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Feasibility of Simulated Contrast-enhanced Breast MRI for 
Imaging Malignant Masses Using Deep Learning

Maggie Chung, MDa,§, Evan Calabrese, MD, PhDa,§, John Mongan, MD, PhDa, Kimberly M. 
Ray, MDa, Jessica H. Hayward, MDa, Tatiana Kelil, MDa, Ryan Sieberg, MDa, Nola Hylton, 
PhDa, Bonnie N. Joe, MD, PhDa, Amie Y. Lee, MDa

aDepartment of Radiology and Biomedical Imaging, University of California, San Francisco, CA

Abstract

Background: There is increasing interest in non-contrast breast MRI alternatives for tumor 

visualization to increase the accessibility of breast MRI.

Purpose: To evaluate the feasibility and accuracy of generating simulated contrast-enhanced 

T1-weighted breast MRIs from pre-contrast MRIs in biopsy-proven invasive breast cancer using 

deep learning.

Methods and Materials: Women with invasive breast cancer and contrast-enhanced breast 

MRI performed for initial evaluation of extent of disease were retrospectively identified between 

January 2015 and December 2019 at a single academic institution. A three-dimensional, fully 

convolutional deep neural network simulated contrast-enhanced T1-weighted breast MRIs from 

five pre-contrast sequences (T1-weighted non-fat-suppressed [FS], T1-weighted FS, T2-weighted 

FS, apparent diffusion coefficient, and diffusion-weighted imaging). For qualitative assessment, 

four blinded breast radiologists (3 to 15 years of experience) assessed image quality (excellent/

acceptable/good/poor/unacceptable), presence of tumor enhancement, and maximum index mass 

size using 22 pairs of real and simulated contrast-enhanced MRIs. Quantitative comparison 

was performed using whole breast similarity and error metrics and Dice coefficient analysis of 

enhancing tumor overlap.

Results: 96 MRIs from 96 women (mean age, 52 years ± 12 [SD]) were evaluated. The 

readers assessed all simulated MRIs as having the appearance of a real MRI with tumor 

enhancement. Index mass sizes on real and simulated MRIs demonstrated good-to-excellent 

agreement (intraclass correlation coefficient, 0.73–0.86; P<.001) without significant differences 

(mean differences −0.8–0.8 mm, P=.36-.80). Almost all simulated MRIs (84 of 88; 95%) were 

considered of diagnostic quality (ratings of excellent/acceptable/good). Quantitative analysis 

demonstrated strong similarity (structural similarity index, 0.88 ± 0.05), low voxel-wise error 

(symmetric mean absolute percent error, 3.26%), and Dice coefficient of enhancing tumor overlap 

of 0.75 ± 0.25.

Conclusions: It is feasible to generate simulated contrast-enhanced breast MRI using deep 

learning. Simulated and real contrast-enhanced MRI demonstrated comparable tumor sizes, 
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areas of tumor enhancement, and image quality without significant qualitative or quantitative 

differences.

Summary Statement:

Simulated contrast-enhanced breast MRIs generated using deep learning demonstrate no 

significant quantitative or qualitative differences compared to real contrast-enhanced MRIs, and 

have the potential to increase the accessibility of breast MRI.

INTRODUCTION:

Contrast-enhanced breast MRI is the most sensitive test for the detection of breast cancer. 

There is increasing interest in broadening MRI supplemental screening to women with dense 

breasts and women at average to intermediate risk (1,2). While gadolinium-based contrast 

agents (GBCAs) are widely accepted as safe, there are potential limitations associated 

with their use. The administration of GBCAs requires intravenous access and physician 

monitoring, which increases the cost and length of breast MRIs. The use of GBCAs also 

limits MRI in the small subsets of patients with severely impaired renal function and 

pregnant patients. Furthermore, concerns remain about the unknown clinical significance of 

gadolinium deposition, especially in the supplemental screening population (3). In response, 

there is rising interest in non-contrast alternatives in breast MRI. Studies to date have shown 

that the diagnostic performance of non-contrast sequences (diffusion-weighted imaging in 

conjunction with T1 and/or T2 series) is promising but remains inferior to contrast-enhanced 

MRI (4–10).

Recent studies using brain MRI studies have demonstrated the feasibility of synthesizing 

contrast-enhanced images from pre-contrast inputs using deep learning (11–14). These 

results raise the possibility of applying similar deep learning techniques to breast MRI. 

However, the feasibility of creating simulated contrast-enhanced MRI in the breast is 

unknown. Compared with the brain, the breast poses several unique challenges, including 

misregistration due to mobility of the breast tissue, greater field inhomogeneity, fewer 

pre-contrast series, and wider variability in tissue density and vascularity.

The purpose of this pilot study was to evaluate the feasibility and accuracy of generating 

simulated contrast-enhanced T1-weighted breast MRI from pre-contrast MRI sequences in 

patients with biopsy-proven invasive breast cancer using deep learning.

METHODS AND MATERIALS:

Our institutional review board approved this Health Insurance Portability and Accountability 

Act-compliant study and waived the requirement for written informed consent.

