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ABSTRACT  

We demonstrate that lithium metal is sparingly soluble in poly(ethylene oxide) (PEO). 7Li 

NMR shows that when a PEO sample is placed in contact with lithium metal at elevated 

temperatures, a lithium species dissolves and diffuses into the bulk polymer. A 

lithium/PEO/lithium electrochemical cell, containing no lithium salts, shows increasing 
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conductivity over time when annealed at 120 °C. Chronoamperometry shows that the annealed 

cell obeys Ohm’s law, implying that conduction occurs without the development of concentration 

gradients. To explain the results, it is proposed that atomic lithium dissolves into PEO, where it 

exists as a lithium cation and free electron. The dissolution of lithium also affects the phase 

behavior of block copolymer electrolytes. These observations explain the strong adhesion between 

lithium metal and PEO and have important implications for lithium metal battery systems that 

contain PEO-based electrolytes.  

 

TOC GRAPHICS 

 

 

MAIN TEXT  

Rechargeable batteries containing a lithium metal anode will provide the next step towards 

more efficient energy storage compared to today’s lithium ion batteries1. While lithium metal 

batteries were once produced commercially, several issues resulted in their retraction from the 

market place. Organic liquid electrolytes currently used in lithium-ion batteries cannot be used in 

cells with lithium metal anodes due to dendrite formation, irreversible parasitic reactions at the 

lithium-electrolyte interface, and the increased likelihood that a short circuit will ignite the 
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flammable electrolyte2,3. Solid electrolytes provide an attractive option to enable lithium metal 

anodes4.  

Salt-doped poly(ethylene oxide) (PEO) has been studied extensively due to its potential to 

enable rechargeable batteries with lithium metal anodes5–8. Mixtures of PEO and salt exhibit 

reasonable conductivities at temperatures above the melting point of PEO. PEO-based solid 

electrolytes can be prepared by adding salts to a block copolymer comprising a PEO block and a 

mechanically rigid block such as polystyrene (PS). A remarkable property of the interface between 

PEO-based electrolytes (both homopolymers and block copolymers) and lithium metal is the 

observation that good mechanical and electrical contact are maintained even when tens of 

micrometers of lithium are displaced during cycling9,10. Rigid, inorganic solid electrolytes 

(ceramics and glasses) have also been used to stabilize the lithium metal anode but are limited by 

high interfacial resistance and require large applied pressures11. In contrast, cells with polymer 

electrolytes and lithium metal anodes cycle with no applied pressure12. In spite of extensive 

studies13,14, the nature of the PEO-lithium interface is not well understood.  

We report herein a simple observation that provides fresh insight into the nature of the 

PEO-lithium interface: lithium metal is sparingly soluble in PEO. Primary evidence comes from 

7Li nuclear magnetic resonance (NMR) spectroscopy. In addition, we present the signatures of 

lithium dissolution in electrochemical cells as well as changes in the thermodynamic properties of 

a PEO-containing block copolymer electrolyte. To our knowledge, this is the first report of metal 

solubility in a polymer.   

A cell comprising two lithium foils sandwiched around a 2 mm thick PEO sample was 

sealed in an aluminum laminated pouch and placed in an oven at 130 °C.  After 12 days, the 

sample was removed from the oven, cooled to room temperature, and brought into the glovebox 
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to remove the lithium foils. Lithium metal adheres strongly to PEO. A razor blade was used to 

extract a slice of the polymer from the middle of the cell (taking care to exclude the lithium 

foils). We performed this experiment on three PEO samples with molecular weights 5, 35, and 

275 kg mol-1.  

The PEO sample was placed in a 3.3 mm NMR tube and inserted into a 5 mm tube 

designed for a coaxial sample configuration. The outer compartment was then filled with a 

solution of bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSI) in tetraglyme with known 

salt concentration. The mass of the PEO sample and the LiTFSI/tetraglyme solution was roughly 

50 mg each. The entire coaxial sample was sealed with a hermetic cap and removed from the 

glovebox. Variable temperature 7Li NMR was performed at 90 °C using a Bruker Avance III 600 

MHz spectrometer. (For the purpose of the NMR experiment, it is only important that the sample 

temperature be above the melting temperature of PEO.) The 7Li NMR spectra are plotted as open 

circles for 5, 35, and 275 kg mol-1 in Figures 1a-c.  

