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Abstract

Designing systems with human agents is difficult because it often requires models that 

characterize agents’ responses to changes in the system’s states and inputs. An example of this 

scenario occurs when designing treatments for obesity. While weight loss interventions through 

increasing physical activity and modifying diet have found success in reducing individuals’ 

weight, such programs are difficult to maintain over long periods of time due to lack of patient 

adherence. A promising approach to increase adherence is through the personalization of 

treatments to each patient. In this paper, we make a contribution towards treatment personalization 

by developing a framework for predictive modeling using utility functions that depend upon both 

time-varying system states and motivational states evolving according to some modeled process 

corresponding to qualitative social science models of behavior change. Computing the predictive 

model requires solving a bilevel program, which we reformulate as a mixed-integer linear program 

(MILP). This reformulation provides the first (to our knowledge) formulation for Bayesian 

inference that uses empirical histograms as prior distributions. We study the predictive ability of 

our framework using a data set from a weight loss intervention, and our predictive model is 

validated by comparison to standard machine learning approaches. We conclude by describing 

how our predictive model could be used for optimization, unlike standard machine learning 

approaches which cannot.
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1. Introduction

Effective design of systems involving human agents often requires models that characterize 

the agents’ varied responses to changes in the system’s states and inputs. Most operations 

research (OR) models quantify agent behavior as decisions generated by optimizing static 

utility functions that depend upon time-varying system states and inputs. In contrast, 

researchers in the social sciences have found that the motivational psychology of agents 

changes in response to past states, decisions, and inputs from external agents (Kanfer, 1975; 

Ajzen & Fishbein, 1980; Gonzalez et al., 1990; Janz & Becker, 1984; Joos & Hickam, 1990; 

Bandura, 2001); however, these social science models are primarily qualitative in nature, 

making them challenging to incorporate into OR design and optimization approaches. In this 

paper, we focus on developing a predictive modeling framework that incorporates time-

varying motivational states (which describe the changing efficiency or preferences of the 

agent) – thereby quantifying agent behavior as decisions generated by optimizing utility 

functions that depend upon time-varying system states, system inputs, and motivational 

states, all evolving according to some modeled process based on qualitative social science 

models of behavior change.

Our ultimate goal is to solve optimization problems to more effectively allocate resources in 

systems with human agents; to do this we need to develop behavioral models that can be 

integrated as constraints in standard optimization approaches. In this paper, we develop a 

modeling framework that inputs noisy and partially-missing data and uses this to estimate 

the parameters of a predictive model consisting of (a) a utility-function describing the 

decision-making process that depends upon time-varying system states, system inputs, and 

motivational states, and (b) temporal dynamics on agent’s system state and motivational 

state (i.e., often referred to as the type of the agent). We consider two distinct but related 

kinds of estimates: estimation of the set of parameters for the utility function and dynamics, 

and separately, estimation of the distribution of future states.

The framework we develop in this paper is described within the context of modeling the 

behavior of individuals in a weight loss program; specifically, we are interested in using a 

short time-span (e.g., 15–30 days) of physical activity and weight data from an individual 

participating in a weight loss program in order to effectively characterize the likelihood of 

whether or not that individual will achieve clinically significant weight loss (i.e., 5% 

reduction in body weight) after a long period of time (e.g., 5 months). While machine 

learning approaches such as support vector machines (SVMs) (Hastie et al., 2009; Wang et 

al., 2017; Oztekin et al., 2018) and artificial neural networks can be used to make binary 

predictions of significant weight loss based on a short time span of data (Hastie et al., 2009) 

they have two significant limitations: first there is no obvious way to integrate them into an 

optimization model, and second these approaches are generally limited in their 

interpretability (Breiman et al., 2001). Here, we show that in contrast to these machine 

learning methods, our approach is interpretable since the equations are based on models 

from the social sciences, and can be incorporated into optimization models since it is posed 

as a mixed integer linear program (MILP), while maintaining comparable prediction 

accuracy.
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1.1. Personalized Treatments and Obesity

Obesity is a significant problem in the United States. About 70% of American adults are 

overweight or obese (Flegal et al., 2012), and its annual cost to the health care system is 

estimated to be $350 billion (Valero-Elizondo et al., 2016). Currently, the most effective 

treatments for obesity are weight loss interventions composed of counseling sessions by 

clinicians and daily goals for physical activity and caloric consumption. The Diabetes 

Prevention Program Research Group (2002, 2009) showed that participating in these types 

of treatments results in significant weight loss of 5–7% and can prevent the onset of type-2 

diabetes with few side effects. However, adherence to these clinician-set goals decreases 

over time (Acharya et al., 2009), and these programs are labor-intensive and expensive to 

sustain (McDonald et al., 2002; Diabetes Prevention Program Research Group, 2003). 

Making these interventions more effective and efficient will require designing treatments 

personalized to each individual’s preferences.

While individualized goal-setting and personalized interventions are crucial to the success of 

these programs, these features are expensive to provide. Cost efficient programs will need 

automation of goal-setting and scheduling of counseling resources for individuals to succeed 

in reducing their weight. Such approaches will likely involve digital/mobile/wireless 

technologies, which already have high adoption rates (Lopez et al., 2013; Bender et al., 

2014) and have shown promise for improving the quality of and adherence to weight loss 

programs (Fukuoka et al., 2011). These technologies allow clinicians and researchers to 

remotely collect real-time health data and communicate with individuals participating in the 

program. However, healthcare data sets generated by mobile devices have been underutilized 

to date, and little research has focused on effective ways to utilize individuals’ health-related 

data patterns to improve and personalize weight loss interventions (Fukuoka et al., 2011; 

O’Reilly & Spruijt-Metz, 2013; Pagoto et al., 2013; Azar et al., 2013).

1.2. Overview

Ultimately, effective automated approaches will depend upon nuanced models to predict the 

effects different interventions (i.e., changes in activity and caloric goals, or specific types of 

counseling) will have on the weight loss trajectories of different individuals. In this paper, 

we present an initial step – specifically, we develop an approach for using a short time-span 

(e.g., 15–30 days) of physical activity and weight data from an individual participating in a 

weight loss program to effectively characterize the likelihood of whether or not that 

individual will achieve clinically significant (i.e., 5% reduction in body weight) weight loss 

after a long period of time (e.g., 5 months) as a function of the physical activity goals and 

amount of counseling given to the individual. (The Diabetes Prevention Program Research 

Group (2002, 2009) showed 5% weight loss provides substantial health benefits.) As 

discussed above, this type of predictive tool will ultimately enable the adaptive design of 

more effective and cost efficient interventions. Towards this end, we also show how our 

predictive model is able to predict the impact of changes in the intervention treatment on the 

weight loss trajectory of a specific individual.

A key feature of predicting future behavior is the inherent uncertainty due to having limited 

data. As a result, it is natural to consider predictive modeling approaches that generate 
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ranges or intervals of predictions. Though frequentist approaches can be used to construct 

confidence intervals, we instead propose a Bayesian approach that constructs a range of 

predictions characterized by a posterior distribution. An important benefit of our Bayesian 

(as compared to a frequentist) approach is that it can incorporate data from individuals that 

have been in the program for a longer period of time or have even completed a fixed 

duration (e.g., 5 months) of the program. We quantitatively show in Section 6 that 

incorporating the information of other individuals using a nonparametric Bayesian prior 

distribution improves the accuracy of predictions versus not using a Bayesian framework.

Our resulting predictive modeling approach is presented in Section 5. In the preceding 

sections, we develop essential elements for constructing the model. We first describe the 

structure of mobile phone-based weight loss interventions in Section 2. Section 3 describes 

our utility-maximizing model of the decisions of an individual participating in a weight loss 

intervention. Mathematically, we represent prior information in the Bayesian framework as 

histograms of parameter values for the utility functions of individuals that have completed 

the fixed duration of the program. To compute these parameters, we solve a maximum 

likelihood estimation (MLE) problem, which is the focus of Section 4. Our predictive 

modeling approach in Section 5 uses the utility-maximizing framework and corresponding 

histograms of parameter values to predict the weight loss trajectory of a single individual. 

Both the MLE in Section 4 and predictive model in Section 5 are computed by solving a 

mixed integer linear program (MILP).

To validate our predictive modeling approach, we use a longitudinal data set collected from 

a 5-month randomized controlled trial (RCT) of a mobile phone-based weight loss program. 

Section 6 begins with an overview of this RCT, and additional details are available in 

Fukuoka et al. (2015). Next, we evaluate the effectiveness of our approach for predicting 

whether or not an individual will achieve clinically significant (i.e., 5% or more) weight loss 

at the end of the intervention. We validate our approach by showing its binary predication 

accuracy is comparable to standard machine learning methods (i.e., linear SVM, decision 

tree, and logistic regression) in terms of prediction quality. In contrast to these machine 

learning methods, our predictive model is also able to determine the impact of changing 

intervention parameters for a specific individual on that individual’s weight loss trajectory, 

and we conclude with a discussion of this aspect of our model and how it can be used to 

perform optimization.

1.3. Literature Review

Statistical classification methods (which include logistic regression, support vector 

machines, neural networks, and random forests) predict a binary { — 1, +1} output label 

based on an input vector (Hastie et al., 2009; Denoyel et al., 2017). In the context of weight 

loss interventions, these approaches could predict whether (+1) or not (−1) an individual will 

achieve 5% weight loss after 5 months, based on 30 days of an individual’s data. However, 

these approaches lack interpretability (Breiman et al., 2001) and cannot be incorporated as 

constraints into standard optimization approaches. Our predictive modeling approach is 

similar in that it can be used as a classifier (i.e., it can predict whether or not an individual 

achieves 5% weight loss), but it differs in that its equations are based on models from the 

Aswani et al. Page 4

Eur J Oper Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



social sciences, and can be incorporated into optimization models since it can be posed as a 

mixed integer linear program (MILP), making it more applicable for addressing the problem 

of intervention design.