Patient Sample

A single academic institution, retrospective radiology database search identified consecutive 

breast MRI examinations performed between January 2015 and December 2019 for extent 

of disease evaluation in women with invasive breast cancer. Exclusion criteria were ductal 

carcinoma in situ without invasive disease; post-neoadjuvant treatment; MRI performed for 
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evaluation of residual/recurrent disease; and work-up of metastasis with unknown location 

of breast primary.

MRI Acquisition, Image Preprocessing, Deep Learning Convolutional Neural Network 
Architecture, and Model Hyperparameters are detailed in Figure 1 and Appendix.

Model Inputs and Training

The network was trained to predict post-contrast images from 5 pre-contrast sequences: 

T1-non-FS, T1-FS, T2-FS, diffusion-weighted imaging, and apparent diffusion coefficient. 

The first post-contrast phase of the dynamic post-contrast T1-FS series was used as the 

ground truth. A seven-fold cross-validation method was used with a split of 85% training 

and 15% testing, ensuring independent training and testing sets. Full code for network 

implementation is provided at https://github.com/ecalabr/breast_simulated_gad. Additional 

details in Appendix.

Quantitative Assessment: Whole Breast Similarity and Error Metrics

Quantitative analysis was performed on the test set including images from all seven 

cross-validation iterations. Similarity between real and simulated MRIs was quantitatively 

evaluated using three similarity metrics (neighborhood cross-correlation, histogram mutual 

information, structural similarity index) and four error metrics (normalized root mean square 

error, symmetric mean absolute percent error, log accuracy ratio, and median symmetric 

accuracy) computed across the whole breast (15–17). Additional details in Appendix.

Quantitative Assessment: Dice Overlap of Enhancing Tumor Volume

Enhancing components of biopsy-proven malignant masses were segmented on real 

and simulated MRI. We excluded studies with only non-mass enhancement due to ill-

defined boundaries limiting segmentation reproducibility. Tumor segmentations on real and 

simulated MRI were compared using Dice coefficient of overlap.

Qualitative Assessment: Multi-reader Study

To supplement the quantitative assessments, a multi-reader study was performed. Thirty 

pairs of simulated MRI and real MRI from the test sets of two cross-validation folds 

were obtained for the multi-reader study. A breast radiology attending (A.L.), with six 

years of experience and who was not a study reader, reviewed the real MRIs while 

blinded to the simulated MRIs. The radiologist identified 22 cases with an identifiable 

and measurable mass on the real MRI which were then included in the reader study. 

Cases without an identifiable index mass on the real MRI and cases with only foci and/or 

non-mass enhancement were excluded. The 22 pairs of real and simulated MRI were 

separated, randomly assigned, and read between the two sessions separated by a minimum 

two-week washout period. Each session included a mix of simulated and real post-contrast 

images in randomized order. The real and simulated MRI from the same patient never 

appeared together in the same reader session. The 22 pairs of real and simulated MRI 

were independently assessed by four blinded breast imaging radiologists (authors B.N.J., 

K.M.R., T.K., J.H.H.) with experience ranging from 3 years to 15 years. Readers indicated 

whether the whole exam had the appearance of a real contrast-enhanced breast MRI and 
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whether the index tumor demonstrated enhancement. Readers measured the maximum axial 

dimension of the dominant index mass. Readers assessed diagnostic image quality on a 

5-point Likert-type scale (5: excellent, 4: good, 3: acceptable, 2: poor, 1: unacceptable). 

Additional details are in Appendix.

Statistical Analysis

Intraclass correlation coefficients quantified the correlation between tumor sizes on real 

and simulated MRI by reader as well as inter-reader reliability among the four readers. 

Modified Bland-Altman plots with repeated measures assessed tumor size agreement 

between simulated and real MRI (18). Mean bias values and limits of agreement lines (two 

standard deviations above and below the mean) were calculated. Paired t-test evaluated 

differences between the tumor sizes on real and simulated MRI. Quality ratings from 

the four readers were summed to obtain a combined rating for real and simulated MRI, 

respectively. The number of studies considered acceptable for diagnostic use (quality score 

≥3) were compared using McNemar’s test. Similarity and error metrics between the full 

model and each combination of T1 FS plus one pre-contrast series were compared using 

Wilcoxon signed-rank test. P value < 0.05 was considered statistically significant. Statistical 

analyses were performed by two of the authors (M.C. and R.S.).

Post-hoc analysis of the multi-reader study (n=22) demonstrated a power of 0.99 to detect 

a clinically significant difference in tumor size (>5 mm) between real and simulated MRI. 

This was conservatively calculated using the smallest effect size among the four readers 

(effect size 0.90 based on standard deviation of difference of 5.53) and 2-sided matched pair 

t-test at the 5% significance level. The number of cases in the multi-reader study is similar 

to that in the multi-reader study (n = 20) reported by Kleesiek et al. for simulated contrast in 

brain MRI (12). Statistical analysis was performed using R (version 4.1.2; R Foundation for 

Statistical Computing) (19). Post-hoc analysis was performed using G*power (20).

