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Given the pace at which human-induced environmental changes occur, a

pressing challenge is to determine the speed with which selection can drive

evolutionary change. A key determinant of adaptive response to multivariate

phenotypic selection is the additive genetic variance–covariance matrix (G).

Yet knowledge of G in a population experiencing new or altered selection is

not sufficient to predict selection response because G itself evolves in ways

that are poorly understood. We experimentally evaluated changes in G

when closely related behavioural traits experience continuous directional

selection. We applied the genetic covariance tensor approach to a large dataset

(n ¼ 17 328 individuals) from a replicated, 31-generation artificial selection

experiment that bred mice for voluntary wheel running on days 5 and 6 of

a 6-day test. Selection on this subset of G induced proportional changes

across the matrix for all 6 days of running behaviour within the first

four generations. The changes in G induced by selection resulted in a

fourfold slower-than-predicted rate of response to selection. Thus, selection

exacerbated constraints within G and limited future adaptive response, a

phenomenon that could have profound consequences for populations facing

rapid environmental change.
1. Introduction
Given the pace at which human-induced environmental changes occur, a press-

ing challenge is to determine the speed with which selection can drive

evolutionary change and adaptation (as opposed to extinction [1–3]). Predic-

tion of evolutionary change for multiple traits is obtained from the product

of the linear selection gradient vector (b), which indicates how selection is

acting on individual traits after adjusting for trait correlations, and the additive

genetic variance–covariance matrix of those traits (G) [4]. Most typically, G is

viewed as affecting the efficacy of selection [5]; crucially, however, G can evolve

in response to selection because of changes in allele frequencies and/or the

build up of linkage disequilibrium (LD) among important loci [6,7]. Thus, evol-

utionary processes can shape genetic variation in ways that may either facilitate

or constrain future evolutionary changes [5,8].

Simulation-based studies point to the hypothetical conditions under which G

will evolve to the greatest extent (e.g. small population, weak correlational selec-

tion, low mutational correlation among traits [9,10]). However, general answers

from simulations seem unlikely to emerge because it is extremely complex to con-

sider all of the relevant parameters involved across the whole range of relevant

parameter values (e.g. population size, number of loci, number of alleles, distri-

bution of allelic effects, dominance, epistasis, mutation rate, strength of selection
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[11]). Therefore, if and how selection influences G remains lar-

gely an empirical question [11–13]. Most empirical studies to

date have been modest in scale, biased towards certain taxa

(mainly a few insect and plant species) or types of characters

(mostly morphological and life-history traits), and varied in

both statistical and experimental approaches [11]. As a result,

how long the G matrix remains stable under multiple gener-

ations of selection (and/or random genetic drift) remains a

contentious issue [2].

Replicated artificial selection experiments evaluating the

stability of G under selection are rare [14,15], but bring crucial

strengths to this key endeavour (e.g. replication, potentially

large sample size, known selection, constant environment).

Interestingly, selection experiments under laboratory con-

ditions commonly reach an evolutionary limit (i.e. a plateau

in the response to selection) even when significant additive

genetic variance (VA) remains for the trait under selection

[16]. This result is paradoxical from a univariate perspective,

in which the response to selection is determined strictly by

the product of the directional selection differential and

the narrow-sense heritability (h2) of a trait. The paradox can

sometimes be resolved by adopting a multivariate perspective

on additive genetic variance and selection [5]. Even in the pres-

ence of VA in all traits, an absolute genetic constraint can

occur if there are one or more directions within G for which

no VA exists (i.e. G is semi-positive definite and singular

because one or more of its eigenvectors have zero eigenvalues).

Thus, an evolutionary limit to selection can result from a multi-

variate constraint within G, manifested as a lack of VA in the

multivariate direction favoured by selection [15]. (Alternatively,

genetic covariances between traits can also accelerate evolution

if they allow VA in the direction favoured by selection [5].)

