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Abstract 

Purpose: Opal is the first published example of a full-stack platform infrastructure for an 

implementation science designed for ML in anesthesia that solves the problem of leveraging ML 

for clinical decision support. 

Methods: Users interact with a secure online Opal web application to select a desired operating 

room (OR) case cohort for data extraction, visualize datasets with built-in graphing techniques, 

and run in-client ML or extract data for external use. Opal was used to obtain data from 29,004 

unique OR cases from a single academic institution for pre-operative prediction of post-operative 

acute kidney injury (AKI) based on creatinine KDIGO criteria using predictors which included 

pre-operative  demographic, past medical history, medications, and flowsheet information. To 

demonstrate utility with unsupervised learning, Opal was also used to extract intra-operative 

flowsheet data from 2,995 unique OR cases and patients were clustered using PCA analysis and 

k-means clustering..  

Results: A gradient boosting machine model was developed using an 80/20 train to test ratio and 

yielded an area under the receiver operating curve (ROC-AUC) of 0.85 with 95% CI [0.80-0.90]. 

At the default probability decision threshold of 0.5, the model sensitivity was 0.9 and the 

specificity was 0.8. K-means clustering was performed to partition the cases into two clusters 

and for hypothesis generation of potential groups of outcomes related to intraoperative vitals.  

Conclusion: Opal’s design has created streamlined ML functionality for researchers and 

clinicians in the perioperative setting and opens the door for many future clinical applications, 

including data mining, clinical simulation, high-frequency prediction, and quality improvement. 
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Introduction 

The application of machine learning (ML) algorithms toward clinical decision support (CDS) has 

been demonstrated to be effective in many fields of medicine.1,2 Within clinical anesthesia, ML 

models have been trained to predict numerous clinical outcomes including intraoperative 

hypotension,3 post-operative length to discharge,4 and post-operative mortality.5,6 However, there 

remains a significant disparity between the rate of development of ML models and their clinical 

integration within the perioperative setting. 

 

Clinical dashboards are the primary approach to data management within the perioperative 

environment.7,8 One example is the anesthesia information management system (AIMS), a 

comprehensive system of hardware and software integrated with the electronic health record 

(EHR) that combines perioperative documentation review with the intraoperative record.9,10 

AIMS allow for a streamlined provider workflow with improved perioperative assessments, 

automated clinical decision support, quality improvement measures, and billing.10-13 A survey of 

academic medical institutions found that 75% of U.S. academic anesthesiology departments had 

adopted AIMS in 2014, with 84% expected to do so by 2018-2020.14  

 

Due to its broad national adoption, AIMS has been widely utilized for CDS.15-17 AIMS-based 

systems have been implemented to target post-operative nausea and vomiting,18 gaps in blood 

pressure monitoring,19 intraoperative hypotension and hypertension,20 hypoxia and acute lung 

injury21, and quality and billing improvement measures.22-24 High-frequency data updating 

AIMS-based systems have also been developed including Smart Anesthesia Manager (SAM), a 

near real-time AIMS-based system for addressing issues in clinical care, billing, compliance, and 

material waste.25 However, SAM and other AIMS-based systems have not yet been shown to be 

compatible with ML algorithms.  

 

ML has the potential to significantly reshape the intraoperative course of care. Wijnberge et al. 

demonstrated that an ML-based early warning system reduced median time of intraoperative 

hypotension.26 However, prediction of hypotension in this study was performed solely based on 

the intraoperative arterial waveform without additional data from the EHR. While a single-
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variable ML predictor has clinical value, we believe that a multi-variable ML system that 

combines intraoperative and EHR data can broadly improve effectiveness of anesthesia care. 

 

Here we discuss Opal, a specialized AIMS-based ML system designed for clinical and research 

operations that serves as a seamless connection between the EHR and health care providers. Opal 

provides expedient data extraction, adjustable queries by provider-determined cohort selection, 

and a detailed dashboard for comprehensive data visualization and implementation of ML 

algorithms. This comprehensive approach to clinical ML provides a unified solution to the 

traditional problems of data accessibility, provider usability, and security. 