RESULTS

Patient Characteristics

101 studies from 101 women were included for training and testing. In each cross-validation 

fold, the training and testing sets consisted of approximately 86 MRIs and 15 MRIs, 

respectively. No validation set was included. 101 pairs of real and simulated MRIs were 

compiled from test sets of the seven cross-validation folds. After training and testing, five 

more cases were subsequently found to meet exclusion criteria upon additional review of the 

electronic medical records (not apparent from the initial radiology report review), and these 

were excluded from quantitative and qualitative assessments. One case was downgraded 

from invasive lobular carcinoma to lobular carcinoma in situ upon a second review of 

outside pathology. One case was performed for evaluation of residual/recurrent disease in a 

patient with history of partial mastectomy. Three cases had pathologic diagnoses of ductal 

carcinoma in-situ without evidence of invasive ductal carcinoma. 96 women (mean age, 

52 years ± 12 [standard deviation]; median, 50 years; interquartile range, 43–60 years) 

were included for assessment (Figure 2). MRI appearance of the 96 biopsy-proven invasive 

breast cancers included 51 masses (53%), 8 non-mass enhancement (8%), and 37 mass 
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and non-mass enhancement (39%). Invasive cancer types were 78 ductal (81%), 10 lobular 

(10%), 6 ductal and lobular (6%), and 2 mucinous (2%). Mean lesion size was 2.4 cm 

(median 2.0 cm, range 0.7 – 7.8 cm). Most (71/96; 74%) demonstrated type 3 enhancement 

kinetics. Demographic information and tumor characteristics are summarized in Tables 1 

and 2.

Quantitative Assessment: Whole Breast Similarity and Error Metrics

96 pairs of real and simulated MRIs were included in the assessment of similarity and error 

metrics across the whole breast (Figure 3). There was strong similarity between real and 

simulated MRIs in terms of structural similarity index (mean 0.88 ± 0.05 [SD]; median 

0.89; IQR 0.86–0.91) and histogram mutual information (mean 0.68 ± 0.15; median 0.70; 

IQR 0.62–0.77). Neighborhood cross-correlation was lower (mean 0.50 ± 0.11; median 

0.52; IQR 0.46–0.57). There was low voxel-wise error between real and simulated MRI as 

demonstrated by the symmetric mean absolute percent error (mean 3.26% ± 1.0%; median 

3.07%; IQR 2.69–3.47%), normalized root mean square error (mean 0.04 ± 0.01; median 

0.04; IQR 0.03–0.04), log accuracy ratio (mean 0.07 ± 0.02; median 0.06; IQR 0.05–0.07), 

and median symmetric accuracy (mean 0.05 ± 0.02; median 0.05; IQR 0.04–0.05).

Quantitative Assessment: Tumor Dice Overlap

Eight cases with only non-mass enhancement without a discrete mass were excluded from 

Dice quantitative assessment. After exclusions, 88 pairs of real and simulated MRIs were 

included in the Dice assessment. Average Dice coefficient of overlap between the real and 

simulated MRI enhancing tumor component was 0.75 ± 0.25 with median of 0.84 and 

IQR of 0.75–0.89. Seven cases that failed to simulate enhancement of the index lesion on 

simulated MRIs were included in the assessment. Additional details are in the Appendix.

Qualitative Assessment: Multi-reader Study

Each of the twenty-two pairs of real and simulated MRIs was read by four blinded 

radiologists for a total of 176 reads (88 real and 88 simulated MRI reads). All cases 

of real and simulated MRIs were assessed by the readers as having the appearance of a 

real contrast-enhanced MRI (Figure 4). One case that failed to simulate enhancement on 

simulated MRI was excluded from measurement assessment (Figure 5).

Bias of simulated MRI, as assessed using the mean differences between tumor sizes on 

real and simulated MRI for each of the four readers, were −0.8 mm (95% CI: −3.1 mm, 

1.6 mm), 0.8mm (95% CI: −1.1, 2.8 mm), −0.5 mm (95% CI: −2.5 mm, 1.6 mm), and 

−0.3 mm (95% CI: −2.2 mm, 2.8 mm), respectively (P=.36-.80). Means of the absolute 

difference within pairs of real and simulated MRI were 3.0 mm (95% CI: 1.9 mm, 4.9 mm), 

3.0 mm (95% CI: 1.6 mm, 4.3 mm), 3.1 mm (95% CI: 1.6 mm, 4.6 mm), and 3.2 mm 

(95% CI: 1.2 mm, 5.2 mm). 85% (71/84) of the tumor sizes on real and simulated MRI 

demonstrated absolute differences ≤ 5 mm. There was good to excellent correlation between 

real and simulated MRI tumor sizes (intraclass correlation coefficient [ICC] 0.73–0.86; 

P=<.001). Bland–Altman analyses of tumor size agreement demonstrated mean bias of −0.2 

mm (Figure 6). There was good inter-reader reliability among the four readers with ICC of 
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0.78 (95% CI: 0.52, 0.90)(P=<.001) using real MRI and 0.85 (95% CI: 0.67, 0.94)(P=<.001) 

using simulated MRI.

Most of the real MRIs (47/88; 53%) were rated as “excellent,” and most simulated MRIs 

(38/96; 43%) were rated as “good.” The four readers considered 88/88 (100%) of the real 

MRIs and 84/88 (95%) of simulated MRIs of diagnostic quality (image quality scores of 

acceptable/good/excellent) (P=.13). Of the four simulated MRIs rated non-diagnostic, two 

were due to image resolution, one due to image resolution and incomplete fat saturation, and 

one due to present but decreased contrast enhancement.