Testing the possibility that the evolution of G may result

in genetic limits to adaptive evolution is crucial for accurately

predicting the phenotypic outcomes of selection because

response to selection in wild populations may be more limited

than is currently believed [17]. Moreover, in a rapidly chang-

ing environment, multivariate constraints could increase risk

of local extinctions because populations may not be able

to adapt quickly enough to keep pace with environmental

change [2]. Here, we experimentally test if and how continuous

directional selection induces changes in the form of G in a

way that limits future adaptation. We use data from a long-

term, fourfold replicated, artificial selection experiment on

voluntary wheel-running behaviour in house mice [18].

Considering wheel running expressed over 6 successive days

as a series of closely related traits, our objective is to evaluate

if and how directional selection on a subset of the daily

behaviours induced changes in G overall.
2. Material and methods
(a) Animals, housing and selection protocol
The experiment started from outbred Hsd : ICR mice, the origins

of which are described fully elsewhere [18]. A total of 112 males

and 112 females, each from a different family, were purchased

from Harlan Sprague Dawley (designated generation 22) and

paired randomly (details in electronic supplementary material,

appendix S1). The resulting offspring, designated generation 21,

were assigned to eight closed lines. To establish lines, one male

and one female were chosen randomly from each litter. These indi-

viduals were then paired randomly except that full-sibling
matings were disallowed. Lines were randomly assigned into

four non-selected control (C) lines and four selected ‘high-

runner’ (HR) lines. Their offspring were designated generation 0

and selection started at this generation in HR lines. Each line

was maintained with at least 10 families per generation, routinely

housed in same-sex groups of four per cage except during breed-

ing (one pair per cage) and wheel-running measurements (one

individual per cage). Mice were maintained on a 12 L : 12 D

cycle (lights on 07.00 h), which was also maintained during the

wheel-running trials.

Each generation, approximately 600 mice six to eight weeks

of age were monitored for wheel revolutions for 6 consecutive

days. Voluntary wheel running was measured on stainless steel

and Plexiglas, Wahman-type activity wheels (circumference ¼

112 cm, diameter ¼ 35.7 cm and width ¼ 10 cm; Lafayette Instru-

ments, Lafayette, IN, USA) attached to standard home cages.

Three batches of approximately 200 mice each were measured

during three successive weeks. Mice from a given batch were

weighed and placed on randomly assigned wheels during the

morning of the first day; data collection was started at approxi-

mately 13.00 h. Data were downloaded every 23.5 h, at which

time wheels were checked to remove any food pellets or wood

shavings and to ensure freedom of rotation. On the sixth day,

mice were removed from the wheels and weighed.

Starting at generation 0, selection was based on the residual

average number of wheel revolutions run on days 5 and 6 (trans-

formed as necessary to improve normality of residuals) from a

multiple regression model used to control for several biological

and nuisance variables, including measurement block (batches

1–3 and rooms 1–2), sex (in interaction with selection history)

and family [18]. Within-family selection was used to increase

the effective population size, reduce the rate of inbreeding and

help to eliminate the possibly confounding influences of some

maternal effects. To produce offspring in the next generation

for each of the four HR lines, the highest running male and the

highest running female from each family were chosen to breed

and paired randomly, with the provision of no full-sibling

mating. Over 31 generations, the selection differential averaged

0.92 (s.d. ¼ 0.23) phenotypic standard deviations in the HR

lines and approximated zero in the C lines [16]. In C lines, a

male and female from within each family were chosen randomly

to obtain breeders, again with no full-sibling matings allowed.

(b) Data and pedigree
We used the same data and pedigree for wheel running on days

5 and 6 as compiled and checked in a previous study [16]. Here,

we added data on days 1–4 and excluded an additional 572 indi-

viduals for which wheel running on a given day was obviously

abnormal compared with wheel running on the other days (this

often resulted from wheel problems that were detected and cor-

rected during the first 4 days). This resulted in a sample of 17 328

individuals with wheel running measured on the 6 days from

generation 0–31.

