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ARTICLE

MAP3Kinase-dependent SnRK2-kinase activation is
required for abscisic acid signal transduction and
rapid osmotic stress response
Yohei Takahashi 1, Jingbo Zhang1,3, Po-Kai Hsu 1, Paulo H.O. Ceciliato1, Li Zhang1, Guillaume Dubeaux 1,

Shintaro Munemasa2, Chennan Ge1, Yunde Zhao 1, Felix Hauser 1 & Julian I. Schroeder 1*

Abiotic stresses, including drought and salinity, trigger a complex osmotic-stress and abscisic

acid (ABA) signal transduction network. The core ABA signalling components are snf1-

related protein kinase2s (SnRK2s), which are activated by ABA-triggered inhibition of type-

2C protein-phosphatases (PP2Cs). SnRK2 kinases are also activated by a rapid, largely

unknown, ABA-independent osmotic-stress signalling pathway. Here, through a combination

of a redundancy-circumventing genetic screen and biochemical analyses, we have identified

functionally-redundant MAPKK-kinases (M3Ks) that are necessary for activation of SnRK2

kinases. These M3Ks phosphorylate a specific SnRK2/OST1 site, which is indispensable for

ABA-induced reactivation of PP2C-dephosphorylated SnRK2 kinases. ABA-triggered SnRK2

activation, transcription factor phosphorylation and SLAC1 activation require these M3Ks

in vitro and in plants. M3K triple knock-out plants show reduced ABA sensitivity and strongly

impaired rapid osmotic-stress-induced SnRK2 activation. These findings demonstrate that

this M3K clade is required for ABA- and osmotic-stress-activation of SnRK2 kinases, enabling

robust ABA and osmotic stress signal transduction.
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Limited water availability is one of the key factors that
negatively impacts crop yields. The plant hormone abscisic
acid (ABA) and the signal transduction network it activates,

enhance plant drought tolerance through triggering of multiple
cellular and developmental responses1–3. As plants are constantly
exposed to changing water conditions, robustness of the ABA
signal transduction cascade is important for plants to balance
growth and drought stress resistance. Core ABA signalling
components have been established2–7: ABA receptors PYR-
ABACTIN RESISTANCE (PYR/PYL)/REGULATORY COM-
PONENT OF ABA RECEPTOR (RCAR) inhibit type-2C protein-
phosphatases (PP2Cs)4,5,8, resulting in activation of the snf1-
related protein kinase2 (SnRK2) protein kinases SnRK2.2, 2.3 and
OST1/SnRK2.64,5,9–11. The SnRK2 kinases phosphorylate and
thus regulate the activity of downstream components including
transcription factors and ion channels9,10,12–15, which leads to
changes in gene expression and stomatal closure. Activation of
SnRK2 protein kinases requires phosphorylation of the SnRK2
kinases themselves, and in vitro experiments using purified
recombinant OST1/SnRK2.6 suggest that phosphorylation of the
activation-loop is an important step16. However, it has remained
unclear whether direct autophosphorylation and/or trans-
phosphorylation by unknown protein kinases reactivate these
SnRK2 protein kinases in response to stress.

Previous studies showed that ABA-dependent phosphorylation
of substrate proteins by SnRK2s could be reconstituted using only
recombinant PYR/RCAR ABA receptors, PP2Cs, and SnRK2
proteins14,17,18. Recombinant SnRK2 proteins used in these stu-
dies, unlike SnRK2s in plant cells, have high intrinsic kinase
activities even before ABA treatment16. Moreover, ABA recep-
tors, SnRK2 kinases, PP2Cs and targets have generally been added
to reactions simultaneously14,18. Therefore it is not clear whether
autophosphorylation accounts for the ABA-dependent SnRK2
reactivation after PP2C-dependent inhibition in planta.

The Arabidopsis genome encodes ten SnRK2 kinases, and at
least nine of these are activated in response to osmotic stress19.
Interestingly, rapid osmotic stress-induced activation of SnRK2
protein kinases can occur independently of ABA signalling20. The
osmotic stress sensing mechanisms and upstream signal trans-
duction mechanisms leading to SnRK2 activation remain to a
large degree unknown in plants.

In the present study, a family of MAP kinase kinase kinases
(M3Ks) is identified that is essential for reactivation of SnRK2
protein kinases after PP2C dephosphorylation. We show that the
OST1/SnRK2.6 protein kinase cannot reactivate itself after
dephosphorylation. Three independent reconstitution assays and
in planta analyses show the function of these M3Ks in SnRK2
kinase reactivation and ABA signalling. Moreover interestingly,
triple M3K knockout mutant analyses show that the identified
M3Ks are required for the rapid osmotic stress activation of
SnRK2 kinases, in a less-well understood, previously proposed,
pathway parallel to ABA signalling.

Results
Isolation of ABA-insensitive MAPKK-kinase amiRNA
mutants. By unbiased forward genetic screening of seeds from
over 1500 independent T2 artificial microRNA (amiRNA)-
expressing lines in pools (~45,000 seeds screened) for ABA-
insensitive seed germination, we isolated up to ~290 putative
mutants. In secondary screening of the surviving putative
mutants in the next (T3) generation, progeny from 25 of the
putative mutant plants continued to show a clearly reduced ABA
sensitivity, including seeds propagated from three amiR-ax1117-
expressing plants (Fig. 1a–c). It is most likely that the three
amiRNA-ax1117-expressing plants were the progeny of the same

amiRNA-expressing parent line. The amiR-ax1117 is predicted
to target five subgroup B Raf-like MAPKK-kinase (M3Ks)
genes (Supplementary Fig. 1). Previously, in a redundancy-
circumventing amiRNA pilot screen for impaired ABA inhibition
of seed germination in Arabidopsis, we isolated putative mutants,
including a M3K amiRNA-expressing line predicted to target
seven MAPKK-kinases21. These seven putative target M3K genes
overlap with four of the above amiR-ax1117 target genes (Sup-
plementary Fig. 1). Furthermore, in additional genetic screens for
ABA-insensitive inhibition of seed germination using more than
2,000 pooled amiRNA-expressing lines (~50,000 seeds screened),
we again isolated the previously isolated m3k amiRNA line two
more times. The amiR-ax1117 amiRNA and the m3k amiRNA
target five and seven overlapping Arabidopsis Raf-like kinase
members from subgroup B1 and B3 (Supplementary Fig. 1). Note
that the Arabidopsis genome includes ~80 M3K genes and 22 B
family M3K members22. Because SnRK2 protein kinase activation
is a key step in ABA signalling, and based on prior findings
described further below (Fig. 1f), we investigated ABA-activation
of SnRK2 protein kinase activity in seedlings of the m3k amiRNA
line by in-gel kinase assays. SnRK2 protein kinases are detected at
apparent mobilities of 40–44 kDa in in-gel kinase assays10,23.
Interestingly, ABA-activation of kinase activities was reduced
by 60% in the m3k amiRNA line (Fig. 1d, e, Supplementary Fig. 2;
n= 3 experiments).