DISCUSSION:

There is increasing interest in the accessibility of non-contrast breast MRI alternatives 

for tumor visualization. Our results demonstrate the feasibility of using deep learning 

to generate simulated contrast-enhanced breast MRIs from pre-contrast images. Real and 

simulated MRIs were quantitatively similar with high structural similarity index (0.88 ± 

0.05), low pixelwise error (symmetric mean absolute percent error of 3.26%), and high 

degree of enhancing tumor overlap (Dice coefficient, 0.75 ± 0.25). There was good to 

excellent correlation between real and simulated MRI tumor sizes (intraclass correlation 

coefficient 0.73–0.86; P<.001). Also, in our multi-reader study, 95% (84/88) of simulated 

MRI had image quality scores of acceptable, good, or excellent and all simulated MRIs were 

assessed as having the appearance of a real contrast-enhanced MRI.

Two previously published studies used deep learning techniques to generate simulated 

contrast-enhanced brain MRIs in humans (12,14). But application to breast MRI has several 

additional challenges. The breast is mobile and compressible with varying background 

parenchymal enhancement and respiratory motion artifacts, which could affect algorithm 

performance. Standard breast MRI protocols consist of fewer pre-contrast sequences 

than brain MRI protocols for post-contrast prediction and lack non-contrast perfusion 

techniques such as arterial spin labeling. Despite these challenges, our quantitative 

analysis demonstrated strong quantitative similarity and low voxel-wise error between real 

and simulated MRI. Our structural similarity index across the whole breast (0.88) was 

comparable to indices reported in prior brain MRI studies (0.86–0.87)(12,14). Our high Dice 

score performance (Dice coefficient, 0.75) in enhancing tumor regions between real and 

simulated MRI was similar to the performance in previous mouse models and surpasses that 

in human brain tumors (0.65)(13,14). Also, a sizable percentage (95%) of simulated MRIs 

in our multi-reader study were considered of diagnostic quality, similar to that reported 

by Kleesiek et al. (12). Most of simulated MRIs were assessed as “good” (43%) while 

most of real MRIs were assessed as “excellent” (53%). Future refinement of co-registration 

among MRI series and expansion of training to larger datasets may help improve image 

quality. Overall, simulated MRI did not demonstrate substantial over- or under-estimation of 

enhancing tumor size as 95% CIs of bias were within +/− 5 mm, a range considered to be 

concordant with the real MRI (21).

Our study has limitations. First, this was a small pilot study limited to a single academic 

institution, limiting the generalizability. Second, for the purposes of this proof-of-concept 
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study, we focused on invasive breast cancers only. Third, we excluded cases with only non-

mass enhancement in the multi-reader study and assessment of Dice overlap of enhancing 

tumor. Fourth, we did not evaluate extent of disease or include normal, BI-RADS 1 

MRI examinations or benign pathologies to evaluate performance metrics. Fifth, lesion 

measurements were made only in the axial plane. Sixth, misregistration among series may 

limit algorithm training and performance. Seventh, laterality and location of the index 

malignancy were provided to the readers. Finally, given the relatively small number of cases 

in the reader study, readers may have been susceptible to recall bias despite the two-week 

washout period.

In conclusion, this proof-of-concept study demonstrated the feasibility of generating 

simulated contrast-enhanced breast MRI using deep learning. Simulated and real contrast-

enhanced MRI demonstrated comparable tumor sizes, areas of tumor enhancement, and 

image quality without significant qualitative or quantitative differences. Although simulated 

contrast-enhanced MRI is not intended nor likely to replace all real MRI, it has the 

potential to extend the benefits and accessibility of breast MRI by reducing the necessity 

of contrast for tumor visualization. In addition, simulated MRI may have potential roles 

in high-risk screening, although further research is needed. Additional areas for potential 

investigation include supplemental screening of average to intermediate-risk women and 

locoregional staging of pregnancy-associated breast cancers. Also, future studies with larger, 

external datasets should investigate whether specific patient and tumor characteristics (e.g. 

size, histologic and molecular subtype) may be associated with failed enhancement and 

evaluate extent of disease, including more lesion types, (e.g. ductal carcinoma in situ and 

benign pathologies) and other lesion morphologies, (e.g. non-mass enhancement and foci). 

In particular, further study is needed to evaluate the performance of simulated contrast-

enhanced MRI in smaller lesions and those with progressive or plateau kinetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

APPENDIX

MRI Acquisition:

Bilateral dynamic contrast-enhanced breast MRI examinations were performed on a 1.5-

