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RESEARCH

Crohn’s disease in endoscopic remission, 
obesity, and cases of high genetic risk 
demonstrates overlapping shifts in the colonic 
mucosal‑luminal interface microbiome
Jonathan P. Jacobs1,2*, Maryam Goudarzi3, Venu Lagishetty1, Dalin Li4, Tytus Mak5, Maomeng Tong6, 
Paul Ruegger7, Talin Haritunians4, Carol Landers4, Philip Fleshner4, Eric Vasiliauskas4, Andrew Ippoliti8, 
Gil Melmed4, David Shih4, Stephan Targan4, James Borneman7, Albert J. Fornace Jr9, 
Dermot P. B. McGovern4† and Jonathan Braun4†    

Abstract 

Background:  Crohn’s disease (CD) patients demonstrate distinct intestinal microbial compositions and metabolic 
characteristics compared to unaffected controls. However, the impact of inflammation and underlying genetic risk on 
these microbial profiles and their relationship to disease phenotype are unclear. We used lavage sampling to charac-
terize the colonic mucosal-luminal interface (MLI) microbiome of CD patients in endoscopic remission and unaffected 
controls relative to obesity, disease genetics, and phenotype.

Methods:  Cecum and sigmoid colon were sampled from 110 non-CD controls undergoing screening colonoscopy 
who were stratified by body mass index and 88 CD patients in endoscopic remission (396 total samples). CD poly-
genic risk score (GRS) was calculated using 186 known CD variants. MLI pellets were analyzed by 16S ribosomal RNA 
gene sequencing, and supernatants by untargeted liquid chromatography-mass spectrometry.

Results:  CD and obesity were each associated with decreased cecal and sigmoid MLI bacterial diversity and distinct 
bacterial composition compared to controls, including expansion of Escherichia/Shigella. Cecal and sigmoid dys-
biosis indices for CD were significantly greater in obese controls than non-overweight controls. CD, but not obesity, 
was characterized by altered biogeographic relationship between the sigmoid and cecum. GRS was associated with 
select taxonomic shifts that overlapped with changes seen in CD compared to controls including Fusobacterium 
enrichment. Stricturing or penetrating Crohn’s disease behavior was characterized by lower MLI bacterial diversity 
and altered composition, including reduced Faecalibacterium, compared to uncomplicated CD. Taxonomic profiles 
including reduced Parasutterella were associated with clinical disease progression over a mean follow-up of 3.7 years. 
Random forest classifiers using MLI bacterial abundances could distinguish disease state (area under the curve (AUC) 
0.93), stricturing or penetrating Crohn’s disease behavior (AUC 0.82), and future clinical disease progression (AUC 0.74). 
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Background
Crohn’s disease (CD) is a chronic inflammatory bowel 
disease (IBD) of the digestive tract with substantial mor-
bidity and mortality due to intestinal ulceration, obstruc-
tion, and perforation leading to malnutrition, infections, 
and debilitating symptoms [1]. Prevalence is substantial 
(~0.3%) but stabilizing in the US and other industrial-
ized countries, while incidence is rising globally across 
newly westernizing countries [2]. The pathophysiology 
of CD involves a combination of genetic susceptibility 
(concordance in twins of 30–50%, and over 200 genetic 
loci of genome-wide significance [3]) and environmen-
tal risk factors [2, 4]. The intestinal microbiome was ini-
tially implicated in disease development based on animal 
models (e.g., [5–7]). When extended to studies of human 
microbiome (see foundational studies [8–16]; reviewed 
in [17]), CD patients compared to healthy populations 
are distinguished by lower microbial diversity, expansion, 
and (more notably) depletion of >30 microbial taxa, tem-
poral instability [18–20], and altered production of many 
classes of metabolites and proteins with emerging docu-
mentation of their ecologic and host bioactivity [21–23]. 
These findings strongly support the hypothesis that CD 
involves a perturbation of the microbiome, termed dysbi-
osis, that synergizes with environmental and genetic risk 
factors to incite intestinal inflammation [24, 25].

Existing studies have provided insight into the link 
between the microbiome and CD but many questions 
remain. First, while both host genetics and gut microbi-
ome composition are associated with CD, genome-wide 
analysis has uncovered very limited impact of host genet-
ics on microbial composition [26–29]. This has led to the 
view that mechanisms of CD genetic risk act in parallel 
rather than upstream of microbiome disease traits. How-
ever, the advent of genome-wide CD polygenic risk score 
methodologies (GRS) offers a novel and more statisti-
cally powerful method to reconsider the relationship of 
host genetics to disease-associated traits such as micro-
biome composition, by testing them in healthy popula-
tions independent of CD disease state [30–32]. Second, 
CD is heterogeneous in phenotype, including diverse 

location patterns as well as clinically distinct categories 
of disease behavior summarized under the Montreal clas-
sification as stricturing (B2), internal penetrating (B3), 
and non-stricturing/non-penetrating (B1) [33]. The con-
tributions of the microbiome to disease behavior have 
received limited attention to date [20, 34, 35]. Third, most 
studies of healthy control populations have used feces to 
characterize the microbiome. The mucosal microbiome 
of non-IBD individuals and its relation to other microbi-
ome-associated conditions such as obesity and metabolic 
disorders [36, 37] or to genetic factors remain largely 
uncharacterized. This is an important limitation as stud-
ies comparing fecal and mucosal samples have found that 
the fecal microbiome is not representative of the mucosal 
microbiome, and more robust microbial differences 
have been found in the tissue microbiome than the fecal 
microbiome when comparing CD to controls [11, 38]. 
Fourth, existing moderate- to large-sized studies of the 
CD microbiome have included patients with active dis-
ease or defined remission by clinical parameters, which 
have been shown in CD to correlate poorly with inflam-
mation measured by biomarkers and endoscopic appear-
ance [11–14, 39, 40]. As inflammation itself appears 
to alter the gut microbiome as seen in animal models 
and in human studies associating severity of inflamma-
tion and therapeutic response to microbial profiles, it is 
unclear to what extent the reported dysbiosis associated 
with CD truly reflects an underlying disease association 
as opposed to microbial markers of ongoing intestinal 
inflammation [11, 12, 41].

We undertook a study to address these gaps in our 
understanding of the colonic mucosal microbiome of 
CD in remission. In deciding which specimen types 
to include, we focused on the mucosal-luminal inter-
face (MLI). This represents colonic mucus and adher-
ent microbes present after bowel preparation which 
can be released by lavage of the colonic surface during 
colonoscopy [42]. This provides insight into microbes 
in close proximity to the mucosa that have been shown 
to be distinct from those in the lumen and that may be 
most biologically pertinent for regulating host mucosal 

CD patients showed alterations in the MLI metabolome including increased cholate:deoxycholate ratio compared to 
controls.

Conclusions:  Obesity, CD in endoscopic remission, and high CD genetic risk have overlapping colonic mucosal-lumi-
nal interface (MLI) microbiome features, suggesting a shared microbiome contribution to CD and obesity which may 
be influenced by genetic factors. Microbial profiling during endoscopic remission predicted Crohn’s disease behavior 
and progression, supporting that MLI sampling could offer unique insight into CD pathogenesis and provide novel 
prognostic biomarkers.

Keywords:  Crohn’s disease, Obesity, Microbiome, Mucosal-luminal interface, Disease behavior, Disease progression, 
Genetic risk score
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phenotype. A study comparing colonic lavage samples 
and colonic biopsies found that they had roughly compa-
rable microbial profiles [43]. Unlike biopsies, which pre-
dominantly contain human tissue, MLI sampling yields a 
mix of bacterial and human material that we and others 
have shown is amenable for metabolomics, proteomics, 
shotgun metagenomics, and viromics [42, 44–49]. MLI 
proteomics, in particular, has been demonstrated to yield 
panels of proteins that can differentiate IBD from non-
IBD as well as IBD phenotypes [45, 47, 48]. Microbiome 
sequencing of MLI samples has been utilized to identify 
microbial associations with type 2 diabetes, systemic 
sclerosis, and colorectal cancer [50–52].

