## Lawrence Berkeley National Laboratory

**LBL Publications** 

## Title

Observation of insulating-insulating monoclinic structural transition in macro-sized VO2 single crystals [Phys. Status Solidi RRL 5, No. 3, R107–R109 (2011)]

## Permalink

https://escholarship.org/uc/item/7f54h6hb

#### Journal

physica status solidi (RRL) - Rapid Research Letters, 9(3)

# ISSN

1862-6254

#### Authors

Mun, Bongjin Simon Chen, Kai Leem, Youngchul <u>et al.</u>

# Publication Date

2015-03-01

#### DOI

10.1002/pssr.201510046

Peer reviewed

# Observation of insulating–insulating monoclinic structural transition in macro-sized VO<sub>2</sub> single crystals [Phys. Status Solidi RRL **5**, No. 3, R107–R109 (2011)]

# s +++rapid research letters +++

www.pss-rapid.com

#### Erratum

Bongjin Simon Mun<sup>1</sup>, Kai Chen<sup>2</sup>, Youngchul Leem<sup>3</sup>, Catherine Dejoie<sup>2</sup>, Nobumichi Tamura<sup>2</sup>, Martin Kunz<sup>2</sup>, Zhi Liu<sup>2</sup>, Michael E. Grass<sup>1, 2</sup>, Changwoo Park<sup>4, 5</sup>, Joonseok Yoon<sup>3</sup>, Y. Yvette Lee<sup>3</sup>, and Honglyoul Ju<sup>\*, 3</sup>

<sup>1</sup> Department of Applied Physics, Hanyang University, ERICA, Kyunggi-Do 426-791, Republic of Korea

<sup>2</sup> Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

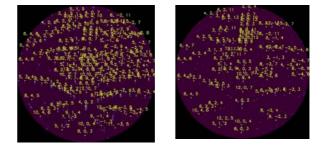
<sup>3</sup> Department of Physics, Yonsei University, Seoul 120-749, Republic of Korea

<sup>4</sup> Division of Applied Chemistry and Biotechnology, Hanbat National University, Daejon 305-719, Republic of Korea

<sup>5</sup> Advanced Nano Products, Chungwon, Chungbuk 363-942, Republic of Korea

Received 11 February 2015, accepted 12 February 2015 Published online 23 February 2015

Keywords vanadium dioxide, metal-insulator transition, X-ray microdiffraction, structural phase transition


\* Corresponding author: e-mail tesl@yonsei.ac.kr, Phone: +82-2-2123-2607, Fax: +82-2-392-1592

In our article, we reported the observation of monoclinic M2 to M1 structural phase transition in VO<sub>2</sub> single crystal near the temperature of ~49 °C. However, the re-examination of Laue patterns reveals that previously defined monoclinic M1 and M2 phases can be interpreted as monoclinic M2 and triclinic T phases instead. Careful experimental geometry cali-

bration and further refinement of the lattice parameter ratios and angles show that monoclinic M2 and triclinic T phases fit better with the experimental data. On the other hand, our previous misidentification of the insulating phases does NOT affect the conclusions of our article.

The re-examination of Laue patterns reveals that previously defined monoclinic M1 and M2 phases can be interpreted as monoclinic M2 and triclinic T phases instead. The indexation of the monoclinic M1 and M2 phases of Fig. 2 in Ref. [1] has been re-evaluated (see Fig. 1). Because the different insulating phases in VO<sub>2</sub> are structurally very close and typically appeared as twins of up to four variants, they are difficult to tell apart by either X-ray or electron single crystal diffraction. Careful experimental geometry calibration and further refinement of the lattice parameter ratios and angles have allowed us to obtain a much better fit to the experimental reflection position values. According to the new fitting results, the previously defined monoclinic M1 and M2 phases in Ref. [1] can be now unambiguously interpreted as monoclinic M2 and triclinic T phases, respectively. With increasing temperature, the VO<sub>2</sub> crystals exhibit phase transitions from triclinic T to monoclinic M2 to rutile R phases [2]. The misidentification of the insulating phases does, however, in no way affect the conclusions of the paper.





**Figure 1** Laue patterns of triclinic T and monoclinic M2 phases from VO<sub>2</sub> crystal structures obtained from  $\mu$ -XRD at 25 °C and 52 °C, respectively.

#### References

- [1] B. S. Mun, K. Chen, Y. Leem, C. Dejoie, N. Tamura, M. Kunz, Z. Liu, M. E. Grass, C. Park, J. Yoon, Y. Y. Lee, and H. Ju, Phys. Status Solidi RRL 5(3), R107–R109 (2011).
- [2] M. Ghedira, H. Vincent, M. Marezio, and J. C. Launay, J. Solid State Chem. 22, 423–438 (1997).

#### Wiley Online Library