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INVITED PAPER 

L I G H T  SCATTERING IN HEAVY F E R M I O N  C O M P O U N D S  

S, B L U M E N R O D E R ,  H. BRENTEN 1 E. Z I R N G I E B L  2, R. MOCK 3 G. G O N T H E R O D T ,  
J.D. THOMPSON 4, Z. FISK 4 and J. N A E G E L E  5 

11. Physikalisches lnstitut, R WTH Aachen, 5100 Aachen, Fed. Rep. German)' 

We present results of Raman spectroscopy and magnetic susceptibility measurements  in the actinide compounds  UO 2, UPt 3 
and UBel3. The differences in the degree of localization of the 5f-electrons in the insulating UO 2 and in the metallic, heavy 
fermion compounds  UPt 3 and UBel3 are discussed. In both types of compounds  we find evidence of localized electronic 
excitations, which yield a good fit of the magnetic susceptibility data. The spin relaxation rates of UPt 3 and UBel3 at q -- 0 
are determined experimentally from the quasielastic light scattering. 

Since the discovery of the heavy fermion super- 
conductor CeCu2Si 2 in 1979 [1], strong attention 
in solid state physics has been focused on heavy 
fermion compounds like UPt 3, UBe~3 and C e C u  6. 

The discovery of bulk superconductivity in UPt 3, 
together with a T 3 l n ( T / ~ f )  term in the low 
temperature specific heat, where T,f is a spin 
fluctuation temperature, led to speculations about 
the important role of spin fluctuations for mediat- 
ing a non-BCS electron pairing in the heavy ferm- 
ion superconductors. 

All heavy fermion (HF) compounds are char- 
acterized by a similarly high value of the elec- 
tronic specific heat y, which has become the 
standard criterion for the classification of HF 
systems [2]. In a Fermi liquid model, values for 7 
of about 100 times that of an ordinary metal 
indicate a very high density of states at the Fermi 
energy E v. This can be related to narrow f bands 
due to a hybridization of d and f states. One then 
describes these highly correlated electrons and the 
corresponding many body effects by attributing a 
rather high effective mass to the f electrons. As a 
consequence of the large radial extent of the 5f 
wave function and a possible direct f - f  overlap, 
the tendency towards delocalization, i.e. band for- 
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mation, is much more pronounced in 5f-com- 
pounds than in 4f-compounds. For example, one 
finds well defined crystalline-electric-field (CEF) 
levels in Kondo-type 4f-compounds, such as 
CeCu 2Si3 [3] and CeB 6 [4]. Neutron scattering and 
Raman spectroscopy have been versatile and com- 
plementary tools in the investigation of the local- 
ized 4f ground state of CeB 6 and other 4f-com- 
pounds [4-6]. On the other hand, not much infor- 
mation is available about CEF levels in metallic 
actinide compounds.  

In this paper  we present light scattering results 
of the actinide compounds UO 2, UPt 3 and UBe13. 
We find evidence of localized 5f states in insulat- 
ing UO 2 and at least partially localized 5f-electron 
character in the HF  compound UPt 3. Moreover, 
we review investigations of spin fluctuations in the 
HF  compounds UPt 3 and UBe13 by means of 
light scattering, with the emphasis on the spin 
relaxation rate E, at q ~ 0. This allows to test 
predictions of the Fermi liquid theory that T~ 
v~q, where v~ is the Fermi velocity of the heavy 
particles. 

For 5f-electrons, the degree of localization is 
intermediate between 3d- and 4f-electrons. In in- 
sulating actinide compounds,  the 5f-electrons are 
generally more localized than in metallic ones. 
This dependence of the localization on the chem- 
ical binding of the ion in the lattice is in contrast 
to the situation of the 4f-electrons. 