 

As a demonstration of Opal’s capabilities, we have developed two simple machine learning 

models. One supervised learning model that predicts post-operative acute kidney injury (AKI) 

and a clustering model that uses intra-operative flowsheet values to cluster patients based on 

intraoperative vitals. Post-operative AKI is an important outcome to predict because AKI is 

associated with dangerous cardiac events and increased mortality. If early warning is available 

for an anesthesiologist, there are interventions available to reduce the likelihood that patient will 

have a poor outcome. Here we provide the development of these models and a simple internal 

validation of the AKI model, but external validation of both models would be recommended 

before use. 

 

Methods 

Data retrieval was approved by the UCSF institutional review board (IRB #17-23204) from 

UCSF’s EHR data warehouse for all operative cases from 2012 onward and the requirement for 

informed consent was waived by the IRB. Opal is an online application for physician use that 

performs streamlined ML for prediction and classification purposes within the clinical setting. It 

consists of a JavaScript web client and a PostgreSQL database that is populated with data from 

the EHR. Users interact with the web client as a front-end interface to extract information from 

the database based on a selected cohort. An overview of the Opal dataflow is provided in Figure 

1 and is divided into three key phases: cohort selection, data extraction and visualization, and 

clinical prediction.  
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Cohort Selection and Query Building 

During dynamic cohort selection, the user interacts with a client dashboard on the web browser 

that allows for selection of retrospective cases by patient identifier, time period, patient 

demographics, procedures, problem lists, and pre-operative laboratory values (Figure 2). Prior to 

data visualization, users are provided with a sample size estimate for their given set of 

parameters, which may be re-adjusted to match the desired sample size prior to submission. The 

user is also required to indicate a post-operative outcome of interest from a list of options, with 

examples including all-cause mortality, delirium, acute kidney injury, and nausea and vomiting. 

Once selection criteria are finalized, a dynamic SQL query of the variable database is executed 

when the user selects “Launch Visualization” on the dashboard. 

 

Data Extraction and Visualization 

There are currently 29,004 unique case IDs available for extraction within the Opal database that 

correspond to operative cases within the University of California, San Francisco health system 

between December 7, 2016 and December 31, 2019. The Opal database serves as a PostgreSQL 

database that is structurally divided into two separate partitions: a smaller cohort database that 

stores a list of case identifiers (ID) with corresponding clinical features that correlate with cohort 

selection, and a larger feature database that stores the complete set of medical features by case 

ID for data retrieval. Both databases will be updated weekly from the EHR and stored separate 

from the EHR, which allows for ML-optimized data processing. Large structural changes to the 

data are performed in this step (e.g. joining of medications with multiple names, validation of lab 

ranges, calculation of oral morphine equivalents). Once a cohort has been finalized, data is 

extracted from the variable database and outputted to the JavaScript web client for review and 

visualization (Figure 3). For large datasets, the web client can be bypassed and the data can be 

exported directly to an external source for large-scale analysis. 

 

When data is first passed into the JavaScript web client, a second step of automated data 

processing occurs to maximize data accuracy and completeness (see supplement for more 

details). Further data cleaning steps that were otherwise not performed in the PostgreSQL 

database occur here (e.g. regression imputation of missing values, merging of duplicate values, 
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separation of boluses and infusions). Users have the option to omit this step if they prefer manual 

processing, but automated pre-processing occurs at default. 

 

Users may access the Opal web client from any secure, in-network workstation including 

verified desktops, laptops, and mobile devices. The web client interface allows for users to 

review individual cases within the cohort. In the case review format, users can view vital signs, 

fluid administration, laboratory values, medications, and ventilation of retrospective cases in a 

chronologically ordered fashion. This is further discussed in the results section below. Opal also 

supports in-client ML though both unsupervised (K-means clustering) and supervised (logistic 

regression, random forest, gradient boosting machines) architectures, which can be used for 

comparison of current patient with retrospective cases. Deletion or omission of individual cases 

can also be performed at this time for further data processing. Once the user finalizes the cohort 

and meets the appropriate necessary IRB and other data safety requirements, the cases can be 

exported to an external platform via a JavaScript object notation (JSON) or comma-separated 

value (CSV) file for external analysis and model training. The case data can then be utilized for 

independent research or used to train a machine learning model to integrate back into Opal. 

