ⋮
𝜓̃𝜓𝑁𝑁Θ(𝑡𝑡) = �0,0,⋯ , 𝜃̃𝜃𝑁𝑁Θ(𝑡𝑡); 0,0,⋯ ,0; 0,0,⋯ ,0�
𝜓̃𝜓(𝑁𝑁𝜃𝜃+1)(𝑡𝑡) = �0,0,⋯ ,0; ℎ̃1(𝑡𝑡),0,⋯ ,0; 0,0,⋯ ,0�
𝜓̃𝜓(𝑁𝑁𝜃𝜃+2)(𝑡𝑡) = �0,0,⋯ ,0; 0, ℎ̃2(𝑡𝑡),⋯ ,0; 0,0,⋯ ,0�
 ⋮
𝜓̃𝜓(𝑁𝑁𝜃𝜃+𝑁𝑁𝐻𝐻)(𝑡𝑡) = �0,0,⋯ ,0; 0,0,⋯ , ℎ̃𝑁𝑁𝐻𝐻(𝑡𝑡); 0,0,⋯ ,0�
𝜓̃𝜓(𝑁𝑁𝜃𝜃+𝑁𝑁𝐻𝐻+1)(𝑡𝑡) = (0,0,⋯ ,0; 0,0,⋯ ,0; 𝜀𝜀𝑒𝑒1(𝑡𝑡),0,⋯ ,0)
𝜓̃𝜓(𝑁𝑁𝜃𝜃+𝑁𝑁𝐻𝐻+2)(𝑡𝑡) = (0,0,⋯ ,0; 0,0,⋯ ,0; 0, 𝜀𝜀𝑒𝑒2(𝑡𝑡),⋯ ,0)
 ⋮
𝜓̃𝜓�𝑁𝑁𝜃𝜃+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)�(𝑡𝑡) = �0,0,⋯ ,0; 0,0,⋯ ,0; 0,0,⋯ , 𝜀𝜀𝑒𝑒𝑁𝑁sg(𝑒𝑒)(𝑡𝑡)�

 (4.23) 

The sensor reliability risk ℒ̃�𝜓̃𝜓𝑒𝑒(𝑡𝑡); 𝑡𝑡� can now be approximated using the definitions in Eq. (4.23) 

and univariate dimensional reduction (Rahman and Xu 2004), such that: 

ℒ̃�𝜓̃𝜓𝑒𝑒(𝑡𝑡); 𝑡𝑡� ≈ −�𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒) − 1�ℒ̃�𝜓̃𝜓0(𝑡𝑡); 𝑡𝑡� + �  

�𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)�

𝑖𝑖=1

ℒ̃�𝜓̃𝜓𝑖𝑖(𝑡𝑡); 𝑡𝑡� (4.24) 

Substituting Eq. (4.24) into Eq. (4.22), I get, 

𝔈𝔈(𝑒𝑒; 𝑡𝑡)  ≈ −�𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒) − 1�𝐸𝐸Ψ̃𝑒𝑒(𝑡𝑡)�ℒ̃�𝜓̃𝜓0(𝑡𝑡); 𝑡𝑡�� + �  

�𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)�

𝑖𝑖=1

 𝐸𝐸Ψ̃𝑒𝑒(𝑡𝑡)�ℒ̃�𝜓̃𝜓𝑖𝑖(𝑡𝑡); 𝑡𝑡��

 = −�𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒) − 1�ℒ̃�𝜓̃𝜓0(𝑡𝑡); 𝑡𝑡� + �  

�𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)�

𝑖𝑖=1

 𝐸𝐸Ψ̃𝑒𝑒(𝑡𝑡)�ℒ̃�𝜓̃𝜓𝑖𝑖(𝑡𝑡); 𝑡𝑡��

 

(4.25) 

In the equation above, 
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𝐸𝐸Ψ̃𝑒𝑒(𝑡𝑡)�ℒ̃� ˜
𝑖𝑖(𝑡𝑡); 𝑡𝑡�� = �  

Ω𝜓̃𝜓𝑒𝑒(𝑡𝑡)

𝑓𝑓Ψ̃𝑒𝑒(𝑡𝑡)�𝜓̃𝜓𝑒𝑒(𝑡𝑡)�ℒ̃�𝜓̃𝜓𝑖𝑖(𝑡𝑡); 𝑡𝑡�d𝜓̃𝜓𝑒𝑒(𝑡𝑡) (4.26) 

To further simplify 𝔈𝔈(𝑒𝑒; 𝑡𝑡), I focus on the integral in Eq. (4.26). Since Θ̃(𝑡𝑡), 𝜁𝜁𝑒𝑒(𝑡𝑡), and 𝐻̃𝐻(𝑡𝑡) are 

statistically independent random variables, the probability density function 𝑓𝑓Ψ̃𝑒𝑒(𝑡𝑡)�𝜓̃𝜓𝑒𝑒(𝑡𝑡)� can be 

written as: 

𝑓𝑓Ψ̃𝑒𝑒�𝜓̃𝜓𝑒𝑒�  = � 

𝑁𝑁⊖

𝑖𝑖=1

 𝑓𝑓Θ̃𝑖𝑖(𝑡𝑡)�𝜃̃𝜃𝑖𝑖(𝑡𝑡)� ⋅�  
𝑁𝑁𝐻𝐻

𝑗𝑗=1

 𝑓𝑓𝐻̃𝐻𝑗𝑗(𝑡𝑡)�ℎ̃𝑗𝑗(𝑡𝑡)� ⋅ �  

𝑁𝑁sg(𝑒𝑒)

𝑘𝑘=1

 𝑓𝑓𝜉̃𝜉𝑒𝑒𝑒𝑒(𝑡𝑡)(𝜀𝜀𝑒𝑒𝑒𝑒(𝑡𝑡))

 = � 

𝑁𝑁⊖

𝑖𝑖=1

 𝜙𝜙�𝜃̃𝜃𝑖𝑖(𝑡𝑡)� ⋅�  
𝑁𝑁𝐻𝐻

𝑗𝑗=1

 𝜙𝜙�ℎ̃𝑗𝑗(𝑡𝑡)� ⋅ �  

𝑁𝑁sg(𝑒𝑒)

𝑘𝑘=1

 𝜙𝜙(𝜀𝜀𝑒𝑒𝑒𝑒(𝑡𝑡))

 = �  

�𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)�

𝑚𝑚=1

𝜙𝜙�𝑏̃𝑏𝑚𝑚(𝑡𝑡)� = �  

�𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)�

𝑚𝑚=1

 �
1

√2𝜋𝜋
𝑒𝑒−

1
2𝑏̃𝑏𝑚𝑚

2 (𝑡𝑡)�

 (4.27) 

In the equation above, 𝑏̃𝑏𝑚𝑚(𝑡𝑡) represents the 𝑚𝑚-th component of the realization vector 𝜓̃𝜓𝑒𝑒(𝑡𝑡). I note 

that for any function of the form 𝑔𝑔(𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 = 0 ∈ 𝑌𝑌),𝐸𝐸𝑋𝑋𝑋𝑋(𝑔𝑔(𝑥𝑥, 0)) = 𝐸𝐸𝑋𝑋(𝑔𝑔(𝑥𝑥, 0)), provided 𝑋𝑋 

and 𝑌𝑌 are statistically independent random variables. This allows me to simplify the integral in Eq. 