In the past UO 2 has already been subject to 
light scattering and neutron scattering investiga- 
tions [7,8]. IR  reflectivity measurements [9] showed 
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Fig. 1. Raman spectrum of U O  2 and ThO 2 at 300 K. The 
ThO 2 spectrum was scaled in such a way that the Tzg phonons 

in both compounds have the same intensity. 

sharp structures at some hundred  meV due to 5f 
excitat ions.  Neu t ron  scat ter ing could  resolve 5f- 
C E F  exci tat ions in U O  2 [8]. On the other  hand,  
f rom magnet ic  suscept ibi l i ty  measurements  a mag- 
netic moment  of 3.2/~B was de te rmined  which 
deviates cons iderab ly  f rom the value 2.83/~ B 
calcula ted for a I" 5 C E F  ground state [10]. 

Fig. 1 shows the R a m a n  spect rum of U O  2 at 
300 K. In add i t ion  to the Y 2 g  p h o n o n  at 450 c m -  ~, 
one observes exci ta t ions at  1150 and  1500 cm 
which are in terpre ted  as due to C E F  transi t ions.  
As there is no scat ter ing in this region for ThO 2 
and as the C E F  ground state is known from 
several  other  invest igat ions to be F 5 [11,12], we 
have assigned the observed peaks  to F 5 ~ F~ and 
I" 5 ---, F 4 t ransi t ions,  respectively.  The symmet ry  
ass ignment  of the C E F  levels is based  on that  of 
Pr 3+ in C a F  2 which has also a J = 4 g round  state 
[12]. Al though  the R u s s e l l - S a u n d e r s  coupl ing  
scheme becomes increasingly i napp rop r i a t e  for 
higher  lying exci ted states of heavy elements,  a 
C E F  level scheme of U O  2 der ived on the basis  of 
the L e a - L e a s k - W o l f  scheme for J = 4 [13] can 
explain  the observed t empera tu re  dependence  of  
the magnet ic  suscept ibi l i ty  measured  up to 400 K. 

The fit of the exper imenta l  da t a  is shown in fig. 2. 
Especial ly we want  to emphas ize  that  the kink 
near  200 K is well reproduced .  The exper imenta l ly  
de te rmined  magnet ic  momen t  of / ~ f r =  2.71/~ is 
in good  agreement  with the value 2.83~.~ of the r~ 
g round  state of the U4+(5f  2) 3H 4 conf igurat ion.  
Therefore ,  our  f indings  suppor t  the conclusion 
that  the 5f levels in U O  2 are local ized and split  by 
a crys ta l l ine  electr ic field. 

The s i tuat ion is d i f ferent  in ac t in ide  metals,  
especial ly in c o m p o u n d s  like UPt~ with narrow f 
bands  and corre la t ion  effects [2]. Fig. 3 shows the 
R a m a n  spec t rum of  UPt  3 at 5 K under  5309 A 
laser exci ta t ion up to 5000 cm ] frequency shift 
[14]. We  observe s t rong inelast ic  scat ter ing be- 
tween about  1000 and 3000 cm ] which is also 
observed for 4762 ,~ exci ta t ion  and is thus not due 
to luminescence.  This  is in agreement  with recent 
observa t ions  of inelast ic  scat ter ing intensi t ies  be- 
tween 1000 and 3000 cm 1 in a UPt~ single 
crystal  under  5145 ,~ laser exci ta t ion [15]. We 
a t t r ibu te  the inelast ic  scat ter ing to 5f exci ta t ions  
s imilar  to those observed  in UO~. However,  in 
UPt~ these inelast ic  exci ta t ions  are very broad  
c o m p a r e d  to U O  2, in agreement  with the expecta-  
t ion of a s t ronger  t endency  towards  delocal iza t ion 
in metal l ic  ac t in ide  compounds .  The origin of 
these exci ta t ions  can be ei ther  due to intraionic  
mul t ip le t  levels or  to CEF-sp l i t t ings .  The spl i t t ings 
of  the e lectronic  g round  state of this order  of 
magne tude  can expla in  the t empera tu re  depen-  
dence of the magnet ic  suscept ibi l i ty .  In fig. 4 we 
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Fig. 2. Inverse magnetic susceptibility of UO 2 between 30 and 
400 K. The solid line is a fit based on the Lea Leask Wolf 