 

Machine Learning and Clinical Prediction 

Opal can be utilized for clinical ML prediction. In its current iteration, Opal supports logistic 

regression (LR), random forest (RF), and gradient boosting machines (GBM) architectures, with 

support for additional architectures, such as neural networks. In order to perform clinical 

prediction in Opal, users can either first train a ML model on an external platform and then 

upload the model parameters back within Opal or train a smaller dataset using the Opal platform. 

For example, in order to employ a LR architecture users can provide an outcome of interest, a list 

of predictive features, and their corresponding weights. Once the user has defined the model 

within Opal, high-frequency data updates for a prospective patient can be retrieved by the 

JavaScript client from the EHR API to perform prediction on prospective cases. Models can be 

used for single cases to answer clinical questions, for batch prediction on a set of multiple cases, 

or can saved to be used for future use such as prospective analysis of predictive value for 

research models. All model prediction is performed within the JavaScript web browser, thereby 

increasing accessibility and usability for Opal users. 
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Data Security 

Security remains a large issue for all EHR and AIMS-based data systems, and Opal is designed 

to maximize security at each step of the data transfer. Since the Opal web client is available via 

web browser, it may be securely accessed on any encrypted, in-network device. A valid dual-

authentication user sign-on in addition to pre-approved device encryption are baseline 

requirements for accessing Opal. The subnet for the web client is private. The PostgreSQL 

databases are stored on secure, encrypted servers and no data is directly stored on the device at 

any time prior to a data export request from the user. As with most EHRs, logs are kept on every 

user and instance that accesses data on Opal for use tracking, and auditing is performed on an 

external server. Penetration testing is performed on a regular basis to ensure system security. 

 

Example Models Developed with Opal 

By providing streamlined access to EHR data, Opal allows for a variety of direct data analysis 

applications. Here we provide two discrete examples of data extraction through Opal, for use in 

ML analysis of acute kidney injury (AKI) and intraoperative vitals clustere analysis. Supervised 

learning via a gradient boosting machine (GBM) was conducted to train a model for the 

prediction of prospective AKI patients, while unsupervised learning via K-means clustering was 

used to analyze intraoperative vitals for hypothesis generation. 

 

Gradient Boosting Machine for Prediction of Post-Operative Acute Kidney Injury 

After above-mentioned IRB was attained, a cohort of 29,004 adult operative cases at UCSF 

hospitals Moffitt-Long and Mission Bay between December 7, 2016 and December 31, 2019 

available in the Opal database were extracted via the Opal pipeline. The patient characteristics 

from the cohort are outlined in Table 1. A binary stage 1 or greater AKI outcome was defined 

using the KDIGO criteria27 of a post-operative creatinine increase of 0.3 mg/dL or greater 

(chosen over AKIN and RIFLE criteria).28 Of the 29,004 cases, patients without a pre-operative 

creatinine value were excluded leaving 8,858 cases. Post-operative AKI was predicted pre-

operatively at the moment immediately prior to transporting the patient to the operating room for 

anesthesia. 155 clinical variables were extracted for all cases, including patient demographics, 

medications, ICD10 codes, laboratory values, surgery-specific risks, and vital signs. Data pre-
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processing including standardizing, imputation, dataset merging, and visualization served to 

validate data quality. Sample size was chosen based upon the maximum available data with 

available outcomes to optimize training of the model. Missing data in input variables were 

imputed to zero in some variables such as medication administrations and ICD10 codes, but in 

other cases were not imputed and left as NaN values as the missing value provides added 

predictive value in the model we chose (XGBoost). 74 categorical variables were one-hot-

encoded and ICD10 codes were enumerated by category for each patient. Variables that 

contained information after the prediction timepoint were truncated to the end of the anesthetic 

case. The 8,858 cases were split into training (80%) and test (20%) datasets. Because of the class 

imbalance and in order to improve the model sensitivity, AKI cases were oversampled in the 

training set to match the number of non-AKI cases. We compared this model to a reference 

logistic regression with a similar training/test split, using the most important variables identified 

in the gradient boosting model using the Shapley method of machine learning interpretation.   