(4.26) as: 

𝐸𝐸Ψ̃𝑒𝑒(𝑡𝑡)�ℒ̃�Ψ̃𝑖𝑖(𝑡𝑡); 𝑡𝑡�� =
1

√2𝜋𝜋
�  
Ω𝐵̃𝐵𝑖𝑖(𝑡𝑡)

ℒ̃�𝜓̃𝜓𝑖𝑖(𝑡𝑡); 𝑡𝑡�𝑒𝑒−
1
2𝑏̃𝑏𝑖𝑖

2(𝑡𝑡)d𝑏̃𝑏𝑖𝑖(𝑡𝑡) (4.28) 

By its very design, Gauss-Hermite quadrature is suitable to discretely estimate an integral of the 

form �∫𝑥𝑥 𝑔𝑔(𝑥𝑥)𝑒𝑒−𝑥𝑥2� , for any function 𝑔𝑔(𝑥𝑥) . Therefore, using Gauss-Hermite quadrature, I 

approximate the integral in Eq. (4.28) as follows, 

𝐸𝐸Ψ̃𝑒𝑒(𝑡𝑡)�ℒ̃�𝜓̃𝜓𝑖𝑖(𝑡𝑡); 𝑡𝑡�� ≈
1
√𝜋𝜋

�  
𝑟𝑟

𝑛𝑛=1

𝑤𝑤𝑛𝑛ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛; 𝑡𝑡�, where 𝑞̃𝑞𝑖𝑖𝑖𝑖,𝑛𝑛 = �𝜓̃𝜓𝑖𝑖𝑖𝑖(𝑡𝑡) = 0 𝑖𝑖 ≠ 𝑗𝑗
𝛼𝛼𝑛𝑛 𝑖𝑖 = 𝑗𝑗

 (4.29) 
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In the equation above, 𝑞̃𝑞𝑖𝑖𝑖𝑖,𝑛𝑛 and 𝜓̃𝜓𝑖𝑖𝑖𝑖(𝑡𝑡) represents the 𝑗𝑗-th component of the vectors 𝑞̃𝑞𝑖𝑖,𝑛𝑛 and 𝜓̃𝜓𝑖𝑖(𝑡𝑡) 

respectively; 𝒓𝒓 denote the quadrature order; 𝑤𝑤𝑛𝑛  gives the quadrature weights; and 𝛼𝛼𝑛𝑛  gives the 

point of evaluation of the function for 𝑛𝑛 ≤ 𝑟𝑟. In this chapter, I use 𝑟𝑟 = 3, for which 𝑤𝑤1 = 2
3 √𝜋𝜋 

𝑤𝑤2 = 1
6 √𝜋𝜋,𝑤𝑤3 = −1

6√𝜋𝜋,𝛼𝛼1 = 0,𝛼𝛼1 = √6
2

,𝛼𝛼1 = −√6
2

. The quadrature order of 𝑟𝑟 = 3 satisfies the 

computational accuracy that this problem demands and at the same time leads to a computationally 

efficient numerical estimation of Bayes risk. Substituting Eq. (4.29) into Eq. (4.25), I get 

𝔈𝔈(𝑒𝑒; 𝑡𝑡) ≈ −�𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒) − 1�ℒ̃�𝜓̃𝜓0(𝑡𝑡); 𝑡𝑡�

+
1
√𝜋𝜋

�  

�𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)�

𝑖𝑖=1

�  
𝑟𝑟

𝑛𝑛=1

𝑤𝑤𝑛𝑛ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛; 𝑡𝑡� 
(4.30) 

Finally, the Bayes risk functional over the lifecycle is approximated as: 

𝔈𝔈LC(𝑒𝑒) ≈�  
𝑁𝑁𝑇𝑇

𝑘𝑘=1

⎝

⎜
⎛
−�𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒) − 1�ℒ̃�Ψ̃0(𝑡𝑡𝑘𝑘); 𝑡𝑡𝑘𝑘�

+
1
√𝜋𝜋

�  

�𝑁𝑁Θ+𝑁𝑁𝐻𝐻+𝑁𝑁sg(𝑒𝑒)�

𝑖𝑖=1

 �  
𝑟𝑟

𝑛𝑛=1

 𝑤𝑤𝑛𝑛ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛; 𝑡𝑡𝑘𝑘�

⎠

⎟
⎞

 

(4.31) 

For sake of evaluating the sum in Eq. (4.31), I discretize Ω𝑇𝑇 into 𝑁𝑁𝑇𝑇 time steps. The figure below 

shows an algorithmic module “Evaluate the Bayes risk 𝔈𝔈LC(𝑒𝑒)” that obtain the Bayes risk 

functional. 
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Figure 4.2: Algorithm to evaluate Bayes risk for design 𝒆𝒆 over the lifecycle of structure. 

 

4.3.8 A note on computational challenge and a novel solution 

4.3.8.1 Computational challenge in evaluating Bayes risk 

Using the algorithm described in Fig. 4.2 to evaluate 𝔈𝔈(𝑒𝑒; 𝑡𝑡) (and by extension 𝔈𝔈LC(𝑒𝑒)) 

for a given design 𝑒𝑒  requires immense computational power. I note some limitations of the 

algorithm described above. I observe that there are three sums in Eq. (4.31). This implies that the 

risk ℒ�𝑞̃𝑞𝑖𝑖,𝑛𝑛; 𝑡𝑡𝑘𝑘� is to be evaluated for all 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁𝑇𝑇 , 1 ≤ 𝑖𝑖 ≤ �𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒)�, and 1 ≤ 𝑛𝑛 ≤

𝜂𝜂 Recall from remark 1 that obtaining one instance of the risk requires running the FEM or the 

digital twin a total of (𝑁𝑁Particles + 1) times. Therefore, evaluating 𝔈𝔈LC(𝑒𝑒) using Eq. (4.31) for a 

given design 𝑒𝑒 requires running the FEM or the digital twin for a total of ( 𝑁𝑁Runs-Per-Design  ) times, 

such that: 

𝑁𝑁Runs-Per-Design = (𝑁𝑁Particles + 1) × 𝑁𝑁𝑇𝑇 × �𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒)� × 𝑟𝑟 (4.32) 
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Bayesian optimization aimed at obtaining the optimal sensor network design consists of evaluating 

many such designs, denoted by 𝑒𝑒𝑖𝑖 , consisting of 𝑁𝑁sg(𝑒𝑒𝑖𝑖)  number of sensors. To obtain an 

optimized sensor placement design, I start with an initially assumed design, denoted by 𝑒𝑒0, that 

consists of 𝑁𝑁sg(𝑒𝑒0) number of sensors. Starting with 𝑒𝑒0 , the subsequent sensor design 𝑒𝑒𝑖𝑖  with 

𝑁𝑁sg(𝑒𝑒𝑖𝑖) sensors is obtained by picking the most optimal sensor location from the available sensors 

and adding that sensor location to the previous design 𝑒𝑒𝑖𝑖−1  with 𝑁𝑁sg(𝑒𝑒𝑖𝑖−1) = �𝑁𝑁sg(𝑒𝑒𝑖𝑖) − 1� 

sensors. Picking the additional sensor required to update the design 𝑒𝑒𝑖𝑖−1 to the design 𝑒𝑒𝑖𝑖 requires 

