
UC Davis
UC Davis Previously Published Works

Title
Cardiac Myocyte Z-Line Calmodulin Is Mainly RyR2-Bound, and Reduction Is 
Arrhythmogenic and Occurs in Heart Failure

Permalink
https://escholarship.org/uc/item/7f75v1bd

Journal
Circulation Research, 114(2)

ISSN
0009-7330

Authors
Yang, Yi
Guo, Tao
Oda, Tetsuro
et al.

Publication Date
2014-01-17

DOI
10.1161/circresaha.114.302857
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7f75v1bd
https://escholarship.org/uc/item/7f75v1bd#author
https://escholarship.org
http://www.cdlib.org/


Cardiac Myocyte Z-line Calmodulin is Mainly RyR2-Bound and
Reduction is Arrhythmogenic and Occurs in Heart Failure

Yi Yang1, Tao Guo1, Tetsuro Oda1, Asima Chakraborty2, Le Chen3, Hitoshi Uchinoumi1,
Anne A. Knowlton1,3, Bradley R. Fruen4, Razvan L. Cornea4, Gerhard Meissner2, and
Donald M. Bers1

1Department of Pharmacology, University of California, Davis, CA

2Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC

3Molecular and Cellular Cardiology Division, Department of Medicine, University of California,
Davis, CA

4Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota,
Minneapolis, MN.

Abstract

Rationale—Calmodulin (CaM) associates with cardiac ryanodine receptors (RyR2) as an

important regulator. Defective CaM-RyR2 interaction may occur in heart failure (HF), cardiac

hypertrophy, and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the

in situ binding properties for CaM-RyR2 are unknown.

Objective—We sought to measure the in situ binding affinity and kinetics for CaM-RyR2 in

normal and HF ventricular myocytes, estimate the percentage of Z-line localized CaM that is

RyR2-bound and test cellular function of defective CaM-RyR2 interaction.

Methods & Results—Using FRET (fluorescence resonance energy transfer) in permeabilized

myocytes, we specifically resolved RyR2-bound CaM from other potential binding targets, and

measured CaMRyR2 binding affinity in situ (Kd =10-20 nM). Using RyR2ADA/+ knock-in (KI)

mice, in which half of the CaM-RyR2 binding is suppressed, we estimated that >90% of Z-line

CaM is RyR2-bound. Functional tests indicated a higher propensity for Ca2+ waves production

and stress induced ventricular arrhythmia in RyR2ADA/+ mice. In a post myocardial infarction

(MI) rat HF model, we detected a decrease in the CaMRyR2 binding affinity (Kd ≈ 51nM, ~3 fold

increase) and unaltered FKBP12.6-RyR2 binding affinity (Kd ≈ 0.8nM).

Conclusions—CaM binds to RyR2 with high affinity in cardiac myocytes. Physiologically,

CaM is bound to >70% of RyR2 monomers and inhibits SR Ca2+ release. RyR2 is the major

binding site for CaM along the Z-line in cardiomyocytes and dissociating CaM from RyR2 can

cause severe ventricular arrhythmia. In HF, RyR2 shows decreased CaM affinity, but unaltered

FKBP12.6 affinity.
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INTRODUCTION

Approximately 50% of heart failure (HF) patients die of ventricular arrhythmia and sudden

cardiac death 1. It is known that ryanodine receptor type 2 (RyR2) mediated Ca2+ leak from

the sarcoplasmic reticulum (SR) during diastole can activate inward current via Na/Ca

exchange (NCX) 2 and evoke delayed afterdepolarizations (DADs). In HF, there is enhanced

diastolic SR Ca2+ leak via RyR2 and other electrophysiological changes that greatly enhance

the propensity for DADs and triggered cardiac arrhythmias, a leading cause of ventricular

tachyarrhythmia and sudden cardiac death.3-6 Thus, RyR2 has emerged as a potential

therapeutic target for treating HF and arrhythmia. Stabilizing RyR2 and preventing

abnormal Ca2+ leak (without affecting normal excitation-contraction coupling) may be a

valid therapeutic approach.

Calmodulin (CaM) is an important RyR2 regulator, but has multiple cellular targets. CaM

has two pairs of globular Ca2+ binding E-F hand domains connected by a flexible linker.7 At

high [Ca2+], Ca2+ binds cooperatively to CaM inducing a conformational change that

translates intracellular [Ca2+] signals to diverse processes via many targets, including:

myosin light chain kinase, calcineurin, nitric-oxide synthase, phosphodiesterase, adenylyl

cyclase, Ca2+/CaM-dependent kinase (CaMK), Ca2+-activated potassium channels, L-type

Ca2+ channels (LTCCs), and RyRs.8-11

CaM binds to RyR2 stoichiometrically (four CaMs per tetrameric RyR2) and amino acids

3583-3603 on RyR2 are essential for this interaction.12-14 CaM inhibits RyR2 opening at all

[Ca2+] and as such may be a critical regulator of SR Ca2+ release.13,14 Cryo-EM based

three-dimensional reconstruction studies showed that Ca2+-free CaM (apoCaM) binds in the

RyR cytosolic domain 3, within 60-70Å from FKBP12.6 bound on the same RyR face,15,16

and we have demonstrated that fluorescence resonance energy transfer (FRET) can be

measured between these partners bound to either RyR1 or RyR2.17,18 FKBP12.6 was

reported to bind RyR2 tightly as an important regulator in RyR2 gating but aspects of the