OST1/SnRK2.6 reactivation after dephosphorylation. We
investigated phosphorylation of purified recombinant GST-
tagged OST1/SnRK2.6 protein kinase after dephosphorylation
in vitro. To test whether OST1/SnRK2.6 could be re-activated by
autophosphorylation, after dephosphorylation, the GST-OST1/
SnRK2.6 protein bound on glutathione sepharose 4B resin was
incubated with calf intestinal alkaline phosphatase (CIAP), and
[γ-32P]-ATP was added to the reaction after wash out of CIAP.
Surprisingly, we found that OST1/SnRK2.6 showed very low
autophosphorylation activity even after the protein phosphatase
had been removed (Fig. 1f, lane 2; n= 3 experiments). Other
ABA signalling protein kinases including the calcium-dependent
protein kinases CPK624 and CPK2325 and the MAP kinase
MPK1226,27 did not phosphorylate OST1/SnRK2.6 after depho-
sphorylation (Fig. 1f). Interestingly these results implied that
autophosphorylation is not sufficient for OST1/SnRK2.6 reacti-
vation following protein phosphatase exposure and removal.
Therefore, another unknown protein kinase may be required for
reversible ABA signal transduction.

We investigated whether the amiRNA-targeted M3Ks may
directly activate OST1/SnRK2.6. In-gel kinase assays were carried
out in vitro after incubation of the dephosphorylated His-OST1/
SnRK2.6 with GST-tagged recombinant M3K kinase domains and
His-tagged full-length M3Ks in the presence of ATP. Notably,
three M3Ks from the subgroup B3, named M3Kδ1, δ6, and δ7,
were found to strongly activate OST1/SnRK2.6, whereas the other
M3Ks targeted by the corresponding amiRNA did not clearly
activate OST1/SnRK2.6 under the imposed conditions in vitro
(Fig. 1g and Supplementary Fig. 3; n= 3 experiments). OST1/
SnRK2 kinase activation was not induced by an inactive mutant
M3K kinase protein, M3Kδ6 (K775W) (Fig. 2a). Moreover, the
M3Kδ1, δ6, and δ7 kinase domains directly phosphorylated the
kinase inactive OST1/SnRK2.6 (D140A) mutant isoform (Fig. 2b
and Supplementary Fig. 4). Note that a Physcomitrella patens
protein kinase ARK showing similarity to these M3Ks was recently
reported to phosphorylate a Physcomitrella SnRK2 kinase28.

M3Kδ1 phosphorylates a critical Ser171 for OST1activation.
Mass spectrometry analyses revealed that M3Kδ1 phosphorylated
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the OST1/SnRK2.6 residues Ser171, Ser175, and Thr176 in the
OST1-activation loop (Fig. 2c). We next focused on Ser171,
because this site has not been found as an OST1/SnRK2.6
autophosphorylation site in vitro16, consistent with our mass
spectrometry analyses of OST1 (Fig. 2c, d). Using Arabidopsis
mesophyll cell protoplasts as a transient expression system,
consistent with a previous study11, we found that substitution of
this OST1/SnRK2.6 Ser171 by an alanine completely abrogated
ABA-dependent activation of OST1/SnRK2.6 (Fig. 2e; n= 3
experiments).

Notably, the OST1-S171A mutation does not disrupt kinase
activity in vitro, while another phosphorylation site mutation
(S175A) disrupts kinase activity (Supplementary Fig. 5a, b). An
OST1/SnRK2.6 T176A mutation does not disrupt kinase activity
in vitro nor does the T176A mutation affect ABA activation of
OST1/SnRK2.6 in vivo (Supplementary Fig. 5a, b). These results
suggest that Ser171 plays an important role in ABA-activation of
OST1/SnRK2.6 in plant cells. A potential phospho-mimic isoform
of Ser171, OST1/SnRK2.6 (S171E) has no detectable kinase
activity in mesophyll cells (Supplementary Fig. 5c). This is
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Fig. 1 Identification of MAPKK-kinases that reactivate OST1/SnRK2 kinases by phosphorylation. a Seeds of amiR-HsMYO wild-type (control line) or
amiR-ax1117 mutant were sowed on 1/2 MS medium containing 2 μM ABA, or 0.02% EtOH as control, for germination assays. Representative images
showing seed germination after 6 days. b The percentage of seedlings showing green cotyledons was analyzed. Data represent mean ± s.d. n= 4
experiments. Each experiment included 64 seeds for each genotype. Letters at the top of columns are grouped based on two-way ANOVA and Tukey’s
test, P < 0.05. c Identification of the amiRNA sequence in amiR-ax1117 plants. Black box labels the sequence of amiR-ax1117. The amiR-ax1117 is predicted to
include Raf-like protein kinase genes M3Kδ5, M3Kδ7, M3Kδ1, M3Kδ6, and M3Kδ-CTR1 kinase (see Supplementary Fig. 1). d Wild-type (WT) and m3k
amiRNA seedlings were incubated with 10 µM ABA for 15 min. In-gel kinase assays were performed using histone type III-S as a substrate. e SnRK2 band
intensities as shown in d were measured using ImageJ, n= 3 experiments, error bars show ±s.e.m. f, Recombinant GST-OST1/SnRK2.6 protein was
dephosphorylated by alkaline phosphatase in vitro and used for in vitro phosphorylation assays after incubation with CPK6, CPK23 or MPK12 protein
kinases. Note visible autophosphorylation activity of CPK6 and CPK23. g Dephosphorylated recombinant His-OST1/SnRK2.6 protein was incubated with
kinase domains of seven M3Ks and used for in-gel kinase assays (phylogenetic tree: see Supplementary Fig. 1). Note lanes on the left are from the same gel
as lanes in the middle section.
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consistent with a previously reported OST1/SnRK2.6 (S171D)
mutant protein11. We further investigated the effect of ABA on
phosphorylation of OST1-S171 in mesophyll cells. Ser171 is
phosphorylated in plant mesophyll cells in response to ABA
(Supplementary Fig. 6)10,11.