𝑁𝑁iter (𝑒𝑒𝑖𝑖) number of iterations. Since Bayes risk is the optimiality criteria, it needs to be evaluated 

at every iteration for the design 𝑒𝑒𝑖𝑖. Let 𝑒𝑒𝐼𝐼, with 𝑖𝑖 = 𝐼𝐼, represent the final optimal sensor network 

design. The total number of GPR runs to arrive at 𝑒𝑒𝐼𝐼 (starting from 𝑒𝑒0 ) is denoted by 𝑁𝑁Total-Runs , 

such that: 

𝑁𝑁Total-Runs = � 
𝐼𝐼

𝑖𝑖=1

�𝑁𝑁particles + 1� × 𝑁𝑁𝑇𝑇 × �𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 + 𝑁𝑁sg(𝑒𝑒)� × 𝑟𝑟 × 𝑁𝑁iter (𝑒𝑒𝑖𝑖) (4.33) 

 

4.3.8.2 Solution adopted for significantly reducing the number of digital-twin runs 

I have adopted three major steps to reduce the computational cost at both, data simulation 

level, and at optimization algorithm level. These undertakings are outlined below: 

Approximate FEM by a digital surrogate:     Simulating the true sensor reading 𝑁𝑁Total-Runs  

times using a high-fidelity FEM is computationally intractable and I seek computationally efficient 

approximations to the FEM. For Bayesian calibration, metamodels or surrogate models are 

preferable, e.g., Support Vector Regression (SVR) (Moustapha and Bourinet 2018), Gaussian 

Process Regression (GPR) (Moustapha and Bourinet 2018, Frazier 2018), Neural Network (Yu 
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and Wang 2009), and Polynomial Chaos Expansion (PCE) (Capellari and Chatzi 2018). Some such 

approaches like SVR or neural networks yield point estimates/prediction, while others like GPR 

also predict the uncertainties associated with an average estimate/prediction. In this chapter, I have 

used the GPR model to approximate the FEM. It turns out to be faster than the FEM model by an 

order of 104 to 105 times  

Further optimize digital surrogate:   Let 𝑁𝑁Total-Sensors  denote the total number of sensors 

available to choose from for a design 𝑒𝑒, such that 𝑁𝑁sg(𝑒𝑒) ≤ 𝑁𝑁Total-Sensors . Running a FEM for a 

given instance of state-parameter, and load will yield a total of 𝑁𝑁Total-Sensors  dimensional output 

(true sensor readings). Usually, 𝑁𝑁Total-Sensors  is a reasonably large number and the sensor readings 

are correlated to each other. I address this using principal components analysis, which can be 

efficiently computed using the singular value decomposition (SVD) that reduces the high-

dimensional, highly correlated output space to low-dimensional, uncorrelated feature space. Let 

𝑁𝑁Features  denote the total number of features obtained as a result of the SVD analysis. Instead of 

training digital twin to yield 𝑁𝑁Total-Sensors  dimensional output, I train them to yield 𝑁𝑁Features  features 

as their output. I can then retrieve 𝑁𝑁Total-Sensors  sensor readings from 𝑁𝑁Features  features by using 

inverse SVD. I build a digital surrogate for each feature. Figure 4.3 below illustrates schematic 

flowchart of developing and utilizing digital-twin to obtain sensor measurements. 
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Figure 4.3: Schematic flowchart describing sensor data generation using a digital twin trained 

using data obtained through FEM. 
 

An efficient algorithm for evaluating the Bayes risk:    The computational cost can be further 

reduced by realizing that running the digital-twin 𝑁𝑁Total-Runs  times includes numerous non-unique 

runs for many repetitive arguments (or input). Consider the following line of reasoning as an 

extension to the explanation provided in Yang et al. (Yang and Chadha 2021). At a given time 

instance 𝑡𝑡, the vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛 is a special case of the vector 𝜓̃𝜓𝑖𝑖(𝑡𝑡) as defined in Eq. (4.23). The first 

(𝑁𝑁Θ + 𝑁𝑁𝐻𝐻)  components of the vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛  constitute a sub-vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛(1:𝑁𝑁Θ + 𝑁𝑁𝐻𝐻) =

(𝜃̃𝜃(𝑡𝑡), ℎ̃(𝑡𝑡)) = �𝜃̃𝜃1(𝑡𝑡), 𝜃̃𝜃2(𝑡𝑡),⋯ , 𝜃̃𝜃𝑁𝑁Θ(𝑡𝑡), ℎ̃1(𝑡𝑡), ℎ̃2(𝑡𝑡),⋯ , ℎ̃𝑁𝑁𝐻𝐻(𝑡𝑡)�  the inverse standard-normal 

transformation of which are the argument of the digital-twin model 𝑔𝑔𝑒𝑒(𝜃𝜃(𝑡𝑡),ℎ(𝑡𝑡); 𝑡𝑡) . The 

remaining 𝑁𝑁sg(𝑒𝑒) components constitute a vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛(𝑁𝑁Θ + 𝑁𝑁𝐻𝐻:𝑁𝑁Θ + 𝑁𝑁𝐻𝐻 +𝑁𝑁𝑠𝑠 g(𝑒𝑒)� representing 

external noise. For any vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛, the sub-vector 𝑞̃𝑞𝑖𝑖,𝑛𝑛(1:𝑁𝑁Θ + 𝑁𝑁𝐻𝐻) bears 𝛼𝛼𝑛𝑛 as numerical value 
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of one of the components and zero for others. Therefore, I have a set of (2 × (𝑁𝑁Θ + 𝑁𝑁𝐻𝐻) + 1) 

unique sub-vectors (𝜃̃𝜃(𝑡𝑡), ℎ̃(𝑡𝑡)) of interest, such that: 

 

(4.34) 

Since obtaining the utility ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛; 𝑡𝑡� for each 𝑞̃𝑞𝑖𝑖,𝑛𝑛 at a fixed time instance requires (𝑁𝑁Particles + 1) 

digital-twin runs, and there are 𝑁𝑁𝑇𝑇 discrete time periods, considering all the unique arguments of 

digital-twin model, I essentially need to run GPR model only 𝑁𝑁Reduced-Total-Runs  times, such that: 

𝑁𝑁Reduced-Total-Runs = �1 + 2 × (𝑁𝑁Θ + 𝑁𝑁𝐻𝐻)� × �𝑁𝑁particles + 1� × 𝑁𝑁𝑇𝑇 (4.35) 

The sensor readings for all 𝑁𝑁Total-Sensors  sensors are obtained for these 𝑁𝑁Reduced-Total-Runs  runs and 

is stored in a "true-sensor-data" matrix. The sensor measurements for design 𝑒𝑒 can be extracted 
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from "true-sensor-data" matrix. The risk ℒ̃�𝑞̃𝑞𝑖𝑖,𝑛𝑛; 𝑡𝑡� can be evaluated by extracting the relevant 

sensor readings from "true-sensor-data" matrix as illustrated in Fig. 4.4 An efficient algorithm to 

evaluate the Bayes risk 𝔈𝔈LC(𝑒𝑒) that requires only 𝑁𝑁Reduced-Total-Runs  digital-twin runs is illustrated 

in Fig. 4.5. 

