
UC Office of the President
UC Lab Fees Research Program (LFRP) Funded Publications

Title

IDEPI: Rapid Prediction of HIV-1 Antibody Epitopes and Other Phenotypic Features from 
Sequence Data Using a Flexible Machine Learning Platform

Permalink

https://escholarship.org/uc/item/7f54475z

Authors

Hepler, Lance
Scheffler, Konrad
Weaver, Steven
et al.

Publication Date

2014
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7f54475z
https://escholarship.org/uc/item/7f54475z#author
https://escholarship.org
http://www.cdlib.org/


IDEPI: Rapid Prediction of HIV-1 Antibody Epitopes and
Other Phenotypic Features from Sequence Data Using a
Flexible Machine Learning Platform
N. Lance Hepler1, Konrad Scheffler2, Steven Weaver2, Ben Murrell2, Douglas D. Richman3,4,

Dennis R. Burton5,6, Pascal Poignard5, Davey M. Smith2,4, Sergei L. Kosakovsky Pond2*

1 Interdisciplinary Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, United States of America, 2 Department of Medicine,

University of California San Diego, La Jolla, California, United States of America, 3 Department of Pathology, University of California San Diego, La Jolla, California, United

States of America, 4 San Diego Veterans Affairs Healthcare System, San Diego, California, United States of America, 5 The Scripps Research Institute, La Jolla, California,

United States of America, 6 Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, United States of America

Abstract

Since its identification in 1983, HIV-1 has been the focus of a research effort unprecedented in scope and difficulty, whose
ultimate goals — a cure and a vaccine – remain elusive. One of the fundamental challenges in accomplishing these goals is
the tremendous genetic variability of the virus, with some genes differing at as many as 40% of nucleotide positions among
circulating strains. Because of this, the genetic bases of many viral phenotypes, most notably the susceptibility to
neutralization by a particular antibody, are difficult to identify computationally. Drawing upon open-source general-purpose
machine learning algorithms and libraries, we have developed a software package IDEPI (IDentify EPItopes) for learning
genotype-to-phenotype predictive models from sequences with known phenotypes. IDEPI can apply learned models to
classify sequences of unknown phenotypes, and also identify specific sequence features which contribute to a particular
phenotype. We demonstrate that IDEPI achieves performance similar to or better than that of previously published
approaches on four well-studied problems: finding the epitopes of broadly neutralizing antibodies (bNab), determining
coreceptor tropism of the virus, identifying compartment-specific genetic signatures of the virus, and deducing drug-
resistance associated mutations. The cross-platform Python source code (released under the GPL 3.0 license),
documentation, issue tracking, and a pre-configured virtual machine for IDEPI can be found at https://github.com/veg/
idepi.
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Introduction

The challenge of predicting a viral phenotype from sequence

data has many motivating examples in HIV-1 research. In this

work we restrict our attention to predicting binary phenotypes, e.g.

resistant vs susceptible, although IDEPI can be extended to predict

continuous phenotypes as well. Perhaps the most established

application is that of determining whether or not the viral

population in a particular host harbors drug resistance associated

mutations (DRAMs) [1]. Algorithms for inferring this from viral

genotype alone (e.g. [2]) are well established and used both in

research [3] and in clinical practice [4]. These algorithms have

been developed based on large training sets using phenotypic

assays, for example those measuring half maximal inhibitory

concentration (IC50) of an antiretroviral drug (ARV) [5] to label

sequences resistant or susceptible. For many ARVs, the genetic

basis of resistance is simple and consists of specific point mutations

[1]. This makes it possible to distinguish resistant viruses from their

susceptible counterparts by the presence or absence of a specific

residue or a set of residues, leading to reliable prediction [6,7]. For

other ARVs, including some protease, integrase, nucleoside

reverse transcriptase inhibitors, and co-receptor antagonists, the

resistance phenotype is determined by the interaction of many sites

[8–12], or the protein tertiary structure [13,14], prompting

ongoing methodological development (e.g. [15–17]).

Another popular prediction problem is that of determining

which of the two cellular co-receptors needed for HIV-1 fusion

with (and infection of) the target cell can be used by a particular

viral strain. The ability of a virus to bind CCR5 (R5-tropic),

CXCR4 (X4-tropic), or either (dual-tropic) determines the

efficiency with which it can infect different types of target cells
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[18], predicts whether or not certain ARVs will be effective [19],

and impacts the course of disease progression [20]. The primary

determinant of co-receptor usage is thought to be the third

variable loop (V3) of the envelope glycoprotein (env) [21], which

spans approximately 35 amino-acid residues. Specialized assays

can be used to determine the tropism of a virus with a particular

env protein [22], providing both the training sets and the gold

standard against which computational prediction methods can be

compared [23,24]. Starting with the work by Fouchier and

colleagues in 1992 [25], which used the computed total charge of

V3 to derive and experimentally validate the simple 11/25 rule (if

residues at sites 11 and 25 are positively charged, then the virus is

classified as X4 tropic), numerous authors have applied decision

trees [26], random forests [27], position-specific scoring matrices

[28], support vector machines (SVM) [26], neural networks [29],

Bayesian networks [30], and hybrid models [31] to the problem.