A number of predictive models have been developed to determine the impact of changing a 

medical intervention on the health outcome for an individual, including: Markov chain 

models (Ayer et al., 2012; Mason et al., 2013; Deo et al., 2013; Andersen et al., 2017), 

dynamical systems models (Helm et al., 2015), decision tree models (Wu et al., 2013), 

graph-theoretic models (Fetta et al., 2018), bandit models (Negoescu et al., 2014), and 

dynamic programming models (Engineer et al., 2009). (This literature also studies the 

problem of designing optimal treatment plans, which we do not consider in our present 

paper.) Our work is similar in that we develop an approach to predict future body weight of 

an individual as physical activity goals and counseling scheduling are changed. One key 

difference is in the data available in weight loss programs. Existing approaches are designed 

for situations where data is collected infrequently (e.g., only during clinical visits), whereas 

in weight loss programs the data is collected daily using mobile devices. Our work seeks to 

develop a predictive modeling approach that can leverage this increased data availability in 

order to make improved predictions. Moreover, existing approaches focus either on 

motivational states (Mason et al., 2013) or health states (Ayer et al., 2012; Deo et al., 2013; 

Helm et al., 2015; Wu et al., 2013; Negoescu et al., 2014; Engineer et al., 2009). We seek to 

combine the notions of motivational and health states into a single predictive model, which 

is a modeling approach that has not been previously considered.

Previous approaches for automated exercise and diet management significantly differ in the 

goal of the predictive modeling. Bertsimas & O’Hair (2013) develop a system that learns a 

predictive model of an individual’s dietary preferences and then designs a plan of what food 

to eat and how much time to exercise to maintain low blood glucose levels. The output of 

this predictive model is blood glucose levels and satisfaction of a given dietary plan, whereas 

we are interested in making predictions regarding future body weight. Additionally, this 

predictive model does not consider adherence to the prescribed plans (e.g., the individual 

may overeat or may not exercise the amount indicated by the plan), whereas our approach 

quantifies the level of adherence to prescribed physical activity goals and guidance on 

caloric intake. The Steptacular program (Gomes et al., 2012) used monetary incentives to 

encourage individuals to walk more, but a predictive model was not developed to design the 

incentives; our approach differs in that we seek to build a predictive model so that in the 

future we may be able to optimize the weight loss intervention for each individual.

1.4. Contributions

We develop a number of novel optimization modeling and analysis techniques that we 

believe will be useful for expanding the scope of predictive models of human decision-

making in complex systems. For instance, much mobile phone data contains non-negligible 

noise and suffers from missing data points (Chen et al., 2012). Aswani et al. (2018) showed 

that statistically consistent estimation of model parameters in a utility-maximization 

framework requires joint estimation of the missing data and model parameters. It is known 

(see for instance Bickel & Doksum (2006)) that such joint estimation does not represent 
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statistical over-fitting, and in fact all regression approaches (even basic linear regression) 

jointly provide estimates of denoised data and model parameters; however, only the model 

parameter estimates are statistically consistent (Bickel & Doksum, 2006; Aswani et al., 

2018). Existing approaches for dealing with missing data (e.g., the EM algorithm (Hastie et 

al., 2009)) generate an estimate by computing the local optimum of a suitably defined 

optimization problem that computes the parameters of the predictive model. Instead, we 

construct optimization models formulated as mixed integer linear programs (MILP’s) that 

are able to simultaneously estimate missing/noisy data and parameters of the utility-

maximizing framework; this yields global optima of the parameter computation optimization 

problem.

As mentioned above, we can likely improve trajectory predictions for a specific individual in 

a weight loss intervention by leveraging mobile phone data from other individuals who have 

already completed the intervention. This challenge can be posed in a Bayesian framework, 

but existing nonparametric approaches require computing numerically challenging integrals. 

In this paper, we provide what is to the best of our knowledge the first Bayesian estimation 

approach in which the prior distribution is purely data-driven and described by a histogram. 

For this Bayesian estimation, we use integer programming, and we show that a data-driven 

distribution can be represented as a piecewise constant function, which can then be 

formulated within a MILP (Vielma, 2015).

In many cases, patients favor behavior that does not improve (or is not optimal with respect 

to) their health outcomes. Non-adherence to a medical plan falls in to this category. Social 

scientists sometimes label such behavior “irrational” (Brock & Wartman, 1990); however, an 

argument has been made that many instances of “irrational” behavior are in fact rational 

decisions when considering a patient’s actual utility function (Gafni, 1990; Cawley, 2004). 

In our case, we explicitly use a utility function in which the individual is assumed to heavily 

discount future health states, a behavior that is often characterized as “irrational” (Brock & 

Wartman, 1990). We note, however, that while these modeling choices may be controversial, 

the particular utility function framework that we develop has an alternative interpretation 

that does not make reference to utility maximization. In particular, our approach can 

alternatively be interpreted as leading to a model that has the best theoretical predictive 

accuracy given the set of underlying equations that characterize this framework. While this 

alternative interpretation is beyond the scope of this paper, we describe it in a companion 

paper focusing on inverse optimization problems with noisy data (Aswani et al., 2018). 

Thus, even if the behavioral argument we advance in subsequent sections of this paper does 

not accurately capture individuals’ behavior, the framework we describe still enables us to 

make the most accurate set of predictions possible using the set of equations underlying the 

predictive model.

2. Structure of Mobile Phone-Based Weight Loss Interventions

Currently the healthcare community is refining a new class of weight loss interventions that 

rely on mobile phones and digital accelerometers (Gomes et al., 2012; Fukuoka et al., 2015; 

Flores Mateo et al., 2015). Though the particular features of these programs often differ, 

there is a growing consensus on the broad structure of these programs. In general, each 
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individual is provided with (i) a mobile phone app and a digital accelerometer, and (ii) in-

person counseling sessions. The digital accelerometer is used to measure daily physical 

activity, and the digital aspect of the device simplifies data sharing and data uploading. The 

mobile phone app delivers physical activity goals, educational messages (such as those from 

(Diabetes Prevention Program Research Group, 2002, 2009)), and provide an interface for 

individuals to enter dietary and body weight information.

The accelerometer measures the number of seps taken each day since the majority of 

exercise for individuals in such weight loss interventions consists of walking. Individuals are 

also typically asked to input weight measurements multiple times a week into the mobile 

app. In principle, the data available for each individual consists of daily weight and step 

amounts; however, data for some dates is missing because individuals forget to enter weight 

data into the mobile app, wear the accelerometer, or because of a technical problem with the 

app. The age, gender, and height of each individual is also known data in these programs.

Individuals participating in such mobile phone-based weight loss interventions receive 

additional interaction. After an initial baseline period, exercise goals in terms of a minimum 

daily step count are provided to each individual. The goals change at regular intervals (e.g., 

every week). Individuals also have office visits (or phone calls) at regular intervals, during 

which they received behavioral counseling about their nutritional choices and physical 

activity. The exercise goals and timing of the office visits (or phone calls) are set in advance, 

and thus are also known data in these programs.

3. Formulating the Utility-Maximizing Framework

The utility-maximizing framework we propose has two components. The first describes how 

an individual makes decisions regarding the amount of steps and caloric intake, and this is 

formulated in terms of a utility-maximizing individual. The utility function contains heavy 

discounting of future health states, a behavior that is often characterized as “irrational” 

(Brock & Wartman, 1990). The second describes how the individual’s weight and type (a set 

of parameters describing each individual) evolve over time as a function of current states and 

decisions. This second part is formulated in terms of a linear dynamical system.

3.1. Summary of Framework

A subscript t denotes the value of a variable on the t-th day. Let ft ∈ ℝ+ denote the amount 

of calories consumed, ut ∈ ℝ+ be the number of steps, wt ∈ ℝ+ be the weight of the 

individual, gt ∈ ℝ+ be the given exercise goal in terms of number of steps, and dt ∈ {0,1} 

indicate whether or not an office visit occurred. We refer to θt = (k, q, s0, st,pt, μ) as the type 
of the individual. The parameters a,b,c,k ∈ R describe the weight dynamics, are based on the 

physiology of the individual, and can be precomputed based on the age, gender, and height 

of the individual (Mifflin et al., 1990). Another set of the parameters are used in the utility 

function. These include rf ,ru G ℝ which represent the marginal utility of quadratic terms, q, 

s0 which represent baseline preferences in terms of physical activity and caloric 

consumption respectively, pt ∈ ℝ which represent the marginal dissutility of failing exercise 

goals, and st ∈ ℝ which represents the current preference of caloric consumption. The last 

set of parameters describe the type dynamics, including μ ∈ ℝ+ that captures the impact of 
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achieving an exercise goal, and 0 < γ < 1 which is a discount factor representing the 

diminishing effect of the intervention over time. The βt,δt ∈ ℝ+ are random variables with 

finite variance that represent the impact of an office visit, and zt ∈ ℝ is a zero-mean random 

variable with finite variance that denotes weight fluctuations from unmodeled effects. These 

random variables βt,δt,zt are individual-specific, but we do not consider them to characterize 

the type of the individual. The expected behavior of any particular individual will not depend 

in a unique way upon these random variables. Using these quantities, we define the 

following utility functions and dynamics.

1. Individual decision-making when no exercise goals are given is

Uno goals
(ut, f t) = arg max

u, f
− wt + 1

2 − ruut
2 + qut − r f f t

2 + st f t

s . t . wt + 1 = a ⋅ wt + b ⋅ ut + c ⋅ f t + k .

Individual decision-making when exercise goals are given is

Ugoals
(ut, f t) = arg max −

u, f
wt + 1

2 − ruut
2 + qut − r f f t

2 + st f t + pt ⋅ (ut − gt)
−

s . t . wt + 1 = a ⋅ wt + b ⋅ ut + c ⋅ f t + k .

Note that Uno goals and Ugoals refer to the (ut,ft) that are computed by solving the 

corresponding optimization problems.

2. Weight and type are assumed to evolve according to the following:

wt + 1 = a ⋅ wt + b ⋅ ut + c ⋅ f t + k + zt (1)

st + 1 = γ ⋅ (st − s0) + s0 − βt + 1 ⋅ dt + 1 (2)

pt + 1 = γ ⋅ pt + δt + 1 ⋅ dt + 1 + μ ⋅ 𝟙(ut ≥ gt) . (3)

Observe that the time index in (2), (3) for β, δ, d is t +1 because we assume that 

the impact of a clinical visit occurs on the day of the visit.