FKBP12.6-RyR2 interaction and function remain controversial.19-22 It was also reported that

CaM could stabilize the RyR2 in the closed state during diastole and facilitate the

termination of Ca2+ release by decreasing the probability of channel reopening and

prolonging the closed time.23 Defective CaM-RyR2 interaction has potentially broad

implication in cardiac pathology. Mutations of critical residues in the highly conserved CaM

binding region can severely decrease, or abolish CaM binding to RyR2 and cause severe

hypertrophic cardiomyopathy and early death in animals.13,24 In non-ischemic HF animal

models, CaM binding to RyR2 was decreased.25,26 A recent study indicates that defective

CaM binding to RyR2 is also involved in catecholaminergic polymorphic ventricular

tachycardia (CPVT)-associated RyR2 dysfunction.27 So, the CaM-RyR2 interaction may be

critical for arrhythmias and HF pathogenesis.
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Here, we used FRET to resolve RyR-bound CaM from other CaM targets, and in the native

myocyte environment, to characterize CaM-RyR2 interaction properties for normal and HF

cardiomyocytes. Knock-in (KI) heterozygous mice (RyR2ADA/+),13 with genetically

disrupted CaM-RyR2 association (W3587A/L3591D/F3603A) were used to estimate what

percentage of Z-line bound CaM is RyR2-bound, and test for increased arrhythmia

susceptibility in both myocytes and intact animals under acute stress. This would be

analogous to what is seen in CPVT, which is linked to RyR2 mutations.28,29 This ADA

mutant RyR2 is not expected to change CaM effects at other CaM targets. Human mutations

in CaM have recently also been associated with CPVT, which may be partially recapitulated

by these RyR2ADA/+ mice.30

METHODS

Ventricular myocytes were isolated as previous described,22 from hearts of WT or

RyR2ADA/+ KI mice and Sprague-Dawley rats (control and 12 weeks after HF induced by

coronary ligation31,32). FKBP12.6 and CaM were labeled with Alexa Fluor 488 and 568

(AF488 and AF568) as described, which bind to and regulate RyRs in SR like wild type

proteins.17,18 Some myocytes were saponin-permeabilized and bathed in physiological

internal solutions. Fluorescent FKBP12.6 and CaM (F-FKBP and F-CaM) and 25 μM Fluo-4

(to measure [Ca]i) were used with confocal imaging.22,33 ECGs were recorded in

RyR2ADA/+ and WT mice during isoproterenol (ISO, 2mg/kg) and caffeine (120mg/kg)

challenges. Further details are in the Online Methods.

RESULTS

Steady-state binding of CaM to RyR2

Pre-depletion of endogenous CaM by suramin—RyR2s are concentrated at Z-lines,

which is also true for CaM,34 and ~90% of apoCaM binding sites are occupied by

endogenous CaM.34 Online Fig. IAi shows the F-CaM Z-line striation pattern after 60 nM F-

CaM was washed in. Suramin (5 μM) wash-in abolished striations within 60 s (Online Fig.

IAii), indicating F-CaM dissociation from Z-line sites. After suramin-dependent stripping

and subsequent wash-out (20 min), F-CaM rebound at Z-lines, restoring striations (Online

Fig. IAiii). Before suramin treatment, F-CaM binding kinetics were slow, time constant τ =

11.5 min (Online Fig. IB) which represents F-CaM replacing endogenous RyR-bound

CaM.34 After depleting endogenous RyR-bound CaM with suramin, F-CaM binding was

much faster (τ = 2 min; Online Fig. IC), reflecting F-CaM binding to unoccupied binding

sites. Bmax was not significantly altered by suramin pretreatment, indicating that suramin

completely depleted endogenous Z-line bound CaM, and that CaM and suramin binding are

completely reversible.

Steady-state CaM-RyR2 binding affinity—Strong FRET between F-FKBP and F-CaM

is effective in distinguishing CaM bound to RyR2 vs. other CaM targets.18 After suramin

pretreatment, 100 nM F-FKBP (donor) was washed-in to saturate FKBP binding sites on

RyR2.18,22 Then different F-CaM (acceptor) concentrations were washed-in and allowed to

reach steady state (20-120 min). RyR2-bound CaM is detected through FRET by sensitized

emission (SE). Fig. 1A shows fluorescent striations with F-FKBP excitation at 488 nm and
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two different [F-CaM] in both donor (green) and acceptor (red) channels. In FRET-based Kd

measurements, as [F-CaM] increases, donor fluorescence decreases (donor quench), while

acceptor fluorescence increases (enhanced acceptor fluorescence, EAF). The fluorescence

intensity in the acceptor channel (difference between Z-and M-line fluorescence) is due to

EAF (FRET) and reflects the amount of CaM specifically bound to RyR2. The binding

isotherm in Fig. 1B, is well described by a specific binding curve with a single binding site

(Kd = 18 ± 2 nM). We also calculated Kd from donor quenching (21 ± 3 nM; Online Fig. II)

in agreement with that.