In summary, the computational speed is further enhanced by setting me the Bayesian 

optimization code in a way that once the desirable sensor measurements are obtained in one 

iteration of the optimization, the predictive model need not be run in order to evaluate the observed 

sensor measurements at every optimization iteration, significantly improving the computational 

efficiency of the sensor placement design optimization and allows for a reduction of computational 

time from years to hours. 

 
Figure 4.4: Obtaining the risk 𝓛̃𝓛�𝒒̃𝒒𝒊𝒊,𝒏𝒏; 𝒕𝒕� 
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Figure 4.5: An efficient algorithm to evaluate the Bayes risk for design 𝒆𝒆 over the lifecycle of 

structure. 
 

4.3.9 Optimal sensor design in a nutshell 

The optimal design 𝑒𝑒∗ ∈ Ω𝐸𝐸 is the design that minimizes the expected Bayes risk. In my 

case, it is the design that leads to the most reliable observed sensor readings that have a minimum 

expected deviation in the inferred state (quantified by mean of the posterior distribution of the state 

parameter conditioned on the acquired information) relative to the true structural state considering 

the design's overall performance throughout the lifecycle of the structure. Mathematically, 

𝑒𝑒∗ = arg m  
𝑒𝑒∈Ω𝐸𝐸

𝔈𝔈LC(𝑒𝑒) (4.36) 

I realize that in a real complex structure, the total number of sensor locations of interest, denoted 

by 𝑁𝑁Total-Sensors, , is usually a large number spanning anywhere from 103 − 106 or so. An increase 

in 𝑁𝑁Total-Sensors  increases the size of the exhaustive sensor design space Ω𝐸𝐸 exponentially. The size 
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of Ω𝐸𝐸  can be obtained as the number of all the possible combinations of 𝑁𝑁Total-Sensors  sensor 

locations, such that: 

size (Ω𝐸𝐸) = �  
𝑟𝑟≤𝑁𝑁Total-Sensors 

𝑟𝑟=1

𝑁𝑁Total-Sensors !
𝑟𝑟! (𝑁𝑁Total-Sensors − 𝑟𝑟)!

= 2𝑁𝑁Tocal-Sensors − 1 (4.37) 

In theory, the design 𝑒𝑒∗ ∈ Ω𝐸𝐸 can be picked simply by evaluating the Bayes risk for all the possible 

designs. However, evaluating the objective function for all possible designs is not only difficult 

but computationally impossible even for a lower value of 𝑁𝑁Total-Sensors. . Given the intractable 

nature of the exhaustive search, I use an iterative Bayesian optimization to look for a global 

optimum in a minimum number of steps, thus minimizing the sampling points to rapidly speed up 

the optimization process. The algorithmic details of carrying Bayesian optimization detailed 

exhaustively in Yang et al. (Yang and Chadha 2021) stays the same. To avoid repetition, the 

readers are referred to algorithm 1 in Section 4.6 of Yang et al. (Yang and Chadha 2021) for 

algorithmic details of carrying out Bayesian optimization. 

The discussion so far completes the description of the generic Bayesian optimization 

framework considering the overall reliability of a sensor design over the lifecycle of a structure. 

In the following section, I focus on applying the sensor optimization framework to a miter gate 

structure. I expect this demonstration example to serve as an excellent case study to get acquainted 

with applications of these ideas to a practical problem of interest to engineers. 

4.4 A case study: a miter gate 

4.4.1 Why miter gate? 

I consider the same demonstration example as was used in chapter 3 for the following 

reasons: 
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1 The state of the miter gate can be modeled by a scalar one-dimensional continuous state 

parameter. Therefore, the miter gate is a complex and yet a suitable case study that is 

appropriate for visualizing, interpreting, evaluating, and comparing the optimization 

results. 

2 In terms of the reliability aspect, at any point in time, the miter gate can be conveniently 

divided into two zones. The first zone is the part of the gate above the water level (called 

splash zone) and the second zone is the part of the gate that is submerged in the water 

(called the submerged zone). The sensors that are in the submerged zone for a majority of 

the time have a higher probability of malfunctioning than the sensors that spends higher 

average time in the splash zone. Therefore, the miter gate case study captures the generic 

case of different sensor reliability zones in a structure, and hence, it is an excellent example 

that can be used to unfold and comprehensively understand the full potential of the 

proposed optimization algorithm that accounts for sensor reliability. 

3 Adopting the same demonstration examples as used in Yang et al. (Yang and Chadha 2021) 

allows for a direct comparison in optimal sensor design obtained for different target 

objective functional. As described in the upcoming Section 4.5, the numerical results 

demonstrate that for a more realistic sensor network design, not only maximizing the gain 

in information (the target objective in (Yang and Chadha 2021)) is crucial but considering 

sensor reliability in sensor network design (the target objective in this chapter) is even more 

important. 

4 Finally, I had used a high-fidelity finite element model in Yang et al. (Yang and Chadha 

2021) to simulate true sensor measurements of strain gauges installed in the Greenup miter 
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gate. Building a highfidelity FEM usually takes a tremendous amount of tedious modeling 

work that is not the focus of this chapter. Adopting the same demonstration example allows 

me to conveniently use the same FEM that was used in (Yang and Chadha 2021) for an 

application case of the proposed framework. 

4.4.2 Description of the miter gate structure 

In the last chapter, I have briefly described the miter gate structure and the damage 

parameter selected. 

4.4.2.1 Design space: 

As discussed in chapter 3, in total, there are 64919 × 4  sensor locations of choice. 

However, for practical reasons, the USACE installs the sensors only on the downstream side of 

the miter gate. This reduces my available sensor locations by approximately half, that is, 

𝑁𝑁Total-Sensors ≈ 0.5 × 64919 × 4 

4.4.2.2 The load vector: 

The gate is subjected to uncertain upstream and downstream hydrostatic loads quantified 

by the hydrostatic upstream and downstream heads, such that the load vector ℎ(𝑡𝑡) consists of two 

components, that is ℎ(𝑡𝑡) = �ℎup (𝑡𝑡), ℎdown (𝑡𝑡)�  and Ω𝐻𝐻(𝑡𝑡) = Ω𝐻𝐻m (𝑡𝑡) × Ω𝐻𝐻domen (𝑡𝑡).  To have less 

discrepancy to the real model. In this chapter, instead of normal distribution, the water heads are 

modeled by employing a three-parameter-based Weibull distribution. It is the distribution of choice 

because it provides flexibility to model a complex variable like water heads and has a positive 

support (i.e., it naturally constraints water heads to be non-negative). I have: 
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𝑓𝑓𝐻𝐻up (𝑡𝑡)�ℎup (𝑡𝑡)� = 𝑐𝑐1 �
ℎup (𝑡𝑡) − 𝑐𝑐up 

𝑐𝑐2
�

(𝑐𝑐1−1)

𝑒𝑒−�
ℎup (𝑡𝑡)−𝑐𝑐up 

𝑐𝑐2
�
𝑐𝑐1

;

𝑓𝑓𝐻𝐻down (𝑡𝑡)(ℎdown (𝑡𝑡)) = 𝑐𝑐1 �
ℎdown (𝑡𝑡) − 𝑐𝑐down 

𝑐𝑐2
�

(𝑐𝑐1−1)

𝑒𝑒−�
ℎdown (𝑡𝑡)−𝑐𝑐𝑑𝑑own

𝑐𝑐2
�
𝑐𝑐1

 (4.39) 

In the expression above, the parameters �𝑐𝑐1 = 2, 𝑐𝑐2 = 50, 𝑐𝑐up = 516  inches )  models the 

distribution of the upstream water load, and (𝑐𝑐1 = 2, 𝑐𝑐2 = 50, 𝑐𝑐down = 132 inches ) models the 

distribution of the downstream water load. These parameters were selected based on consultation 

with USACE research team. Figure 4.7 illustrates the two distributions. 