Note that in Uno goals is the caloric consumption preference st is time-varying, whereas the 

physical activity preference q is constant. The reason is that in clinically-supervised weight 

loss programs, individuals are encouraged to reduce their caloric consumption at the 

beginning of the program – in contrast, the individuals are asked to not increase their 

physical activity level until they begin to receive goals (Fukuoka et al., 2011). Thus, our 

predictive model assumes that the physical activity preference remains constant during the 

period in which no goals are given.
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3.2. Structure of Utility Function

We assume an individual’s utility function is separable with respect to weight, exercise 

amount, and caloric intake. An individual with perfect knowledge of his or her type θt may 

choose their exercise amount u and caloric intake f to maximize a utility of the form 

∑k = 0
∞ α−k ⋅ 𝔼(U1(wt + k + 1, dt + k, gt + k; θt + k) + U2(ut + k, dt + k, gt + k; θt + k) + U3( f t + k, dt + k,

gt + k; θt + k))
, 

subject to weight wt+k+1 = η(wt+k, ut+k, ft+k, ξt+k) and type dynamics θt+k+1 = ζ(θt+k, wt+k, 

ut+k, ft+k, ξt+k, dt+k, gt+k), where ξt+k = (zt+k, βt+k, δt+k) are random variables, α ∈ [0,1) is a 

discount factor, U1,U2,U3 are utility functions, and η, ζ are functions that define the 

dynamics. Note that utility depends on weight one day ahead of the corresponding decision 

because future weight and present decisions affect utility.

However, it is not true that individuals make health care decisions with the goal of 

maximizing long term health benefits. Indeed, it is common for individuals to very heavily 

discount the impact of present decisions on future health outcomes (Chapman & Elstein, 

1995). To capture this behavior that is sometimes characterized as “irrational” (Brock & 

Wartman, 1990), we explicitly use a utility function in which the individual is assumed to 

heavily discount future health states.

Proposition 1.If the discount factor is α = 0, then this is equivalent to an equation where the 
individual makes a decision considering only the one-day impact: 

maxu, f 𝔼(U1(wt + 1, dt, gt; θt) + U2(ut, dt, gt; θt) + U3( f t, dt, gt; θt)) wt + 1 = η(xt, ut, f t, ξt) .

Proof. This follows by direct calculation.

3.3. Choice of Utility Function

Corresponding terms in the utility function are chosen to match to particular behaviors 

expected by social cognitive theory (Bandura, 2001): In this context, social cognitive theory 

asserts that caloric consumption and physical activity depend upon (1) self-efficacy, which is 

an individual’s belief in their ability to achieve positive behavioral changes and is 

characterized by the coefficients pt, q, st; and depend upon (2) receiving a positive reward 

from a small amount of weight loss for engaging in positive behavioral changes. We choose 

U1 = − wt + 1
2 , U3 = − r f f t

2 + st f t, U2 = − ruut
2 + qut if no goal is given, and 

U2 = − ruut
2 + qut + pt ⋅ (ut − gt)

− if a goal is given. Dislike for large amounts of steps and 

caloric intake is captured by the −ruut
2 and −r f f t

2 terms. Positive satisfaction for increasing 

steps and caloric intake is represented by the qut and stft terms. An individual’s preference 

for lower weight is reflected by the −wt + 1
2  term. And an increase in satisfaction for getting 

closer to the exercise goal is captured by the pt · (ut − gt)− term.

Remark 1. Observe that as pt increases, the utility of meeting a step goal increases, and as st 

increases, the utility of higher caloric intake increases. Thus, we can interpret the values pt, 

st as a quantification of the adherence of an individual to step goals and dietary goals, 
respectively.
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Remark 2. An alternative choice is U1 = − wt
2 + 2wbwt, which has an additional linear term 

with coefficient Wb. After completing the square, this is equivalent to choosing U1 = −(wt − 

wb)2, which makes its interpretation clear: The Wb coefficient should be interpreted as the 
preferred weight of that individual. From a computational standpoint, Wb can be estimated 
using the same approach that we describe in later sections for estimation of rf,ru. However, 
we chose to not include the linear term for two reasons. The first is that including this linear 
term does make estimation more slow computationally. The second is that choosing Wb = 0 

for all individuals (which makes U1 = − wt
2) and then scaling for each individual the other 

coefficients in U2, U3 can reasonably approximate within a finite range of weights a U1 with 
a linear term. Our second reason also explains why a purely linear U1 = −wt is not an 
appropriate choice, because a purely linear U1 cannot capture the diminishing returns to 
weight loss as weight decreases towards the desired weight. As we will show later, setting 
Wb = 0 leads to accurate predictions, which ultimately validates our choice.

While other functional forms can represent the behaviors expected by social cognitive 

theory, these choices have several advantages. The choice that positive utility (qut and stft) 

increases at a slower rate than disutility decreases (−ruut
2 and −r f f t

2) ensures that an 

individual takes a finite number of steps and consumes a finite amount of calories. (Other 

choices can lead to a situation where the individual is predicted to take an infinite number or 

steps or consume an infinite number of calories, which is clearly unreasonable.) Moreover, 

these choices ensure the objective is strictly concave, which ensures that an individual is 

predicted to make only one decision; if the utility function was merely concave, then there 

may be multiple maximizers that correspond to a set of different possible decisions on the 

number of steps and calories.

Additionally, this functional form has a relatively low parameter count, which facilitates 

estimation. For instance, there is no linear term for weight wt. The utility term qut is kept 

constant because explicitly incorporating an increase in exercise utility (with an office visit) 

would be an over-parametrization due to the pt (ut — gt)− term. Furthermore, we do not need 

to include a parameter for the −wt
2 term because this would simply scale the function, and 

would not change the decision. Lastly, our choice implies that goal setting has no impact 

beyond the goal amount.

Remark 3. Restated, the utility term pt ·(ut − gt)− is at its maximum value for all ut ≥ gt. 
This is a simplification to reduce the number of terms. A more detailed framework would 
also incorporate positive utility for exceeding the goal, such as by including the term ρt · (ut 

— gt)+. The reason we do not include a linear term ρt · (ut − gt) = ρt · ut − ρt · gt is that such 
a term inherently cannot capture the satisfaction of meeting a goal, because it has the same 
effect (due to pt · gt being a constant) as including the term ρt · ut.

3.4. Dynamics of Weight

We also need to specify weight dynamics. Standard physiological arguments (i.e., weight 

change is proportional to “calories-in minus calories-out”) imply that the weight dynamics 

are given by wt+1 = a wt+b ut+c·ft+k+zt, where a,b,c,k ∈ ℝ are coefficients that can be 
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computed using existing physiological models, and zt is a zero-mean random variable that 

captures unmodeled changes in weight (e.g., water fluctuation, physical activity in addition 

to steps, etc.). Suppose wt, k, zt are specified in units of kilograms, ft is specified in units of 

kilocalories (also known as dietary calories), and ut is specific in units of steps. Then a 

derivation given in the Supplementary Materials and based on the Mifflin St Jeor Equation 

(Mifflin et al., 1990) for the basal metabolic rate (BMR) gives a = 0.9987 and k = —8.0357 

× 10−4 · h + 6.4286 × 10−4 · a + s, where h is height in centimeters, a is age in years, s = —

6.4286 × 10−4 for males, and s = 2.0700 for females. To compute b, we note that 2000 steps 

is roughly equal to walking one mile and consumes about 100 calories, largely independent 

of the height, weight, age, and gender of an individual (Hill et al., 2003). This gives a value 

of b = —6.4287 × 10−6. Last, the value of c = 1.2857 × 10−4 is computed by performing the 

unit conversion that 3500 calories is 0.45 kilograms.

One consequence of linear weight dynamics is simplification of the utility-maximizing 

framework:

Proposition 2. When the weight dynamics are linear, as in (1), we can rewrite the objective 
of the utility-maximizing framework as 

−(a ⋅ wt + b ⋅ ut + c ⋅ f t + k)2 + U2(ut, dt, gt; θt) + U3( f t, dt, gt; θt) − 𝔼(zt
2).

Proof. This follows by first substituting the linear weight dynamics (1) and then noting that 

(i) the only stochasticity is in zt, (ii) zt is zero mean, (iii) zt is unobservable at time t and 

cannot be used to make a decision at time t, and (iv) the terms involving zt have an 

expectation of zero since the decisions are independent of zt.

Remark 4. The main insight from this substitution is that decisions made by an individual 
following the utility-maximizing framework do not depend on the stochasticity because 

−𝔼(zt
2) is a constant that does not depend on the decisions.

Before describing the type dynamics, we discuss a more detailed model for the weight 

dynamics. Specifically, a phenomenon known as adaptive thermogenesis (Doucet et al., 

2001; Rosenbaum et al., 2008) causes the metabolism of an individual who has lost weight 

to decrease. Our weight dynamics (1) can be modified to incorporate this phenomenon by 

allowing the zt to have a non-zero mean. Though we do not use this more detailed model in 

this paper, we briefly outline how our MLE and Bayesian prediction formulations (that will 

be described in upcoming sections) would change: The first change is that the k term in the 

constraints would be replaced with k + mt, where mt is a new variable that represents the 

mean of zt. This change allows the zt in our formulations to have a non-zero mean. The 

interpretation of mt is that it represents the amount of reduction in metabolism (in units of 

kilograms) as weight loss occurs, which is the above described phenomenon of adaptive 

thermogenesis. More precisely, a negative value of mt indicates an increase in metabolism 

whereas a positive value of mt indicates a decrease in metabolism. The reason for this 

interpretation is that zt enters additively into the weight dynamics (1), and so a negative mt 

means weight is decreased while a positive mt means weight is increased. The second 

change is that an additional constraint ∑t = 1
n − 1 mt + 1 − mt ≤ σm is added to our formulations, 
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where n is the time step at which we are solving the formulation and σm is a constant the 

bounds the amount of metabolism change, and this constraint is known as fused lasso 
(Tibshirani et al., 2005) in the statistics and machine learning literature. This additional 

constraint has been show to have properties (Tibshirani et al., 2005) that would lead to 

estimates that ensure the estimated change in metabolism becomes roughly constant after an 

individual’s weight stops changing, which is an important property because it matches what 

is clinically observed with changes in metabolism after weight loss (Doucet et al., 2001; 

Rosenbaum et al., 2008). As a final note, ensuring a monotonic dependence between the 

reduction in weight wt and the reduction in metabolism mt is more complicated. Constraints 

to exactly ensure such a dependence are too computationally expensive, but reasonable 

approximate constraints can be incorporated into the optimization model for estimation. For 

instance, let the measured weight data be (ti, wti
), for i = 1,…, nw, where nw is the number of 

weight measurements, ti is the day of the i-th weight measurement, and wti
 is the weight 

measurement on the ti-th day. If we define Ti to be an re-ordering of the t1, …, tnw
 such that 

wT1
≤ wT2

≤ ⋯ ≤ wTnw
, then the constraints mT1

≥ mT2
≥ ⋯ ≥ mTnw

 ensure that lower 

weights correspond to lower metabolism via a larger mt term.