In Figure 1a (5 kg mol-1 PEO), we see two peaks in the spectrum; a broad peak at 

approximately 1.5 ppm and a sharper peak at -0.2 ppm. NMR spectra from samples without the 

reference solution only showed a broad peak at 1.5 ppm (see Figure S1a). The sharp peak is 

attributed to the LiTFSI in tetraglyme. We note in passing that the NMR signature of lithium 

metal is a peak at 260 ppm15. In order to deconvolute the integrated intensity of the two peaks in 

Figure 1a, we fit the broad peak to a Lorentzian function and the sharp peak to a Gaussian 

function. The combined fit is shown as a red line in Figure 1a. We then obtained the integrated 

intensity for each peak and compare them to solve for the lithium concentration (in molality, m) 

in the PEO sample (see details of calculation in Supporting Information). Qualitatively similar 

results are obtained for 35 and 275 kg mol-1 PEO in Figures 1b-c annealed at 130 °C. While the 
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dependence on the dissolution process with annealing temperature remains to be determined, we 

have observed qualitatively similar results (i.e. NMR signatures of a solvated lithium species) in 

samples annealed for a variety of annealing times and at annealing temperatures ranging from 90 

°C to 140 °C.  

 

Figure 1. 7Li NMR spectra (open circles) of (a) 5 kg mol-1 (b) 35 kg mol-1 and (c) 275 kg mol-1 PEO 

annealed against lithium metal for 12 days at 130 °C in a coaxial NMR tube with a reference solution in 

the outer compartment. Red lines are fits to the experimental data. (d) Lithium molality as a function of 
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PEO molecular weight calculated by comparing peak integrations from the lithium in the PEO sample to 

the reference.  

 Figure 1d shows the lithium concentration in molality as a function of PEO molecular 

weight. In 5 kg mol-1 PEO, the molality of lithium is 0.1 mol kg-1. We note that a typical 

PEO/LiTFSI electrolyte will have an LiTFSI molality between 1.0 and 2.0 mol kg-1. When the 

molecular weight is increased to 35 kg mol-1, we observe a decrease in the lithium concentration 

by a factor of about 5. The lithium concentration in the 275 kg mol-1 sample is similar to that in 

the 35 kg mol-1 sample. If the dissolution mechanism was facilitated by a reaction with the 

hydroxy end groups, we would expect the lithium concentration to be proportional to the 

molecular weight. This suggests that the lithium dissolution occurs due to an interaction with the 

ether backbone of the polymer chain. Gel permeation chromatography (GPC) and Fourier 

transform infrared spectroscopy (FTIR) experiments on the PEO/Li mixtures (presented in 

Figure S2 and S3, respectively) indicate that the PEO chains are not degraded by the dissolution 

process. 

To further characterize the solvated lithium species, we assembled lithium/PEO/lithium 

cells and performed electrochemical impedance spectroscopy while annealing them at 120 °C. The 

thickness of the PEO layer (L) was 275 μm. Figure 2a shows representative Nyquist plots for the 

35 kg mol-1 PEO sample over the course of 7 days at 120 °C. The diameter of the semicircle 

presented in the Nyquist plot is a measure of the overall resistance of the PEO layer. Pure PEO 

conducts neither electrons nor ions, and at early times (less than 1 day), the Nyquist plot indicates 

a resistance of 100 kΩ cm2. We attribute this to the presence of ionic impurities with the PEO. The 

diameter of the Nyquist semicircle decreases significantly after two days of annealing, and it 

reaches a plateau after seven days. The data in Figure 2a can be used to calculate conductivity, κ, 
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as a function of time (see details in Supporting Information). The results are shown in Figure 2b. 