In this study, we performed cross-sectional sampling 
of the MLI microbiome of CD patients in endoscopic 
remission and non-IBD controls, stratified by obesity sta-
tus. This allowed for assessment of mucosal microbiome 
profiles in obesity and adjustment for the confounding 
effects of obesity in comparisons of CD to controls.

Methods
Cohort recruitment and sample collection
Eighty-eight CD patients undergoing colonoscopy and 
110 controls without IBD undergoing screening colonos-
copy were recruited from endoscopy suites at Cedars-
Sinai Medical Center between 6/29/2011 and 3/19/2014. 
The demographic details of this cohort are summarized in 
Table 1. Details of cohort recruitment strategy and sam-
pling methodology were previously reported [42, 44, 45]. 
For convenience, we highlight the following details. All 
CD patients were reported by their gastroenterologists to 
be in clinical remission at the time of collection. The par-
ticipating study endoscopists, who were all experienced 
IBD specialists, confirmed that study patients were in 
endoscopic remission at the time of sampling based upon 
the absence of visible signs of active inflammation such 
as linear or aphthous ulceration or cobblestoning. Con-
trols undergoing screening colonoscopy were validated 
by normal endoscopic appearance of the colon during 
colonoscopy. The subjects underwent lavage of the sig-
moid colon and cecum at sites without visible pooled 
luminal content with 30 mL of sterile 0.9% saline passed 
through the endoscope channel. The lavaged content 
was aspirated by vacuum suction into a collection trap, 
typically yielding over 20 mL, then immediately trans-
ferred to ice. Within the same day, the lavaged samples 
were centrifuged at 4000g for 30 min to separate the sam-
ple into a pellet and supernatant, which were stored at 
−80°C until future microbiome and metabolomics analy-
sis, respectively. A clinical research coordinator collected 
relevant metadata including age, gender, body mass index 
(BMI), and Montreal classification (disease behavior and 
disease location). Clinical chart review for longitudinal 

outcomes was performed in October 2017. Peripheral 
blood was collected from all patients for genetic analysis. 
The Cedars-Sinai Medical Center Institutional Review 
Board approved this research and the protocols gov-
erning participants (IRB #3358). All subjects provided 
informed consent to participate. The following datasets 
were generated for this study: 16S rRNA gene sequencing 
(CD—88 sigmoid lavage samples, 88 cecum lavage sam-
ples; non-IBD—110 sigmoid lavage samples, 109 cecum 
lavage samples), global untargeted metabolomics (CD—
87 sigmoid lavage samples, 86 cecum lavage samples; 
non-IBD—108 sigmoid lavage samples, 105 cecum lavage 
samples), and genetic risk score (75 CD blood samples 

Table 1  Cohort demographics. Continuous variables are shown 
as median (interquartile range). Significance of demographic 
data was determined by Fisher’s exact test for categorical data 
and the Wilcoxon rank-sum test for continuous data

CD (n=88) Control (n=110) p-value

Gender

  Male 47% 70% 0.001

  Female 53% 30%

Race/ethnicity

  Caucasian 91% 95% 0.78

  Hispanic 3% 0%

  African-American 2% 1%

  Asian/Pacific 
Islander

3% 2%

  Non-white His-
panic

3% 3%

Age 41 (29–53) 64 (57–73) 2 × 10−16

BMI 23.5 (21.0–26.2) 25.8 (23.6–27.8) 0.0001

GRS 0.35 (−0.22–1.0) −0.07 (−0.80–0.68) 0.003

Age at diagnosis 24 (19–33)

Duration (years) 11 (6–17)

CD location

  L1 = Ileal 15%

  L2 = Colonic 11%

  L3 = Ileocolonic 74%

  Upper GI involve-
ment

8%

  Perianal disease 26%

CD behavior

  B1 = Non-stric-
turing

34%

  B2 = Stricturing 32%

  B3 = Penetrating 34%

Medication

  5-aminosalicylate 47%

  Immunomodulator 29%

  Biologic (anti-TNF) 57%
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and 97 non-IBD blood samples). Details of data produc-
tion are provided in the “Methods” subsections below.

Genetic risk score
DNA was extracted from peripheral blood and applied 
to Immunochip, a custom platform containing nearly 
200,000 single-nucleotide polymorphisms (SNPs) near 
genes related to immune function and inflammatory 
disease [30]. Quality control for genotype data was per-
formed as previously described [30]. Gene risk scores 
(GRS) were calculated using the weighted sum of 186 
SNPs associated with CD, including SNPs that are also 
associated with ulcerative colitis [30–32]. The SNPs were 
assumed to be independently associated with risk. For 
each SNP, an additive genetic model was calculated then 
the log odds ratio was multiplied by the number of corre-
sponding risk alleles (0, 1, or 2). The GRS was calculated 
by summing these products across all genes according to 
the following formula: GRS = ∑iβiGi.

16S rRNA gene sequencing
Genomic DNA was extracted from the 395 pelleted sam-
ples (a single cecal lavage pellet was lost during handling) 
using the PowerSoil DNA Isolation Kit (MO BIO Labora-
tories, Carlsbad, CA, USA) with a 30-s beat-beating step 
in a Mini-Beadbeater-16 (BioSpec Products, Bartlesville, 
OK, USA) [53]. Polymerase chain reaction amplifica-
tion of bacterial 16S rRNA genes was performed using 
PCR primers (F515/R806) targeting the V4 hypervari-
able region, with the reverse primers including a Golay 
barcode [54]. PCR products were purified using the 
MinElute 96 UF PCR Purification Kit (Qiagen, Valencia, 
CA, USA). DNA sequencing (100 bp reads) was per-
formed using an Illumina HiSeq 2000 (Illumina, Inc., 
San Diego, CA, USA) as previously described [55]. Raw 
sequence data was demultiplexed and filtered in QIIME 
v1.9.1 using split_libraries_fastq with q=19 [56]. Deblur 
v1.1.0 was used with default parameters and min-reads 
10 to denoise the data into amplicon sequence variants 
(ASVs) [57]. Taxonomy was assigned using the RDP clas-
sifier implemented in the assignTaxonomy function of 
the R package dada2 v1.16.0 and the Silva v138 database 
[58, 59]. Three samples with fewer than 50,000 sequences 
were excluded from the analysis. The sequence depth of 
the remaining samples ranged from 50,862 to 821,276, 
with a mean depth of 411,244.

Microbiome data analysis
Alpha diversity was assessed using Chao1 and Shan-
non index with data rarefied to 50,862 sequences using 
the estimate_richness function of Phyloseq v1.32.0 in R 
v4.0.2 [60]. Statistical significance was assessed using 
multivariate ANOVA with post hoc Tukey implemented 

with the aov and TukeyHSD functions in R v4.0.2. Beta 
diversity analysis was performed with the vegdist func-
tion of the R package vegan v2.5-6 using Bray-Curtis dis-
similarity [61]. These results were visualized by principal 
coordinates analysis (pcoa function in the R package ape 
v5-4.1); ellipses representing 95% confidence intervals 
were added using the stat_ellipse function of ggplot2 
v3.3.5 in R. Permutational multivariate analysis of vari-
ance using distance matrices was performed with the 
adonis function in vegan v2.5-6 with 100,000 permuta-
tions to determine statistical significance of differences in 
beta diversity [62].