(c) Animal models for quantitative genetic analyses
Falconer [19] and many authors since have recognized that, con-

ceptually, a given element of the phenotype (e.g. body mass)

measured in several environments or serially at several ages or

life stages can be considered as a set of traits that are expected

to be genetically correlated. We adopted such a ‘character-state’

approach and considered wheel running expressed over the 6

successive days as a series of closely related traits. Our choice

is supported by previous research showing that the genetic archi-

tecture for running distance varies somewhat across successive

days [20]. For example, some detected quantitative trait loci

have an effect only during the initial 3 days of exposure to

wheels, which are believed to be related to anxiety or fear-related
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behaviours upon initial exposure to a new environment (e.g. indi-

vidual housing, introduction to a running wheel [20]). Another

option would have been to adopt a ‘function-valued’ approach

and use random regression to model wheel running as a function

of day for each individual. However, in this case, many of the

logistical and statistical advantages of using the function-valued

approach are not relevant, and the low number of index values

at which measures were taken (six) makes it likely that the func-

tion-valued and character-state approaches will result in models

that are equivalent [21]. A major disadvantage of using the charac-

ter-state approach here is the increased number of model

parameters (i.e. covariances among all traits); however, this is

not a practical problem because of the relatively low number of

separate traits (i.e. 6) and relatively large sample size.

We quantified G for wheel running on each of the 6 days

(referred to below as ‘traits’ for simplicity) using Bayesian multi-

variate animal models in the MCMCglmm package of R [22]. We

chose to pool the data for replicate lines within C and HR, and

divide the 32 generations into roughly three equal time periods:

generations 0–10, 11–20 and 21–31. This offered the best trade-

off between having large sample size within each time period

(electronic supplementary material, table S1) to allow estimation

of G with adequate precision while at the same time examining

temporal change in G over periods before (generations 0–10),

during (generations 11–20) and mostly after (generations 21–31)

the selection plateaus had been reached [16]. For each time

period, we ran two separate models (one for C and one for HR

mice) restricted to the pedigree and phenotypic data from that

time period, yielding a total of six G matrices. We followed a

heuristic approach for estimating G for the specific time periods

in the selection experiment [23] where the pedigree used for each

time period treated animals in the first generation of the period

(i.e. 0, 11 or 21) as the descendants of a hypothetical unrelated,

non-selected and non-inbred population, and included pedigree

information for all individuals in that time period [23]. Thus, the

animal model inferred G back to the hypothetical parental popu-

lation of the time period given the data provided. Obviously, in

finite populations (with drift) and especially in populations

under selection (the HR lines) in which allele frequencies change

[24], some assumptions of the infinitesimal model do not hold.

In this case, the animal model may not yield a strict estimate of

G in the base parental population, but one that is ‘biased’ towards

subsequent generations for which data are included. Further

research is required to better understand exactly how animal

models perform in such situations [25]. To ensure the differences

found were attributable to selection per se and not genetic drift,

we also ran MCMC models on a line-by-line basis, which yielded

a total of 24 G matrices for comparison (i.e. one for each of the eight

lines per generation block).

Each model included the six traits as response variables and a

series of fixed effects (age, sex, measurement batch and room, and

inbreeding coefficient) fitted separately for each trait. All traits

were standardized (mean ¼ 0, variance ¼ 1) for each line in each

generation. Choice of scale can have a substantial influence on

both univariate and multivariate analyses [26]; we thus wanted

to account for the large fluctuations in phenotypic means across

generations and the increase in the total phenotypic variance

across generations in the HR lines [16] (see also electronic sup-

plementary material, figure S1). Moreover, by standardizing trait

variances, we made sure that no individual trait dominates the

eigenstructure of individual G matrices [27].

Each model included unstructured (co)variance matrices for

random effects of maternal identity (common environmental

(co)variances), animal identity linked to the pedigree (additive

genetic (co)variance; G) and the residuals. Analyses were run

using weakly informative inverse-Wishart priors with the scale

parameter defined as a diagonal matrix containing values of

one-third of the phenotypic variance and distribution parameters
set to 0.001 for the degrees of freedom [22]. Posterior distributions

were estimated from 6 500 000 MCMC iterations sampled at 5000

iteration intervals following an initial burn-in period of 1 500 000

iterations. Autocorrelations were less than 0.1 for all (co)variance

components (electronic supplementary material, figure S2),

which yielded effective samples sizes close to 1000 for all (co)vari-

ances and fixed effects. We visually inspected plots of the traces

and posterior distributions, and calculated the autocorrelation

between samples to make sure that all models properly converged.