Over the timescale of seven days, κ increases by a factor of 16. We attribute this increase to the 

dissolution of lithium species in PEO. We also performed a control experiment wherein PEO was 

sandwiched between stainless steel electrodes at 120 °C. The result of this experiment is shown in 

Figure 2b. In the control experiment, κ is more-or-less independent of time in the window between 

2 hours and 7 days. The finite conductivity measured in the control experiment is attributed to 

impurities. It is clear that contacting PEO with lithium metal results in the dissolution of lithium 

species that contribute to conductivity.  
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Figure 2. (a) Representative series of Nyquist plots obtained from a lithium/35 kg mol-1 PEO/lithium cell 

annealed at 120 °C over the course of 7 days. (B) Conductivity, κ, of a lithium/35 kg mol-1 PEO/lithium 

(closed symbols) and stainless steel/35 kg mol-1 PEO/stainless steel cell (open symbols) as a function of 

time at 120 °C. 

Figure 3 presents the results of a dc polarization experiment on a lithium/PEO/lithium cell 

(L = 500 μm). The cell, containing 35 kg mol-1 PEO, was annealed at 120 °C for 10 days and the 

resulting Nyquist plot is shown in Figure 3a. The resistance of the PEO with dissolved lithium 

species is 5.7 kΩ cm2 at this point. A constant potential, Φ, of 19 mV was applied to the cell and 

the resulting current density, i, as a function of time is shown in Figure 3b. When lithium salts are 
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dissolved in PEO, a gradual decrease in i is typically observed due to the development of salt 

concentration gradients16,17. In contrast, i is independent of time in Figure 3b. This is the 

characteristic of conduction in samples without concentration gradients, e.g. a single-ion 

conductor18,19. In the absence of concentration gradients, i can be calculated using Ohm’s law. The 

calculated i, 3.3 μA cm-2, is similar to the measured value of 3.4 μA cm-2. After imposing Φ = 19 

mV across the cell for 66 min, the current was set to zero and the resulting Φ (i.e. the open circuit 

potential) was monitored as a function of time. The result is shown in Figure 3c where we see that 

the open circuit potential drops instantaneously to zero. This is also a property of conductors 

without concentration gradients. The dissolved lithium species thus enable conduction in PEO 

without the introduction of concentration gradients.  

 

Figure 3. Electrochemical data from a chronoamperometry experiment preformed on a Li/35 kg mol-1 PEO/Li cell 

after being annealed at 120 °C for 10 days. (a) Nyquist plot (open circles) from ac impedance spectroscopy 

performed before polarization. The cell resistance is obtained by fitting to an equivalent circuit (red line). (b) 

Current density, i, measured in response to a 19 mV polarization. i is set to zero at t = 66 min. (c) Cell potential, Φ, 

monitored over the course of the experiment. At t = 66 min, the cell is set to open circuit (i.e. i = 0). The applied 

potential was momentarily interrupted at t = 60 min, resulting in the spike observed in (b) and (c).  

We posit that the dissolved lithium species in PEO comprise a lithium cation and free 

electron. It is well known that alkali metals are soluble in polar solvents such as ammonia and 
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cyclic ethers; indeed the solubility of lithium metal in ammonia has been known for over a 

century20. These mixtures are highly reactive electron conductors. While there are many reports of 

dissolving sodium and potassium in cyclic ethers21–24, the possibility of dissolving lithium in ethers 

has, to our knowledge, not been reported. Additional work is required to establish the properties 

of lithium metal dissolved in PEO. Recent work has shown that electrical conductivity can be 

obtained in a radical-containing polymer25. The observed conduction in PEO with dissolved 

lithium could be due to the mobility of lithium cations, free electrons, or both.  