We created transgenic Arabidopsis plants stably expressing
OST1-HF (S171A) in the ost1-3 background29,30. Expression of
OST1-HF (S171A) did not rescue the ABA-insensitive stomatal
conductance response and the low leaf temperature phenotype of
the ost1-3 mutant in two independent lines (Fig. 3a–c and
Supplementary Fig. 7). Complementation of ost1-3 with the wild-
type OST1-HF isoform restored ABA-induced stomatal closing

and warm leaf temperatures (Fig. 3a–c and Supplementary Fig. 7),
together indicating that Ser171 is required for OST1/SnRK2.6
function in stomatal closing (Fig. 3a–c and Supplementary Fig. 7).

Patch-clamp analyses of the ost1-3 complementation lines
showed the essential role of Ser171 for ABA-induced S-type anion
channel activation in Arabidopsis guard cells (Fig. 3d, e). We
further found that, in contrast to OST1-HF-expressing controls,
OST1-HF (S171A) was not activated in Arabidopsis mesophyll
cells in response to ABA in these stable homozygous transgenic
plant lines (Fig. 3f).

Reconstitution of early ABA signalling with MAPKK-kinases.
Previous studies have reconstituted ABA-dependent phosphoryla-
tion of OST1/SnRK2.6 substrates in vitro using recombinant
proteins14,18. Recombinant OST1/SnRK2.6 has many phosphory-
lated sites and a significant protein kinase activity in vitro16.
However, we find that prior dephosphorylated OST1/SnRK2.6
could unexpectedly not be re-activated by itself (Fig. 1f). We
therefore hypothesized that these M3Ks have a role in reactivation
of SnRK2 after inactivation by PP2C-mediated dephosphorylation.
To test this, we pursued in vitro reconstitution experiments using
recombinant proteins PYR1/RCAR11, the HAB1 PP2C, OST1/
SnRK2.6 with or without M3Kδ6. In-gel kinase assays clearly
showed that when HAB1-dependent OST1/SnRK2.6 depho-
sphorylation preceded ABA application, PYR1/RCAR11, HAB1,
and OST1/SnRK2.6 could not recover OST1/SnRK2.6 activation
(Fig. 4a; n > 3 experiments). Moreover, OST1/SnRK2.6 was no
longer activated even after ABA treatment (Fig. 4a; n > 3 experi-
ments). However, the OST1/SnRK2.6 kinase was clearly re-
activated in response to ABA when M3Kδ6 was added to these
reactions (Fig. 4b; n > 3 experiments). Consistent with these find-
ings, in vitro reconstitution of ABA-dependent AKS1 transcription
factor phosphorylation by OST1/SnRK2.618 was not observed when
ABA was added after OST1/SnRK2.6 had been initially depho-
sphorylated by the PP2C HAB1 for 10min (Fig. 4c, compare lanes
5, 6). Addition of M3Kδ6 restored ABA-induced His-AKS1 phos-
phorylation (Fig. 4c, compare lanes 7, 8).

Reconstitution of ABA activation of SLAC1 requires M3Ks.
OST1/SnRK2.6-mediates activation of the S-type anion channel
SLAC1 in Xenopus oocytes12,13, and ABA-induced SLAC1 acti-
vation was reconstituted in oocytes17. These results strongly
depended on artificial BiFC tags that force interaction of the
SLAC1 channel with OST1/SnRK2.6 proteins12,17, indicating that
the BiFC tag might cause an unknown artificial effect. When
expressing SLAC1 and OST1/SnRK2.6 proteins without any tag
in oocyte experiments in the present study, SLAC1 was not sig-
nificantly activated (Supplementary Fig. 8a–e). We found that
SLAC1 was strongly activated when small amounts of M3Kδ1,
M3Kδ6, or M3Kδ7 cRNA were co-injected with OST1 into
oocytes (Supplementary Fig. 8a–e; ratio of [M3K] to [OST1]
cRNA= 1 to 10). However, the M3Ks did not activate SLAC1 in
the absence of OST1/SnRK2.6 (Supplementary Fig. 8a–e), even
when the injected M3K to SLAC1 cRNA concentration ratio was
1 to 1. Furthermore, kinase inactive OST1/SnRK2.6 (D140A) does
not activate SLAC1 in the presence of M3Kδ1 (Supplementary
Fig. 8f, g).

In additional experiments, we co-injected cRNA for the ABA
receptor PYL9/RCAR1, together with the ABI1 PP2C, OST1/
SnRK2.6, SLAC1, and M3Ks into oocytes, to test whether ABA-
dependent SLAC1 anion channel activation could be reconsti-
tuted with these components. ABA could activate SLAC1 in
oocytes only in the presence of low concentrations of either
M3Kδ1, M3Kδ6 or M3Kδ7 mRNAs (Fig. 4d–f). Moreover,
inactive M3K kinase mutant isoforms and inactive OST1
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Fig. 2 MAPKK-kinase-induced OST1/SnRK2.6 Ser171 phosphorylation is
essential for ABA activation of OST1/SnRK2.6 activation. a The inactive
M3Kδ6 kinase domain mutant (K775W) did not reactivate His-OST1/
SnRK2.6 in vitro. b Inactive GST-OST1/SnRK2.6-D140A kinase protein was
incubated with M3Kδ6 kinase domain, and in vitro phosphorylation assays
were performed with 32P-ATP. c Recombinant inactive OST1(D140A) and
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phosphorylated Ser171 of OST1(D140A). d Phosphorylation at Ser171 was
not detectable after in vitro autophosphorylation of OST1/SnRK2.6, but was
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ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13875-y

4 NATURE COMMUNICATIONS |           (2020) 11:12 | https://doi.org/10.1038/s41467-019-13875-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(S171A) disrupted reconstitution of SLAC1 activation (Supple-
mentary Fig. 9). As SLAC1 plays an important role in ABA-
induced stomatal closing, gas exchange experiments were
pursued. m3k amiRNA plants show a reduced steady-state
stomatal conductance and an ABA insensitivity in stomatal
closure (Supplementary Fig. 10a, b).

The reduced steady-state stomatal conductance in the m3k
amiRNA line indicates additional effects of this artificial
microRNA and/or compensatory effects of impaired stomatal
closing response mutants31,32. Higher order mutant combinations
will be required to investigate this hypothesis. Based on the lower
steady-state stomatal conductance, the impaired response to ABA
(Supplementary Fig. 10a, b) and findings showing that ABA
activation of S-type anion channels is an important mechanism
for ABA-induced stomatal closing24,33, we investigated ABA
activation of S-type anion channels in guard cells. ABA (10 µM)
caused typical ABA activation of S-type anion currents in guard
cells of the wild-type (Col-0) and the HsMYO control line
(Supplementary Fig. 10c–f). In contrast, ABA activation of S-type
anion channels was impaired in guard cells of the m3k amiRNA
line (Supplementary Fig. 10g, h). ABA signalling reconstitution
(Fig. 4) and guard cell anion channel regulation analyses
(Supplementary Fig. 10c–h) together suggest that the identified
M3Ks provide a missing component of the early ABA signalling
module.