Differential abundance testing was performed using 
non-rarefied 16S rRNA sequence data filtered to remove 
ASVs present in less than 25% of samples. The resulting 
filtered datasets were analyzed using DESeq2 v1.28.1 
implemented through Phyloseq v1.32.0 in R [60, 63]. 
This algorithm performs normalization using size fac-
tors estimated by the median-of-ratios method, employs 
an empirical Bayesian approach to shrink dispersion, and 
fits the data to multivariate negative binomial models 
[64]. p-values for variables in the linear models (e.g., IBD 
status) were converted to q-values using qvalue v2.20.0 
in R v4.0.2 to correct for multiple hypothesis testing [65]. 
ASVs with q-values below 0.05 or 0.1 (for GRS analyses) 
and mean normalized relative abundance > 10−5 were 
considered significant. Similar analyses were also per-
formed with the 16S rRNA sequence data summarized 
at the phylum level. Dysbiosis indices represent the log 
of the sum of relative abundances of taxa significantly 
enriched in CD by DESeq2 models divided by the sum of 
relative abundances of taxa depleted in CD.

To assess functional capacity of the microbiome for 
bile acid metabolism, the metagenome was predicted 
as relative abundances of KEGG orthologies using the 
PICRUSt2 function of QIIME2 v2019.10 [66]. Bacte-
rial genes involved in bile acid 7α-dehydroxylation were 
identified based on the MetaCyc annotation for this path-
way and matched to the corresponding KEGG ortholo-
gies: baiB (K15868), baiA (K15869), baiCD (K15870), 
baiF (K15871), baiE (K15872), and baiN (K07007) [67]. 
Relative abundances of these genes were added to gen-
erate an overall relative abundance for the bile acid 
7α-dehydroxylation pathway.

Ultra‑performance liquid chromatography‑mass 
spectrometry (LC‑MS) untargeted metabolomics
Frozen aliquots of MLI supernatant from 386 samples 
underwent untargeted metabolomics analysis. Oasis 
MCX solid-phase extraction sorbents (Waters) were 
used to remove any potential interfering clinical materi-
als such as polyethylene glycol. The aliquots were then 
sonicated at 37 °C for 90 s, chilled on ice, mixed in 150 
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μL of Optima acetonitrile containing internal standards, 
4-nitrobenzoic acid and debrisoquine, then centrifuged. 
Supernatant was placed in a new tube, dried under a 
gentle stream of N2, and resuspended in solvent A (98% 
water, 2% acetonitrile, and 0.1% formic acid) for LC-MS. 
The MS analysis was performed by injecting 5 μL of each 
sample into a reverse-phase 50 × 2.1 mm H-class ultra-
performance liquid chromatography Acquity 1.7-μM 
BEH C18 column (Waters) coupled to a time-of-flight 
mass spectrometry. The mobile phase consisted of sol-
vent A and 100% acetonitrile containing 0.1% formic acid 
(solvent B). The Premier Q-TOF Xevo G2-S mass spec-
trometer (Waters) was operated in the positive (ESI+) 
and negative (ESI−) electrospray ionization modes scan-
ning a 50–1200 m/z range. The following 13-min gradient 
was used: 95%/5% solvent A/solvent B at 0.45 ml/min for 
8 min, 50%/50% solvent A/solvent B for 2 min, 2%/98% 
solvent A/solvent B for 2 min, and 95%/5% solvent A/sol-
vent B for the remaining 1 min. The lock-spray consisted 
of leucine-enkephalin (556.2771 [M+H]+ and 554.2615 
[M−H]−). The MS data were acquired in centroid mode 
and processed using MassLynx software (Waters Corp, 
Milford, MA, USA) to construct a data matrix consist-
ing of the retention time, m/z, and intensity (via the peak 
area normalized to protein concentration) for each ion. 
A total of 4441 ions were detected in the two acquisi-
tion modes. Our in-house statistical analysis program 
was used to putatively identify ions, utilizing the Human 
Metabolome Database (HMDB), LipidMaps, the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database, 
and BioCyc allowing for the following adducts within a 
20 parts per million (ppm) mass error window: H+, Na+, 
and/or NH4+ in the ESI+ mode; H− and Cl− in the 
ESI− mode [68].

Metabolomics data analysis
Raw peak intensities for spectral features present in 
greater than 10% of samples underwent KNN imputa-
tion in R with k=10 using an R script provided with a 
publication [69]. The resulting imputed datasets under-
went further analysis using the MetaboAnalyst R package 
v3.0.3 [70]. Filtering was performed by the “iqr” (inter-
quartile range) criteria, data was log-transformed, and 
data underwent quantile normalization. Batch effect cor-
rection was performed using Combat as implemented in 
the PerformBatchCorrection function of MetaboAnalyst 
v3.0.3 [71]. Data was visualized by principal coordinates 
analysis of Euclidean distances. Differential abundance 
of spectral features was assessed by multivariate general 
linear models implemented in the limma package v3.44.3 
in R v4.0.2 incorporating gender and obesity. p-values 
obtained from limma were process using the mummic-
hog function of MetaboAnalyst v3.0.3 for identification 

of metabolic pathways enriched in differentially abun-
dant features [72]. Pathway enrichment p-values were 
estimated using 100 permutations with gamma modeling 
of the permutations. Microbe-metabolite correlations 
were calculated with the cor function in R v.4.0.2 using 
Spearman’s correlation of residuals from multivariate 
models implemented in limma (metabolites) and DESeq2 
(microbes).

Random forests classifiers
Microbiome and metabolomics datasets were split 
60%/40% into training and test subsets, respectively, 
using the createDataPartition function of the caret 
package v6.0-88 in R v4.0.2 [73]. Random forests classi-
fiers were created using the train function of caret with 
mtry=2 and 1001 trees [74]. Features were inputted into 
the algorithm if they were significantly associated with 
the trait of interest in multivariate models. An initial clas-
sifier was created then all features with an importance 
score greater than 2 in the preliminary classifier were 
used to construct a refined classifier with fewer features. 
The accuracy of the final random forests classifiers was 
assessed using the test subset of the data with confidence 
intervals determined by bootstrapping. This was per-
formed with the roc.test function of the pROC package 
v1.16.2 in R [75].

Results
Obesity is associated with reduced bacterial diversity 
and pathobiont expansion in the MLI microbiome
Individuals without IBD undergoing screening colonos-
copy were recruited as a control group for this study. 
The majority were overweight or obese, presenting an 
opportunity to investigate mucosal microbiome pro-
files of obesity to build on the existing literature on fecal 
microbiome alterations and investigate whether obesity 
is a confounding factor in CD vs. non-IBD comparisons 
[36]. Obesity status was represented by BMI categories 
based on cutoffs of 25 and 30 for overweight and obese, 
respectively. This approach was taken to increase appli-
cability to the CD cohort, which includes both over-
weight/obese subjects as well as a significant subset who 
are underweight as a consequence of disease. This would 
render invalid any linear relationships of the microbiome 
with BMI derived from an overweight population control 
cohort. Bacterial diversity was found to be significantly 
reduced in the sigmoid and cecum of obese non-IBD sub-
jects compared to those with BMI<25 by metrics of rich-
ness alone (Chao1 index) and richness combined with 
evenness (Shannon index) (Fig.  1A). Overweight sub-
jects (BMI 25–30) had intermediate bacterial diversity 
that did not significantly differ from either the obese or 
the BMI<25 groups. Differences in bacterial composition 
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across samples were assessed by Bray-Curtis dissimi-
larity and visualized by principal coordinate analysis 
(PCoA) (Fig. 1B). Obesity category (BMI<25, BMI 25–30, 
or BMI>30) was significantly associated with variation 
in Bray-Curtis dissimilarity across non-IBD samples by 
adonis after adjusting for gender and age in the cecum 
but did not reach significance in the sigmoid. Analysis of 
only subjects with BMI>30 vs. those with BMI<25 dem-
onstrated significant associations of obesity category 
with microbial composition at both sites (p=0.007 in the 
cecum, p=0.005 in the sigmoid). At the phylum level, 

obese subjects had increased abundance of Proteobacte-
ria and Fusobacteriota in both the sigmoid and cecum as 
compared with subjects with BMI <25 (Fig. 1C). Differen-
tially abundant amplicon sequence variants (ASVs) were 
identified using DESeq2, an algorithm that employs an 
empirical Bayesian approach to shrink dispersion and fits 
the data to negative binomial models. Obesity as com-
pared with BMI<25 was associated with marked expan-
sion of a highly abundant Escherischia-Shigella ASV in 
both the sigmoid and cecal MLI as well as expansion of 
Mycoplasma ASVs in the cecum, with depletion of ASVs 