 
Figure 4.6: Assumed probability distributions of the upstream and the downstream water heads. 

The next heading discusses various zones of reliability in the miter gate structure. 

4.4.2.3 Various zones of reliability, and modeling observation noise of a sensor 

To model the noise in the 𝑖𝑖-th strain gauge constituting the design 𝑒𝑒 at time 𝑡𝑡 as per Eq. 

(4.6), I assume that 𝜎𝜎𝜀𝜀𝑒𝑒𝑒𝑒(𝑡𝑡) = 5 × 10−6 . This assumption is in accordance with reasonable 

commercial strain gauge performance. Secondly, the sensor reliability bias factor 𝜂𝜂𝑒𝑒𝑒𝑒(𝑡𝑡)  is 

modeled by a Gaussian distribution with the mean 𝜇𝜇𝑛𝑛𝑒𝑒𝑒𝑒(𝑡𝑡), and the standard deviation 𝜎𝜎𝑛𝑛𝑒𝑒𝑒𝑒(𝑡𝑡). I 

consider two cases of reliability bias factor in the numerical simulation discussed in Section 4.5. 
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The miter gate is divided into two reliability-zones decided by the downstream water-head 

𝐻𝐻down  (since strain gauges are installed on the downstream side of the gate only). The first zone is 

part of the gate above the downstream water level (called splash zone and is denoted by 𝑧𝑧splash  ) 

and the second zone is part of the gate that is submerged in water (called the submerged zone and 

is denoted by 𝑧𝑧sub ). Let the set of zones be defined as Ω𝑍𝑍 = �𝑧𝑧splash , 𝑧𝑧sub �. Sensors that are in the 

submerged zone for a majority of the time have a higher probability of malfunctioning than the 

sensors that are installed in the splash zone. Let 𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡) denotes the random variable modeling the 

functional state of the 𝑖𝑖 -th sensor in design 𝑒𝑒  at time 𝑡𝑡 . The probability mass function 

𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)�𝑧𝑧splash ∣ ℎdown (𝑡𝑡)�  and 𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)(𝑧𝑧sub ∣ ℎdown (𝑡𝑡)) = 1 −

𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)�𝑧𝑧splash ∣ ℎdown (𝑡𝑡)�, denotes the probabilities of 𝑖𝑖-th sensor of design 𝑒𝑒 exposed to 

the splash zone or submerged zone at time 𝑡𝑡  conditioned upon the downstream water head 

respectively. I define the conditional probability of the 𝑖𝑖-th sensor reading constituting the design 

𝑒𝑒  being unreliable or reliable conditioned on their location in either the splash zone or the 

submerged zone at any time 𝑡𝑡 as: 

𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)�𝑆𝑆unrel ∣ 𝑧𝑧splash � = 1 − 𝑒𝑒−𝜆𝜆splash 𝑡𝑡

𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)(𝑠𝑠unrel ∣ 𝑧𝑧sub ) = 1 − 𝑒𝑒−𝜆𝜆sub 𝑡𝑡

𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)�𝑠𝑠rel ∣ 𝑧𝑧splash � = 𝑒𝑒−𝜆𝜆splash 𝑡𝑡

𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)(𝑠𝑠rel ∣ 𝑧𝑧sub ) = 𝑒𝑒−𝜆𝜆sub 𝑡𝑡

 (4.40) 

I note two properties of the probabilities assigned above: (1) it is widely accepted that the 

submerged sensors fail more often than the sensors in the splash zone. I assume 𝜆𝜆sub > 𝜆𝜆splash . As 

a consequence of this, the probability of a sensor malfunctioning as defined in Eq. (4.40) is higher 

in the submerged zone than in the splash zone. For simulation, I assume that 𝜆𝜆sub = 0.2 and 

𝜆𝜆splash = 0.002;  (2) Given that a sensor's zone is unchanged, the probability of a sensor 
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malfunctioning increases with time. Finally, the probability of the 𝑖𝑖-th sensor constituting the 

design 𝑒𝑒 being unreliable or reliable at any time 𝑡𝑡 is obtained using total probability theorem as: 

𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)(𝑠𝑠unrel ∣ ℎdown (𝑡𝑡)) = 𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)�𝑠𝑠unrel ∣ 𝑧𝑧splash �𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)�𝑧𝑧splash ∣ ℎdown (𝑡𝑡)�
+𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)(𝑠𝑠unrel ∣ 𝑧𝑧sub )𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)(𝑧𝑧sub ∣ ℎdown (𝑡𝑡))

𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)(𝑠𝑠rel ∣ ℎdown (𝑡𝑡)) = �1 − 𝑃𝑃𝑆𝑆𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)(𝑠𝑠unrel ∣ ℎdown (𝑡𝑡))�
 

(4.41) 

Here, 𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)�𝑧𝑧splash ∣ ℎdown (𝑡𝑡)�  and 𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)(𝑧𝑧sub ∣ ℎdown (𝑡𝑡))  denotes the 

probability of the 𝑖𝑖-th sensor in design 𝑒𝑒 being in the splash zone or the submerged zone at time 𝑡𝑡. 

Since the sensors are attached to the downstream side, given a realization of downstream water 

head at time 𝑡𝑡, I have the following: 

(4.42) 

4.4.2.4 The digital twin: 

I have all the information required to simulate observed strain gauge readings by running 

the FEM for a given input (𝜃𝜃(𝑡𝑡), ℎ(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡)) as per Eq. (4.7). To simulate the true strain gauge 

data, I rely on a Gaussian Process Regression (GPR) based model trained using simulated true 

strain values obtained from the validated FEM as discussed in Section 4.3.8.2. The SVD analysis 

reduces the output space of FEM from 𝑁𝑁Total-Sensors = 0.5 × 64919 × 4 sensors, to 𝑁𝑁Features = 38 

The 𝑖𝑖-th sensor in design 𝑒𝑒  

is in the spash zone, or above ℎdown(𝑡𝑡)  
: �
𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)�𝑧𝑧splash ∣ ℎdown (𝑡𝑡)� = 1
𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)(𝑧𝑧sub ∣ ℎdown (𝑡𝑡)) = 0

� 

The 𝑖𝑖-th sensor in design 𝑒𝑒 

is in the submerged zone, or below ℎdown (𝑡𝑡) 
: �
𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)�𝑧𝑧splash ∣ ℎdown (𝑡𝑡)� = 0
𝑃𝑃𝑍𝑍𝑒𝑒𝑒𝑒(𝑡𝑡)∣𝐻𝐻down (𝑡𝑡)(𝑧𝑧sub ∣ ℎdown (𝑡𝑡)) = 1

� 
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dimensional space. Therefore, for a given input �𝜃𝜃(𝑡𝑡),ℎ(𝑡𝑡), 𝜀𝜀𝜌𝜌(𝑡𝑡)�, the GPR model yields 38 

features which could be used to retrieve 𝑁𝑁Total-Sensors  strain readings through inverse SVD analysis. 