Tesla scanner (Signa; GE Medical Systems) or 3.0-Tesla scanner (Magnetom Verio, 

Siemens) with a dedicated breast coil (Sentinelle Medical). Images of the bilateral breasts 

were acquired in the axial plane with patients in the prone position. Imaging sequences 

included T1-weighted non-fat-suppressed series (T1-non-FS), T2-weighted fat-suppressed 

series (T2-FS), diffusion-weighted imaging (DWI), and pre-contrast and dynamic post-

contrast T1-weighted fat-suppressed series (T1-FS). Examinations were performed using 

the following parameters: TR/TE for 1.5T imaging, 9/4.4; TR/TE for 3T images, 7.1/4.9; 

number of excitations, 1; matrix, 512 × 320 × 384; field of view 29–36 cm; slice 

thickness 2mm at 1.5T or 0.8mm at 3T. Patients received 0.1 mmol/kg bodyweight of 

a gadolinium-based contrast agent which was administered intravenously with a remote-
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controlled power injector (Spectris; Medrad) followed by 20 mL saline flush. Acquisition 

times were approximately180 seconds each. The central phase-encoding lines of each 

dataset were acquired halfway through the acquisition, resulting in an effective sample time 

of approximately 90 seconds for the early postcontrast series. The diffusion sequences were 

acquired after dynamic contrast-enhanced breast MRI examinations. Diffusion-weighted 

imaging data were acquired with a fat-suppressed diffusion-weighted echo-planar imaging 

sequence using the imaging parameters: TR/TE = 6000/69.6 ms, b = 0, 600 s/mm2, FOV = 

400 × 400 mm, matrix = 128 × 128, slice thickness = 3 mm, gap = 0, averages = 6, and voxel 

size: = 29.3 mm3.

MRI Pre-processing: Image Data Conversion and Deidentification

Training data consisted of T1-non-FS, T2-FS, pre-contrast and post-contrast T1-FS, and 

DWI trace. The first post-contrast phase of the dynamic post-contrast T1-FS, obtained 

at approximately 90 seconds, was the ground-truth. All MRI examinations underwent 

pre-processing steps including data conversion from DICOM to NifTI, deidentification, 

co-registration, whole breast segmentation, and intensity normalization. All image data were 

deidentified and converted to the NIfTI file format using dcm2niix 1.0. The dcm2niix 

command structure used was the following: dcm2niix -w 2 -b n -z y -x n -t n -m n -f /path/to/

output/nifti.nii.gz -o /path/to/output/ -s y -v n /path/to/dicom/image.dcm.

MRI Pre-processing: Co-registration

Co-registration of all images to a standardized anatomic space was performed using freely 

available automated image registration tools (Advanced Normalization Tools [ANTS])(22). 

T1-non-FS, T2-FS, and post-contrast T1-FS sequences were registered to the T1-FS using 

a rigid + affine registration strategy. For DWI, the B = 0 sec/mm2 images were registered 

to the T2-fat-suppressed using a rigid + affine registration strategy then applied to the 

trace DWI images. The T1-FS images were selected as the registration target because these 

images have the highest spatial resolution and contrast-to-noise ratio of the non-contrast 

series. Registration parameters were as follows: rigid: gradient step 0.1, four levels with 

shrink factors of [4, 3, 2, 1], smoothing sigmas of [6, 4, 1, 0] voxels, iterations of [1000, 

500, 250, 50], convergence threshold of 1e-07, and a convergence window of 10 samples; 

affine: gradient step 0.1, four levels with shrink factors of [4, 3, 2, 1], smoothing sigmas of 

[6, 4, 1, 0] voxels, iterations of [1000, 1000, 1000, 1000], convergence threshold of 1e-07, 

and a convergence window of 10 samples. In all cases, mutual information was used as the 

similarity metric with 32 bins, a regular sampling strategy, and a sampling percentage of 

25%.

For quality control, each study was manually inspected by one of the authors (M.C.) for 

accurate co-registration among all series by checking several points through the MRI exam 

including the breast-air interface, chest wall-to-mediastinum interface, and lymph nodes. 

Exams with misregistration of greater than 5 mm were excluded. See Supplemental Figure 1 

for an example of pre- and post-registration series images.
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MRI Pre-processing: Whole Breast Masking

De-identified data underwent a series of pre-processing steps implemented using Python 

3.8 and Nipype 1.6.0. Automated whole breast segmentation was performed on T1 non-FS 

using a 3D deep learning, convolutional neural network segmentation algorithm based on the 

U-net architecture with 2 downsampling steps and 3, 4, and 5 convolutional layers per level 

(14,23). We trained the network using overlapping 80 × 80 × 80 voxel patches from 200 

breast MRIs that were manually segmented to omit areas including air, mediastinum, and 

liver from each image using the ITK-SNAP 3.8.0 software. All automated whole breast 

segmentations were inspected by one of the authors (M.C.). When necessary, manual 

correction was performed by the author using ITK-SNAP 3.8.0 for identified areas of 

under-or over-segmentation (24). Automated whole breast segmentations were applied as 

masks to the other co-registered MRI series.

MRI Pre-processing: Intensity Normalization

Each individual image series underwent intensity normalization during pre-processing using 

the zero mean, unit standard deviation method (sometimes referred to as Z-score). CNR and 

SNR were not separately calculated and compared.