Block copolymers exhibit a reversible order-to-disorder transition, and dissolving salts is 

known to stabilize the ordered phase26–28. In particular, the addition of LiTFSI to polystyrene-

block-polyethylene oxide (SEO) results in an increase in the order-to-disorder transition 

temperature (TODT)29. Figure 4a presents a phase diagram of an SEO block copolymer with a PS 

molecular weight of 1.7 kg mol-1 and PEO molecular weight of 1.4 kg mol-1 reproduced from ref 

29. (The molecule is terminated by a sec butyl group and a hydroxy group on the PS and PEO 

ends, respectively.) The system exhibits a disordered phase at low salt concentrations and an 

ordered lamellar phase at high salt concentrations. The TODT of SEO/LiTFSI mixtures is plotted as 

a function of salt molality, m, in Figure 4a.   
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Figure 4. (a) Order-to-disorder transition temperature (TODT) of the SEO/LiTFSI mixture as a function of LiTFSI 

molality, m, denoted by open circles29. (b) Sample configuration for the SAXS experiments, indicating the 

orientation of the X-ray beam. (c) SAXS profiles of the SEO/LiTFSI mixture as a function of time. Filled and open 

triangles indicated the appearance of a primary and secondary scattering peak at q* and 2q*, respectively.  

We sandwiched an SEO/LiTFSI mixture with m = 1.70 mol kg-1 and L = 380 μm between 

two lithium windows and studied the morphology of this mixture as a function of time at 120 °C 

using small angle X-ray scattering (SAXS). At equilibrium (i.e. with inert windows), this sample 

is disordered and the filled star in Figure 4a indicates the position of this sample on the phase 

diagram. All SAXS measurements were performed at beamline 7.3.3. of the Advanced Light 

Source (ALS) at Lawrence Berkeley National Laboratory30 and data was reduced using the Nika 

program for IGOR Pro31. The sample geometry is shown schematically in Figure 4b. X-rays are 
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passed perpendicular to the lithium windows. The time dependent SAXS profiles thus obtained 

are shown in Figure 4c.  

At early times, the SAXS profile contains a broad scattering peak which is a standard 

signature of disordered concentration fluctuations32. This is not surprising, as the mixture is 25 °C 

above the TODT. However, the emergence of a sharp scattering peak superimposed on the broad 

peak after 15-30 minutes indicates the presence of an ordered phase. As time proceeds, the sharp 

peak grows at the expense of the disordered peak. After 5 hours, the sample is nearly completely 

ordered as indicated by a sharp primary peak at q = q*. The second order peak at q = 2q* confirms 

that the ordered phase is lamellar. A control experiment was performed using aluminum windows. 

The resulting SAXS profiles were independent of time with a scattering profile characteristic of a 

disordered morphology (see Figure S4). Qualitatively similar results are shown for a higher 

molecular weight SEO polymer with no lithium salts added. A disorder-to-order transition occurs 

at a temperature greater than 40 °C above the TODT when placed in contact with lithium metal (see 

Figure S5). The SAXS data in Figure 4c and S5 indicate that the lithium species that dissolves into 

the SEO copolymer (with or without LiTFSI present) stabilizes the ordered phase. The arrow in 

Figure 4a qualitatively depicts this phenomenon. This result is consistent with the phenomena 

observed when neat PEO is placed against lithium metal and confirms that the lithium dissolution 

process occurs in both homopolymer and block copolymers.  

In summary, we have shown that when PEO-containing polymers are placed against 

lithium metal, lithium ions along with the associated electrons dissolve into the polymer. This 

dissolved species is shown to affect the conductivity of the polymer as well as the thermodynamics 

of block copolymer systems. These results have important implications for battery systems 

containing lithium metal and any PEO-based material. On one hand, the dissolution of lithium 
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metal may be problematic and lead to decreased coulombic efficiency. On the other hand, it may 

explain why PEO-containing polymers exhibit strong adhesion to lithium metal, even in the case 

of block copolymers with high elastic moduli. Future work will be directed at characterizing the 

chemical environment of the solvated lithium, determining the solubility limit, and studying the 

dissolution process when a lithium salt is present. 
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