 

A gradient boosting machine learning decision tree (XGBoost python package) was trained 

externally to Opal due to the size of the dataset (as mentioned above, these weights can be 

uploaded to Opal for prediction of new cases). Feature importance was calculated by randomly 

permuting each variable in the training set and measuring the effect on prediction.  

 

K-means Clustering of Intraoperative Vitals   

The Opal dataflow was used to retrieve data from 2,995 unique case IDs corresponding to a 

continuous period between January 1, 2017 and February 28, 2018. These operative cases were 

also taken from UCSF where operations occurred at Moffitt-Long hospital and are a subset of the 

patients described in Table 1. As the training of this model occurred within the Opal 

infrastructure, we chose a smaller dataset to assure there would be sufficient computational 

power. A total of 6  variables were included in the analysis, which consisted of intraoperative 

vital signs. Missing data was imputed with simple forward fill and the remaining missing values 

were imputed with the value “0”. Time of clustering occurred at the end of the operation. 

 

Data from these case IDs were loaded into the Opal web client. PCA dimension reduction were 

applied to the input variables and then K-means clustering was performed to partition the cases 
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into two clusters. Case review was performed on individual patients in each cluster to review 

vital signs for each respective cluster.  

 

Results 

Gradient Boosting Machine for Prediction of Post-Operative Acute Kidney Injury 

Of the 8,858 cases, 4.3% of the patients had postoperative AKI based upon the definition 

described above. Validation of the model on the holdout test dataset yielded an area under the 

receiver operating curve (ROC-AUC) of 0.85. The 95% confidence interval for the ROC-AUC 

was 0.80 to 0.90 measured using the DeLong method. At the default probability decision 

threshold of 0.5, the model sensitivity was 0.9 and the specificity was 0.8. Figure 4 shows the 

ROC curve and feature importance of the initial retrospective model prediction of AKI. This 

model performed significantly better than our reference logistic regression model that predicted 

with a ROC-AUC of 0.73 (0.70-0.76) using the most important variables selected from the 

gradient boosting model (see SHAP figure in supplemental materials). These results and the 

details of the reference logistic regression model are shown in the supplement materials.   

 

K-means Clustering of Intraoperative Vitals  

2,995 cases were analyzed using the clustering analysis.Figure 5 demonstrates the results of the 

K-means clustering after PCA dimension reduction and case review on the Opal dashboard. Opal 

was able to successfully partition the cases into two distinct groups based on the provided 

predictive features, thus allowing for prospective clustering of future cases. Performance 

evaluation was assessed via visual inspection as the goal was hypothesis generation for future 

investigation. 

 

Discussion 

In this study we present Opal, a comprehensive AIMS-based ML system that designed 

specifically for large-scale ML. Opal addresses problems of data accessibility, provider usability, 

and security that have historically limited ML development in medicine.  

 

The greatest strength of the Opal system is its ability to extract large-scale datasets for both 

research and clinical applications. The EHR is the most widely used data source for training of 
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ML models. Studies that utilize data from the EHR often require manual data extraction, a 

process which can be both difficult and time-consuming, particularly for large-scale queries. 

Opal creates a streamlined pipeline for data extraction that is standardized, replicable, and 

comprehensible. Users may extract data simply by selecting ranges in case criteria without the 

need for advanced query functions or knowledge of database-specific languages, such as SQL or 

CACHE. A wide set of set of features are available in Opal including vital signs, laboratory 

values, problem lists, and procedures which maintains the ability to leverage a large set of 

features to draw complex associations, one of the fundamental strengths of ML algorithms. Data 

extracted from Opal is automatically pre-processed with the use of regression imputation, joining 

of duplicate values and features, and validation of data with exclusion of significant outliers. 

This greatly lowers the threshold for whom ML can be performed. Opal’s infrastructure also 

brings us as a medical field much closer to being able to run algorithms that use EHR data in a 

real-time way to inform and improve clinical care. Many retrospective ML algorithms have been 

developed, but unless we can build platforms like Opal that integrate with the EHR and can 

process complex data in ways the EHR is limited, we will not be able to use these ML algorithms 

for clinical decision support. 