Higher order M3K mutants show ABA-insensitive phenotypes.
We isolated T-DNA insertion mutants [m3kδ1 (SALK_048985),
m3kδ6-1 (SALK_004541), m3kδ6-2 (SALK_001982), and m3kδ7

(SALK_082710)] (Fig. 5a). We also deleted large fragments of the
M3Kδ1 orM3Kδ7 genes by CRISPR-Cas9 in the m3kδ6-2 T-DNA
knockout background (Fig. 5b), and a triple knockout mutant
(m3kδ1crispr m3kδ6-2 m3kδ7crispr) was generated by crossing
these lines (Fig. 5c) to analyze the physiological functions of these
M3K genes. The m3kδ1crispr m3kδ6-2 m3kδ7crispr triple mutant
showed a reduced ABA sensitivity phenotype in green cotyledon
emergence from seeds (Fig. 5d, e). The double mutants m3kδ1
m3kδ7 and m3kδ6-2 m3kδ7 showed weaker ABA-insensitive
phenotypes than the triple mutants (Supplementary Fig. 11a, b).
Also, m3kδ1/δ6-1/δ7 mutant seedlings showed a reduced ABA
sensitivity in inhibition of primary root elongation on 1/2MS
plates supplemented with ABA (Supplementary Fig. 11c).

We confirmed knockout of full-length expression of M3Kδ1
and M3Kδ7 in the T-DNA lines, while there was partial
expression of the kinase domain of M3Kδ6 in the m3kδ6-1 line
(Fig. 5f). Seed germination analyses showed reduced ABA
sensitivity in the m3kδ1 m3kδ6-1 m3kδ7 T-DNA insertion triple
mutants (Fig. 5g, h). Another T-DNA allele for M3Kδ6 for which
the full length and kinase domain transcripts could not be
amplified (Fig. 5a; m3kδ6-2) was considered. However, we could
not isolate a viable m3kδ1 m3kδ6-2 m3kδ7 triple mutant, possibly
due to homozygous lethality, likely linked to an unknown second
site mutation. Because the partial expression of the M3Kδ6 kinase
domain fragment was detected in the m3kδ6-1 mutant (Fig. 5f),
this kinase fragment may weaken the phenotypic effect.

To further test the function of these M3Ks, we created amiRNA
lines predicted to target only the triple combination of M3Kδ1,
M3Kδ6, and M3Kδ7 and found that three independent amiRNA
lines showed ABA-insensitivities in seed germination (Fig. 5i, j).
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Together these results support that these M3Ks have a function in
ABA responses.

ABA- and osmotic stress- SnRK2 activations require M3Ks. In-
gel kinase assays showed that ABA-induced activation of SnRK2
kinase in the m3kδ1crispr m3kδ6-2 m3kδ7crispr triple was slightly
less strong than in wild-type plants (Fig. 6a, b; n= 4 experi-
ments). We further found a slightly reduced ABA activation of
SnRK2 kinase activity in the T-DNA insertion m3kδ1 m3kδ6-1
m3kδ7 triple mutant compared to wild-type controls (Fig. 6c, d,
Supplementary Fig. 12; n= 4 experiments), similar to the
m3kδ1crispr m3kδ6-2 m3kδ7crispr triple knockout mutant allele
findings. Osmotic stress is known to rapidly activate OST1/
SnRK2.6 independent of ABA signalling20. Interestingly, we
found that 15 min osmotic stress-induced SnRK2 activation was
strongly impaired in these two independent m3k triple mutant
alleles, and this impairment was stronger than that in response to
ABA application (Fig. 6a–d, Supplementary Fig. 12; n= 4
experiments per allele).

In-gel kinase assays suggest that the M3Ks have a major role in
osmotic stress signalling in Arabidopsis (Fig. 6a–d). We therefore
investigated osmotic-stress responses of the m3k double and
triple mutants and the m3k amiRNA lines, and found that they
showed reduced sensitivity to osmotic-stress in seed germination
assays (Supplementary Fig. 13). SnRK2 gene functions are highly
redundant in mediating osmotic stress resistance34. At least nine
members out of the ten Arabidopsis SnRK2 proteins are activated
by osmotic stress through unknown mechanisms, while three
members (SnRK2.2/2.3/2.6) are major ABA-activated
SnRK2s19,23. In vitro in-gel kinase assays showed that
M3Kδ1 strongly activated SnRK2.2 and 2.3 (Fig. 6e) as well as
OST1/SnRK2.6 (Fig. 1g). SnRK2.3 was also activated by M3Kδ6
and M3Kδ7 (Supplementary Fig. 14a). We also found that
SnRK2.2 (S180A) and SnRK2.3 (S172A), which have a mutation
corresponding to OST1/SnRK2.6 (S171A), are not activated by
ABA in mesophyll cell protoplasts in contrast to WT SnRK2.2
and WT SnRK2.3 (Supplementary Fig. 14b). M3Kδ1 also
activated SnRK2.4 kinase in vitro that is known to be activated
by osmotic stress19.

Co-immunoprecipitation of M3Kδ6- and OST1/SnRK2.6-
expressed in mesophyll cell protoplasts did not show a clear
interaction (Supplementary Fig. 15a). Protein kinase interactions
are often transient and do not show co-immunoprecipitation with
their targets35. BiFC analyses can detect transient interactions in
plant cells. Quantitative BiFC experiments provide evidence that
M3Kδ6 and M3Kδ7 bind to OST1/SnRK2.6, SnRK2.2, SnRK2.4,
and SnRK2.10 in plant cells with different efficiencies (Supple-
mentary Fig. 15b–e). We further observed that the M3Kδ6-FLAG
protein band in SDS-PAGE gels was slightly shifted in response to
15 min osmotic stress treatment in mesophyll cell protoplasts,
suggesting an osmotic stress-dependent post-translational mod-
ification of M3Kδ6 (Fig. 6f; n= 3).