(d) Covariance tensor within a Bayesian framework
A genetic covariance tensor analysis [27] captures all of the variation

among multiple G matrices and subsequently allows identifica-

tion of the trait combinations that differ most in VA among the G

matrices. The covariance tensor analysis yields matrices of loadings

that each represent independent aspects of how the original G

matrices differand can be interpreted in a fashion similar to the orig-

inal G matrices. The covariance tensor approach has recently been

integrated within a Bayesian framework [12], meaning that uncer-

tainty in estimates of each G is subsequently incorporated into the

comparisons among G matrices. Consequently, this also provides

estimates of confidence to be placed on the estimation of differences

among G matrices. Moreover, one can conduct a covariance tensor

analysis on G matrices created under a null model (e.g. by ran-

domization), thereby allowing tests of whether the identified

differences among observed G are more pronounced than predicted

by a particular null hypothesis. Indeed, it is possible to use the pos-

terior predictive distribution of breeding values obtained from a

Bayesian animal model to generate a set of G matrices where any

differences among these are assumed to be driven by random

sampling variation. Thus, applying the covariance tensor analysis

to both the observed and randomized sets of G matrices provides

a test of the hypothesis that the observed G matrices differ more

than expected by random sampling per se (i.e. of individuals

from a population for analysis). We briefly describe the imple-

mentation below, but refer interested readers to an example in the

electronic supplementary material, appendix S2, and recommend

Hine et al. [27] and Aguirre et al. [12] for more details about

the methods.

Tensors from multilinear algebra extend the notion of vectors

(which are first-order tensors) and matrices (second-order tensors)

to higher-order structures that can be used to characterize varia-

tion in these lower-order variables (i.e. vectors and matrices).

The variation among multiple G matrices can be characterized

by a fourth-order genetic covariance tensor, S. The independent

aspects of variation among multiple G matrices are described by

second-order eigentensors (E) of S, and the amount by which an

E contributes to the total variation among G matrices is quantified

by the size of the eigenvalue corresponding to an E. The eigenten-

sors of S are obtained by first mapping S onto the symmetric

matrix S [27]. The elements in the eigenvectors of the matrix S

are then scaled and arranged to form the second-order eigenten-

sors (E). Therefore, the E matrices (second-order eigentensors)

contain information regarding independent directions in which

the original G matrices differ and can be read, similar to how

one interprets a G matrix. For example, if an E contains large

positive values along the diagonal and values near zero on the

off-diagonals then the conclusion would follow that the original

G matrices differ in the VA of individual traits (with the relative

difference among G for each trait reflected by the relative magni-

tude of the diagonal elements of E; see electronic supplementary

material, appendix S2). Further, we can determine the genetically

orthogonal linear combinations of traits that describe independent

changes among G matrices by obtaining the eigenvectors (e) and

eigenvalues of each E. These eigenvectors (e) can be interpreted

in a way similar to eigenvectors of a G matrix. For example, if

the largest eigenvalue of an e is close to 1, then the detected
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change in covariance structure, described by the eigentensor, can

be attributed to the change in VA for a single combination of traits.

We next applied the covariance tensor method in a Bayesian

framework. For the ith MCMC sample of the set of G, we deter-

mined the matrix representation of the tensor, Si. We then

calculated the elements of �S from the corresponding posterior

means of the elements of the set of Si (i ¼ 1–1000). We projected

the jth eigenvector of �S onto Si (equivalent to projecting of Ej

onto S) to determine aij, the variance among the ith MCMC

sample of the G matrices for the aspect of covariance structure

specified by Ej. Projecting an eigentensor onto a tensor is analo-

gous to projecting a vector onto a G matrix to determine how

much variance is present in a particular direction. This allowed

us to calculate the VA along the axis of greatest variation

among the six G of interest by projecting the leading eigenvector

of E1 (i.e. e11) onto the observed G matrices. The posterior distri-

bution of aj summarizes the uncertainty in the variance in

covariance structure represented by Ej.

To test whether the observed differences among G matrices

were statistically significant, we used randomizations to gener-

ate a null model in which we assumed the differences among G

were driven by random sampling variation alone (see electronic

supplementary material, appendix S2, for an application of the

Bayesian genetic covariance tensor on simulated G matrices to

help interpret the results obtained from this approach). Note

that for a single trait, the variance in true breeding values is

VA and similarly the covariance in true breeding values

between two traits is the additive genetic covariance (COVA).

