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Abstract

We investigate connectionist models of rule-based
reasoning, and show that while such models usu-
ally carry out reasoning in exactly the same way
as symbolic systems, they have more to offer in
terms of commonsense reasoning. A connection-
ist architecture for commonsense reasoning, CON-
SYDERR, is proposed to account for common-
sense reasoning patterns and to remedy the brit-
tleness problem in traditional rule-based systems.
A dual representational scheme is devised, utiliz-
ing both localist and distributed representations
and exploring the synergy resulting from the inter-
action between the two. CONSYDERR is there-
fore capable of accounting for many difficult pat-
terns in commonsense reasoning. This work shows
that connectionist models of reasoning are not just
“implementations” of their symbolic counterparts,
but better computational models of commonsense
reasoning.

Introduction

Rule-based reasoning is the most prominent paradigm
of symbolic AI. Whether connectionist models can be
a viable alternative to symbolic Al depends, to some
extent, on their ability to account for rule-following
behaviors and rule-based reasoning.

To account for rules in connectionist models, var-
ious approaches have been explored, and several dif-
ferent systems have been implemented that can carry
out rule-based reasoning rather completely. However,
most of them are straight “implementations”, without
any fundamental difference from symbolic systems in
terms of logical capabilities or reasoning capacities.

Can connectionist models do more and better in
terms of accounting for robust, flexible, and multi-
faceted human commonsense reasoning, especially in
the types of reasoning that are most often dealt with
by rule-based paradigms? Can those data (such as
in Collins & Michalski 1990) that are difficult to ac-
count for by symbolic rule-based systems be explained
by connectionist rule-based reasoning models? We try
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to answer these questions by building a connectionist
reasoning system to account for common patterns in
commonsense reasoning. This work shows that con-
nectionist models of reasoning are not just an “im-
plementation” of their symbolic counterparts; rather,
they are better computational models of commonsense
reasoning, taking into consideration the approximate,
evidential and flexible nature of rule-based reasoning,
and similarity-based reasoning (or a limited form of
analogy), and also accounting for the spontaneity and
parallelism in reasoning processes.

Below we will first look into various existing connec-
tionist models of rule-based reasoning. Then we will
identify some problems that are difficult for them to
solve. We will move on to develop a new connectionist
architecture that can better deal with these problems.
In this paper, we will concentrate more on motivational
issues than on technical details.

Background Reviews

Let us look into some previous work in rule-based
reasoning, especially connectionist ones. Rule-based
systems have a long history in Al and cognitive sci-
ence. The early successful work such as those de-
scribed in Buchanan & Shortliffe (1984) demonstrated
the promise of this overall approach, which adopts a
simple representation with modular units called rules
composed of a small set of conditions and conclusions.
Many elaborate cognitive theories of learning, prob-
lem solving and memory, etc. were built based on this
paradigm (cf. Klahr et al 1987) 1.

Because of this success, when connectionism came
along, one of the main challenges for connectionism
was how to implement rule-based reasoning in a net-
work fashion. Touretzky & Hinton (1985) is the first
work that tackles this problem. They basically em-
ulate the structure of a symbolic rule-based (produc-
tion) system, with separate modules for working mem-
ory, rules, and facts. An elaborate pull-out network is
designed to match working memory data against rules

!Nevertheless the paradigm has long been plagued by
the brittleness problem for large scale systems, as will be
discussed.
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and to decide which matching rule is to fire. Compe-
tition and winner-take-all are used for the matching
purpose. The result is the equivalent of a simple se-
quential symbolic rule-based system.

Barnden (1988) represents another early attack on
this problem. In his system, data reside in grid-like
networks (called Configuration Matrices), coded with
the help of adjacency relations and highlighting tech-
niques. Hardwired rules are used to detect the presence
of data that match particular rules, and an “Action
Part"” module can be used to add a new data structure
representing the conclusion from the matched rule. Al-
though there is some parallelism, it is mostly a sequen-
tial rule-based system, carrying out symbolic process-
ing.

From these examples, it is quite clear now that con-
nectionist models are capable of implementing rule-
based reasoning in a variety of ways . Now the ques-
tion 1s: Can connectionist models account better for
commonsense reasoning? The evidential, robust, flex-
ible, and multifaceted nature of commonsense reason-
ing is evident from various studies (such as in Collins
& Michalski 1990) yet they are all absent from these
above models. What is really needed for a connec-
tionist model of rule-based reasoning to be able to
model commonsense reasoning adequately? We con-
front the above questions, by analyzing real protocol
data and then actually building a new kind of con-
nectionist models as a computational mechanism for
commonsense reasoning.