Discussion
In the present study, a combination of genetic screening for
functional redundancy in abscisic acid responsiveness and mul-
tiple biochemical and signal transduction analyses in vitro and in
planta have identified and characterized members of the Raf-like
MAPKK-kinase δ B3 family that are required for full activation of
SnRK2 protein kinases in abscisic acid signal transduction in vitro
(Fig. 1g and Fig. 4a–c), in a reconstitution system (Fig. 4d–f) and
in planta (Figs. 1a–e, 5d–j and 6a–d). Triple mutants in the M3Ks
AtM3Kδ1, M3Kδ6, andM3Kδ7 show impaired ABA- and osmotic
stress-responses. As the Arabidopsis genome includes 80
MAPKK-kinases22, of which 22 MAPKK-kinases are in the B
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subgroup, it is conceivable that additional members of this family
contribute to ABA responses and that higher order mutants will
cause enhanced ABA insensitivity. Previous studies suggest that
other MAPKK-kinases, than those identified here, are involved in
aspects of ABA signalling through a MAP3K-MAP2K-MAPK
cascade36–38 or through unknown pathways39,40.

Dephosphorylation of the OST1/SnRK2.6 kinase was unex-
pectedly found not to result in OST1/SnRK2.6 reactivation by
SnRK2 autophosphorylation alone. The identified M3Kδs, but not
other analyzed CPK and MPK12 protein kinases that function in
ABA signalling24–27, were found to be required for reactivation of
OST1/SnRK2.6. Moreover, the M3Kδ1 kinase greatly enhances the

activities of other ABA signalling protein kinases SnRK2.2 and
SnRK2.3 (Fig. 6e). Furthermore, M3Kδs reactivate OST1/SnRK2.6
through phosphorylation of Ser171 in OST1/SnRK2.6. The Ser171
residue in OST1/SnRK2.6 is essential for ABA responses in planta
(Fig. 3 and Supplementary Fig. 7), but OST1/SnRK2.6 cannot auto-
phosphorylate this Ser-171 residue (Fig. 2)11,16. These data point to
the model that the M3Kδs identified here are essential for SnRK2
kinase reactivation and thus robust ABA responses in plants.
Higher order M3K mutants and further experiments will be needed
to investigate M3K-dependent Ser171 phosphorylation of OST1/
SnRK2.6 in planta.

A previous proof-of-concept screen using artificial micro-
RNAs that target multiple homologous genes isolated a plant
predicted to target seven M3Ks of the B-family21. A Physcomi-
trella single gene encoding a M3K, ARK, was also identified
which functions in SnRK2 activation28. Recent studies show that
ARK kinase is required for Physcomitrella ABA and drought
stress responses including phosphorylation of transcription fac-
tors through SnRK2 kinases41,42. Here, in forward genetic
screening we have isolated amiRNA-expressing lines that target
M3K members of the B family (Fig. 1a–c and Supplementary
Fig. 1). In the present study, we show that for prior depho-
sphorylated SnRK2 kinases, we could robustly reconstitute ABA-
activation of OST1/SnRK2.6 and the SLAC1 anion channel only
in the presence of M3Kδs in vitro and in Xenopus oocytes
(Fig. 4). The present experiments reveal that autopho-
sphorylation cannot alone reactivate the SnRK2 kinases. These
data suggest that these M3Ks are a missing component of the
early ABA signalling module in plants.

Osmotic stress is known to rapidly activate SnRK2 protein
kinases20,34,43. Rapid osmotic stress signalling includes a promi-
nent ABA-independent pathway that leads to activation of tran-
scription factors44,45. However, the upstream osmotic stress
signalling mechanisms remain incompletely understood. Recent
studies suggest that PP2Cs involved in ABA signalling depho-
sphorylate SnRK2.446–48. The M3K ARK is required for osmotic
stress tolerance in Physcomitrella28,42. Interestingly, the identified
M3Kδs play a critical role in the rapid osmotic stress activation of
SnRK2 protein kinases (Fig. 6a–d). In m3k triple mutants, 15 min
short term osmotic stress activation of SnRK2 is greatly impaired
in planta. This impairment in rapid osmotic stress activation of
SnRK2 protein kinases is prominent in the investigated m3kδ1/
δ6/δ7 triple mutant alleles, in contrast to that of ABA activation
of SnRK2 kinases (Fig. 6a–d). Further research will be needed to
determine whether higher order m3k mutants further impair the
ABA response. To start testing this hypothesis, we created m3kδ1/
δ5/δ6-1/δ7 quadruple mutant plants and found that they show a
stronger ABA-insensitive phenotype in seed germination than the
triple mutant (Supplementary Fig. 16a). Triple mutant plants,
which include the weak allele m3kδ6-1 (m3kδ1/δ6-1/δ7), did not
show a clear phenotype in ABA-induced stomatal closing using a
robust method of gas exchange analyses. The public eFP Browser
shows a prominent guard cell expression of M3Kδ5 (Supple-
mentary Fig. 16b). M3Kδ5 is targeted by the m3k amiRNA
(Supplementary Fig. 1), which shows an ABA-insensitive sto-
matal closing (Supplementary Fig. 10a, b) and impairs ABA
activation of S-type anion channels (Supplementary Fig. 10c–h).
Higher order mutants will be required to further investigate M3K
functions in ABA-induced stomatal closing. The requirement of
M3Kδs for the rapid osmotic stress response suggests that these
M3Kδs also mediate osmotic stress signal transduction before the
slower onset of ABA concentration increase 4–6 h after exposure
to osmotic stress49. These findings are consistent with previous
observations of an ABA-independent osmotic stress-triggered
SnRK2 signal transduction pathway20,43,50. The present study
points to a model in which the identified M3Kδ protein kinases
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Fig. 6 MAPKK-kinases mediate ABA- and osmotic stress-induced SnRK2
activation in planta. a m3kδ1crispr m3kδ6-2 m3kδ7crispr triple mutant
seedlings were incubated in 10 µM ABA or 0.3M mannitol (Osmo) for 15
min. SnRK2 activities were tested by in-gel kinase assays. Arrowhead
shows SnRK2 activity23. b Normalized band intensities as shown in a were
measured by using ImageJ. n= 4, means ± s.e.m. c m3kδ1 m3kδ6-1 m3kδ7 T-
DNA triple mutant seedlings were incubated in 10 µM ABA or 0.3M
mannitol (Osmo) for 15 min. SnRK2 activities were analyzed by in-gel kinase
assays. d Normalized band intensities as shown in c were measured by
using ImageJ. n= 4 experiments, means ± s.e.m. e, Recombinant GST-
tagged Arabidopsis SnRK2 protein kinases were incubated with M3Kδ1
kinase domain. SnRK2 kinase activities were analyzed by in-gel kinase
assays. f M3Kδ6-FLAG was transiently expressed in Arabidopsis mesophyll
cell protoplasts. Protoplasts were incubated in 0.8M mannitol (Osmo) for
15 min. M3Kδ6 proteins were detected by immuno-blot using anti-FLAG
antibody. In the Osmo lane, the M3Kδ6 band showed a slight mobility shift
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may act as a convergence point of rapid osmotic stress signalling
and prolonged abscisic acid signal transduction.