Thus, we used the marginal posterior distribution of each esti-

mated G to generate breeding values and assigned them

randomly to one of the six combinations of selection group

(i.e. C or HR) and generation block (i.e. 0–10, 11–20 or

21–31) under the null hypothesis that sampling variation is

the only process explaining the divergence among G [12].

Thus, we calculated posterior predictive breeding values for

each trait in every individual by taking draws from a multi-

variate normal distribution with a mean of zero and

covariance according to Kronecker product between the ith
MCMC sample of the jth G and the pedigree-derived numer-

ator relationship matrix. We then calculated randomized G

matrices as the variances within and covariances between the

simulated vectors of breeding values assigned to each hypothe-

tical population. Subsequently, we applied the covariance

tensor method to both the observed and randomized sets of

G to test the hypothesis that the observed G matrices differ sig-

nificantly more than by sampling variation alone. Specifically,

we compared the distribution of aj obtained from the genetic

covariance tensor applied to the observed versus randomized

sets of G. Although the expectation of aj for the randomized

set of G is approximately 0, the upper bound of its 95% highest

posterior density (HPD) interval provides an estimation of the

variation among G matrices that can be obtained by chance

given the dataset and structure of the pedigrees.
(e) The multivariate breeder’s equation
We used the multivariate breeder’s equation [4], R ¼Gb, to illus-

trate the extent to which changes in G induced by continuous

directional selection influence subsequent response to selection

(R). To do this, we used the b estimated in HR mice (see below)

to predict R in both C and HR mice for each generation block,

which demonstrates how the changes in G induced by selection

altered evolutionary responses in units of phenotypic standard

deviations. We calculated relative fitness as the number of pups

produced by a given HR mouse divided by the average number

of pups in HR mice for different blocks of generations (i.e. 0–10,

11–20 and 21–31). This analysis included all HR mice for which

we had wheel-running data, including the non-selected
individuals (who were attributed a pup production of zero). We

then used MCMCglmm and the data for each generation block

to run multiple linear regressions of relative fitness as a function

of wheel running on days 1–6 (each day standardized to a mean

of 0 and a variance of 1) with the same fixed effects as used in

the multivariate animal models (see above). The partial regression

coefficients from these multiple linear regressions provided the

vectors of selection gradients (b), which represents the strength

of directional selection on wheel running for each of days 1–6, cor-

rected for correlations with all other traits in the model and

adjusting for other fixed effects. Interpretation of partial regression

coefficients can in some cases be counterintuitive to univariate

examination of mean differences between successful and unsuc-

cessful individuals. In particular, it is not uncommon that a trait

that displays a very low selection differential when examined

from a univariate perspective appears as very important in the

multiple regression by having a large partial regression coefficient,

or vice versa.

Very high correlations among independent variables are well

known to cause instability in the estimates of partial regression

coefficients and their standard errors, which is possible here

because the raw phenotypic correlations between wheel running

on different days ranged from 0.53 to 0.85 in selected mice. The

generalized variance inflation factors were below 5 for all

wheel-running variables, however, suggesting problems with

multicollinearity were not serious [28]. Most importantly, we

incorporated the uncertainty in both G and b to obtain the pos-

terior distribution of R [29]. For a given generation block, we

took the ith sample of the posterior distribution of G from the

multivariate animal model and post-multiplied it by the ith
sample of the posterior distribution of the vector of b from the

multiple regression model to obtain the ith sample of the pos-

terior distribution for R. We could then calculate the posterior

mode and 95% HPD intervals for the predicted response to selec-

tion for wheel running on days 1–6 in each generation block,

separately for C and HR mice.
3. Results
(a) Correlated responses to selection
Over 31 generations, we measured 17 328 young adult mice