Various feature engineering approaches including using structural

information [32], electrostatic hulls [27], sequence motifs [28],

and positional and segment residue frequencies [31] have also

been attempted. At present the best methods achieve accuracy on

the order of 85% on comprehensive training datasets, thereby

justifying ongoing research to improve this value [33].

A different class of prediction problems arises naturally when

researchers seek to infer genetic "signatures" of HIV-1 isolates

from different anatomical compartments (e.g. blood vs cerebro-

spinal fluid [34]), individuals with different clinical attributes (e.g.

those with and without neurocognitive impairment [35]), and

different disease stages (e.g. acute vs chronic infection [36]). Once

again, the interest is both in prediction for unlabeled sequences,

for example to modify treatment before impairment occurs [35],

and in finding predictive features, for instance to target vaccine

research towards HIV-1 strains that are more likely to establish

new infections [36].

One of the most promising avenues of HIV-1 vaccine research

provides our final example of genotype to phenotype association

problems, and the one that IDEPI was specifically developed to

address. Rational HIV-1 vaccine design has been greatly advanced

by the isolation and identification of broadly neutralizing

antibodies (bNab), typically from chronically infected individuals

[37]. By definition, a bNab is able to neutralize (in experimental

assays) a large proportion of reference viruses (e.g. [38–40]).

Understanding which epitopes are being targeted can reveal

"conserved" elements shared by many circulating viruses, and help

design a vaccine which elicits responses to the same epitopes [41].

While powerful and illuminating, current biochemical and

structural techniques for mapping bNab epitopes (e.g.

[39,40,42]), are expensive, time consuming, and do not necessarily

lead to good predictive models (e.g. [43]). The appeal of

computational epitope prediction lies in generating hypotheses

for experimental validation and in high-throughput screening of

sequences with unknown resistance phenotypes. As a byproduct of

bNab characterization, large panels of phenotypic (IC50) and

matched envelope sequences have been generated, and several

recent efforts [44–48] have been directed at applying machine

learning techniques to these data in order to predict the resistance

phenotypes of HIV-1 strains and to infer antibody epitopes.

To provide a unified solution for these and similar problems, we

designed IDEPI – a domain-specific and extensible software

library for supervised learning of models that relate genotype to

phenotype for HIV-1 and other organisms. IDEPI makes use of

open source libraries for machine learning (scikit-learn, scikit-

learn.org/), sequence alignment (HMMER, hmmer.janelia.org/),

sequence manipulation (BioPython, biopython.org), and paralleli-

zation (joblib, pythonhosted.org/joblib), and provides a program-

ming interface which allows users to engineer sequence features

and select machine learning algorithms appropriate for their

application.

IDEPI is powerful and accurate: when we compare its

performance with that of specialized tools on the four classes of

problems outlined above, we find that even without feature and

machine learning method tuning, IDEPI closely hews to or even

outperforms existing methods on the same data. IDEPI infers

biologically meaningful features: for each studied problem IDEPI

identified many or most of the genetic sequence features that have

been previously shown to affect phenotype. IDEPI is convenient:
by standardizing data manipulation, e.g. aligning sequences to

standard reference coordinates, extracting features to be modeled,

reading and handling phenotype annotation, and providing means

to save learned models and easily reuse them later, IDEPI can

empower researchers interested in tackling new problems to focus

on innovation, instead of rote utility software development; IDEPI

makes tasks like retraining a classifier on different data sets trivial –

something that is difficult to impossible to do with many published

algorithms. IDEPI is fast: automatic parallelization of independent

tasks (e.g. cross-validation) on multi-core architectures greatly

accelerates model learning and performance evaluation; for the

default linear support vector machine (LSVM) classifier, classifi-

cation of new sequences given a model can be done at a rate of

104{105 sequences per minute, making the program suitable for

the analysis of next generation sequencing data. IDEPI is

customizable: different machine learning algorithms implemented

in scikit-learn can be used; new sequence features can be defined

using a well-specified application programming interface (API);

various feature selection approaches (e.g. forward or backward

selection) can be used; performance can be optimized with respect

to many metrics (e.g. sensitivity).