Osmotic and salt stresses induce a rapid cytosolic Ca2+

increase51–54. An ABA-independent osmotic stress signalling
pathway has been characterized that triggers rapid gene
expression44,55. Recent research shows that the Arabidopsis
NGATHA1 transcription factor mediates the ensuing drought
stress-induced ABA accumulation through enhanced expression
of the ABA biosynthesis NINE-CIS-EPOXYCAROTENOID
DIOXYGENASE, NCED356. Gel shift assays indicate that osmo-
tic stress causes a rapid post-translational modification of M3Kδ6
(Fig. 6f). Our results reveal a key component by which plants
respond initially to osmotic stress before measurable stress-
induced ABA concentration increases in roots. Furthermore,
interestingly, m3k amiRNA lines impair robust ABA activation of
SnRK2 kinases in planta. Further research will be required to
elucidate the presently unknown mechanisms between osmotic
stress sensing and M3Kδ-dependent activation of SnRK2 protein
kinases.

Methods
Genetic screening for ABA response mutants. Using amiRNA libraries21, we
screened amiRNA lines for ABA-insensitive seed germination phenotypes using 1/
2 MS plate supplemented with 2 µM ABA57. The underlying amiRNA sequences
were identified from genomic DNA by PCR and sequencing (m3k amiRNA: 5′-
TTGGAGCCATCCATTCAGCCG-3′, amiR-ax1117: 5′- TCCAAAATCG-
CAAACCTTCAC-3′). We used an amiRNA line targeting human myosin 2 gene
(HsMYO2) as a control.

In vitro dephosphorylation and phosphorylation assays. Ten microgram of
GST-OST1/SnRK2.6 proteins were bound to glutathione sepharose 4B beads and
incubated with 30 U CIAP for 2 h at room temperature. The beads were washed
with T-TBS (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% Tween-20) three
times, and GST-OST1 protein was eluted with 30 µL elution buffer (50 mM Tris-
HCl pH 8.0, 10 mM reduced glutathione). Five microliter of GST-OST1 solution
was added in phosphorylation buffer [50 mM Tris-HCl pH 7.5, 10 mM MgCl2,
2 μM free Ca2+ buffered by 1 mM EGTA and CaCl2 (https://somapp.ucdmc.
ucdavis.edu/pharmacology/bers/maxchelator/CaMgATPEGTA-NIST.htm), 0.1%
Triton X-100, and 1 mM DTT] with or without 1 µg of the protein kinases CPK6,
CPK23, MPK12 or 0.1 µg of the indicated MAPKK kinases (M3Ks). The phos-
phorylation reactions were started by addition of 200 µM ATP and 1 µCi [γ-32P]
ATP. After 60 min incubation at room temperature, these reactions were stopped
by addition of SDS-PAGE loading buffer. Note that the mobilities of recombinant
and transgenic proteins in the present study depend on the linked tags. For
example, the OST1/SnRK2.6 6xHis-tag also includes sequences including thrombin
and enterokinase cleavage sites and restriction enzyme sites in the pET-30a(+)
vector used for E.coli expression of OST1/SnRK2.6 in Figs. 1g, 4a and b. Primer
sequences used for cloning in this study are provided in Supplementary Table 1.

In-gel kinase assays. Fifteen to twenty Arabidopsis seedlings (7–9-day-old) grown
on 1/2 MS plates were treated with 10 µM ABA or 0.3M mannitol for 15min at room
temperature and grinded with a pestle and mortar in 400 µL extraction buffer (50mM
MOPS-KOH pH 7.5, 100mM NaCl, 2.5mM EDTA, 10mM NaF, 2mM dithio-
threitol, 1 mM phenylmethylsulfonyl fluoride, 10 µM leupeptin) on ice. After 10min
centrifugation at 13,000 × g, the supernatants were transferred to new tubes, and
proteins were precipitated by acetone precipitation. Proteins were dissolved in SDS-
PAGE loading buffer and separated in 9% acrylamide gels. In-gel kinase assays were
performed as described previously58. In brief, gels were incubated in washing buffer
(25mM Tris-HCl pH 8.0, 0.5 mM DTT, 0.1mM Na3VO4, 5mM NaF, 0.5mgml−1

BSA, and 0.1% Triton X-100) for 30min three times and in renaturation buffer
(25mM Tris-HCl pH 8.0, 1 mM DTT, 0.1mM Na3VO4, and 5mM NaF) for 30min
once. Gels were further incubated in renaturation buffer at 4 °C overnight followed by
further incubation in reaction buffer (50mM Tris-HCl pH 7.5, 10mM MgCl2, 2 mM
DTT, and 1mM EGTA) for 30min. Phosphorylation reactions were carried out in
reaction buffer with 50 µCi [γ-32P]-ATP for 60min at room temperature. Gels were
washed in 5% trichloroacetic acid and 1% phosphoric acid four times for 30min each.
Storage phosphor screens or X-ray films were used for detection.

In vitro reconstitution of ABA signalling. 0.43 µmol His-OST1/SnRK2.6, 0.17
µmol His-PYR1/RCAR11 and 0.06 µmol GST-M3Kδ6 kinase domain were incu-
bated in 200 µL phosphorylation buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl2,
0.1% Triton X-100, and 1 mM DTT) with 200 µM ATP for 10 min, and 20 µL
solution was transferred to a new tube and 10 µL 3xSDS-PAGE loading buffer was
added to stop the reaction. Then, 0.01 µmol His-HAB1 was added to the reaction
solution, and 20 µL solution were transferred to a new tube to stop the reaction by

addition of 10 µL 3xSDS-PAGE loading buffer after 10 min incubation. 50 µM ABA
was added to the reaction and 20 µL reactions were transferred to new tubes to stop
the reaction after 5, 10, or 30 min incubation. Proteins were separated by SDS-
PAGE, and OST1/SnRK2.6 activity was detected by in-gel kinase assays.