3.5. Dynamics of Type

The type dynamics are as specified in (2),(3), where γ, so, μ are scalars and βt,δt are random 

variables. Specific terms in these dynamics correspond to principles of social cognitive 

theory, which says in this context that self-efficacy as quantified by st,pt will increase in 

response to social contact during office visits and in response to successfully achieving past 

goals. The uncertain impact of office visits is modeled by the stochastic βt and δt. The fact 

that office visits sometimes make external goal-setting more effective and decrease interest 

in eating is described by the δt+1 · dt+1 and −βt+1 · dt+1 terms, respectively. Because the 

impact of a single office visit decreases to zero over time, the dynamics include the terms γ 
· (st − s0) + s0 and γ · pt. Observe that these discounting terms are different because s0, q are 

the baseline preferences for caloric consumption and physical activity, respectively. So the 

first discounting term ensures st goes to s0 without more office visits, and the second 

discounting term ensures pt goes to zero without more office visits since q already encodes 

the baseline coefficient for physical activity. Moreover, goal-setting can become more 

effective whenever the goal is met; this is characterized by the μ ⋅ 𝟙(ut ≥ gt) term.

Multiple equation choices would lead to the behaviors suggested by social cognitive theory, 

but this set of choices ensures the dynamics are linear in st,pt and reduces the parameter 

count. The latter objective is achieved through (i) using the same parameter γ for both the γ 
· (st − s0) and γ · pt terms, and (ii) using a constant parameter μ instead of allowing this to 

be a time varying quantity. Linearity in st,pt is important for favorable computational 

properties. Though the term μ ⋅ 𝟙(ut = gt) is nonlinear, it has special structure that allows 

efficient computation.
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4. Maximum Likelihood Estimation (MLE) for Utilility-Maximization

Estimating parameters of the utility-maximizing framework for a specific individual requires 

solving an optimization problem. However, formulating this model is challenging because 

the measurements suffer from noise and missing weight and step data. This can be overcome 

by formulating the optimization model so that its minimizer simultaneously estimates the 

values of weight, caloric intake, steps, type, and the random variables in the model for each 

individual. The optimization model for simultaneous estimation is generally a nonconvex, 

nonlinear program; and it is typical to generate an estimate by computing a local optimum 

(e.g., the EM algorithm (Hastie et al., 2009)). However, we show that simultaneous 

estimation can be modeled using as a MILP, allowing us to compute the global optimum of 

the optimization model for estimation.

We pose the estimation problem in the framework of MLE. Suppose that the data for a single 

individual consists of (ti, wti
), for i = 1, …, nw, (τi, uτi

), for i = 1,…,nu, and (dt,gt) for t = 1, 

…,n, where nu are the number of weight measurements, nu are the number of step 

measurements, and the noise model is wti
= wti

+ vti
 and uτi

= uτi
+ ωτi

, where vti
, ωτi

 are 

zero-mean random variables with finite variance. Note that the times ti,ri do not coincide in 

general. Let ψν(·),ψw(·),ψz(·) by the probability density function (pdf) for the random 

variables vt,ψt,zt. The MLE problem seeks to estimate the type θt of each individual and the 

parameters rf,ru,γ, using the above described data; however, the MLE problem will also 

involve estimation of ft,ut,wtβt,δt to deal with noise and missing weight and step data as 

described above. It is important to further discuss the interpretation of the type θt and 

parameters rf ,ru, γ that are estimated. Clearly there will be additional factors beyond the 

ones we have included in our predictive model that influence how an individual decides their 

daily caloric intake and number of steps, and so the measured data cannot be expected to 

exactly match our predictive model. In this context, the type θt and parameters rf,ru,γ that 

are estimated for each individual should be interpreted as those that maximize the prediction 

accuracy of the predictive model (Aswani et al., 2018) – a concept sometimes known as risk 
consistency in the statistics literature.

4.1. Initial Optimization Model for Computing MLE

Let n = max tnw
, τnu

 be the number of days of data used for estimation, and let m by the 

number of initial days before an exercise goal was given to the individual. For the utility-

maximizing framework, the MLE is the minimizer of an optimization problem defined as

Pmle
min ∑i = 1

nw −logψv(wti
− wti

) + ∑i = 1
nu −logψw(uτi

− uτi
) + ∑t = 1

n −logψz(zt)

s . t . Uno goals, (1) for t = 1, …, m − 1; Ugoals, (1), (2), (3) for t = m, …, n .

Recall that Uno goals captures decision-making without goals, Ugoals captures decision-

making model with goals, equations (1) are dynamics on weight, (2) and (3) are the 

dynamics of parameters st,pt respectively. Note that the first office visit is on the same day 
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the first exercise goal is given. Since st,pt cannot change until the start of the intervention 

their dynamics begin at time m.

The problem Pmle is more challenging to solve than may initially appear. The variables ut,ft 

are defined as the minimizing arguments of Uno goals and Ugoals. This makes the MLE the 

solution to a bilevel optimization problem (Dempe, 2002). Among the bilevel optimization 

problems that have been considered in the literature include inverse optimization with linear 

objectives (Ahuja & Orlin, 2001) and inverse optimization for combinatorial problems like 

assignment and spanning tree problems (Heuberger, 2004). In the context of bilevel 

optimization problems for estimating utility functions, approaches have been derived under 

the assumption of small noise (Keshavarz et al., 2011; Bertsimas et al., 2014); more recently, 

statistically consistent approaches for noisy measurements have also been proposed (Aswani 

et al., 2018). Here, we develop a new integer programming approach for solving our specific 

bilevel optimization problem in Pmle.

4.2. Choosing the Distribution of Random Variables Representing Noise

We first must select the distribution of random variables representing noise vt,ft,zt. Their 

variances σι,σ2, are constants that can be chosen based on our prior knowledge regarding the 

measurement accuracy of weight scales, measurement accuracy of accelerometers for 

measuring steps, and physiological information about the modeling errors of the Mifflin St 

Jeor Equation (Mifflin et al., 1990) for BMR. In our modeling, we used σι = 2, σ2 =0.1, and 

σ3 = 0.1.

Choosing zero-mean Gaussian random variables yields a quadratic objective for 

Pmle: κ1 + 1
σ1

∑i = 1
nw (wti

− wti
)2 + 1

σ2
∑i = 1

nu (uτi
− uτi

)2 + 1
σ3

∑t = 1
n (zt)

2, where κ1 is a constant. 

Alternatively, one could select vt, ψt, zt to be zero-mean Laplace random variables, which 

have a pdf of ψ(x) = 1
2σ exp( − x / σ /2) with variance σ. The resulting objective of Pmle is 

proportional to σ1
−1/2∑i = 1

nw wti
− wti

+ σ2
−1/2∑i = 1

nu uτi
− uτi

+ σ3
−1/2∑t = 1

n zt .

Remark 5. The objective function resulting from the Laplace case becomes a linear 
objective function after a minor reformulation (see, for example, Section 6.1.1 of (Boyd & 
Vandenberghe, 2004)).

We assume the noise is Laplacian because this results in MILP optimization problems for 

estimation and prediction. Note that if we had assumed Gaussian noise, then this would have 

resulted in MIQP optimization problems for estimation and prediction. We have found that 

these resulting MIQP’s are solvable using standard software, but that the prediction accuracy 

was not better than that of the MILP formulations arising from the Laplacian assumption. 

Hence we chose to assume Laplace noise because of the faster computation time for the 

resulting MILP’s. The similar predictive accuracy under both assumptions is not surprising 

given that the difference in the objective is simply an absolute value of deviation versus the 

square of deviation.
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4.3. Reformulating the MLE Using KKT

One approach to solving bilevel programs is to replace the convex optimization problems 

that are constraints by their corresponding necessary and sufficient optimality conditions 

(Dempe, 2002).

Proposition 3. Necessary and sufficient optimality conditions for Uno goals can be written as

2b(awt + but + c f t + k) + 2ruut − q = 0
2(awt + but + c f t + k) + 2r f f t − s0 = 0.

(4)

Proof. Because the constraints in Uno goals can be eliminated by rewriting the problem as 

(ut, f t) = arg maxu, f − (a ⋅ wt + b ⋅ ut + c ⋅ f t + k)2 − ruut
2 + qut − r f f t

2 + st f t, the KKT conditions 

consist of only the stationarity conditions and are given by (4). A minor note is that st = s0 

here, because there are no dynamics on st when goals are not provided as in Uno goals.

Proposition 4. Neccesary and sufficient optimality conditions for Ugoals can be written as

2b(awt + but + c f t + k) + 2ruut − q − λt
2 = 0

2(awt + but + c f t + k) + 2r f f t − st = 0
gt − ϵ − (gt − ϵ) ⋅ xt

1 ≤ ut ≤ M + (gt − ϵ − M) ⋅ xt
1

(gt − ϵ) ⋅ xt
2 ≤ ut ≤ M + (gt + ϵ − Μ) ⋅ xt

2

(gt + ϵ) ⋅ xt
3 ≤ ut ≤ gt + ϵ + (M − gt − ϵ) ⋅ xt

3

0 ≤ λt
2 ≤ pt; pt − M ⋅ (1 − xt

1) ≤ λt
2 ≤ M ⋅ (1 − xt

3)
xt

1 + xt
2 + xt

3 = 1; xt
1, xt

2, xt
3 ∈ 0, 1 .

(5)

Proof. Computing optimality conditions for Ugoals requires reformulation as a quadratic 

program (QP) by using pt · (ut – gt)− = −max{−pt · (ut − gt), 0}. This QP reformulation has a 

differentiable, strictly concave objective and satisfies the linear independence constraint 

qualification (LICQ), and so the KKT conditions are necessary and sufficient for optimality. 

The KKT conditions can be rewritten after some manipulation as the first two lines of (5) 

combined with the following logical conditions on the Lagrange multipliers: λt
2 = pt if ut < 

gt, 0 ≤ λt
2 ≤ pt if ut = gt, and λt

2 = 0 if ut > gt. Finally, let M be a constant such that M ≥ pt. 

Using a big-M formulation (Vielma, 2015), we can express these logical conditions as in (5). 