Design and Implementation

IDEPI architecture and dependencies
IDEPI is implemented in the Python 3 programming

language and leverages open-source and community-developed

libraries to implement reusable functionality: BioPython for

biological sequence data structures and for parsers of FASTA-

and Stockholm-format files; NumPy (numpy.org) and SciPy

(scipy.org) for vector, matrix, and other common numerical

recipes; and scikit-learn (scikit-learn.org) for various machine-

learning algorithms. When extending the facilities provided by

these libraries, IDEPI provides compatible application pro-

gramming interfaces so that its components are reusable and

similarly extensible.

IDEPI accepts two forms of input data – a specially-crafted

SQLite database (sqlite.org) or a combination of FASTA-

formatted sequences with supplemental phenotypic data in

comma-separated value (CSV) format (see Figure 1). These input

data are transformed by IDEPI into a multiple sequence alignment

(MSA) using HMMER (version 3.1b1). Because the authors of

HMMER recommend providing amino-acid sequences to the

program, IDEPI will by default translate the input sequences if

they are determined to have a DNA alphabet. A user-provided

reference multiple sequence alignment (MSA) is modeled by

HMMER to guide an iterative construction of an MSA from the

input data. IDEPI can also be instructed to treat the input MSA as

fixed if automated alignment is not desired (e.g. for difficult to

align sequence regions). Additionally, IDEPI includes a user-

provided reference sequence in the alignment to label the columns

of the MSA in a conventional manner (e.g. N332 for an asparagine

at site 332). IDEPI distribution includes the standard HXB2

Prediction of HIV-1 Phenotypes from Sequence Data
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(genbank accession number K03455) reference sequence for

assigning HIV-1 coordinates.

Feature extraction techniques included with IDEPI
For feature extraction, IDEPI provides four classes (all scikit-

learn compatible) for the vectorization of labeled MSAs.

1. Presence of a particular residue at a given site (e.g. N301N);

optionally a match is returned if the residue belongs to a

predefined class of biochemically similar residues, e.g. using

Stanfel encoding, N301[DENQ] [49]. IDEPI can generate

either amino-acid or nucleotide sequence features, with the

preference specified as a command line argument (encoding).

2. Presence of a pair of specific residues at two sites, e.g. N301N+
S334S, also optionally supporting class membership. To limit

the number of all pairwise combinations IDEPI only considers

pairs of sites that are no more than D (a user-tunable

parameter) positions apart in the linear sequence.

3. Presence of a sequence motif defined by a regular expression,

e.g. potential N-linked glycosylation sites (PNGS), using the

regular expression "N[‘P][TS][‘P]".

4. Presence of a sequence motifs defined by the same regular

expression at two sites at once, e.g. PNGS (N234+N276).

For label extraction, IDEPI provides a class which converts

phenotype data to a form usable by scikit-learn.

Feature selection and learning algorithms used by IDEPI
To enable rapid learning and prevent overfitting, IDEPI

performs feature selection using the minimum redundancy maxi-

mum relevance (mRMR) algorithm [50]. Briefly, the algorithm

chooses features sequentially (the greedy approach), in way to

maximize the mutual information with the label and minimize

mutual information with already-chosen features. Sets of strongly

correlated features will be typically represented by single member in

the model selection process. IDEPI provides a mechanism to report

all "similar" features, so that possible biological features are not

masked by accidental correlates. mRMR is implemented in the

separate sklmrmr package, also scikit-learn compatible, and uses

Cython (cython.org) for high performance.

Default model learning is implemented using a soft-margin,

linear support vector machine. The soft-margin parameter, C, is

chosen by (inner) grid search to maximize a performance metric

chosen by the user (Matthews Correlation Coefficient is the

default). Both of these functions are implemented within scikit-

learn, and parallelized when possible.

Tools included with IDEPI
IDEPI provides three scripts for end users not wishing to

directly program their own pipelines.

1. ‘‘idepi discrete’’ accepts labeled sequence data and will:

generate an MSA from these data, extract features and labels,

perform N-fold cross-validation on models built from a pipeline

of mRMR and soft-margin linear SVMs, and finally report the

models’ performance along with the labels of the most

frequently selected features and their relationship to the models

(e.g. is the presence or absence of the feature indicative of an

outcome).

2. ‘‘idepi learn’’ will similarly accept labeled sequence data, learn

a model, and save it to disk for later use.

3. ‘‘idepi predict’’ accepts a saved model and some unlabeled

sequences (homologous to the model) and will predict their

labels.

All the results presented in the manuscript have been generated

using these three scripts, and detailed tutorials are available at

http://github.com/veg/idepi.