Common Reasoning Patterns

Allan Collins collected a number of protocols of com-
monsense reasoning. He indicated the inadequacy of
traditional logic in explaining those reasoning pat-
terns, and argued for the use of different formalisms
or frameworks in the study of common reasoning pat-
terns found in various commonsense reasoning tasks.
Collins & Michalski (1990) have done an impressive job
in terms of analyzing the data and establishing a uni-
fying framework for explaining them. What is needed
1s a computational mechanism from which various in-
ference patterns contained in the data can emerge into
existence. We believe that the mechanism ought to
be analytically simple, structurally unified, and mech-
anistically sound. Connectionist models in general fit
these above descriptions very well, so they might pro-
vide such a mechanism.

Let’s look at some examples from Collins & Michal-
ski (1990). One protocol is as follows:

Q: Do you think they might grow rice in Florida?

R: Yeah. I guess they could, if there were an adequate
fresh water supply, certainly a nice, big, warm, flat
area.

2 Also, Dolan & Smolensky (1988), Sun (1989) (see also
Sun & Waltz 1991), Ajjanagadde & Shastri (1989), and
Lange & Dyer (1989) are works basically belonging to this
same category.
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In this example, the person answering the question
deduced an uncertain conclusion based on partial in-
formation, with a piece of crucial information (fresh
water) missing. This example also indicates the need
for an additive procedure for accumulating evidence.

Another case is as follows:

Q: Is the Chaco the cattle country?

R: It is like western Texas, so in some sense | guess
it's cattle country.

Here because there is no known knowledge (or no ap-
plicable rules), an uncertain conclusion is drawn based
on similarity with known knowledge (rules).

Yet another case is

Q: Are there roses in England?

R: There are a lot of flowers in England. So I guess
there are roses.

Here the deduction is based on property inheritance
(flower LOCATION England; rose IS-A flower; so rose
LOCATION England), and the conclusion is partially
certain and can be drawn only when there is no infor-
mation to the contrary (i.e. no cancellation).

Existing connectionist models, or any computational
models for that matter, so far cannot deal very well
with these above patterns in a single unified model.

The Brittleness Problem

Those above examples are actually instances of a gen-
eral problem that has been plaguing symbolic Al for
long, namely the brittleness problem.

The brittleness problem can be defined, for the pur-
pose of this research, as the inability of a system to deal
with the following aspects of reasoning in a systematic
way within a unified framework: (1) partial informa-
tion (for example, the first protocol), (2) uncertain or
fuzzy information, (3) no matching rules (for example,
the second protocol), (4) rule interactions, i.e. lack
of consistency and completeness in a fragmented rule
base, (5) generalization, (6) bottom-up inheritance, (7)
top-down inheritance (for example, the third protocol),
and (8) learning new rules.

Detailed analysis of these aspects (with lots of exam-
ples) shows that, while they look like a disparate set
of problems, they can all be characterized as reason-
ing with rules supplemented with (feature) similarity-
related inferences. We define a measure of conceptual
similarity (cf. Tversky 1977) as
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such that 3

if ACTy, =a, then ACTg =a+(A ~ B)
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1

where Fj is the feature representation of node “i”, and
ACT,; is the activation of node “i”. We define a mea-
sure of knowledge links (i.e. rules) as

(A — B)=re[-1,1]

3We assume there is nothing else affecting ACTg



such that
if ACT4 = a, then ACTg =ax(A — 1)

where ACT; is the activation of node “i", and r is
the knowledge link (rule) strength 4 between A and B.
Each of these above cases can be analyzed and dealt
with utilizing these two concepts, for example, the no-
matching-rule situation can be described as:

A~ B
B — C
and A is activated (ACT,4 # 0). So we have
ACTc = (B — C)* ACTp

=(B — C)*ACT4*(A ~ B)

Other cases can be described similarly, except learning
new rules, which is a separate issue (see Sun & Waltz
1991).

These two mechanisms are embedded in our new ar-
chitecture: CONSYDERR ?, so each of these aspects
of brittleness can be handled by our system.