□

Remark 6. We include an 0 < ϵ ≪ 1 term to ensure all three regions for the integer program 
have a non-zero width. The resulting regions are ut ≤ gt – ϵ, gt – ϵ < ut ≤ gt + ϵ, and ut ≥ gt + 

ϵ, and note that the binary variables x1
t , xt

2, xt
3 indicate if ut respectively belongs to one of 

these three regions.
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Remark 7. If gt is not fixed, as would be the case in an optimization problem for 
personalizing physical activity goals, then the constraints (5) can be further reformulated as 
MILP constraints using the approach discussed in Section 4.5.

4.4. Exercise Goal Inequalities to Constrain Integer Variables

We define an additional set of inequalities that lead to order of magnitude faster computation 

times when computing the MLE. Social cognitive theory suggests that if an exercise goal gt 

is not achieved at a particular time point t (i.e., ut < gt), then it will not be achieved at time t 
+ 1 unless the goal decreases gt+1 < gt or an office visit occurs dt+1 = 1. This insight leads to 

additional inequalities on the integer variables.

Proposition 5. For fixed gt, the logical constraint (ut < gt, gt+1 ≥ gt, dt+1 = 0) ⇒ (ut+1 < gt+1) 

can be formulated as linear inequalities:

xt + 1
1 ≥ xt

1 − dt + 1 − 𝟙(gt + 1 − gt < 0)
xt + 1

2 ≤ xt
2 + dt + 1 + 𝟙(gt + 1 − gt < 0)

xt + 1
3 ≤ xt

3 + dt + 1 + 𝟙(gt + 1 − gt < 0) .

(6)

Proof. The first inequality states xt + 1
1 ∈ 0, 1  (which indicates if ut+1 < gt+1) can only 

decrease from xt + 1
1  if the goal decreases (gt+1 < gt) or there is an office visit (dt+1 = 1). 

Similarly, the second and third inequalities state xt + 1
2 , xt + 1

3 ∈ 0, 1  can only increase from 

xt
2, xt

3 if the goal decrease: is an office visit (gt+1 < gt) or there is an office visit (dt+1=1).

Remark 8. When gt is not fixed, the above constraints (6) can be further reformulated as 
MILP constraints_ using big-M formulations (Vielma, 2015).

These inequalities further constrain the estimates beyond the equations of the utility-

maximizing framework. Restated, depending upon the parameters the utility-maximizing 

framework could potentially predict that goals are not attained at t but then attained at t + 1 

because of an increase in weight wt+1 > wt. We constrain the parameters using the 

inequalities (6) so as to prevent such behavior in the utility-maximizing framework.

4.5. Addressing Bilinear Terms

Because we are jointly estimating noisy/missing data and parameters, our optimization 

model contains nonconvex quadratic terms. For instance, the dynamics on pt (3) have the 

nonconvex quadratic term μ ⋅ 𝟙(ut ≥ gt). It is difficult to directly solve nonconvex mixed-

integer quadratically constrained quadratic programs (MIQCQP) problems, and so we 

discuss reformulations that allow us to solve the resulting problem more efficiently. We 

begin by reformulating (3).

Proposition 6. The dynamics on pt (3) can be represented by the linear constraints:
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pt + 1 ≥ γ ⋅ pt + δt + 1 ⋅ dt + 1
pt + 1 ≤ γ ⋅ pt + δt + 1 ⋅ dt + 1 + M ⋅ (1 − xt

1)
pt + 1 ≥ γ ⋅ pt + δt + 1 ⋅ dt + 1 + μ − Mxt

1

pt + 1 ≤ γ ⋅ pt + δt + 1 ⋅ dt + 1 + μ .

(7)

Proof. Recall that (3) has the nonconvex quadratic term μ ⋅ 𝟙(ut ≥ gt). Using the integer 

variables xt
1, xt

2, xt
3 from the integer-reformulated KKT conditions (5), we can express this as 

the bilinear term μ ⋅ (1 − xt
1). This term has the special structure of a binary variable 

multiplied by a continuous scalar, and so a standard exact-linearization approach (Glover, 

1975; Torres, 1991) can be used to reformulate the dynamics on pt as in (7). □

Finally, to eliminate bilinear terms in our MLE formulation note that the exact-linearization 

dynamics of pt (7) have the term γ · pt, the dynamics of st (2) have the term γ · (st − s0), and 

the integer-reformulated KKT conditions for decision-making with goals (5) have the terms 

2ruut, 2rf ft. When we fix the value of γ,rf,ru, the resulting MLE formulation will be a MILP. 

We use an enumeration approach, as described in the next subsection, to address these final 

bilinear terms.

4.6. MILP Formulation of MLE

We reformulate the initial MLE problem Pmle as optimization problem described below, 

Pmle-milp. This is a MILP for fixed values of γ,rf,ru and after rewriting the absolute values 

using linear constraints (as in Section 6.1.1 of (Boyd & Vandenberghe, 2004), for example), 

because a, b,rf, ru, γ are constants when solving Pmle-milp. The full MILP formulation for 

MLE can be found in the Supplementary Materials.

Pmle–milp
min σ1

−1/2 ∑i = 1
nw wti

− wti
+ σ2

−1/2 ∑i = 1
nu uti

− uti
+ σ3

−1/2 ∑t = 1
n zt

s . t . (1), (4), for t = 1, …, m − 1; (1), (2), (5), (6), (7), for t = m, …, n .

Recall that (1) are weight dynamics, (2) are dynamics on the st parameter, (4) are KKT 

conditions for the decision-making model without goals, (5) are integer-reformulated KKT 

conditions for the decision-making model with goals, (6) are the exercise goal inequalities 

that constrain the integer variables, and (7) are exact-linearization dynamics of pt.

If γ,rf,ru are not fixed, then Pmle-milp is a nonconvex MIQCQP. To solve Pmle-milp, observe 

that we can enumerate over γ,rf,ru and solve a series of MILP’s. This is computationally 

viable because we only need to enumerate over three variables. We can gain an additional 

computational speedup by using a simple and accurate approximation that allows us to 

compute the MLE by solving a single MILP. The approximation is due to an observation we 

made while using enumeration to compute the MLE. We noticed that the MLE was 

insensitive to the values of γ,rf,ru: There was less than a 5% difference in the objective value 
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over a large range of values for γ ∈ [0.8,1] and rf,ru ∈ [1 × 10−7,1 × 10−5], and the estimates 

of the type parameters were relatively constant over this range as well. As a result, we 

approximate this problem by fixing γ = 0.85, rf = 8.1633 × 10−6, and ru = 1 × 10−6 for all 

individuals: This allows us to compute the MLE by solving Pmle-milp for a single value of 

γ,r, which is a single MILP. This approximation also reduces the number of parameters we 

are trying to estimate.

5. Bayesian Predictions of Individual Trajectories

Problem Pmle-milp provides joint estimation of noisy/missing data and model parameters. 

However, this is not by itself useful for predicting the future weight loss trajectory of an 

individual given a short period of initial data. We would ideally like a framework to provide 

such predictions under different intervention scenarios, since this would support the adaptive 

design of personalized interventions. Moreover, we would like the predictions to be able to 

leverage past/historical data in order to improve the accuracy of predictions. Given this last 

constraint, a natural choice for predictions is to use this past data for a prior distribution in a 

Bayesian framework.

In particular, suppose we have past/historical data from many individuals that have 

completed the entire weight loss intervention. We can perform MLE to estimate the 

parameters for the utility-maximizing framework for each of these individuals. Then we can 

form our priors by computing histograms of these estimates. Let tf be the total length of an 

intervention, and define Θ = (θ1,…,θtf). We use the pdf notation ψ(Θ) to collectively refer to 

a set of histograms for the parameters Θ, because these histograms are be assumed to be 

normalized such that they are a pdf.

Now suppose we have an additional individual that has completed only T days of the 

intervention and has a remaining tf − T days left in the intervention, where tf is the total days 

in the intervention. The data available for this new individual is (ti, wti
), for i = 1,…,nw, and 

(τi, uτi
), for i = 1,…, nu, where nw are the number of weight measurements, nu are the number 

of step measurements, and the noise model is as before. We would like to construct an 

optimization model whose solution provides a prediction of the distribution of the 

individual’s weight at the end of the intervention at time tf using the histograms of the past 

individuals and the first T days of data for this new individual. In this section, we 

demonstrate that we can incorporate data-driven histograms as priors in Bayesian estimation 

using integer programming.

5.1. Initial Formulation for Bayesian Estimation

Our goal is to compute ψ(wt f
|C, W , U), which is the posterior distribution of weight at the 

end of the intervention wt f
 conditioned (i) on the intervention parameters 

C = (d1, g1, …, dt f
, gt f

), and (ii) on the data available for the new individual 
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W = ((ti, wti
), for i = 1, …, nw) and U = ((τi, wτi

), for i = 1, …, nu). To accomplish this, we apply 

Bayes’s theorem and then eliminate nuisance parameters by averaging over them.

First we calculate ψ(W , U, F, Θ |C, W , U), which is the joint posterior distribution of weight 

W = (w1, …, wt f
), steps U = (u1, …, ut f

), caloric intake F = ( f 1, …, f t f
), and type Θ. This 

requires specifying prior distributions for W, U, F, Θ. The typical approach is to choose 

priors that admit efficient computation or are uninformative/non-constraining (Gelman et al., 

2013). Because we have data from past individuals, we can use the histogram ψ(Θ) as a prior 

distribution for Θ. We choose a uniform prior distribution for W, U, F because this is 

relatively uninformative/non-constraining (Gelman et al., 2013). Consequently, applying 

Bayes’s theorem yields ψ(W , U, F, Θ |C, W , U) = 1
Z ⋅ ψ(W , U |W , U, F, Θ, C) ⋅ ψ(Θ), where 

ψ(W , U |W , U, F, Θ, C) is the likelihood of the observations conditioned on the parameters of 

the utility-maximizing framework, Z is a normalization constant that ensures the integral of 

the posterior is one, and we have used the fact that ψ(W) = ψ (U)= ψ (F) = 1 over their 

supports since they are uniform. Recall that the log-likelihood (i.e., log ψ(W , U |W , U, F, Θ, C)) 
is given by the objective and constraints of Pmle-milp.

The next step is to eliminate nuisance parameters, which can be accomplished in principle 

by averaging (Gelman et al., 2013). Averaging gives 

ψ(wt f
|C, W , U) = ∫ ψ(W , U, F, Θ |C, W , U) ⋅ dW−t f

⋅ dU ⋅ dF ⋅ dΘ, where W−t f
= (w1, …, wt f − 1). 