Extensible API for feature engineering
IDEPI defines a ‘‘LabeledMSA’’ class as a wrapper around

BioPython’s ‘‘MultipleSeqAlignment’’ for the column-wise label-

ing of an MSA. Together with classes facilitating alphabet

encoding, IDEPI provides simple facilities enabling rapid feature

engineering for biological sequence data. Examples of how these

facilities can be used can be found within IDEPI ’s source code –

the ‘‘SiteVectorizer’’ and ‘‘MotifVectorizer’’ classes for feature

extraction. Additionally, motif features are trivially supported by

the ‘‘MotifVectorizer’’ class, which accepts a regular expression

argument describing the motif. IDEPI uses this functionality to

extract features for potential N-linked glycosylation sites (PNGS),

using the regular expression described above.

Results

We first tested IDEPI on simulated data and on well-studied

problems of drug-resistance and tropism prediction and detection

of tropism-associated genetic features. The large number of

published methods make a comprehensive comparison infeasible,

hence we selected methods based on their popularity, recency,

performance, and the availability of training data. IDEPI was

evaluated for (i) its performance in phenotype prediction using

standard cross-validation metrics and on previously published

independent datasets; and (ii) the veracity of the genetic features

Figure 1. IDEPI workflow. Abbreviations: MSA - multiple sequence analysis; mRMR - minimum redundancy maximum relevance; SVM - support
vector machine.
doi:10.1371/journal.pcbi.1003842.g001
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inferred to be informative of a particular phenotype. All the

datasets and instructions needed to run them with IDEPI are

provided with the package distribution.

Simulated data
In order to establish baseline performance of IDEPI where the

true "phenotype" is known, we simulated the evolution of N~241
HIV-1 protein envelope sequences subject to directional selective

pressure applied to sites in an epitope along a subset of terminal

tree branches selected at random. For this moderate size data set

(chosen to represent a typical bNab training set), IDEPI performs

very well overall (Table 1), both in terms of classification

performance and in recovering the locations/residue identity of

epitopes. In the simplest case, when any mutation in a 5-site

epitope confers resistance, IDEPI delivers a Matthews Correlation

Coefficient (MCC) of 0.98 (MCC of 1 indicates a perfect classifier,

and MCC of 0 corresponds to "no-better than random prediction"

performance), and recovers w50% of sites within epitopes if they

are sufficiently variable. Because positions in epitopes are likely

quite correlated, mRMR redundant feature selection captures

essentially all of the signal with a median of 2 features per

replicate. For a fixed training data set size, with the increased

epitope length and complexity, the performance degrades

predictably, but MCC remains excellent for intermediate (8 sites

and 2 or more mutations needed for escape) epitope complexity

(0:94) and good (0:78) for high (10 sites and 3 or more mutations

needed for escape) epitope complexity. Encouragingly there seems

no false association signal due to the phylogenetic relatedness of

the samples: IDEPI yields a median MCC of 0:04 for randomly

assigned phenotypes, which is essentially the same as a random

prediction (also see discussion of the 2F5 bNab below).

Drug resistance
We used a large publicly available data set of viral sequences

(reverse transcriptase) and matched IC50 values for the Pheno-

Sense assay (available from the Stanford HIV Drug Resistance

Database, hivdb.stanford.edu) to train an IDEPI classifier for

resistance to a non-nucleoside reverse transcriptase inhibitor

nevirapine (NVP). We chose this drug as a test case because (i)

the basis for its resistance is well understood, making the

assessment of IDEPI predictions easy; (ii) testing for NVP

resistance is biomedically relevant, for example in the context of

preventing mother to child HIV-1 transmission; (iii) a recent study

[51] used resistance data from the Stanford database to train

specialized classifiers for NVP resistance, providing a basis for

comparison.

With 80 features (the number selected by a grid search, see

Figure 2.A), IDEPI achieves the same accuracy (0.92, Table 2) as

a state-of-the-art custom-built prediction tool using structural

information [51]. The first three selected features (K103K,

Y181Y, G190G, see Table 3), correspond to three canonical sites

of strong phenotypic resistance, and the maintenance of the

wildtype residue at each of the positions is strongly predictive of

susceptibility – a classifier built on just these three features achieves

an MCC of 0.74, compared to that of 0.83 for the 80-feature

model. Other genetic features implicated in the development of

NVP resistance recovered by the IDEPI model include major

resistance mutations K101P, K103N, V106A, Y181C, Y188L,

G190A, and accessory/weak resistance mutations L100I, E138Q,

H221Y, and V108V, P236P (the latter two associated with

susceptibly) [1]. Note that the same site can appear in multiple

features (e.g. Y181Y as a feature of susceptibility and Y181C – as a

feature of resistance), hence an 80-feature model does not span 80

different sites of HIV-1 reverse transcriptase.
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We compared the SVM model learned by IDEPI against perhaps