To test whether FRET occurs between one donor and one acceptor, in Fig. 1C we plotted

donor signal (y-axis) vs. acceptor signal (x-axis) for the same [F-CaM], from experiments

shown in Fig 1B. The dependence of donor fluorescence (F-FKBP; decreasing due to FRET)

on the acceptor fluorescence (FCaM; increasing FRET) is linear, consistent with

bimolecular FRET.35 This suggests that FRET is exclusively between FKBP12.6 and CaM

bound to the same face of the RyR2 (not to another nearby site).18

Total CaM at Z-line—Using direct F-CaM excitation (543 nm) rather than FRET, we also

measured the apparent Kd for total CaM bound at the Z-line (i.e., CaM bound to RyR2 plus

other sites along the Z-line). Fig. 1D shows the Z-line striations at two different [F-CaM].

The plot of peak height reveals a single saturable binding component for F-CaM at the Z-

line with Kd = 17 ± 2 nM (Fig. 1E). Kd values for RyR2-bound CaM (Fig.1B) and for total

CaM bound at the Z-line (Fig. 1E) are very similar. One possible explanation is that RyR2 is

the quantitatively dominant CaM binding site in the Z-line. The other is that several CaM

binding sites have similar affinities. Through linear bath [F-CaM] calibration (Fig. 1F), we

can infer the concentration of Z-line bound F-CaM in permeabilized myocytes. The

maximum bound CaM at the Z-lines (Bmax, Fig. 1E) is 1.2 μM, similar to our prior work,36

and consistent with the Bmax for FKBP12.6 in rat myocytes.22

Kinetics of CaM binding to RyR2

FRET-based measurement of kon and koff during wash-in/out in myocytes—
After CaM depletion, permeabilized myocytes were saturated with F-FKBP (100 nM).

Using FRET, we characterized CaM-RyR2 association (kon) and dissociation (koff) rate

constants in F-CaM wash-in/out experiments (Fig. 2A). During wash-out, fluorescent

striations gradually dissipated along a single-exponential decay (τ = 4.5 min), which

corresponds to koff = 0.22 ± 0.01 min-1 (n=5). For wash-in, CaM-RyR2 association rate is a

function of kon, koff and [F-CaM] (kwash-in = kon [CaM] + koff). Using the koff above and the

wash-in data, we calculated kon =18.9 ± 1.6 x 106 min-1M-1 (n=5). These kon and koff values

correspond to Kd = 12 ± 1 nM (koff/kon), which agrees with the steady-state binding results

above.

FRAP-based measurement of kon and koff in myocytes—Permeabilized myocytes

were first equilibrated with saturating F-FKBP (100nM) and with [FCaM] in the Kd range.

After photobleaching the acceptor by 543 nm excitation in the central region of the cell (Fig.

2B), we monitored striation recovery (FRAP). FRAP reflects recovery of CaM-RyR2

binding, in which the photobleached RyR-bound F-CaM dissociates and is replaced by fresh
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F-CaM from the bath. In Fig. 2C, kFRAP was fit to a single-exponential function for two

different bath [F-CaM], upon which FRAP is dependent (kFRAP= kon[F-CaM] + koff). The

values of kon and koff are obtained from linear regressions (Fig. 2D). Both kon = 14.5 ± 2.5

x106 min-1 M-1 and koff = 0.144 ± 0.05 min-1 agree well with the wash-in/out experiments

(Fig. 2A), and give a similar Kd (10 ± 2 nM).

Percentage of total Z-line CaM that is RyR2-bound—KI mice with genetically

disrupted CaM-RyR2 interaction are used here (along with WT mice) to estimate the

percentage of total Z-line-bound CaM that is RyR2-bound. These KI mice express RyR2

with a triple-mutation (RyR2-W3587A/L3591D/F3603A, RyR2ADA/+) that prevents high-

affinity binding of CaM.13 Homozygous (RyR2ADA/ADA) mice all die within 16 days of

birth with a severe HF phenotype, loss of T-tubule/junctional couplings and ~70% decrease

in RyR2 expression, making them unsuitable here.13,24 However, the heterozygous mice

(RyR2ADA/+) have no evidence of HF or structural defects, and exhibit normal life-span and

RyR2 expression levels.13 We find that RyRADA/+ myocytes exhibit reduced F-CaM

binding both to the RyR2 (by FRET), and at the Z-line (by direct F-CaM excitation; Fig.

3A,B). For RyR2ADA/+, there is a 50% ± 2% reduction in FRET at saturating [F-CaM]

(FRETmax), with no significant change in Kd (Fig. 3C). That fits the expectation that in

RyR2ADA/+ mice ~50% of the RyR2 monomers have the triple-mutation and defective CaM

binding. There is also a 46% ± 2% reduction of total CaM at the Z-line (Fig. 3D), which is

therefore primarily due to the 50% decrease in CaM binding to RyR2. This suggests that

~92% of Z-line localized CaM is bound to RyR2. We also measured RyR2 monomer

expression as total binding (Bmax) of FKBP12.6 (Online Fig. III).22 FKBP12.6 binding was

identical in RyR2ADA/+ vs. WT myocytes, confirming an unaltered total number of RyR2

monomers, in line with unaltered Bmax of [3H]-ryanodine binding in these mice.13

Ca2+ sparks in permeabilized RyR2ADA/+ KI mouse myocytes—Saponin-

permeabilized myocytes are powerful tools for the evaluation of diastolic SR Ca2+ leak. The

free [Ca]i can be tightly controlled and it avoids complications due to LTCCs, which can

trigger RyR2-mediated Ca2+ release. However, a potential disadvantage of this method is

that some cellular contents (like endogenous proteins) can be lost due to wash-off. Since the

endogenous CaM associated with RyR2 may be washed off within 10 min (Fig 2A), we

modified the permeabilization protocol, for Ca2+ spark measurements, to limit this