Fig. 1  Obesity disrupts the mucosal-luminal interface (MLI) microbiome of non-IBD controls with shifts that parallel those in Crohn’s disease (CD). 
A Alpha diversity metrics (Chao1 and Shannon indices) are shown for the sigmoid and cecum MLI microbiome of non-IBD controls subdivided 
into three BMI categories. Significance was determined by ANOVA adjusting for gender and age with post hoc Tukey. *p<0.05, **p<0.01. B Principal 
coordinates analysis (PCoA) plot based on Bray-Curtis dissimilarity visualizing the cecal and sigmoid microbiome of controls subdivided into three 
BMI categories (indicated by color). Each dot represents one subject; ellipses represent 95% confidence intervals. p-values calculated by multivariate 
Adonis adjusting for gender and age. C Taxonomic summary at the phylum level of the cecal and sigmoid colon MLI microbiome of controls. 
*q<0.05, **q<0.01, ***q<10−4 for obese vs. BMI <25 in DESeq2 models adjusting for gender. D Differential ASVs in obese vs. normal weight controls 
in the cecal MLI microbiome from DESeq2 models controlling for gender and age. Effect size is represented as the log2 fold change between CD 
and control. Size of each dot is proportional to normalized relative abundance. Only ASVs with a mean normalized relative abundance greater than 
10−5 are included. Color corresponds to phylum. ASVs are grouped into genera; those without an assigned genus are represented as unclassified 
members of families (f ) or orders (o). E CD dysbiosis index, representing the log ratio of taxa enriched in CD to taxa depleted in CD, is shown for 
CD patients and controls stratified into three BMI categories. Significance determined by Kruskal Wallis with post hoc Dunn test corrected by 
Benjamini-Hochberg. *p<0.05, ***p<0.001
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largely belonging to genera within the Firmicutes phylum 
such as Faecalibacterium (Fig. 1D).

The MLI microbiome of CD patients in endoscopic 
remission is characterized by lower bacterial 
diversity, pathobiont enrichment, and depletion 
of anti‑inflammatory microbes
All CD subjects included in this study were confirmed 
to be in endoscopic remission at the time of sample col-
lection. There were equal numbers of each of the three 
disease behaviors: 34% with non-stricturing, non-pen-
etrating CD (B1), 32% with stricturing disease (B2), and 
34% with internal penetrating (B3) disease (Table  1). 
Most CD subjects (74%) had ileocolonic (L2) disease 
with 15% having ileal (L1) and the remaining 11% hav-
ing colonic (L3) disease. The majority were on treat-
ment with a biologic (57%; all of these were receiving 
an anti-TNF agent including infliximab, adalimumab, or 
certolizumab), with 47% of patients receiving 5-amino-
salicylates (47%) and 29% an immunomodulatory agent 
(thiopurine or methotrexate).

MLI samples from the cecum and sigmoid colon 
underwent high-depth 16S rRNA gene sequencing (mean 
411,244 sequences per sample) to detect low abundance 
taxa that may distinguish CD from controls as well as 
demarcate phenotypic subsets of CD. All analyses were 
controlled for obesity category (non-overweight, over-
weight, or obese) given its association with MLI bacte-
rial diversity and composition in controls. The cecal and 
sigmoid MLI microbiota were found to have lower bacte-
rial diversity in CD patients compared to controls by the 
Chao1 index of richness (p=6 × 10−9 for sigmoid, p=5 
× 10−8 for cecum; adjusted for age, gender, and obesity 
status) and the Shannon index of richness and evenness 
(p=9 × 10−8, p=1 × 10−6 adjusted for age, gender, and 
obesity) (Fig. 2A). Beta diversity analysis demonstrated a 
highly significant association of CD status with bacterial 
composition in both the sigmoid and cecum MLI adjust-
ing for gender, age, and obesity status (Fig. 2B).

To assess whether MLI bacterial profiles could be used 
to predict CD vs. control status, the cohort was divided 
into training and test subsets and random forest classifi-
ers were created using the training data. Classifiers based 
on sigmoid and cecal MLI bacterial profiles had high 
accuracy to differentiate CD vs. controls when applied 
to the test data, with area under the curve of 0.91 (95% 
confidence interval (CI) 0.85–0.96) and 0.93 (95% CI 
0.86–0.98), respectively (Fig.  2C). At the phylum level, 
CD was characterized by expansion in both the sigmoid 
and cecal MLI of Proteobacteria (p=3 × 10−22, p=4 × 
10−7) and Fusobacteriota (p=3 × 10−15, p=4 × 10−6) 
with concomitant reduction in Firmicutes (p=0.002, 
p=0.009) (Fig. 2D). At the ASV level, CD was associated 

with enrichment of 31 ASVs in the sigmoid and 31 ASVs 
in the cecum, with depletion of 52 ASVs in the sigmoid 
and 41 ASVs in the cecum (Fig.  2E). The most strongly 
enriched ASV in CD in both the sigmoid and cecum was 
identified as a member of the Klebsiella genus. There 
was also strong enrichment of a highly abundant ASV 
identified as belonging to Escherichia/Shigella and sev-
eral abundant ASVs identified as Bacteroides. Additional 
potential pathobionts were enriched including Fusobac-
terium, Staphylococcus, Streptococcus, Rothia, and Myco-
plasma spp. Conversely, there was depletion of members 
of Akkermansia, Prevotella, and many genera within the 
Firmicutes phylum including Faecalibacterium. These 
taxonomic shifts in the CD MLI microbiome were sum-
marized by CD dysbiosis indices, generated by calculat-
ing the log ratio of relative abundances of taxa enriched 
in CD to abundances of taxa depleted in CD. CD patients 
had highly significant increases in cecal and sigmoid dys-
biosis indices relative to controls with BMI <25 or 25–30 
but were not statistically different from obese controls 
(Fig.  1E). Interestingly, CD dysbiosis index was signifi-
cantly greater in obese subjects compared to those with 
BMI<25 in the sigmoid (p=0.01) and trended higher in 
the cecum (p=0.07), consistent with taxonomic shifts in 
obesity paralleling those in CD.