the most commonly used drug resistance prediction algorithm – the

Stanford HIVdb (expert curated, and evidence based) [2], using a

large dataset collected in Mexico for the purposes of drug resistance

surveillance [52]. Because no phenotype measurements were

available for these sequences (as is common in practice), we

computed the degree of concordance between IDEPI and HIVdb

using Cohen’s k [53]. Since HIV-1 pol sequences obtained during

routine surveillance are amplified from mixed viral populations and

often contain ambiguous bases, not directly handled by default

IDEPI feature sets, we considered all possible amino-acid resolu-

tions of nucleotide level ambiguities at the positions involved in the

model, and called a sequence resistant if any of the resolutions were

predicted as resistant. The two methods of resistance prediction

were in excellent agreement overall (k~0:85), including all cases of

"highly-resistant" sequences. This is on par with the numbers

reported in a recent comparison of several rule-based resistance

prediction algorithms [54].

Co-receptor usage/tropism
In 2010, Dybowski et al [27] presented a sophisticated multi-

level classifier including structural and biochemical properties of

the V3 loop, performed extensive training and validation of their

approach, and compared it to previous work. Because a large

training data set of V3 amino-acid sequences and associated

phenotypic measurements was provided as a part of the

publication, we were able to train an IDEPI classifier on the

same data to enable a direct comparison.

As has been documented before (e.g. [27]), most of the

predictive power of V3 sequences is captured by only a few

features – in the case of IDEPI, a model using only two features

already achieves an MCC of 0.67, while the full model with 90

features improves it to 0.78. The first selected feature is a potential

N-linked glycosylation site (PNGS) at position 301; several sites in

this 4-residue motif have been implicated as critical to CCR5

receptor binding [55], hence a single composite feature is able to

encapsulate the discriminating positions for many sequences. The

second feature is one of the two residues in the 11/25 rule [25];

interestingly, the two positions are sufficiently correlated in the

training sample that mRMR feature selection eliminates position

25 once 11 has been included. IDEPI appears to be surprisingly

well suited to the problem of tropism prediction, and delivers

nearly the same accuracy (0.94 vs 0.96, the latter number obtained

in the original publication by tuning algorithmic cutoffs to

maximize accuracy on the training data) as the much more

complex feature engineering approach undertaken by Dybowski

and colleagues. Furthermore, on an independent dataset, IDEPI

attains accuracy of 0.905, whereas the best of the 5 methods

compared previously [27] attained accuracy of 0.86.

HIV-1 associated dementia
A recent comprehensive study by Holman and Gabuzda [35]

applied a machine learning pipeline (based on decision trees) to

partial envelope sequences to identify signatures (defined as

collections of residues or biochemical properties at specific genomic

positions) of sequences isolated from brain tissue of subjects who

developed HIV-1 associated dementia (HAD). Since the training set

of sequences and corresponding diagnoses has been kindly made

available by the authors through the HIV Brain Sequence Database

[56], it was straightforward to apply IDEPI to the same data to learn

a classifier. The Holman and Gabuzda study also included an

independent validation data set of 10 individuals diagnosed with

HAD, and we used it here to test the learned model.

IDEPI excels at this classification problem, with both specificity

and sensitivity exceeding 0.9, and achieving an accuracy of 0.95.

The original authors reported an accuracy of 0:75, but their model

was restricted to a subset of the available sequence length, HXB2

env amino-acid coordinates 265–369. When restricted to the same

subset of residues, IDEPI achieves an accuracy of 0:96 with 100
features (detailed results not shown), suggesting that many of the

predictive features are correlated (and mRMR selects only one),

because the performance does not degrade when only partial

sequences are considered. As with previous two applications, a

single prominent feature (T297K) attains an MCC of 0:57; unlike

the other problems, the next four features appear to be of about

the same informative content (based on the order in which they

are selected in cross-validation folds), and MCC performance

increases gradually as the features are added (Figure 2). Interest-

ingly, features previously reported as associated with HAD (see

[35] for a summary), are not added to the model until later: for

example site 283 is the 8th ranked feature, site 308 is the 38th, and

site 304 is the 65th. Furthermore, the 90-feature IDEPI correctly

classifies all 10 individuals in the validation data set, whereas the

original method correctly classified 8=10 cases.

Broadly neutralizing antibodies
Because IDEPI was designed for the specific problem of finding

bNab epitopes and predicting the resistance phenotype from

Figure 2. IDEPI performance, measured by MCC, as a function
of the number of model features. (A): on a representative of each of
the four classification problems, (B): on predicting resistance to a
particular broadly neutralizing monoclonal antibody. Abbreviations:
NVP - Nevirapine; DRAM - drug resistance associated mutations; HAD -
HIV associated dementia; bNab - broadly neutralizing antibody. The
optimal number of features is highlighted with a filled circle for each
line plot.
doi:10.1371/journal.pcbi.1003842.g002
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sequence data, we compared its performance against three

recently published machine learning approaches to solving same

problem.