Deep Learning, Convolutional Neural Network Architecture

We implemented a previously published three-dimensional deep learning, convolutional 

neural network model used by Calabrese et al. to synthesize post-contrast images from 

pre-contrast brain MRI (14). The model architecture was based on the U-net architecture 

(25) with three-dimensional convolutions, convolutional up/downsampling, long range skip 

connections, bottleneck residual blocks (26), per-layer batch normalization, leaky ReLU 

activation, and feature dropout (Figure 1). The U-Net architecture consisted of three levels 

(including the bottom level) with three, four, and five 3 × 3 × 3–voxel convolution bottleneck 

residual blocks, respectively. In the descending (encoding) limb of the network, the first 

two levels were followed by a 1 × 1 × 1– voxel convolutional downsampling layer with 

strides of 2 × 2 × 2 voxels. In the ascending (decoding) limb of the network, the last two 

levels were preceded by a 1 × 1 × 1 deconvolutional (transpose convolution) upsampling 

layer with strides 2 × 2 × 2 voxels. A 1 × 1 × 1 convolutional layer with a single filter 

was used as the output layer to map features directly to output image intensities. Long-range 

skip connections between the descending and ascending limbs were accomplished with 

feature concatenation. The number of filters per layer was determined by multiplying a base 

number of filters by 2 for each downsampling layer and dividing by 2 for each upsampling 

layer. The final model had a total of 62 3D convolutional layers and 835,505 trainable 

parameters. The model was implemented using Python 3.8 and Tensorflow 2.3.0. Full code 

for network implementation is provided at https://github.com/ecalabr/breast_simulated_gad 

(specific version hash: 76e5347b5e9b0e98ab02db1b1728986412050de8).
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Model Hyperparameters

We used the optimal hyperparameters reported by Calabrese et al. given the similarity of the 

deep learning tasks (14). Also, the relatively low data volume in this pilot study limited a 

robust hyperparameter search. The hyperparameters included 32 base filters per layer, batch 

size of 16, and dropout rate of 0.4. The hyperparameters were not tuned using the training or 

validation data.

Model Inputs and Training

The network was trained to predict post-contrast images from 4 pre-contrast sequences: T1-

non-FS, T1-FS, T2-FS, and DWI. The first post-contrast phase of the dynamic post-contrast 

T1-FS series, obtained at approximately 90 seconds, was the ground-truth. Training inputs 

consisted of 80 × 80 × 80–voxel patches from each of the four precontrast image series 

with strides of 20 voxels in all dimensions (25% overlap). The different series contrasts 

were concatenated in a 4th dimension (total input data shape of 80 × 80 × 80 × 4). 

Patches were uniformly sampled across the masked breast volume. Patches with less than 

20% of voxels within the breast (i.e. >80% empty) were discarded. Data augmentation 

steps included random three-axis rotations of −30 to +30 degrees and random dimension 

swaps. A seven-fold cross-validation method was used. For each cross-validation fold, 

we reinitialized a blank model, independently trained it with 85% of MRIs, and used 

the remaining 15% as independent test data. Validation sets were not included. Training 

consisted of predetermined 20 epochs without early stopping. The loss function for model 

training was the mean squared error between the intensity-normalized real and simulated 

contrast-enhanced images. The test set rotates through the data set such that, after all seven 

cross-validation folds, all 101 MRIs are included in the test set once. After completing all 

seven cross-validation folds, we compiled the simulated contrast MRIs (n=101) from the 

seven test sets for qualitative and quantitative analysis.

Training was performed on a NVIDIA DGX-2 system with 16 Tesla V100 32-GB GPUs, 

dual Intel Xeon Platinum 8168 2.7-GHz 24- core CPUs, and 1.5 TB of system memory. 

Each training session was distributed across 4 GPUs using a mirrored strategy with 

synchronized global update variables. Up to four training sessions were run simultaneously 

using 16 total GPUs.

Qualitative Assessment: Multi-reader Study of Conventional vs. Synthetic 

Contrast Enhanced MRI

Thirty pairs of simulated MRI and real MRI from the test sets of two cross-validation 

folds were obtained for the multi-reader study. A breast radiology attending (A.L), with 

six years of experience and who was not a study reader, reviewed the real MRIs while 

blinded to the simulated MRIs. The radiologist identified 22 cases with an identifiable and 

measurable mass on the real MRI which were then included in the reader study. Cases 

without an identifiable index mass on the real MRI and cases with only foci and/or non-

mass enhancement were excluded. Four blinded, breast fellowship-trained, MQSA-certified 

attending academic radiologists (authors B.N.J., K.M.R., T.K., J.H.H.) were selected as 
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readers. Reader experience in breast imaging, including interpretation of breast MRI, ranged 

from 3 years to 15 years. The 22 pairs of real and synthetic contrast MRI were separated, 

randomly assigned, and read between the two sessions, with each session including a mix of 

synthetic and conventional post-contrast images in randomized order. The two sessions were 

separated by a two-week memory washout period to reduce the influence of recall bias. All 

image metadata were removed and studies were assigned a randomly selected identification 

number. To ensure all readers evaluate and measure the same index lesion, the laterality 

and location of the index malignancy were provided to the readers. Readers were blinded 

to whether each study was a simulated MRI or real MRI. For each study the readers were 

asked: 1) “Does the image look like a real contrast-enhanced breast MRI?” (Yes/No), 2) “Is 

index tumor enhancement present?” (Yes/No). Readers provided a quantitative maximum 

dimension measurement of the dominant index mass at the site of the biopsy-proven 

malignancy. Readers also provided qualitative assessment of diagnostic image quality by 

scoring on a 5-point Likert-type scale: 5 = excellent (acceptable for diagnostic use), 4 = 

good (acceptable for diagnostic use), 3 = acceptable (acceptable for diagnostic use but 

with minor issues), 2 = poor (not acceptable for diagnostic use), or 1 = unacceptable (not 

acceptable for diagnostic use). For studies that were rated not acceptable for diagnostic 

use (score 1 or 2), readers indicated the reason: artifact, image resolution, lack of expected 

enhancement, or other (free text). Readers viewed and measured indexed tumors on an 

internet-based picture archiving and communication (https://www.pacsbin.com/). Reader 

responses were recorded in an Excel spreadsheet (version 16.64).