However, this integral is difficult to compute both symbolically (because of integer 

constraints in the formulation of the model) and computationally (the posterior 

ψ(W , U, F, Θ |C, W , U) can be sharply peaked and so Monte Carlo-based approaches converge 

slowly). (In fact, our initial approach was to use a Monte Carlo algorithm to compute the 

posterior distribution, but we found through empirical testing that the resulting posterior was 

simply a uniform distribution with a very broad support, which indicates convergence to the 

actual posterior was too slow for making accurate predictions with the posterior; such slow 

convergence is not surprising given the high-dimensionality of the nuisance parameters.) 

Our approach is to use the profile likelihood (Severini, 1999; Murphy & Vaart, 2000) as an 

approximation: The profile likelihood is computed by an optimization problem Ppl that is 

given by ψ(wt f
|C, W , U) ≈ maxW − t f , U, F, Θψ(W , U, F, Θ |C, W , U), and our approximation can 

be justified by arguments relating the asymptotic consistency of Bayesian and MLE 

estimation under general conditions (Severini & Wong, 1992; Severini, 1999; Gelman et al., 

2013). The key computational question is how to solve Ppl. The normalizing factor Z can be 

computed by numerically integrating a one-dimensional function.

5.2. Histogram Construction

Before constructing the histograms defining ψ(Θ), we need to specify which parameters are 

statistically independent. Assuming every parameter is correlated will not be successful 

because it would require high-dimensional histograms, which will be a statistically poor 

estimate of the true parameter distribution. Hence, specifying that some parameters are 

independent will enable expressing ψ(Θ) in terms of low-dimensional histograms. Therefore, 
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we assume that μ, q, s0, β0, δ0 are jointly independent. Furthermore, we assume that βK+1 

conditioned on βk is jointly independent with the other parameters. Similarly, βk+1 

conditioned on βk is assumed to be jointly independent with the other parameters. Lastly, we 

assume that the conditional relationships between βK+i, βk and between δk+1, δk are not a 

function of k. (Note that Pmle does not make any such assumptions about the conditional 

dependence of the βk or the δk, by which we mean that Pmle assumes that μ, q, s0, β0, δ0, β1, 

δ1, β2, δ2,… are jointly independent.)

Remark 9. Under our assumptions, we can factor the histogram as 

ψ(Θ) = ψ(μ) ⋅ ψ(q) ⋅ ψ(s0) ⋅ ψ(β0) ⋅ ∏k = 0
nd ψ(βk + 1 | βk) ⋅ ψ(δ0) ⋅ ∏k = 0

nd ψ(δk + 1 |δk), where nd be 

the number of office visits.

It will be the case that the objective function we use will involve the logarithm of ψ(Θ), and 

so the above remark implies that we can construct a MILP formulation of the resulting 

optimization problem as long as we are able to define MILP representations of 

ψ(X), ψ(Xk + 1 | Xk), where X is a random variable. Observe, that these constituent histograms 

are piecewise constant:

Remark 10. We can represent the one-dimensional histogram for parameter X (where X 

could be any of μ, q, s0, β0, δ) as ψ(X) = ∑i = 1
mx πi

x ⋅ 𝟙(hi
x ≤ X ≤ hi + 1

x ), where mx is the 

number of bins, hi
x are the edges of these bins, and πi

x is the value of the histogram in the i-th 

bin.

Remark 11. We can represent the histograms for parameter Xk+1 conditioned on Xk (where 
X could be any of βk, δk;) as 

ψ(Xk + 1 | Xk) = ∑i = 1
mx ∑ j = 1

ηx πi, j
x ⋅ 𝟙(hi

x ≤ Xk + 1 ≤ hi + 1
x ) ⋅ 𝟙(ϕ j

x ≤ Xk ≤ ϕ j + 1
x ), where mx is the 

number of bin divisions in the Xk+1 dimension, Xk is the number of bin divisions in the Xk 

dimension, hi
x are the edges of the bins in the Xk+i dimension, ϕi

x are the edges of the bins in 

the Xk+1 dimension, and πi, j
x  is the value of the histogram in the (i,j)-th bin. Note that the 

histogram values πi, j
x  should be normalized such that the above representation is a 

conditional distribution – an incorrect normalization would cause the above representation to 
be a joint distribution instead.

5.3. MILP Formulation for Computing Posterior Distribution of Final Weigh

One of our goals is to show that data-driven prior distributions can be used to perform 

Bayesian estimation by formulating the problem as a MILP. Here, we focus on 

approximating the posterior ψ(wt f
|C, W , U) by solving Ppl. It is worth noting that an almost 

identical formulation can be used to perform Bayesian maximum a posteriori (MAP) 

estimation with data-driven priors by solving problem Pmap, which is given by 

maxW , U, F, Θψ(W , U, F, Θ |C, W , U); compare this problem to Ppl. Observe that because a 

histogram is a piecewise constant function, it can be represented using inequality constraints 
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with integers (Vielma, 2015). This requires some minor reformulations, which we describe 

below, in order to ensure linearity of the optimization model.

Proposition 7. The objective of Ppl (after computing its negative logarithm) is

σ1
−1/2∑i = 1

nw |wti
− wti

| + σ2
−1/2∑i = 1

nu |uτi
− uτi

| + σ3
−1/2∑t = 1

n |zt| +

2−1/2∑
X ∈ μ, q, s0, β0, δ0

∑i = 1
mx logπi

x ⋅ yi
x + 2−1/2∑X ∈ β, δ ∑k = 0

nd − 1
∑i = 1

mx ∑ j = 1
ηx logπi, j

x

⋅ yi, j
x, k,

(8)

subject to constraints for one-dimensional histograms

∑i = 1
mx hi

x ⋅ yi
x ≤ X ≤ ∑i = 1

mx hi + 1
x ⋅ yi

x; ∑i = 1
mx yi

x = 1; yi
x ∈ 0, 1 , ∀i = 1, …, mx, (9)

for all X ∈ {μ,q, s0,β0,δ0}, and constraints for conditional histograms

∑i = 1
mx ∑ j = 1

ηx hi, j
x ⋅ yi, j

x, k ≤ Xk + 1 ≤ ∑i = 1
mx ∑ j = 1

ηx hi + 1
x, k ⋅ yi, j

x

∑i = 1
mx ∑ j = 1

ηx ϕi, j
x ⋅ yi, j

x, k ≤ Xk ≤ ∑i = 1
mx ∑ j = 1

ηx ϕi + 1
x ⋅ yi, j

x, k

yi, j
x, k ∈ 0, 1 , ∀i = 1, …, mx, j = 1, …, ηx; ∑i = 1

mx ∑ j = 1
ηx yi, j

x, k = 1,

(10)

for all X ∈ {βδ} and k = 0,…,nd − 1.

Proof. First, note that the objective of Ppl, after computing its negative logarithm, is 

proportional to: 

σ1
−1/2∑i = 1

nw |w
ti

− wti
| + σ2

−1/2∑i = 1
nu |u

τi
− uτi

| + σ3
−1/2∑t = 1

n |zt|

+ 2−1/2∑
X ∈ μ, q, s0, β0, δ0

∑i = 1
mx logπi

x ⋅ 𝟙(hi
x ≤ X ≤ hi + 1

x )

+ 21/2∑X ∈ β, δ ∑k = 0
nd − 1

∑i = 1
mx ∑ j = 1

ηx logπi, j
x ⋅ 𝟙(hi

x ≤ Xk + 1 ≤ hi + 1
x ) ⋅ 𝟙(ϕi

x ≤ Xk ≤ ϕi + 1
x )

, 

where we have used the factorization of ψ(Θ), the equation for one-dimensional histograms, 

the equation for the conditional histograms, and the equation for log logψ(W , U |W , U, F, Θ, C)
from Pmle-milp. By defining yi

x ∈ 0, 1  for parameters X ∈ {μ, q, so, βο, δ0} and yi, j
x, k ∈ 0, 1

for parameters X ∈ {β, δ} the objective function as in the hypothesis of the proposition. □

Remark 12. An important benefit of the rewritten objective (8) and subsequent constraints 
(9), (10) is that they are linear in the decision variables. Note that the y decision variables in 
these equations are binary variables and indicate which bin of the histogram the 
corresponding variable belongs to.
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The posterior is computed by solving a series of MILPs and then using numerical integration 

to compute the normalization constant Z. In particular, define the following parametric (in 

ω) MILP:

𝓁(wt f
= ω) = min (8)

Ppl–milp

s . t . (1), (4), for t = 1, …, m − 1; (1), (2), (5), (6), (7), for t = m, …, n

(9), for X ∈ μ, q, s0, β0, δ0

(10), for X ∈ β, δ , k = 0, …, nd − 1; wt f
= ω .

The complete formulation can be found in the Supplementary Materials.

Let κ2 = mini 𝓁(wt f
= ωi). If we solve Ppl-milp over a grid of values ω1, …, ωng

, then we can 

compute the normalization Z by numerically integrating the set of points 

(ωi, exp( − 𝓁(wt f
= ωi) + κ2)), for i = 1,…, ng, where (i) we take the exponent of the negative 

of ℓ(·) because we reformulated the objective for our MILP using a negative logarithm, and 

(ii) we scale this exponent using κ2 because this improves the numerics of the computations. 

Finally, the posterior at ωi is given by ψ(wt f
= ωi |C, W , U) = exp( − 𝓁(wt f

= ωi) + κ2)/Z. 

Consequently, we can approximate the posterior distribution of wt f
 by solving a series of 

problem Ppl-milp. Observe that in this approximation process, we are in fact approximating 

the posterior likelihood of the final weight wt f
= ω at different ω using different patient 

behaviors trajectories. Such an approximation approach has been previously proposed and is 

well-behaved asymptotically as more data is collected (Lindley, 1961; Tierney & Kadane, 

1986; Evans & Swartz, 1995). The intuition from Evans & Swartz (1995) for why such an 

approximation is justified begins with the defining integral 

ψ(wt f
|C, W , U) = ∫ ψ(W , U, F, Θ |C, W , U) ⋅ dW−t f

⋅ dU ⋅ dF ⋅ dΘ. For a fixed wt f
, by the law of 

large numbers most of the mass of ψ(W , U, F, Θ |C, W , U) is concentrated about its maximizer, 

which corresponds to the minimizer of Ppl-milp. Hence we can approximate this integral by 

considering its behavior at the optimizer. A complete proof of the theoretical validity of our 

approximation is found in our companion paper (Mintz et al., 2017).