A Sketch of the Model

The CONSYDERR architecture consists of two lev-
els: CL and CD. CL is a connectionist network with
localist representation, or roughly reasoning at the con-
ceptual level (cf. Smolensky 1988). Rules are repre-
sented in CL as links between two nodes represent-
ing the condition and the conclusion respectively. The
scheme proposed, FEL or Fuzzy Evidential Logic, can
handle a superset of Horn clause logic and Shoham’s
modal logic (or Causal Theories, cf. Shoham 1990), so
that it can fully accommodate traditional rule-based
reasoning and capture commonsense causal knowledge.
Moreover, it is capable of approximate and cumulative
evidential reasoning and works with partial and un-
certain information. Unlike Horn clause logic, it can
deal with negative as well as positive evidence. It can
handle variable bindings by utilizing the DN/PDN for-
malism as in Sun (1989) and Sun (1990). The basic
operation of this scheme is simply weighted-sum com-
putations, therefore this scheme can be implemented,
with ease, in a connectionist network with weighted-
sum node activation functions. Because of the limited
space and the need to emphasize the main points in
this short presentation, we will not discuss in detail
the above points regarding rule representations (see
Sun 1991 for details).

CD is a connectionist network with distributed rep-
resentation, roughly corresponding to reasoning at the
subconceptual level. Concepts and rules are diffusely

*When there are multiple conditions in a rule, this mea-
sure becomes a vector, and the multiplication used here is
generalized to inner-products.

°It stands for a CONnectionist SYstem with Dual rep-
resentation for Evidential Robust Reasoning
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Phase I: top-down
links enabled

Phase II: intra-level
links enabled
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Phase III: bottom-up
links enabled

Figure 1: A two-level architecture

represented by sets of units overlapping each other.
The amount of overlapping of two sets of units rep-
resenting two different concepts is proportional to the
degree of similarity between these two concepts. I call
this a similarity-based representation, in which units
can be features, perceptual primitives, internal goals or
affect states. Concepts are “defined” in terms of their
similarity to other concepts in these primitive repre-
sentations. I will utilize these primitives only as a sub-
stratum for similarity-based representation of higher
level concepts.

Now we can link the localist network (CL) with this
distributed network (CD), by linking each node in CL
representing one concept to all the nodes in CD repre-
senting the same concept, and assign them appropriate
weights (see Fig.1). Those cross-component links are
moderated by a latch mechanism. The rule links in
CL are duplicated (diffusely) in CD. The interactions
of the two components are in fixed cycles: first the
latch opens to allow the activation of CL nodes to flow
into corresponding CD nodes, and then the two parts
start settling down on their own simultaneously, and
finally the latch opens to allow the activation of nodes
in CD to flow back into CL to be combined with the
activation of corresponding CL nodes.

From the above description it is clear that the sys-
tem is a combination of rule-based and similarity-based
components, interwoven together. It implements nat-
urally the functions defined above for knowledge links
and conceptual similarity. The synergy of the two
types of representation and reasoning helps to deal
with the brittleness problem listed above and, there-
fore, to account for the aforementioned common rea-
soning patterns.

For example, in order to solve the no-matching-rule
situation, we can explore the similarity between the
current situation and the rule conditions as represented
in the CD part of the system. Consider the following
case:

Cars are for traveling on ground. Airplanes are for



traveling in air. Are buses for traveling on ground or

in the air?

In the context of deciding modes of transportation,
based on the similarity of relevant features ® as repre-
sented with the amount of overlapping in correspond-
ing sets of units in CD, buses are closer to cars than to
airplanes. So “traveling on ground” is activated more
strongly. One concludes that buses are for traveling on
ground.

Another example concerns the problem of inconsis-
tent/incoherent rule bases (rule interaction), we can
utilize the rule interactions in CD:

If carrying cargo, buy utility vehicles. If carrying pas-

sengers, buy passenger vehicles. If carrying both cargo

and passengers, what shall one buy?

Different types of vehicles are represented as features
in CD. When the above two rules are both activated (in
response to the question), all features corresponding to
both utility and passenger vehicles will be activated in
CD. All this information will go up to CL, and the
things corresponding to the intersection of utility and
passenger vehicles will be activated strongly (because
they have all the features). So something like “van”
will win.