Biogeographic differences between the cecal and sigmoid 
colon MLI microbiome are disrupted in CD
We next investigated what MLI microbial features differ-
entiated the cecum and sigmoid colon and whether these 
biogeographic differences were affected by CD. First, we 
evaluated differences in alpha diversity between cecal and 
sigmoid MLI samples in a paired analysis. The cecum of 
non-IBD controls had reduced richness compared to the 
sigmoid by the Chao1 index (p=9 × 10−7) and a non-sig-
nificant trend towards reduced Shannon index (p=0.08). 
CD subjects, in contrast, had no significant difference 
in microbial diversity between the cecum and sigmoid 
in paired analysis. Moreover, the pairwise differences in 
cecum vs. sigmoid bacterial diversity of CD subjects were 
significantly higher than those of non-IBD controls by 
both the Chao1 (p=0.008, −6.5 vs. −28.8) and Shannon 
indices (p=0.006, 0.13 vs. −0.05) (Fig. 3A). This indicates 
increased relative bacterial diversity in the cecum com-
pared to the sigmoid in CD even though CD was charac-
terized overall by reduced diversity compared to controls. 
There were no differences across BMI categories within 
the non-IBD controls. An analysis was then performed of 
pairwise differences in beta diversity between the cecum 
and sigmoid colon using Bray-Curtis dissimilarity. Sub-
stantial intra-individual variation was seen between cecal 
and sigmoid bacterial composition, which was signifi-
cantly greater in CD patients than in controls (p=0.005) 
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(Fig.  3B, C). This suggests that Crohn’s disease, even in 
remission, results in reconfiguration of the biogeographic 
relationship to not only reverse the alpha diversity gra-
dient seen in controls but also increase the difference in 

bacterial composition between the cecum and sigmoid 
colon. In comparison, no difference was seen across BMI 
categories within the non-IBD controls. In non-IBD con-
trols, 7 ASVs significantly differed between cecum and 

Fig. 2  Lower diversity and altered composition of the cecal and sigmoid colon microbiota in CD patients with endoscopically quiescent disease 
compared to controls. A Alpha diversity metrics (Chao1, Shannon) are shown for the cecal and sigmoid MLI microbiome of CD and controls. 
Significance was determined by ANOVA adjusting for gender, age, and obesity. ***p<10−4. B PCoA plots based on Bray-Curtis dissimilarity. Color 
represents IBD status. p-values calculated by multivariate PERMANOVA adjusting for gender, age, and obesity. C Receiver operating characteristics 
(ROC) curve for random forest classifiers differentiating CD vs. control subjects based upon cecal and sigmoid MLI microbiota. Area under the curve 
(AUC) is shown for each site. The colored regions signify the 95% confidence intervals of the curves. D Taxonomic summary at the phylum level 
of the cecal and sigmoid colon MLI microbiome of CD and controls. *q<0.05, **q<0.005, ***q<10−4 in DESeq2 models adjusting for gender and 
obesity. E ASVs with a statistically significant difference in relative abundance between CD and controls in multivariate DESeq2 models adjusting for 
gender and obesity are shown separately for sigmoid and cecum
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sigmoid adjusting for subject, including cecal enrich-
ment of Streptococcus and Roseburia ASVs and deple-
tion of an Anaerostipes ASV (Fig. 3D). CD subjects had 
6 differential ASVs between sigmoid and cecum that did 
not overlap with the ASVs seen in non-IBD and included 
enrichment of Mycoplasma, Sphingomonas, and Lactoba-
cillus spp. in the cecum.

CD genetic risk is associated with alterations in MLI 
microbiota
The inclusion in this cohort of both CD in endoscopic 
remission and non-IBD controls provided an opportu-
nity to investigate the effects of CD-associated genetic 
risk factors on the MLI microbiome. As this study was 
not powered to individually assess the greater than 200 
loci genetically linked to CD, we instead used the strategy 
of summarizing genetic risk in subjects with a polygenic 
risk score. This score was calculated by summing the log 
odds ratios from 186 single-nucleotide polymorphisms 
associated with CD. As anticipated, this genetic risk score 
(GRS) was significantly higher in the CD subjects than 

non-IBD controls (Table  1). GRS was also significantly 
higher in complicated CD than uncomplicated CD; 
uncomplicated CD and non-IBD controls had equiva-
lent GRS (Fig. 4A). All GRS analyses involving CD sub-
jects were therefore adjusted for disease behavior. There 
was no significant association of GRS with alpha diver-
sity in non-IBD and CD subjects analyzed separately, 
adjusting for gender, age, and CD disease behavior (for 
CD subjects) (Fig. 4B). GRS was significantly associated 
with cecal but not sigmoid MLI microbial composition 
in CD subjects (p=0.04) when evaluated as a continu-
ous variable in adonis analysis of Bray-Curtis dissimilar-
ity adjusted for gender, age, and CD behavior (Fig.  4C). 
There was no association of GRS with variation in Bray-
Curtis dissimilarity in adonis analyses of non-IBD con-
trols. Similarly, GRS was associated with CD dysbiosis 
index in the cecum of CD subjects (p=0.02) but the trend 
did not reach significance in the sigmoid and there was 
no association in non-IBD controls (Fig.  4D). Differen-
tial abundance testing demonstrated an association of 
higher GRS with taxonomic shifts including enrichment 

Fig. 3  Disruption of the biogeographic relationship between the cecal and sigmoid MLI microbiome in quiescent CD. A The per-subject differences 
in alpha diversity (Chao1, Shannon) between cecum and sigmoid MLI samples are shown for CD and controls divided by BMI category. Significance 
of differences between CD and non-IBD was determined by the Wilcoxon rank-sum test. **p<0.01. B PCoA plots of Bray-Curtis dissimilarity for CD 
and controls depicting each subject as a line with the ends colored by site (cecum vs. sigmoid). C Bray-Curtis dissimilarity between paired cecum 
and sigmoid MLI samples are shown for CD and controls divided by BMI category. **p<0.01 Wilcoxon rank-sum test. D ASVs with a statistically 
significant difference in relative abundance between cecum and sigmoid in DESeq2 models adjusted for subject are shown for CD and controls
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of a Fusobacterium ASV in the cecum of CD subjects 
and both the cecum and sigmoid of non-IBD controls, 
as well as depletion of a Prevotella ASV in the sigmoid 
and cecum of both CD and non-IBD (Fig. 4E). Interest-
ingly, an Akkermansia ASV was positively associated 
with GRS in both the cecum and sigmoid of non-IBD 
controls but was negatively associated with GRS in the 
cecum of CD subjects. In CD patients, ASVs associated 
with higher GRS significantly overlapped with ASVs that 
were enriched or depleted in CD compared to non-IBD 
controls in both the cecum and sigmoid (Fig. 4F). In non-
IBD controls, ASVs enriched with higher GSR signifi-
cantly overlapped with ASVs enriched in CD compared 
to controls in the cecum.

CD complicated by penetrating or stricturing disease 
is characterized by increased MLI dysbiosis
Having confirmed that CD is characterized by distinct 
MLI bacterial composition compared to controls dur-
ing endoscopic remission, we proceeded to investigate 
whether MLI bacterial composition and diversity were 
associated with disease behavior. We compared CD 
patients with complicated disease based upon the Mon-
treal classification (B2=stricturing or B3=internal pene-
trating) to those with uncomplicated disease (B1). Lower 
bacterial diversity was seen in the sigmoid and cecum 
in patients with complicated CD (B2/B3). This reached 
significance for the Chao1 index (p=0.004, p=0.04) 
but not the Shannon index (p=0.1, p=0.1) after adjust-
ing for gender, age, and obesity (Fig.  5A). Beta diversity 
analysis using Bray-Curtis dissimilarity did not identify 
statistically significant differences in bacterial composi-
tion by disease behavior adjusting for gender, age, and 
obesity, though there was a trend towards significance 
in the cecum (p=0.07) (Fig. 5B). Nevertheless, taxa level 
differences were sufficient to construct random for-
ests classifiers to differentiate complicated (B2 or B3) 
vs. uncomplicated (B1) disease. Classifiers were trained 
using data from 60% of CD patients and tested on the 
remaining 40% of CD patients. In the test subset, sig-
moid and cecum MLI classifiers had AUC of 0.81 (95% 
CI 0.61–0.96) and 0.82 (95% CI 0.63–0.96) (Fig.  5C). 

Moreover, complicated CD was associated with statisti-
cally significant increases in CD dysbiosis index com-
pared to uncomplicated CD in both the sigmoid and 
cecum (Fig.  5D). Differential abundance testing dem-
onstrated enrichment of Fusobacterium, Enterococcus, 
Actinomyces, [Ruminococcus] gnavus group, and Akker-
mansia ASVs in subjects with complicated CD (Fig. 5E). 
Conversely, uncomplicated CD was associated with 
higher relative abundance of many ASVs in genera within 
the Firmicutes phylum, including those associated with 
short-chain fatty acid production such as Faecalibacte-
rium and Ruminococcus that were depleted in CD com-
pared to non-IBD controls (Figs. 2E and 5E).

