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‘‘Begin challenging your own assumptions. Your assump-

tions are your windows on the world. Scrub them off every

once in a while, or the light will not come in.’’—Alan Alda

[1].

The topic of the flow pattern inside the heart and vortex

imaging has been a main stream of research in echocar-

diography during the past decade. Progress has been made

to incorporate quantitative fluid dynamics into echocar-

diography using particle tracking algorithms [2, 3, 39] that

are based mostly on the well-known optical imaging

techniques of particle image velocimetry (PIV) [4–6] or

color Doppler imaging [7–10]. Recent advances in under-

standing left ventricular (LV) fluid dynamics based on

experimental methods [11–14] and numerical simulations

[15–17] have shed light on many aspects of ventricular

flow, such as the development of intraventricular vortices.

These vortices are shown to significantly influence trans-

mitral momentum transfer and help redirect the flow from

the left atrium toward the left ventricular outflow tract

(LVOT) [18, 19]. Alternatively, formation of unnatural

vortices can be a sign of adverse blood flow, which may

indicate progressive LV dysfunction [18–21]. The knowl-

edge gained about LV fluid dynamics, and in particular the

associated vortical flow motion, has introduced novel

clinical indicators for LV function based on vortex

dynamics [18, 19, 21–25].

PIV is an optical method for flow visualization used to

obtain instantaneous velocity measurements and related

properties in the fluids. In this technique, the fluid is seeded

with tracer particles, which are assumed to faithfully follow

the dynamics of flow. The motion of these seeding particles

is used to compute the flow velocity. In its current form, 2D

ultrasound-based PIV or 2D echocardiographic PIV (Echo-

PIV) was introduced by Kim et al. [2], through capturing

digital B-mode images of contrast agent particles, and

further used for vortex imaging by Kheradvar et al. [21].

This technique computes the velocities of the ultrasound-

imaged particles based on the PIV technique, with the

Dt being equal to scanning time. The number of beams and

the samples along each beam define the number of pixels

for each image after scan conversion. Particles used as the

flow tracers are microbubbles filled with octafluoropropane

encapsulated in either a lipid (DEFINITY�, Lantheus

Medical Imaging, Inc.) or protein (OptisonTM, GE

Healthcare) outer shell [3, 26], which are both FDA-ap-

proved for clinical use. This technique allows the veloc-

ity directions and streamlines, principal blood flow

patterns, recirculation regions, and vortices to be drawn

with reasonable confidence in a reproducible scheme

[18, 21, 22, 27–32].

Alternatively, vector flow mapping (VFM) measures

blood flow velocity by considering color Doppler imaging

and ventricular wall velocity [7–10]. This method works

based on combining measured axial velocities with esti-

mated radial velocities according to the physical principles

[33]. VFM ignores the three-dimensional component of the

flow by assuming the flow is two-dimensional, solves the

2D continuity equation, and use ventricular wall velocity

acquired by tissue tracking to improve the results [34].
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In reality, any physical flow is three-dimensional.

However, some flow regimens can be considered 2D if the

out-of-plane velocity component does not (or at least

minimally) exist. A good example for such a flow regime is

laminar flow in an axisymmetric tube. In laminar flow,

there is no lateral mixing, and the nearby layers pass each

other in a totally parallel scheme. Laminar flow requires no

cross-currents perpendicular to the flow direction or eddies/

swirls in the fluid [35]. Non-uniform geometries, such as in

the heart chambers, increase flow three-dimensionally.

Furthermore, time-dependency and the rotational nature of

the flow minimize the application and accuracy of the

methods developed for potential flow. Principles of fluid

dynamics should be properly considered and applied for

each particular flow regimen to avoid fundamental over-

sights in solving cardiovascular problems [36].

In prospect, intracardiac flow velocimetry is an emerg-

ing field in cardiac imaging. It should be considered that

intracardiac flow is principally three-dimensional, time-

dependent, and non-laminar. Modern echocardiography

systems use ultrasound probes that can capture three-di-

mensional brightness fields associated with the blood flow.

Generally, the ultrasound-based velocimetry methods are

all bounded by the limitations and constraints of echocar-

diographic acquisitions, such as inter and intra-operator

variabilities and acoustic shadowing. Furthermore, limited

frame rate of echocardiographic acquisitions—particularly

in 3D—is currently a major obstacle for accurate assess-

ment of high-velocity values and advancement of 3D

ultrasound-based velocimetry modalities for intracardiac

flow [21, 33, 37]. More recent efforts may overcome these

limitations and pave the way for routine clinical applica-

tions [33, 37–39].
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