1. Gnanakaran et al [44] proposed and tested an ensemble

framework combining pattern analysis and logistic regression to

predict the neutralization phenotype and map the epitopes of the

b12 bNab [57], which targets the CD4 receptor binding site [58].

We used the genotypic and associated phenotypic data from this

study to train and test an IDEPI classifier for the b12 bNab.

2. West et al [45] applied a direct optimization (implemented in

the Antibody Database program [ADP]) to predict the

continuous IC50 value using sequence based features and

applied it to data from 25 antibodies. We compared the

predictions derived by IDEPI models for some of the same

antibodies (chosen to represent one of the remaining three

types of bNab classified by their targets [58]), using either

publicly available neutralization assay data, distributed with

IDEPI, or the training data set from [46].

3. Chuang et al [46] developed an epitope feature selection which

evaluates various measures based on mutual information

between sequence sites and IC50 values – an idea shared and

extended by the mRMR approach. We used the genotype and

phenotype data for two of the antibodies (8ANC131 and

8ANC195, the latter also studied by West et al) whose epitopes

were mapped and experimentally confirmed by Chuang et al.

2F5 bNab prediction. 2F5 is the first characterized bNab

which targets the linear Membrane-Proximal External Region

(MPER) region of HIV-1 viral envelope [59]. 2F5 provides a

natural baseline test case for IDEPI. On the one hand, any epitope

prediction approach worth its salt must perform well on this test

case: the training dataset is one of the largest available, the epitope

is very well characterized [59], and the eptiope is short and linear

(662–667 in the HXB2 coordinates). On the other hand, 2F5 is an

excellent example of a strong "clade effect", for example it

neutralizes viruses of subtype B very well, but has essentially no

potency against subtype C viruses [60]. Thus, a machine learning

approach could potentially learn a classification model by simply

finding genetic signatures that discriminate genetically divergent

HIV-1 subtypes and have little to do with antibody specificity;

such behavior is clearly undesirable if one seeks to find genetic

determinants of resistance. On 2F5 data which we downloaded

from the LANL HIV CATNAP database (hiv.lanl.gov), IDEPI

Table 3. Key features selected by IDEPI for each of the example problems.

Problem Features selected by IDEPI

Rank Identity Direction MCC Remarks

NVP resistance 1 K103K Susceptible 0.46 Canonical NNRTI resistance site [1]

2 Y181Y Susceptible 0.65 Canonical NNRTI resistance site

3 G190G Susceptible 0.74 Canonical NNRTI resistance site

V3 tropism 1 PNGS(N301) CCR5 0.55 Essential for CCR5 binding [55] and

2 R306R CCR5 0.67 dual-tropic viruses [67] Part of the 11/25 rule [25]

Dementia 1 T297K Non-HAD 0.57

2 PNGS (N488) HAD

3 R298D Non-HAD

4 I320[] non-HAD

5 PNGS(T188) HAD 0.71

2F5 bNab 1 K665K Susceptible 0.73 Parts of the canonical

2 A667A Susceptible 0.75 linear epitope (662–667) [59]

b12 bNab 1 D185D Susceptible 0.26 The strongest association found in

[44]

10E8 bNab 3–4 T676T Susceptible N/A A part of the structural epitope [64]

PG9 bNab 1 PNGS (N160) Susceptible 0.36 Key residue for binding based on

8 V169E Resistant structure [62] Forms a hydrogen bond with PG9

[62]

PGT-121 bNab 1 PNGS(N301+N332) Susceptible 0.58 tralization [63]

8ANC195 bNab 1 PNGS (N234+N276) Susceptible 0.59 Encompasses the three mutants (sites 234, 236,
and 276) any of which confers resistance [45,46]
PNGS at site 230 confers weak resis-tance [45]

2 PNGS(N160+N230) Resistant 0.67

8ANC131 bNab 3.75 PNGS(N339+Q442) Resistant

5 K151G Susceptible

Notation: T297K means that K is found in position 297 (HBX2 coordinates, T is the residue found in HXB2); PNGS (T188) – a potential N-linked glycosylation site with N at
HXB2 coordinate 188; PNGS (N234+N276) – a pair of potential N-linked glycosylation site with N at HXB2 coordinates N234 and N276; [ ] – a deletion relative to HXB2.
The ranking of the features is based on what order they were added to the model, and averaged over cross-validation replicates. For datasets with little signal (e.g. 10E8
bNab, 8ANC131 bNab), there was considerable variation in feature ranks among CV replicates, hence the best ranking feature has a median rank worse than 1. The
values in the MCC column are for the models with the corresponding number of features (e.g. the MCC of a 2-feature model for V3 tropism in 0.67).
doi:10.1371/journal.pcbi.1003842.t003
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achieves the best MCC performance for all bNab examined (0.81,