4.4.2.5 The prior gap-degradation model 

Since the time evolution of gap is not precisely known, I model it probabilistically (as 

shown in Fig. 4.8), such that 𝑓𝑓Θ(𝑡𝑡)(𝜃𝜃(𝑡𝑡)) denotes the prior distribution of gap length at time 𝑡𝑡. The 

gap evolution over time is described by a piecewise multi-stage degradation model as follows: 

𝜃𝜃(𝑡𝑡𝑘𝑘+1) = 𝜃𝜃(𝑡𝑡𝑘𝑘) + 𝜃𝜃(𝑡𝑡𝑘𝑘)𝑤𝑤(𝑡𝑡𝑘𝑘+1) ⋅ 𝑄𝑄(𝑡𝑡𝑘𝑘+1) ⋅ exp �𝜎𝜎(𝑡𝑡𝑘𝑘+1) ⋅ 𝑈𝑈(𝑡𝑡𝑘𝑘+1)� (4.43) 

In the equation above, 𝜃𝜃(𝑡𝑡𝑘𝑘+1) denotes the gap length at time step 𝑡𝑡𝑘𝑘;𝑁𝑁𝑡𝑡 is the total number of 

time steps; 𝑈𝑈(𝑡𝑡𝑘𝑘+1) is a stationary Gaussian stochastic process; 𝜎𝜎𝑡𝑡𝑘𝑘+1 ,𝑄𝑄(𝑡𝑡𝑘𝑘+1), and 𝑤𝑤(𝑡𝑡𝑘𝑘+1) are 

degradation state-dependent model parameters, which are given as follows 

𝜎𝜎(𝑡𝑡𝑘𝑘+1)  = 𝜎𝜎𝑗𝑗
𝑄𝑄(𝑡𝑡𝑘𝑘+1)  = 𝑄𝑄𝑗𝑗
𝑤𝑤(𝑡𝑡𝑘𝑘+1)  = 𝑤𝑤𝑗𝑗

 (4.44) 

where, the index 𝑗𝑗 represents the degradation state, such that 

𝑗𝑗 = ℏ𝑠𝑠�𝜃𝜃(𝑡𝑡𝑘𝑘)� (4.45) 

The function ℏ𝑠𝑠(⋅) maps the gap length to the degradation state 𝑗𝑗, such that 

𝑗𝑗 = ℏ𝑠𝑠(𝜃𝜃(𝑡𝑡)) =

⎩
⎨

⎧
1,  if 𝜃𝜃(𝑡𝑡) ∈ [0,𝜑𝜑1]
2,  if 𝜃𝜃(𝑡𝑡) ∈ [𝜑𝜑1,𝜑𝜑2]

⋮
𝑁𝑁𝑑𝑑 ,  if 𝜃𝜃(𝑡𝑡) ∈ �𝜑𝜑𝑁𝑁𝑑𝑑−1,∞�

 (4.46) 

where, 𝜑𝜑𝑖𝑖 for 𝑖𝑖 ∈ {1,2,⋯ , (𝑁𝑁𝑑𝑑 − 1)} are the switching points that govern the transition between 

different degradation stages and 𝑁𝑁𝑑𝑑 is the number of degradation stages. I assumed 𝑁𝑁𝑑𝑑 = 3 for the 
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current study. Since the switching points 𝜑𝜑𝑖𝑖 in Eq. (4.46) are uncertain in nature, they are modeled 

by the Gaussian distribution as shown below 

𝜑𝜑𝑖𝑖 ∼ 𝑁𝑁�𝜇𝜇𝜑𝜑𝑖𝑖 ,𝜎𝜎𝜑𝜑𝑖𝑖
2 � ∀ 𝑖𝑖 ∈ {1,2,⋯ ,𝑁𝑁𝑑𝑑 − 1} (4.47) 

 
Figure 4.7: The time-evolution of gap length 

For a given design 𝑒𝑒, the posterior gap-degradation model over the lifecycle of the structure 

can be obtained by using Bayesian inference as described in Section 4.3.5. In words, the sensor 

reliability risk ℒ(𝜃𝜃true ,ℎ(𝑡𝑡), 𝜀𝜀𝑒𝑒(𝑡𝑡))  is defined as absolute deviation of mean of the posterior 

distribution of the gap length (conditioned upon observed strain readings) from the true value of 

the gap length at time 𝑡𝑡. Mathematically, the definition of the sensor reliability risk in Eq. (4.12), 

and the Bayes risk in Eq. (4.14) stays intact. I use the framework described in Section 4. 3.7 in 

tandem with Section 4.3.8 to obtain the value of the Bayes risk 𝔈𝔈LC(𝑒𝑒). Finally, optimal sensor 

design is obtained using Bayesian optimization as discussed in Section 4.3.9. In the next section, 

I discuss numerical examples of the proposed framework applied to the miter gate. 
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4.5 Numerical results and discussion 

4.5.1 Various optimal designs for comparison 

For the purposes of investigation, I consider three optimal designs: 

1 Design 𝑒𝑒KL: Acquire strain measurements using Bayesian optimized strain-gauge network 

containing 𝑁𝑁sg(𝑒𝑒KL) = 10 sensors as detailed in Yang et al. (Yang and Chadha 2021) 

(using KL divergence without risk weights as an objective functional). 

2 Design 𝑒𝑒R1 : Acquire strain measurements using Bayesian optimized strain-gauge network 

containing 𝑁𝑁sg�𝑒𝑒R1� = 10 sensors obtained using reliability-based Bayes risk defined in 

Eq. (4.14) with the following reliability bias factor statistics: 𝜇𝜇𝑛𝑛𝑒𝑒𝑒𝑒 = 10−4  and 𝜎𝜎𝑛𝑛𝑒𝑒𝑒𝑒 =

2 × 10−6. 

3 Design 𝑒𝑒R2 : Acquire strain measurements using Bayesian optimized strain-gauge network 

containing 𝑁𝑁sg�𝑒𝑒R2� = 10 sensors obtained using reliability-based Bayes risk defined in 

Eq.(4.14) with the following reliability bias factor statistics: 𝜇𝜇𝑛𝑛𝑒𝑒𝑒𝑒 = 5 × 10−5 and 𝜎𝜎𝑛𝑛𝑒𝑒𝑒𝑒 =

5 × 10−6. 

 

4.5.1.1 The KL divergence optimized design 𝒆𝒆𝐊𝐊𝐊𝐊 

To illustrate the importance of accounting for the reliability of sensors in the optimal design 

framework, I first obtain the design 𝒆𝒆𝐊𝐊𝐊𝐊. Figures 4.9 and 4.10 illustrate the front and side rendering 

of the design 𝒆𝒆𝐊𝐊𝐊𝐊 respectively. 