for wheel revolutions on 6 consecutive days, across which

wheel running increases monotonically in every generation

(figure 1a). Substantial response to selection occurred over

the first 20 generations, at which point HR mice were running

approximately 2.5-fold more revolutions per day compared

with C (figure 1b) and after which no further increase in

wheel running has occurred, despite continued directional

selection and the presence of VA in the selected trait (see also

[16]). Although the first 4 days of wheel running were intended

primarily to allow familiarization with the testing apparatus

(e.g. reduce or eliminate neophobia) and not part of the selec-

tion criterion, substantial correlated responses occurred for

each of those days (figure 1a). On an absolute basis, HR mice

show a greater daily increase than C mice in wheel running

across the 6-day trial (figure 1c), which may require co-adapta-

tional changes in training ability and other subordinate traits

that support or cause wheel running [30]. The differential

increase in wheel running is less apparent on a relative basis,

especially after generation 24 (figure 1b).

(b) Additive genetic (co)variances matrices
Throughout the experiment, the six behavioural traits

showed higher VA in C mice (range 0.167 to 0.307) than HR
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Figure 1. (a) Daily average number of wheel revolutions run ( pooled
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versus HR mice. (Online version in colour.)
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mice (range 0.073 to 0.118) (electronic supplementary

material, figures S3 and S4). All of the COVA were positive,

but they were consistently higher in C (range 0.112 to

0.219) than HR mice (range 0.026 to 0.068), even over the

first 10 generations (electronic supplementary material,

figures S3 and S4). For sake of completeness, we also calcu-

lated scaled individual components of G (i.e. h2 and rA)

which yielded similar differences between C and HR mice

(see electronic supplementary material, figure S4). That the

estimated COVA were all positive is reflected in the correlated

increases observed for days 1–4 as a result of selection only

on days 5–6 (see above).
(c) Genetic covariance tensor
The eigentensor E1 described 91.9% of the variation among

the six observed G matrices (figure 2a and table 1). E1 reveals

that the variation across the six G matrices was substantial for

all elements (figure 2b). Note that there seems to be more

variability among G matrices for elements in the lower

right corner of the matrix, which corresponds to VA and

COVA for days 4–6 (figure 2b). The leading eigenvector e11

explained 99.8% of the variation captured by E1 (table 1).

Thus, almost all of the variation among the six G matrices
is captured by a single combination of traits. The loadings of

e11 range over a rather restricted range of 20.37 to 20.44

(table 1), suggesting that the six traits contribute roughly

equally to the major axis of variation among G matrices. Calcu-

lating the VA along this axis of variation shows that the changes

captured in e11 were driven by a steady difference in VA

between C and HR mice across generation blocks (figure 2c).

Note that VA along e11 did not differ statistically within HR

mice across the generation blocks (figure 2c).

Applying the tensor analysis to the 24 G matrices esti-

mated for each line and generation block yielded results

that are consistent with the pooled analysis (electronic sup-

plementary material, figure S5 and table S2). E1 captured a

large part (75.6%) of the variance among G matrices and

the comparison of observed versus null G indicated that

this eigentensor explained significantly more variance than

expected by chance (electronic supplementary material,

figure S5a,b and table S2). The leading eigenvector e11

explained 99.6% of the variation captured by E1 (electronic

supplementary material, table S2), with loadings ranging

from 20.35 to 20.45 only (electronic supplementary material,

table S2). Compared with C lines, all four HR lines consist-

ently showed lower VA along e11 (electronic supplementary

material, figure S5c). These results show that the effect of

selection on G was repeatable at the level of replicate lines

and that differences among G were not affected by genetic

drift among the lines.

(d) Predicted response to selection
Multiple regressions of relative fitness as a function of wheel

running on days 1 to 6 revealed that the selection gradients

were positive for days 5 and 6, but some were negative

and significantly different from zero for days 1–4 (electronic

supplementary material, table S3). We used these partial

regression coefficients estimated in HR mice as our b in the

multivariate breeder’s equation to predict the between-

generation changes for days 1–6 if selection were to be applied

to both C and HR lines separately for each generation block

(i.e. using the six separate G-matrices estimated above). For

all six behavioural traits, HR mice show an approximately four-

fold lower predicted R than do C mice (figure 3; electronic

supplementary material, table S4). Because the predicted

responses for days 5 and 6 were still positive and statistically

significant in generations 21–31, however, we can confidently

rule out the possibility that changes in the form of G and/or b

caused the selection plateaus that occurred in each of the four

HR lines during generations 21–31, which is consistent with

the conclusions of Careau et al. [16].
4. Discussion
Our results address two major questions in evolutionary

biology. First, does the multivariate quantitative genetic archi-

tecture typically cause some trait combinations to have far

more VA than others? Second, is VA typically low in the direc-

tion of past prevailing selection? These questions are related by

the possibility that selection itself can contribute to the gener-

ation of semi-positive definite and singular G matrices by

eroding VA for the trait combinations that are under strong

selection, thus potentially causing selection plateaus [5].