MLI microbiome predicts future risk of CD progression
Given the association of the MLI microbiome with CD 
disease behavior, we investigated whether MLI micro-
bial profiles could also predict future CD disease course. 
Follow-up clinical assessment was available for 72 CD 
patients, with 32 (44%) showing disease progression after 
MLI sampling. Progressors were identified by clinician 
chart review as having any of the following during the 
period between the index colonoscopy and chart review: 
hospitalization for CD, episode of bowel obstruction, sur-
gery to treat CD, or requirement to change IBD medica-
tion. Follow-up time after MLI sampling was equivalent 
between progressors and non-progressors (mean 3.63 
years vs. 3.76 years, p=0.64). There was no significant 
difference in sigmoid or cecal alpha diversity between 
CD patients who progressed vs. non-progressors by the 
Chao1 index (p=0.10, p=0.33) and the Shannon index 
(p=0.94, p=0.73) adjusting for gender, age, obesity, and 
disease behavior. There were also no significant differ-
ences in sigmoid or cecal MLI beta diversity by CD pro-
gression status adjusting for gender, age, obesity, and 
disease behavior (p=0.49, p=0.58). Sigmoid and cecal 
CD dysbiosis indices did not significantly differ between 
progressors and non-progressors adjusting for gender, 
age, obesity, and disease behavior (p=0.99, p=1.0). How-
ever, progressors had differential relative abundances of 
multiple ASVs compared to non-responders, includ-
ing depletion of a Parasutterella ASV in both sigmoid 

(See figure on next page.)
Fig. 4  CD genetic risk is associated with taxonomic shifts in the MLI microbiome of CD patients and non-IBD controls. A CD genetic risk score for 
non-IBD controls and CD patients divided by disease behavior (B1 and B2/B3). B Alpha diversity metrics are shown by CD genetic risk score for 
non-IBD controls and CD patients, differentiated by color with separate regression lines. C PCoA plots visualizing the cecal and sigmoid microbiome 
of CD patients, with color scales representing CD genetic risk score (GRS). p-values calculated by multivariate PERMANOVA adjusting for gender, age, 
and obesity. D CD dysbiosis index is shown by CD genetic risk score for non-IBD controls and CD patients. Significance in panels A, B, and D was 
determined by ANOVA adjusted for gender, age, obesity, and disease behavior (for CD patients). E ASVs in the cecal and sigmoid MLI microbiome 
that were significantly associated with CD GRS (q<0.1) adjusting for gender, obesity, and CD disease behavior (for CD patients). F Venn diagrams 
depicting overlap of GRS-associated ASVs with ASVs that were enriched or depleted in CD vs. controls in the same region (sigmoid or cecum). 
Analyses were performed separately in non-IBD controls and CD patients. Significance of overlap was determined by Fisher’s exact test
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and cecum (Fig. 6A). These taxa were used to construct 
random forests classifiers for CD progression which 
had AUC of 0.74 (95% CI 0.52–0.93) and 0.70 (95% CI 
0.48–0.89) using sigmoid or cecal MLI profiles (Fig. 6B). 

In both random forest classifiers, the Parasutterella ASV 
made the greatest contribution to classifier accuracy, fol-
lowed closely in the cecal classifier by a Bacteroides ASV 
that was depleted in progressors (Fig. 6C).

Fig. 4  (See legend on previous page.)
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CD is characterized by shifts in the MLI metabolome 
including increased cholate to deoxycholate ratio
LC-MS untargeted metabolomics analysis was per-
formed on the MLI samples (Additional files 1 and 2, 
for positive and negative ESI mode metabolomics, 
respectively). The global MLI metabolomics profiles of 
CD patients significantly differed from that of controls 
in the cecum (p=0.03) and trended towards signifi-
cance in the sigmoid colon (p=0.08) (Fig. 7A). Random 
forests classifiers based on metabolomics data had 
moderate accuracy for differentiating CD vs controls 
with AUC of 0.77 (0.65–0.88) and 0.76 (0.62–0.85) for 
sigmoid and cecum, respectively (Fig.  7B). Mummic-
hog analysis of the list of putatively identified differen-
tially abundant spectral features demonstrated that the 

following pathways were significantly enriched in the 
sigmoid: bile acid biosynthesis, de novo fatty acid bio-
synthesis, fatty acid activation, fatty acid metabolism, 
and lysine metabolism (Fig. 7C). Of these, only bile acid 
biosynthesis was also enriched in cecum. Spectral fea-
tures assigned by mummichog to the bile acid biosyn-
thesis pathway included two with single annotations 
for cholate and deoxycholate. In both the sigmoid and 
cecum, CD showed increased cholate (primary bile 
acid) and decreased deoxycholate (secondary bile acid) 
relative to non-IBD controls, resulting in highly signifi-
cant differences in the log ratio of cholate:deoxycholate 
(Fig.  7D). Correlation analysis was then performed to 
identify microbes associated with levels of these two 
bile acids after adjusting for disease status, gender, and 

Fig. 5  Stricturing/penetrating CD is associated with lower diversity and taxonomic shifts in the MLI microbiome. A Alpha diversity metrics (Chao1, 
Shannon) are shown for the cecal and sigmoid colon MLI microbiome of CD patients stratified by uncomplicated (B1) or complicated (B2/B3) 
disease behavior according to the Montreal classification. Significance was determined by ANOVA adjusting for gender, age, and obesity. *p<0.05, 
**p<0.01. B PCoA plots based on Bray-Curtis dissimilarity showing the cecal and sigmoid microbiome of CD patients, colored by disease behavior. 
p-values calculated by multivariate PERMANOVA adjusting for gender, age, and obesity. C ROC curves for random forest classifiers differentiating 
CD patients with complicated CD compared to those with uncomplicated CD using MLI bacterial profiles in the sigmoid or cecum. D CD dysbiosis 
index is shown for non-IBD controls and CD patients stratified into B1 and B2/B3. *p<0.05, **p<0.01, ***p<0.001. E ASVs in the cecal and sigmoid MLI 
microbiome that were differentially abundant between complicated and uncomplicated CD controlling for gender and obesity
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obesity. Six significant microbe-bile acid correlations 
were identified in the sigmoid and six in the cecum 
(Fig.  7F). Microbes that were enriched in CD and 
positively associated with cholate included a Fusobac-
terium ASV (cecum), an ASV within the Staphylococ-
cales order (cecum), and a Bacteroides ASV (sigmoid). 
ASVs that were enriched in CD and negatively associ-
ated with deoxycholate included Veillonella (sigmoid), 
Lactobacillus (sigmoid), Mycoplasma (cecum), Meth-
ylobacterium-Methylorubrum, and the same Bacte-
roides ASV that were positively correlated with cholate 
(cecum). Given the association of microbes with bile 
acid levels, we investigated whether CD was associated 

with a shift in predicted abundance of genes involved in 
bile acid 7α-dehydroxylation, which mediates bacterial 
conversion of cholate to deoxycholate. CD was associ-
ated with decreased abundance of this pathway in both 
sigmoid and cecum MLI, consistent with the increased 
cholate:deoxycholate ratio at both sites (Fig. 7E).