disadvantage. For Ca2+ spark measurements, myocytes were exposed to saponin (50 μg/ml)

for only 20-30 s instead of the 3 min used above for CaM wash-in. Online Fig. IV shows

that after 20-30 s permeabilization, Ca2+ sparks were readily detected in myocytes after 20

min exposure to F-FKBP, F-CaM and fluo-4. However, there was no visible striated pattern

observable for F-FKBP, F-CaM, or FRET. This indicates that fluo-4 can enter the cell with

this gentler permeabilization, but proteins (e.g. CaM and FKBP12.6) cannot. With the 3 min

permeabilization protocol, both FRET striation pattern and Ca2+ sparks were detected,

indicating that all 3 probes entered the cell. This shows that 20-30 s permeabilization can

also effectively limit FKBP12.6 and CaM wash-out during the time of Ca2+ spark

measurement. Thus, we can make the Ca2+ spark measurement in the relatively native

cellular environment with respect to CaM and FKBP12.6 concentrations.
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Using this approach, we measured diastolic SR Ca2+ leak as Ca2+ sparks within 15-20 min

of permeabilization. Fig. 4A, B shows that, at 50 nM [Ca2+], spark frequency was

significantly higher in RyR2ADA/+ versus WT mice (8.9 ± 0.3 vs. 6.4 ± 0.5 s-1 per 100 μm),

which tended to lower SR Ca2+ content in RyR2ADA/+ versus WT (albeit insignificantly;

Fig. 4B). Ca2+ spark frequency depends steeply on SR Ca2+ content,37 such that the new

steady state spark frequency underestimates the magnitude of the primary effect. The

increased Ca2+ spark frequency could not be prevented by the specific CaMKII inhibitor

AIP (Fig. 4B), ruling out a contribution of CaMKII. These results are consistent with half of

the RyR2 monomers lacking CaM, allowing higher RyR2 activity.

In a second series of spark experiments we compared the effect of endogenous CaM (as

above) with CaM washout and re-admission in WT and RyR2ADA/+ mice (Online Fig. V).

For WT CaM, wash-off increased Ca2 spark frequency, Ca2+ spark full duration at half-

maximum (FDHM), and full width at half-maximum (FDHM). These effects were reversed

with CaM re-addition. However, in RyR2ADA/+ myocytes the baseline Ca2+ spark

frequency, FDHM and FWHM were already high (comparable to that in CaM-free WT

myocytes), and were not influenced by CaM washout or re-admission. Thus, even 500 nM

CaM cannot reverse the high Ca2 spark frequency caused by defective CaM-RyR2

interaction (Online Fig. V).

We also increased intracellular [Ca2+] to 100 nM, close to the threshold for Ca2+ waves in

WT mouse myocytes, to further test the propensity for DADs or arrhythmogenesis. The

increased [Ca2+] mimics a Ca2+ loading stress in permeabilized cells, since both cytosolic

and SR Ca2+ load are increased. In RyR2ADA/+ mice ~90% of myocytes produced Ca2+

waves vs. only ~10% of myocytes for WT mice (Fig. 4C-D), again without a significant

difference in Ca2+ SR load (Fig. 4D). The caffeine-induced Ca transients were induced

during sweeps where no waves occurred, to limit underestimation of SR Ca2+ content that

would occur in the wake of a wave. All these data indicate that the ADA CaM-binding

mutation in RyR2, increases diastolic SR Ca2+ leak under resting conditions, and increases

propensity for arrhythmogenic Ca2+ wave production under moderate Ca2+ loading

conditions.

Ca2+ transients in RyR2ADA/+ KI mouse in intact myocytes—We also measured

Ca2+ transients in intact ventricular myocytes (Fig. 5A) with or without isoproterenol (ISO,

50 nM) present, and SR Ca2+ content was evaluated through rapid caffeine application. In 1

Hz field stimulation at baseline, RyR2ADA/+ myocytes behave similar to WT in Ca2+

transient amplitude, time constant of Ca2+ transient decline, SR Ca2+ content, and fractional

SR Ca2+ release (Fig. 5B-E). While exposure to ISO (50 nM) had similar effects on Ca2+

transient amplitude in both WT and RyR2ADA/+, the time constant of [Ca2+]i decline was

longer, SR Ca2+ content was lower and fractional SR Ca2+ release was increased in

RyR2ADA/+ vs. WT (Fig 5C-E). The more sensitive RyR2ADA/+ and higher Ca2+ loading in

50 nM ISO may cause the prolonged twitch [Ca2+]i decline (delayed shut-off of release, as

demonstrated under analogous conditions in CaMKIIδC overexpressing mice that lack

phospholamban38). The exacerbated leak in RyR2ADA/+ mice may also limit the rise in SR

Ca2+ content induced by ISO, like the reduced maximal achievable SR Ca2+ content in HF

or ISO treated myocytes.24,39 Figure 6 also shows that in RyR2ADA/+ myocytes, ISO
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increased the propensity for Ca2+ waves that trigger action potentials. That is, the transition

from Ca2+ wave to spatially synchronized global Ca2+ release was necessarily synchronized

by a triggered action potential. These triggered events could reflect increased

arrhythmogenic risk in RyR2ADA/+ mice, analogous to CPVT.