More generally, if and how the elements within G (VA and

COVA) change under selection are long-standing questions in
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evolutionary biology [7,31]. We used a Bayesian framework

[12] to directly incorporate the uncertainty associated with esti-

mating G and applied the genetic covariance tensor approach

[27], where we identified a single trait combination that cap-

tured most of the variation among G matrices from a single

selection experiment. These methods enabled us to determine

that selection induced statistically significant changes in the

quantitative genetic architecture of behavioural traits. Most

importantly, we found that directional selection significantly

reduced VA present in the dominant direction of variation

within G, which resulted in a fourfold slower predicted

response to subsequent selection.

Experimental studies evaluating the effect of selection on

G in a constant environment are rare [14,15]. In a selection

experiment on thorax length in Drosophila melanogaster, the G

matrix of the control population did not seem to differ from

that of the populations selected for small or large thorax [14].

In D. serrata, Hine et al. [15] showed that an evolutionary

limit to selection for an increase in male attractiveness was

caused by a lack of VA in the direction favoured by sexual

selection. Hine et al.’s study exemplifies a key feature of the

multivariate response to selection: VA can exist for all traits

within G, yet little or no VA may exist along the direction selec-

tion is trying to move the population [5]. This raises the

possibility that a change in the orientation of G, induced by

selection, could have caused the selection plateaus that

occurred in HR mice during generations 21–31 [16]. We can

confidently rule out this possibility, as the level of VA captured
by the leading eigentensor (E1) did not differ significantly in

HR mice before versus after the observed selection plateaus

(figure 2c), and the multivariate breeder’s equation predicted

positive and significant response in the selected traits (days 5

and 6) in generations 21–31 (figure 3). Such discrepancy

between the predicted and observed responses to selection

may be related to additional constraints on the evolution of

locomotor behaviour arising from unmeasured behavioural,

neurobiological or physiological traits.

Changes in G under selection were repeatable across the

four replicate HR lines (electronic supplementary material,

figure S5), suggesting a negligible effect of genetic drift on

differences in the estimates of G between C and HR. Yet one

could argue that the observed differences among G matrices

are attributable to founder effects that were simply maintained

throughout the experiment. This scenario is highly improbable

for several reasons. First, the possibility for any large difference

in VA among lines at generation 0 is very unlikely because all

eight lines were established by randomly choosing individuals

from a randomly bred population who all shared the same

grandparents (see also the paper by Garland et al. [32] regard-

ing the mini-muscle allele). Second, each line was assigned by

coin toss to a selection group (i.e. C or HR), meaning there is an

extremely low probability of the observed pattern occurring by

chance. The probability that four lines with relatively lower G

were all randomly assigned to the selection group is p ¼ 0.014

(details in electronic supplementary material, appendix S1).

Third, we have good evidence that h2 of the selected trait
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(average wheel running on days 5 and 6) was very similar in C

and HR mice at generation 0, but rapidly decreased in HR mice

(electronic supplementary material, figure S6). Finally, a com-

plete reanalysis of the data, based on smaller blocks of four

generations, also suggests that C and HR lines did not initially

differ in VA along e11 (electronic supplementary material,

figure S7). Thus, we are confident that the differences among

G matrices in C versus HR mice were caused by selection per se.
Some of our observations could suggest that the changes in

G were caused by selection generating negative LD among the

loci that affect the six behavioural traits [6]. Indeed, the differ-

ences in G between C and HR mice emerged within the first

generation block (i.e. 0–10), after which the differences

remained relatively stable (see electronic supplementary

material, figure S8, for a fine-scale analysis based on smaller

generation blocks). However, because the selected trait has

relatively low h2 and selection was practised within families,

the change attributable to the combined effects of inbreeding

and LD should be relatively small (see also [25]). According

to calculations based on the infinitesimal model, the predicted

reduction in each element of G is only approximately 11% after

10 generations of selection (electronic supplementary material,

figure S9). This clearly does not account for the 50–80%

reduction we observed throughout the entire matrix.