Other aspects of the brittleness problem can be
solved in a similar fashion, including the common pat-
terns identified by Collins & Michalski (1990) 7. This
solution is quite different from Collins & Michalski.
My contention is that this model is conceptually sim-
pler and computationally more efficient (by combining
and eliminating many parameters).

Formal mathematical analyses were performed for
each of these aspects, and we came up with a set of re-
quirements and constraints for each aspect regarding
the parameters of a system that can deal with that par-
ticular aspect. After analyzing how these requirements
and constraints imposed by each of these aspects inter-
act with one another, a synthesis is achieved, so that a
unified system is formed with a unique set of parame-
ter settings satisfying all requirements. Based on that,
a large-scale system consisting of about two hundred
nodes was built to test, in a realistic setting, how these
fragments combine. The system utilizes geographical
knowledge extracted from encyclopedias and performs
commonsense reasoning based on that knowledge (see
Sun 1991).

A Detailed Example

The Problem

Look) at the “Chaco” example (Collins & Michalski
1990).

6Such as Having-wings, Having-tails, Wheels-on-both-
sides, Aerodynamic-shapes, Landing-gears, etc.

"We are certainly not implying that we solved the brit-
tleness problem completely. Rather, we are aiming for a
simple and elegant model that can deal with some impor-
tant and predominant aspects of the problem very effec-
tively and efficiently.

Q: Is the Chaco the cattle country?

R: It is like Western Texas, so in some sense I guess
it’s cattle country.

We can put it another way to straighten out the
reasoning:

Western Texas is cattle country.

Chaco is similar to western Texas (in some relevant
aspects).

So Chaco is cattle country.

An analysis

In this example, because there is no known knowl-
edge (or no applicable rules), an uncertain conclusion
is drawn based on similarity with known knowledge
(rules). Using the formalism we developed, it can be
described as:

Chaco ~ WesternTezxas

WesternTexas — cattlecountry

Given “Chaco” with ACTchaeo = 1, “cattlecountry” is
concluded with ACT,at11ecountry calculated as follows:

ACT.attiecountry = (WesternTezxas — cattlecountry)

*ACTchaco * (Chaco ~ WesternTezas)

where the similarity measure is chosen to facilitate
later implementations in the CONSYDERR architec-
ture:

EFChaco n FWenernTe:a:'

Chaco ~ WesternTexras = px
|FChacoI

p € [0,1] is a parameter used for adjusting the sys-
tem’s behavior, from absolute rigidity to free-floating
thinking (see Sun 1991).

These equations can be readily translated into the
CONSYDERR architecture: Links between nodes in
both CL and CD represent rule strength measures (the
link weights are defined to be the corresponding rule
strengths), and similarity measures are implemented
with CD representations (we use a set of nodes to rep-
resent all features in CD and the amount of overlapping
between representations of two concepts expresses the
conceptual similarity of these two concepts). See Fig.2.

The Working of the System

After starting to receive input data, the CONSY-
DERR system operates in fixed cycles: (1) Top-down
phase, (2) Settling phase, and (3) Bottom-up phase.
This cycle can be repeated to continuously track in-

puts.
In Top-down phase, the computation is as follows:

z,(t 4+ 1) = max ACT,(t)
a

where a is any node in CL that has z; € CD,.
In Settling phase, the computation is as follows:

AACT. = a Y W.Ii(t) — BACT.(1)



a)

)

Figure 2: The Reasoning Process for the Chaco Pro-
tocol: (1) Receiving inputs, (2) Top-down, (3) Settling
(rule application), and (4) Bottom-up.

(To save space, unrelated nodes are not shown here).

and
Az = “Z wit, (1) — vzi(t)

where W,, w; are rule strength (weight) measures, and I,,1;
are the activations of related concepts or features (premises
or logical predecessors).

In Bottom-up phase, the computation is as follows:

zi(t) )
|C Dy|

ACTy(t +1) = max(ACTh(t), Y
x,ECD,

where b is any node in CL.

Applying this cycle to the example: Top-down phase
will activate the CD representation of “Chaco” and
activate partially the CD representation of “West-
ernTexas” based on their similarity; then in Settling
phase, rules (links) take effect and this amounts to ap-
plying in CD the rule: WesternTezas is cattle-country,
so the CD representation of “cattle country” is par-
tially activated; finally in Bottom-up phase, the par-
tially activated CD representation of “cattle country”
will percolate up to activate the “cattle country” node
in CL. The result can be read off from CL. See Figure 2.