Discussion
We report the findings of the first moderate- to large-
sized study characterizing the colonic mucosal micro-
biome in Crohn’s disease during endoscopic remission 
compared to that of non-IBD controls. Similar to prior 
studies of the fecal and tissue microbiome, CD patients 

Fig. 6  MLI microbiome is associated with risk of Crohn’s disease progression. A ASVs in the cecal and sigmoid MLI microbiome significantly 
associated with disease progression over a mean follow-up period of 3.7 years after adjusting for gender, obesity, and CD disease behavior. B ROC 
curves for random forest classifiers predicting future disease progression from MLI bacterial profiles in the sigmoid or cecum. C Importance scores 
of ASVs included in the sigmoid and cecal random forest classifiers for disease progression. Bar color represents phylum and the color of the genus 
annotations to the left indicates whether the ASVs were enriched or depleted in CD progressors
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had lower MLI bacterial diversity and altered compo-
sition compared to controls [8–15]. One of the major 
caveats of these past studies has been the potential 
contribution of active intestinal inflammation to the 
observed microbial profiles, as animal model studies 
have demonstrated that induction of intestinal inflam-
mation by itself triggers characteristic shifts in the micro-
biome including expansion of aerotolerant bacteria 
and human studies have found that anti-inflammatory 
therapies reduce dysbiosis [12, 41, 76]. In this study, we 
detected a robust CD bacterial signature even in the 
absence of endoscopic inflammation, supporting that 

bacterial changes are a distinctive feature of CD patho-
physiology separate from secondary effects of intestinal 
inflammation on the microbiome. However, as histologi-
cal or biochemical parameters of inflammation were not 
assessed, it remains possible that low-grade inflamma-
tion that was not evident endoscopically could contribute 
to the observed microbiome alterations. Of note, similar 
results were obtained in a recent study which assessed 
the microbiome of colonic tissue biopsies taken from 15 
non-inflamed CD patients and 16 non-IBD controls [77]. 
Interestingly, CD not only affected MLI bacterial profiles 
in the cecum and sigmoid colon considered separately, 

Fig. 7  CD is associated with shifts in the metabolome of the cecal and sigmoid MLI. A Metabolomics profiles of cecal and sigmoid MLI samples 
were visualized by PCoA. p-values calculated by multivariate PERMANOVA adjusting for gender, age, and obesity. B ROC curves for random forests 
classifiers differentiating CD from controls based on cecal and sigmoid MLI metabolomics features. C Metabolic pathways enriched in differential 
spectral features were identified by mummichog. The negative log of adjusted p-values is shown for each pathway; the dashed line represents 
p=0.05. D Log ratios of cholate to deoxycholate are shown for non-IBD controls and CD patients. Significance determined by Wilcoxon rank-sum 
test. **p<0.01, ***p<0.001. E Relative abundances of the bile acid 7α-dehydroxylation pathway (conversion of cholate to deoxycholate) in the 
PICRUSt2 predicted metagenome. Significance determined by Wilcoxon rank-sum test. **p<0.01, ***p<0.001. F Heat map and hierarchical clustering 
showing partial correlations of ASVs enriched or depleted in CD with cholate and deoxycholate, adjusted for disease status, gender, age, and 
obesity. Red and blue boxes adjacent to the dendogram indicate whether ASVs were enriched or depleted in CD. Significant correlations (q<0.05) 
are indicated by an asterisk
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but also changed the relationship between these two 
intestinal regions. CD patients showed reduced intra-
individual similarity between the sigmoid and cecum as 
well as increased bacterial diversity in the cecum relative 
to the sigmoid. While IBD-associated shifts in microbial 
abundances can vary by colonic region, to our knowledge 
this is the first study to assess for perturbation of biogeo-
graphic relationships across colonic sites [10].

Our study demonstrated altered abundance of a wide 
range of taxa in the CD MLI microbiome during endo-
scopic remission compared to that of controls, including 
marked expansion of Escherichia-Shigella and Klebsiella 
spp. This is consistent with prior reports that the Entero-
bacteriaceae family, which includes Escherichia-Shigella 
and Klebsiella, is highly enriched in biopsies from CD 
patients compared to controls [10–12, 16]. There is an 
extensive literature demonstrating that adherent-invasive 
strains of E. coli isolated from CD patients can promote 
colitis and enteritis in animal models [78]. In our study, 
Klebsiella showed an even more prominent enrichment 
than Escherichia-Shigella in CD compared to controls. 
Klebsiella enrichment has been previously reported in 
the fecal and ileal microbiome of CD patients; this study 
would be the first to report colonic enrichment [12, 77]. 
Klebsiella, including strains of human-derived oral Kleb-
siella pneumoniae, has been reported to promote animal 
models of colitis [79, 80]. The strong colonic mucosal 
Klebsiella signature identified here supports the human 
relevance of these preclinical studies and the possibil-
ity that the MLI is an important ecologic niche for oral-
derived pathobionts in the gastrointestinal tract. CD 
was also characterized by expansion of several highly 
abundant Bacteroides ASVs, matching the findings of a 
large fecal shotgun metagenomics study which reported 
enrichment of B. fragilis and B. vulgatus in CD [16]. B. 
vulgatus and enterotoxigenic strains of B. fragilis have 
been shown to promote experimental models of colitis 
[81, 82]. The MLI CD microbiome was also characterized 
by global depletion of Firmicutes, which encompassed 
members of a wide range of genera including Faecalibac-
terium, Ruminococcus, Anaerostipes, Coprococcus, and 
Clostridium, all of which have been previously reported 
to be depleted in the fecal and/or colonic tissue microbi-
ome of CD patients [12, 14, 34]. Of these, the most con-
sistent association in the literature has been depletion of 
Faecalibacterium prausnitzii, which has been shown to 
reduce severity of experimental colitis through produc-
tion of anti-inflammatory products such as butyrate and 
a novel protein, MAM [83, 84]. Collectively, bacterial 
taxa that were enriched or depleted in CD were used to 
construct a CD dysbiosis index which could be used to 
summarize MLI bacterial shifts associated with CD.

This study also provided insight into the mucosal 
microbiome of obesity. Despite the compelling preclini-
cal data supporting a role for the microbiome in obesity, 
specific taxonomic signatures of human obesity have 
been elusive due to variability across fecal microbiome 
studies [85–90]. The potential importance of the mucosal 
microbiota in obesity is supported by reports that obese 
individuals have increased intestinal permeability and 
translocation of gut microbes into the mesenteric adipose 
tissue [91, 92]. Strikingly, we found that obese non-IBD 
controls had similar MLI bacterial characteristics as CD, 
including reduced diversity, expansion of pathobionts 
such as Escherischia-Shigella, and depletion of beneficial 
microbes such as Faecalibacterium. This was reflected as 
a significant elevation in CD dysbiosis index compared 
to controls with BMI <25. Among the obesity-associated 
shifts in the MLI microbiome, enrichment of Escheri-
chia-Shigella and Megasphera and depletion of Faecali-
bacterium, Paraprevotella, and Methanobrevibacter have 
been reported in at least one prior fecal microbiome 
study [93]. These findings indicate that mucosal dysbio-
sis is a common thread between CD and obesity—both 
diseases rising rapidly in incidence in the Western world 
[85]. This is consistent with the current understanding of 
obesity as a low-grade inflammatory state and suggests 
that mucosal dysbiosis could contribute to inflammation 
in the settings of both obesity and IBD.