Identification of OST1/SnRK2.6 phosphorylation sites. Thirty microgram GST-
OST1/SnRK2.6(D140A) and 2.5 µg GST-M3Kδ1 kinase domain were incubated in
phosphorylation buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.1% Triton X-
100, and 1 mM DTT) with 1 mM ATP for 2 h at room temperature. Proteins were
precipitated by acetone precipitation and dissolved in SDS-PAGE loading buffer.
After SDS-PAGE and CBB staining, protein bands of GST-OST1/SnRK2.6(D140A)
were excised and analyzed by LC-MS/MS17. For in vivo Ser-171 phosphorylation,
OST1/SnRK2.6-GFP was transiently expressed in Arabidopsis mesophyll cell pro-
toplasts. The protoplasts were incubated with or without 20 µM ABA for 15 min,
and OST1/SnRK2.6 proteins were purified by immunoprecipitation using anti-GFP
antibodies. After SDS-PAGE and CBB staining, OST1/SnRK2.6-GFP bands were
excised and analyzed by LC-MS/MS17.

Analysis of stomatal ABA response. Infrared-based gas exchange analyzer sys-
tems were used including an integrated Multiphase Flash Fluorometer (Li-6800-
01A or Li-6400; Li-Cor Inc.) for gas exchange analyses. Plants were grown on soil
in Percival growth cabinets at a 12/12 h, 21 °C/21 °C day/night cycle, a photo-
synthetic photon flux density of ~90 mmol m−2 s−1, and 70–80% relative humidity
for 6–7 weeks. Mature rosette leaves were detached at the basal part of petiole by a
razor blade, and re-cut twice under distilled and deionized water. The petioles of
the leaves were then immersed in ddH2O for gas exchange analysis. The detached
leaves were clamped and the environment of the leaf chamber was controlled at 400
ppm ambient CO2, 23~24 °C, ~65% relative air humidity, 150 μmol m−2 s−1

photon flux density, and 500 μmol s−1 flow rate until stomatal conductance sta-
bilized. One or 2 μM± -ABA was applied to the petiole for kinetic stomatal con-
ductance response analyses as described59.

Patch-clamp analyses. Guard cell protoplasts from 4 to 6-week-old Arabidopsis
plants were prepared24,33. ABA-activated S-type anion channel current recordings
were carried out by using an Axon 200 A amplifier (Axon instruments) and a
Digidata 1440 A low-noise data acquisition system. Epidermal tissues were isolated
from one or two rosette leaves and collected using a nylon mesh (100-μm pore
size). Subsequently the epidermal tissues were incubated in 10-ml protoplast iso-
lation solution containing 500 mM D-mannitol, 1% cellulase R-10 (Yakult Phar-
maceutical Industry), 0.5% macerozyme R-10 (Yakult Pharmaceutical Industry),
0.5% bovine serum albumin, 0.1% kanamycin sulfate, 0.1 mM CaCl2, 0.1 mM KCl,
and 10 mM ascorbic acid for 16 h at 25 °C on a circular shaker at 50 rpm. Guard
cell protoplasts were collected through a nylon mesh (10-μm pore size) and then
washed two times with protoplast suspension solution containing 500 mM D-
sorbitol, 0.1 mM CaCl2, and 0.1 mM KCl (pH 5.6 with KOH) by centrifugation
(200 × g for 5 min at room temperature). Isolated guard cell protoplasts were stored
on ice before use.

S-type anion currents in guard cell protoplasts were recorded using the whole-
cell patch-clamp technique24,33. The pipette solution was composed of 150 mM
CsCl, 2 mM MgCl2, 5.86 mM CaCl2, 6.7 mM EGTA, and 10 mM Hepes-Tris (pH
7.1). 5 mM Mg-ATP was added to the pipette solution freshly before use. The bath
solution was composed of 30 mM CsCl, 2 mM MgCl2, 1 mM CaCl2, and 10 mM
MES-Tris (pH 5.6). Osmolalities of the pipette solution and the bath solution were
adjusted to 500 mosmol kg−1 and 485 mosmol kg−1 using D-sorbitol, respectively.
In Fig. 3, guard cell protoplasts were pre-incubated for 20 min in the bath solution
containing 50 μM ABA prior to recordings, and ABA was added to the pipette
solution. In Supplementary Fig. 10, guard cell protoplasts were pre-incubated for
30 min in the bath solution containing 10 μM ABA prior to recordings.

Two-electrode voltage clamp recordings. The PCR amplified cDNA fragments
of OST1, SLAC1, PYL9/RCAR1, ABI1, M3Kδ1, M3Kδ6, and M3Kδ7 were cloned
into the oocyte expression vector pNB1 by using an advanced uracil-excision based
cloning strategy as previously described60. The mutant isoforms OST1-S171A,
M3Kδ6-K775W, and M3Kδ7-K740W were generated using the Quikchange Site-
Directed Mutagenesis kit (Agilent Technologies). Linearized plasmids were used to
generate cRNAs via the mMESSAGE mMACHINE® T7 kit (Thermo Fisher Sci-
entific, Catalog number: AM1344). Surgically extracted ovaries of Xenopus laevis
were ordered from Nasco (Fort Atkinson, Wisconsin, product number: LM00935)
and Ecocyte Bio Science US (Austin, Texas) and oocytes were isolated as previously
described61. Five nanogram of cRNA of each construct OST1, OST1-S171A, SLAC1,
PYL9/RCAR1, ABI1 and 0.5 ng cRNAs of each construct M3Kδ1, M3Kδ6, M3Kδ7,
M3Kδ6-K775W, M3Kδ7-K740W were co-injected into isolated oocytes in the
indicated combinations. Oocytes were then incubated at 16 °C for 2 days in ND96
buffer (1 mM CaCl2, 1 mM MgCl2, 96 mM NaCl, 10 mM MES/Tris, pH= 7.5).
Osmolarity was adjusted to 220 mosmol kg−1 by D-sorbitol. Using a Cornerstone
(Dagan) TEV-200 amplifier and a Digidata 1440 A low-noise data acquisition
system with pClamp software (Molecular Devices), two-electrode voltage clamp
recordings were performed in a bath solution containing 1 mM CaCl2, 2 mM KCl,
24 mM NaCl, 70 mM Na-gluconate, 10 mM MES/Tris, pH 7.4, Osmolarity was
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adjusted to 220 mosmol kg−1 by D-sorbitol. ABA was injected into oocytes to
achieve a final concentration of 50 μM for analyses of ABA activation of SLAC1
currents. Steady-state currents were recorded with 3 s voltage pulses ranging from
+40 mV to – 120 mV in −20 mV decrements, followed by a “tail” voltage of −120
mV and the holding potential was kept at 0 mV.