 



  183   

 
Figure 4.8: Design 𝒆𝒆𝐊𝐊𝐊𝐊: Rendered front view of the gate 

 

 

Figure 4.9: Design 𝒆𝒆𝐊𝐊𝐊𝐊: Rendered side view of the gate 

The design 𝑒𝑒KL  targets maximizing the information gain and does not account for sensor 

reliability. Naturally, I expect the following: 
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1 I expect that the sensors constituting the design 𝑒𝑒KL will be closer to the gap because the 

information about the gap can be best captured when sensors are in its vicinity. It can be 

seen from Fig. 4.10 that 8 out of 10 sensors are in the submerged zone. 

2 Since the design 𝑒𝑒KL does not account for the sensor reliability (sensors have a higher 

likelihood of malfunctioning when submerged), I expect that the inference of gap length 

obtained using the strain gauge data (constituting the design 𝑒𝑒KL ) will be unreliable and 

skewed from reality when considering reliability bias in the strain gauge measurements 

along with the usual observation noise. The following sections will illustrate that this is 

indeed the case by comparing the inference results obtained from the design 𝑒𝑒KL relative to 

the reliability-focused designs 𝑒𝑒R1 and 𝑒𝑒R2 respectively. 

4.5.1.2 The optimal design 𝒆𝒆𝐑𝐑𝟏𝟏 

Bayesian optimization process requires obtaining the Bayes risk numerous times. To 

evaluate the sum in time domain in Bayes risk defined in Eq. (4.14), I divide a 60 months time 

interval (Ω𝑇𝑇 = [0,60] months) into 𝑁𝑁𝑇𝑇 = 13 discrete time steps. Figures 4.11 and 4.12 illustrates 

the front and side rendering of the design 𝑒𝑒R1 respectively. 
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Figure 4.10: Design 𝒆𝒆𝐑𝐑𝟏𝟏: Rendered front view of the gate 

 

 

Figure 4.11: Design 𝒆𝒆𝐑𝐑𝟏𝟏: Rendered side view of the gate 
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4.5.1.3 The optimal design 𝒆𝒆𝐑𝐑𝟐𝟐 

Similar to the design 𝑒𝑒𝑅𝑅1, I use 𝑁𝑁𝑇𝑇 = 13 discrete time steps to obtain the optimal design 

𝑒𝑒𝑅𝑅2. Figures 4.13 and 4.14 illustrates the front and side rendering of the design 𝑒𝑒R2 respectively. 

 
Figure 4.12: Design 𝒆𝒆𝐑𝐑𝟐𝟐 : Rendered front view of the gate 

 
Figure 4.13: Design 𝒆𝒆𝐑𝐑𝟐𝟐 : Rendered side view of the gate 
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One noteworthy observation is that unlike in the design 𝑒𝑒KI, in both the reliability-focused 

designs 𝑒𝑒𝑅𝑅1  and 𝑒𝑒𝑅𝑅 , there are more sensors above the mean downstream water head than the 

number of sensors below it. As discussed in Section 4.4.2.4, the probability of sensors 

malfunctioning is higher when they are located below the mean downstream water head (higher 

likelihood of being in the submerged zone) than when they are installed above the mean water 

head (higher likelihood of being in the splash zone). The design 𝑒𝑒KL does not take this into account. 

The designs 𝑒𝑒R1  and 𝑒𝑒𝑅𝑅2  are not only emboldened with strength of the design 𝑒𝑒𝐾𝐾𝐾𝐾  (carrying 

excellent inference when the sensors are fully reliable and functional), it also overcomes the 

limitations of the design 𝑒𝑒KL (accounting for the sensor reliability). In the designs 𝑒𝑒R1 and 𝑒𝑒R2, the 

sensors are strategically placed in the gap's neighborhood allowing for a realistic inference of the 

gap length (just like the design 𝑒𝑒KL). At the same time, collectively, sensors spend higher average 

time in the splash zone over the lifespan of the structure, such that if submerged sensors 

malfunction, the sensors in the splash zone can carry the burden of performing acceptable inference 

over the lifecycle of the miter gate (unlike the design 𝑒𝑒KL). This construct invariably makes the 

newly proposed sensor optimization framework a superior choice for state inference. In the next 

section, I compare the inference results for all three designs. 

4.5.2 Comparison of various designs 

To compare the reliability-focused optimal designs 𝑒𝑒R1 and 𝑒𝑒R, with the design 𝑒𝑒KL that 

does not account for sensor reliability, I consider the following: 

1. There must be a unique true/real gap evolution over time. However, while in the design 

phase, the uncertain nature of the problem does not permit knowing deterministically how 

the gap would evolve with time. Therefore, I must consider different realizations of true 
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gap evolution over time (each 𝜃𝜃(𝑡𝑡) curve in Fig. 4.8 is a realization of a possible true gap 

evolution 𝜃𝜃true (𝑡𝑡))  and evaluate the robustness and performance of the proposed 

optimization framework for various possible realities of system evolution. For illustration 

purposes, I show inference results for two such realizations of 𝜃𝜃true (𝑡𝑡). 

2 I consider 𝑁𝑁𝑇𝑇 = 13  discrete time instances and consider 5 realizations of load vector 

satisfying Eq. (4.7) for each of these discrete time steps. For all the input variables 

�𝜃𝜃true (𝑡𝑡𝑖𝑖),ℎup (𝑡𝑡𝑖𝑖),ℎdown (𝑡𝑡𝑖𝑖)� , where 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑇𝑇 , I obtain the inferred probability 

distribution of the gap-length conditioned upon strain data obtained for the designs 

𝑒𝑒KL, 𝑒𝑒R1 , and 𝑒𝑒R2 . For a given design and for each time step, I obtain 5 posterior 

distributions of gap-length obtained for 5 instances of water heads. I use the average value 

of the mean and standard deviation of these 5 distributions to obtain piecewise linearly 

interpolated posterior gap-degradation curves. These inferred gap evolution curves are used 

to compare various designs. 

The Fig. 4.15 and 4.16 shows piecewise linearly interpolated posterior gap-degradation curves for 

the first and the second true gap length evolution curve for designs 𝑒𝑒KL and 𝑒𝑒R1 , respectively. 