Complicated CD with either stricturing or penetrat-
ing disease behavior was associated with reduced MLI 
microbial diversity and increased CD dysbiosis index 
relative to uncomplicated CD. This is consistent with a 
recent study of colon tissue biopsies from 15 CD patients 
which observed reduced diversity in complicated CD 
(B2 and B3) compared to uncomplicated CD [77]. There 
is little existing literature on specific colonic mucosal 
taxa that distinguish CD disease behaviors. One study 
of newly diagnosed pediatric CD patients reported that 
those who went on to progress to B2 or B3 had increased 
levels of Ruminococcus and Collinsella and reduced levels 
of Rothia and Veillonella in rectal tissue biopsies obtained 
at initial presentation [34]. These taxa do not overlap 
with those identified in this study, potentially reflect-
ing the effects of active inflammation in the prior study 
as well as differences in the microbes that are associated 
with future disease behavior as opposed to established 
disease behavior. In this study, Akkermansia enrichment 
and Faecalibacterium depletion were observed in both 
the sigmoid and cecum of complicated CD. The associa-
tion of reduced Faecalibacterium with CD complications 
supports the concept that the anti-inflammatory effects 
of these microbes protect against development of disease 
complications. Relative expansion of Akkermansia sp. 
in complicated CD was surprising as this microbe was 
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reduced overall in CD compared to controls. This sug-
gests a complex role for Akkermansia spp. in CD, con-
sistent with preclinical studies which have found that 
Akkermansia can reduce or exacerbate intestinal inflam-
mation depending on the animal model [94, 95]. Signifi-
cant enrichment of a Fusobacterium ASV in complicated 
CD was seen in the cecum but not the sigmoid. This sug-
gests that Fusobacterium—oral pathobionts implicated 
in colorectal cancer that can also exacerbate intestinal 
inflammation—may contribute to disease processes in 
the proximal colon that promote stricturing and/or pen-
etrating disease [96, 97].

MLI microbial profiles were also found to predict 
future CD disease progression. To date, much of the lit-
erature on microbial biomarkers of CD disease course 
has centered on the risk of post-operative reoccurrence 
after ileal or ileocecal resection. These studies have dem-
onstrated that ileal mucosal microbial profiles at the time 
of resection are highly predictive of recurrence whereas 
fecal microbial profiles have comparatively weak accu-
racy [83, 98, 99]. One study of longitudinally collected 
fecal samples from a cohort of 45 CD patients in clini-
cal remission followed for 2 years identified 17 differen-
tial taxa between the 12 patients who flared and those 
who did not, including Sutterella, S24.7, Gemellaceae, 
and Christensenellaceae [20]. In our study with 72 CD 
patients in endoscopic remission, the most consistent 
signals were depletion of Parasutterella and Bifidobacte-
rium spp. in those who had disease progression. The sig-
nature taxa in this study differed from that of the prior 
study likely due to the use of mucosal rather than fecal 
samples, differences between cross-sectional and longi-
tudinal assessment, and exclusion of patients in clinical 
remission with endoscopic signs of inflammation in our 
study. Among the microbes associated with disease pro-
gression in this study, Parasutterella made the strong-
est contribution to classifier accuracy. Interestingly, 
Parasutterella spp. have been previously reported to be 
greatly enriched in the ileal submucosa of CD patients, 
suggesting that these microbes have invasive properties 
[100]. This would be the first report of expansion of these 
microbes in the CD colon and, if validated, warrants 
investigation into mechanisms by which these and other 
mucosal pathobionts can modulate disease course in CD.

Our study also contributes new insights into genetic 
factors that influence the intestinal microbiome. Existing 
gene-microbe association studies have largely focused 
on the fecal microbiome of large healthy cohorts, and 
analyzed for association of taxa enriched with individ-
ual locus variants at genome-wide significance [26, 29, 
101–104]. However, it is notable that while host traits 
reflect the combinatorial effect of genetic loci, few stud-
ies have evaluated the relationship of summary measures 

of IBD genetic risk with the microbiome. We are aware 
of only one such study that reported an association of 
a genetic risk score derived from 11 loci with reduced 
fecal Roseburia in healthy controls but not IBD patients 
[105]. In the present study, we found that a comprehen-
sive genetic risk score comprising 186 known variants 
was significantly associated with microbial composi-
tion and higher CD dysbiosis index in the cecum of CD 
patients. This relationship did not reach significance in 
the sigmoid, suggesting greater impact of genetic burden 
on the microbiome in the proximal colon. A strength of 
this study is the assessment of a summary metric of IBD 
genetic risk on microbiome composition in non-IBD 
subjects, which isolates their microbiome impact from 
that related to disease state. Controls showed taxonomic 
changes with higher GRS including enrichment of Fuso-
bacterium but did not show an association of GRS with 
CD dysbiosis index. This suggests that in the absence 
of disease, only specific mucosal taxa are responsive to 
global genetic risk for CD and that genetic modulation of 
mucosal responses in CD may contribute to the associa-
tion of GRS with dysbiosis in CD.

MLI sampling also offered insight into metabolite 
shifts in the colonic mucosa of CD patients. In particu-
lar, we observed an increased ratio of a primary bile 
acid, cholate, relative to its corresponding secondary 
bile acid, deoxycholate. These findings suggest a reduc-
tion in bacterial transformation of primary to secondary 
bile acids and are consistent with a recent fecal metabo-
lomics study reporting increased cholate and decreased 
deoxycholate in CD patients with dysbiosis as well as 
findings from preclinical models of intestinal injury [19, 
106]. The shift towards greater primary bile acid in the 
CD MLI was associated with alterations of specific MLI 
taxa which could reflect either a contribution of these 
microbes to bile acid transformation—consistent with 
reduced predicted abundance of genes in the bile acid 
7α-dehydroxylation pathway—or downstream effects 
of altered bile acid metabolism on these microbes. The 
latter possibility is consistent with the known wide-
ranging effects of bile acid receptors such as FXR on 
intestinal physiology including production of antimi-
crobial products [107]. Of note, these correlations were 
based on microbial relative abundances and different 
relationships may be observed between metabolite lev-
els and absolute abundances of mucosal bacteria. These 
findings highlight a potential role for altered bile acid 
metabolism in mucosal dysbiosis in IBD and demon-
strate that metabolomics analysis of MLI samples can 
be used to characterize mucosal host-microbe interac-
tions in diseases such as CD.

Beyond the insights that can be gained from taxo-
nomic and metabolite associations with CD disease 
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phenotypes, this study also suggests the potential clini-
cal application of mucosal microbial profiles as bio-
markers for Crohn’s disease. The largest published CD 
study using colonic mucosal samples reported a classi-
fier for distinguishing CD from controls that had AUC 
0.78 [11]. The current study builds on this existing lit-
erature by demonstrating that colonic MLI microbial 
biomarkers not only robustly separate CD from con-
trols (AUC 0.91, 0.93), but also distinguish CD disease 
behaviors with high accuracy even during endoscopic 
remission (AUC 0.81, 0.82) and can predict future dis-
ease progression (AUC 0.74, 0.70). In clinical practice, 
such biomarker panels could be used to identify CD 
patients in remission who are at higher risk for flare or 
disease complications. This could guide clinical deci-
sions on therapies and disease monitoring, a challenge 
in CD as active disease may not manifest in clinical 
symptoms until substantial disease progression has 
occurred. While this study provides significant insights 
into mucosal microbial markers of CD disease pheno-
type, it has limitations which include the demographic 
differences between controls and CD patients, lack of 
longitudinal sampling, moderate sample size of dis-
ease subgroups such as complicated CD, and absence 
of an independent validation cohort to assess classi-
fier accuracy. Future studies are warranted to address 
the clinical potential of MLI-based biomarkers for CD 
clinical management and to investigate individual MLI 
microbes that may be instigators of inflammation and 
disease progression.

Conclusions
During endoscopic remission, Crohn’s disease patients 
show robust differences in colonic mucosal microbiome 
diversity, composition, and biogeography compared to 
unaffected controls. This indicates that microbial changes 
are a distinctive feature of CD pathophysiology sepa-
rate from secondary effects of intestinal inflammation 
on the microbiome. Elements of this mucosal microbi-
ome signature also predict CD behavior and future dis-
ease progression, representing potential biomarkers for 
prognostication and interception therapies. Specific taxa 
in both CD patients and non-IBD controls were associ-
ated with CD genetic risk, providing evidence that pre-
disease risk may be mediated by selective microbial shifts 
in the mucosa. Obese controls showed changes in colonic 
mucosal microbial composition that paralleled those of 
CD, suggesting a shared microbial contribution to these 
two diseases that are both rising in incidence in the 
Western world.
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