Ventricular arrhythmia in RyR2ADA/+ KI mouse—To test whether the RyR2ADA/+ KI

mice are more susceptible to CPVT-like arrhythmias, we measured ECGs in intact mice

during injection of ISO plus caffeine as has been done in CPVT mouse models.40 Figure 7A

shows that RyR2ADA/+ KI mice developed severe stress inducible ventricular arrhythmia.

All RyR2ADA/+ mice exhibited sustained bigeminy (>20min), a precursor for ventricular

tachycardia (VT, Fig 7B). In 60% of RyR2ADA/+ mice, bidirectional VT was induced (Fig

7B), and episodes of VT were frequent (4.5/mouse) in RyR2ADA/+ mice. In contrast, none of

the WT mice exhibited inducible arrhythmia in this protocol.

Binding affinity of CaM/FKBP12.6 to RyR2 in HF myocytes—We measured CaM-

RyR2 affinity in a rat HF model induced by coronary ligation. Twelve weeks post-infarct

these rats exhibit increased heart/body weight ratio, increased LV diastolic dimensions

(LVDD) and decreased fractional shortening.31,32 Other HF molecular markers (ANP, BNP,

TNF-α) are also increased in this model.32 The HF rats used here had reduced fractional

shortening (<20% vs. normal: 46%) and elevated LVDD (see Online Fig. VI). We used

FRET to measure the CaM-RyR2 affinity. In HF vs. normal myocytes, the CaM-RyR2

affinity was ~3-fold lower (Kd=51±4 nM; Fig. 8A). We also performed paired experiments

with sham rats, with [F-CaM] near the Kd and saturating (FRETmax) (Fig 8B). At [F-CaM]

near WT Kd, changes in affinity are readily detected, and binding was significantly lower in

HF. FRETmax was unaltered.

FKBP12.6 was suggested to also be a critical RyR2 stabilizer, with decreased affinity in HF

(although this is controversial).41 Using methods previously described,22 we measured, for

the first time within HF myocytes, the FKBP12.6-RyR2 affinity (Kd = 0.8 ± 0.1 nM; Fig.

8C). This is almost identical to the Kd we previously measured in normal rat myocytes under

the same conditions (0.7 ± 0.1 nM).21 We also performed paired experiments (as for CaM).

We found no significant changes in FKBP12.6-RyR2 binding either at subsaturating or

saturating [F-FKBP] in sham vs. HF rat myocytes (Fig. 8D).

DISCUSSION

Here we resolved CaM binding to RyR2 vs. other Z-line binding partners, and characterized

CaM-RyR2 binding properties (Kd and on/off rates) in permeabilized ventricular myocytes

by 3 independent methods (Online table I). RyR2ADA/+ KI mice with disrupted CaM-RyR2

binding, were used to determine that >90% of Z-line CaM is bound to RyR2. Functional

consequences of reduced CaM binding to RyR2 were detected using Ca2+ measurements in

WT vs. RyR2ADA/+ KI myocytes, with CaM wash-out from WT myocytes, and

arrhythmogenesis tests in mice. We also found CaM-RyR binding affinity to be reduced in

HF myocytes. These results provide important new insights into understanding CaM-RyR2

interactions in normal and HF myocytes.
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CaM-RyR2 binding properties in myocytes

CaM, as a key regulator of RyR2 function, may be important in myocyte Ca2+ homeostasis

in HF, cardiac hypertrophy, and CPVT. But in situ CaM-RyR2 binding properties were

previously unknown. Using three independent methods, we demonstrated that CaM binds to

RyR2 with high affinity (Kd=10-20 nM) in myocytes at 50 nM [Ca2+]i. Considering the

measured free [CaM] in myocytes (50-75 nM),34 the majority of RyR2 monomers

(~70-90%) have CaM bound, such that CaM can influence local [Ca2+]i by inhibiting RyR2

opening at physiological [Ca2+].12-14,23,26,42 The CaM-RyR2 binding affinity we measured

in myocytes is higher than in cell lysates and SR vesicles.17,27 This could be due to

differences in experimental conditions or subcellular fractionation effects. In SR vesicles,

essential partners from the cellular environment may be lost, or post-translational

modifications of RyR2 might occur (e.g., phosphorylation or oxidation), which can alter

CaM-RyR2 affinity.23,43 Using three methods, we measured very similar CaM-RyR2

affinities that are consistent with CaM's physiological function.13,23 This supports that our

Kd measurements (10-20 nM) are valid for the CaM-RyR2 binding affinity in the native

cardiac myocyte environment.

According to our data, CaM-RyR2 has a relatively slow koff (~0.2 min-1), meaning that the

average dwell-time for CaM on RyR2 is ~5 min, under resting conditions. In addition, high

[Ca2+]i (500 nM) strengthens CaM binding to RyR/Z-lines and greatly slows CaM

dissociation.18,34 Hence, increased CaM-RyR2 affinity during the Ca2+ transient (<1 s)

would further enhance CaM saturation at all RyR2 monomers in the physiological beat-to-

beat situation. Furthermore, it was proposed that CaM can switch between two binding sites

separated by ~33Å on RyR1 during each cardiac cycle.44,45 The two-site switch involves

two sets of association and dissociation process, which seems unlikely to occur within the

very short systolic time, according to our measured kinetics. Taken together, these suggest

that CaM is a resident RyR2-associated protein anchored at least to residues 3583-3603.