Table 2) with a 3-feature model, demonstrating that it can learn

"easy" cases well. Not unexpectedly, the first feature selected by

IDEPI is a K665K (Table 3), which is in the structurally

characterized 2F5 epitope, and which alone yields the MCC of

0.73. The second chosen feature (A667A) is also in the known

epitope, but it improves cross-validation MCC only to 0.75. West

et al [45] identified the same two features in their model (as well as

three features outside the canonical epitope). The third feature in

our model is not stable i.e. it is not consistently chosen between

CV replicates (e.g. T373T, K490E and E824G are chosen in some

of the replicates), and does not lie in the canonical epitope. The

addition of a third feature improves the sensitivity of the model

(from 86.7% to 92.5%), while maintaining its specificity at 88.2%;

further examination of the data indicates that the third is feature is

necessary to correctly classify the small proportion of sequences

with resistant phenotypes which contain the sensitive canonical

epitope.

Because the current implementation IDEPI assumes that the

contributions of individual features to phenotype are independent

and additive, it is possible that a feature in the model is not directly

involved with the phenotype but is only associated with other

features that are. In this context, the related features report may be

useful: features that are strongly associated with those already

selected for the model by the mRMR algorithm are reported by

IDEPI. More concretely, if feature A is predictive of phenotype,

feature B is only associated with phenotype due to shared ancestry,

and features A and B are themselevs strongly correlated, mRMR

may choose feature B as a part of the model and eliminate A from

contention, but then IDEPI would report that A is related to B.

Hence, the correct interpretation of the genotypic features in the

example would be "either A or B are predictive of the phenotype".

b12 bNab prediction. Unlike the previous three applica-

tions, b12 epitope prediction results in both a simpler model (only

5 features) and a considerably lower performance (Table 2), with

an MCC of only 0.35. IDEPI achieves lower accuracy on the

training data than the the ensemble method developed by

Gnanakaran et al [44] (note that the original reference does not

report a cross-validation value), but higher accuracy on validation

data (Table 4), suggesting that the ensemble model may have been

over-fitting the training data. Only a single residue (D185D,

Table 3) is supported by the majority of cross-validation folds.

Taken together, these results suggest that the training data set is

too small (or that the IDEPI feature set is suboptimal) to reliably

identify the complex structurally-defined epitope for b12. Howev-

er, IDEPI outperforms a previously published method on an

independent validation dataset, and its 5-feature epitope includes

residue 424 which is a part of the CD4 binding site [61] targeted

by the antibody.

Other broadly neutralizing antibodies.

1. PG9 is a broadly neutralizing antibody targeting the V1/V2

loop in HIV-1 env [62], whose canonical epitope is anchored

by the PNGS at position 160, which is also the single most

important position in the 60-feature model fitted by IDEPI. A

relatively low MCC of 0.42 is achieved, with the model

showing fairly low sensitivity (0.49, Table 2). The 60 feature

model has a remarkably high accuracy on the training data

(0.96), but the small number of resistant sequences in it makes it

difficult to generalize the features past N160 (Figure 2). A

direct comparison with West et al is difficult to formulate,

because the performance of ADP is measured by the

proportion of IC50 variance explained by the model, which

cannot be measured for IDEPI. IDEPI finds the three features

found by ADP, but ranks them differently (more in agreement

with the structural studies): G732G (resistant, ranked by ADP

as having strong support, mean IDEPI feature rank 17.6/60),

PNGS (N160) (susceptible, supported by structure [62], ADP:

intermediate support, IDEPI: mean feature rank 7/60), and

K171K (susceptible, supported by structure [62], ADP: strong

support, IDEPI: no 171 feature, but a number of features in

neighboring positions 170,173 and 174). Further, IDEPI places

another structurally confirmed residue in the inferred epitope:

V169E (resistant, mean rank 5/60), V169K (susceptible, mean

rank 15/60).

2. PGT-121 is a broadly neutralizing antibody targeting glycans

in the V3 loop [40]. IDEPI infers a single feature model

(Table 3), which associates the presence of a pair of PNGS (at

positions 301 and 332) as strongly predictive (MCC = 0.58) of

susceptibility. Interestingly, while PNGS (N332) is the key part

of the canonical PGT-121 epitope, PNGS (N301) – previously

thought relatively unimportant – appears to act together with

N332 to effect PGT-121 binding [63]. ADP predicts the

importance of PNGS (N332), but also lists four other sites

whose role in antibody-virus interaction is unclear, and does

not report N301 as important.