Similarly, Fig. 4.17 and 4.18 illustrates the posterior gap-degradation curves for the first and the 

second true gap length evolution curve for designs 𝑒𝑒KL and 𝑒𝑒R2, respectively. All four figures also 

zoom in on two instances of true gap length (or the respective time) and illustrate 5 cases of inferred 

posterior distributions of the gap length corresponding to 5 realizations of loading. 
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Figure 4.14: Design 𝒆𝒆𝐊𝐊𝐊𝐊 vs. 𝒆𝒆𝐑𝐑𝟏𝟏: Inference results for the first realization of the true gap length 

evolution curve 
 

 
Figure 4.15: Design 𝒆𝒆𝐊𝐊𝐊𝐊 vs. 𝒆𝒆𝐑𝐑𝟏𝟏 : Inference results for the second realization of the true gap length 

evolution curve 
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Figure 4.16: Design 𝒆𝒆𝐊𝐊𝐊𝐊 vs. 𝒆𝒆𝐑𝐑𝟐𝟐 : Inference results for the first realization of the true gap length 

evolution curve 
 

 
Figure 4.17: Design 𝒆𝒆𝐊𝐊𝐊𝐊 vs. 𝒆𝒆𝐑𝐑𝐑𝐑 : Inference results for the second realization of the true gap length 

evolution curve 
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As expected, I observe in Fig. 4.15-4.18 that reliability-focused designs lead to better 

overall inference over the lifecycle (mean of the 5 posterior distributions are closely following the 

true gap evolution curve). The inference obtained using the design 𝑒𝑒KL  are unreliable and 

frequently skewed away from reality (true gap length curve). Unlike the results obtained using the 

design 𝑒𝑒KL, the inference results obtained by using the designs 𝑒𝑒R1 and 𝑒𝑒R2 are overall consistent 

for different realizations of true gap length evolution curves and different reliability bias factor. 

 

4.6 Summary and Conclusions  

This chapter proposes an optimal sensor design framework using Bayesian optimization 

with a dual target: (1) the design framework should obtain a sensor design that can lead to 

probabilistically inferring the structural state to an acceptable degree of accuracy; (2) the design 

framework must consider all the uncertainties that the system is subjected to and account for the 

sensor reliability over the structure's life cycle. This goal is achieved by using the aggregate 

expected sensor reliability risk over the life cycle as the Bayes risk functional. 

The sensor placement optimization process demands evaluating the Bayes risk functional 

numerous times while iteratively searching the global sensor space to obtain the optimal sensor 

network that minimizes the Bayes risk. Doing so, I observe two major challenges: (1) the proposed 

Bayes risk is a high-dimensional integral with a non-linear integrand; (2) since my goal is to 

consider the uncertainties in load and sensor noise over the life cycle of the structure, it is 

computationally expensive to obtain simulated sensor data for numerous instances of true 

structural state parameter (observed over the structure's lifespan), loading scenario, and sensor 

noise structure. I overcome this numerical challenge by adopting these innovative solutions: (1) I 
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employ univariate dimensional reduction in conjuncture with Gauss-Hermite quadrature rule that 

approximates the Bayes risk in an easy-to-evaluate form; (2) I use the FEM generated simulated 

sensor data in tandem with singular value decomposition (SVD) technique to train a digital twin 

that could be deployed to obtain simulated sensor data at much lower computational cost; (3) I 

realized that the Bayesian optimization process requires a unique and small subset of exhaustive 

sensor data over the structure's lifespan. This allowed me to first store the unique set of sensor 

measurements that are needed for Bayesian inference and extract it as and when required in the 

optimization process increasing the computational speed by many folds. 

The proposed framework is applied to a real-world miter gate structure. A comparison of 

approximated inferred posterior gap evolution over time obtained using three sensor designs (the 

first obtained by maximizing information gain, and the other two obtained by accounting for sensor 

reliability over the structure's lifecycle) indicates the importance of accounting for sensor 

reliability in the design framework. The reliability-focused designs lead to inference results that 

are overall reliable, consistent, and representative of true gap evolution over time. 

 

4.7 Remarks 

Portions of this dissertation have been published or accepted for publication or are currently 

being considered for publication. Chapter 4 is currently in preparation for publication, the 

dissertation author was the primary investigator and author of this paper: 

Y. Yang, M. Chadha, Z. Hu, and M. D. Todd, “An optimal sensor design framework accounting 

for sensor reliability over the structural life cycle,” Reliability Engineering & System Safety.  
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Chapter 5  
 
CONCLUSIONS AND FUTURE RESEARCH 
 

SHM system design with considering objective functions started in early 1990’s. Over the 

several decades, the researchers in engineering systems have further developed and deployed 

various techniques for designing an optimal SHM system. Among all, placing sensors in suitable 

location that provides most valuable information about the structure has been widely studied for 

application in civil engineering. The primary goal of this research is to propose a practical and 

efficient optimal sensor design framework that can be implemented to large infrastructures such 

as miter gates. The old school human visualization technique in SHM should be replaced by a life 

cycle digital twin model. This dissertation demonstrates that an optimal sensor design framework 

that creates large benefits in SHM due to the detection accuracy, minimum designed risk, and 

practical to applications. The framework involves feature extraction, damage diagnosis, Bayes 

risk-based objective functions, uncertainty quantification, and sensor optimization. 

The main contributions in this dissertation can be summarized as: 1) overcome the lack of 

field data under various inputs (e.g. damage states, loading vector) scenarios by building an 

efficient and accurate surrogate model with integrating machine learning techniques such as GPR; 

2) estimate the damage state using Bayesian inference method that updates the initial belief with 

observed measurements; 3) constructed Bayes risk functions, with considering the consequences 

of making decision, as the objective in optimization; 4) reduced the uncertainties in the 

optimization process by computationally efficient univariate dimension reduction with Gaussian 

Hermite integration method; 5) Implement Bayesian optimization strategy in selecting best sensor 

placement; 6) create a sensor reliability model and 7) apply to a life cycle degradation structure.   
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 Chapter 2 presents basic ideas and fundamental approaches for designing an optimal sensor 

placement. This part considers a binary and linear decision-making process in a simple Bayes risk 

function that is constructed the used for optimization. Three different statistical methods are 

introduced and compared in their performances in computing the expected value for Bayes risk. 

There is a tradeoff between estimation accuracy and model running times. The final optimally 

designed sensors result shows value of the sensor design framework against to a randomized sensor 

arrangement.  

 Chapter 3 overcomes multiple obstacles presented in realistic scenarios, including 

complexity of big infrastructures and high computational cost, and then further develops the 

framework for the miter gate problem. This chapter changes the objective function to the equations 

that measures information gain in damage estimation. In addition, a human knowledge-based risk 

weight function is added to account for the decision making. Various machine learning techniques 

and efficient computational strategies have been introduced to the framework for reducing the 

computational efforts. The framework is applied to the miter gate. A critical design of sensor 

locations has been achieved by maximizing the information gain.  

 Chapter 4 further develops the framework to account for the sensor reliability in life cycle 

monitoring. It is noted that the probabilities of sensor failure are highly related to their 

environmental variants (such as, moisture and temperature). Sensors located in a harsh position 

would have higher probability of failure that other sensors. In the miter gate, many sensors are 

installed under water to get more information from the damage position. This chapter introduces a 

sensor reliability model that considers the huge bias caused by sensor failures.  The framework is 

also expanded to provide a design for the life cycle miter gate.  
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 In addition, the current framework is a static sensor design that does not evolves over time. 

In real-world cases, the original design of optimal sensor network could become more and more 

ineffective and inaccurate as the structure damage state changes over time. Updating of the sensor 

network design would be critical in this case. In the future research, it would be valuable to design 

a time-dependent optimal sensor design framework for SHM. It would be interesting to study when 

and where to add new sensors to the structure based on the information observed from the current 

sensor design network. Further, in the future, it is also worth to integrate the optimal sensor design 

into a big picture of decision-making digital-twin model in SHM.  
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