 

One of the greatest criticisms of current ML algorithms is that the statistical process remains 

opaque the use, thus creating a “black box” algorithm. While Opal does not solve the 

fundamental issue of statistical obscurity, it does help to bridge the gap between provider and 

algorithm through the use of dynamic cohort selection and data visualization techniques that 

increase user feedback and data clarity. The immediate visual feedback allows users to adjust 

case cohorts as necessary to generate an appropriate target dataset and to better understand the 

distribution of their datasets prior to formal analysis. This greater familiarity with the data 

enables hypothesis generation by the user and more accurate training of statistical models. 

 

Data taken from Opal can be used for large-scale statistical analyses or randomized clinical trials 

by clinicians and researchers alike and creates the opportunity for a broad spectrum of clinical 

applications including data mining, clinical simulation, high-frequency prediction, and quality 

improvement. Opal has already been shown to be effective for unsupervised ML with relation to 

intraoperative vitals and supervised learning for AKI. PCA dimension reduction of the vitals 
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provided the optimal separation of cases, suggesting that non-linear representations of 

hemodynamic control may be associated with meaningful separtions between patient outcomes . 

Further research can be performed to train a ML model to predict predefined outcomes in future 

patients, and can readily validated through the Opal framework. Furthermore, this same process 

can be applied to any clinical outcome of interest, thus opening the door for a multitude of large-

scale statistical analyses and clinical trials. While more complex model architectures such as 

artificial neural networks are not available at this time, they can be readily added to the existing 

pipeline and are currently being implemented. 

 

We acknowledge several limitations with this study. One widely recognized constraint of EHR 

data revolves around its inaccuracy or missingness based on inconsistency of provider entry for 

clinical data. While Opal creates a pipeline for expedited data retrieval from the EHR and 

includes multiple steps for data processing, it cannot guarantee data accuracy or avoid 

missingness of EHR data any more that traditional methods of data extraction. Thus, user post-

processing of data may still be required for larger datasets to ensure precision of data. Opal does 

offer several points for data processing, including an automated pre-processing steps in both the 

PostgreSQL database and the JavaScript web client that includes variable standardization, 

flagging of abnormal values, and baseline regression imputation for missing values. Despite 

these steps, we still recognize that data extracted via Opal may still have deficiencies and may 

require additional review prior to analysis. 

 

One possible unintended consequence of increasing availability of data extraction and ML 

through Opal is that some users may not have formal statistical training or be as familiar with 

ML techniques. Therefore, there is some risk of provider misinterpretation of results when using 

Opal. To counteract this, the Opal interface informs all users that results shown are for research 

and clinical development purposes and all the data presented by Opal indicate data associations 

and not causal relationships. 

 

Another limitation is the limited generalizability and lack of interoperability of Opal in both its 

implementation and data extraction. Since Opal is designed specifically to match the system of 

our EHR, other institutions may have a difficult time replicating Opal if their EHR system differs 
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greatly in accessibility, structure, and security. Furthermore, data extracted via Opal is limited to 

a single institution which limits the power and generalizability of clinical trials or analyses that 

may be generated from this data. However, extracted data can still be shared through an external 

process mediated by the user. Despite these limitations, we believe that there remains a 

significant importance in reporting the success of Opal at a single institution to promote the 

creation of additional EHR data pipelines broadly across the nation to promote ML. 

 

Acknowledgements: Adam Jacobson  
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Figure Captions 

Figure 1. Overview of the Opal dataflow structure. The dataflow of Opal is outlined in three 

phases: cohort selection, data extraction and visualization, and machine learning prediction. A 

cohort is first specified by the user to build a query for the Opal database. Data is then extracted 

via a two-step process with a superficial query of the cohort database to identify appropriate case 

IDs followed by a detailed query of the variable database to extract data from those cases for 

output. Once data has been extracted to the client, the user has the opportunity to visualize the 

data on the Opal dashboard, refine the cohort to better match the desired specifications, or export 

the data to an external platform for model training or any other research application. If machine 

learning prediction is desired the user can upload model parameters back into the Opal client, 

which can then use real-time data asynchronously from the EHR to generate live predictions. 

Icons used in generating this diagram were obtained from the Noun Project and are cited in the 

article references. EHR indicates electronic health record; ID, identifier. 