Quantitative Metrics for Image Comparison

Similarity between real and simulated MRIs were quantitatively evaluated using three 

similarity metrics four error metrics computed across the whole breast (15–17). Similarity 

metrics included normalized neighborhood cross correlation (CC) with a 5-voxel radius, 

histogram mutual information (MI) with 64 histogram bins, and the structural similarity 

index with a window size of 9 pixels. Error metrics were calculated after scaling normalized 

images to a common clinical MRI intensity range (12-bit or 0–4095) and included 

normalized root mean square error, symmetric mean absolute percent error, log accuracy 

ratio, and median symmetric accuracy. Similarity and error metrics were implemented in 

Python with Numpy 1.19.2, except for CC and MI, which were implemented with the 

Nipype 1.6.0 interface to Advanced Normalization Tools. Neighborhood-based similarity 

metrics were evaluated on images cropped to the tight bounding box of the whole breast. 

Metrics not dependent on voxel neighborhoods (all of the error metrics) were evaluated 

on flattened (one-dimensional) arrays of voxels within the evaluation region. Full code 

for network implementation is provided at https://github.com/ecalabr/breast_simulated_gad 

(specific version hash: 76e5347b5e9b0e98ab02db1b1728986412050de8).

Cases with Failed Tumor Enhancement

Of the 96 cases, seven demonstrated failed tumor enhancement. Breast density distribution 

among these seven cases was one scattered fibroglandular tissue, four heterogeneously 

dense, and one extremely dense. This distribution is similar to that in the entire patient 

sample (Table 1). These seven cases also included all levels of background parenchymal 
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enhancement (two minimal, three mild, one moderate, and one marked). Tumor size ranged 

from 0.8 to 3.3 cm and did not appear to be a major factor in failed enhancement 

prediction. Notably, one case of invasive lobular and one of invasive mucinous carcinoma 

demonstrated failed simulated tumor enhancement. This raises the possibility that cancer 

subtypes may exhibit different mathematical relationships between pre- and post-contrast 

series. The relatively small number of these less common tumor subtypes in our dataset 

may have limited algorithm modeling of their signal relationships. The five cases of invasive 

ductal carcinoma with failed tumor enhancement could be related to heterogeneity in tumor 

appearance and signal relationships within tumor subtypes as well. A larger dataset that 

includes robust numbers of less common tumor subtypes and various tumor appearances 

within each subtype may help improve algorithm generalizability and computational contrast 

simulation.

Relative Contribution of Input Series

The relative contribution of each of the pre-contrast input series to the simulated post-

contrast images was determined by training the dCNN model on 15 MRIs with each 

combination of the T1-FS series plus one pre-contrast series (T1-FS + T1 nonFS, T1-

FS + T2 FS, T1-FS + DWI, and T1-FS + apparent diffusion coefficient). Training for 

each combination consisted of predetermined 20 epochs without early stopping. Model 

performance of each combination was assessed using similarity and error metrics as 

described previously. 95% confidence intervals of similarity and error metrics were 

calculated. Statistical significance was determined by using Wilcoxon signed-rank test.

All pre-contrast models trained with combinations of two series (T1-FS + one pre-contrast 

series) demonstrated lower performance by similarity and error metrics than the full model; 

however, not all differences reached statistical significance (Supplemental Figures 2 and 3). 

In addition to the T1-FS images, T2-FS and b0 were the most important pre-contrast series 

for contrast simulation with T1-FS + T2-FS and T2-FS + b0 demonstrating performance 

metrics closest to the full model among the pre-contrast combinations.

Abbreviations:

FS fat-suppressed
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Key Results:

• In a retrospective study of 96 women with invasive breast cancer, simulated 

contrast-enhanced breast MRIs were quantitatively similar to real contrast-

enhanced MRIs with a mean structural similarity index 0.88 ± 0.05.

• Simulated and real contrast-enhanced MRIs demonstrated high degree of 

enhancing tumor overlap (Dice coefficient 0.75 ± 0.25).

• Breast radiologists assessed all simulated MRIs as having the appearance of 

real contrast-enhanced MRIs and almost all were of diagnostic quality (84 of 

88; 95%).
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Figure 1: 
Schematic of the Deep Learning, Fully Convolutional Neural Network Architecture

The deep learning, convolutional neural network was trained on 80×80×80 voxels training 

patches from preprocessed images. Our network architecture consisted of a deep learning, 

convolutional neural network with three-dimensional convolution bottleneck residual blocks 

(blue blocks), strided convolution downsampling (yellow trapezoids), transpose convolution 

upsampling (orange trapezoids), and long-range skip connections with feature concatenation 

(dashed lines). A 1×1×1 convolutional layer (orange block) mapped features to final output 

image patches. A schematic of the 3×3×3 bottleneck residual block is included (bottom left).
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Figure 2: 
Study Flow Chart

Ductal carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS).
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Figure 3: 
Quantitative Similarity and Error Metrics for Real versus Simulated Contrast-enhanced MRI 

across the Whole Breast

Overall, there was strong similarity and low voxel-wise error across the whole breast. 