Under the infinitesimal model, selection is not expected to

significantly change allele frequencies at any particular locus,

because this (null) model assumes that quantitative traits are

determined by an infinite number of genes, each of them with

an infinitesimally small effect. However, changes in allele fre-

quency under directional selection have been shown in a few

livestock populations [24] and in the current experiment.

Specifically, we previously showed, in two of the four HR

lines, dramatic changes in the frequency of a Mendelian

recessive ‘mini-muscle’ allele that causes a 50% reduction in

hind limb muscle mass, as well as many pleiotropic effects

that are apparently conducive to supporting high levels of
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endurance exercise [32]. It is likely that allele frequencies were

also altered at many additional loci.

In addition, previous research has shown that wheel running

results for days 1–6 generally share some common quantitative

trait loci [20], which could explain why changes in G were

proportional (i.e. distributed throughout the entire matrix).

Unique genomic regions were also identified to specifically

affect wheel running during the initial exposure (days 1–3) to

wheels [20]. These differences among days may be related

to anxiety or fear-related behaviours having an effect on wheel

running only during the initial days following exposure to a

wheel and altered housing conditions [20]. Previous research

failed to detect behavioural differences in C versus HR mice in

a novel open-field test [33], suggesting that anxiety or fear-related

traits were not indirectly selected in the HR lines. Generally, trait

combinations under weak selection should display higher VA

than those under strong selection [31,34]. Consistent with this

expectation, we observed fewer differences among G matrices

for trait combinations involving wheel running on days 1–3

than for elements of G corresponding to later in the sequence

of days (figure 2b; see also trait loadings on e11, e21 and e22,

table 1), which could be explained by differential alteration of

allele frequencies for days 1–3 versus 4–6.

An important feature of this experiment is that selection

was applied on behaviour, a type of trait for which we have

little information regarding G. Most previous comparisons of

G matrices among populations and species have concentrated

on relationships among morphological or life-history traits

[11]. As this study is the first robust empirical test of the stab-

ility of G under selection involving behaviour, it broadens

our understanding of the stability of G to a new type of quan-

titative trait. Compared with morphological traits, behavioural

traits generally are more closely associated with Darwinian fit-

ness [35] and generally have lower h2 [5]. Future research is

needed to determine whether the evolutionary dynamics of

G under selection are generally different among types of char-

acters, and whether the stability of G relates to how closely the

character types are related to fitness.

More research is also needed to determine the extent to

which our results apply to wild populations experiencing
natural rates of immigration and emigration (gene flow)

and spatio-temporal variation in selection gradients. To the

extent that the evolutionary dynamics of G are similar in

laboratory versus wild populations, then our results have

important implications for populations facing a consistent

and directional rapid environmental change. The sensitivity

of a population to global change will be mediated by both

its resilience (i.e. ability to withstand and recover from a per-

turbation) and its adaptive capacity (i.e. both phenotypic

plasticity and evolutionary potential) [1]. Locomotor capacity

may be a key component of the resilience of a population [3],

because it strongly affects the ability of individuals to dis-

perse within and across increasingly fragmented habitats,

and hence the ability of the population to expand its range

rapidly following disturbance. Moreover, locomotor capacity

can itself evolve towards higher levels if global change

favours higher dispersal ability or broader daily ranging pat-

terns. For example, individuals with high locomotor capacity

might have higher Darwinian fitness if they can successfully

disperse to and take advantage of habitats that have become

newly available or favourable [2]. Thus, evolution towards

higher locomotor capacity may help populations to track

the preferred climate space [3]. However, if directional selec-

tion further exacerbates constraints on the evolution of

locomotor behaviour, as we observed here, then evolution

may not occur quickly enough to allow evolutionary

adaptation to rapidly shifting environmental conditions [6].
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