This interpretation is consistent with a recent cryo-EM report placing apo- and Ca-CaM at

the same location within the RyR2 map.46 However, we cannot exclude the possibility of

beat-to-beat RyR2 regulation by CaM because homozygous RyR2ADA/ADA myocytes

exhibit prolonged Ca2+ transient and spark durations. That is consistent with the possible

importance of resident CaM for RyR2 shut-off.13,24,47 During a Ca2+ transient, RyR2

opening and conformation change could alter anchored CaM function, where binding of

Ca2+ to CaM would facilitate the termination of Ca2+ release.

Nearly all Z-line bound CaM is on RyR2

An important finding here is that >90% of the total Z-line associated CaM is bound to

RyR2, i.e., ~1.2 μM (Fig. 1E). This is consistent with our FKBP12.6 Bmax measurements,22

and with the estimated concentration of RyR2 monomers in rat ventricular myocytes,48

implying that there may be ~70 nM of non-RyR2 CaM-binding sites at the Z-line. Since the

LTCC also binds CaM at the Z-line, and there are ~32 RyR2 monomers per LTCC in rat

myocytes,48 LTCC would bind about 40 nM CaM, consistent with our findings. It is clear

that RyR2 is the quantitatively dominant CaM binding site at the Z-line. Total cellular

[CaM] in rat cardiac myocytes is 2-6 μM, and varies somewhat with species.49 We infer that

a reduction in CaM-RyR2 binding affinity, as in HF or CPVT,25-27 might also shift CaM's
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distribution among different binding targets. Since free [CaM] is only 50-100 nM in

myocytes (>95% is bound) even at diastolic [Ca2+]i there is likely to be competition among

target sites for available CaM.34

Defective CaM-RyR2 interaction and SR Ca2+ release, CPVT

Here RyR2ADA/+ mice13 were used to assess CaM binding at the RyR2 and Z-line

quantitatively, but this also alters SR Ca2+ leak which provides a functional correlate.

Homozygous RyR2ADA/ADA mice have altered SR Ca2+ release, but also exhibit profound

HF, death within ~2 weeks of birth, 70% reduction in RyR2 expression T-tubule

disorganization.13,24 Remarkably RyR2ADA/+ mice have normal lifespan, structure and

RyR2 expression with no hypertrophy.13 This is similar to KI mice carrying a CPVT1

mutation (RyR2-R2474S),28,50 where heterozygous mice survive without hypertrophy

similar to WT, but the homozygous KI is lethal. Decreased CaM-RyR2 binding affinity has

also been reported in CPVT1 KI mice under stress conditions known to be

arrhythmogenic.27 Thus, the RyR2ADA/+ mice studied here resemble a CPVT1 model, and

we also assessed abnormal SR Ca2+ release and stress-induced arrhythmic events in these

mice.

Baseline Ca2+ transients were similar between RyR2ADA/+ and WT mice, consistent with

prior hemodynamic data, indicating functional normalcy of these mice (vs. WT

littermates).13 RyR2ADA/+ myocytes exhibited a moderate increase in Ca2+ spark frequency

at baseline. The moderate Ca2+ leakiness may explain why the heterozygous mice survive as

long as WT controls (unlike homozygous RyR2ADA/ADA). Recently, Yamaguchi et al.51

showed that the single RyR2-L3591D mutant (which also reduces RyR2-CaM binding),

when homozygous in KI mice, increases RyR2 open probability at diastolic [Ca2+], but is

much better tolerated vs. the RyR2ADA/ADA triple mutation. These results are consistent

with the CPVT phenotype, where under resting condition the CPVT patients are completely

normal.

Catecholamine challenge (ISO) in RyR2ADA/+ further exacerbated SR Ca2+ leak, limited the

ISO-induced lusitropy and SR Ca2+ loading, but the Ca transients were still similarly

enhanced (vs. WT; Fig 5). We infer that this is because there is fractional SR Ca2+ release in

the RyR2ADA/+ mice with ISO. So this mouse seems adapted to have normal adrenergic

inotropic response, but the SR is pushed closer to instability. In particular, we suspect that

the limited lusitropic effect and reduced SR Ca2+ content after ISO in RyR2ADA/+ mice may

be due to the dramatically increased SR Ca2+ leak, especially because Yamaguchi et al.13

found SR Ca-ATPase-dependent uptake rate in RyR2ADA/+ mice was normal. That agrees

with single-channel RyR2 recordings suggesting that defective CaM-RyR2 interaction

delays RyR2 closure.23

Despite the relative normalcy of Ca2+ transients in RyR2ADA/+ myocytes, the exacerbation

of leak may limit maximal SR Ca2+ content, just as seen for both ISO treatment alone and

HF alone.25,39 This might limit cardiac reserve. More importantly, this enhanced leak in

RyR2ADA/+ increases Ca2+ waves and triggered activity in myocytes and whole animal

arrhythmias in response to catecholamine challenge (Fig 4, 6 and 7). This again recapitulates

the situation in CPVT1 KI mice and patients.28,29 In particular, the bidirectional VT seen in
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RyR2ADA/+ (but not WT mice) is clinically diagnostic for CPVT.29 Although this RyR2

ADA mutation is not a known disease-linked mutation in humans, it causes a CPVT-like

phenotype. There are also two recent CaM mutations that are associated with CPVT in

patients,30 and the CPVT phenotype may well result from effects of these mutant CaMs

analogous to our RyR2ADA/+ mouse results here.