6. Computational Results and Validation of Predictive Modeling

In this section, we first describe the data source used for the computational results and 

validation of our predictive model. Next, we provide computational results of solving 

Ppl-milp to compute MLE and of solving Ppl-milp to compute the Bayesian predictive model. 

Representative plots are shown in these first two subsections. Cross-validation (Hastie et al., 

2009) is used to validate our approach through comparison to a benchmark approach from 

machine learning, and we specifically consider the prediction of 5% weight loss at 5 months 

based on the first 30 days of an individual’s data. This validation compares all individuals in 

the data set. We conclude by demonstrating the ability of our approach to make predictions 
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on the weight loss trajectory of an individual as the number of counseling sessions is 

changed, and we discuss how this can be used for optimization.

6.1. Data Source of Mobile Phone Delivered Diabetes Prevention Program (mDPP) Trial

We used data from the mDPP trial (Fukuoka et al., 2015), which was a randomized 

controlled trial (RCT) to evaluate the efficacy of a 5-month mobile phone-based weight loss 

intervention among overweight English-speaking adults at risk for developing T2DM. The 

intervention was adapted from the Diabetes Prevention Program (DPP) 2002; 2009, but the 

frequency of in-person sessions was reduced from 16 to 6 sessions and group exercise 

sessions were replaced with a home based exercise program to reduce costs. Sixty-one 

overweight adults were randomized to an active control (accelerometer only) (n = 31) group 

or an mDPP mobile app plus accelerometer intervention (n = 30). Demographics are 

available in (Fukuoka et al., 2015), and changes in primary and secondary outcomes were 

promising: The intervention group lost an average of 6.2 ± 5.9 kg (−6.8% ± 5.7%) between 

baseline and 5-month follow-up compared to the control group’s gain of 0.3 ± 3.0 kg (0.3% 

± 5.7%) (p < 0.001). The intervention group’s steps per day increased by 2551 ± 4712 

compared to the control’s group decrease of 734 ± 3308 steps per day (p < 0.001).

The data available from this RCT matches that described in Section 2. Specifically, we have 

step data from a digital accelerometer and body weight data recorded at least twice a week 

every week into the mobile app. We also have access to the age, gender, and height of each 

individual. After an initial two week period, exercise goals in desired number of steps per 

day were provided to each individual. The goals increased by 20% each week, starting at 1.2 

times the average number of steps during the initial two weeks; the goals increased to a 

maximum of 12,000 steps a day (about 6 miles of walking). Individuals were also asked to 

make office visits (at 2, 4, 6, 10, 14, 18, and 20 weeks) during which they received 

behavioral counseling about their nutritional choices and physical activity.

6.2. Computational Results

We used the Gurobi solver (Gurobi Optimization, 2015) to solve Pmle-milp and Ppl-milp. The 

CVX toolbox (Grant & Boyd, 2014) for MATLAB was used to generate each instance of the 

MILP. A 2.5GHz laptop computer with 4Gb of RAM was used to generate these results.

6.2.1. Results of MLE for Utility-Maximizing Model—The problem Pmle-milp was 

solved foe rach individual in the mDPP. The fastest computation time was 3 sec, the slowest 

computation time was 550 sec, and the median computation time was 10 sec. The second 

and third quartiles of computation time were 6 sec and 70 sec, respectively. Overall, the 

computation was quick and can be easily parallelized because each MILP is solved 

independently.

Figure 1 shows a representative example of the weight, steps, and caloric intake trajectory 

estimated by solving Pmle-milp. The blue dots are measured data, and the red lines are 

estimated trajectories. The utility-maximizing framework captures increasing positive 

impacts from achieving exercise goals, as well as negative impacts from not meeting goals. 

The MLE reduces noise in measured data and estimates values for time points without data. 
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Observe that the large drops in caloric intake correspond to reductions in the preference of 

caloric consumption st that occurs after an office visit; however, the reductions are not 

constant for each office visit. This is because the impact of an office visit is characterized by 

βt,δt, which are random variables. Moreover, when we computed the conditional histograms 

for βt+1 given βt and for δt+1 given δt, we empirically found that these histograms were such 

that they indicated subsequent office visits are generally less effective in encouraging 

increases in physical activity and reductions in caloric intake.

From a clinical standpoint, an additional benefit of our utility-maximizing framework is its 

ability to estimate caloric intake. Effective mobile technologies for directly measuring 

caloric intake are not commercially available, and self-reported caloric intake diaries are 

known to be highly inaccurate (Schoeller et al., 1990). Our approach indirectly estimates this 

by integrating physiology into the framework. This can be used to improve self-monitoring 

of an individual’s food consumption.

6.2.2. Results of Bayesian Trajectory Prediction using MILP Formulation—
Problem Ppl-milp was solved using the first month of data for each individual in the 

intervention group of the mDPP in order to compute a posterior distribution of wt f
. To 

generate the histograms for Ppl–milp, we used the MLE parameters for the remaining 

individual computed using the entire data set for these individuals. We did not use an 

individual’s data when computing the histogram used to make predictions for that particular 

individual; we constructed a different histogram for each individual by using the data 

excluding that individual.

For our computations, we chose ng = 100 grid points at which we computed the posterior. 

The fastest, slowest, and median computation times were 190 sec, 1000 sec, and 360 sec, 

respectively. The second and third quartiles of computation time were 230 sec and 470 sec, 

respectively. Overall, the computation was relatively quick and can be easily parallelized 

because each MILP is solved independently.

A representative example of the posterior likelihood ψ(wt f
|C, W , U) for the final weight of an 

individual (at 5 months) conditioned on 1 month of weight and step data is shown in Figure 

2. The dashed line denotes the initial weight of the individual before starting the weight loss 

intervention, and the dotted line represents a final weight corresponding to 5% weight loss. 

We can also plot the entire weight, exercise, and caloric intake trajectories corresponding to 

the MAP estimate: This is shown in Figure 3. Data from the first month (dark blue and left 

of the dotted line) was used to compute the posterior and the MAP estimate of the past and 

future trajectories. The MAP prediction of the future trajectories is compared to the actual 

measurements (light blue and right of the dotted line); there is good agreement between the 

predicted and actual weight trajectories. An additional benefit of this approach is its ability 

to estimate past caloric intake.

6.3. Predicting Clinically Significant Weight Loss

This subsection evaluates the ability of our predictive model from Section 5 to predict 

whether an individual will achieve clinically significant weight loss at the end of the 
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intervention. We refer to a situation where an individual achieves 5% weight loss as a 

positive, and similarly if an individual does not achieve 5% weight loss then this is be a 

negative. We validate the predictive capabilities of our model by comparing it to three 

standard methods from machine learning. Specifically we consider a linear support vector 

machine (SVM) model, a decision tree model, and a logistic regression model for 

classification (Hastie et al., 2009). We additionally consider a version of our predictive 

model that does not incorporate a Bayesian prior in order to validate that our Bayesian 

approach improves prediction accuracy. For the purpose of comparison, we specifically 

consider a scenario in which the first 30 days of mobile phone data are used to predict 

whether an individual will achieve 5% weight loss after 5 months of participating in the 

weight loss intervention. Cross-validation (Hastie et al., 2009) is used to separate the data 

into a training set that is used to estimate the models and a hold-out set that is used to 

quantitatively validate the model.

6.3.1. Machine Learning Models—Let x ∈ ℝ2 be a vector of percent weight loss to 

date and percent of step goals met, and let y be such that if y =1 then an individual has 

achieved at least 5% weight loss and y = —1 otherwise. Machine learning methods use data 

in this form to fit functions f : ℝ2 →{ — 1,1} to best capture the relationship between x and 

y. We refer to the output of this function as y(x) = f (x), to signify that we are generating an 

estimate of the y values. The value y(x) = − 1 is a prediction that the individual will not 
achieve 5% weight loss after 5 months, and y(x) = + 1 is a prediction that the individual will 
achieve 5% weight loss after 5 months.

A linear SVM is the predictive model y(x) = sign(β0 + x′β). The hyperplane β0 + x’β cuts the 

space ℝp into two regions, and the two sides of the hyperplane are predicted to be positive or 

negative, respectively. The parameters β0, β are computed by a quadratic program (Hastie et 

al., 2009), and we used the MATLAB Statistics and Machine Learning Toolbox to identify 

the SVM parameters using data from the mDPP trial. The identified parameters are 64 for 

percent weight loss to date and 1.715 for percent of step goals met; the parameter values 

normalized by sample standard deviation were similar. These magnitudes indicate that for 

predicting 5% weight loss: percent weight loss to date is the most important feature and 

percent of step goals met is the second most important. Because all parameters are positive, 

this means increased weight loss to date and percent of step goals met both lead to increased 

likelihood of achieving 5% weight loss.

A decision tree model (i.e., classification and regression trees or CART) is a sequential 

classifier. Each node of the tree partitions a different column of the data to ensure maximum 

separation between the two classes, and each leaf of the tree is assigned a label of 1 or −1. 

For prediction, data is compared along the nodes of the tree and then assigned a value that 

corresponds to the leaf of the final comparison. Computing the optimal decision tree model 

is NP-hard, and heuristics are used to construct these models (Hastie et al., 2009). For our 

implementation, we used the MATLAB Statistics and Machine Learning Toolbox to train the 

decision tree model from the mDPP data. Our trained decision tree model first branches on 

the percent of weight lost to date, with those who lost at least 2.6% being classified to the 

class which will achieve 5% weight loss. Next, the model branches on the average amount of 
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exercise goals met, with those who met at least 84% of their goals being classified as 

successful and the remainder as unsuccessful.

A Logistic Regression model specifies a classifier of the form 

y(x) = 2 ⋅ 1 1
1 + exp( − β0 − x′β ≥ 1

2 − 1. This probabilistic interpretation of this classifier is 

that the labels transformed to {0,1} follow a Bernoulli distribution with parameter p where 

log p
1 − p = β0 + x′β. Hence if the probability that y = 1 is greater than 0.5 we predict y = 1, 

and otherwise we predict y = − 1. The problem of training a logistic regression model can 

be posed as a convex optimization problem (Hastie et al., 2009) that can be solved by 

stochastic gradient descent. For our analysis, we used the MATLAB Statistics and Machine 

Learning Toolbox to train the logistic regression model. The coefficient for weight lost to 

date was 73 and the coefficient for percent of goals met was 0.889. These coefficients are 

similar to the SVM coefficients, which is unsurprising since logistic regression can be 

interpreted as a continuous relaxation of linear SVM (Hastie et al., 2009).