Similarity metrics: structural similarity index (SSIM), histogram mutual information (MI), 

and normalized neighborhood cross correlation (CC). Four error metrics: normalized root 

mean square error (NRMSE), symmetric mean absolute percent error (SMAPE), median 

symmetric accuracy (MdSA), and log accuracy ratio (LOGAC).
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Figure 4. 
Real versus Simulated Contrast-enhanced T1-weighted Axial Breast MRIs of Patients with 

Invasive Breast Cancer

Pairs of real (top) and simulated (bottom) contrast-enhanced breast MRI from 15 patients 

with invasive breast cancer (arrows). Intrathoracic and extramammary structures were 

masked in all images.
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Figure 5: 
Failed Enhancement of the Index lesion on the Simulated Contrast-enhanced MRI

Simulated contrast-enhanced MRI (bottom) demonstrated failed index lesion enhancement 

(arrows) compared with the real contrast-enhanced MRI (top).
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Figure 6. 
Agreement of Tumor Sizes on Real and Simulated Contrast-enhanced Breast MRI

Modified Bland-Altman plot of agreement of tumor sizes on real versus simulated contrast-

enhanced breast MRI. The dotted red lines and black dashed lines represent bias and limits 

of agreement lines (two standard deviations above and below the mean), respectively.
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Table 1:

Patient Clinical Characteristics

Characteristic Whole Sample

No. of women 96

Age (y)

 Mean 52 ± 12

 Range 26–76

Menopausal Status

 Premenopausal 47 (49%)

 Postmenopausal 49 (51%)

Fibroglandular Tissue

 Fatty 0 (0%)

 Scattered 27 (28%)

 Heterogenous 43 (45%)

 Extremely Dense 26 (27%)

Background Parenchymal Enhancement

 Minimal 15 (16%)

 Mild 45 (47%)

 Moderate 21 (22%)

 Marked 15 (16%)

MRI Tesla

 1.5 T 19

 3 T 77

Note: Data are numbers of women with percentages in parentheses, unless otherwise stated. Mean age is ± standard deviation.

*
Data in parentheses are interquartile range.
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Table 2.

Tumor Characteristics

Characteristic Whole Sample

ER Status

 Positive 19 (20%)

 Negative 76 (79%)

 Not Available 1 (1%)

PR Status

 Positive 38 (40%)

 Negative 56 (58%)

 Not Available 2 (2%)

HER2 Status

 Positive 75 (78%)

 Negative 19 (20%)

 Not Available 2 (2%)

Ki-67 Status

 <14% 46 (48%)

 ≥ 14% 42 (44%)

 Not Available 8 (8%)

Nuclear Grade

 1 5 (5%)

 2 46 (48%)

 3 44 (46%)

 Not Available 1 (1%)

Kinetics: Initial Phase

 Slow 0 (0%)

 Medium 4 (4%)

 Fast 92 (96%)

Kinetics: Delayed Phase

 Persistent 7 (7%)

 Plateau 18 (19%)

 Washout 71 (74%)

Type of Lesion

 Mass Only 51 (53%)

 NME Only 8 (8%)

 Mass and NME 37 (39%)

Lesion Size

 Mean 2.4 cm
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Characteristic Whole Sample

 Median 2.0 cm

 Range 0.7 cm – 7.8 cm
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Table 3:

Multi-reader Assessment of Image Quality of Real versus Simulated Contrast-enhanced MRI

Image Quality Real Post Contrast Simulated Contrast

Combined (n=88)

Non-diagnostic (unacceptable/poor) 0 (0%) 4 (5%)

Diagnostic (good/acceptable/excellent) 88 (100%) 84 (95%)

Combined (n=88)

Unacceptable 0 (0%) 0 (0%)

Poor 0 (0%) 4 (5%)

Acceptable 12 (14%) 30 (34%)

Good 29 (33%) 38 (43%)

Excellent 47 (53%) 16 (18%)

Reader 1 (n=22)

Unacceptable 0 (0%) 0 (0%)

Poor 0 (0%) 1 (5%)

Acceptable 1 (5%) 3 (14%)

Good 4 (18%) 9 (41%)

Excellent 17 (77%) 9 (41%)

Reader 2 (n=22)

Unacceptable 0 (0%) 0 (0%)

Poor 0 (0%) 0 (0%)

Acceptable 6 (28%) 13 (59%)

Good 8 (36%) 7 (32%)

Excellent 8 (36%) 2 (9%)

Reader 3 (n=22)

Unacceptable 0 (0%) 0 (0%)

Poor 0 (0%) 3 (14%)

Acceptable 3 (14%) 6 (27%)

Good 8 (36%) 9 (41%)

Excellent 11 (50%) 4 (18%)

Reader 4 (n=22)

Unacceptable 0 (0%) 0 (0%)

Poor 0 (0%) 0 (0%)

Acceptable 2 (9%) 8 (36%)

Good 9 (41%) 13 (59%)

Excellent 11 (50%) 1 (5%)
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