We cannot exclude the possibility that the ADA triple mutation alters RyR2 domain

interactions, which might also contribute to the functional effects observed. However, the

similarity between the RyR2ADA/+ and simply depleting CaM from the WT RyR2 (Online

Fig V) convinces us that the loss of CaM binding is the major factor in RyR2ADA/+ mice

causing abnormal SR Ca2+ leak and arrhythmias. We recently also showed that CaM

binding can stabilize RyR2 conformation in a more stably closed (zipped) state where access

of an unzipping peptide is supressed.52

CaM-RyR2 binding affinity in HF myocytes

Prior work in HF rabbit and canine models demonstrated reduced RyR2-bound CaM, based

on co-immunoprecipitation and biochemical analysis,25,26 but total CaM expression was

unaltered.25 Here we directly measured CaM and FKBP12.6 affinity for RyR2 in situ in HF

myocytes. We found a three-fold lower CaM affinity in HF myocytes, while FKBP12.6

affinity was unaltered. This quantitative information allows novel inferences. Assuming that

free [CaM] in HF myocytes is 50-100 nM,34 the saturation of RyR2 monomers with CaM

would be expected to drop from 70-90% to 50-70% in HF. This lower RyR2 saturation with

CaM may have an analogous functional effect to those that we found in the RyR2ADA/+

mice, where only 50% of RyR2 can bind CaM. The implication is that reduced CaM binding

to RyR2 may contribute to the known increased SR Ca2+ leak in HF,4,25 and to the

incidence of arrhythmias, which are responsible for 50% of HF deaths.1 Furthermore,

attenuated CaM-RyR2 association in HF could allow other intracellular CaM targets of

lower affinity to be better activated, since RyR2 is a major CaM site in myocytes.11 One

such site is CaMKII which is activated in HF and contributes to SR Ca2+ leak and

arrhythmogenesis by phosphorylation and activation of RyR2.25 Thus, decreased CaM-

RyR2 association in HF may synergize with other regulatory pathways to exacerbate cardiac

dysfunction and arrhythmias.

Overall, the HF-associated SR Ca2+ leak is a complicated process involving several factors

(e.g., CaM, CaMKII, FKBP12.6, redox modification, etc.). Here, for the first time, we

measured directly the in situ binding affinity of RyR2 for FKBP12.6 in HF myocytes, but

found it to be unaltered vs. control. We conclude that CaM binding to RyR2 may be an

important physiological regulator of RyR2 gating in cardiac myocytes, and that defects in

this binding in HF or CPVT might constitute an important molecular mechanism of

triggered arrhythmias suitable for therapeutic targeting.
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Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

τ time constant

AC adenylyl cyclase

ADA W3587A/L3591D/F3603A triple mutation of RyR2

AIP autocamtide-2 related inhibitory peptide

a.u. arbitrary units

Bmax binding maximum

CaM calmodulin

CaMK Ca2+/CaM-dependent kinase

CaN calcineurin

CPVT catecholaminergic polymorphic ventricular tachycardia

VT ventricular tachycardia

DAD delayed afterdepolarization

EAF enhanced acceptor fluorescence

F fluorescent

FDHM full duration at half maximum

FKBP12.6 FK506 binding protein

FRAP fluorescence recovery after photobleaching

FRET fluorescence resonance energy transfer

FRETmax FRET value at saturating acceptor concentration.

FWHM full width at half maximum

HF heart failure

ISO isoproterenol

Kd dissociation constant

KI knock-in

koff dissociation rate constant

kon association rate constant

LTCC L-type calcium channels
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LVDD left ventricular diastolic dimension

LVSD left ventricular systolic dimension

MI myocardial infarction

NCX Na/Ca exchanger

NOS nitric oxide synthase

NT normal Tyrode's solution

PDE phosphodiesterase

RyR2 cardiac ryanodine receptor

SE sensitized emission

SR sarcoplasmic reticulum
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Novelty and Significance

What Is Known?

• Calmodulin (CaM) binds to multiple cellular targets, including the SR Ca2+

release channel (RyR2) in cardiomyocytes. CaM binding reduces RyR channel

opening and can reduce SR Ca2+ leakiness.

• Abnormal SR Ca2+ leak is thought to contribute to dysfunction and arrhythmias

in CPVT (Catecholaminergic polymorphic ventricular tachycardia) and heart

failure (HF).

• FK506-binding protein 12.6 (FKBP12.6) binds to RyR2 with high affinity and

may also stabilize RyR gating, but results are controversial.

What New Information Does This Article Contribute?

• In the native cardiac myocyte environment with 50 nM [Ca2+]i, CaM binds to

RyR2 (and at the Z-line) with high affinity (Kd = ~ 15 nM).

• More than 90% of the CaM at the Z-line is RyR2 bound in cardiac myocytes.

• CaM dissociation from RyR2 or lack of binding to mutant RyR2 can lead to

abnormal SR Ca release in the form of increased Ca sparks, Ca waves, triggered

activity and arrhythmias at the whole animal level.

• These arrhythmogenic features recapitulate RyR2 changes seen in CPVT and

HF.

• In a post-myocardial infarction rat HF model, RyR2-CaM binding affinity is

reduced ~3 fold, while FKBP12.6 affinity is unaltered.

CaM is known as a mediator of Ca2+ signals, and it can bind to and alter RyR properties.