Comparing it with other systems: CONSYDERR
utilizes parallelism inherent in the data to the maxi-
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mum extent, especially when compared with Touretzky
& Hinton (1985) or Dolan & Smolensky (1989). While
most other connectionist rule-based systems (Lange &
Dyer 1989, Ajjanagadde & Shastri 1989, etc.) are
functionally comparable to the CL part of CONSY-
DERR, the CD part is unique in that it provides
an efficient way for similarity matching to supple-
ment rule-based reasoning; the CL/CD dual represen-
tation scheme constitutes a principled way of account-
ing for the dichotomy of conceptual level and subcon-
ceptual (intuitive) level reasoning (Smolensky 1988,
Sun 1991). More recently Barnden & Srinivas (1990)
utilize connectionist rule-based systems to explore sim-
ilarity in reasoning (i.e. connectionist case-based rea-
soning); while the idea is very similar to ours (see Sun
1991 for details), their system requires a complex re-
trieval/matching process.

The Initial Setup

The question of how we can gather data and set up a
large system can be divided into two questions: how do
we obtain rule weights and how do we obtain similarity
measures?

In our large-scale system (Sun 1991), rules are ob-
tained by going through geography sourcebooks, pick-
ing out the relevant information and integrating it
into the network with the CFRDN procedure (see Sun
1991). The rules being put into the system include
WesternTezas is cattlecountry, etc. ®

Similarity measures are obtained by an indirect
means: we first obtain all the relevant features needed
for representing the concepts involved, and then nat-
urally the amount of feature overlap is the similarity
between concepts involved. In order to come up with
detailed feature representations for concepts, we pre-
establish a set of feature nodes, and we then go through
sourcebooks, establishing links (cross-level links) be-
tween a concept in CL and its features in CD, based on
what we read in the sourcebooks. The features include:
altitude, rainfall, vegetation, population, temperature,
terrain, etc. with various ranges.

One important issue is how the system focuses on
relevant features and ignore or discount somehow the
irrelevant ones, given the context (or the query, in the
above-mentioned cases). This is done by the attention
focusing module external to the system, in which a
set of “context rules” are used to pick out all relevant
features and suppress others when a certain context

®In general, weights representing rules can be obtained

by reading textbooks, instructions, or by using learning al-
gorithms through interactions with the environment. There
is no universally applicable way to do this, or in other
words, it is domain-specific.

® Another possible way of obtaining similarity measures
is to conduct a test, asking a group of subjects to rate the
similarity of concepts concerned and then construct CD
representations based on the collected test scores with the
STSIS procedure (see Sun 1991).



Figure 3: The Overall Architecture with Feature and
Result Selections

is given (by activating the node representing the par-
ticular context, in ways described by Sun 1989). See
Figure 3 for a sketch of these mechanisms. Because
of the fact that these mechanisms are domain specific,
they are not part of the CONSYDERR architecture,
but add-on mechanisms (cf. Sun 1991).

Summary

We analyzed connectionist models for rule-based com-
monsense reasoning. A connectionist architecture is
proposed to account for some common patterns found
in commonsense reasoning and to remedy to a cer-
tain extent the brittleness problem found in typical
symbolic systems. Different from other existing con-
nectionist systems, a dual representational scheme is
devised, which has extensional objects (localist repre-
sentation) as well as intensional objects (distributed
representation with features). By using feature-based
distributed representation in addition to the localist
representation, we are able to explore the synergy re-
sulting from the interaction between these two types of
representations and between rule-based reasoning and
similarity-based reasoning. This synergy helps to deal
with problems such as partial information, no exact
matching, property inheritance, rule interaction. and
therefore the CONSYDERR system is capable of ac-
counting for many difficult reasoning patterns in one
unified system. This architecture also demonstrates
that connectionist models equipped with symbolic ca-
pabilities are powerful tools for modeling reasoning ca-
pacities as well as for constructing efficient practical
systems (by utilizing massive parallelism), and they
are not mere implementations of their symbolic coun-
terparts.

Acknowledgments [ wish to thank Dave Waltz,
James Pustejovsky, and Tim Hickey for many help-
ful discussions, and Don Smith for commenting on the
paper.
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