Figure 2. Opal web dashboard for dynamic cohort selection. The Opal web dashboard can be 

accessed through any in-system web browser and is used for cohort selection to generate the 

desired dataset. Desired case characteristics are selected on the dashboard interface through the 

use of sliding scales for quantitative variables and checkbox selections for qualitative variables. 

A, Opal dashboard landing page. B, Selection interface for demographics. C, Selection interface 

for problem list. D, Selection interface for laboratory values. 

Figure 3. Sample table of resulting cases from cohort selection. Several rows from a sample 

table of cases are displayed here to serve as an example of the list of cases which is returned to 

the user on the Opal web client following cohort selection and initial data extraction. Each row 

represents a separate case, with the corresponding case identifier, case date, and clinical data 

listed for each case. From this screen, users may conduct case review on individual cases, choose 

to omit individual cases from the cohort by clicking on the rightmost “Omit” column, or launch 
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visualization in the toolbar located at the top of the screen. All case data provided in this figure 

are falsified and serve only as a viewing example. BMI indicates body mass index; BUN, blood 

urea nitrogen; Cl, Chloride; CO2, carbon dioxide; CR, creatinine; GLC, glucose; HGB, 

hemoglobin; INR, international normalized ratio; K, potassium; MRN, medical record number; 

NA, sodium; PLT, platelets; PT, prothrombin time; PTT, partial thromboplastin time; WBC, 

white blood count. 

Figure 4. Results from gradient boosting machine for acute kidney injury. 8,858 unique cases 

with pre-operative creatinine values were extracted from the Opal database and exported to train 

a gradient boosting machine for the prediction of AKI in post-operative patients. 155 different 

clinical variables were used, including patient demographics, medications, ICD10 codes, 

laboratory values, surgery-specific risks, and vital signs. Cases were divided into training (80%) 

and test (20%) datasets. The model achieved a ROC-AUC of 0.85 [0.80,0.90] when validated on 

the holdout test set, with a sensitivity of 0.9 and sensitivity of 0.8 at a selected decision threshold 

of 0.5. The precision-recall curve and a chart listing the most predictive clinical features of the 

model are provided here as well. Panel C presents the most predictive features in the model in 

order of importance, with letter variables representing corresponding ICD 10 codes as follows: 

I=circulatory system, K=digestive system, N=genitourinary system, J=respiratory system, 

R=abnormal lab findings, Z=factors influencing health status. A, ROC-AUC curve for the GBM 

model. B, Precision-recall curve for the GBM model. C, List of most important features for the 

GBM model.  AKI indicates acute kidney injury; GBM, gradient boosting machine; ICD10, 

International Statistical Classification of Diseases and Related Health Problems; ROC-AUC, 

area under the receiver operating curve. 

Figure 5. K-means clustering of intraoperative vitals. 2,995 unique cases were extracted from 

the Opal database and were visualized on the Opal web client for unsupervised machine learning 

analysis. K-means clustering was performed on the cohort to partition the cases into two clusters. 

Individual cases were chosen for case review by clicking each circle from the data visualization 

graph on the left. Case data from the selected case was displayed corresponding to the data 

categories in the blue toolbar and time frame on the grey timeline selected by the user on the 

upper right-hand side. Different combinations of the vital signs flowchart, laboratory values, 

fluids, and medications can be selected at once for viewing. Supervised machine learning 
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architectures including logistic regression and random forest can also be performed by the web 

application to allow the user to compare a prospective patient with similar past cases. After 

reviewing the cohort, the user may modify the list of cases to better match his or her research or 

clinical needs and may export the data to an external platform for further analysis. A, Individual 

case analysis of vital signs flow chart. B, Individual case analysis of laboratory values, fluid 

administration, and medications. dbp indicates diastolic blood pressure; hr, heart rate; PCA, 

principal component analysis; po, pulse oximetry;; rr, respiratory rate; sbp, systolic blood 

pressure. The numbers separated by the blue lines in the top right of the image are the laboratory 

values of the patient showing the Complete Blood Count (CBC), Chemistry 7 (CHEM 7), and 

coagulation (COAG) in the traditional “fishbone” shorthand representations of these laboratories 

regularly used in United States medical centers. 

 

 