CEF scheme described in the text• 
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6 0 0 0  

show the magnetic susceptibility of UPt 3 between 
10 and 1050 K [16]. A splitting of roughly 2000 
cm 1 or 3000 K could describe the bending of the 
experimental 1/X curve at about 750 K. This 
value of 3000 K should be understood as a rough 
estimate of an average 5f-splitting. The magnetic 
moments of the states in this two-level model are 
fit parameters. 

Spin fluctuations in the HF  compounds UPt 3 
and UBe~3 have been observed by neutron scatter- 
ing [17-19] for the momentum transfer q > 1 ~ - 1 .  
As Raman scattering is a true q---0 method, our 
aim was to test the linear q dependence of the spin 
relaxation rate F~, predicted by non-interacting 
Fermi liquid theory. Fig. 5 shows the quasielastic 
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Fig. 4. Inverse magnetic susceptibility of UPt 3 between 10 and 
1050 K [16]. 
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Fig .  5. R a m a n  s p e c t r u m  o f  U B e l 3  f r o m  re f .  [ 20 ]  f o r  p e r p e n d i c -  

u l a r  polarization of incident and scattered light. The hatched 
area indicates the quasielastic scattering due to spin fluctua- 

tions with the relaxation rate F,. 

scattering intensity of UBe]3 under 5145 A laser 
excitation at 350 and 40 K [20]. By the perpendic- 
ular orientation of the incident and scattered elec- 
tric field vectors E i 3 _ E  s this scattering is identi- 
fied as magnetic in origin. The scattering intensity 
I(0a) has been fitted by 

l(~o) - (1 + n(oa))h~ F J2  (1) 
( r , / 2 )  ~ + ( h ~ ) ' - "  

where n(oa) is the Bose factor; the Lorentizian is 
the Fourier transform of exp ( -F~ t )  used to de- 
scribe fluctuating uncorrelated 5f spins with a spin 
relaxation rate £~. The fit based on eq. (1) is 
shown by the hatched area in fig. 5. One obtains 
an approximately temperature independent spin 
relaxation rate £ ~ ( q = 0 ) = ( l l 0 + 1 0 )  cm i ( =  
13.6 meV). This result together with that from 
neutron scattering for q = 2A 1 [19] is shown in 
fig. 6. The q independence of /7, is evidence for 
the localized nature of the spin fluctuations. A 
similar q independence of ]P~ is found for UPt 3 
[21,22]. A slight dependence of the spin relaxation 
rate, contrary to Fermi liquid predictions, has 
been observed [23] in CeCu 6 and theoretically 
explained in ref. [24]. 
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The above results for UBel3, UPt3 and CeCu~ 
are in disagreement with the simple non-inter- 
acting Fermi liquid approach. The observation of 
a finite-frequency zone-center contribution of the 
spin fluctuations reflects the fact that the spin or 
the magnetization is not conserved due to the 
strong spin-orbit  coupling [24]. 

Conclusions 
In addition to previous neutron measurements 

of CEF levels in the cerium-based HF compound 
CeCu 2Si 2 we could find first evidence of localized 
electronic excitations in uranium-based HF com- 
pounds which are not accessible by neutron 
scattering. This evidence is further supported by 
fits of the magnetic susceptibility data. The ob- 
servation of the spin relaxation rate at q =  0, 
which complements neutron data at large q, has 
revealed that the simple non-interacting Fermi 
liquid theory is not applicable to HF compounds.  
Theoretical work in this direction has been under- 
taken recently [24]. The advantage of applying 
light scattering to HF compounds has been shown 
to lie in the q ~  0 momentum transfer and the 
measurable high energy losses. 
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