6.3.2. Adjusting True and False Positive Rate of Predictions—The quality of our 

models can be evaluated by estimating and comparing the true and false positive rates of 

different models. The true positive rate (TPR) specifies the probability of a model correctly 

predicting a positive, and the false positive rate (FPR) quantifies the probability of a model 

incorrectly predicting a positive. In making predictions, there is tradeoff between the TPR 

and FPR. It is customary for practitioners to choose the FPR, and this choice fixes the TPR 

(Bickel & Doksum, 2006; Lehmann & Romano, 2006). Choosing the FPR requires an 

understanding of how the model is used to make predictions and how parameters in the 

model impact the FPR. For instance, we can adjust the FPR of a linear SVM model by 

choosing the value of β0. For example, if β0 = —∞, then the prediction will always be —1; 

similarly, if βο = +∞, then the prediction will always be +1. By choosing intermediate values 

for βο, we can adjust the FPR of the model. To specify the FPR of the Bayesian predictive 

model, we compute the posterior probability of 5% weight loss 

ℙ(wt f
≤ 0.95w0 |C, W , U) = ∫ −∞

0.95w0ψ(wt f
|C, W , U) ⋅ dwt f

 and then threshold this at 

successively lower levels. This is similar to the standard approach used to choose the FPR 

for logistic regression.

6.3.3. Estimating an ROC Curve—It is common to choose the FPR using a receiver 

operating characteristic (ROC) curve. An ROC curve explicitly displays the tradeoff between 

the TPR and FPR. We can estimate such a curve for the various machine learning models 

and our Bayesian predictive model both with and without the empirical prior distribution. In 

particular, we use leave-one-out cross-validation (Hastie et al., 2009) to estimate each ROC 

curve. The idea of this standard approach is that when making the prediction for each 

individual, we use a model that was computed using data from everyone excluding the 

present individual. The final result is a summation over the predictions for each individual. 

The benefit of this approach is we do not use data from a specific individual when making 

the prediction for that specific individual.
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We estimated an ROC curve for each of the models using leave-one-out cross-validation, and 

these ROC curves are shown in Figure 4. These ROC curves compare the prediction 

accuracy for all individuals. The ROC curves have been smoothed using a binormal model 

(Metz et al., 1998), and the unsmoothed version of the ROC curves can be found in the 

Supplementary Materials. The results show that our predictive modeling framework is 

competitive in terms of prediction accuracy with the linear SVM, logistic regression, and 

decision tree models, which further justifies our choice of the utility-maximizing framework 

and its ability to capture “irrational” discounting in the decision-making of individuals 

participating in the intervention. Furthermore, our predictive model with the Bayesian 

empirical prior makes slightly better predictions than our predictive model without a 

Bayesian prior, though the difference in their ROC curves is not statistically significant (P = 

0.16) when compared using a standard hypothesis testing approach developed by Hanley & 

McNeil (1983). In contrast, the difference in the ROC curves of our predictive model (with 

and without the prior) and the benchmark approaches of linear SVM, logistic regression, and 

decision tree models is statistically significant (P = 0.001). Our empirical results suggest that 

the Bayesian prior gives a slight improvement for this data set, but this is not expected to 

generally hold. Essentially, we expect that using a prior will give improvements in prediction 

accuracy when an individual is similar to those individuals used to construct the prior. On 

the other hand, if an individual is very different from those used to construct the prior, then 

we expect the prior to make predictions worse. However, the situation may be improved with 

a demographics-dependent prior: We could imagine constructing different priors for 

individuals with different demographics. Then when making predictions for an individual, 

we could either use a prior constructed by the data of those with matching demographics, or 

not use a prior if the individual has very different demographics than was used to construct 

any of the priors.

6.4. Personalizing Goal Setting Using the Predictive Model

One of our reasons for developing a predictive model is to enable the design of approaches 

for optimizing elements of large weight loss programs. In contrast to other predictive 

models, our behavioral framework can be used to formulate an optimization problem to 

determine the number of visits, timing of visits, and the physical activity goals for each 

individual in order to maximize the expected number of individuals that achieve clinically 

significant weight loss at the end of the program. It is in this way that our predictive model 

has the potential to be used to personalize the weight loss program for each individual.

Here, we present an example that demonstrates the ability of our model to make predictions 

about how future weight loss changes as the step goals for an individual are changed. Figure 

5 shows the posterior likelihood of final weight of an individual conditioned on 50 days of 

data and on either having 12,000 steps/day goals after 50 days (dash dotted) or having 8,000 

steps/day goals after 50 days (solid). When the goals are 8,000 steps/day, our model predicts 

a 51% chance of achieving 5% weight loss and that the expected final weight conditioned on 

not achieving 5% weight loss is 86.6 kg. When goals are 12,000 steps/day, our model 

predicts a 3% chance of achieving 5% weight loss and that the expected final weight 

conditioned on not achieving 5% weight loss is 86.8 kg. Our model predicts 8,000 steps/day 
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goals are superior to 12,000 steps/day goals for motivating this individual to increase their 

physical activity and consequently lose weight.

The significance of these results is they show how our predictive model forms a foundation 

for decision optimization problems that can personalize the weight loss program. 

Specifically, the weight loss program could be personalized by first solving our formulation 

for computing the MAP estimate of an individual’s type. Next, we could solve the problem 

min wt f
 subject to constraints defined by our predictive model and the MAP estimate of the 

individual’s type; this problem can be written as a MILP using reformulation techniques 

similar to the ones described in this paper. More details about such an approach can be found 

in (Mintz et al., 2017), and this approach was recently evaluated in a clinical trial where the 

goal was to increase the physical activity of individuals (Zhou et al., 2018).

6.5. Reducing the Number of Office Visits

Most of the costs and person hours spent on administering weight loss programs are 

associated with conducting office visits. Thus, it is essential to be able to optimize the total 

number of visits and when they are scheduled. Our model is able to capture differences in 

predicted weight loss trajectories that occur when changing the number of office visits. For 

instance, Figure 6a shows the posterior likelihood of final weight of an individual 

conditioned on 50 days of data and on either having no office visits after 50 days (dash 

dotted) or having 4 office visits after 50 days (solid). When scheduling 4 office visits on 

days 75, 105, 135, and 150, our model predicts a 96% chance of achieving 5% weight loss 

and that the expected final weight conditioned on not achieving 5% weight loss is 59.3 kg. 

When scheduling 0 office visits, our model predicts a 94% chance of achieving 5% weight 

loss and that the expected final weight conditioned on not achieving 5% weight loss is 59.3 

kg. Our model predicts that for this individual the benefit of scheduling additional office 

visits is minor.

Another example is shown in Figure 6b, which displays the posterior likelihood of final 

weight of another individual conditioned on 50 days of data and on either having no office 

visits after 50 days (dash dotted) or having 4 office visits after 50 days (solid). When 

scheduling 4 office visits on days 75, 105, 135, and 150, our model predicts an 18% chance 

of achieving 5% weight loss and that the expected final weight conditioned on not achieving 

5% weight loss is 78.6 kg. When scheduling 0 office visits, our model predicts a 3% chance 

of achieving 5% weight loss and that the expected final weight conditioned on not achieving 

5% weight loss is 78.7 kg. Our model predicts a clinically significant benefit of scheduling 

additional office visits for this particular individual.

These two examples demonstrate the ability of our predictive model to identify which 

individuals are responsive to office visits, and thus our predictive model can be combined 

with an optimization model to reduce the average number of office visits when considering a 

large number of individuals participating in a weight loss program. We briefly describe how 

an optimization model can be constructed (based on our predictive model) to reduce the 

average number of office visits; full details of the corresponding optimization models are 

available in our companion paper (Mintz et al., 2017). Specifically, we can use a 
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decomposition scheme: In the first step of the scheme, we vary the total number of office 

visits for each individual over a range of values, and we solve the problem min wtf subject to 

constraints defined by our predictive model, the MAP estimate of the individual’s type, and 

the total number of office visits. This problem can be written as a MILP using reformulation 

techniques similar to the ones described in this paper. In the second step of the scheme, we 

solve a knapsack-like problem that allocates the number of office visits to each individual 

based on the predicted effectiveness of different numbers of office visits.

7. Conclusion

We constructed a predictive model of individual behavior in a weight loss intervention, 

employing a utility-maximizing framework based on qualitative concepts from social 

cognitive theory. MILP formulations were developed to compute (i) parameters of the 

framework using MLE, and (ii) a Bayesian predictive model using an empirical histogram 

(constructed using parameters estimated by MLE) as a prior. Model prediction quality was 

assessed using leave-one-out cross-validation to compute an ROC curve, and the results 

show that the utility-maximizing framework leads to predictions on par with predictions of a 

linear SVM model.

We concluded by showing how our predictive model is able to capture differences in weight 

outcomes as the number of office visits is varied, and we briefly discussed how these models 

may be used in designing algorithms to optimize and personalize office visit schedules and 

exercise goals.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We develop data-driven models to predict behavior in weight loss programs

• These models can be used to optimize a weight loss program for each 

individual

• Estimation and Bayesian prediction with our models is computed using 

optimization

• We validate the model by comparison to common machine learning 

approaches
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Figure 1: 
Comparison of data (blue dots) with MLE estimates of weight, exercise, and caloric intake 

(red line).
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Figure 2: 
Posterior likelihood of final weight conditioned on 30 days of data (solid) compare to intial 

weight (dashed) and final weight corresponding to a 5% weight loss (dotted).
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Figure 3: 
Comparison of MAP estimates of weight, exercise, and caloric intake trajectories dark blue 

dots) with future data not used to computed estimates (light blue dots).
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Figure 4: 
ROC curves computed using leave-one-out cross-validation for our predictive model with an 

empirical Bayesian prior (blue solid), our predictive model without a Bayesian prior (red 

dashed), linear SVM model (purple dash dot), decision tree model (green dashed dot), and 

logistic regression (cyan dashed) are compared.
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Figure 5: 
Posterior likelihood of final weight of an individual conditioned on 50 days of data and 

conditioned on either having 12,000 steps/day goals after 50 days (dash dotted) or 8,000 

steps/day goals after 50 days (solid), and compared to initial weight (dashed) and final 

weight corresponding to a 5% weight loss (dotted).
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Figure 6: 
Posterior likelihood of final weight of an individual conditioned on 50 days of data and 

conditioned on either having no office visits after 50 days (dash dotted) or having 4 office 

visits after 50 days (solid and final weight corresponding to a 5% weight loss (dotted).
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