However, little quantitative data are available about CaM-RyR interaction and function in

native cardiac myocytes. We used confocal fluorescence microscopy to measure the in

situ binding kinetics and affinity of CaM for RyR in normal myocytes and in myocytes

from mice expressing a mutant RyR that cannot bind CaM (CPVT-like model) and from

rats with post-MI-induced HF. Using fluorescence resonance energy transfer (FRET), we

can distinguish RyR2-bound CaM from CaM bound to other sites in the myocyte. More

than 90% of the CaM that is already highly concentrated along the Z-lines of the myocyte

is bound directly to RyR. We also found that CaM binding to RyR was reduced in the

CPVT-like and HF models and it that causes enhanced SR Ca2+ leak leading to

arrhythmogenic events (. Reduced CaM binding to RyR in cardiac myocytes resulting in

enhanced SR Ca leak may be an important contributor to both reduced systolic function

and arrhythmias.
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Figure 1. RyR2 FRET CaM binding and Z-line total CaM binding
A, FRET images for 20 and 500 nM acceptor [F-CaM], while keeping donor (F-FKBP) saturated. Donor fluorescence decreases

and FRET signal increases at higher acceptor [F-CaM]. B, Acceptor (FRET) signal fit with single saturable binding isotherm

(n=11-13). C, Donor quench and acceptor FRET are linearly related. D, Z-line images for direct F-CaM excitation at 20 and 500

[F-CaM]. E, binding affinity fitted for CaM at Z-line (n=11-13), reflecting the Kd and total CaM (Bmax). F, Calibration of F-

CaM fluorescence for different bath [F-CaM].
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Figure 2. Binding kinetics of CaM-RyR2
A, Representative time course of FRET (CaM fluoresence upon F-FKBP excitation) for 20nM F-CaM wash-in/off. CaM-RyR2

kon, koff and Kd are indicated (n=5). B, Recovery of photobleached FRET striation image in 20 nM [F-CaM] imaged at indicated

times. C, FRAP rate constants (kFRAP; single-exponential fits) at 15 and 30 nM F-CaM. D, kon (slope) and koff (intercept) are

extracted from linear regression fitting (n=8-10), and Kd is inferred.
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Figure 3. Percentage of Z-line CaM that is on RyR2
A, FRET images in saturating F-CaM and FFKBP12.6 conditions for WT and RyR2ADA/+. B, Z-line bound F-CaM images

(direct F-CaM excitation) for WT and RyR2ADA/+. C, Steady state CaM binding, with Bmax normalized to WT level and with

Kd inferred (n=12-20). D, Total Z-line associated F-CaM with Bmax and Kd for RyR2ADA/+ and WT mice (n=14-20).
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Figure 4. Diastolic Ca2+ leak in permeabilized myocytes
A, Confocal line images of Ca2+ sparks for 50nM [Ca2+] in WT and RyRADA/+ mice. B, Mean Ca2+ spark frequency and SR

Ca2+ content for WT and RyRADA/+ mice (±CaMKII inhibitor AIP). C, Confocal line scan at 100nM [Ca2+], showing a Ca2+

wave for RyRADA/+, but not for WT mouse. D, Percentage of myocytes showing Ca2+ waves and SR Ca2+ content for WT and

RyRADA/+ mice.
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Figure 5. Ca2+ transients in intact myocytes
A, Representative Ca2+ transients and SR Ca2+ content (assessed by 10 mM caffeine exposure) during at 1 Hz stimulation with

and without isoproternol (ISO; 50nM) for WT and RyR2ADA/+ mice. B, Average twitch transients amplitude (ΔF/F0). C, time

constant of twitch [Ca2+]i decline. D, SR Ca2+ content (amplitude of caffeine-induced Ca transient). E, Fractional SR Ca2+

release (ratio for twitch Ca2+ transient amplitude to caffeine-induced Ca2+ release).

Yang et al. Page 21

Circ Res. Author manuscript; available in PMC 2015 January 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 6. Arrhythmogenic Ca2+ waves in isoproterenol-treated myocytes
A, representative line-scan image of Ca2+ wave (sloping [Ca2+] rise) and triggered activity in intact myocyte with 50 nm ISO.

The almost instantaneous spread of SR Ca2+ release at triggered beats indicates that action potentials were induced. B,

Percentage of myocytes exhibiting Ca2+ waves and triggered activity for WT (n=24) and RyRADA/+ (n=22).
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Figure 7. Effect of caffeine plus ISO on ventricular arrhythmia (RyR2ADA/+)
A, representative ECG recording for RyR2ADA/+ mice, severe ventricular arrhythmia (sustained bigeminy, bidirectional VT and

polymorphic VT) were induced by ISO plus caffeine. B, 100% of RyR2ADA/+ mice exhibit sustained bigiminy (> 20min); 60%

RyR2ADA/+ mice exhibit typical bidirectional VT, and VT (bidirectional or polymorphic) episode is 4.5/mouse.
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Figure 8. CaM/FKBP12.6 binding affinity to RyR2 in HF myocytes
A, FRET detection and steady-state concentration-dependant binding, Kd of CaM-RyR2 was measured in HF myocytes (n=18).

B, Kd for FKBP12.6-RyR2 was measured by steady-state binding in HF myocytes (n=18-22). C, for Kd range (20 nM), there is a

significant decrease CaM-RyR2 associate rate for HF, but with same Bmax (in saturating condition). D, for Kd range or

saturating condition (Bmax), the FKBP12.6-RyR2 associate rate are unchanged for control and HF myocytes
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