3. 10E8 is a broadly neutralizing antibody that targets the MPER

region [64] and shows unusual potency versus the reference

panel viruses. As a result, the training sample (Table 2) includes

only 4% of resistant sequences, and this makes meaningful

learning difficult, as evidenced by the low MCC of 0.23, and

sensitivity of 0.30. There are no top ranked features in the

model (the ranking changes significantly between cross-

validations, Table 2), but one of the structurally defined

epitope sites (T676T) is included among the top 5, whereas

ADP finds no such sites and also performs poorly. The

relevance of other inferred model features associated with

resistance, e.g. PNGS(T413+E824), K171E and E153Q is

questionable, and larger training datasets containing more

resistant samples are needed for computational prediction to

improve.

4. 8ANC195 is a broadly neutralizing antibody whose epitope

has not been structurally confirmed [65], but it was used as a

test case for computational epitope prediction and experimen-

tal confirmation by two independent groups [45,46]. IDEPI

achieves a good MCC of 0.67 on the training data from

Chuang et al, and does so with only two features in the epitope:

two pairs of PNGS sites (Table 3). The top feature is that the

absence of either a PNGS anchored at site 234 or a PNGS

anchored at site 276 confers resistance. This single pair of

PNGS subsumes three features (N234, N276, and T236)

experimentally validated by previous work. This example

highlights that feature engineering (pairs of PNGS) may

provide a more compact description of neutralization features

than either single PNGS [45], or single residues [46] can. The

second feature selected by IDEPI is another pair of PNGS

(N160 and N230), which is predicted to confer resistance, and

does so at a weak level [45].

5. 8ANC131 is a broadly neutralizing antibody whose epitope

has been structurally mapped, but not yet published [46], and

the same authors performed computational prediction of

epitope sites and tested them experimentally. Unlike

8ANC195, where the epitope features are clean and experi-

mentally confirmed, computational predictions have not been

found nearly as useful, with the top sites conferring only

marginal resistance [46]. IDEPI finds a diffuse signal for 15

features (Figure 2, Table 2), and an MCC of 0:19. There seems

Prediction of HIV-1 Phenotypes from Sequence Data
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to be little overlap between the features found in 3 or more cross-

validation folds (susceptible: K151G, V169R, resistant: N463K,

D474N, PNGS(N339+Q442), PNGS(142a+N234)), and those

reported by [46] [top 10: 456,78,79,466,280,326,

96,80,282,461] although many are in the same region of the

three-dimensional structure.

Availability and Future Directions

IDEPI and sklmrmr are installable via the PyPI Python package

system through standard tools (easy_install/pip), and their source code

is available on GitHub (github.com/veg/idepi and github.com/

nlhepler/sklmrmr). A Virtual Machine for Oracle’s VirtualBox has

also been built to provide easy access to IDEPI for users unfamiliar with

the intricacies of Python package management, and is available from

the main package distribution page (http://github.com/veg/idepi/).

IDEPI will likely be extended in the future to include a larger

array of built-in feature extraction mechanisms. For instance,

because both amino-acid and nucleotide data can be useful for

phenotype prediction (the latter could be informative about

important RNA secondary structures in viruses, or transcription/

translation efficiency), we will allow protein-coding sequences to be

tokenized into nucleotides and amino-acids jointly. In the future,

we intend to release an update that includes a feature extractor

that maps sequence data to a provided structure to perform a

spatial neighborhood analysis, and an adaptive discretization

algorithm for continuous features (e.g. using Bayesian blocks [66]),

required by mRMR. Downstream users that build novel feature

extractors are recommended to submit their creations to IDEPI,

via GitHub’s pull request mechanism, for inclusion in a future

release. Additionally, in providing APIs compatible with BioPy-

thon and scikit-learn, IDEPI will prove ever more useful as

advances are made in those fast-moving software packages.

Finally, we encourage those who use IDEPI and learn models

using it to contribute these models by using the pull request

mechanism available in GitHub. Because the models do not

include original sequence data, but only HMMER models needed

to make alignments, this mechanism also ensures privacy

preservation of training data.

Supporting Information

Software S1 The complete source code tree, example files, and

documentation for IDEPI; for the most current version visit the

package distribution page at https://github.com/veg/idepi.

(GZ)

Text S1 Details on data simulation strategies, feature selection

approaches and machine learning algorithm settings for each of

the four classes of classification problems, and software library

versions used for testing.

(PDF)
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