SLAC1-mediated currents in oocytes vary showing either time-dependent
relaxation or more instantaneous currents when using a chloride bath solution61,62.
Furthermore, ion channel activities display different magnitudes from one oocyte
batch to another due to protein expression level variation among batches of
oocytes. To avoid time-of-measurement and inter-batch dependence in the data,
H2O-injected control and other indicated controls were included in each batch of
oocytes and control experiments were recorded intermittently with the investigated
conditions. Data from one representative oocyte batch are shown from the same
batch in each figure panel and at least three independent batches of oocytes were
investigated and showed consistent findings.

Mesophyll cell protoplast assays. Mesophyll cell protoplasts were isolated as
described previously63 from 3-4-week-old Arabidopsis leaves. 10–20 µg of pUC18
plasmids carrying 35 S:OST1/SnRK2.6-GFP:nosT or 35 S:M3Kδ6-FLAG:nosT and
30 µg protoplasts were used for 20% PEG-mediated transient expression. After
overnight incubation in incubation buffer (10 mM MES-KOH pH 6.0, 0.4 M
mannitol, 20 mM KCl, 1 mM CaCl2), protoplasts were incubated in 10 µM ABA or
0.8 M mannitol or in control buffer for 15 min and harvested by centrifugation at
13,000 × g for 1 min. After the supernatants were removed, 20 µL SDS-PAGE
loading buffer was added and incubated at 95oC for 3 min.

Measurements of leaf temperatures by thermal imaging. Plants grown
4–5 weeks on soil were sprayed with 20 µM ABA dissolved in water. After 3 h
under white light in the growth room, images were captured using an infrared
thermal imaging camera (T650sc; FLIR, Wilsonville, Oregon). Leaf temperatures
were determined as average temperatures of each whole leaf area by using Fiji
software (ImageJ version: 2.0.0-rc-59/1.51n).

Creating CRISPR/Cas9-based knockout Arabidopsis. The m3kδ1 and m3kδ7
CRISPR/Cas9 deletion knockout mutants were generated using CRISPR/Cas9 gene
editing technology64–66 in the m3kδ6-2 mutant background. We used two guide
RNAs to generate a large deletion in each target gene. The target sequences in
M3Kδ1 were TACGGAAGCTCCACATCGGCGG and GATGCAAGTCGTTGG
AGCTGTGG (PAM sites are underlined). Targets for M3Kδ7 were GACGGAG
TTCCAGATCTCCGGG and CCAGAGAGCAGCAGTTCCCAGT.

The designed m3kδ1crispr mutants were genotyped with the primer pair Delta1-
GT1 and Delta1-GT2, which would generate a fragment of about 750 bp when the
designed deletion took place. The primer pair could not amplify WT genomic
DNA due to the large size of the fragment. To determine zygosity of m3kδ1crispr
mutants, we used the primer set Delta1-GT1 + Delta1-GT3, which amplifies a 777
bp fragment from WT DNA, but could not amplify a band in a homozygous
mutant.

For m3kδ7crispr mutants, we used Delta7-GT1 and Delta7-GT4, which would
generate a fragment of about 1390 bp if mutant DNA is used as PCR template. The
primer pair could not amplify WT DNA because of the large fragment size. The
Delta7-GT1 and Delta7-GT3 primer pair was able to generate a fragment of 1125
bp when WT DNA was used as PCR template. The Delta7-GT1/GT3 was used to
differentiate homozygous m3kδ7crispr mutants from heterozygous m3kδ7crispr
mutants. After isolating homozygous m3kδ1crispr m3kδ6-2 and m3kδ7crispr
m3kδ6-2 mutants, these lines were crossed and homozygous triple mutants were
recovered in the T2 generation. Primers for genotyping: Delta1-GT1: 5′-
TTGTTGGTTCCACGAACGGA-3′, Delta1-GT2: 5′-GATGGCCGTAAAT
GCGGTTC-3′, Delta1-GT3: 5′-CGGATCAGGATCAGAGACGC-3′, Delta7-GT1:
5′-TGCATAAGGTGGTGAGCGAA-3′, Delta7-GT3: 5′-CCAAACCCTGCA
TCCCAGAT-3′, Delta7-GT4: 5′-GTCAAGGAAGAAGCGACCCA-3′

Creating amiRNA knock-downs targeting M3Kδ1, δ6 and δ7. The amiRNA
sequence was designed using the WMD3 (http://wmd3.weigelworld.org/cgi-bin/
webapp.cgi) and PHANTOM database (http://phantomdb.ucsd.edu). The amiRNA
containing the target sequence (5′-TACGACTTGCATCGGGTTCAA-3′) for
M3Kδ1, M3Kδ6, and M3Kδ7 was amplified by PCR using primers (I: 5′-gaTACG
ACTTGCATCGGGTTCAAtctctcttttgtattcc-3′, II: 5′-gaTTGAACCCGATGCAAG
TCGTAtcaaagagaatcaatga-3′,

III: 5′-gaTTAAACCCGATGCTAGTCGTTtcacaggtcgtgatatg-3′,
IV: 5′-gaAACGACTAGCATCGGGTTTAAtctacatatatattcct-3’), and inserted

into the vector pFH003221. Arabidopsis (Col-0) plants were used for floral-dip
transformation. Three independent homozygous T3 seeds were used in the seed
germination assays.

BiFC analyses. Constructs for BiFC analyses were generated by ligation of coding
sequences of ABI1, RopGEF1, OST1/SnRK2.6, SnRK2.2, SnRK2.4, SnRK2.10,
M3Kδ6, and M3Kδ7 into pSPYCE(M) or pSPYNE173 using the USER Cloning
technology (see Supplementary Table 1 for primer sequences). Plasmids were
transformed into Agrobacterium tumefasciens (GV3101) and co-infiltrated with a

plasmid expressing the silencing suppressor p19 in leaves of 6-week-old Nicotiana
benthamiana plants. Subcellular localization analyses were performed using a
Nikon Eclipse TE2000-U confocal microscope. Images were acquired using a Plan
Apo VC 60XA/1.20 WI objective using identical settings (exposure time and gain).
Three independent experiments were conducted where three leaves were analyzed
for each combination. 5 z-stacks were acquired for each leaf. Maximum projections
of z-stacks for each BiFC combination were quantified using Fiji and normalized
over an infiltration control expressing p19 only.

Statistics. Cotyledon greening assays were analyzed by two-way ANOVA followed
by Tukey’s tests. Leaf temperatures were analyzed by one-way ANOVA followed by
Tukey’s tests.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Arabidopsis mutants and transgenic lines used in this study are available upon request
from the corresponding author. The source data for Figs. 1, 3–6, Supplementary Figs. 7–
11, 13, 15 and 16 are provided as a Source Data file.
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